1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include <linux/dma-mapping.h> 70 #include "xhci.h" 71 #include "xhci-trace.h" 72 #include "xhci-mtk.h" 73 74 /* 75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 76 * address of the TRB. 77 */ 78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 79 union xhci_trb *trb) 80 { 81 unsigned long segment_offset; 82 83 if (!seg || !trb || trb < seg->trbs) 84 return 0; 85 /* offset in TRBs */ 86 segment_offset = trb - seg->trbs; 87 if (segment_offset >= TRBS_PER_SEGMENT) 88 return 0; 89 return seg->dma + (segment_offset * sizeof(*trb)); 90 } 91 92 static bool trb_is_noop(union xhci_trb *trb) 93 { 94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 95 } 96 97 static bool trb_is_link(union xhci_trb *trb) 98 { 99 return TRB_TYPE_LINK_LE32(trb->link.control); 100 } 101 102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 103 { 104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 105 } 106 107 static bool last_trb_on_ring(struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 111 } 112 113 static bool link_trb_toggles_cycle(union xhci_trb *trb) 114 { 115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 116 } 117 118 static bool last_td_in_urb(struct xhci_td *td) 119 { 120 struct urb_priv *urb_priv = td->urb->hcpriv; 121 122 return urb_priv->num_tds_done == urb_priv->num_tds; 123 } 124 125 static void inc_td_cnt(struct urb *urb) 126 { 127 struct urb_priv *urb_priv = urb->hcpriv; 128 129 urb_priv->num_tds_done++; 130 } 131 132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 133 { 134 if (trb_is_link(trb)) { 135 /* unchain chained link TRBs */ 136 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 137 } else { 138 trb->generic.field[0] = 0; 139 trb->generic.field[1] = 0; 140 trb->generic.field[2] = 0; 141 /* Preserve only the cycle bit of this TRB */ 142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 144 } 145 } 146 147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 148 * TRB is in a new segment. This does not skip over link TRBs, and it does not 149 * effect the ring dequeue or enqueue pointers. 150 */ 151 static void next_trb(struct xhci_hcd *xhci, 152 struct xhci_ring *ring, 153 struct xhci_segment **seg, 154 union xhci_trb **trb) 155 { 156 if (trb_is_link(*trb)) { 157 *seg = (*seg)->next; 158 *trb = ((*seg)->trbs); 159 } else { 160 (*trb)++; 161 } 162 } 163 164 /* 165 * See Cycle bit rules. SW is the consumer for the event ring only. 166 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 167 */ 168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 169 { 170 /* event ring doesn't have link trbs, check for last trb */ 171 if (ring->type == TYPE_EVENT) { 172 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 173 ring->dequeue++; 174 return; 175 } 176 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 177 ring->cycle_state ^= 1; 178 ring->deq_seg = ring->deq_seg->next; 179 ring->dequeue = ring->deq_seg->trbs; 180 return; 181 } 182 183 /* All other rings have link trbs */ 184 if (!trb_is_link(ring->dequeue)) { 185 ring->dequeue++; 186 ring->num_trbs_free++; 187 } 188 while (trb_is_link(ring->dequeue)) { 189 ring->deq_seg = ring->deq_seg->next; 190 ring->dequeue = ring->deq_seg->trbs; 191 } 192 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 201 * 202 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 203 * chain bit is set), then set the chain bit in all the following link TRBs. 204 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 205 * have their chain bit cleared (so that each Link TRB is a separate TD). 206 * 207 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 208 * set, but other sections talk about dealing with the chain bit set. This was 209 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 210 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 211 * 212 * @more_trbs_coming: Will you enqueue more TRBs before calling 213 * prepare_transfer()? 214 */ 215 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 216 bool more_trbs_coming) 217 { 218 u32 chain; 219 union xhci_trb *next; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 /* If this is not event ring, there is one less usable TRB */ 223 if (!trb_is_link(ring->enqueue)) 224 ring->num_trbs_free--; 225 next = ++(ring->enqueue); 226 227 /* Update the dequeue pointer further if that was a link TRB */ 228 while (trb_is_link(next)) { 229 230 /* 231 * If the caller doesn't plan on enqueueing more TDs before 232 * ringing the doorbell, then we don't want to give the link TRB 233 * to the hardware just yet. We'll give the link TRB back in 234 * prepare_ring() just before we enqueue the TD at the top of 235 * the ring. 236 */ 237 if (!chain && !more_trbs_coming) 238 break; 239 240 /* If we're not dealing with 0.95 hardware or isoc rings on 241 * AMD 0.96 host, carry over the chain bit of the previous TRB 242 * (which may mean the chain bit is cleared). 243 */ 244 if (!(ring->type == TYPE_ISOC && 245 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 246 !xhci_link_trb_quirk(xhci)) { 247 next->link.control &= cpu_to_le32(~TRB_CHAIN); 248 next->link.control |= cpu_to_le32(chain); 249 } 250 /* Give this link TRB to the hardware */ 251 wmb(); 252 next->link.control ^= cpu_to_le32(TRB_CYCLE); 253 254 /* Toggle the cycle bit after the last ring segment. */ 255 if (link_trb_toggles_cycle(next)) 256 ring->cycle_state ^= 1; 257 258 ring->enq_seg = ring->enq_seg->next; 259 ring->enqueue = ring->enq_seg->trbs; 260 next = ring->enqueue; 261 } 262 263 trace_xhci_inc_enq(ring); 264 } 265 266 /* 267 * Check to see if there's room to enqueue num_trbs on the ring and make sure 268 * enqueue pointer will not advance into dequeue segment. See rules above. 269 */ 270 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 271 unsigned int num_trbs) 272 { 273 int num_trbs_in_deq_seg; 274 275 if (ring->num_trbs_free < num_trbs) 276 return 0; 277 278 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 279 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 280 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 281 return 0; 282 } 283 284 return 1; 285 } 286 287 /* Ring the host controller doorbell after placing a command on the ring */ 288 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 289 { 290 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 291 return; 292 293 xhci_dbg(xhci, "// Ding dong!\n"); 294 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 295 /* Flush PCI posted writes */ 296 readl(&xhci->dba->doorbell[0]); 297 } 298 299 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 300 { 301 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 302 } 303 304 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 305 { 306 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 307 cmd_list); 308 } 309 310 /* 311 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 312 * If there are other commands waiting then restart the ring and kick the timer. 313 * This must be called with command ring stopped and xhci->lock held. 314 */ 315 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 316 struct xhci_command *cur_cmd) 317 { 318 struct xhci_command *i_cmd; 319 320 /* Turn all aborted commands in list to no-ops, then restart */ 321 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 322 323 if (i_cmd->status != COMP_COMMAND_ABORTED) 324 continue; 325 326 i_cmd->status = COMP_COMMAND_RING_STOPPED; 327 328 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 329 i_cmd->command_trb); 330 331 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 332 333 /* 334 * caller waiting for completion is called when command 335 * completion event is received for these no-op commands 336 */ 337 } 338 339 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 340 341 /* ring command ring doorbell to restart the command ring */ 342 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 343 !(xhci->xhc_state & XHCI_STATE_DYING)) { 344 xhci->current_cmd = cur_cmd; 345 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 346 xhci_ring_cmd_db(xhci); 347 } 348 } 349 350 /* Must be called with xhci->lock held, releases and aquires lock back */ 351 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 352 { 353 u64 temp_64; 354 int ret; 355 356 xhci_dbg(xhci, "Abort command ring\n"); 357 358 reinit_completion(&xhci->cmd_ring_stop_completion); 359 360 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 361 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 362 &xhci->op_regs->cmd_ring); 363 364 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 365 * completion of the Command Abort operation. If CRR is not negated in 5 366 * seconds then driver handles it as if host died (-ENODEV). 367 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 368 * and try to recover a -ETIMEDOUT with a host controller reset. 369 */ 370 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 371 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 372 if (ret < 0) { 373 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 374 xhci_halt(xhci); 375 xhci_hc_died(xhci); 376 return ret; 377 } 378 /* 379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 381 * but the completion event in never sent. Wait 2 secs (arbitrary 382 * number) to handle those cases after negation of CMD_RING_RUNNING. 383 */ 384 spin_unlock_irqrestore(&xhci->lock, flags); 385 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 386 msecs_to_jiffies(2000)); 387 spin_lock_irqsave(&xhci->lock, flags); 388 if (!ret) { 389 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 390 xhci_cleanup_command_queue(xhci); 391 } else { 392 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 393 } 394 return 0; 395 } 396 397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 398 unsigned int slot_id, 399 unsigned int ep_index, 400 unsigned int stream_id) 401 { 402 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 403 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 404 unsigned int ep_state = ep->ep_state; 405 406 /* Don't ring the doorbell for this endpoint if there are pending 407 * cancellations because we don't want to interrupt processing. 408 * We don't want to restart any stream rings if there's a set dequeue 409 * pointer command pending because the device can choose to start any 410 * stream once the endpoint is on the HW schedule. 411 */ 412 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 413 (ep_state & EP_HALTED)) 414 return; 415 writel(DB_VALUE(ep_index, stream_id), db_addr); 416 /* The CPU has better things to do at this point than wait for a 417 * write-posting flush. It'll get there soon enough. 418 */ 419 } 420 421 /* Ring the doorbell for any rings with pending URBs */ 422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 423 unsigned int slot_id, 424 unsigned int ep_index) 425 { 426 unsigned int stream_id; 427 struct xhci_virt_ep *ep; 428 429 ep = &xhci->devs[slot_id]->eps[ep_index]; 430 431 /* A ring has pending URBs if its TD list is not empty */ 432 if (!(ep->ep_state & EP_HAS_STREAMS)) { 433 if (ep->ring && !(list_empty(&ep->ring->td_list))) 434 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 435 return; 436 } 437 438 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 439 stream_id++) { 440 struct xhci_stream_info *stream_info = ep->stream_info; 441 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 443 stream_id); 444 } 445 } 446 447 /* Get the right ring for the given slot_id, ep_index and stream_id. 448 * If the endpoint supports streams, boundary check the URB's stream ID. 449 * If the endpoint doesn't support streams, return the singular endpoint ring. 450 */ 451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 452 unsigned int slot_id, unsigned int ep_index, 453 unsigned int stream_id) 454 { 455 struct xhci_virt_ep *ep; 456 457 ep = &xhci->devs[slot_id]->eps[ep_index]; 458 /* Common case: no streams */ 459 if (!(ep->ep_state & EP_HAS_STREAMS)) 460 return ep->ring; 461 462 if (stream_id == 0) { 463 xhci_warn(xhci, 464 "WARN: Slot ID %u, ep index %u has streams, " 465 "but URB has no stream ID.\n", 466 slot_id, ep_index); 467 return NULL; 468 } 469 470 if (stream_id < ep->stream_info->num_streams) 471 return ep->stream_info->stream_rings[stream_id]; 472 473 xhci_warn(xhci, 474 "WARN: Slot ID %u, ep index %u has " 475 "stream IDs 1 to %u allocated, " 476 "but stream ID %u is requested.\n", 477 slot_id, ep_index, 478 ep->stream_info->num_streams - 1, 479 stream_id); 480 return NULL; 481 } 482 483 484 /* 485 * Get the hw dequeue pointer xHC stopped on, either directly from the 486 * endpoint context, or if streams are in use from the stream context. 487 * The returned hw_dequeue contains the lowest four bits with cycle state 488 * and possbile stream context type. 489 */ 490 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 491 unsigned int ep_index, unsigned int stream_id) 492 { 493 struct xhci_ep_ctx *ep_ctx; 494 struct xhci_stream_ctx *st_ctx; 495 struct xhci_virt_ep *ep; 496 497 ep = &vdev->eps[ep_index]; 498 499 if (ep->ep_state & EP_HAS_STREAMS) { 500 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 501 return le64_to_cpu(st_ctx->stream_ring); 502 } 503 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 504 return le64_to_cpu(ep_ctx->deq); 505 } 506 507 /* 508 * Move the xHC's endpoint ring dequeue pointer past cur_td. 509 * Record the new state of the xHC's endpoint ring dequeue segment, 510 * dequeue pointer, stream id, and new consumer cycle state in state. 511 * Update our internal representation of the ring's dequeue pointer. 512 * 513 * We do this in three jumps: 514 * - First we update our new ring state to be the same as when the xHC stopped. 515 * - Then we traverse the ring to find the segment that contains 516 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 517 * any link TRBs with the toggle cycle bit set. 518 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 519 * if we've moved it past a link TRB with the toggle cycle bit set. 520 * 521 * Some of the uses of xhci_generic_trb are grotty, but if they're done 522 * with correct __le32 accesses they should work fine. Only users of this are 523 * in here. 524 */ 525 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 526 unsigned int slot_id, unsigned int ep_index, 527 unsigned int stream_id, struct xhci_td *cur_td, 528 struct xhci_dequeue_state *state) 529 { 530 struct xhci_virt_device *dev = xhci->devs[slot_id]; 531 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 532 struct xhci_ring *ep_ring; 533 struct xhci_segment *new_seg; 534 union xhci_trb *new_deq; 535 dma_addr_t addr; 536 u64 hw_dequeue; 537 bool cycle_found = false; 538 bool td_last_trb_found = false; 539 540 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 541 ep_index, stream_id); 542 if (!ep_ring) { 543 xhci_warn(xhci, "WARN can't find new dequeue state " 544 "for invalid stream ID %u.\n", 545 stream_id); 546 return; 547 } 548 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 550 "Finding endpoint context"); 551 552 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 553 new_seg = ep_ring->deq_seg; 554 new_deq = ep_ring->dequeue; 555 state->new_cycle_state = hw_dequeue & 0x1; 556 state->stream_id = stream_id; 557 558 /* 559 * We want to find the pointer, segment and cycle state of the new trb 560 * (the one after current TD's last_trb). We know the cycle state at 561 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 562 * found. 563 */ 564 do { 565 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 566 == (dma_addr_t)(hw_dequeue & ~0xf)) { 567 cycle_found = true; 568 if (td_last_trb_found) 569 break; 570 } 571 if (new_deq == cur_td->last_trb) 572 td_last_trb_found = true; 573 574 if (cycle_found && trb_is_link(new_deq) && 575 link_trb_toggles_cycle(new_deq)) 576 state->new_cycle_state ^= 0x1; 577 578 next_trb(xhci, ep_ring, &new_seg, &new_deq); 579 580 /* Search wrapped around, bail out */ 581 if (new_deq == ep->ring->dequeue) { 582 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 583 state->new_deq_seg = NULL; 584 state->new_deq_ptr = NULL; 585 return; 586 } 587 588 } while (!cycle_found || !td_last_trb_found); 589 590 state->new_deq_seg = new_seg; 591 state->new_deq_ptr = new_deq; 592 593 /* Don't update the ring cycle state for the producer (us). */ 594 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 595 "Cycle state = 0x%x", state->new_cycle_state); 596 597 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 598 "New dequeue segment = %p (virtual)", 599 state->new_deq_seg); 600 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 601 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 602 "New dequeue pointer = 0x%llx (DMA)", 603 (unsigned long long) addr); 604 } 605 606 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 607 * (The last TRB actually points to the ring enqueue pointer, which is not part 608 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 609 */ 610 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 611 struct xhci_td *td, bool flip_cycle) 612 { 613 struct xhci_segment *seg = td->start_seg; 614 union xhci_trb *trb = td->first_trb; 615 616 while (1) { 617 trb_to_noop(trb, TRB_TR_NOOP); 618 619 /* flip cycle if asked to */ 620 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 621 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 622 623 if (trb == td->last_trb) 624 break; 625 626 next_trb(xhci, ep_ring, &seg, &trb); 627 } 628 } 629 630 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 631 struct xhci_virt_ep *ep) 632 { 633 ep->ep_state &= ~EP_STOP_CMD_PENDING; 634 /* Can't del_timer_sync in interrupt */ 635 del_timer(&ep->stop_cmd_timer); 636 } 637 638 /* 639 * Must be called with xhci->lock held in interrupt context, 640 * releases and re-acquires xhci->lock 641 */ 642 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 643 struct xhci_td *cur_td, int status) 644 { 645 struct urb *urb = cur_td->urb; 646 struct urb_priv *urb_priv = urb->hcpriv; 647 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 648 649 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 650 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 651 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 652 if (xhci->quirks & XHCI_AMD_PLL_FIX) 653 usb_amd_quirk_pll_enable(); 654 } 655 } 656 xhci_urb_free_priv(urb_priv); 657 usb_hcd_unlink_urb_from_ep(hcd, urb); 658 spin_unlock(&xhci->lock); 659 trace_xhci_urb_giveback(urb); 660 usb_hcd_giveback_urb(hcd, urb, status); 661 spin_lock(&xhci->lock); 662 } 663 664 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 665 struct xhci_ring *ring, struct xhci_td *td) 666 { 667 struct device *dev = xhci_to_hcd(xhci)->self.controller; 668 struct xhci_segment *seg = td->bounce_seg; 669 struct urb *urb = td->urb; 670 671 if (!ring || !seg || !urb) 672 return; 673 674 if (usb_urb_dir_out(urb)) { 675 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 676 DMA_TO_DEVICE); 677 return; 678 } 679 680 /* for in tranfers we need to copy the data from bounce to sg */ 681 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf, 682 seg->bounce_len, seg->bounce_offs); 683 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 684 DMA_FROM_DEVICE); 685 seg->bounce_len = 0; 686 seg->bounce_offs = 0; 687 } 688 689 /* 690 * When we get a command completion for a Stop Endpoint Command, we need to 691 * unlink any cancelled TDs from the ring. There are two ways to do that: 692 * 693 * 1. If the HW was in the middle of processing the TD that needs to be 694 * cancelled, then we must move the ring's dequeue pointer past the last TRB 695 * in the TD with a Set Dequeue Pointer Command. 696 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 697 * bit cleared) so that the HW will skip over them. 698 */ 699 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 700 union xhci_trb *trb, struct xhci_event_cmd *event) 701 { 702 unsigned int ep_index; 703 struct xhci_ring *ep_ring; 704 struct xhci_virt_ep *ep; 705 struct xhci_td *cur_td = NULL; 706 struct xhci_td *last_unlinked_td; 707 struct xhci_ep_ctx *ep_ctx; 708 struct xhci_virt_device *vdev; 709 u64 hw_deq; 710 struct xhci_dequeue_state deq_state; 711 712 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 713 if (!xhci->devs[slot_id]) 714 xhci_warn(xhci, "Stop endpoint command " 715 "completion for disabled slot %u\n", 716 slot_id); 717 return; 718 } 719 720 memset(&deq_state, 0, sizeof(deq_state)); 721 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 722 723 vdev = xhci->devs[slot_id]; 724 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 725 trace_xhci_handle_cmd_stop_ep(ep_ctx); 726 727 ep = &xhci->devs[slot_id]->eps[ep_index]; 728 last_unlinked_td = list_last_entry(&ep->cancelled_td_list, 729 struct xhci_td, cancelled_td_list); 730 731 if (list_empty(&ep->cancelled_td_list)) { 732 xhci_stop_watchdog_timer_in_irq(xhci, ep); 733 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 734 return; 735 } 736 737 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 738 * We have the xHCI lock, so nothing can modify this list until we drop 739 * it. We're also in the event handler, so we can't get re-interrupted 740 * if another Stop Endpoint command completes 741 */ 742 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { 743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 744 "Removing canceled TD starting at 0x%llx (dma).", 745 (unsigned long long)xhci_trb_virt_to_dma( 746 cur_td->start_seg, cur_td->first_trb)); 747 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 748 if (!ep_ring) { 749 /* This shouldn't happen unless a driver is mucking 750 * with the stream ID after submission. This will 751 * leave the TD on the hardware ring, and the hardware 752 * will try to execute it, and may access a buffer 753 * that has already been freed. In the best case, the 754 * hardware will execute it, and the event handler will 755 * ignore the completion event for that TD, since it was 756 * removed from the td_list for that endpoint. In 757 * short, don't muck with the stream ID after 758 * submission. 759 */ 760 xhci_warn(xhci, "WARN Cancelled URB %p " 761 "has invalid stream ID %u.\n", 762 cur_td->urb, 763 cur_td->urb->stream_id); 764 goto remove_finished_td; 765 } 766 /* 767 * If we stopped on the TD we need to cancel, then we have to 768 * move the xHC endpoint ring dequeue pointer past this TD. 769 */ 770 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, 771 cur_td->urb->stream_id); 772 hw_deq &= ~0xf; 773 774 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, 775 cur_td->last_trb, hw_deq, false)) { 776 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 777 cur_td->urb->stream_id, 778 cur_td, &deq_state); 779 } else { 780 td_to_noop(xhci, ep_ring, cur_td, false); 781 } 782 783 remove_finished_td: 784 /* 785 * The event handler won't see a completion for this TD anymore, 786 * so remove it from the endpoint ring's TD list. Keep it in 787 * the cancelled TD list for URB completion later. 788 */ 789 list_del_init(&cur_td->td_list); 790 } 791 792 xhci_stop_watchdog_timer_in_irq(xhci, ep); 793 794 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 795 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 796 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, 797 &deq_state); 798 xhci_ring_cmd_db(xhci); 799 } else { 800 /* Otherwise ring the doorbell(s) to restart queued transfers */ 801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 802 } 803 804 /* 805 * Drop the lock and complete the URBs in the cancelled TD list. 806 * New TDs to be cancelled might be added to the end of the list before 807 * we can complete all the URBs for the TDs we already unlinked. 808 * So stop when we've completed the URB for the last TD we unlinked. 809 */ 810 do { 811 cur_td = list_first_entry(&ep->cancelled_td_list, 812 struct xhci_td, cancelled_td_list); 813 list_del_init(&cur_td->cancelled_td_list); 814 815 /* Clean up the cancelled URB */ 816 /* Doesn't matter what we pass for status, since the core will 817 * just overwrite it (because the URB has been unlinked). 818 */ 819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 820 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); 821 inc_td_cnt(cur_td->urb); 822 if (last_td_in_urb(cur_td)) 823 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 824 825 /* Stop processing the cancelled list if the watchdog timer is 826 * running. 827 */ 828 if (xhci->xhc_state & XHCI_STATE_DYING) 829 return; 830 } while (cur_td != last_unlinked_td); 831 832 /* Return to the event handler with xhci->lock re-acquired */ 833 } 834 835 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 836 { 837 struct xhci_td *cur_td; 838 struct xhci_td *tmp; 839 840 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 841 list_del_init(&cur_td->td_list); 842 843 if (!list_empty(&cur_td->cancelled_td_list)) 844 list_del_init(&cur_td->cancelled_td_list); 845 846 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 847 848 inc_td_cnt(cur_td->urb); 849 if (last_td_in_urb(cur_td)) 850 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 851 } 852 } 853 854 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 855 int slot_id, int ep_index) 856 { 857 struct xhci_td *cur_td; 858 struct xhci_td *tmp; 859 struct xhci_virt_ep *ep; 860 struct xhci_ring *ring; 861 862 ep = &xhci->devs[slot_id]->eps[ep_index]; 863 if ((ep->ep_state & EP_HAS_STREAMS) || 864 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 865 int stream_id; 866 867 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 868 stream_id++) { 869 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 870 "Killing URBs for slot ID %u, ep index %u, stream %u", 871 slot_id, ep_index, stream_id + 1); 872 xhci_kill_ring_urbs(xhci, 873 ep->stream_info->stream_rings[stream_id]); 874 } 875 } else { 876 ring = ep->ring; 877 if (!ring) 878 return; 879 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 880 "Killing URBs for slot ID %u, ep index %u", 881 slot_id, ep_index); 882 xhci_kill_ring_urbs(xhci, ring); 883 } 884 885 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 886 cancelled_td_list) { 887 list_del_init(&cur_td->cancelled_td_list); 888 inc_td_cnt(cur_td->urb); 889 890 if (last_td_in_urb(cur_td)) 891 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 892 } 893 } 894 895 /* 896 * host controller died, register read returns 0xffffffff 897 * Complete pending commands, mark them ABORTED. 898 * URBs need to be given back as usb core might be waiting with device locks 899 * held for the URBs to finish during device disconnect, blocking host remove. 900 * 901 * Call with xhci->lock held. 902 * lock is relased and re-acquired while giving back urb. 903 */ 904 void xhci_hc_died(struct xhci_hcd *xhci) 905 { 906 int i, j; 907 908 if (xhci->xhc_state & XHCI_STATE_DYING) 909 return; 910 911 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 912 xhci->xhc_state |= XHCI_STATE_DYING; 913 914 xhci_cleanup_command_queue(xhci); 915 916 /* return any pending urbs, remove may be waiting for them */ 917 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 918 if (!xhci->devs[i]) 919 continue; 920 for (j = 0; j < 31; j++) 921 xhci_kill_endpoint_urbs(xhci, i, j); 922 } 923 924 /* inform usb core hc died if PCI remove isn't already handling it */ 925 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 926 usb_hc_died(xhci_to_hcd(xhci)); 927 } 928 929 /* Watchdog timer function for when a stop endpoint command fails to complete. 930 * In this case, we assume the host controller is broken or dying or dead. The 931 * host may still be completing some other events, so we have to be careful to 932 * let the event ring handler and the URB dequeueing/enqueueing functions know 933 * through xhci->state. 934 * 935 * The timer may also fire if the host takes a very long time to respond to the 936 * command, and the stop endpoint command completion handler cannot delete the 937 * timer before the timer function is called. Another endpoint cancellation may 938 * sneak in before the timer function can grab the lock, and that may queue 939 * another stop endpoint command and add the timer back. So we cannot use a 940 * simple flag to say whether there is a pending stop endpoint command for a 941 * particular endpoint. 942 * 943 * Instead we use a combination of that flag and checking if a new timer is 944 * pending. 945 */ 946 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 947 { 948 struct xhci_hcd *xhci; 949 struct xhci_virt_ep *ep; 950 unsigned long flags; 951 952 ep = (struct xhci_virt_ep *) arg; 953 xhci = ep->xhci; 954 955 spin_lock_irqsave(&xhci->lock, flags); 956 957 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 958 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 959 timer_pending(&ep->stop_cmd_timer)) { 960 spin_unlock_irqrestore(&xhci->lock, flags); 961 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 962 return; 963 } 964 965 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 966 ep->ep_state &= ~EP_STOP_CMD_PENDING; 967 968 xhci_halt(xhci); 969 970 /* 971 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 972 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 973 * and try to recover a -ETIMEDOUT with a host controller reset 974 */ 975 xhci_hc_died(xhci); 976 977 spin_unlock_irqrestore(&xhci->lock, flags); 978 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 979 "xHCI host controller is dead."); 980 } 981 982 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 983 struct xhci_virt_device *dev, 984 struct xhci_ring *ep_ring, 985 unsigned int ep_index) 986 { 987 union xhci_trb *dequeue_temp; 988 int num_trbs_free_temp; 989 bool revert = false; 990 991 num_trbs_free_temp = ep_ring->num_trbs_free; 992 dequeue_temp = ep_ring->dequeue; 993 994 /* If we get two back-to-back stalls, and the first stalled transfer 995 * ends just before a link TRB, the dequeue pointer will be left on 996 * the link TRB by the code in the while loop. So we have to update 997 * the dequeue pointer one segment further, or we'll jump off 998 * the segment into la-la-land. 999 */ 1000 if (trb_is_link(ep_ring->dequeue)) { 1001 ep_ring->deq_seg = ep_ring->deq_seg->next; 1002 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1003 } 1004 1005 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1006 /* We have more usable TRBs */ 1007 ep_ring->num_trbs_free++; 1008 ep_ring->dequeue++; 1009 if (trb_is_link(ep_ring->dequeue)) { 1010 if (ep_ring->dequeue == 1011 dev->eps[ep_index].queued_deq_ptr) 1012 break; 1013 ep_ring->deq_seg = ep_ring->deq_seg->next; 1014 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1015 } 1016 if (ep_ring->dequeue == dequeue_temp) { 1017 revert = true; 1018 break; 1019 } 1020 } 1021 1022 if (revert) { 1023 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1024 ep_ring->num_trbs_free = num_trbs_free_temp; 1025 } 1026 } 1027 1028 /* 1029 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1030 * we need to clear the set deq pending flag in the endpoint ring state, so that 1031 * the TD queueing code can ring the doorbell again. We also need to ring the 1032 * endpoint doorbell to restart the ring, but only if there aren't more 1033 * cancellations pending. 1034 */ 1035 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1036 union xhci_trb *trb, u32 cmd_comp_code) 1037 { 1038 unsigned int ep_index; 1039 unsigned int stream_id; 1040 struct xhci_ring *ep_ring; 1041 struct xhci_virt_device *dev; 1042 struct xhci_virt_ep *ep; 1043 struct xhci_ep_ctx *ep_ctx; 1044 struct xhci_slot_ctx *slot_ctx; 1045 1046 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1047 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1048 dev = xhci->devs[slot_id]; 1049 ep = &dev->eps[ep_index]; 1050 1051 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1052 if (!ep_ring) { 1053 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1054 stream_id); 1055 /* XXX: Harmless??? */ 1056 goto cleanup; 1057 } 1058 1059 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1060 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1061 trace_xhci_handle_cmd_set_deq(slot_ctx); 1062 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1063 1064 if (cmd_comp_code != COMP_SUCCESS) { 1065 unsigned int ep_state; 1066 unsigned int slot_state; 1067 1068 switch (cmd_comp_code) { 1069 case COMP_TRB_ERROR: 1070 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1071 break; 1072 case COMP_CONTEXT_STATE_ERROR: 1073 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1074 ep_state = GET_EP_CTX_STATE(ep_ctx); 1075 slot_state = le32_to_cpu(slot_ctx->dev_state); 1076 slot_state = GET_SLOT_STATE(slot_state); 1077 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1078 "Slot state = %u, EP state = %u", 1079 slot_state, ep_state); 1080 break; 1081 case COMP_SLOT_NOT_ENABLED_ERROR: 1082 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1083 slot_id); 1084 break; 1085 default: 1086 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1087 cmd_comp_code); 1088 break; 1089 } 1090 /* OK what do we do now? The endpoint state is hosed, and we 1091 * should never get to this point if the synchronization between 1092 * queueing, and endpoint state are correct. This might happen 1093 * if the device gets disconnected after we've finished 1094 * cancelling URBs, which might not be an error... 1095 */ 1096 } else { 1097 u64 deq; 1098 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1099 if (ep->ep_state & EP_HAS_STREAMS) { 1100 struct xhci_stream_ctx *ctx = 1101 &ep->stream_info->stream_ctx_array[stream_id]; 1102 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1103 } else { 1104 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1105 } 1106 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1107 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1108 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1109 ep->queued_deq_ptr) == deq) { 1110 /* Update the ring's dequeue segment and dequeue pointer 1111 * to reflect the new position. 1112 */ 1113 update_ring_for_set_deq_completion(xhci, dev, 1114 ep_ring, ep_index); 1115 } else { 1116 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1117 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1118 ep->queued_deq_seg, ep->queued_deq_ptr); 1119 } 1120 } 1121 1122 cleanup: 1123 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1124 dev->eps[ep_index].queued_deq_seg = NULL; 1125 dev->eps[ep_index].queued_deq_ptr = NULL; 1126 /* Restart any rings with pending URBs */ 1127 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1128 } 1129 1130 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1131 union xhci_trb *trb, u32 cmd_comp_code) 1132 { 1133 struct xhci_virt_device *vdev; 1134 struct xhci_ep_ctx *ep_ctx; 1135 unsigned int ep_index; 1136 1137 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1138 vdev = xhci->devs[slot_id]; 1139 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 1140 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1141 1142 /* This command will only fail if the endpoint wasn't halted, 1143 * but we don't care. 1144 */ 1145 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1146 "Ignoring reset ep completion code of %u", cmd_comp_code); 1147 1148 /* HW with the reset endpoint quirk needs to have a configure endpoint 1149 * command complete before the endpoint can be used. Queue that here 1150 * because the HW can't handle two commands being queued in a row. 1151 */ 1152 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1153 struct xhci_command *command; 1154 1155 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1156 if (!command) 1157 return; 1158 1159 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1160 "Queueing configure endpoint command"); 1161 xhci_queue_configure_endpoint(xhci, command, 1162 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1163 false); 1164 xhci_ring_cmd_db(xhci); 1165 } else { 1166 /* Clear our internal halted state */ 1167 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1168 } 1169 } 1170 1171 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1172 struct xhci_command *command, u32 cmd_comp_code) 1173 { 1174 if (cmd_comp_code == COMP_SUCCESS) 1175 command->slot_id = slot_id; 1176 else 1177 command->slot_id = 0; 1178 } 1179 1180 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1181 { 1182 struct xhci_virt_device *virt_dev; 1183 struct xhci_slot_ctx *slot_ctx; 1184 1185 virt_dev = xhci->devs[slot_id]; 1186 if (!virt_dev) 1187 return; 1188 1189 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1190 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1191 1192 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1193 /* Delete default control endpoint resources */ 1194 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1195 xhci_free_virt_device(xhci, slot_id); 1196 } 1197 1198 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1199 struct xhci_event_cmd *event, u32 cmd_comp_code) 1200 { 1201 struct xhci_virt_device *virt_dev; 1202 struct xhci_input_control_ctx *ctrl_ctx; 1203 struct xhci_ep_ctx *ep_ctx; 1204 unsigned int ep_index; 1205 unsigned int ep_state; 1206 u32 add_flags, drop_flags; 1207 1208 /* 1209 * Configure endpoint commands can come from the USB core 1210 * configuration or alt setting changes, or because the HW 1211 * needed an extra configure endpoint command after a reset 1212 * endpoint command or streams were being configured. 1213 * If the command was for a halted endpoint, the xHCI driver 1214 * is not waiting on the configure endpoint command. 1215 */ 1216 virt_dev = xhci->devs[slot_id]; 1217 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1218 if (!ctrl_ctx) { 1219 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1220 return; 1221 } 1222 1223 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1224 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1225 /* Input ctx add_flags are the endpoint index plus one */ 1226 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1227 1228 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1229 trace_xhci_handle_cmd_config_ep(ep_ctx); 1230 1231 /* A usb_set_interface() call directly after clearing a halted 1232 * condition may race on this quirky hardware. Not worth 1233 * worrying about, since this is prototype hardware. Not sure 1234 * if this will work for streams, but streams support was 1235 * untested on this prototype. 1236 */ 1237 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1238 ep_index != (unsigned int) -1 && 1239 add_flags - SLOT_FLAG == drop_flags) { 1240 ep_state = virt_dev->eps[ep_index].ep_state; 1241 if (!(ep_state & EP_HALTED)) 1242 return; 1243 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1244 "Completed config ep cmd - " 1245 "last ep index = %d, state = %d", 1246 ep_index, ep_state); 1247 /* Clear internal halted state and restart ring(s) */ 1248 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1249 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1250 return; 1251 } 1252 return; 1253 } 1254 1255 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1256 { 1257 struct xhci_virt_device *vdev; 1258 struct xhci_slot_ctx *slot_ctx; 1259 1260 vdev = xhci->devs[slot_id]; 1261 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1262 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1263 } 1264 1265 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1266 struct xhci_event_cmd *event) 1267 { 1268 struct xhci_virt_device *vdev; 1269 struct xhci_slot_ctx *slot_ctx; 1270 1271 vdev = xhci->devs[slot_id]; 1272 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1273 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1274 1275 xhci_dbg(xhci, "Completed reset device command.\n"); 1276 if (!xhci->devs[slot_id]) 1277 xhci_warn(xhci, "Reset device command completion " 1278 "for disabled slot %u\n", slot_id); 1279 } 1280 1281 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1282 struct xhci_event_cmd *event) 1283 { 1284 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1285 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1286 return; 1287 } 1288 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1289 "NEC firmware version %2x.%02x", 1290 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1291 NEC_FW_MINOR(le32_to_cpu(event->status))); 1292 } 1293 1294 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1295 { 1296 list_del(&cmd->cmd_list); 1297 1298 if (cmd->completion) { 1299 cmd->status = status; 1300 complete(cmd->completion); 1301 } else { 1302 kfree(cmd); 1303 } 1304 } 1305 1306 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1307 { 1308 struct xhci_command *cur_cmd, *tmp_cmd; 1309 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1310 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1311 } 1312 1313 void xhci_handle_command_timeout(struct work_struct *work) 1314 { 1315 struct xhci_hcd *xhci; 1316 unsigned long flags; 1317 u64 hw_ring_state; 1318 1319 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1320 1321 spin_lock_irqsave(&xhci->lock, flags); 1322 1323 /* 1324 * If timeout work is pending, or current_cmd is NULL, it means we 1325 * raced with command completion. Command is handled so just return. 1326 */ 1327 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1328 spin_unlock_irqrestore(&xhci->lock, flags); 1329 return; 1330 } 1331 /* mark this command to be cancelled */ 1332 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1333 1334 /* Make sure command ring is running before aborting it */ 1335 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1336 if (hw_ring_state == ~(u64)0) { 1337 xhci_hc_died(xhci); 1338 goto time_out_completed; 1339 } 1340 1341 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1342 (hw_ring_state & CMD_RING_RUNNING)) { 1343 /* Prevent new doorbell, and start command abort */ 1344 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1345 xhci_dbg(xhci, "Command timeout\n"); 1346 xhci_abort_cmd_ring(xhci, flags); 1347 goto time_out_completed; 1348 } 1349 1350 /* host removed. Bail out */ 1351 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1352 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1353 xhci_cleanup_command_queue(xhci); 1354 1355 goto time_out_completed; 1356 } 1357 1358 /* command timeout on stopped ring, ring can't be aborted */ 1359 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1360 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1361 1362 time_out_completed: 1363 spin_unlock_irqrestore(&xhci->lock, flags); 1364 return; 1365 } 1366 1367 static void handle_cmd_completion(struct xhci_hcd *xhci, 1368 struct xhci_event_cmd *event) 1369 { 1370 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1371 u64 cmd_dma; 1372 dma_addr_t cmd_dequeue_dma; 1373 u32 cmd_comp_code; 1374 union xhci_trb *cmd_trb; 1375 struct xhci_command *cmd; 1376 u32 cmd_type; 1377 1378 cmd_dma = le64_to_cpu(event->cmd_trb); 1379 cmd_trb = xhci->cmd_ring->dequeue; 1380 1381 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1382 1383 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1384 cmd_trb); 1385 /* 1386 * Check whether the completion event is for our internal kept 1387 * command. 1388 */ 1389 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1390 xhci_warn(xhci, 1391 "ERROR mismatched command completion event\n"); 1392 return; 1393 } 1394 1395 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1396 1397 cancel_delayed_work(&xhci->cmd_timer); 1398 1399 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1400 1401 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1402 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1403 complete_all(&xhci->cmd_ring_stop_completion); 1404 return; 1405 } 1406 1407 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1408 xhci_err(xhci, 1409 "Command completion event does not match command\n"); 1410 return; 1411 } 1412 1413 /* 1414 * Host aborted the command ring, check if the current command was 1415 * supposed to be aborted, otherwise continue normally. 1416 * The command ring is stopped now, but the xHC will issue a Command 1417 * Ring Stopped event which will cause us to restart it. 1418 */ 1419 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1420 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1421 if (cmd->status == COMP_COMMAND_ABORTED) { 1422 if (xhci->current_cmd == cmd) 1423 xhci->current_cmd = NULL; 1424 goto event_handled; 1425 } 1426 } 1427 1428 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1429 switch (cmd_type) { 1430 case TRB_ENABLE_SLOT: 1431 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1432 break; 1433 case TRB_DISABLE_SLOT: 1434 xhci_handle_cmd_disable_slot(xhci, slot_id); 1435 break; 1436 case TRB_CONFIG_EP: 1437 if (!cmd->completion) 1438 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1439 cmd_comp_code); 1440 break; 1441 case TRB_EVAL_CONTEXT: 1442 break; 1443 case TRB_ADDR_DEV: 1444 xhci_handle_cmd_addr_dev(xhci, slot_id); 1445 break; 1446 case TRB_STOP_RING: 1447 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1448 le32_to_cpu(cmd_trb->generic.field[3]))); 1449 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1450 break; 1451 case TRB_SET_DEQ: 1452 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1453 le32_to_cpu(cmd_trb->generic.field[3]))); 1454 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1455 break; 1456 case TRB_CMD_NOOP: 1457 /* Is this an aborted command turned to NO-OP? */ 1458 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1459 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1460 break; 1461 case TRB_RESET_EP: 1462 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1463 le32_to_cpu(cmd_trb->generic.field[3]))); 1464 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1465 break; 1466 case TRB_RESET_DEV: 1467 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1468 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1469 */ 1470 slot_id = TRB_TO_SLOT_ID( 1471 le32_to_cpu(cmd_trb->generic.field[3])); 1472 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1473 break; 1474 case TRB_NEC_GET_FW: 1475 xhci_handle_cmd_nec_get_fw(xhci, event); 1476 break; 1477 default: 1478 /* Skip over unknown commands on the event ring */ 1479 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1480 break; 1481 } 1482 1483 /* restart timer if this wasn't the last command */ 1484 if (!list_is_singular(&xhci->cmd_list)) { 1485 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1486 struct xhci_command, cmd_list); 1487 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1488 } else if (xhci->current_cmd == cmd) { 1489 xhci->current_cmd = NULL; 1490 } 1491 1492 event_handled: 1493 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1494 1495 inc_deq(xhci, xhci->cmd_ring); 1496 } 1497 1498 static void handle_vendor_event(struct xhci_hcd *xhci, 1499 union xhci_trb *event) 1500 { 1501 u32 trb_type; 1502 1503 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1504 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1505 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1506 handle_cmd_completion(xhci, &event->event_cmd); 1507 } 1508 1509 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1510 * port registers -- USB 3.0 and USB 2.0). 1511 * 1512 * Returns a zero-based port number, which is suitable for indexing into each of 1513 * the split roothubs' port arrays and bus state arrays. 1514 * Add one to it in order to call xhci_find_slot_id_by_port. 1515 */ 1516 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1517 struct xhci_hcd *xhci, u32 port_id) 1518 { 1519 unsigned int i; 1520 unsigned int num_similar_speed_ports = 0; 1521 1522 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1523 * and usb2_ports are 0-based indexes. Count the number of similar 1524 * speed ports, up to 1 port before this port. 1525 */ 1526 for (i = 0; i < (port_id - 1); i++) { 1527 u8 port_speed = xhci->port_array[i]; 1528 1529 /* 1530 * Skip ports that don't have known speeds, or have duplicate 1531 * Extended Capabilities port speed entries. 1532 */ 1533 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1534 continue; 1535 1536 /* 1537 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1538 * 1.1 ports are under the USB 2.0 hub. If the port speed 1539 * matches the device speed, it's a similar speed port. 1540 */ 1541 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) 1542 num_similar_speed_ports++; 1543 } 1544 return num_similar_speed_ports; 1545 } 1546 1547 static void handle_device_notification(struct xhci_hcd *xhci, 1548 union xhci_trb *event) 1549 { 1550 u32 slot_id; 1551 struct usb_device *udev; 1552 1553 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1554 if (!xhci->devs[slot_id]) { 1555 xhci_warn(xhci, "Device Notification event for " 1556 "unused slot %u\n", slot_id); 1557 return; 1558 } 1559 1560 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1561 slot_id); 1562 udev = xhci->devs[slot_id]->udev; 1563 if (udev && udev->parent) 1564 usb_wakeup_notification(udev->parent, udev->portnum); 1565 } 1566 1567 static void handle_port_status(struct xhci_hcd *xhci, 1568 union xhci_trb *event) 1569 { 1570 struct usb_hcd *hcd; 1571 u32 port_id; 1572 u32 temp, temp1; 1573 int max_ports; 1574 int slot_id; 1575 unsigned int faked_port_index; 1576 u8 major_revision; 1577 struct xhci_bus_state *bus_state; 1578 __le32 __iomem **port_array; 1579 bool bogus_port_status = false; 1580 1581 /* Port status change events always have a successful completion code */ 1582 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1583 xhci_warn(xhci, 1584 "WARN: xHC returned failed port status event\n"); 1585 1586 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1587 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1588 1589 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1590 if ((port_id <= 0) || (port_id > max_ports)) { 1591 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1592 inc_deq(xhci, xhci->event_ring); 1593 return; 1594 } 1595 1596 /* Figure out which usb_hcd this port is attached to: 1597 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1598 */ 1599 major_revision = xhci->port_array[port_id - 1]; 1600 1601 /* Find the right roothub. */ 1602 hcd = xhci_to_hcd(xhci); 1603 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) 1604 hcd = xhci->shared_hcd; 1605 1606 if (major_revision == 0) { 1607 xhci_warn(xhci, "Event for port %u not in " 1608 "Extended Capabilities, ignoring.\n", 1609 port_id); 1610 bogus_port_status = true; 1611 goto cleanup; 1612 } 1613 if (major_revision == DUPLICATE_ENTRY) { 1614 xhci_warn(xhci, "Event for port %u duplicated in" 1615 "Extended Capabilities, ignoring.\n", 1616 port_id); 1617 bogus_port_status = true; 1618 goto cleanup; 1619 } 1620 1621 /* 1622 * Hardware port IDs reported by a Port Status Change Event include USB 1623 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1624 * resume event, but we first need to translate the hardware port ID 1625 * into the index into the ports on the correct split roothub, and the 1626 * correct bus_state structure. 1627 */ 1628 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1629 if (hcd->speed >= HCD_USB3) 1630 port_array = xhci->usb3_ports; 1631 else 1632 port_array = xhci->usb2_ports; 1633 /* Find the faked port hub number */ 1634 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1635 port_id); 1636 1637 temp = readl(port_array[faked_port_index]); 1638 if (hcd->state == HC_STATE_SUSPENDED) { 1639 xhci_dbg(xhci, "resume root hub\n"); 1640 usb_hcd_resume_root_hub(hcd); 1641 } 1642 1643 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) 1644 bus_state->port_remote_wakeup &= ~(1 << faked_port_index); 1645 1646 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1647 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1648 1649 temp1 = readl(&xhci->op_regs->command); 1650 if (!(temp1 & CMD_RUN)) { 1651 xhci_warn(xhci, "xHC is not running.\n"); 1652 goto cleanup; 1653 } 1654 1655 if (DEV_SUPERSPEED_ANY(temp)) { 1656 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1657 /* Set a flag to say the port signaled remote wakeup, 1658 * so we can tell the difference between the end of 1659 * device and host initiated resume. 1660 */ 1661 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1662 xhci_test_and_clear_bit(xhci, port_array, 1663 faked_port_index, PORT_PLC); 1664 xhci_set_link_state(xhci, port_array, faked_port_index, 1665 XDEV_U0); 1666 /* Need to wait until the next link state change 1667 * indicates the device is actually in U0. 1668 */ 1669 bogus_port_status = true; 1670 goto cleanup; 1671 } else if (!test_bit(faked_port_index, 1672 &bus_state->resuming_ports)) { 1673 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1674 bus_state->resume_done[faked_port_index] = jiffies + 1675 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1676 set_bit(faked_port_index, &bus_state->resuming_ports); 1677 mod_timer(&hcd->rh_timer, 1678 bus_state->resume_done[faked_port_index]); 1679 /* Do the rest in GetPortStatus */ 1680 } 1681 } 1682 1683 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1684 DEV_SUPERSPEED_ANY(temp)) { 1685 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1686 /* We've just brought the device into U0 through either the 1687 * Resume state after a device remote wakeup, or through the 1688 * U3Exit state after a host-initiated resume. If it's a device 1689 * initiated remote wake, don't pass up the link state change, 1690 * so the roothub behavior is consistent with external 1691 * USB 3.0 hub behavior. 1692 */ 1693 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1694 faked_port_index + 1); 1695 if (slot_id && xhci->devs[slot_id]) 1696 xhci_ring_device(xhci, slot_id); 1697 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1698 bus_state->port_remote_wakeup &= 1699 ~(1 << faked_port_index); 1700 xhci_test_and_clear_bit(xhci, port_array, 1701 faked_port_index, PORT_PLC); 1702 usb_wakeup_notification(hcd->self.root_hub, 1703 faked_port_index + 1); 1704 bogus_port_status = true; 1705 goto cleanup; 1706 } 1707 } 1708 1709 /* 1710 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1711 * RExit to a disconnect state). If so, let the the driver know it's 1712 * out of the RExit state. 1713 */ 1714 if (!DEV_SUPERSPEED_ANY(temp) && 1715 test_and_clear_bit(faked_port_index, 1716 &bus_state->rexit_ports)) { 1717 complete(&bus_state->rexit_done[faked_port_index]); 1718 bogus_port_status = true; 1719 goto cleanup; 1720 } 1721 1722 if (hcd->speed < HCD_USB3) 1723 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1724 PORT_PLC); 1725 1726 cleanup: 1727 /* Update event ring dequeue pointer before dropping the lock */ 1728 inc_deq(xhci, xhci->event_ring); 1729 1730 /* Don't make the USB core poll the roothub if we got a bad port status 1731 * change event. Besides, at that point we can't tell which roothub 1732 * (USB 2.0 or USB 3.0) to kick. 1733 */ 1734 if (bogus_port_status) 1735 return; 1736 1737 /* 1738 * xHCI port-status-change events occur when the "or" of all the 1739 * status-change bits in the portsc register changes from 0 to 1. 1740 * New status changes won't cause an event if any other change 1741 * bits are still set. When an event occurs, switch over to 1742 * polling to avoid losing status changes. 1743 */ 1744 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1745 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1746 spin_unlock(&xhci->lock); 1747 /* Pass this up to the core */ 1748 usb_hcd_poll_rh_status(hcd); 1749 spin_lock(&xhci->lock); 1750 } 1751 1752 /* 1753 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1754 * at end_trb, which may be in another segment. If the suspect DMA address is a 1755 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1756 * returns 0. 1757 */ 1758 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 1759 struct xhci_segment *start_seg, 1760 union xhci_trb *start_trb, 1761 union xhci_trb *end_trb, 1762 dma_addr_t suspect_dma, 1763 bool debug) 1764 { 1765 dma_addr_t start_dma; 1766 dma_addr_t end_seg_dma; 1767 dma_addr_t end_trb_dma; 1768 struct xhci_segment *cur_seg; 1769 1770 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1771 cur_seg = start_seg; 1772 1773 do { 1774 if (start_dma == 0) 1775 return NULL; 1776 /* We may get an event for a Link TRB in the middle of a TD */ 1777 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1778 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1779 /* If the end TRB isn't in this segment, this is set to 0 */ 1780 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1781 1782 if (debug) 1783 xhci_warn(xhci, 1784 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 1785 (unsigned long long)suspect_dma, 1786 (unsigned long long)start_dma, 1787 (unsigned long long)end_trb_dma, 1788 (unsigned long long)cur_seg->dma, 1789 (unsigned long long)end_seg_dma); 1790 1791 if (end_trb_dma > 0) { 1792 /* The end TRB is in this segment, so suspect should be here */ 1793 if (start_dma <= end_trb_dma) { 1794 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1795 return cur_seg; 1796 } else { 1797 /* Case for one segment with 1798 * a TD wrapped around to the top 1799 */ 1800 if ((suspect_dma >= start_dma && 1801 suspect_dma <= end_seg_dma) || 1802 (suspect_dma >= cur_seg->dma && 1803 suspect_dma <= end_trb_dma)) 1804 return cur_seg; 1805 } 1806 return NULL; 1807 } else { 1808 /* Might still be somewhere in this segment */ 1809 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1810 return cur_seg; 1811 } 1812 cur_seg = cur_seg->next; 1813 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1814 } while (cur_seg != start_seg); 1815 1816 return NULL; 1817 } 1818 1819 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1820 unsigned int slot_id, unsigned int ep_index, 1821 unsigned int stream_id, 1822 struct xhci_td *td, union xhci_trb *ep_trb, 1823 enum xhci_ep_reset_type reset_type) 1824 { 1825 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1826 struct xhci_command *command; 1827 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1828 if (!command) 1829 return; 1830 1831 ep->ep_state |= EP_HALTED; 1832 1833 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 1834 1835 if (reset_type == EP_HARD_RESET) 1836 xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); 1837 1838 xhci_ring_cmd_db(xhci); 1839 } 1840 1841 /* Check if an error has halted the endpoint ring. The class driver will 1842 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1843 * However, a babble and other errors also halt the endpoint ring, and the class 1844 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1845 * Ring Dequeue Pointer command manually. 1846 */ 1847 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1848 struct xhci_ep_ctx *ep_ctx, 1849 unsigned int trb_comp_code) 1850 { 1851 /* TRB completion codes that may require a manual halt cleanup */ 1852 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 1853 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 1854 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 1855 /* The 0.95 spec says a babbling control endpoint 1856 * is not halted. The 0.96 spec says it is. Some HW 1857 * claims to be 0.95 compliant, but it halts the control 1858 * endpoint anyway. Check if a babble halted the 1859 * endpoint. 1860 */ 1861 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 1862 return 1; 1863 1864 return 0; 1865 } 1866 1867 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1868 { 1869 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1870 /* Vendor defined "informational" completion code, 1871 * treat as not-an-error. 1872 */ 1873 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1874 trb_comp_code); 1875 xhci_dbg(xhci, "Treating code as success.\n"); 1876 return 1; 1877 } 1878 return 0; 1879 } 1880 1881 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 1882 struct xhci_ring *ep_ring, int *status) 1883 { 1884 struct urb_priv *urb_priv; 1885 struct urb *urb = NULL; 1886 1887 /* Clean up the endpoint's TD list */ 1888 urb = td->urb; 1889 urb_priv = urb->hcpriv; 1890 1891 /* if a bounce buffer was used to align this td then unmap it */ 1892 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 1893 1894 /* Do one last check of the actual transfer length. 1895 * If the host controller said we transferred more data than the buffer 1896 * length, urb->actual_length will be a very big number (since it's 1897 * unsigned). Play it safe and say we didn't transfer anything. 1898 */ 1899 if (urb->actual_length > urb->transfer_buffer_length) { 1900 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 1901 urb->transfer_buffer_length, urb->actual_length); 1902 urb->actual_length = 0; 1903 *status = 0; 1904 } 1905 list_del_init(&td->td_list); 1906 /* Was this TD slated to be cancelled but completed anyway? */ 1907 if (!list_empty(&td->cancelled_td_list)) 1908 list_del_init(&td->cancelled_td_list); 1909 1910 inc_td_cnt(urb); 1911 /* Giveback the urb when all the tds are completed */ 1912 if (last_td_in_urb(td)) { 1913 if ((urb->actual_length != urb->transfer_buffer_length && 1914 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 1915 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 1916 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 1917 urb, urb->actual_length, 1918 urb->transfer_buffer_length, *status); 1919 1920 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 1921 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 1922 *status = 0; 1923 xhci_giveback_urb_in_irq(xhci, td, *status); 1924 } 1925 1926 return 0; 1927 } 1928 1929 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1930 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1931 struct xhci_virt_ep *ep, int *status) 1932 { 1933 struct xhci_virt_device *xdev; 1934 struct xhci_ep_ctx *ep_ctx; 1935 struct xhci_ring *ep_ring; 1936 unsigned int slot_id; 1937 u32 trb_comp_code; 1938 int ep_index; 1939 1940 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1941 xdev = xhci->devs[slot_id]; 1942 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1943 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1944 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1945 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1946 1947 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 1948 trb_comp_code == COMP_STOPPED || 1949 trb_comp_code == COMP_STOPPED_SHORT_PACKET) { 1950 /* The Endpoint Stop Command completion will take care of any 1951 * stopped TDs. A stopped TD may be restarted, so don't update 1952 * the ring dequeue pointer or take this TD off any lists yet. 1953 */ 1954 return 0; 1955 } 1956 if (trb_comp_code == COMP_STALL_ERROR || 1957 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 1958 trb_comp_code)) { 1959 /* Issue a reset endpoint command to clear the host side 1960 * halt, followed by a set dequeue command to move the 1961 * dequeue pointer past the TD. 1962 * The class driver clears the device side halt later. 1963 */ 1964 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 1965 ep_ring->stream_id, td, ep_trb, 1966 EP_HARD_RESET); 1967 } else { 1968 /* Update ring dequeue pointer */ 1969 while (ep_ring->dequeue != td->last_trb) 1970 inc_deq(xhci, ep_ring); 1971 inc_deq(xhci, ep_ring); 1972 } 1973 1974 return xhci_td_cleanup(xhci, td, ep_ring, status); 1975 } 1976 1977 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 1978 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 1979 union xhci_trb *stop_trb) 1980 { 1981 u32 sum; 1982 union xhci_trb *trb = ring->dequeue; 1983 struct xhci_segment *seg = ring->deq_seg; 1984 1985 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 1986 if (!trb_is_noop(trb) && !trb_is_link(trb)) 1987 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 1988 } 1989 return sum; 1990 } 1991 1992 /* 1993 * Process control tds, update urb status and actual_length. 1994 */ 1995 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1996 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 1997 struct xhci_virt_ep *ep, int *status) 1998 { 1999 struct xhci_virt_device *xdev; 2000 struct xhci_ring *ep_ring; 2001 unsigned int slot_id; 2002 int ep_index; 2003 struct xhci_ep_ctx *ep_ctx; 2004 u32 trb_comp_code; 2005 u32 remaining, requested; 2006 u32 trb_type; 2007 2008 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2009 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2010 xdev = xhci->devs[slot_id]; 2011 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2012 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2013 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2014 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2015 requested = td->urb->transfer_buffer_length; 2016 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2017 2018 switch (trb_comp_code) { 2019 case COMP_SUCCESS: 2020 if (trb_type != TRB_STATUS) { 2021 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2022 (trb_type == TRB_DATA) ? "data" : "setup"); 2023 *status = -ESHUTDOWN; 2024 break; 2025 } 2026 *status = 0; 2027 break; 2028 case COMP_SHORT_PACKET: 2029 *status = 0; 2030 break; 2031 case COMP_STOPPED_SHORT_PACKET: 2032 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2033 td->urb->actual_length = remaining; 2034 else 2035 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2036 goto finish_td; 2037 case COMP_STOPPED: 2038 switch (trb_type) { 2039 case TRB_SETUP: 2040 td->urb->actual_length = 0; 2041 goto finish_td; 2042 case TRB_DATA: 2043 case TRB_NORMAL: 2044 td->urb->actual_length = requested - remaining; 2045 goto finish_td; 2046 case TRB_STATUS: 2047 td->urb->actual_length = requested; 2048 goto finish_td; 2049 default: 2050 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2051 trb_type); 2052 goto finish_td; 2053 } 2054 case COMP_STOPPED_LENGTH_INVALID: 2055 goto finish_td; 2056 default: 2057 if (!xhci_requires_manual_halt_cleanup(xhci, 2058 ep_ctx, trb_comp_code)) 2059 break; 2060 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2061 trb_comp_code, ep_index); 2062 /* else fall through */ 2063 case COMP_STALL_ERROR: 2064 /* Did we transfer part of the data (middle) phase? */ 2065 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2066 td->urb->actual_length = requested - remaining; 2067 else if (!td->urb_length_set) 2068 td->urb->actual_length = 0; 2069 goto finish_td; 2070 } 2071 2072 /* stopped at setup stage, no data transferred */ 2073 if (trb_type == TRB_SETUP) 2074 goto finish_td; 2075 2076 /* 2077 * if on data stage then update the actual_length of the URB and flag it 2078 * as set, so it won't be overwritten in the event for the last TRB. 2079 */ 2080 if (trb_type == TRB_DATA || 2081 trb_type == TRB_NORMAL) { 2082 td->urb_length_set = true; 2083 td->urb->actual_length = requested - remaining; 2084 xhci_dbg(xhci, "Waiting for status stage event\n"); 2085 return 0; 2086 } 2087 2088 /* at status stage */ 2089 if (!td->urb_length_set) 2090 td->urb->actual_length = requested; 2091 2092 finish_td: 2093 return finish_td(xhci, td, ep_trb, event, ep, status); 2094 } 2095 2096 /* 2097 * Process isochronous tds, update urb packet status and actual_length. 2098 */ 2099 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2100 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2101 struct xhci_virt_ep *ep, int *status) 2102 { 2103 struct xhci_ring *ep_ring; 2104 struct urb_priv *urb_priv; 2105 int idx; 2106 struct usb_iso_packet_descriptor *frame; 2107 u32 trb_comp_code; 2108 bool sum_trbs_for_length = false; 2109 u32 remaining, requested, ep_trb_len; 2110 int short_framestatus; 2111 2112 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2113 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2114 urb_priv = td->urb->hcpriv; 2115 idx = urb_priv->num_tds_done; 2116 frame = &td->urb->iso_frame_desc[idx]; 2117 requested = frame->length; 2118 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2119 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2120 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2121 -EREMOTEIO : 0; 2122 2123 /* handle completion code */ 2124 switch (trb_comp_code) { 2125 case COMP_SUCCESS: 2126 if (remaining) { 2127 frame->status = short_framestatus; 2128 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2129 sum_trbs_for_length = true; 2130 break; 2131 } 2132 frame->status = 0; 2133 break; 2134 case COMP_SHORT_PACKET: 2135 frame->status = short_framestatus; 2136 sum_trbs_for_length = true; 2137 break; 2138 case COMP_BANDWIDTH_OVERRUN_ERROR: 2139 frame->status = -ECOMM; 2140 break; 2141 case COMP_ISOCH_BUFFER_OVERRUN: 2142 case COMP_BABBLE_DETECTED_ERROR: 2143 frame->status = -EOVERFLOW; 2144 break; 2145 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2146 case COMP_STALL_ERROR: 2147 frame->status = -EPROTO; 2148 break; 2149 case COMP_USB_TRANSACTION_ERROR: 2150 frame->status = -EPROTO; 2151 if (ep_trb != td->last_trb) 2152 return 0; 2153 break; 2154 case COMP_STOPPED: 2155 sum_trbs_for_length = true; 2156 break; 2157 case COMP_STOPPED_SHORT_PACKET: 2158 /* field normally containing residue now contains tranferred */ 2159 frame->status = short_framestatus; 2160 requested = remaining; 2161 break; 2162 case COMP_STOPPED_LENGTH_INVALID: 2163 requested = 0; 2164 remaining = 0; 2165 break; 2166 default: 2167 sum_trbs_for_length = true; 2168 frame->status = -1; 2169 break; 2170 } 2171 2172 if (sum_trbs_for_length) 2173 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + 2174 ep_trb_len - remaining; 2175 else 2176 frame->actual_length = requested; 2177 2178 td->urb->actual_length += frame->actual_length; 2179 2180 return finish_td(xhci, td, ep_trb, event, ep, status); 2181 } 2182 2183 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2184 struct xhci_transfer_event *event, 2185 struct xhci_virt_ep *ep, int *status) 2186 { 2187 struct xhci_ring *ep_ring; 2188 struct urb_priv *urb_priv; 2189 struct usb_iso_packet_descriptor *frame; 2190 int idx; 2191 2192 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2193 urb_priv = td->urb->hcpriv; 2194 idx = urb_priv->num_tds_done; 2195 frame = &td->urb->iso_frame_desc[idx]; 2196 2197 /* The transfer is partly done. */ 2198 frame->status = -EXDEV; 2199 2200 /* calc actual length */ 2201 frame->actual_length = 0; 2202 2203 /* Update ring dequeue pointer */ 2204 while (ep_ring->dequeue != td->last_trb) 2205 inc_deq(xhci, ep_ring); 2206 inc_deq(xhci, ep_ring); 2207 2208 return xhci_td_cleanup(xhci, td, ep_ring, status); 2209 } 2210 2211 /* 2212 * Process bulk and interrupt tds, update urb status and actual_length. 2213 */ 2214 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2215 union xhci_trb *ep_trb, struct xhci_transfer_event *event, 2216 struct xhci_virt_ep *ep, int *status) 2217 { 2218 struct xhci_ring *ep_ring; 2219 u32 trb_comp_code; 2220 u32 remaining, requested, ep_trb_len; 2221 2222 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2223 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2224 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2225 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2226 requested = td->urb->transfer_buffer_length; 2227 2228 switch (trb_comp_code) { 2229 case COMP_SUCCESS: 2230 /* handle success with untransferred data as short packet */ 2231 if (ep_trb != td->last_trb || remaining) { 2232 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2233 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2234 td->urb->ep->desc.bEndpointAddress, 2235 requested, remaining); 2236 } 2237 *status = 0; 2238 break; 2239 case COMP_SHORT_PACKET: 2240 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2241 td->urb->ep->desc.bEndpointAddress, 2242 requested, remaining); 2243 *status = 0; 2244 break; 2245 case COMP_STOPPED_SHORT_PACKET: 2246 td->urb->actual_length = remaining; 2247 goto finish_td; 2248 case COMP_STOPPED_LENGTH_INVALID: 2249 /* stopped on ep trb with invalid length, exclude it */ 2250 ep_trb_len = 0; 2251 remaining = 0; 2252 break; 2253 default: 2254 /* do nothing */ 2255 break; 2256 } 2257 2258 if (ep_trb == td->last_trb) 2259 td->urb->actual_length = requested - remaining; 2260 else 2261 td->urb->actual_length = 2262 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2263 ep_trb_len - remaining; 2264 finish_td: 2265 if (remaining > requested) { 2266 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2267 remaining); 2268 td->urb->actual_length = 0; 2269 } 2270 return finish_td(xhci, td, ep_trb, event, ep, status); 2271 } 2272 2273 /* 2274 * If this function returns an error condition, it means it got a Transfer 2275 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2276 * At this point, the host controller is probably hosed and should be reset. 2277 */ 2278 static int handle_tx_event(struct xhci_hcd *xhci, 2279 struct xhci_transfer_event *event) 2280 { 2281 struct xhci_virt_device *xdev; 2282 struct xhci_virt_ep *ep; 2283 struct xhci_ring *ep_ring; 2284 unsigned int slot_id; 2285 int ep_index; 2286 struct xhci_td *td = NULL; 2287 dma_addr_t ep_trb_dma; 2288 struct xhci_segment *ep_seg; 2289 union xhci_trb *ep_trb; 2290 int status = -EINPROGRESS; 2291 struct xhci_ep_ctx *ep_ctx; 2292 struct list_head *tmp; 2293 u32 trb_comp_code; 2294 int td_num = 0; 2295 bool handling_skipped_tds = false; 2296 2297 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2298 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2299 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2300 ep_trb_dma = le64_to_cpu(event->buffer); 2301 2302 xdev = xhci->devs[slot_id]; 2303 if (!xdev) { 2304 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", 2305 slot_id); 2306 goto err_out; 2307 } 2308 2309 ep = &xdev->eps[ep_index]; 2310 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2311 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2312 2313 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2314 xhci_err(xhci, 2315 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2316 slot_id, ep_index); 2317 goto err_out; 2318 } 2319 2320 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2321 if (!ep_ring) { 2322 switch (trb_comp_code) { 2323 case COMP_STALL_ERROR: 2324 case COMP_USB_TRANSACTION_ERROR: 2325 case COMP_INVALID_STREAM_TYPE_ERROR: 2326 case COMP_INVALID_STREAM_ID_ERROR: 2327 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, 2328 NULL, NULL, EP_SOFT_RESET); 2329 goto cleanup; 2330 case COMP_RING_UNDERRUN: 2331 case COMP_RING_OVERRUN: 2332 goto cleanup; 2333 default: 2334 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2335 slot_id, ep_index); 2336 goto err_out; 2337 } 2338 } 2339 2340 /* Count current td numbers if ep->skip is set */ 2341 if (ep->skip) { 2342 list_for_each(tmp, &ep_ring->td_list) 2343 td_num++; 2344 } 2345 2346 /* Look for common error cases */ 2347 switch (trb_comp_code) { 2348 /* Skip codes that require special handling depending on 2349 * transfer type 2350 */ 2351 case COMP_SUCCESS: 2352 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2353 break; 2354 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2355 trb_comp_code = COMP_SHORT_PACKET; 2356 else 2357 xhci_warn_ratelimited(xhci, 2358 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2359 slot_id, ep_index); 2360 case COMP_SHORT_PACKET: 2361 break; 2362 /* Completion codes for endpoint stopped state */ 2363 case COMP_STOPPED: 2364 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2365 slot_id, ep_index); 2366 break; 2367 case COMP_STOPPED_LENGTH_INVALID: 2368 xhci_dbg(xhci, 2369 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2370 slot_id, ep_index); 2371 break; 2372 case COMP_STOPPED_SHORT_PACKET: 2373 xhci_dbg(xhci, 2374 "Stopped with short packet transfer detected for slot %u ep %u\n", 2375 slot_id, ep_index); 2376 break; 2377 /* Completion codes for endpoint halted state */ 2378 case COMP_STALL_ERROR: 2379 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2380 ep_index); 2381 ep->ep_state |= EP_HALTED; 2382 status = -EPIPE; 2383 break; 2384 case COMP_SPLIT_TRANSACTION_ERROR: 2385 case COMP_USB_TRANSACTION_ERROR: 2386 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2387 slot_id, ep_index); 2388 status = -EPROTO; 2389 break; 2390 case COMP_BABBLE_DETECTED_ERROR: 2391 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2392 slot_id, ep_index); 2393 status = -EOVERFLOW; 2394 break; 2395 /* Completion codes for endpoint error state */ 2396 case COMP_TRB_ERROR: 2397 xhci_warn(xhci, 2398 "WARN: TRB error for slot %u ep %u on endpoint\n", 2399 slot_id, ep_index); 2400 status = -EILSEQ; 2401 break; 2402 /* completion codes not indicating endpoint state change */ 2403 case COMP_DATA_BUFFER_ERROR: 2404 xhci_warn(xhci, 2405 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2406 slot_id, ep_index); 2407 status = -ENOSR; 2408 break; 2409 case COMP_BANDWIDTH_OVERRUN_ERROR: 2410 xhci_warn(xhci, 2411 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2412 slot_id, ep_index); 2413 break; 2414 case COMP_ISOCH_BUFFER_OVERRUN: 2415 xhci_warn(xhci, 2416 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2417 slot_id, ep_index); 2418 break; 2419 case COMP_RING_UNDERRUN: 2420 /* 2421 * When the Isoch ring is empty, the xHC will generate 2422 * a Ring Overrun Event for IN Isoch endpoint or Ring 2423 * Underrun Event for OUT Isoch endpoint. 2424 */ 2425 xhci_dbg(xhci, "underrun event on endpoint\n"); 2426 if (!list_empty(&ep_ring->td_list)) 2427 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2428 "still with TDs queued?\n", 2429 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2430 ep_index); 2431 goto cleanup; 2432 case COMP_RING_OVERRUN: 2433 xhci_dbg(xhci, "overrun event on endpoint\n"); 2434 if (!list_empty(&ep_ring->td_list)) 2435 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2436 "still with TDs queued?\n", 2437 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2438 ep_index); 2439 goto cleanup; 2440 case COMP_MISSED_SERVICE_ERROR: 2441 /* 2442 * When encounter missed service error, one or more isoc tds 2443 * may be missed by xHC. 2444 * Set skip flag of the ep_ring; Complete the missed tds as 2445 * short transfer when process the ep_ring next time. 2446 */ 2447 ep->skip = true; 2448 xhci_dbg(xhci, 2449 "Miss service interval error for slot %u ep %u, set skip flag\n", 2450 slot_id, ep_index); 2451 goto cleanup; 2452 case COMP_NO_PING_RESPONSE_ERROR: 2453 ep->skip = true; 2454 xhci_dbg(xhci, 2455 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2456 slot_id, ep_index); 2457 goto cleanup; 2458 2459 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2460 /* needs disable slot command to recover */ 2461 xhci_warn(xhci, 2462 "WARN: detect an incompatible device for slot %u ep %u", 2463 slot_id, ep_index); 2464 status = -EPROTO; 2465 break; 2466 default: 2467 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2468 status = 0; 2469 break; 2470 } 2471 xhci_warn(xhci, 2472 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2473 trb_comp_code, slot_id, ep_index); 2474 goto cleanup; 2475 } 2476 2477 do { 2478 /* This TRB should be in the TD at the head of this ring's 2479 * TD list. 2480 */ 2481 if (list_empty(&ep_ring->td_list)) { 2482 /* 2483 * A stopped endpoint may generate an extra completion 2484 * event if the device was suspended. Don't print 2485 * warnings. 2486 */ 2487 if (!(trb_comp_code == COMP_STOPPED || 2488 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2489 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2490 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2491 ep_index); 2492 } 2493 if (ep->skip) { 2494 ep->skip = false; 2495 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2496 slot_id, ep_index); 2497 } 2498 goto cleanup; 2499 } 2500 2501 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2502 if (ep->skip && td_num == 0) { 2503 ep->skip = false; 2504 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2505 slot_id, ep_index); 2506 goto cleanup; 2507 } 2508 2509 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2510 td_list); 2511 if (ep->skip) 2512 td_num--; 2513 2514 /* Is this a TRB in the currently executing TD? */ 2515 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2516 td->last_trb, ep_trb_dma, false); 2517 2518 /* 2519 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2520 * is not in the current TD pointed by ep_ring->dequeue because 2521 * that the hardware dequeue pointer still at the previous TRB 2522 * of the current TD. The previous TRB maybe a Link TD or the 2523 * last TRB of the previous TD. The command completion handle 2524 * will take care the rest. 2525 */ 2526 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2527 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2528 goto cleanup; 2529 } 2530 2531 if (!ep_seg) { 2532 if (!ep->skip || 2533 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2534 /* Some host controllers give a spurious 2535 * successful event after a short transfer. 2536 * Ignore it. 2537 */ 2538 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2539 ep_ring->last_td_was_short) { 2540 ep_ring->last_td_was_short = false; 2541 goto cleanup; 2542 } 2543 /* HC is busted, give up! */ 2544 xhci_err(xhci, 2545 "ERROR Transfer event TRB DMA ptr not " 2546 "part of current TD ep_index %d " 2547 "comp_code %u\n", ep_index, 2548 trb_comp_code); 2549 trb_in_td(xhci, ep_ring->deq_seg, 2550 ep_ring->dequeue, td->last_trb, 2551 ep_trb_dma, true); 2552 return -ESHUTDOWN; 2553 } 2554 2555 skip_isoc_td(xhci, td, event, ep, &status); 2556 goto cleanup; 2557 } 2558 if (trb_comp_code == COMP_SHORT_PACKET) 2559 ep_ring->last_td_was_short = true; 2560 else 2561 ep_ring->last_td_was_short = false; 2562 2563 if (ep->skip) { 2564 xhci_dbg(xhci, 2565 "Found td. Clear skip flag for slot %u ep %u.\n", 2566 slot_id, ep_index); 2567 ep->skip = false; 2568 } 2569 2570 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2571 sizeof(*ep_trb)]; 2572 2573 trace_xhci_handle_transfer(ep_ring, 2574 (struct xhci_generic_trb *) ep_trb); 2575 2576 /* 2577 * No-op TRB should not trigger interrupts. 2578 * If ep_trb is a no-op TRB, it means the 2579 * corresponding TD has been cancelled. Just ignore 2580 * the TD. 2581 */ 2582 if (trb_is_noop(ep_trb)) { 2583 xhci_dbg(xhci, 2584 "ep_trb is a no-op TRB. Skip it for slot %u ep %u\n", 2585 slot_id, ep_index); 2586 goto cleanup; 2587 } 2588 2589 /* update the urb's actual_length and give back to the core */ 2590 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2591 process_ctrl_td(xhci, td, ep_trb, event, ep, &status); 2592 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2593 process_isoc_td(xhci, td, ep_trb, event, ep, &status); 2594 else 2595 process_bulk_intr_td(xhci, td, ep_trb, event, ep, 2596 &status); 2597 cleanup: 2598 handling_skipped_tds = ep->skip && 2599 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2600 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2601 2602 /* 2603 * Do not update event ring dequeue pointer if we're in a loop 2604 * processing missed tds. 2605 */ 2606 if (!handling_skipped_tds) 2607 inc_deq(xhci, xhci->event_ring); 2608 2609 /* 2610 * If ep->skip is set, it means there are missed tds on the 2611 * endpoint ring need to take care of. 2612 * Process them as short transfer until reach the td pointed by 2613 * the event. 2614 */ 2615 } while (handling_skipped_tds); 2616 2617 return 0; 2618 2619 err_out: 2620 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2621 (unsigned long long) xhci_trb_virt_to_dma( 2622 xhci->event_ring->deq_seg, 2623 xhci->event_ring->dequeue), 2624 lower_32_bits(le64_to_cpu(event->buffer)), 2625 upper_32_bits(le64_to_cpu(event->buffer)), 2626 le32_to_cpu(event->transfer_len), 2627 le32_to_cpu(event->flags)); 2628 return -ENODEV; 2629 } 2630 2631 /* 2632 * This function handles all OS-owned events on the event ring. It may drop 2633 * xhci->lock between event processing (e.g. to pass up port status changes). 2634 * Returns >0 for "possibly more events to process" (caller should call again), 2635 * otherwise 0 if done. In future, <0 returns should indicate error code. 2636 */ 2637 static int xhci_handle_event(struct xhci_hcd *xhci) 2638 { 2639 union xhci_trb *event; 2640 int update_ptrs = 1; 2641 int ret; 2642 2643 /* Event ring hasn't been allocated yet. */ 2644 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2645 xhci_err(xhci, "ERROR event ring not ready\n"); 2646 return -ENOMEM; 2647 } 2648 2649 event = xhci->event_ring->dequeue; 2650 /* Does the HC or OS own the TRB? */ 2651 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2652 xhci->event_ring->cycle_state) 2653 return 0; 2654 2655 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2656 2657 /* 2658 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2659 * speculative reads of the event's flags/data below. 2660 */ 2661 rmb(); 2662 /* FIXME: Handle more event types. */ 2663 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { 2664 case TRB_TYPE(TRB_COMPLETION): 2665 handle_cmd_completion(xhci, &event->event_cmd); 2666 break; 2667 case TRB_TYPE(TRB_PORT_STATUS): 2668 handle_port_status(xhci, event); 2669 update_ptrs = 0; 2670 break; 2671 case TRB_TYPE(TRB_TRANSFER): 2672 ret = handle_tx_event(xhci, &event->trans_event); 2673 if (ret >= 0) 2674 update_ptrs = 0; 2675 break; 2676 case TRB_TYPE(TRB_DEV_NOTE): 2677 handle_device_notification(xhci, event); 2678 break; 2679 default: 2680 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2681 TRB_TYPE(48)) 2682 handle_vendor_event(xhci, event); 2683 else 2684 xhci_warn(xhci, "ERROR unknown event type %d\n", 2685 TRB_FIELD_TO_TYPE( 2686 le32_to_cpu(event->event_cmd.flags))); 2687 } 2688 /* Any of the above functions may drop and re-acquire the lock, so check 2689 * to make sure a watchdog timer didn't mark the host as non-responsive. 2690 */ 2691 if (xhci->xhc_state & XHCI_STATE_DYING) { 2692 xhci_dbg(xhci, "xHCI host dying, returning from " 2693 "event handler.\n"); 2694 return 0; 2695 } 2696 2697 if (update_ptrs) 2698 /* Update SW event ring dequeue pointer */ 2699 inc_deq(xhci, xhci->event_ring); 2700 2701 /* Are there more items on the event ring? Caller will call us again to 2702 * check. 2703 */ 2704 return 1; 2705 } 2706 2707 /* 2708 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2709 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2710 * indicators of an event TRB error, but we check the status *first* to be safe. 2711 */ 2712 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2713 { 2714 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2715 union xhci_trb *event_ring_deq; 2716 irqreturn_t ret = IRQ_NONE; 2717 unsigned long flags; 2718 dma_addr_t deq; 2719 u64 temp_64; 2720 u32 status; 2721 2722 spin_lock_irqsave(&xhci->lock, flags); 2723 /* Check if the xHC generated the interrupt, or the irq is shared */ 2724 status = readl(&xhci->op_regs->status); 2725 if (status == ~(u32)0) { 2726 xhci_hc_died(xhci); 2727 ret = IRQ_HANDLED; 2728 goto out; 2729 } 2730 2731 if (!(status & STS_EINT)) 2732 goto out; 2733 2734 if (status & STS_FATAL) { 2735 xhci_warn(xhci, "WARNING: Host System Error\n"); 2736 xhci_halt(xhci); 2737 ret = IRQ_HANDLED; 2738 goto out; 2739 } 2740 2741 /* 2742 * Clear the op reg interrupt status first, 2743 * so we can receive interrupts from other MSI-X interrupters. 2744 * Write 1 to clear the interrupt status. 2745 */ 2746 status |= STS_EINT; 2747 writel(status, &xhci->op_regs->status); 2748 2749 if (!hcd->msi_enabled) { 2750 u32 irq_pending; 2751 irq_pending = readl(&xhci->ir_set->irq_pending); 2752 irq_pending |= IMAN_IP; 2753 writel(irq_pending, &xhci->ir_set->irq_pending); 2754 } 2755 2756 if (xhci->xhc_state & XHCI_STATE_DYING || 2757 xhci->xhc_state & XHCI_STATE_HALTED) { 2758 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2759 "Shouldn't IRQs be disabled?\n"); 2760 /* Clear the event handler busy flag (RW1C); 2761 * the event ring should be empty. 2762 */ 2763 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2764 xhci_write_64(xhci, temp_64 | ERST_EHB, 2765 &xhci->ir_set->erst_dequeue); 2766 ret = IRQ_HANDLED; 2767 goto out; 2768 } 2769 2770 event_ring_deq = xhci->event_ring->dequeue; 2771 /* FIXME this should be a delayed service routine 2772 * that clears the EHB. 2773 */ 2774 while (xhci_handle_event(xhci) > 0) {} 2775 2776 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2777 /* If necessary, update the HW's version of the event ring deq ptr. */ 2778 if (event_ring_deq != xhci->event_ring->dequeue) { 2779 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2780 xhci->event_ring->dequeue); 2781 if (deq == 0) 2782 xhci_warn(xhci, "WARN something wrong with SW event " 2783 "ring dequeue ptr.\n"); 2784 /* Update HC event ring dequeue pointer */ 2785 temp_64 &= ERST_PTR_MASK; 2786 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2787 } 2788 2789 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2790 temp_64 |= ERST_EHB; 2791 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2792 ret = IRQ_HANDLED; 2793 2794 out: 2795 spin_unlock_irqrestore(&xhci->lock, flags); 2796 2797 return ret; 2798 } 2799 2800 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2801 { 2802 return xhci_irq(hcd); 2803 } 2804 2805 /**** Endpoint Ring Operations ****/ 2806 2807 /* 2808 * Generic function for queueing a TRB on a ring. 2809 * The caller must have checked to make sure there's room on the ring. 2810 * 2811 * @more_trbs_coming: Will you enqueue more TRBs before calling 2812 * prepare_transfer()? 2813 */ 2814 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2815 bool more_trbs_coming, 2816 u32 field1, u32 field2, u32 field3, u32 field4) 2817 { 2818 struct xhci_generic_trb *trb; 2819 2820 trb = &ring->enqueue->generic; 2821 trb->field[0] = cpu_to_le32(field1); 2822 trb->field[1] = cpu_to_le32(field2); 2823 trb->field[2] = cpu_to_le32(field3); 2824 trb->field[3] = cpu_to_le32(field4); 2825 2826 trace_xhci_queue_trb(ring, trb); 2827 2828 inc_enq(xhci, ring, more_trbs_coming); 2829 } 2830 2831 /* 2832 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2833 * FIXME allocate segments if the ring is full. 2834 */ 2835 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2836 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2837 { 2838 unsigned int num_trbs_needed; 2839 2840 /* Make sure the endpoint has been added to xHC schedule */ 2841 switch (ep_state) { 2842 case EP_STATE_DISABLED: 2843 /* 2844 * USB core changed config/interfaces without notifying us, 2845 * or hardware is reporting the wrong state. 2846 */ 2847 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2848 return -ENOENT; 2849 case EP_STATE_ERROR: 2850 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2851 /* FIXME event handling code for error needs to clear it */ 2852 /* XXX not sure if this should be -ENOENT or not */ 2853 return -EINVAL; 2854 case EP_STATE_HALTED: 2855 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2856 case EP_STATE_STOPPED: 2857 case EP_STATE_RUNNING: 2858 break; 2859 default: 2860 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2861 /* 2862 * FIXME issue Configure Endpoint command to try to get the HC 2863 * back into a known state. 2864 */ 2865 return -EINVAL; 2866 } 2867 2868 while (1) { 2869 if (room_on_ring(xhci, ep_ring, num_trbs)) 2870 break; 2871 2872 if (ep_ring == xhci->cmd_ring) { 2873 xhci_err(xhci, "Do not support expand command ring\n"); 2874 return -ENOMEM; 2875 } 2876 2877 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2878 "ERROR no room on ep ring, try ring expansion"); 2879 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2880 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2881 mem_flags)) { 2882 xhci_err(xhci, "Ring expansion failed\n"); 2883 return -ENOMEM; 2884 } 2885 } 2886 2887 while (trb_is_link(ep_ring->enqueue)) { 2888 /* If we're not dealing with 0.95 hardware or isoc rings 2889 * on AMD 0.96 host, clear the chain bit. 2890 */ 2891 if (!xhci_link_trb_quirk(xhci) && 2892 !(ep_ring->type == TYPE_ISOC && 2893 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2894 ep_ring->enqueue->link.control &= 2895 cpu_to_le32(~TRB_CHAIN); 2896 else 2897 ep_ring->enqueue->link.control |= 2898 cpu_to_le32(TRB_CHAIN); 2899 2900 wmb(); 2901 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 2902 2903 /* Toggle the cycle bit after the last ring segment. */ 2904 if (link_trb_toggles_cycle(ep_ring->enqueue)) 2905 ep_ring->cycle_state ^= 1; 2906 2907 ep_ring->enq_seg = ep_ring->enq_seg->next; 2908 ep_ring->enqueue = ep_ring->enq_seg->trbs; 2909 } 2910 return 0; 2911 } 2912 2913 static int prepare_transfer(struct xhci_hcd *xhci, 2914 struct xhci_virt_device *xdev, 2915 unsigned int ep_index, 2916 unsigned int stream_id, 2917 unsigned int num_trbs, 2918 struct urb *urb, 2919 unsigned int td_index, 2920 gfp_t mem_flags) 2921 { 2922 int ret; 2923 struct urb_priv *urb_priv; 2924 struct xhci_td *td; 2925 struct xhci_ring *ep_ring; 2926 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2927 2928 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2929 if (!ep_ring) { 2930 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2931 stream_id); 2932 return -EINVAL; 2933 } 2934 2935 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 2936 num_trbs, mem_flags); 2937 if (ret) 2938 return ret; 2939 2940 urb_priv = urb->hcpriv; 2941 td = &urb_priv->td[td_index]; 2942 2943 INIT_LIST_HEAD(&td->td_list); 2944 INIT_LIST_HEAD(&td->cancelled_td_list); 2945 2946 if (td_index == 0) { 2947 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2948 if (unlikely(ret)) 2949 return ret; 2950 } 2951 2952 td->urb = urb; 2953 /* Add this TD to the tail of the endpoint ring's TD list */ 2954 list_add_tail(&td->td_list, &ep_ring->td_list); 2955 td->start_seg = ep_ring->enq_seg; 2956 td->first_trb = ep_ring->enqueue; 2957 2958 return 0; 2959 } 2960 2961 static unsigned int count_trbs(u64 addr, u64 len) 2962 { 2963 unsigned int num_trbs; 2964 2965 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 2966 TRB_MAX_BUFF_SIZE); 2967 if (num_trbs == 0) 2968 num_trbs++; 2969 2970 return num_trbs; 2971 } 2972 2973 static inline unsigned int count_trbs_needed(struct urb *urb) 2974 { 2975 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 2976 } 2977 2978 static unsigned int count_sg_trbs_needed(struct urb *urb) 2979 { 2980 struct scatterlist *sg; 2981 unsigned int i, len, full_len, num_trbs = 0; 2982 2983 full_len = urb->transfer_buffer_length; 2984 2985 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 2986 len = sg_dma_len(sg); 2987 num_trbs += count_trbs(sg_dma_address(sg), len); 2988 len = min_t(unsigned int, len, full_len); 2989 full_len -= len; 2990 if (full_len == 0) 2991 break; 2992 } 2993 2994 return num_trbs; 2995 } 2996 2997 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 2998 { 2999 u64 addr, len; 3000 3001 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3002 len = urb->iso_frame_desc[i].length; 3003 3004 return count_trbs(addr, len); 3005 } 3006 3007 static void check_trb_math(struct urb *urb, int running_total) 3008 { 3009 if (unlikely(running_total != urb->transfer_buffer_length)) 3010 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3011 "queued %#x (%d), asked for %#x (%d)\n", 3012 __func__, 3013 urb->ep->desc.bEndpointAddress, 3014 running_total, running_total, 3015 urb->transfer_buffer_length, 3016 urb->transfer_buffer_length); 3017 } 3018 3019 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3020 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3021 struct xhci_generic_trb *start_trb) 3022 { 3023 /* 3024 * Pass all the TRBs to the hardware at once and make sure this write 3025 * isn't reordered. 3026 */ 3027 wmb(); 3028 if (start_cycle) 3029 start_trb->field[3] |= cpu_to_le32(start_cycle); 3030 else 3031 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3032 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3033 } 3034 3035 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3036 struct xhci_ep_ctx *ep_ctx) 3037 { 3038 int xhci_interval; 3039 int ep_interval; 3040 3041 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3042 ep_interval = urb->interval; 3043 3044 /* Convert to microframes */ 3045 if (urb->dev->speed == USB_SPEED_LOW || 3046 urb->dev->speed == USB_SPEED_FULL) 3047 ep_interval *= 8; 3048 3049 /* FIXME change this to a warning and a suggestion to use the new API 3050 * to set the polling interval (once the API is added). 3051 */ 3052 if (xhci_interval != ep_interval) { 3053 dev_dbg_ratelimited(&urb->dev->dev, 3054 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3055 ep_interval, ep_interval == 1 ? "" : "s", 3056 xhci_interval, xhci_interval == 1 ? "" : "s"); 3057 urb->interval = xhci_interval; 3058 /* Convert back to frames for LS/FS devices */ 3059 if (urb->dev->speed == USB_SPEED_LOW || 3060 urb->dev->speed == USB_SPEED_FULL) 3061 urb->interval /= 8; 3062 } 3063 } 3064 3065 /* 3066 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3067 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3068 * (comprised of sg list entries) can take several service intervals to 3069 * transmit. 3070 */ 3071 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3072 struct urb *urb, int slot_id, unsigned int ep_index) 3073 { 3074 struct xhci_ep_ctx *ep_ctx; 3075 3076 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3077 check_interval(xhci, urb, ep_ctx); 3078 3079 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3080 } 3081 3082 /* 3083 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3084 * packets remaining in the TD (*not* including this TRB). 3085 * 3086 * Total TD packet count = total_packet_count = 3087 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3088 * 3089 * Packets transferred up to and including this TRB = packets_transferred = 3090 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3091 * 3092 * TD size = total_packet_count - packets_transferred 3093 * 3094 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3095 * including this TRB, right shifted by 10 3096 * 3097 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3098 * This is taken care of in the TRB_TD_SIZE() macro 3099 * 3100 * The last TRB in a TD must have the TD size set to zero. 3101 */ 3102 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3103 int trb_buff_len, unsigned int td_total_len, 3104 struct urb *urb, bool more_trbs_coming) 3105 { 3106 u32 maxp, total_packet_count; 3107 3108 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */ 3109 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3110 return ((td_total_len - transferred) >> 10); 3111 3112 /* One TRB with a zero-length data packet. */ 3113 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3114 trb_buff_len == td_total_len) 3115 return 0; 3116 3117 /* for MTK xHCI, TD size doesn't include this TRB */ 3118 if (xhci->quirks & XHCI_MTK_HOST) 3119 trb_buff_len = 0; 3120 3121 maxp = usb_endpoint_maxp(&urb->ep->desc); 3122 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3123 3124 /* Queueing functions don't count the current TRB into transferred */ 3125 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3126 } 3127 3128 3129 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3130 u32 *trb_buff_len, struct xhci_segment *seg) 3131 { 3132 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3133 unsigned int unalign; 3134 unsigned int max_pkt; 3135 u32 new_buff_len; 3136 3137 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3138 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3139 3140 /* we got lucky, last normal TRB data on segment is packet aligned */ 3141 if (unalign == 0) 3142 return 0; 3143 3144 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3145 unalign, *trb_buff_len); 3146 3147 /* is the last nornal TRB alignable by splitting it */ 3148 if (*trb_buff_len > unalign) { 3149 *trb_buff_len -= unalign; 3150 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3151 return 0; 3152 } 3153 3154 /* 3155 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3156 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3157 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3158 */ 3159 new_buff_len = max_pkt - (enqd_len % max_pkt); 3160 3161 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3162 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3163 3164 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3165 if (usb_urb_dir_out(urb)) { 3166 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs, 3167 seg->bounce_buf, new_buff_len, enqd_len); 3168 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3169 max_pkt, DMA_TO_DEVICE); 3170 } else { 3171 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3172 max_pkt, DMA_FROM_DEVICE); 3173 } 3174 3175 if (dma_mapping_error(dev, seg->bounce_dma)) { 3176 /* try without aligning. Some host controllers survive */ 3177 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3178 return 0; 3179 } 3180 *trb_buff_len = new_buff_len; 3181 seg->bounce_len = new_buff_len; 3182 seg->bounce_offs = enqd_len; 3183 3184 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3185 3186 return 1; 3187 } 3188 3189 /* This is very similar to what ehci-q.c qtd_fill() does */ 3190 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3191 struct urb *urb, int slot_id, unsigned int ep_index) 3192 { 3193 struct xhci_ring *ring; 3194 struct urb_priv *urb_priv; 3195 struct xhci_td *td; 3196 struct xhci_generic_trb *start_trb; 3197 struct scatterlist *sg = NULL; 3198 bool more_trbs_coming = true; 3199 bool need_zero_pkt = false; 3200 bool first_trb = true; 3201 unsigned int num_trbs; 3202 unsigned int start_cycle, num_sgs = 0; 3203 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3204 int sent_len, ret; 3205 u32 field, length_field, remainder; 3206 u64 addr, send_addr; 3207 3208 ring = xhci_urb_to_transfer_ring(xhci, urb); 3209 if (!ring) 3210 return -EINVAL; 3211 3212 full_len = urb->transfer_buffer_length; 3213 /* If we have scatter/gather list, we use it. */ 3214 if (urb->num_sgs) { 3215 num_sgs = urb->num_mapped_sgs; 3216 sg = urb->sg; 3217 addr = (u64) sg_dma_address(sg); 3218 block_len = sg_dma_len(sg); 3219 num_trbs = count_sg_trbs_needed(urb); 3220 } else { 3221 num_trbs = count_trbs_needed(urb); 3222 addr = (u64) urb->transfer_dma; 3223 block_len = full_len; 3224 } 3225 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3226 ep_index, urb->stream_id, 3227 num_trbs, urb, 0, mem_flags); 3228 if (unlikely(ret < 0)) 3229 return ret; 3230 3231 urb_priv = urb->hcpriv; 3232 3233 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3234 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3235 need_zero_pkt = true; 3236 3237 td = &urb_priv->td[0]; 3238 3239 /* 3240 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3241 * until we've finished creating all the other TRBs. The ring's cycle 3242 * state may change as we enqueue the other TRBs, so save it too. 3243 */ 3244 start_trb = &ring->enqueue->generic; 3245 start_cycle = ring->cycle_state; 3246 send_addr = addr; 3247 3248 /* Queue the TRBs, even if they are zero-length */ 3249 for (enqd_len = 0; first_trb || enqd_len < full_len; 3250 enqd_len += trb_buff_len) { 3251 field = TRB_TYPE(TRB_NORMAL); 3252 3253 /* TRB buffer should not cross 64KB boundaries */ 3254 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3255 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3256 3257 if (enqd_len + trb_buff_len > full_len) 3258 trb_buff_len = full_len - enqd_len; 3259 3260 /* Don't change the cycle bit of the first TRB until later */ 3261 if (first_trb) { 3262 first_trb = false; 3263 if (start_cycle == 0) 3264 field |= TRB_CYCLE; 3265 } else 3266 field |= ring->cycle_state; 3267 3268 /* Chain all the TRBs together; clear the chain bit in the last 3269 * TRB to indicate it's the last TRB in the chain. 3270 */ 3271 if (enqd_len + trb_buff_len < full_len) { 3272 field |= TRB_CHAIN; 3273 if (trb_is_link(ring->enqueue + 1)) { 3274 if (xhci_align_td(xhci, urb, enqd_len, 3275 &trb_buff_len, 3276 ring->enq_seg)) { 3277 send_addr = ring->enq_seg->bounce_dma; 3278 /* assuming TD won't span 2 segs */ 3279 td->bounce_seg = ring->enq_seg; 3280 } 3281 } 3282 } 3283 if (enqd_len + trb_buff_len >= full_len) { 3284 field &= ~TRB_CHAIN; 3285 field |= TRB_IOC; 3286 more_trbs_coming = false; 3287 td->last_trb = ring->enqueue; 3288 } 3289 3290 /* Only set interrupt on short packet for IN endpoints */ 3291 if (usb_urb_dir_in(urb)) 3292 field |= TRB_ISP; 3293 3294 /* Set the TRB length, TD size, and interrupter fields. */ 3295 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3296 full_len, urb, more_trbs_coming); 3297 3298 length_field = TRB_LEN(trb_buff_len) | 3299 TRB_TD_SIZE(remainder) | 3300 TRB_INTR_TARGET(0); 3301 3302 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3303 lower_32_bits(send_addr), 3304 upper_32_bits(send_addr), 3305 length_field, 3306 field); 3307 3308 addr += trb_buff_len; 3309 sent_len = trb_buff_len; 3310 3311 while (sg && sent_len >= block_len) { 3312 /* New sg entry */ 3313 --num_sgs; 3314 sent_len -= block_len; 3315 if (num_sgs != 0) { 3316 sg = sg_next(sg); 3317 block_len = sg_dma_len(sg); 3318 addr = (u64) sg_dma_address(sg); 3319 addr += sent_len; 3320 } 3321 } 3322 block_len -= sent_len; 3323 send_addr = addr; 3324 } 3325 3326 if (need_zero_pkt) { 3327 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3328 ep_index, urb->stream_id, 3329 1, urb, 1, mem_flags); 3330 urb_priv->td[1].last_trb = ring->enqueue; 3331 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3332 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3333 } 3334 3335 check_trb_math(urb, enqd_len); 3336 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3337 start_cycle, start_trb); 3338 return 0; 3339 } 3340 3341 /* Caller must have locked xhci->lock */ 3342 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3343 struct urb *urb, int slot_id, unsigned int ep_index) 3344 { 3345 struct xhci_ring *ep_ring; 3346 int num_trbs; 3347 int ret; 3348 struct usb_ctrlrequest *setup; 3349 struct xhci_generic_trb *start_trb; 3350 int start_cycle; 3351 u32 field; 3352 struct urb_priv *urb_priv; 3353 struct xhci_td *td; 3354 3355 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3356 if (!ep_ring) 3357 return -EINVAL; 3358 3359 /* 3360 * Need to copy setup packet into setup TRB, so we can't use the setup 3361 * DMA address. 3362 */ 3363 if (!urb->setup_packet) 3364 return -EINVAL; 3365 3366 /* 1 TRB for setup, 1 for status */ 3367 num_trbs = 2; 3368 /* 3369 * Don't need to check if we need additional event data and normal TRBs, 3370 * since data in control transfers will never get bigger than 16MB 3371 * XXX: can we get a buffer that crosses 64KB boundaries? 3372 */ 3373 if (urb->transfer_buffer_length > 0) 3374 num_trbs++; 3375 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3376 ep_index, urb->stream_id, 3377 num_trbs, urb, 0, mem_flags); 3378 if (ret < 0) 3379 return ret; 3380 3381 urb_priv = urb->hcpriv; 3382 td = &urb_priv->td[0]; 3383 3384 /* 3385 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3386 * until we've finished creating all the other TRBs. The ring's cycle 3387 * state may change as we enqueue the other TRBs, so save it too. 3388 */ 3389 start_trb = &ep_ring->enqueue->generic; 3390 start_cycle = ep_ring->cycle_state; 3391 3392 /* Queue setup TRB - see section 6.4.1.2.1 */ 3393 /* FIXME better way to translate setup_packet into two u32 fields? */ 3394 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3395 field = 0; 3396 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3397 if (start_cycle == 0) 3398 field |= 0x1; 3399 3400 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3401 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3402 if (urb->transfer_buffer_length > 0) { 3403 if (setup->bRequestType & USB_DIR_IN) 3404 field |= TRB_TX_TYPE(TRB_DATA_IN); 3405 else 3406 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3407 } 3408 } 3409 3410 queue_trb(xhci, ep_ring, true, 3411 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3412 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3413 TRB_LEN(8) | TRB_INTR_TARGET(0), 3414 /* Immediate data in pointer */ 3415 field); 3416 3417 /* If there's data, queue data TRBs */ 3418 /* Only set interrupt on short packet for IN endpoints */ 3419 if (usb_urb_dir_in(urb)) 3420 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3421 else 3422 field = TRB_TYPE(TRB_DATA); 3423 3424 if (urb->transfer_buffer_length > 0) { 3425 u32 length_field, remainder; 3426 3427 remainder = xhci_td_remainder(xhci, 0, 3428 urb->transfer_buffer_length, 3429 urb->transfer_buffer_length, 3430 urb, 1); 3431 length_field = TRB_LEN(urb->transfer_buffer_length) | 3432 TRB_TD_SIZE(remainder) | 3433 TRB_INTR_TARGET(0); 3434 if (setup->bRequestType & USB_DIR_IN) 3435 field |= TRB_DIR_IN; 3436 queue_trb(xhci, ep_ring, true, 3437 lower_32_bits(urb->transfer_dma), 3438 upper_32_bits(urb->transfer_dma), 3439 length_field, 3440 field | ep_ring->cycle_state); 3441 } 3442 3443 /* Save the DMA address of the last TRB in the TD */ 3444 td->last_trb = ep_ring->enqueue; 3445 3446 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3447 /* If the device sent data, the status stage is an OUT transfer */ 3448 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3449 field = 0; 3450 else 3451 field = TRB_DIR_IN; 3452 queue_trb(xhci, ep_ring, false, 3453 0, 3454 0, 3455 TRB_INTR_TARGET(0), 3456 /* Event on completion */ 3457 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3458 3459 giveback_first_trb(xhci, slot_id, ep_index, 0, 3460 start_cycle, start_trb); 3461 return 0; 3462 } 3463 3464 /* 3465 * The transfer burst count field of the isochronous TRB defines the number of 3466 * bursts that are required to move all packets in this TD. Only SuperSpeed 3467 * devices can burst up to bMaxBurst number of packets per service interval. 3468 * This field is zero based, meaning a value of zero in the field means one 3469 * burst. Basically, for everything but SuperSpeed devices, this field will be 3470 * zero. Only xHCI 1.0 host controllers support this field. 3471 */ 3472 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3473 struct urb *urb, unsigned int total_packet_count) 3474 { 3475 unsigned int max_burst; 3476 3477 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3478 return 0; 3479 3480 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3481 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3482 } 3483 3484 /* 3485 * Returns the number of packets in the last "burst" of packets. This field is 3486 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3487 * the last burst packet count is equal to the total number of packets in the 3488 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3489 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3490 * contain 1 to (bMaxBurst + 1) packets. 3491 */ 3492 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3493 struct urb *urb, unsigned int total_packet_count) 3494 { 3495 unsigned int max_burst; 3496 unsigned int residue; 3497 3498 if (xhci->hci_version < 0x100) 3499 return 0; 3500 3501 if (urb->dev->speed >= USB_SPEED_SUPER) { 3502 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3503 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3504 residue = total_packet_count % (max_burst + 1); 3505 /* If residue is zero, the last burst contains (max_burst + 1) 3506 * number of packets, but the TLBPC field is zero-based. 3507 */ 3508 if (residue == 0) 3509 return max_burst; 3510 return residue - 1; 3511 } 3512 if (total_packet_count == 0) 3513 return 0; 3514 return total_packet_count - 1; 3515 } 3516 3517 /* 3518 * Calculates Frame ID field of the isochronous TRB identifies the 3519 * target frame that the Interval associated with this Isochronous 3520 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3521 * 3522 * Returns actual frame id on success, negative value on error. 3523 */ 3524 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3525 struct urb *urb, int index) 3526 { 3527 int start_frame, ist, ret = 0; 3528 int start_frame_id, end_frame_id, current_frame_id; 3529 3530 if (urb->dev->speed == USB_SPEED_LOW || 3531 urb->dev->speed == USB_SPEED_FULL) 3532 start_frame = urb->start_frame + index * urb->interval; 3533 else 3534 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3535 3536 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3537 * 3538 * If bit [3] of IST is cleared to '0', software can add a TRB no 3539 * later than IST[2:0] Microframes before that TRB is scheduled to 3540 * be executed. 3541 * If bit [3] of IST is set to '1', software can add a TRB no later 3542 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3543 */ 3544 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3545 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3546 ist <<= 3; 3547 3548 /* Software shall not schedule an Isoch TD with a Frame ID value that 3549 * is less than the Start Frame ID or greater than the End Frame ID, 3550 * where: 3551 * 3552 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3553 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3554 * 3555 * Both the End Frame ID and Start Frame ID values are calculated 3556 * in microframes. When software determines the valid Frame ID value; 3557 * The End Frame ID value should be rounded down to the nearest Frame 3558 * boundary, and the Start Frame ID value should be rounded up to the 3559 * nearest Frame boundary. 3560 */ 3561 current_frame_id = readl(&xhci->run_regs->microframe_index); 3562 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3563 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3564 3565 start_frame &= 0x7ff; 3566 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3567 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3568 3569 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3570 __func__, index, readl(&xhci->run_regs->microframe_index), 3571 start_frame_id, end_frame_id, start_frame); 3572 3573 if (start_frame_id < end_frame_id) { 3574 if (start_frame > end_frame_id || 3575 start_frame < start_frame_id) 3576 ret = -EINVAL; 3577 } else if (start_frame_id > end_frame_id) { 3578 if ((start_frame > end_frame_id && 3579 start_frame < start_frame_id)) 3580 ret = -EINVAL; 3581 } else { 3582 ret = -EINVAL; 3583 } 3584 3585 if (index == 0) { 3586 if (ret == -EINVAL || start_frame == start_frame_id) { 3587 start_frame = start_frame_id + 1; 3588 if (urb->dev->speed == USB_SPEED_LOW || 3589 urb->dev->speed == USB_SPEED_FULL) 3590 urb->start_frame = start_frame; 3591 else 3592 urb->start_frame = start_frame << 3; 3593 ret = 0; 3594 } 3595 } 3596 3597 if (ret) { 3598 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3599 start_frame, current_frame_id, index, 3600 start_frame_id, end_frame_id); 3601 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3602 return ret; 3603 } 3604 3605 return start_frame; 3606 } 3607 3608 /* This is for isoc transfer */ 3609 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3610 struct urb *urb, int slot_id, unsigned int ep_index) 3611 { 3612 struct xhci_ring *ep_ring; 3613 struct urb_priv *urb_priv; 3614 struct xhci_td *td; 3615 int num_tds, trbs_per_td; 3616 struct xhci_generic_trb *start_trb; 3617 bool first_trb; 3618 int start_cycle; 3619 u32 field, length_field; 3620 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3621 u64 start_addr, addr; 3622 int i, j; 3623 bool more_trbs_coming; 3624 struct xhci_virt_ep *xep; 3625 int frame_id; 3626 3627 xep = &xhci->devs[slot_id]->eps[ep_index]; 3628 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3629 3630 num_tds = urb->number_of_packets; 3631 if (num_tds < 1) { 3632 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3633 return -EINVAL; 3634 } 3635 start_addr = (u64) urb->transfer_dma; 3636 start_trb = &ep_ring->enqueue->generic; 3637 start_cycle = ep_ring->cycle_state; 3638 3639 urb_priv = urb->hcpriv; 3640 /* Queue the TRBs for each TD, even if they are zero-length */ 3641 for (i = 0; i < num_tds; i++) { 3642 unsigned int total_pkt_count, max_pkt; 3643 unsigned int burst_count, last_burst_pkt_count; 3644 u32 sia_frame_id; 3645 3646 first_trb = true; 3647 running_total = 0; 3648 addr = start_addr + urb->iso_frame_desc[i].offset; 3649 td_len = urb->iso_frame_desc[i].length; 3650 td_remain_len = td_len; 3651 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3652 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 3653 3654 /* A zero-length transfer still involves at least one packet. */ 3655 if (total_pkt_count == 0) 3656 total_pkt_count++; 3657 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 3658 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 3659 urb, total_pkt_count); 3660 3661 trbs_per_td = count_isoc_trbs_needed(urb, i); 3662 3663 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3664 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3665 if (ret < 0) { 3666 if (i == 0) 3667 return ret; 3668 goto cleanup; 3669 } 3670 td = &urb_priv->td[i]; 3671 3672 /* use SIA as default, if frame id is used overwrite it */ 3673 sia_frame_id = TRB_SIA; 3674 if (!(urb->transfer_flags & URB_ISO_ASAP) && 3675 HCC_CFC(xhci->hcc_params)) { 3676 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 3677 if (frame_id >= 0) 3678 sia_frame_id = TRB_FRAME_ID(frame_id); 3679 } 3680 /* 3681 * Set isoc specific data for the first TRB in a TD. 3682 * Prevent HW from getting the TRBs by keeping the cycle state 3683 * inverted in the first TDs isoc TRB. 3684 */ 3685 field = TRB_TYPE(TRB_ISOC) | 3686 TRB_TLBPC(last_burst_pkt_count) | 3687 sia_frame_id | 3688 (i ? ep_ring->cycle_state : !start_cycle); 3689 3690 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 3691 if (!xep->use_extended_tbc) 3692 field |= TRB_TBC(burst_count); 3693 3694 /* fill the rest of the TRB fields, and remaining normal TRBs */ 3695 for (j = 0; j < trbs_per_td; j++) { 3696 u32 remainder = 0; 3697 3698 /* only first TRB is isoc, overwrite otherwise */ 3699 if (!first_trb) 3700 field = TRB_TYPE(TRB_NORMAL) | 3701 ep_ring->cycle_state; 3702 3703 /* Only set interrupt on short packet for IN EPs */ 3704 if (usb_urb_dir_in(urb)) 3705 field |= TRB_ISP; 3706 3707 /* Set the chain bit for all except the last TRB */ 3708 if (j < trbs_per_td - 1) { 3709 more_trbs_coming = true; 3710 field |= TRB_CHAIN; 3711 } else { 3712 more_trbs_coming = false; 3713 td->last_trb = ep_ring->enqueue; 3714 field |= TRB_IOC; 3715 /* set BEI, except for the last TD */ 3716 if (xhci->hci_version >= 0x100 && 3717 !(xhci->quirks & XHCI_AVOID_BEI) && 3718 i < num_tds - 1) 3719 field |= TRB_BEI; 3720 } 3721 /* Calculate TRB length */ 3722 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3723 if (trb_buff_len > td_remain_len) 3724 trb_buff_len = td_remain_len; 3725 3726 /* Set the TRB length, TD size, & interrupter fields. */ 3727 remainder = xhci_td_remainder(xhci, running_total, 3728 trb_buff_len, td_len, 3729 urb, more_trbs_coming); 3730 3731 length_field = TRB_LEN(trb_buff_len) | 3732 TRB_INTR_TARGET(0); 3733 3734 /* xhci 1.1 with ETE uses TD Size field for TBC */ 3735 if (first_trb && xep->use_extended_tbc) 3736 length_field |= TRB_TD_SIZE_TBC(burst_count); 3737 else 3738 length_field |= TRB_TD_SIZE(remainder); 3739 first_trb = false; 3740 3741 queue_trb(xhci, ep_ring, more_trbs_coming, 3742 lower_32_bits(addr), 3743 upper_32_bits(addr), 3744 length_field, 3745 field); 3746 running_total += trb_buff_len; 3747 3748 addr += trb_buff_len; 3749 td_remain_len -= trb_buff_len; 3750 } 3751 3752 /* Check TD length */ 3753 if (running_total != td_len) { 3754 xhci_err(xhci, "ISOC TD length unmatch\n"); 3755 ret = -EINVAL; 3756 goto cleanup; 3757 } 3758 } 3759 3760 /* store the next frame id */ 3761 if (HCC_CFC(xhci->hcc_params)) 3762 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 3763 3764 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3765 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3766 usb_amd_quirk_pll_disable(); 3767 } 3768 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3769 3770 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3771 start_cycle, start_trb); 3772 return 0; 3773 cleanup: 3774 /* Clean up a partially enqueued isoc transfer. */ 3775 3776 for (i--; i >= 0; i--) 3777 list_del_init(&urb_priv->td[i].td_list); 3778 3779 /* Use the first TD as a temporary variable to turn the TDs we've queued 3780 * into No-ops with a software-owned cycle bit. That way the hardware 3781 * won't accidentally start executing bogus TDs when we partially 3782 * overwrite them. td->first_trb and td->start_seg are already set. 3783 */ 3784 urb_priv->td[0].last_trb = ep_ring->enqueue; 3785 /* Every TRB except the first & last will have its cycle bit flipped. */ 3786 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 3787 3788 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3789 ep_ring->enqueue = urb_priv->td[0].first_trb; 3790 ep_ring->enq_seg = urb_priv->td[0].start_seg; 3791 ep_ring->cycle_state = start_cycle; 3792 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3793 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3794 return ret; 3795 } 3796 3797 /* 3798 * Check transfer ring to guarantee there is enough room for the urb. 3799 * Update ISO URB start_frame and interval. 3800 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 3801 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 3802 * Contiguous Frame ID is not supported by HC. 3803 */ 3804 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3805 struct urb *urb, int slot_id, unsigned int ep_index) 3806 { 3807 struct xhci_virt_device *xdev; 3808 struct xhci_ring *ep_ring; 3809 struct xhci_ep_ctx *ep_ctx; 3810 int start_frame; 3811 int num_tds, num_trbs, i; 3812 int ret; 3813 struct xhci_virt_ep *xep; 3814 int ist; 3815 3816 xdev = xhci->devs[slot_id]; 3817 xep = &xhci->devs[slot_id]->eps[ep_index]; 3818 ep_ring = xdev->eps[ep_index].ring; 3819 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3820 3821 num_trbs = 0; 3822 num_tds = urb->number_of_packets; 3823 for (i = 0; i < num_tds; i++) 3824 num_trbs += count_isoc_trbs_needed(urb, i); 3825 3826 /* Check the ring to guarantee there is enough room for the whole urb. 3827 * Do not insert any td of the urb to the ring if the check failed. 3828 */ 3829 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3830 num_trbs, mem_flags); 3831 if (ret) 3832 return ret; 3833 3834 /* 3835 * Check interval value. This should be done before we start to 3836 * calculate the start frame value. 3837 */ 3838 check_interval(xhci, urb, ep_ctx); 3839 3840 /* Calculate the start frame and put it in urb->start_frame. */ 3841 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 3842 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 3843 urb->start_frame = xep->next_frame_id; 3844 goto skip_start_over; 3845 } 3846 } 3847 3848 start_frame = readl(&xhci->run_regs->microframe_index); 3849 start_frame &= 0x3fff; 3850 /* 3851 * Round up to the next frame and consider the time before trb really 3852 * gets scheduled by hardare. 3853 */ 3854 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3855 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3856 ist <<= 3; 3857 start_frame += ist + XHCI_CFC_DELAY; 3858 start_frame = roundup(start_frame, 8); 3859 3860 /* 3861 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 3862 * is greate than 8 microframes. 3863 */ 3864 if (urb->dev->speed == USB_SPEED_LOW || 3865 urb->dev->speed == USB_SPEED_FULL) { 3866 start_frame = roundup(start_frame, urb->interval << 3); 3867 urb->start_frame = start_frame >> 3; 3868 } else { 3869 start_frame = roundup(start_frame, urb->interval); 3870 urb->start_frame = start_frame; 3871 } 3872 3873 skip_start_over: 3874 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3875 3876 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3877 } 3878 3879 /**** Command Ring Operations ****/ 3880 3881 /* Generic function for queueing a command TRB on the command ring. 3882 * Check to make sure there's room on the command ring for one command TRB. 3883 * Also check that there's room reserved for commands that must not fail. 3884 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3885 * then only check for the number of reserved spots. 3886 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3887 * because the command event handler may want to resubmit a failed command. 3888 */ 3889 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3890 u32 field1, u32 field2, 3891 u32 field3, u32 field4, bool command_must_succeed) 3892 { 3893 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3894 int ret; 3895 3896 if ((xhci->xhc_state & XHCI_STATE_DYING) || 3897 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3898 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 3899 return -ESHUTDOWN; 3900 } 3901 3902 if (!command_must_succeed) 3903 reserved_trbs++; 3904 3905 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3906 reserved_trbs, GFP_ATOMIC); 3907 if (ret < 0) { 3908 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3909 if (command_must_succeed) 3910 xhci_err(xhci, "ERR: Reserved TRB counting for " 3911 "unfailable commands failed.\n"); 3912 return ret; 3913 } 3914 3915 cmd->command_trb = xhci->cmd_ring->enqueue; 3916 3917 /* if there are no other commands queued we start the timeout timer */ 3918 if (list_empty(&xhci->cmd_list)) { 3919 xhci->current_cmd = cmd; 3920 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 3921 } 3922 3923 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3924 3925 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3926 field4 | xhci->cmd_ring->cycle_state); 3927 return 0; 3928 } 3929 3930 /* Queue a slot enable or disable request on the command ring */ 3931 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3932 u32 trb_type, u32 slot_id) 3933 { 3934 return queue_command(xhci, cmd, 0, 0, 0, 3935 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3936 } 3937 3938 /* Queue an address device command TRB */ 3939 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3940 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3941 { 3942 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3943 upper_32_bits(in_ctx_ptr), 0, 3944 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3945 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3946 } 3947 3948 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3949 u32 field1, u32 field2, u32 field3, u32 field4) 3950 { 3951 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3952 } 3953 3954 /* Queue a reset device command TRB */ 3955 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3956 u32 slot_id) 3957 { 3958 return queue_command(xhci, cmd, 0, 0, 0, 3959 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3960 false); 3961 } 3962 3963 /* Queue a configure endpoint command TRB */ 3964 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3965 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3966 u32 slot_id, bool command_must_succeed) 3967 { 3968 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3969 upper_32_bits(in_ctx_ptr), 0, 3970 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3971 command_must_succeed); 3972 } 3973 3974 /* Queue an evaluate context command TRB */ 3975 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3976 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3977 { 3978 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3979 upper_32_bits(in_ctx_ptr), 0, 3980 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3981 command_must_succeed); 3982 } 3983 3984 /* 3985 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3986 * activity on an endpoint that is about to be suspended. 3987 */ 3988 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3989 int slot_id, unsigned int ep_index, int suspend) 3990 { 3991 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3992 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3993 u32 type = TRB_TYPE(TRB_STOP_RING); 3994 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3995 3996 return queue_command(xhci, cmd, 0, 0, 0, 3997 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3998 } 3999 4000 /* Set Transfer Ring Dequeue Pointer command */ 4001 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 4002 unsigned int slot_id, unsigned int ep_index, 4003 struct xhci_dequeue_state *deq_state) 4004 { 4005 dma_addr_t addr; 4006 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4007 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4008 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); 4009 u32 trb_sct = 0; 4010 u32 type = TRB_TYPE(TRB_SET_DEQ); 4011 struct xhci_virt_ep *ep; 4012 struct xhci_command *cmd; 4013 int ret; 4014 4015 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 4016 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", 4017 deq_state->new_deq_seg, 4018 (unsigned long long)deq_state->new_deq_seg->dma, 4019 deq_state->new_deq_ptr, 4020 (unsigned long long)xhci_trb_virt_to_dma( 4021 deq_state->new_deq_seg, deq_state->new_deq_ptr), 4022 deq_state->new_cycle_state); 4023 4024 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 4025 deq_state->new_deq_ptr); 4026 if (addr == 0) { 4027 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4028 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4029 deq_state->new_deq_seg, deq_state->new_deq_ptr); 4030 return; 4031 } 4032 ep = &xhci->devs[slot_id]->eps[ep_index]; 4033 if ((ep->ep_state & SET_DEQ_PENDING)) { 4034 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4035 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4036 return; 4037 } 4038 4039 /* This function gets called from contexts where it cannot sleep */ 4040 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 4041 if (!cmd) 4042 return; 4043 4044 ep->queued_deq_seg = deq_state->new_deq_seg; 4045 ep->queued_deq_ptr = deq_state->new_deq_ptr; 4046 if (deq_state->stream_id) 4047 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 4048 ret = queue_command(xhci, cmd, 4049 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, 4050 upper_32_bits(addr), trb_stream_id, 4051 trb_slot_id | trb_ep_index | type, false); 4052 if (ret < 0) { 4053 xhci_free_command(xhci, cmd); 4054 return; 4055 } 4056 4057 /* Stop the TD queueing code from ringing the doorbell until 4058 * this command completes. The HC won't set the dequeue pointer 4059 * if the ring is running, and ringing the doorbell starts the 4060 * ring running. 4061 */ 4062 ep->ep_state |= SET_DEQ_PENDING; 4063 } 4064 4065 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4066 int slot_id, unsigned int ep_index, 4067 enum xhci_ep_reset_type reset_type) 4068 { 4069 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4070 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4071 u32 type = TRB_TYPE(TRB_RESET_EP); 4072 4073 if (reset_type == EP_SOFT_RESET) 4074 type |= TRB_TSP; 4075 4076 return queue_command(xhci, cmd, 0, 0, 0, 4077 trb_slot_id | trb_ep_index | type, false); 4078 } 4079