1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 73 struct xhci_virt_device *virt_dev, 74 struct xhci_event_cmd *event); 75 76 /* 77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 78 * address of the TRB. 79 */ 80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 81 union xhci_trb *trb) 82 { 83 unsigned long segment_offset; 84 85 if (!seg || !trb || trb < seg->trbs) 86 return 0; 87 /* offset in TRBs */ 88 segment_offset = trb - seg->trbs; 89 if (segment_offset > TRBS_PER_SEGMENT) 90 return 0; 91 return seg->dma + (segment_offset * sizeof(*trb)); 92 } 93 94 /* Does this link TRB point to the first segment in a ring, 95 * or was the previous TRB the last TRB on the last segment in the ERST? 96 */ 97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 98 struct xhci_segment *seg, union xhci_trb *trb) 99 { 100 if (ring == xhci->event_ring) 101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 102 (seg->next == xhci->event_ring->first_seg); 103 else 104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 105 } 106 107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 108 * segment? I.e. would the updated event TRB pointer step off the end of the 109 * event seg? 110 */ 111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 112 struct xhci_segment *seg, union xhci_trb *trb) 113 { 114 if (ring == xhci->event_ring) 115 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 116 else 117 return TRB_TYPE_LINK_LE32(trb->link.control); 118 } 119 120 static int enqueue_is_link_trb(struct xhci_ring *ring) 121 { 122 struct xhci_link_trb *link = &ring->enqueue->link; 123 return TRB_TYPE_LINK_LE32(link->control); 124 } 125 126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring) 127 { 128 /* Enqueue pointer can be left pointing to the link TRB, 129 * we must handle that 130 */ 131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control)) 132 return ring->enq_seg->next->trbs; 133 return ring->enqueue; 134 } 135 136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 137 * TRB is in a new segment. This does not skip over link TRBs, and it does not 138 * effect the ring dequeue or enqueue pointers. 139 */ 140 static void next_trb(struct xhci_hcd *xhci, 141 struct xhci_ring *ring, 142 struct xhci_segment **seg, 143 union xhci_trb **trb) 144 { 145 if (last_trb(xhci, ring, *seg, *trb)) { 146 *seg = (*seg)->next; 147 *trb = ((*seg)->trbs); 148 } else { 149 (*trb)++; 150 } 151 } 152 153 /* 154 * See Cycle bit rules. SW is the consumer for the event ring only. 155 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 156 */ 157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 158 { 159 ring->deq_updates++; 160 161 /* 162 * If this is not event ring, and the dequeue pointer 163 * is not on a link TRB, there is one more usable TRB 164 */ 165 if (ring->type != TYPE_EVENT && 166 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 167 ring->num_trbs_free++; 168 169 do { 170 /* 171 * Update the dequeue pointer further if that was a link TRB or 172 * we're at the end of an event ring segment (which doesn't have 173 * link TRBS) 174 */ 175 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 176 if (ring->type == TYPE_EVENT && 177 last_trb_on_last_seg(xhci, ring, 178 ring->deq_seg, ring->dequeue)) { 179 ring->cycle_state ^= 1; 180 } 181 ring->deq_seg = ring->deq_seg->next; 182 ring->dequeue = ring->deq_seg->trbs; 183 } else { 184 ring->dequeue++; 185 } 186 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 187 } 188 189 /* 190 * See Cycle bit rules. SW is the consumer for the event ring only. 191 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 192 * 193 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 194 * chain bit is set), then set the chain bit in all the following link TRBs. 195 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 196 * have their chain bit cleared (so that each Link TRB is a separate TD). 197 * 198 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 199 * set, but other sections talk about dealing with the chain bit set. This was 200 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 201 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 202 * 203 * @more_trbs_coming: Will you enqueue more TRBs before calling 204 * prepare_transfer()? 205 */ 206 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 207 bool more_trbs_coming) 208 { 209 u32 chain; 210 union xhci_trb *next; 211 212 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 213 /* If this is not event ring, there is one less usable TRB */ 214 if (ring->type != TYPE_EVENT && 215 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 216 ring->num_trbs_free--; 217 next = ++(ring->enqueue); 218 219 ring->enq_updates++; 220 /* Update the dequeue pointer further if that was a link TRB or we're at 221 * the end of an event ring segment (which doesn't have link TRBS) 222 */ 223 while (last_trb(xhci, ring, ring->enq_seg, next)) { 224 if (ring->type != TYPE_EVENT) { 225 /* 226 * If the caller doesn't plan on enqueueing more 227 * TDs before ringing the doorbell, then we 228 * don't want to give the link TRB to the 229 * hardware just yet. We'll give the link TRB 230 * back in prepare_ring() just before we enqueue 231 * the TD at the top of the ring. 232 */ 233 if (!chain && !more_trbs_coming) 234 break; 235 236 /* If we're not dealing with 0.95 hardware or 237 * isoc rings on AMD 0.96 host, 238 * carry over the chain bit of the previous TRB 239 * (which may mean the chain bit is cleared). 240 */ 241 if (!(ring->type == TYPE_ISOC && 242 (xhci->quirks & XHCI_AMD_0x96_HOST)) 243 && !xhci_link_trb_quirk(xhci)) { 244 next->link.control &= 245 cpu_to_le32(~TRB_CHAIN); 246 next->link.control |= 247 cpu_to_le32(chain); 248 } 249 /* Give this link TRB to the hardware */ 250 wmb(); 251 next->link.control ^= cpu_to_le32(TRB_CYCLE); 252 253 /* Toggle the cycle bit after the last ring segment. */ 254 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 255 ring->cycle_state = (ring->cycle_state ? 0 : 1); 256 } 257 } 258 ring->enq_seg = ring->enq_seg->next; 259 ring->enqueue = ring->enq_seg->trbs; 260 next = ring->enqueue; 261 } 262 } 263 264 /* 265 * Check to see if there's room to enqueue num_trbs on the ring and make sure 266 * enqueue pointer will not advance into dequeue segment. See rules above. 267 */ 268 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 269 unsigned int num_trbs) 270 { 271 int num_trbs_in_deq_seg; 272 273 if (ring->num_trbs_free < num_trbs) 274 return 0; 275 276 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 277 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 278 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 279 return 0; 280 } 281 282 return 1; 283 } 284 285 /* Ring the host controller doorbell after placing a command on the ring */ 286 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 287 { 288 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 289 return; 290 291 xhci_dbg(xhci, "// Ding dong!\n"); 292 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 293 /* Flush PCI posted writes */ 294 readl(&xhci->dba->doorbell[0]); 295 } 296 297 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 298 { 299 u64 temp_64; 300 int ret; 301 302 xhci_dbg(xhci, "Abort command ring\n"); 303 304 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) { 305 xhci_dbg(xhci, "The command ring isn't running, " 306 "Have the command ring been stopped?\n"); 307 return 0; 308 } 309 310 temp_64 = readq(&xhci->op_regs->cmd_ring); 311 if (!(temp_64 & CMD_RING_RUNNING)) { 312 xhci_dbg(xhci, "Command ring had been stopped\n"); 313 return 0; 314 } 315 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 316 writeq(temp_64 | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 317 318 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 319 * time the completion od all xHCI commands, including 320 * the Command Abort operation. If software doesn't see 321 * CRR negated in a timely manner (e.g. longer than 5 322 * seconds), then it should assume that the there are 323 * larger problems with the xHC and assert HCRST. 324 */ 325 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 326 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 327 if (ret < 0) { 328 xhci_err(xhci, "Stopped the command ring failed, " 329 "maybe the host is dead\n"); 330 xhci->xhc_state |= XHCI_STATE_DYING; 331 xhci_quiesce(xhci); 332 xhci_halt(xhci); 333 return -ESHUTDOWN; 334 } 335 336 return 0; 337 } 338 339 static int xhci_queue_cd(struct xhci_hcd *xhci, 340 struct xhci_command *command, 341 union xhci_trb *cmd_trb) 342 { 343 struct xhci_cd *cd; 344 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC); 345 if (!cd) 346 return -ENOMEM; 347 INIT_LIST_HEAD(&cd->cancel_cmd_list); 348 349 cd->command = command; 350 cd->cmd_trb = cmd_trb; 351 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list); 352 353 return 0; 354 } 355 356 /* 357 * Cancel the command which has issue. 358 * 359 * Some commands may hang due to waiting for acknowledgement from 360 * usb device. It is outside of the xHC's ability to control and 361 * will cause the command ring is blocked. When it occurs software 362 * should intervene to recover the command ring. 363 * See Section 4.6.1.1 and 4.6.1.2 364 */ 365 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command, 366 union xhci_trb *cmd_trb) 367 { 368 int retval = 0; 369 unsigned long flags; 370 371 spin_lock_irqsave(&xhci->lock, flags); 372 373 if (xhci->xhc_state & XHCI_STATE_DYING) { 374 xhci_warn(xhci, "Abort the command ring," 375 " but the xHCI is dead.\n"); 376 retval = -ESHUTDOWN; 377 goto fail; 378 } 379 380 /* queue the cmd desriptor to cancel_cmd_list */ 381 retval = xhci_queue_cd(xhci, command, cmd_trb); 382 if (retval) { 383 xhci_warn(xhci, "Queuing command descriptor failed.\n"); 384 goto fail; 385 } 386 387 /* abort command ring */ 388 retval = xhci_abort_cmd_ring(xhci); 389 if (retval) { 390 xhci_err(xhci, "Abort command ring failed\n"); 391 if (unlikely(retval == -ESHUTDOWN)) { 392 spin_unlock_irqrestore(&xhci->lock, flags); 393 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 394 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 395 return retval; 396 } 397 } 398 399 fail: 400 spin_unlock_irqrestore(&xhci->lock, flags); 401 return retval; 402 } 403 404 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 405 unsigned int slot_id, 406 unsigned int ep_index, 407 unsigned int stream_id) 408 { 409 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 410 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 411 unsigned int ep_state = ep->ep_state; 412 413 /* Don't ring the doorbell for this endpoint if there are pending 414 * cancellations because we don't want to interrupt processing. 415 * We don't want to restart any stream rings if there's a set dequeue 416 * pointer command pending because the device can choose to start any 417 * stream once the endpoint is on the HW schedule. 418 * FIXME - check all the stream rings for pending cancellations. 419 */ 420 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 421 (ep_state & EP_HALTED)) 422 return; 423 writel(DB_VALUE(ep_index, stream_id), db_addr); 424 /* The CPU has better things to do at this point than wait for a 425 * write-posting flush. It'll get there soon enough. 426 */ 427 } 428 429 /* Ring the doorbell for any rings with pending URBs */ 430 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 431 unsigned int slot_id, 432 unsigned int ep_index) 433 { 434 unsigned int stream_id; 435 struct xhci_virt_ep *ep; 436 437 ep = &xhci->devs[slot_id]->eps[ep_index]; 438 439 /* A ring has pending URBs if its TD list is not empty */ 440 if (!(ep->ep_state & EP_HAS_STREAMS)) { 441 if (ep->ring && !(list_empty(&ep->ring->td_list))) 442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 443 return; 444 } 445 446 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 447 stream_id++) { 448 struct xhci_stream_info *stream_info = ep->stream_info; 449 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 450 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 451 stream_id); 452 } 453 } 454 455 /* 456 * Find the segment that trb is in. Start searching in start_seg. 457 * If we must move past a segment that has a link TRB with a toggle cycle state 458 * bit set, then we will toggle the value pointed at by cycle_state. 459 */ 460 static struct xhci_segment *find_trb_seg( 461 struct xhci_segment *start_seg, 462 union xhci_trb *trb, int *cycle_state) 463 { 464 struct xhci_segment *cur_seg = start_seg; 465 struct xhci_generic_trb *generic_trb; 466 467 while (cur_seg->trbs > trb || 468 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 469 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 470 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 471 *cycle_state ^= 0x1; 472 cur_seg = cur_seg->next; 473 if (cur_seg == start_seg) 474 /* Looped over the entire list. Oops! */ 475 return NULL; 476 } 477 return cur_seg; 478 } 479 480 481 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 482 unsigned int slot_id, unsigned int ep_index, 483 unsigned int stream_id) 484 { 485 struct xhci_virt_ep *ep; 486 487 ep = &xhci->devs[slot_id]->eps[ep_index]; 488 /* Common case: no streams */ 489 if (!(ep->ep_state & EP_HAS_STREAMS)) 490 return ep->ring; 491 492 if (stream_id == 0) { 493 xhci_warn(xhci, 494 "WARN: Slot ID %u, ep index %u has streams, " 495 "but URB has no stream ID.\n", 496 slot_id, ep_index); 497 return NULL; 498 } 499 500 if (stream_id < ep->stream_info->num_streams) 501 return ep->stream_info->stream_rings[stream_id]; 502 503 xhci_warn(xhci, 504 "WARN: Slot ID %u, ep index %u has " 505 "stream IDs 1 to %u allocated, " 506 "but stream ID %u is requested.\n", 507 slot_id, ep_index, 508 ep->stream_info->num_streams - 1, 509 stream_id); 510 return NULL; 511 } 512 513 /* Get the right ring for the given URB. 514 * If the endpoint supports streams, boundary check the URB's stream ID. 515 * If the endpoint doesn't support streams, return the singular endpoint ring. 516 */ 517 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 518 struct urb *urb) 519 { 520 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 521 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 522 } 523 524 /* 525 * Move the xHC's endpoint ring dequeue pointer past cur_td. 526 * Record the new state of the xHC's endpoint ring dequeue segment, 527 * dequeue pointer, and new consumer cycle state in state. 528 * Update our internal representation of the ring's dequeue pointer. 529 * 530 * We do this in three jumps: 531 * - First we update our new ring state to be the same as when the xHC stopped. 532 * - Then we traverse the ring to find the segment that contains 533 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 534 * any link TRBs with the toggle cycle bit set. 535 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 536 * if we've moved it past a link TRB with the toggle cycle bit set. 537 * 538 * Some of the uses of xhci_generic_trb are grotty, but if they're done 539 * with correct __le32 accesses they should work fine. Only users of this are 540 * in here. 541 */ 542 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 543 unsigned int slot_id, unsigned int ep_index, 544 unsigned int stream_id, struct xhci_td *cur_td, 545 struct xhci_dequeue_state *state) 546 { 547 struct xhci_virt_device *dev = xhci->devs[slot_id]; 548 struct xhci_ring *ep_ring; 549 struct xhci_generic_trb *trb; 550 struct xhci_ep_ctx *ep_ctx; 551 dma_addr_t addr; 552 553 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 554 ep_index, stream_id); 555 if (!ep_ring) { 556 xhci_warn(xhci, "WARN can't find new dequeue state " 557 "for invalid stream ID %u.\n", 558 stream_id); 559 return; 560 } 561 state->new_cycle_state = 0; 562 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 563 "Finding segment containing stopped TRB."); 564 state->new_deq_seg = find_trb_seg(cur_td->start_seg, 565 dev->eps[ep_index].stopped_trb, 566 &state->new_cycle_state); 567 if (!state->new_deq_seg) { 568 WARN_ON(1); 569 return; 570 } 571 572 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 573 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 574 "Finding endpoint context"); 575 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 576 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); 577 578 state->new_deq_ptr = cur_td->last_trb; 579 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 580 "Finding segment containing last TRB in TD."); 581 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 582 state->new_deq_ptr, 583 &state->new_cycle_state); 584 if (!state->new_deq_seg) { 585 WARN_ON(1); 586 return; 587 } 588 589 trb = &state->new_deq_ptr->generic; 590 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 591 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 592 state->new_cycle_state ^= 0x1; 593 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 594 595 /* 596 * If there is only one segment in a ring, find_trb_seg()'s while loop 597 * will not run, and it will return before it has a chance to see if it 598 * needs to toggle the cycle bit. It can't tell if the stalled transfer 599 * ended just before the link TRB on a one-segment ring, or if the TD 600 * wrapped around the top of the ring, because it doesn't have the TD in 601 * question. Look for the one-segment case where stalled TRB's address 602 * is greater than the new dequeue pointer address. 603 */ 604 if (ep_ring->first_seg == ep_ring->first_seg->next && 605 state->new_deq_ptr < dev->eps[ep_index].stopped_trb) 606 state->new_cycle_state ^= 0x1; 607 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 608 "Cycle state = 0x%x", state->new_cycle_state); 609 610 /* Don't update the ring cycle state for the producer (us). */ 611 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 612 "New dequeue segment = %p (virtual)", 613 state->new_deq_seg); 614 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 615 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 616 "New dequeue pointer = 0x%llx (DMA)", 617 (unsigned long long) addr); 618 } 619 620 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 621 * (The last TRB actually points to the ring enqueue pointer, which is not part 622 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 623 */ 624 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 625 struct xhci_td *cur_td, bool flip_cycle) 626 { 627 struct xhci_segment *cur_seg; 628 union xhci_trb *cur_trb; 629 630 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 631 true; 632 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 633 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 634 /* Unchain any chained Link TRBs, but 635 * leave the pointers intact. 636 */ 637 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 638 /* Flip the cycle bit (link TRBs can't be the first 639 * or last TRB). 640 */ 641 if (flip_cycle) 642 cur_trb->generic.field[3] ^= 643 cpu_to_le32(TRB_CYCLE); 644 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 645 "Cancel (unchain) link TRB"); 646 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 647 "Address = %p (0x%llx dma); " 648 "in seg %p (0x%llx dma)", 649 cur_trb, 650 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 651 cur_seg, 652 (unsigned long long)cur_seg->dma); 653 } else { 654 cur_trb->generic.field[0] = 0; 655 cur_trb->generic.field[1] = 0; 656 cur_trb->generic.field[2] = 0; 657 /* Preserve only the cycle bit of this TRB */ 658 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 659 /* Flip the cycle bit except on the first or last TRB */ 660 if (flip_cycle && cur_trb != cur_td->first_trb && 661 cur_trb != cur_td->last_trb) 662 cur_trb->generic.field[3] ^= 663 cpu_to_le32(TRB_CYCLE); 664 cur_trb->generic.field[3] |= cpu_to_le32( 665 TRB_TYPE(TRB_TR_NOOP)); 666 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 667 "TRB to noop at offset 0x%llx", 668 (unsigned long long) 669 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 670 } 671 if (cur_trb == cur_td->last_trb) 672 break; 673 } 674 } 675 676 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 677 unsigned int ep_index, unsigned int stream_id, 678 struct xhci_segment *deq_seg, 679 union xhci_trb *deq_ptr, u32 cycle_state); 680 681 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 682 unsigned int slot_id, unsigned int ep_index, 683 unsigned int stream_id, 684 struct xhci_dequeue_state *deq_state) 685 { 686 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 687 688 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 689 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 690 "new deq ptr = %p (0x%llx dma), new cycle = %u", 691 deq_state->new_deq_seg, 692 (unsigned long long)deq_state->new_deq_seg->dma, 693 deq_state->new_deq_ptr, 694 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 695 deq_state->new_cycle_state); 696 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, 697 deq_state->new_deq_seg, 698 deq_state->new_deq_ptr, 699 (u32) deq_state->new_cycle_state); 700 /* Stop the TD queueing code from ringing the doorbell until 701 * this command completes. The HC won't set the dequeue pointer 702 * if the ring is running, and ringing the doorbell starts the 703 * ring running. 704 */ 705 ep->ep_state |= SET_DEQ_PENDING; 706 } 707 708 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 709 struct xhci_virt_ep *ep) 710 { 711 ep->ep_state &= ~EP_HALT_PENDING; 712 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 713 * timer is running on another CPU, we don't decrement stop_cmds_pending 714 * (since we didn't successfully stop the watchdog timer). 715 */ 716 if (del_timer(&ep->stop_cmd_timer)) 717 ep->stop_cmds_pending--; 718 } 719 720 /* Must be called with xhci->lock held in interrupt context */ 721 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 722 struct xhci_td *cur_td, int status) 723 { 724 struct usb_hcd *hcd; 725 struct urb *urb; 726 struct urb_priv *urb_priv; 727 728 urb = cur_td->urb; 729 urb_priv = urb->hcpriv; 730 urb_priv->td_cnt++; 731 hcd = bus_to_hcd(urb->dev->bus); 732 733 /* Only giveback urb when this is the last td in urb */ 734 if (urb_priv->td_cnt == urb_priv->length) { 735 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 736 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 737 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 738 if (xhci->quirks & XHCI_AMD_PLL_FIX) 739 usb_amd_quirk_pll_enable(); 740 } 741 } 742 usb_hcd_unlink_urb_from_ep(hcd, urb); 743 744 spin_unlock(&xhci->lock); 745 usb_hcd_giveback_urb(hcd, urb, status); 746 xhci_urb_free_priv(xhci, urb_priv); 747 spin_lock(&xhci->lock); 748 } 749 } 750 751 /* 752 * When we get a command completion for a Stop Endpoint Command, we need to 753 * unlink any cancelled TDs from the ring. There are two ways to do that: 754 * 755 * 1. If the HW was in the middle of processing the TD that needs to be 756 * cancelled, then we must move the ring's dequeue pointer past the last TRB 757 * in the TD with a Set Dequeue Pointer Command. 758 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 759 * bit cleared) so that the HW will skip over them. 760 */ 761 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 762 union xhci_trb *trb, struct xhci_event_cmd *event) 763 { 764 unsigned int ep_index; 765 struct xhci_virt_device *virt_dev; 766 struct xhci_ring *ep_ring; 767 struct xhci_virt_ep *ep; 768 struct list_head *entry; 769 struct xhci_td *cur_td = NULL; 770 struct xhci_td *last_unlinked_td; 771 772 struct xhci_dequeue_state deq_state; 773 774 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 775 virt_dev = xhci->devs[slot_id]; 776 if (virt_dev) 777 handle_cmd_in_cmd_wait_list(xhci, virt_dev, 778 event); 779 else 780 xhci_warn(xhci, "Stop endpoint command " 781 "completion for disabled slot %u\n", 782 slot_id); 783 return; 784 } 785 786 memset(&deq_state, 0, sizeof(deq_state)); 787 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 788 ep = &xhci->devs[slot_id]->eps[ep_index]; 789 790 if (list_empty(&ep->cancelled_td_list)) { 791 xhci_stop_watchdog_timer_in_irq(xhci, ep); 792 ep->stopped_td = NULL; 793 ep->stopped_trb = NULL; 794 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 795 return; 796 } 797 798 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 799 * We have the xHCI lock, so nothing can modify this list until we drop 800 * it. We're also in the event handler, so we can't get re-interrupted 801 * if another Stop Endpoint command completes 802 */ 803 list_for_each(entry, &ep->cancelled_td_list) { 804 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 805 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 806 "Removing canceled TD starting at 0x%llx (dma).", 807 (unsigned long long)xhci_trb_virt_to_dma( 808 cur_td->start_seg, cur_td->first_trb)); 809 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 810 if (!ep_ring) { 811 /* This shouldn't happen unless a driver is mucking 812 * with the stream ID after submission. This will 813 * leave the TD on the hardware ring, and the hardware 814 * will try to execute it, and may access a buffer 815 * that has already been freed. In the best case, the 816 * hardware will execute it, and the event handler will 817 * ignore the completion event for that TD, since it was 818 * removed from the td_list for that endpoint. In 819 * short, don't muck with the stream ID after 820 * submission. 821 */ 822 xhci_warn(xhci, "WARN Cancelled URB %p " 823 "has invalid stream ID %u.\n", 824 cur_td->urb, 825 cur_td->urb->stream_id); 826 goto remove_finished_td; 827 } 828 /* 829 * If we stopped on the TD we need to cancel, then we have to 830 * move the xHC endpoint ring dequeue pointer past this TD. 831 */ 832 if (cur_td == ep->stopped_td) 833 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 834 cur_td->urb->stream_id, 835 cur_td, &deq_state); 836 else 837 td_to_noop(xhci, ep_ring, cur_td, false); 838 remove_finished_td: 839 /* 840 * The event handler won't see a completion for this TD anymore, 841 * so remove it from the endpoint ring's TD list. Keep it in 842 * the cancelled TD list for URB completion later. 843 */ 844 list_del_init(&cur_td->td_list); 845 } 846 last_unlinked_td = cur_td; 847 xhci_stop_watchdog_timer_in_irq(xhci, ep); 848 849 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 850 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 851 xhci_queue_new_dequeue_state(xhci, 852 slot_id, ep_index, 853 ep->stopped_td->urb->stream_id, 854 &deq_state); 855 xhci_ring_cmd_db(xhci); 856 } else { 857 /* Otherwise ring the doorbell(s) to restart queued transfers */ 858 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 859 } 860 861 /* Clear stopped_td and stopped_trb if endpoint is not halted */ 862 if (!(ep->ep_state & EP_HALTED)) { 863 ep->stopped_td = NULL; 864 ep->stopped_trb = NULL; 865 } 866 867 /* 868 * Drop the lock and complete the URBs in the cancelled TD list. 869 * New TDs to be cancelled might be added to the end of the list before 870 * we can complete all the URBs for the TDs we already unlinked. 871 * So stop when we've completed the URB for the last TD we unlinked. 872 */ 873 do { 874 cur_td = list_entry(ep->cancelled_td_list.next, 875 struct xhci_td, cancelled_td_list); 876 list_del_init(&cur_td->cancelled_td_list); 877 878 /* Clean up the cancelled URB */ 879 /* Doesn't matter what we pass for status, since the core will 880 * just overwrite it (because the URB has been unlinked). 881 */ 882 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 883 884 /* Stop processing the cancelled list if the watchdog timer is 885 * running. 886 */ 887 if (xhci->xhc_state & XHCI_STATE_DYING) 888 return; 889 } while (cur_td != last_unlinked_td); 890 891 /* Return to the event handler with xhci->lock re-acquired */ 892 } 893 894 /* Watchdog timer function for when a stop endpoint command fails to complete. 895 * In this case, we assume the host controller is broken or dying or dead. The 896 * host may still be completing some other events, so we have to be careful to 897 * let the event ring handler and the URB dequeueing/enqueueing functions know 898 * through xhci->state. 899 * 900 * The timer may also fire if the host takes a very long time to respond to the 901 * command, and the stop endpoint command completion handler cannot delete the 902 * timer before the timer function is called. Another endpoint cancellation may 903 * sneak in before the timer function can grab the lock, and that may queue 904 * another stop endpoint command and add the timer back. So we cannot use a 905 * simple flag to say whether there is a pending stop endpoint command for a 906 * particular endpoint. 907 * 908 * Instead we use a combination of that flag and a counter for the number of 909 * pending stop endpoint commands. If the timer is the tail end of the last 910 * stop endpoint command, and the endpoint's command is still pending, we assume 911 * the host is dying. 912 */ 913 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 914 { 915 struct xhci_hcd *xhci; 916 struct xhci_virt_ep *ep; 917 struct xhci_virt_ep *temp_ep; 918 struct xhci_ring *ring; 919 struct xhci_td *cur_td; 920 int ret, i, j; 921 unsigned long flags; 922 923 ep = (struct xhci_virt_ep *) arg; 924 xhci = ep->xhci; 925 926 spin_lock_irqsave(&xhci->lock, flags); 927 928 ep->stop_cmds_pending--; 929 if (xhci->xhc_state & XHCI_STATE_DYING) { 930 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 931 "Stop EP timer ran, but another timer marked " 932 "xHCI as DYING, exiting."); 933 spin_unlock_irqrestore(&xhci->lock, flags); 934 return; 935 } 936 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 937 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 938 "Stop EP timer ran, but no command pending, " 939 "exiting."); 940 spin_unlock_irqrestore(&xhci->lock, flags); 941 return; 942 } 943 944 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 945 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 946 /* Oops, HC is dead or dying or at least not responding to the stop 947 * endpoint command. 948 */ 949 xhci->xhc_state |= XHCI_STATE_DYING; 950 /* Disable interrupts from the host controller and start halting it */ 951 xhci_quiesce(xhci); 952 spin_unlock_irqrestore(&xhci->lock, flags); 953 954 ret = xhci_halt(xhci); 955 956 spin_lock_irqsave(&xhci->lock, flags); 957 if (ret < 0) { 958 /* This is bad; the host is not responding to commands and it's 959 * not allowing itself to be halted. At least interrupts are 960 * disabled. If we call usb_hc_died(), it will attempt to 961 * disconnect all device drivers under this host. Those 962 * disconnect() methods will wait for all URBs to be unlinked, 963 * so we must complete them. 964 */ 965 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 966 xhci_warn(xhci, "Completing active URBs anyway.\n"); 967 /* We could turn all TDs on the rings to no-ops. This won't 968 * help if the host has cached part of the ring, and is slow if 969 * we want to preserve the cycle bit. Skip it and hope the host 970 * doesn't touch the memory. 971 */ 972 } 973 for (i = 0; i < MAX_HC_SLOTS; i++) { 974 if (!xhci->devs[i]) 975 continue; 976 for (j = 0; j < 31; j++) { 977 temp_ep = &xhci->devs[i]->eps[j]; 978 ring = temp_ep->ring; 979 if (!ring) 980 continue; 981 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 982 "Killing URBs for slot ID %u, " 983 "ep index %u", i, j); 984 while (!list_empty(&ring->td_list)) { 985 cur_td = list_first_entry(&ring->td_list, 986 struct xhci_td, 987 td_list); 988 list_del_init(&cur_td->td_list); 989 if (!list_empty(&cur_td->cancelled_td_list)) 990 list_del_init(&cur_td->cancelled_td_list); 991 xhci_giveback_urb_in_irq(xhci, cur_td, 992 -ESHUTDOWN); 993 } 994 while (!list_empty(&temp_ep->cancelled_td_list)) { 995 cur_td = list_first_entry( 996 &temp_ep->cancelled_td_list, 997 struct xhci_td, 998 cancelled_td_list); 999 list_del_init(&cur_td->cancelled_td_list); 1000 xhci_giveback_urb_in_irq(xhci, cur_td, 1001 -ESHUTDOWN); 1002 } 1003 } 1004 } 1005 spin_unlock_irqrestore(&xhci->lock, flags); 1006 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1007 "Calling usb_hc_died()"); 1008 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1009 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1010 "xHCI host controller is dead."); 1011 } 1012 1013 1014 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1015 struct xhci_virt_device *dev, 1016 struct xhci_ring *ep_ring, 1017 unsigned int ep_index) 1018 { 1019 union xhci_trb *dequeue_temp; 1020 int num_trbs_free_temp; 1021 bool revert = false; 1022 1023 num_trbs_free_temp = ep_ring->num_trbs_free; 1024 dequeue_temp = ep_ring->dequeue; 1025 1026 /* If we get two back-to-back stalls, and the first stalled transfer 1027 * ends just before a link TRB, the dequeue pointer will be left on 1028 * the link TRB by the code in the while loop. So we have to update 1029 * the dequeue pointer one segment further, or we'll jump off 1030 * the segment into la-la-land. 1031 */ 1032 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 1033 ep_ring->deq_seg = ep_ring->deq_seg->next; 1034 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1035 } 1036 1037 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1038 /* We have more usable TRBs */ 1039 ep_ring->num_trbs_free++; 1040 ep_ring->dequeue++; 1041 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 1042 ep_ring->dequeue)) { 1043 if (ep_ring->dequeue == 1044 dev->eps[ep_index].queued_deq_ptr) 1045 break; 1046 ep_ring->deq_seg = ep_ring->deq_seg->next; 1047 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1048 } 1049 if (ep_ring->dequeue == dequeue_temp) { 1050 revert = true; 1051 break; 1052 } 1053 } 1054 1055 if (revert) { 1056 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1057 ep_ring->num_trbs_free = num_trbs_free_temp; 1058 } 1059 } 1060 1061 /* 1062 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1063 * we need to clear the set deq pending flag in the endpoint ring state, so that 1064 * the TD queueing code can ring the doorbell again. We also need to ring the 1065 * endpoint doorbell to restart the ring, but only if there aren't more 1066 * cancellations pending. 1067 */ 1068 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1069 union xhci_trb *trb, u32 cmd_comp_code) 1070 { 1071 unsigned int ep_index; 1072 unsigned int stream_id; 1073 struct xhci_ring *ep_ring; 1074 struct xhci_virt_device *dev; 1075 struct xhci_ep_ctx *ep_ctx; 1076 struct xhci_slot_ctx *slot_ctx; 1077 1078 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1079 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1080 dev = xhci->devs[slot_id]; 1081 1082 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1083 if (!ep_ring) { 1084 xhci_warn(xhci, "WARN Set TR deq ptr command for " 1085 "freed stream ID %u\n", 1086 stream_id); 1087 /* XXX: Harmless??? */ 1088 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1089 return; 1090 } 1091 1092 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1093 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1094 1095 if (cmd_comp_code != COMP_SUCCESS) { 1096 unsigned int ep_state; 1097 unsigned int slot_state; 1098 1099 switch (cmd_comp_code) { 1100 case COMP_TRB_ERR: 1101 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " 1102 "of stream ID configuration\n"); 1103 break; 1104 case COMP_CTX_STATE: 1105 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " 1106 "to incorrect slot or ep state.\n"); 1107 ep_state = le32_to_cpu(ep_ctx->ep_info); 1108 ep_state &= EP_STATE_MASK; 1109 slot_state = le32_to_cpu(slot_ctx->dev_state); 1110 slot_state = GET_SLOT_STATE(slot_state); 1111 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1112 "Slot state = %u, EP state = %u", 1113 slot_state, ep_state); 1114 break; 1115 case COMP_EBADSLT: 1116 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " 1117 "slot %u was not enabled.\n", slot_id); 1118 break; 1119 default: 1120 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " 1121 "completion code of %u.\n", 1122 cmd_comp_code); 1123 break; 1124 } 1125 /* OK what do we do now? The endpoint state is hosed, and we 1126 * should never get to this point if the synchronization between 1127 * queueing, and endpoint state are correct. This might happen 1128 * if the device gets disconnected after we've finished 1129 * cancelling URBs, which might not be an error... 1130 */ 1131 } else { 1132 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1133 "Successful Set TR Deq Ptr cmd, deq = @%08llx", 1134 le64_to_cpu(ep_ctx->deq)); 1135 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, 1136 dev->eps[ep_index].queued_deq_ptr) == 1137 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { 1138 /* Update the ring's dequeue segment and dequeue pointer 1139 * to reflect the new position. 1140 */ 1141 update_ring_for_set_deq_completion(xhci, dev, 1142 ep_ring, ep_index); 1143 } else { 1144 xhci_warn(xhci, "Mismatch between completed Set TR Deq " 1145 "Ptr command & xHCI internal state.\n"); 1146 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1147 dev->eps[ep_index].queued_deq_seg, 1148 dev->eps[ep_index].queued_deq_ptr); 1149 } 1150 } 1151 1152 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1153 dev->eps[ep_index].queued_deq_seg = NULL; 1154 dev->eps[ep_index].queued_deq_ptr = NULL; 1155 /* Restart any rings with pending URBs */ 1156 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1157 } 1158 1159 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1160 union xhci_trb *trb, u32 cmd_comp_code) 1161 { 1162 unsigned int ep_index; 1163 1164 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1165 /* This command will only fail if the endpoint wasn't halted, 1166 * but we don't care. 1167 */ 1168 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1169 "Ignoring reset ep completion code of %u", cmd_comp_code); 1170 1171 /* HW with the reset endpoint quirk needs to have a configure endpoint 1172 * command complete before the endpoint can be used. Queue that here 1173 * because the HW can't handle two commands being queued in a row. 1174 */ 1175 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1176 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1177 "Queueing configure endpoint command"); 1178 xhci_queue_configure_endpoint(xhci, 1179 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1180 false); 1181 xhci_ring_cmd_db(xhci); 1182 } else { 1183 /* Clear our internal halted state and restart the ring(s) */ 1184 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1185 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1186 } 1187 } 1188 1189 /* Complete the command and detele it from the devcie's command queue. 1190 */ 1191 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1192 struct xhci_command *command, u32 status) 1193 { 1194 command->status = status; 1195 list_del(&command->cmd_list); 1196 if (command->completion) 1197 complete(command->completion); 1198 else 1199 xhci_free_command(xhci, command); 1200 } 1201 1202 1203 /* Check to see if a command in the device's command queue matches this one. 1204 * Signal the completion or free the command, and return 1. Return 0 if the 1205 * completed command isn't at the head of the command list. 1206 */ 1207 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, 1208 struct xhci_virt_device *virt_dev, 1209 struct xhci_event_cmd *event) 1210 { 1211 struct xhci_command *command; 1212 1213 if (list_empty(&virt_dev->cmd_list)) 1214 return 0; 1215 1216 command = list_entry(virt_dev->cmd_list.next, 1217 struct xhci_command, cmd_list); 1218 if (xhci->cmd_ring->dequeue != command->command_trb) 1219 return 0; 1220 1221 xhci_complete_cmd_in_cmd_wait_list(xhci, command, 1222 GET_COMP_CODE(le32_to_cpu(event->status))); 1223 return 1; 1224 } 1225 1226 /* 1227 * Finding the command trb need to be cancelled and modifying it to 1228 * NO OP command. And if the command is in device's command wait 1229 * list, finishing and freeing it. 1230 * 1231 * If we can't find the command trb, we think it had already been 1232 * executed. 1233 */ 1234 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd) 1235 { 1236 struct xhci_segment *cur_seg; 1237 union xhci_trb *cmd_trb; 1238 u32 cycle_state; 1239 1240 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1241 return; 1242 1243 /* find the current segment of command ring */ 1244 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg, 1245 xhci->cmd_ring->dequeue, &cycle_state); 1246 1247 if (!cur_seg) { 1248 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n", 1249 xhci->cmd_ring->dequeue, 1250 (unsigned long long) 1251 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1252 xhci->cmd_ring->dequeue)); 1253 xhci_debug_ring(xhci, xhci->cmd_ring); 1254 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 1255 return; 1256 } 1257 1258 /* find the command trb matched by cd from command ring */ 1259 for (cmd_trb = xhci->cmd_ring->dequeue; 1260 cmd_trb != xhci->cmd_ring->enqueue; 1261 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) { 1262 /* If the trb is link trb, continue */ 1263 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3])) 1264 continue; 1265 1266 if (cur_cd->cmd_trb == cmd_trb) { 1267 1268 /* If the command in device's command list, we should 1269 * finish it and free the command structure. 1270 */ 1271 if (cur_cd->command) 1272 xhci_complete_cmd_in_cmd_wait_list(xhci, 1273 cur_cd->command, COMP_CMD_STOP); 1274 1275 /* get cycle state from the origin command trb */ 1276 cycle_state = le32_to_cpu(cmd_trb->generic.field[3]) 1277 & TRB_CYCLE; 1278 1279 /* modify the command trb to NO OP command */ 1280 cmd_trb->generic.field[0] = 0; 1281 cmd_trb->generic.field[1] = 0; 1282 cmd_trb->generic.field[2] = 0; 1283 cmd_trb->generic.field[3] = cpu_to_le32( 1284 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1285 break; 1286 } 1287 } 1288 } 1289 1290 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci) 1291 { 1292 struct xhci_cd *cur_cd, *next_cd; 1293 1294 if (list_empty(&xhci->cancel_cmd_list)) 1295 return; 1296 1297 list_for_each_entry_safe(cur_cd, next_cd, 1298 &xhci->cancel_cmd_list, cancel_cmd_list) { 1299 xhci_cmd_to_noop(xhci, cur_cd); 1300 list_del(&cur_cd->cancel_cmd_list); 1301 kfree(cur_cd); 1302 } 1303 } 1304 1305 /* 1306 * traversing the cancel_cmd_list. If the command descriptor according 1307 * to cmd_trb is found, the function free it and return 1, otherwise 1308 * return 0. 1309 */ 1310 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci, 1311 union xhci_trb *cmd_trb) 1312 { 1313 struct xhci_cd *cur_cd, *next_cd; 1314 1315 if (list_empty(&xhci->cancel_cmd_list)) 1316 return 0; 1317 1318 list_for_each_entry_safe(cur_cd, next_cd, 1319 &xhci->cancel_cmd_list, cancel_cmd_list) { 1320 if (cur_cd->cmd_trb == cmd_trb) { 1321 if (cur_cd->command) 1322 xhci_complete_cmd_in_cmd_wait_list(xhci, 1323 cur_cd->command, COMP_CMD_STOP); 1324 list_del(&cur_cd->cancel_cmd_list); 1325 kfree(cur_cd); 1326 return 1; 1327 } 1328 } 1329 1330 return 0; 1331 } 1332 1333 /* 1334 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the 1335 * trb pointed by the command ring dequeue pointer is the trb we want to 1336 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will 1337 * traverse the cancel_cmd_list to trun the all of the commands according 1338 * to command descriptor to NO-OP trb. 1339 */ 1340 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1341 int cmd_trb_comp_code) 1342 { 1343 int cur_trb_is_good = 0; 1344 1345 /* Searching the cmd trb pointed by the command ring dequeue 1346 * pointer in command descriptor list. If it is found, free it. 1347 */ 1348 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci, 1349 xhci->cmd_ring->dequeue); 1350 1351 if (cmd_trb_comp_code == COMP_CMD_ABORT) 1352 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1353 else if (cmd_trb_comp_code == COMP_CMD_STOP) { 1354 /* traversing the cancel_cmd_list and canceling 1355 * the command according to command descriptor 1356 */ 1357 xhci_cancel_cmd_in_cd_list(xhci); 1358 1359 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1360 /* 1361 * ring command ring doorbell again to restart the 1362 * command ring 1363 */ 1364 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) 1365 xhci_ring_cmd_db(xhci); 1366 } 1367 return cur_trb_is_good; 1368 } 1369 1370 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1371 u32 cmd_comp_code) 1372 { 1373 if (cmd_comp_code == COMP_SUCCESS) 1374 xhci->slot_id = slot_id; 1375 else 1376 xhci->slot_id = 0; 1377 complete(&xhci->addr_dev); 1378 } 1379 1380 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1381 { 1382 struct xhci_virt_device *virt_dev; 1383 1384 virt_dev = xhci->devs[slot_id]; 1385 if (!virt_dev) 1386 return; 1387 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1388 /* Delete default control endpoint resources */ 1389 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1390 xhci_free_virt_device(xhci, slot_id); 1391 } 1392 1393 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1394 struct xhci_event_cmd *event, u32 cmd_comp_code) 1395 { 1396 struct xhci_virt_device *virt_dev; 1397 struct xhci_input_control_ctx *ctrl_ctx; 1398 unsigned int ep_index; 1399 unsigned int ep_state; 1400 u32 add_flags, drop_flags; 1401 1402 virt_dev = xhci->devs[slot_id]; 1403 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1404 return; 1405 /* 1406 * Configure endpoint commands can come from the USB core 1407 * configuration or alt setting changes, or because the HW 1408 * needed an extra configure endpoint command after a reset 1409 * endpoint command or streams were being configured. 1410 * If the command was for a halted endpoint, the xHCI driver 1411 * is not waiting on the configure endpoint command. 1412 */ 1413 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1414 if (!ctrl_ctx) { 1415 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1416 return; 1417 } 1418 1419 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1420 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1421 /* Input ctx add_flags are the endpoint index plus one */ 1422 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1423 1424 /* A usb_set_interface() call directly after clearing a halted 1425 * condition may race on this quirky hardware. Not worth 1426 * worrying about, since this is prototype hardware. Not sure 1427 * if this will work for streams, but streams support was 1428 * untested on this prototype. 1429 */ 1430 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1431 ep_index != (unsigned int) -1 && 1432 add_flags - SLOT_FLAG == drop_flags) { 1433 ep_state = virt_dev->eps[ep_index].ep_state; 1434 if (!(ep_state & EP_HALTED)) 1435 goto bandwidth_change; 1436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1437 "Completed config ep cmd - " 1438 "last ep index = %d, state = %d", 1439 ep_index, ep_state); 1440 /* Clear internal halted state and restart ring(s) */ 1441 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1442 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1443 return; 1444 } 1445 bandwidth_change: 1446 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1447 "Completed config ep cmd"); 1448 virt_dev->cmd_status = cmd_comp_code; 1449 complete(&virt_dev->cmd_completion); 1450 return; 1451 } 1452 1453 static void xhci_handle_cmd_eval_ctx(struct xhci_hcd *xhci, int slot_id, 1454 struct xhci_event_cmd *event, u32 cmd_comp_code) 1455 { 1456 struct xhci_virt_device *virt_dev; 1457 1458 virt_dev = xhci->devs[slot_id]; 1459 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) 1460 return; 1461 virt_dev->cmd_status = cmd_comp_code; 1462 complete(&virt_dev->cmd_completion); 1463 } 1464 1465 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id, 1466 u32 cmd_comp_code) 1467 { 1468 xhci->devs[slot_id]->cmd_status = cmd_comp_code; 1469 complete(&xhci->addr_dev); 1470 } 1471 1472 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1473 struct xhci_event_cmd *event) 1474 { 1475 struct xhci_virt_device *virt_dev; 1476 1477 xhci_dbg(xhci, "Completed reset device command.\n"); 1478 virt_dev = xhci->devs[slot_id]; 1479 if (virt_dev) 1480 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); 1481 else 1482 xhci_warn(xhci, "Reset device command completion " 1483 "for disabled slot %u\n", slot_id); 1484 } 1485 1486 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1487 struct xhci_event_cmd *event) 1488 { 1489 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1490 xhci->error_bitmask |= 1 << 6; 1491 return; 1492 } 1493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1494 "NEC firmware version %2x.%02x", 1495 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1496 NEC_FW_MINOR(le32_to_cpu(event->status))); 1497 } 1498 1499 static void handle_cmd_completion(struct xhci_hcd *xhci, 1500 struct xhci_event_cmd *event) 1501 { 1502 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1503 u64 cmd_dma; 1504 dma_addr_t cmd_dequeue_dma; 1505 u32 cmd_comp_code; 1506 union xhci_trb *cmd_trb; 1507 u32 cmd_type; 1508 1509 cmd_dma = le64_to_cpu(event->cmd_trb); 1510 cmd_trb = xhci->cmd_ring->dequeue; 1511 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1512 cmd_trb); 1513 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1514 if (cmd_dequeue_dma == 0) { 1515 xhci->error_bitmask |= 1 << 4; 1516 return; 1517 } 1518 /* Does the DMA address match our internal dequeue pointer address? */ 1519 if (cmd_dma != (u64) cmd_dequeue_dma) { 1520 xhci->error_bitmask |= 1 << 5; 1521 return; 1522 } 1523 1524 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1525 1526 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1527 if (cmd_comp_code == COMP_CMD_ABORT || cmd_comp_code == COMP_CMD_STOP) { 1528 /* If the return value is 0, we think the trb pointed by 1529 * command ring dequeue pointer is a good trb. The good 1530 * trb means we don't want to cancel the trb, but it have 1531 * been stopped by host. So we should handle it normally. 1532 * Otherwise, driver should invoke inc_deq() and return. 1533 */ 1534 if (handle_stopped_cmd_ring(xhci, cmd_comp_code)) { 1535 inc_deq(xhci, xhci->cmd_ring); 1536 return; 1537 } 1538 /* There is no command to handle if we get a stop event when the 1539 * command ring is empty, event->cmd_trb points to the next 1540 * unset command 1541 */ 1542 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue) 1543 return; 1544 } 1545 1546 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1547 switch (cmd_type) { 1548 case TRB_ENABLE_SLOT: 1549 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1550 break; 1551 case TRB_DISABLE_SLOT: 1552 xhci_handle_cmd_disable_slot(xhci, slot_id); 1553 break; 1554 case TRB_CONFIG_EP: 1555 xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code); 1556 break; 1557 case TRB_EVAL_CONTEXT: 1558 xhci_handle_cmd_eval_ctx(xhci, slot_id, event, cmd_comp_code); 1559 break; 1560 case TRB_ADDR_DEV: 1561 xhci_handle_cmd_addr_dev(xhci, slot_id, cmd_comp_code); 1562 break; 1563 case TRB_STOP_RING: 1564 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1565 le32_to_cpu(cmd_trb->generic.field[3]))); 1566 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1567 break; 1568 case TRB_SET_DEQ: 1569 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1570 le32_to_cpu(cmd_trb->generic.field[3]))); 1571 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1572 break; 1573 case TRB_CMD_NOOP: 1574 break; 1575 case TRB_RESET_EP: 1576 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1577 le32_to_cpu(cmd_trb->generic.field[3]))); 1578 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1579 break; 1580 case TRB_RESET_DEV: 1581 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1582 le32_to_cpu(cmd_trb->generic.field[3]))); 1583 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1584 break; 1585 case TRB_NEC_GET_FW: 1586 xhci_handle_cmd_nec_get_fw(xhci, event); 1587 break; 1588 default: 1589 /* Skip over unknown commands on the event ring */ 1590 xhci->error_bitmask |= 1 << 6; 1591 break; 1592 } 1593 inc_deq(xhci, xhci->cmd_ring); 1594 } 1595 1596 static void handle_vendor_event(struct xhci_hcd *xhci, 1597 union xhci_trb *event) 1598 { 1599 u32 trb_type; 1600 1601 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1602 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1603 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1604 handle_cmd_completion(xhci, &event->event_cmd); 1605 } 1606 1607 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1608 * port registers -- USB 3.0 and USB 2.0). 1609 * 1610 * Returns a zero-based port number, which is suitable for indexing into each of 1611 * the split roothubs' port arrays and bus state arrays. 1612 * Add one to it in order to call xhci_find_slot_id_by_port. 1613 */ 1614 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1615 struct xhci_hcd *xhci, u32 port_id) 1616 { 1617 unsigned int i; 1618 unsigned int num_similar_speed_ports = 0; 1619 1620 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1621 * and usb2_ports are 0-based indexes. Count the number of similar 1622 * speed ports, up to 1 port before this port. 1623 */ 1624 for (i = 0; i < (port_id - 1); i++) { 1625 u8 port_speed = xhci->port_array[i]; 1626 1627 /* 1628 * Skip ports that don't have known speeds, or have duplicate 1629 * Extended Capabilities port speed entries. 1630 */ 1631 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1632 continue; 1633 1634 /* 1635 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1636 * 1.1 ports are under the USB 2.0 hub. If the port speed 1637 * matches the device speed, it's a similar speed port. 1638 */ 1639 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1640 num_similar_speed_ports++; 1641 } 1642 return num_similar_speed_ports; 1643 } 1644 1645 static void handle_device_notification(struct xhci_hcd *xhci, 1646 union xhci_trb *event) 1647 { 1648 u32 slot_id; 1649 struct usb_device *udev; 1650 1651 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1652 if (!xhci->devs[slot_id]) { 1653 xhci_warn(xhci, "Device Notification event for " 1654 "unused slot %u\n", slot_id); 1655 return; 1656 } 1657 1658 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1659 slot_id); 1660 udev = xhci->devs[slot_id]->udev; 1661 if (udev && udev->parent) 1662 usb_wakeup_notification(udev->parent, udev->portnum); 1663 } 1664 1665 static void handle_port_status(struct xhci_hcd *xhci, 1666 union xhci_trb *event) 1667 { 1668 struct usb_hcd *hcd; 1669 u32 port_id; 1670 u32 temp, temp1; 1671 int max_ports; 1672 int slot_id; 1673 unsigned int faked_port_index; 1674 u8 major_revision; 1675 struct xhci_bus_state *bus_state; 1676 __le32 __iomem **port_array; 1677 bool bogus_port_status = false; 1678 1679 /* Port status change events always have a successful completion code */ 1680 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1681 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1682 xhci->error_bitmask |= 1 << 8; 1683 } 1684 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1685 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1686 1687 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1688 if ((port_id <= 0) || (port_id > max_ports)) { 1689 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1690 inc_deq(xhci, xhci->event_ring); 1691 return; 1692 } 1693 1694 /* Figure out which usb_hcd this port is attached to: 1695 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1696 */ 1697 major_revision = xhci->port_array[port_id - 1]; 1698 1699 /* Find the right roothub. */ 1700 hcd = xhci_to_hcd(xhci); 1701 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1702 hcd = xhci->shared_hcd; 1703 1704 if (major_revision == 0) { 1705 xhci_warn(xhci, "Event for port %u not in " 1706 "Extended Capabilities, ignoring.\n", 1707 port_id); 1708 bogus_port_status = true; 1709 goto cleanup; 1710 } 1711 if (major_revision == DUPLICATE_ENTRY) { 1712 xhci_warn(xhci, "Event for port %u duplicated in" 1713 "Extended Capabilities, ignoring.\n", 1714 port_id); 1715 bogus_port_status = true; 1716 goto cleanup; 1717 } 1718 1719 /* 1720 * Hardware port IDs reported by a Port Status Change Event include USB 1721 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1722 * resume event, but we first need to translate the hardware port ID 1723 * into the index into the ports on the correct split roothub, and the 1724 * correct bus_state structure. 1725 */ 1726 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1727 if (hcd->speed == HCD_USB3) 1728 port_array = xhci->usb3_ports; 1729 else 1730 port_array = xhci->usb2_ports; 1731 /* Find the faked port hub number */ 1732 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1733 port_id); 1734 1735 temp = readl(port_array[faked_port_index]); 1736 if (hcd->state == HC_STATE_SUSPENDED) { 1737 xhci_dbg(xhci, "resume root hub\n"); 1738 usb_hcd_resume_root_hub(hcd); 1739 } 1740 1741 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1742 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1743 1744 temp1 = readl(&xhci->op_regs->command); 1745 if (!(temp1 & CMD_RUN)) { 1746 xhci_warn(xhci, "xHC is not running.\n"); 1747 goto cleanup; 1748 } 1749 1750 if (DEV_SUPERSPEED(temp)) { 1751 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1752 /* Set a flag to say the port signaled remote wakeup, 1753 * so we can tell the difference between the end of 1754 * device and host initiated resume. 1755 */ 1756 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1757 xhci_test_and_clear_bit(xhci, port_array, 1758 faked_port_index, PORT_PLC); 1759 xhci_set_link_state(xhci, port_array, faked_port_index, 1760 XDEV_U0); 1761 /* Need to wait until the next link state change 1762 * indicates the device is actually in U0. 1763 */ 1764 bogus_port_status = true; 1765 goto cleanup; 1766 } else { 1767 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1768 bus_state->resume_done[faked_port_index] = jiffies + 1769 msecs_to_jiffies(20); 1770 set_bit(faked_port_index, &bus_state->resuming_ports); 1771 mod_timer(&hcd->rh_timer, 1772 bus_state->resume_done[faked_port_index]); 1773 /* Do the rest in GetPortStatus */ 1774 } 1775 } 1776 1777 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1778 DEV_SUPERSPEED(temp)) { 1779 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1780 /* We've just brought the device into U0 through either the 1781 * Resume state after a device remote wakeup, or through the 1782 * U3Exit state after a host-initiated resume. If it's a device 1783 * initiated remote wake, don't pass up the link state change, 1784 * so the roothub behavior is consistent with external 1785 * USB 3.0 hub behavior. 1786 */ 1787 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1788 faked_port_index + 1); 1789 if (slot_id && xhci->devs[slot_id]) 1790 xhci_ring_device(xhci, slot_id); 1791 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1792 bus_state->port_remote_wakeup &= 1793 ~(1 << faked_port_index); 1794 xhci_test_and_clear_bit(xhci, port_array, 1795 faked_port_index, PORT_PLC); 1796 usb_wakeup_notification(hcd->self.root_hub, 1797 faked_port_index + 1); 1798 bogus_port_status = true; 1799 goto cleanup; 1800 } 1801 } 1802 1803 /* 1804 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1805 * RExit to a disconnect state). If so, let the the driver know it's 1806 * out of the RExit state. 1807 */ 1808 if (!DEV_SUPERSPEED(temp) && 1809 test_and_clear_bit(faked_port_index, 1810 &bus_state->rexit_ports)) { 1811 complete(&bus_state->rexit_done[faked_port_index]); 1812 bogus_port_status = true; 1813 goto cleanup; 1814 } 1815 1816 if (hcd->speed != HCD_USB3) 1817 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1818 PORT_PLC); 1819 1820 cleanup: 1821 /* Update event ring dequeue pointer before dropping the lock */ 1822 inc_deq(xhci, xhci->event_ring); 1823 1824 /* Don't make the USB core poll the roothub if we got a bad port status 1825 * change event. Besides, at that point we can't tell which roothub 1826 * (USB 2.0 or USB 3.0) to kick. 1827 */ 1828 if (bogus_port_status) 1829 return; 1830 1831 /* 1832 * xHCI port-status-change events occur when the "or" of all the 1833 * status-change bits in the portsc register changes from 0 to 1. 1834 * New status changes won't cause an event if any other change 1835 * bits are still set. When an event occurs, switch over to 1836 * polling to avoid losing status changes. 1837 */ 1838 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1839 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1840 spin_unlock(&xhci->lock); 1841 /* Pass this up to the core */ 1842 usb_hcd_poll_rh_status(hcd); 1843 spin_lock(&xhci->lock); 1844 } 1845 1846 /* 1847 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1848 * at end_trb, which may be in another segment. If the suspect DMA address is a 1849 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1850 * returns 0. 1851 */ 1852 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1853 union xhci_trb *start_trb, 1854 union xhci_trb *end_trb, 1855 dma_addr_t suspect_dma) 1856 { 1857 dma_addr_t start_dma; 1858 dma_addr_t end_seg_dma; 1859 dma_addr_t end_trb_dma; 1860 struct xhci_segment *cur_seg; 1861 1862 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1863 cur_seg = start_seg; 1864 1865 do { 1866 if (start_dma == 0) 1867 return NULL; 1868 /* We may get an event for a Link TRB in the middle of a TD */ 1869 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1870 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1871 /* If the end TRB isn't in this segment, this is set to 0 */ 1872 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1873 1874 if (end_trb_dma > 0) { 1875 /* The end TRB is in this segment, so suspect should be here */ 1876 if (start_dma <= end_trb_dma) { 1877 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1878 return cur_seg; 1879 } else { 1880 /* Case for one segment with 1881 * a TD wrapped around to the top 1882 */ 1883 if ((suspect_dma >= start_dma && 1884 suspect_dma <= end_seg_dma) || 1885 (suspect_dma >= cur_seg->dma && 1886 suspect_dma <= end_trb_dma)) 1887 return cur_seg; 1888 } 1889 return NULL; 1890 } else { 1891 /* Might still be somewhere in this segment */ 1892 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1893 return cur_seg; 1894 } 1895 cur_seg = cur_seg->next; 1896 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1897 } while (cur_seg != start_seg); 1898 1899 return NULL; 1900 } 1901 1902 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1903 unsigned int slot_id, unsigned int ep_index, 1904 unsigned int stream_id, 1905 struct xhci_td *td, union xhci_trb *event_trb) 1906 { 1907 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1908 ep->ep_state |= EP_HALTED; 1909 ep->stopped_td = td; 1910 ep->stopped_trb = event_trb; 1911 ep->stopped_stream = stream_id; 1912 1913 xhci_queue_reset_ep(xhci, slot_id, ep_index); 1914 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1915 1916 ep->stopped_td = NULL; 1917 ep->stopped_trb = NULL; 1918 ep->stopped_stream = 0; 1919 1920 xhci_ring_cmd_db(xhci); 1921 } 1922 1923 /* Check if an error has halted the endpoint ring. The class driver will 1924 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1925 * However, a babble and other errors also halt the endpoint ring, and the class 1926 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1927 * Ring Dequeue Pointer command manually. 1928 */ 1929 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1930 struct xhci_ep_ctx *ep_ctx, 1931 unsigned int trb_comp_code) 1932 { 1933 /* TRB completion codes that may require a manual halt cleanup */ 1934 if (trb_comp_code == COMP_TX_ERR || 1935 trb_comp_code == COMP_BABBLE || 1936 trb_comp_code == COMP_SPLIT_ERR) 1937 /* The 0.96 spec says a babbling control endpoint 1938 * is not halted. The 0.96 spec says it is. Some HW 1939 * claims to be 0.95 compliant, but it halts the control 1940 * endpoint anyway. Check if a babble halted the 1941 * endpoint. 1942 */ 1943 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1944 cpu_to_le32(EP_STATE_HALTED)) 1945 return 1; 1946 1947 return 0; 1948 } 1949 1950 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1951 { 1952 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1953 /* Vendor defined "informational" completion code, 1954 * treat as not-an-error. 1955 */ 1956 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1957 trb_comp_code); 1958 xhci_dbg(xhci, "Treating code as success.\n"); 1959 return 1; 1960 } 1961 return 0; 1962 } 1963 1964 /* 1965 * Finish the td processing, remove the td from td list; 1966 * Return 1 if the urb can be given back. 1967 */ 1968 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1969 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1970 struct xhci_virt_ep *ep, int *status, bool skip) 1971 { 1972 struct xhci_virt_device *xdev; 1973 struct xhci_ring *ep_ring; 1974 unsigned int slot_id; 1975 int ep_index; 1976 struct urb *urb = NULL; 1977 struct xhci_ep_ctx *ep_ctx; 1978 int ret = 0; 1979 struct urb_priv *urb_priv; 1980 u32 trb_comp_code; 1981 1982 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1983 xdev = xhci->devs[slot_id]; 1984 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1985 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1986 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1987 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1988 1989 if (skip) 1990 goto td_cleanup; 1991 1992 if (trb_comp_code == COMP_STOP_INVAL || 1993 trb_comp_code == COMP_STOP) { 1994 /* The Endpoint Stop Command completion will take care of any 1995 * stopped TDs. A stopped TD may be restarted, so don't update 1996 * the ring dequeue pointer or take this TD off any lists yet. 1997 */ 1998 ep->stopped_td = td; 1999 ep->stopped_trb = event_trb; 2000 return 0; 2001 } else { 2002 if (trb_comp_code == COMP_STALL) { 2003 /* The transfer is completed from the driver's 2004 * perspective, but we need to issue a set dequeue 2005 * command for this stalled endpoint to move the dequeue 2006 * pointer past the TD. We can't do that here because 2007 * the halt condition must be cleared first. Let the 2008 * USB class driver clear the stall later. 2009 */ 2010 ep->stopped_td = td; 2011 ep->stopped_trb = event_trb; 2012 ep->stopped_stream = ep_ring->stream_id; 2013 } else if (xhci_requires_manual_halt_cleanup(xhci, 2014 ep_ctx, trb_comp_code)) { 2015 /* Other types of errors halt the endpoint, but the 2016 * class driver doesn't call usb_reset_endpoint() unless 2017 * the error is -EPIPE. Clear the halted status in the 2018 * xHCI hardware manually. 2019 */ 2020 xhci_cleanup_halted_endpoint(xhci, 2021 slot_id, ep_index, ep_ring->stream_id, 2022 td, event_trb); 2023 } else { 2024 /* Update ring dequeue pointer */ 2025 while (ep_ring->dequeue != td->last_trb) 2026 inc_deq(xhci, ep_ring); 2027 inc_deq(xhci, ep_ring); 2028 } 2029 2030 td_cleanup: 2031 /* Clean up the endpoint's TD list */ 2032 urb = td->urb; 2033 urb_priv = urb->hcpriv; 2034 2035 /* Do one last check of the actual transfer length. 2036 * If the host controller said we transferred more data than 2037 * the buffer length, urb->actual_length will be a very big 2038 * number (since it's unsigned). Play it safe and say we didn't 2039 * transfer anything. 2040 */ 2041 if (urb->actual_length > urb->transfer_buffer_length) { 2042 xhci_warn(xhci, "URB transfer length is wrong, " 2043 "xHC issue? req. len = %u, " 2044 "act. len = %u\n", 2045 urb->transfer_buffer_length, 2046 urb->actual_length); 2047 urb->actual_length = 0; 2048 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2049 *status = -EREMOTEIO; 2050 else 2051 *status = 0; 2052 } 2053 list_del_init(&td->td_list); 2054 /* Was this TD slated to be cancelled but completed anyway? */ 2055 if (!list_empty(&td->cancelled_td_list)) 2056 list_del_init(&td->cancelled_td_list); 2057 2058 urb_priv->td_cnt++; 2059 /* Giveback the urb when all the tds are completed */ 2060 if (urb_priv->td_cnt == urb_priv->length) { 2061 ret = 1; 2062 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 2063 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 2064 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 2065 == 0) { 2066 if (xhci->quirks & XHCI_AMD_PLL_FIX) 2067 usb_amd_quirk_pll_enable(); 2068 } 2069 } 2070 } 2071 } 2072 2073 return ret; 2074 } 2075 2076 /* 2077 * Process control tds, update urb status and actual_length. 2078 */ 2079 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 2080 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2081 struct xhci_virt_ep *ep, int *status) 2082 { 2083 struct xhci_virt_device *xdev; 2084 struct xhci_ring *ep_ring; 2085 unsigned int slot_id; 2086 int ep_index; 2087 struct xhci_ep_ctx *ep_ctx; 2088 u32 trb_comp_code; 2089 2090 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2091 xdev = xhci->devs[slot_id]; 2092 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2093 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2094 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2095 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2096 2097 switch (trb_comp_code) { 2098 case COMP_SUCCESS: 2099 if (event_trb == ep_ring->dequeue) { 2100 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 2101 "without IOC set??\n"); 2102 *status = -ESHUTDOWN; 2103 } else if (event_trb != td->last_trb) { 2104 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 2105 "without IOC set??\n"); 2106 *status = -ESHUTDOWN; 2107 } else { 2108 *status = 0; 2109 } 2110 break; 2111 case COMP_SHORT_TX: 2112 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2113 *status = -EREMOTEIO; 2114 else 2115 *status = 0; 2116 break; 2117 case COMP_STOP_INVAL: 2118 case COMP_STOP: 2119 return finish_td(xhci, td, event_trb, event, ep, status, false); 2120 default: 2121 if (!xhci_requires_manual_halt_cleanup(xhci, 2122 ep_ctx, trb_comp_code)) 2123 break; 2124 xhci_dbg(xhci, "TRB error code %u, " 2125 "halted endpoint index = %u\n", 2126 trb_comp_code, ep_index); 2127 /* else fall through */ 2128 case COMP_STALL: 2129 /* Did we transfer part of the data (middle) phase? */ 2130 if (event_trb != ep_ring->dequeue && 2131 event_trb != td->last_trb) 2132 td->urb->actual_length = 2133 td->urb->transfer_buffer_length - 2134 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2135 else 2136 td->urb->actual_length = 0; 2137 2138 xhci_cleanup_halted_endpoint(xhci, 2139 slot_id, ep_index, 0, td, event_trb); 2140 return finish_td(xhci, td, event_trb, event, ep, status, true); 2141 } 2142 /* 2143 * Did we transfer any data, despite the errors that might have 2144 * happened? I.e. did we get past the setup stage? 2145 */ 2146 if (event_trb != ep_ring->dequeue) { 2147 /* The event was for the status stage */ 2148 if (event_trb == td->last_trb) { 2149 if (td->urb->actual_length != 0) { 2150 /* Don't overwrite a previously set error code 2151 */ 2152 if ((*status == -EINPROGRESS || *status == 0) && 2153 (td->urb->transfer_flags 2154 & URB_SHORT_NOT_OK)) 2155 /* Did we already see a short data 2156 * stage? */ 2157 *status = -EREMOTEIO; 2158 } else { 2159 td->urb->actual_length = 2160 td->urb->transfer_buffer_length; 2161 } 2162 } else { 2163 /* Maybe the event was for the data stage? */ 2164 td->urb->actual_length = 2165 td->urb->transfer_buffer_length - 2166 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2167 xhci_dbg(xhci, "Waiting for status " 2168 "stage event\n"); 2169 return 0; 2170 } 2171 } 2172 2173 return finish_td(xhci, td, event_trb, event, ep, status, false); 2174 } 2175 2176 /* 2177 * Process isochronous tds, update urb packet status and actual_length. 2178 */ 2179 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2180 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2181 struct xhci_virt_ep *ep, int *status) 2182 { 2183 struct xhci_ring *ep_ring; 2184 struct urb_priv *urb_priv; 2185 int idx; 2186 int len = 0; 2187 union xhci_trb *cur_trb; 2188 struct xhci_segment *cur_seg; 2189 struct usb_iso_packet_descriptor *frame; 2190 u32 trb_comp_code; 2191 bool skip_td = false; 2192 2193 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2194 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2195 urb_priv = td->urb->hcpriv; 2196 idx = urb_priv->td_cnt; 2197 frame = &td->urb->iso_frame_desc[idx]; 2198 2199 /* handle completion code */ 2200 switch (trb_comp_code) { 2201 case COMP_SUCCESS: 2202 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2203 frame->status = 0; 2204 break; 2205 } 2206 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2207 trb_comp_code = COMP_SHORT_TX; 2208 case COMP_SHORT_TX: 2209 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2210 -EREMOTEIO : 0; 2211 break; 2212 case COMP_BW_OVER: 2213 frame->status = -ECOMM; 2214 skip_td = true; 2215 break; 2216 case COMP_BUFF_OVER: 2217 case COMP_BABBLE: 2218 frame->status = -EOVERFLOW; 2219 skip_td = true; 2220 break; 2221 case COMP_DEV_ERR: 2222 case COMP_STALL: 2223 case COMP_TX_ERR: 2224 frame->status = -EPROTO; 2225 skip_td = true; 2226 break; 2227 case COMP_STOP: 2228 case COMP_STOP_INVAL: 2229 break; 2230 default: 2231 frame->status = -1; 2232 break; 2233 } 2234 2235 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2236 frame->actual_length = frame->length; 2237 td->urb->actual_length += frame->length; 2238 } else { 2239 for (cur_trb = ep_ring->dequeue, 2240 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2241 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2242 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2243 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2244 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2245 } 2246 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2247 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2248 2249 if (trb_comp_code != COMP_STOP_INVAL) { 2250 frame->actual_length = len; 2251 td->urb->actual_length += len; 2252 } 2253 } 2254 2255 return finish_td(xhci, td, event_trb, event, ep, status, false); 2256 } 2257 2258 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2259 struct xhci_transfer_event *event, 2260 struct xhci_virt_ep *ep, int *status) 2261 { 2262 struct xhci_ring *ep_ring; 2263 struct urb_priv *urb_priv; 2264 struct usb_iso_packet_descriptor *frame; 2265 int idx; 2266 2267 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2268 urb_priv = td->urb->hcpriv; 2269 idx = urb_priv->td_cnt; 2270 frame = &td->urb->iso_frame_desc[idx]; 2271 2272 /* The transfer is partly done. */ 2273 frame->status = -EXDEV; 2274 2275 /* calc actual length */ 2276 frame->actual_length = 0; 2277 2278 /* Update ring dequeue pointer */ 2279 while (ep_ring->dequeue != td->last_trb) 2280 inc_deq(xhci, ep_ring); 2281 inc_deq(xhci, ep_ring); 2282 2283 return finish_td(xhci, td, NULL, event, ep, status, true); 2284 } 2285 2286 /* 2287 * Process bulk and interrupt tds, update urb status and actual_length. 2288 */ 2289 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2290 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2291 struct xhci_virt_ep *ep, int *status) 2292 { 2293 struct xhci_ring *ep_ring; 2294 union xhci_trb *cur_trb; 2295 struct xhci_segment *cur_seg; 2296 u32 trb_comp_code; 2297 2298 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2299 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2300 2301 switch (trb_comp_code) { 2302 case COMP_SUCCESS: 2303 /* Double check that the HW transferred everything. */ 2304 if (event_trb != td->last_trb || 2305 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2306 xhci_warn(xhci, "WARN Successful completion " 2307 "on short TX\n"); 2308 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2309 *status = -EREMOTEIO; 2310 else 2311 *status = 0; 2312 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2313 trb_comp_code = COMP_SHORT_TX; 2314 } else { 2315 *status = 0; 2316 } 2317 break; 2318 case COMP_SHORT_TX: 2319 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2320 *status = -EREMOTEIO; 2321 else 2322 *status = 0; 2323 break; 2324 default: 2325 /* Others already handled above */ 2326 break; 2327 } 2328 if (trb_comp_code == COMP_SHORT_TX) 2329 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2330 "%d bytes untransferred\n", 2331 td->urb->ep->desc.bEndpointAddress, 2332 td->urb->transfer_buffer_length, 2333 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2334 /* Fast path - was this the last TRB in the TD for this URB? */ 2335 if (event_trb == td->last_trb) { 2336 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2337 td->urb->actual_length = 2338 td->urb->transfer_buffer_length - 2339 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2340 if (td->urb->transfer_buffer_length < 2341 td->urb->actual_length) { 2342 xhci_warn(xhci, "HC gave bad length " 2343 "of %d bytes left\n", 2344 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2345 td->urb->actual_length = 0; 2346 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2347 *status = -EREMOTEIO; 2348 else 2349 *status = 0; 2350 } 2351 /* Don't overwrite a previously set error code */ 2352 if (*status == -EINPROGRESS) { 2353 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2354 *status = -EREMOTEIO; 2355 else 2356 *status = 0; 2357 } 2358 } else { 2359 td->urb->actual_length = 2360 td->urb->transfer_buffer_length; 2361 /* Ignore a short packet completion if the 2362 * untransferred length was zero. 2363 */ 2364 if (*status == -EREMOTEIO) 2365 *status = 0; 2366 } 2367 } else { 2368 /* Slow path - walk the list, starting from the dequeue 2369 * pointer, to get the actual length transferred. 2370 */ 2371 td->urb->actual_length = 0; 2372 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2373 cur_trb != event_trb; 2374 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2375 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2376 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2377 td->urb->actual_length += 2378 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2379 } 2380 /* If the ring didn't stop on a Link or No-op TRB, add 2381 * in the actual bytes transferred from the Normal TRB 2382 */ 2383 if (trb_comp_code != COMP_STOP_INVAL) 2384 td->urb->actual_length += 2385 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2386 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2387 } 2388 2389 return finish_td(xhci, td, event_trb, event, ep, status, false); 2390 } 2391 2392 /* 2393 * If this function returns an error condition, it means it got a Transfer 2394 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2395 * At this point, the host controller is probably hosed and should be reset. 2396 */ 2397 static int handle_tx_event(struct xhci_hcd *xhci, 2398 struct xhci_transfer_event *event) 2399 __releases(&xhci->lock) 2400 __acquires(&xhci->lock) 2401 { 2402 struct xhci_virt_device *xdev; 2403 struct xhci_virt_ep *ep; 2404 struct xhci_ring *ep_ring; 2405 unsigned int slot_id; 2406 int ep_index; 2407 struct xhci_td *td = NULL; 2408 dma_addr_t event_dma; 2409 struct xhci_segment *event_seg; 2410 union xhci_trb *event_trb; 2411 struct urb *urb = NULL; 2412 int status = -EINPROGRESS; 2413 struct urb_priv *urb_priv; 2414 struct xhci_ep_ctx *ep_ctx; 2415 struct list_head *tmp; 2416 u32 trb_comp_code; 2417 int ret = 0; 2418 int td_num = 0; 2419 2420 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2421 xdev = xhci->devs[slot_id]; 2422 if (!xdev) { 2423 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2424 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2425 (unsigned long long) xhci_trb_virt_to_dma( 2426 xhci->event_ring->deq_seg, 2427 xhci->event_ring->dequeue), 2428 lower_32_bits(le64_to_cpu(event->buffer)), 2429 upper_32_bits(le64_to_cpu(event->buffer)), 2430 le32_to_cpu(event->transfer_len), 2431 le32_to_cpu(event->flags)); 2432 xhci_dbg(xhci, "Event ring:\n"); 2433 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2434 return -ENODEV; 2435 } 2436 2437 /* Endpoint ID is 1 based, our index is zero based */ 2438 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2439 ep = &xdev->eps[ep_index]; 2440 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2441 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2442 if (!ep_ring || 2443 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2444 EP_STATE_DISABLED) { 2445 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2446 "or incorrect stream ring\n"); 2447 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2448 (unsigned long long) xhci_trb_virt_to_dma( 2449 xhci->event_ring->deq_seg, 2450 xhci->event_ring->dequeue), 2451 lower_32_bits(le64_to_cpu(event->buffer)), 2452 upper_32_bits(le64_to_cpu(event->buffer)), 2453 le32_to_cpu(event->transfer_len), 2454 le32_to_cpu(event->flags)); 2455 xhci_dbg(xhci, "Event ring:\n"); 2456 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2457 return -ENODEV; 2458 } 2459 2460 /* Count current td numbers if ep->skip is set */ 2461 if (ep->skip) { 2462 list_for_each(tmp, &ep_ring->td_list) 2463 td_num++; 2464 } 2465 2466 event_dma = le64_to_cpu(event->buffer); 2467 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2468 /* Look for common error cases */ 2469 switch (trb_comp_code) { 2470 /* Skip codes that require special handling depending on 2471 * transfer type 2472 */ 2473 case COMP_SUCCESS: 2474 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2475 break; 2476 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2477 trb_comp_code = COMP_SHORT_TX; 2478 else 2479 xhci_warn_ratelimited(xhci, 2480 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2481 case COMP_SHORT_TX: 2482 break; 2483 case COMP_STOP: 2484 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2485 break; 2486 case COMP_STOP_INVAL: 2487 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2488 break; 2489 case COMP_STALL: 2490 xhci_dbg(xhci, "Stalled endpoint\n"); 2491 ep->ep_state |= EP_HALTED; 2492 status = -EPIPE; 2493 break; 2494 case COMP_TRB_ERR: 2495 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2496 status = -EILSEQ; 2497 break; 2498 case COMP_SPLIT_ERR: 2499 case COMP_TX_ERR: 2500 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2501 status = -EPROTO; 2502 break; 2503 case COMP_BABBLE: 2504 xhci_dbg(xhci, "Babble error on endpoint\n"); 2505 status = -EOVERFLOW; 2506 break; 2507 case COMP_DB_ERR: 2508 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2509 status = -ENOSR; 2510 break; 2511 case COMP_BW_OVER: 2512 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2513 break; 2514 case COMP_BUFF_OVER: 2515 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2516 break; 2517 case COMP_UNDERRUN: 2518 /* 2519 * When the Isoch ring is empty, the xHC will generate 2520 * a Ring Overrun Event for IN Isoch endpoint or Ring 2521 * Underrun Event for OUT Isoch endpoint. 2522 */ 2523 xhci_dbg(xhci, "underrun event on endpoint\n"); 2524 if (!list_empty(&ep_ring->td_list)) 2525 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2526 "still with TDs queued?\n", 2527 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2528 ep_index); 2529 goto cleanup; 2530 case COMP_OVERRUN: 2531 xhci_dbg(xhci, "overrun event on endpoint\n"); 2532 if (!list_empty(&ep_ring->td_list)) 2533 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2534 "still with TDs queued?\n", 2535 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2536 ep_index); 2537 goto cleanup; 2538 case COMP_DEV_ERR: 2539 xhci_warn(xhci, "WARN: detect an incompatible device"); 2540 status = -EPROTO; 2541 break; 2542 case COMP_MISSED_INT: 2543 /* 2544 * When encounter missed service error, one or more isoc tds 2545 * may be missed by xHC. 2546 * Set skip flag of the ep_ring; Complete the missed tds as 2547 * short transfer when process the ep_ring next time. 2548 */ 2549 ep->skip = true; 2550 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2551 goto cleanup; 2552 default: 2553 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2554 status = 0; 2555 break; 2556 } 2557 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2558 "busted\n"); 2559 goto cleanup; 2560 } 2561 2562 do { 2563 /* This TRB should be in the TD at the head of this ring's 2564 * TD list. 2565 */ 2566 if (list_empty(&ep_ring->td_list)) { 2567 /* 2568 * A stopped endpoint may generate an extra completion 2569 * event if the device was suspended. Don't print 2570 * warnings. 2571 */ 2572 if (!(trb_comp_code == COMP_STOP || 2573 trb_comp_code == COMP_STOP_INVAL)) { 2574 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2575 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2576 ep_index); 2577 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2578 (le32_to_cpu(event->flags) & 2579 TRB_TYPE_BITMASK)>>10); 2580 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2581 } 2582 if (ep->skip) { 2583 ep->skip = false; 2584 xhci_dbg(xhci, "td_list is empty while skip " 2585 "flag set. Clear skip flag.\n"); 2586 } 2587 ret = 0; 2588 goto cleanup; 2589 } 2590 2591 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2592 if (ep->skip && td_num == 0) { 2593 ep->skip = false; 2594 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2595 "Clear skip flag.\n"); 2596 ret = 0; 2597 goto cleanup; 2598 } 2599 2600 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2601 if (ep->skip) 2602 td_num--; 2603 2604 /* Is this a TRB in the currently executing TD? */ 2605 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2606 td->last_trb, event_dma); 2607 2608 /* 2609 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2610 * is not in the current TD pointed by ep_ring->dequeue because 2611 * that the hardware dequeue pointer still at the previous TRB 2612 * of the current TD. The previous TRB maybe a Link TD or the 2613 * last TRB of the previous TD. The command completion handle 2614 * will take care the rest. 2615 */ 2616 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2617 ret = 0; 2618 goto cleanup; 2619 } 2620 2621 if (!event_seg) { 2622 if (!ep->skip || 2623 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2624 /* Some host controllers give a spurious 2625 * successful event after a short transfer. 2626 * Ignore it. 2627 */ 2628 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2629 ep_ring->last_td_was_short) { 2630 ep_ring->last_td_was_short = false; 2631 ret = 0; 2632 goto cleanup; 2633 } 2634 /* HC is busted, give up! */ 2635 xhci_err(xhci, 2636 "ERROR Transfer event TRB DMA ptr not " 2637 "part of current TD\n"); 2638 return -ESHUTDOWN; 2639 } 2640 2641 ret = skip_isoc_td(xhci, td, event, ep, &status); 2642 goto cleanup; 2643 } 2644 if (trb_comp_code == COMP_SHORT_TX) 2645 ep_ring->last_td_was_short = true; 2646 else 2647 ep_ring->last_td_was_short = false; 2648 2649 if (ep->skip) { 2650 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2651 ep->skip = false; 2652 } 2653 2654 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2655 sizeof(*event_trb)]; 2656 /* 2657 * No-op TRB should not trigger interrupts. 2658 * If event_trb is a no-op TRB, it means the 2659 * corresponding TD has been cancelled. Just ignore 2660 * the TD. 2661 */ 2662 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2663 xhci_dbg(xhci, 2664 "event_trb is a no-op TRB. Skip it\n"); 2665 goto cleanup; 2666 } 2667 2668 /* Now update the urb's actual_length and give back to 2669 * the core 2670 */ 2671 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2672 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2673 &status); 2674 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2675 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2676 &status); 2677 else 2678 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2679 ep, &status); 2680 2681 cleanup: 2682 /* 2683 * Do not update event ring dequeue pointer if ep->skip is set. 2684 * Will roll back to continue process missed tds. 2685 */ 2686 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2687 inc_deq(xhci, xhci->event_ring); 2688 } 2689 2690 if (ret) { 2691 urb = td->urb; 2692 urb_priv = urb->hcpriv; 2693 /* Leave the TD around for the reset endpoint function 2694 * to use(but only if it's not a control endpoint, 2695 * since we already queued the Set TR dequeue pointer 2696 * command for stalled control endpoints). 2697 */ 2698 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2699 (trb_comp_code != COMP_STALL && 2700 trb_comp_code != COMP_BABBLE)) 2701 xhci_urb_free_priv(xhci, urb_priv); 2702 else 2703 kfree(urb_priv); 2704 2705 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2706 if ((urb->actual_length != urb->transfer_buffer_length && 2707 (urb->transfer_flags & 2708 URB_SHORT_NOT_OK)) || 2709 (status != 0 && 2710 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2711 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2712 "expected = %d, status = %d\n", 2713 urb, urb->actual_length, 2714 urb->transfer_buffer_length, 2715 status); 2716 spin_unlock(&xhci->lock); 2717 /* EHCI, UHCI, and OHCI always unconditionally set the 2718 * urb->status of an isochronous endpoint to 0. 2719 */ 2720 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2721 status = 0; 2722 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2723 spin_lock(&xhci->lock); 2724 } 2725 2726 /* 2727 * If ep->skip is set, it means there are missed tds on the 2728 * endpoint ring need to take care of. 2729 * Process them as short transfer until reach the td pointed by 2730 * the event. 2731 */ 2732 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2733 2734 return 0; 2735 } 2736 2737 /* 2738 * This function handles all OS-owned events on the event ring. It may drop 2739 * xhci->lock between event processing (e.g. to pass up port status changes). 2740 * Returns >0 for "possibly more events to process" (caller should call again), 2741 * otherwise 0 if done. In future, <0 returns should indicate error code. 2742 */ 2743 static int xhci_handle_event(struct xhci_hcd *xhci) 2744 { 2745 union xhci_trb *event; 2746 int update_ptrs = 1; 2747 int ret; 2748 2749 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2750 xhci->error_bitmask |= 1 << 1; 2751 return 0; 2752 } 2753 2754 event = xhci->event_ring->dequeue; 2755 /* Does the HC or OS own the TRB? */ 2756 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2757 xhci->event_ring->cycle_state) { 2758 xhci->error_bitmask |= 1 << 2; 2759 return 0; 2760 } 2761 2762 /* 2763 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2764 * speculative reads of the event's flags/data below. 2765 */ 2766 rmb(); 2767 /* FIXME: Handle more event types. */ 2768 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2769 case TRB_TYPE(TRB_COMPLETION): 2770 handle_cmd_completion(xhci, &event->event_cmd); 2771 break; 2772 case TRB_TYPE(TRB_PORT_STATUS): 2773 handle_port_status(xhci, event); 2774 update_ptrs = 0; 2775 break; 2776 case TRB_TYPE(TRB_TRANSFER): 2777 ret = handle_tx_event(xhci, &event->trans_event); 2778 if (ret < 0) 2779 xhci->error_bitmask |= 1 << 9; 2780 else 2781 update_ptrs = 0; 2782 break; 2783 case TRB_TYPE(TRB_DEV_NOTE): 2784 handle_device_notification(xhci, event); 2785 break; 2786 default: 2787 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2788 TRB_TYPE(48)) 2789 handle_vendor_event(xhci, event); 2790 else 2791 xhci->error_bitmask |= 1 << 3; 2792 } 2793 /* Any of the above functions may drop and re-acquire the lock, so check 2794 * to make sure a watchdog timer didn't mark the host as non-responsive. 2795 */ 2796 if (xhci->xhc_state & XHCI_STATE_DYING) { 2797 xhci_dbg(xhci, "xHCI host dying, returning from " 2798 "event handler.\n"); 2799 return 0; 2800 } 2801 2802 if (update_ptrs) 2803 /* Update SW event ring dequeue pointer */ 2804 inc_deq(xhci, xhci->event_ring); 2805 2806 /* Are there more items on the event ring? Caller will call us again to 2807 * check. 2808 */ 2809 return 1; 2810 } 2811 2812 /* 2813 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2814 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2815 * indicators of an event TRB error, but we check the status *first* to be safe. 2816 */ 2817 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2818 { 2819 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2820 u32 status; 2821 u64 temp_64; 2822 union xhci_trb *event_ring_deq; 2823 dma_addr_t deq; 2824 2825 spin_lock(&xhci->lock); 2826 /* Check if the xHC generated the interrupt, or the irq is shared */ 2827 status = readl(&xhci->op_regs->status); 2828 if (status == 0xffffffff) 2829 goto hw_died; 2830 2831 if (!(status & STS_EINT)) { 2832 spin_unlock(&xhci->lock); 2833 return IRQ_NONE; 2834 } 2835 if (status & STS_FATAL) { 2836 xhci_warn(xhci, "WARNING: Host System Error\n"); 2837 xhci_halt(xhci); 2838 hw_died: 2839 spin_unlock(&xhci->lock); 2840 return -ESHUTDOWN; 2841 } 2842 2843 /* 2844 * Clear the op reg interrupt status first, 2845 * so we can receive interrupts from other MSI-X interrupters. 2846 * Write 1 to clear the interrupt status. 2847 */ 2848 status |= STS_EINT; 2849 writel(status, &xhci->op_regs->status); 2850 /* FIXME when MSI-X is supported and there are multiple vectors */ 2851 /* Clear the MSI-X event interrupt status */ 2852 2853 if (hcd->irq) { 2854 u32 irq_pending; 2855 /* Acknowledge the PCI interrupt */ 2856 irq_pending = readl(&xhci->ir_set->irq_pending); 2857 irq_pending |= IMAN_IP; 2858 writel(irq_pending, &xhci->ir_set->irq_pending); 2859 } 2860 2861 if (xhci->xhc_state & XHCI_STATE_DYING) { 2862 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2863 "Shouldn't IRQs be disabled?\n"); 2864 /* Clear the event handler busy flag (RW1C); 2865 * the event ring should be empty. 2866 */ 2867 temp_64 = readq(&xhci->ir_set->erst_dequeue); 2868 writeq(temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue); 2869 spin_unlock(&xhci->lock); 2870 2871 return IRQ_HANDLED; 2872 } 2873 2874 event_ring_deq = xhci->event_ring->dequeue; 2875 /* FIXME this should be a delayed service routine 2876 * that clears the EHB. 2877 */ 2878 while (xhci_handle_event(xhci) > 0) {} 2879 2880 temp_64 = readq(&xhci->ir_set->erst_dequeue); 2881 /* If necessary, update the HW's version of the event ring deq ptr. */ 2882 if (event_ring_deq != xhci->event_ring->dequeue) { 2883 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2884 xhci->event_ring->dequeue); 2885 if (deq == 0) 2886 xhci_warn(xhci, "WARN something wrong with SW event " 2887 "ring dequeue ptr.\n"); 2888 /* Update HC event ring dequeue pointer */ 2889 temp_64 &= ERST_PTR_MASK; 2890 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2891 } 2892 2893 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2894 temp_64 |= ERST_EHB; 2895 writeq(temp_64, &xhci->ir_set->erst_dequeue); 2896 2897 spin_unlock(&xhci->lock); 2898 2899 return IRQ_HANDLED; 2900 } 2901 2902 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2903 { 2904 return xhci_irq(hcd); 2905 } 2906 2907 /**** Endpoint Ring Operations ****/ 2908 2909 /* 2910 * Generic function for queueing a TRB on a ring. 2911 * The caller must have checked to make sure there's room on the ring. 2912 * 2913 * @more_trbs_coming: Will you enqueue more TRBs before calling 2914 * prepare_transfer()? 2915 */ 2916 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2917 bool more_trbs_coming, 2918 u32 field1, u32 field2, u32 field3, u32 field4) 2919 { 2920 struct xhci_generic_trb *trb; 2921 2922 trb = &ring->enqueue->generic; 2923 trb->field[0] = cpu_to_le32(field1); 2924 trb->field[1] = cpu_to_le32(field2); 2925 trb->field[2] = cpu_to_le32(field3); 2926 trb->field[3] = cpu_to_le32(field4); 2927 inc_enq(xhci, ring, more_trbs_coming); 2928 } 2929 2930 /* 2931 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2932 * FIXME allocate segments if the ring is full. 2933 */ 2934 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2935 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2936 { 2937 unsigned int num_trbs_needed; 2938 2939 /* Make sure the endpoint has been added to xHC schedule */ 2940 switch (ep_state) { 2941 case EP_STATE_DISABLED: 2942 /* 2943 * USB core changed config/interfaces without notifying us, 2944 * or hardware is reporting the wrong state. 2945 */ 2946 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2947 return -ENOENT; 2948 case EP_STATE_ERROR: 2949 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2950 /* FIXME event handling code for error needs to clear it */ 2951 /* XXX not sure if this should be -ENOENT or not */ 2952 return -EINVAL; 2953 case EP_STATE_HALTED: 2954 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2955 case EP_STATE_STOPPED: 2956 case EP_STATE_RUNNING: 2957 break; 2958 default: 2959 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2960 /* 2961 * FIXME issue Configure Endpoint command to try to get the HC 2962 * back into a known state. 2963 */ 2964 return -EINVAL; 2965 } 2966 2967 while (1) { 2968 if (room_on_ring(xhci, ep_ring, num_trbs)) { 2969 union xhci_trb *trb = ep_ring->enqueue; 2970 unsigned int usable = ep_ring->enq_seg->trbs + 2971 TRBS_PER_SEGMENT - 1 - trb; 2972 u32 nop_cmd; 2973 2974 /* 2975 * Section 4.11.7.1 TD Fragments states that a link 2976 * TRB must only occur at the boundary between 2977 * data bursts (eg 512 bytes for 480M). 2978 * While it is possible to split a large fragment 2979 * we don't know the size yet. 2980 * Simplest solution is to fill the trb before the 2981 * LINK with nop commands. 2982 */ 2983 if (num_trbs == 1 || num_trbs <= usable || usable == 0) 2984 break; 2985 2986 if (ep_ring->type != TYPE_BULK) 2987 /* 2988 * While isoc transfers might have a buffer that 2989 * crosses a 64k boundary it is unlikely. 2990 * Since we can't add NOPs without generating 2991 * gaps in the traffic just hope it never 2992 * happens at the end of the ring. 2993 * This could be fixed by writing a LINK TRB 2994 * instead of the first NOP - however the 2995 * TRB_TYPE_LINK_LE32() calls would all need 2996 * changing to check the ring length. 2997 */ 2998 break; 2999 3000 if (num_trbs >= TRBS_PER_SEGMENT) { 3001 xhci_err(xhci, "Too many fragments %d, max %d\n", 3002 num_trbs, TRBS_PER_SEGMENT - 1); 3003 return -EINVAL; 3004 } 3005 3006 nop_cmd = cpu_to_le32(TRB_TYPE(TRB_TR_NOOP) | 3007 ep_ring->cycle_state); 3008 ep_ring->num_trbs_free -= usable; 3009 do { 3010 trb->generic.field[0] = 0; 3011 trb->generic.field[1] = 0; 3012 trb->generic.field[2] = 0; 3013 trb->generic.field[3] = nop_cmd; 3014 trb++; 3015 } while (--usable); 3016 ep_ring->enqueue = trb; 3017 if (room_on_ring(xhci, ep_ring, num_trbs)) 3018 break; 3019 } 3020 3021 if (ep_ring == xhci->cmd_ring) { 3022 xhci_err(xhci, "Do not support expand command ring\n"); 3023 return -ENOMEM; 3024 } 3025 3026 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3027 "ERROR no room on ep ring, try ring expansion"); 3028 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3029 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3030 mem_flags)) { 3031 xhci_err(xhci, "Ring expansion failed\n"); 3032 return -ENOMEM; 3033 } 3034 } 3035 3036 if (enqueue_is_link_trb(ep_ring)) { 3037 struct xhci_ring *ring = ep_ring; 3038 union xhci_trb *next; 3039 3040 next = ring->enqueue; 3041 3042 while (last_trb(xhci, ring, ring->enq_seg, next)) { 3043 /* If we're not dealing with 0.95 hardware or isoc rings 3044 * on AMD 0.96 host, clear the chain bit. 3045 */ 3046 if (!xhci_link_trb_quirk(xhci) && 3047 !(ring->type == TYPE_ISOC && 3048 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3049 next->link.control &= cpu_to_le32(~TRB_CHAIN); 3050 else 3051 next->link.control |= cpu_to_le32(TRB_CHAIN); 3052 3053 wmb(); 3054 next->link.control ^= cpu_to_le32(TRB_CYCLE); 3055 3056 /* Toggle the cycle bit after the last ring segment. */ 3057 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 3058 ring->cycle_state = (ring->cycle_state ? 0 : 1); 3059 } 3060 ring->enq_seg = ring->enq_seg->next; 3061 ring->enqueue = ring->enq_seg->trbs; 3062 next = ring->enqueue; 3063 } 3064 } 3065 3066 return 0; 3067 } 3068 3069 static int prepare_transfer(struct xhci_hcd *xhci, 3070 struct xhci_virt_device *xdev, 3071 unsigned int ep_index, 3072 unsigned int stream_id, 3073 unsigned int num_trbs, 3074 struct urb *urb, 3075 unsigned int td_index, 3076 gfp_t mem_flags) 3077 { 3078 int ret; 3079 struct urb_priv *urb_priv; 3080 struct xhci_td *td; 3081 struct xhci_ring *ep_ring; 3082 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3083 3084 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 3085 if (!ep_ring) { 3086 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3087 stream_id); 3088 return -EINVAL; 3089 } 3090 3091 ret = prepare_ring(xhci, ep_ring, 3092 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3093 num_trbs, mem_flags); 3094 if (ret) 3095 return ret; 3096 3097 urb_priv = urb->hcpriv; 3098 td = urb_priv->td[td_index]; 3099 3100 INIT_LIST_HEAD(&td->td_list); 3101 INIT_LIST_HEAD(&td->cancelled_td_list); 3102 3103 if (td_index == 0) { 3104 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3105 if (unlikely(ret)) 3106 return ret; 3107 } 3108 3109 td->urb = urb; 3110 /* Add this TD to the tail of the endpoint ring's TD list */ 3111 list_add_tail(&td->td_list, &ep_ring->td_list); 3112 td->start_seg = ep_ring->enq_seg; 3113 td->first_trb = ep_ring->enqueue; 3114 3115 urb_priv->td[td_index] = td; 3116 3117 return 0; 3118 } 3119 3120 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 3121 { 3122 int num_sgs, num_trbs, running_total, temp, i; 3123 struct scatterlist *sg; 3124 3125 sg = NULL; 3126 num_sgs = urb->num_mapped_sgs; 3127 temp = urb->transfer_buffer_length; 3128 3129 num_trbs = 0; 3130 for_each_sg(urb->sg, sg, num_sgs, i) { 3131 unsigned int len = sg_dma_len(sg); 3132 3133 /* Scatter gather list entries may cross 64KB boundaries */ 3134 running_total = TRB_MAX_BUFF_SIZE - 3135 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 3136 running_total &= TRB_MAX_BUFF_SIZE - 1; 3137 if (running_total != 0) 3138 num_trbs++; 3139 3140 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3141 while (running_total < sg_dma_len(sg) && running_total < temp) { 3142 num_trbs++; 3143 running_total += TRB_MAX_BUFF_SIZE; 3144 } 3145 len = min_t(int, len, temp); 3146 temp -= len; 3147 if (temp == 0) 3148 break; 3149 } 3150 return num_trbs; 3151 } 3152 3153 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 3154 { 3155 if (num_trbs != 0) 3156 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 3157 "TRBs, %d left\n", __func__, 3158 urb->ep->desc.bEndpointAddress, num_trbs); 3159 if (running_total != urb->transfer_buffer_length) 3160 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3161 "queued %#x (%d), asked for %#x (%d)\n", 3162 __func__, 3163 urb->ep->desc.bEndpointAddress, 3164 running_total, running_total, 3165 urb->transfer_buffer_length, 3166 urb->transfer_buffer_length); 3167 } 3168 3169 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3170 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3171 struct xhci_generic_trb *start_trb) 3172 { 3173 /* 3174 * Pass all the TRBs to the hardware at once and make sure this write 3175 * isn't reordered. 3176 */ 3177 wmb(); 3178 if (start_cycle) 3179 start_trb->field[3] |= cpu_to_le32(start_cycle); 3180 else 3181 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3182 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3183 } 3184 3185 /* 3186 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3187 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3188 * (comprised of sg list entries) can take several service intervals to 3189 * transmit. 3190 */ 3191 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3192 struct urb *urb, int slot_id, unsigned int ep_index) 3193 { 3194 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3195 xhci->devs[slot_id]->out_ctx, ep_index); 3196 int xhci_interval; 3197 int ep_interval; 3198 3199 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3200 ep_interval = urb->interval; 3201 /* Convert to microframes */ 3202 if (urb->dev->speed == USB_SPEED_LOW || 3203 urb->dev->speed == USB_SPEED_FULL) 3204 ep_interval *= 8; 3205 /* FIXME change this to a warning and a suggestion to use the new API 3206 * to set the polling interval (once the API is added). 3207 */ 3208 if (xhci_interval != ep_interval) { 3209 dev_dbg_ratelimited(&urb->dev->dev, 3210 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3211 ep_interval, ep_interval == 1 ? "" : "s", 3212 xhci_interval, xhci_interval == 1 ? "" : "s"); 3213 urb->interval = xhci_interval; 3214 /* Convert back to frames for LS/FS devices */ 3215 if (urb->dev->speed == USB_SPEED_LOW || 3216 urb->dev->speed == USB_SPEED_FULL) 3217 urb->interval /= 8; 3218 } 3219 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3220 } 3221 3222 /* 3223 * The TD size is the number of bytes remaining in the TD (including this TRB), 3224 * right shifted by 10. 3225 * It must fit in bits 21:17, so it can't be bigger than 31. 3226 */ 3227 static u32 xhci_td_remainder(unsigned int remainder) 3228 { 3229 u32 max = (1 << (21 - 17 + 1)) - 1; 3230 3231 if ((remainder >> 10) >= max) 3232 return max << 17; 3233 else 3234 return (remainder >> 10) << 17; 3235 } 3236 3237 /* 3238 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3239 * packets remaining in the TD (*not* including this TRB). 3240 * 3241 * Total TD packet count = total_packet_count = 3242 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3243 * 3244 * Packets transferred up to and including this TRB = packets_transferred = 3245 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3246 * 3247 * TD size = total_packet_count - packets_transferred 3248 * 3249 * It must fit in bits 21:17, so it can't be bigger than 31. 3250 * The last TRB in a TD must have the TD size set to zero. 3251 */ 3252 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3253 unsigned int total_packet_count, struct urb *urb, 3254 unsigned int num_trbs_left) 3255 { 3256 int packets_transferred; 3257 3258 /* One TRB with a zero-length data packet. */ 3259 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3260 return 0; 3261 3262 /* All the TRB queueing functions don't count the current TRB in 3263 * running_total. 3264 */ 3265 packets_transferred = (running_total + trb_buff_len) / 3266 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3267 3268 if ((total_packet_count - packets_transferred) > 31) 3269 return 31 << 17; 3270 return (total_packet_count - packets_transferred) << 17; 3271 } 3272 3273 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3274 struct urb *urb, int slot_id, unsigned int ep_index) 3275 { 3276 struct xhci_ring *ep_ring; 3277 unsigned int num_trbs; 3278 struct urb_priv *urb_priv; 3279 struct xhci_td *td; 3280 struct scatterlist *sg; 3281 int num_sgs; 3282 int trb_buff_len, this_sg_len, running_total; 3283 unsigned int total_packet_count; 3284 bool first_trb; 3285 u64 addr; 3286 bool more_trbs_coming; 3287 3288 struct xhci_generic_trb *start_trb; 3289 int start_cycle; 3290 3291 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3292 if (!ep_ring) 3293 return -EINVAL; 3294 3295 num_trbs = count_sg_trbs_needed(xhci, urb); 3296 num_sgs = urb->num_mapped_sgs; 3297 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3298 usb_endpoint_maxp(&urb->ep->desc)); 3299 3300 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3301 ep_index, urb->stream_id, 3302 num_trbs, urb, 0, mem_flags); 3303 if (trb_buff_len < 0) 3304 return trb_buff_len; 3305 3306 urb_priv = urb->hcpriv; 3307 td = urb_priv->td[0]; 3308 3309 /* 3310 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3311 * until we've finished creating all the other TRBs. The ring's cycle 3312 * state may change as we enqueue the other TRBs, so save it too. 3313 */ 3314 start_trb = &ep_ring->enqueue->generic; 3315 start_cycle = ep_ring->cycle_state; 3316 3317 running_total = 0; 3318 /* 3319 * How much data is in the first TRB? 3320 * 3321 * There are three forces at work for TRB buffer pointers and lengths: 3322 * 1. We don't want to walk off the end of this sg-list entry buffer. 3323 * 2. The transfer length that the driver requested may be smaller than 3324 * the amount of memory allocated for this scatter-gather list. 3325 * 3. TRBs buffers can't cross 64KB boundaries. 3326 */ 3327 sg = urb->sg; 3328 addr = (u64) sg_dma_address(sg); 3329 this_sg_len = sg_dma_len(sg); 3330 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3331 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3332 if (trb_buff_len > urb->transfer_buffer_length) 3333 trb_buff_len = urb->transfer_buffer_length; 3334 3335 first_trb = true; 3336 /* Queue the first TRB, even if it's zero-length */ 3337 do { 3338 u32 field = 0; 3339 u32 length_field = 0; 3340 u32 remainder = 0; 3341 3342 /* Don't change the cycle bit of the first TRB until later */ 3343 if (first_trb) { 3344 first_trb = false; 3345 if (start_cycle == 0) 3346 field |= 0x1; 3347 } else 3348 field |= ep_ring->cycle_state; 3349 3350 /* Chain all the TRBs together; clear the chain bit in the last 3351 * TRB to indicate it's the last TRB in the chain. 3352 */ 3353 if (num_trbs > 1) { 3354 field |= TRB_CHAIN; 3355 } else { 3356 /* FIXME - add check for ZERO_PACKET flag before this */ 3357 td->last_trb = ep_ring->enqueue; 3358 field |= TRB_IOC; 3359 } 3360 3361 /* Only set interrupt on short packet for IN endpoints */ 3362 if (usb_urb_dir_in(urb)) 3363 field |= TRB_ISP; 3364 3365 if (TRB_MAX_BUFF_SIZE - 3366 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3367 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3368 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3369 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3370 (unsigned int) addr + trb_buff_len); 3371 } 3372 3373 /* Set the TRB length, TD size, and interrupter fields. */ 3374 if (xhci->hci_version < 0x100) { 3375 remainder = xhci_td_remainder( 3376 urb->transfer_buffer_length - 3377 running_total); 3378 } else { 3379 remainder = xhci_v1_0_td_remainder(running_total, 3380 trb_buff_len, total_packet_count, urb, 3381 num_trbs - 1); 3382 } 3383 length_field = TRB_LEN(trb_buff_len) | 3384 remainder | 3385 TRB_INTR_TARGET(0); 3386 3387 if (num_trbs > 1) 3388 more_trbs_coming = true; 3389 else 3390 more_trbs_coming = false; 3391 queue_trb(xhci, ep_ring, more_trbs_coming, 3392 lower_32_bits(addr), 3393 upper_32_bits(addr), 3394 length_field, 3395 field | TRB_TYPE(TRB_NORMAL)); 3396 --num_trbs; 3397 running_total += trb_buff_len; 3398 3399 /* Calculate length for next transfer -- 3400 * Are we done queueing all the TRBs for this sg entry? 3401 */ 3402 this_sg_len -= trb_buff_len; 3403 if (this_sg_len == 0) { 3404 --num_sgs; 3405 if (num_sgs == 0) 3406 break; 3407 sg = sg_next(sg); 3408 addr = (u64) sg_dma_address(sg); 3409 this_sg_len = sg_dma_len(sg); 3410 } else { 3411 addr += trb_buff_len; 3412 } 3413 3414 trb_buff_len = TRB_MAX_BUFF_SIZE - 3415 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3416 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3417 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3418 trb_buff_len = 3419 urb->transfer_buffer_length - running_total; 3420 } while (running_total < urb->transfer_buffer_length); 3421 3422 check_trb_math(urb, num_trbs, running_total); 3423 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3424 start_cycle, start_trb); 3425 return 0; 3426 } 3427 3428 /* This is very similar to what ehci-q.c qtd_fill() does */ 3429 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3430 struct urb *urb, int slot_id, unsigned int ep_index) 3431 { 3432 struct xhci_ring *ep_ring; 3433 struct urb_priv *urb_priv; 3434 struct xhci_td *td; 3435 int num_trbs; 3436 struct xhci_generic_trb *start_trb; 3437 bool first_trb; 3438 bool more_trbs_coming; 3439 int start_cycle; 3440 u32 field, length_field; 3441 3442 int running_total, trb_buff_len, ret; 3443 unsigned int total_packet_count; 3444 u64 addr; 3445 3446 if (urb->num_sgs) 3447 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3448 3449 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3450 if (!ep_ring) 3451 return -EINVAL; 3452 3453 num_trbs = 0; 3454 /* How much data is (potentially) left before the 64KB boundary? */ 3455 running_total = TRB_MAX_BUFF_SIZE - 3456 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3457 running_total &= TRB_MAX_BUFF_SIZE - 1; 3458 3459 /* If there's some data on this 64KB chunk, or we have to send a 3460 * zero-length transfer, we need at least one TRB 3461 */ 3462 if (running_total != 0 || urb->transfer_buffer_length == 0) 3463 num_trbs++; 3464 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3465 while (running_total < urb->transfer_buffer_length) { 3466 num_trbs++; 3467 running_total += TRB_MAX_BUFF_SIZE; 3468 } 3469 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3470 3471 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3472 ep_index, urb->stream_id, 3473 num_trbs, urb, 0, mem_flags); 3474 if (ret < 0) 3475 return ret; 3476 3477 urb_priv = urb->hcpriv; 3478 td = urb_priv->td[0]; 3479 3480 /* 3481 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3482 * until we've finished creating all the other TRBs. The ring's cycle 3483 * state may change as we enqueue the other TRBs, so save it too. 3484 */ 3485 start_trb = &ep_ring->enqueue->generic; 3486 start_cycle = ep_ring->cycle_state; 3487 3488 running_total = 0; 3489 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3490 usb_endpoint_maxp(&urb->ep->desc)); 3491 /* How much data is in the first TRB? */ 3492 addr = (u64) urb->transfer_dma; 3493 trb_buff_len = TRB_MAX_BUFF_SIZE - 3494 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3495 if (trb_buff_len > urb->transfer_buffer_length) 3496 trb_buff_len = urb->transfer_buffer_length; 3497 3498 first_trb = true; 3499 3500 /* Queue the first TRB, even if it's zero-length */ 3501 do { 3502 u32 remainder = 0; 3503 field = 0; 3504 3505 /* Don't change the cycle bit of the first TRB until later */ 3506 if (first_trb) { 3507 first_trb = false; 3508 if (start_cycle == 0) 3509 field |= 0x1; 3510 } else 3511 field |= ep_ring->cycle_state; 3512 3513 /* Chain all the TRBs together; clear the chain bit in the last 3514 * TRB to indicate it's the last TRB in the chain. 3515 */ 3516 if (num_trbs > 1) { 3517 field |= TRB_CHAIN; 3518 } else { 3519 /* FIXME - add check for ZERO_PACKET flag before this */ 3520 td->last_trb = ep_ring->enqueue; 3521 field |= TRB_IOC; 3522 } 3523 3524 /* Only set interrupt on short packet for IN endpoints */ 3525 if (usb_urb_dir_in(urb)) 3526 field |= TRB_ISP; 3527 3528 /* Set the TRB length, TD size, and interrupter fields. */ 3529 if (xhci->hci_version < 0x100) { 3530 remainder = xhci_td_remainder( 3531 urb->transfer_buffer_length - 3532 running_total); 3533 } else { 3534 remainder = xhci_v1_0_td_remainder(running_total, 3535 trb_buff_len, total_packet_count, urb, 3536 num_trbs - 1); 3537 } 3538 length_field = TRB_LEN(trb_buff_len) | 3539 remainder | 3540 TRB_INTR_TARGET(0); 3541 3542 if (num_trbs > 1) 3543 more_trbs_coming = true; 3544 else 3545 more_trbs_coming = false; 3546 queue_trb(xhci, ep_ring, more_trbs_coming, 3547 lower_32_bits(addr), 3548 upper_32_bits(addr), 3549 length_field, 3550 field | TRB_TYPE(TRB_NORMAL)); 3551 --num_trbs; 3552 running_total += trb_buff_len; 3553 3554 /* Calculate length for next transfer */ 3555 addr += trb_buff_len; 3556 trb_buff_len = urb->transfer_buffer_length - running_total; 3557 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3558 trb_buff_len = TRB_MAX_BUFF_SIZE; 3559 } while (running_total < urb->transfer_buffer_length); 3560 3561 check_trb_math(urb, num_trbs, running_total); 3562 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3563 start_cycle, start_trb); 3564 return 0; 3565 } 3566 3567 /* Caller must have locked xhci->lock */ 3568 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3569 struct urb *urb, int slot_id, unsigned int ep_index) 3570 { 3571 struct xhci_ring *ep_ring; 3572 int num_trbs; 3573 int ret; 3574 struct usb_ctrlrequest *setup; 3575 struct xhci_generic_trb *start_trb; 3576 int start_cycle; 3577 u32 field, length_field; 3578 struct urb_priv *urb_priv; 3579 struct xhci_td *td; 3580 3581 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3582 if (!ep_ring) 3583 return -EINVAL; 3584 3585 /* 3586 * Need to copy setup packet into setup TRB, so we can't use the setup 3587 * DMA address. 3588 */ 3589 if (!urb->setup_packet) 3590 return -EINVAL; 3591 3592 /* 1 TRB for setup, 1 for status */ 3593 num_trbs = 2; 3594 /* 3595 * Don't need to check if we need additional event data and normal TRBs, 3596 * since data in control transfers will never get bigger than 16MB 3597 * XXX: can we get a buffer that crosses 64KB boundaries? 3598 */ 3599 if (urb->transfer_buffer_length > 0) 3600 num_trbs++; 3601 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3602 ep_index, urb->stream_id, 3603 num_trbs, urb, 0, mem_flags); 3604 if (ret < 0) 3605 return ret; 3606 3607 urb_priv = urb->hcpriv; 3608 td = urb_priv->td[0]; 3609 3610 /* 3611 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3612 * until we've finished creating all the other TRBs. The ring's cycle 3613 * state may change as we enqueue the other TRBs, so save it too. 3614 */ 3615 start_trb = &ep_ring->enqueue->generic; 3616 start_cycle = ep_ring->cycle_state; 3617 3618 /* Queue setup TRB - see section 6.4.1.2.1 */ 3619 /* FIXME better way to translate setup_packet into two u32 fields? */ 3620 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3621 field = 0; 3622 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3623 if (start_cycle == 0) 3624 field |= 0x1; 3625 3626 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3627 if (xhci->hci_version == 0x100) { 3628 if (urb->transfer_buffer_length > 0) { 3629 if (setup->bRequestType & USB_DIR_IN) 3630 field |= TRB_TX_TYPE(TRB_DATA_IN); 3631 else 3632 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3633 } 3634 } 3635 3636 queue_trb(xhci, ep_ring, true, 3637 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3638 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3639 TRB_LEN(8) | TRB_INTR_TARGET(0), 3640 /* Immediate data in pointer */ 3641 field); 3642 3643 /* If there's data, queue data TRBs */ 3644 /* Only set interrupt on short packet for IN endpoints */ 3645 if (usb_urb_dir_in(urb)) 3646 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3647 else 3648 field = TRB_TYPE(TRB_DATA); 3649 3650 length_field = TRB_LEN(urb->transfer_buffer_length) | 3651 xhci_td_remainder(urb->transfer_buffer_length) | 3652 TRB_INTR_TARGET(0); 3653 if (urb->transfer_buffer_length > 0) { 3654 if (setup->bRequestType & USB_DIR_IN) 3655 field |= TRB_DIR_IN; 3656 queue_trb(xhci, ep_ring, true, 3657 lower_32_bits(urb->transfer_dma), 3658 upper_32_bits(urb->transfer_dma), 3659 length_field, 3660 field | ep_ring->cycle_state); 3661 } 3662 3663 /* Save the DMA address of the last TRB in the TD */ 3664 td->last_trb = ep_ring->enqueue; 3665 3666 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3667 /* If the device sent data, the status stage is an OUT transfer */ 3668 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3669 field = 0; 3670 else 3671 field = TRB_DIR_IN; 3672 queue_trb(xhci, ep_ring, false, 3673 0, 3674 0, 3675 TRB_INTR_TARGET(0), 3676 /* Event on completion */ 3677 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3678 3679 giveback_first_trb(xhci, slot_id, ep_index, 0, 3680 start_cycle, start_trb); 3681 return 0; 3682 } 3683 3684 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3685 struct urb *urb, int i) 3686 { 3687 int num_trbs = 0; 3688 u64 addr, td_len; 3689 3690 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3691 td_len = urb->iso_frame_desc[i].length; 3692 3693 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3694 TRB_MAX_BUFF_SIZE); 3695 if (num_trbs == 0) 3696 num_trbs++; 3697 3698 return num_trbs; 3699 } 3700 3701 /* 3702 * The transfer burst count field of the isochronous TRB defines the number of 3703 * bursts that are required to move all packets in this TD. Only SuperSpeed 3704 * devices can burst up to bMaxBurst number of packets per service interval. 3705 * This field is zero based, meaning a value of zero in the field means one 3706 * burst. Basically, for everything but SuperSpeed devices, this field will be 3707 * zero. Only xHCI 1.0 host controllers support this field. 3708 */ 3709 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3710 struct usb_device *udev, 3711 struct urb *urb, unsigned int total_packet_count) 3712 { 3713 unsigned int max_burst; 3714 3715 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3716 return 0; 3717 3718 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3719 return roundup(total_packet_count, max_burst + 1) - 1; 3720 } 3721 3722 /* 3723 * Returns the number of packets in the last "burst" of packets. This field is 3724 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3725 * the last burst packet count is equal to the total number of packets in the 3726 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3727 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3728 * contain 1 to (bMaxBurst + 1) packets. 3729 */ 3730 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3731 struct usb_device *udev, 3732 struct urb *urb, unsigned int total_packet_count) 3733 { 3734 unsigned int max_burst; 3735 unsigned int residue; 3736 3737 if (xhci->hci_version < 0x100) 3738 return 0; 3739 3740 switch (udev->speed) { 3741 case USB_SPEED_SUPER: 3742 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3743 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3744 residue = total_packet_count % (max_burst + 1); 3745 /* If residue is zero, the last burst contains (max_burst + 1) 3746 * number of packets, but the TLBPC field is zero-based. 3747 */ 3748 if (residue == 0) 3749 return max_burst; 3750 return residue - 1; 3751 default: 3752 if (total_packet_count == 0) 3753 return 0; 3754 return total_packet_count - 1; 3755 } 3756 } 3757 3758 /* This is for isoc transfer */ 3759 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3760 struct urb *urb, int slot_id, unsigned int ep_index) 3761 { 3762 struct xhci_ring *ep_ring; 3763 struct urb_priv *urb_priv; 3764 struct xhci_td *td; 3765 int num_tds, trbs_per_td; 3766 struct xhci_generic_trb *start_trb; 3767 bool first_trb; 3768 int start_cycle; 3769 u32 field, length_field; 3770 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3771 u64 start_addr, addr; 3772 int i, j; 3773 bool more_trbs_coming; 3774 3775 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3776 3777 num_tds = urb->number_of_packets; 3778 if (num_tds < 1) { 3779 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3780 return -EINVAL; 3781 } 3782 3783 start_addr = (u64) urb->transfer_dma; 3784 start_trb = &ep_ring->enqueue->generic; 3785 start_cycle = ep_ring->cycle_state; 3786 3787 urb_priv = urb->hcpriv; 3788 /* Queue the first TRB, even if it's zero-length */ 3789 for (i = 0; i < num_tds; i++) { 3790 unsigned int total_packet_count; 3791 unsigned int burst_count; 3792 unsigned int residue; 3793 3794 first_trb = true; 3795 running_total = 0; 3796 addr = start_addr + urb->iso_frame_desc[i].offset; 3797 td_len = urb->iso_frame_desc[i].length; 3798 td_remain_len = td_len; 3799 total_packet_count = DIV_ROUND_UP(td_len, 3800 GET_MAX_PACKET( 3801 usb_endpoint_maxp(&urb->ep->desc))); 3802 /* A zero-length transfer still involves at least one packet. */ 3803 if (total_packet_count == 0) 3804 total_packet_count++; 3805 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3806 total_packet_count); 3807 residue = xhci_get_last_burst_packet_count(xhci, 3808 urb->dev, urb, total_packet_count); 3809 3810 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3811 3812 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3813 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3814 if (ret < 0) { 3815 if (i == 0) 3816 return ret; 3817 goto cleanup; 3818 } 3819 3820 td = urb_priv->td[i]; 3821 for (j = 0; j < trbs_per_td; j++) { 3822 u32 remainder = 0; 3823 field = 0; 3824 3825 if (first_trb) { 3826 field = TRB_TBC(burst_count) | 3827 TRB_TLBPC(residue); 3828 /* Queue the isoc TRB */ 3829 field |= TRB_TYPE(TRB_ISOC); 3830 /* Assume URB_ISO_ASAP is set */ 3831 field |= TRB_SIA; 3832 if (i == 0) { 3833 if (start_cycle == 0) 3834 field |= 0x1; 3835 } else 3836 field |= ep_ring->cycle_state; 3837 first_trb = false; 3838 } else { 3839 /* Queue other normal TRBs */ 3840 field |= TRB_TYPE(TRB_NORMAL); 3841 field |= ep_ring->cycle_state; 3842 } 3843 3844 /* Only set interrupt on short packet for IN EPs */ 3845 if (usb_urb_dir_in(urb)) 3846 field |= TRB_ISP; 3847 3848 /* Chain all the TRBs together; clear the chain bit in 3849 * the last TRB to indicate it's the last TRB in the 3850 * chain. 3851 */ 3852 if (j < trbs_per_td - 1) { 3853 field |= TRB_CHAIN; 3854 more_trbs_coming = true; 3855 } else { 3856 td->last_trb = ep_ring->enqueue; 3857 field |= TRB_IOC; 3858 if (xhci->hci_version == 0x100 && 3859 !(xhci->quirks & 3860 XHCI_AVOID_BEI)) { 3861 /* Set BEI bit except for the last td */ 3862 if (i < num_tds - 1) 3863 field |= TRB_BEI; 3864 } 3865 more_trbs_coming = false; 3866 } 3867 3868 /* Calculate TRB length */ 3869 trb_buff_len = TRB_MAX_BUFF_SIZE - 3870 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3871 if (trb_buff_len > td_remain_len) 3872 trb_buff_len = td_remain_len; 3873 3874 /* Set the TRB length, TD size, & interrupter fields. */ 3875 if (xhci->hci_version < 0x100) { 3876 remainder = xhci_td_remainder( 3877 td_len - running_total); 3878 } else { 3879 remainder = xhci_v1_0_td_remainder( 3880 running_total, trb_buff_len, 3881 total_packet_count, urb, 3882 (trbs_per_td - j - 1)); 3883 } 3884 length_field = TRB_LEN(trb_buff_len) | 3885 remainder | 3886 TRB_INTR_TARGET(0); 3887 3888 queue_trb(xhci, ep_ring, more_trbs_coming, 3889 lower_32_bits(addr), 3890 upper_32_bits(addr), 3891 length_field, 3892 field); 3893 running_total += trb_buff_len; 3894 3895 addr += trb_buff_len; 3896 td_remain_len -= trb_buff_len; 3897 } 3898 3899 /* Check TD length */ 3900 if (running_total != td_len) { 3901 xhci_err(xhci, "ISOC TD length unmatch\n"); 3902 ret = -EINVAL; 3903 goto cleanup; 3904 } 3905 } 3906 3907 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3908 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3909 usb_amd_quirk_pll_disable(); 3910 } 3911 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3912 3913 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3914 start_cycle, start_trb); 3915 return 0; 3916 cleanup: 3917 /* Clean up a partially enqueued isoc transfer. */ 3918 3919 for (i--; i >= 0; i--) 3920 list_del_init(&urb_priv->td[i]->td_list); 3921 3922 /* Use the first TD as a temporary variable to turn the TDs we've queued 3923 * into No-ops with a software-owned cycle bit. That way the hardware 3924 * won't accidentally start executing bogus TDs when we partially 3925 * overwrite them. td->first_trb and td->start_seg are already set. 3926 */ 3927 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3928 /* Every TRB except the first & last will have its cycle bit flipped. */ 3929 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3930 3931 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3932 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3933 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3934 ep_ring->cycle_state = start_cycle; 3935 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3936 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3937 return ret; 3938 } 3939 3940 /* 3941 * Check transfer ring to guarantee there is enough room for the urb. 3942 * Update ISO URB start_frame and interval. 3943 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3944 * update the urb->start_frame by now. 3945 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3946 */ 3947 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3948 struct urb *urb, int slot_id, unsigned int ep_index) 3949 { 3950 struct xhci_virt_device *xdev; 3951 struct xhci_ring *ep_ring; 3952 struct xhci_ep_ctx *ep_ctx; 3953 int start_frame; 3954 int xhci_interval; 3955 int ep_interval; 3956 int num_tds, num_trbs, i; 3957 int ret; 3958 3959 xdev = xhci->devs[slot_id]; 3960 ep_ring = xdev->eps[ep_index].ring; 3961 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3962 3963 num_trbs = 0; 3964 num_tds = urb->number_of_packets; 3965 for (i = 0; i < num_tds; i++) 3966 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3967 3968 /* Check the ring to guarantee there is enough room for the whole urb. 3969 * Do not insert any td of the urb to the ring if the check failed. 3970 */ 3971 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3972 num_trbs, mem_flags); 3973 if (ret) 3974 return ret; 3975 3976 start_frame = readl(&xhci->run_regs->microframe_index); 3977 start_frame &= 0x3fff; 3978 3979 urb->start_frame = start_frame; 3980 if (urb->dev->speed == USB_SPEED_LOW || 3981 urb->dev->speed == USB_SPEED_FULL) 3982 urb->start_frame >>= 3; 3983 3984 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3985 ep_interval = urb->interval; 3986 /* Convert to microframes */ 3987 if (urb->dev->speed == USB_SPEED_LOW || 3988 urb->dev->speed == USB_SPEED_FULL) 3989 ep_interval *= 8; 3990 /* FIXME change this to a warning and a suggestion to use the new API 3991 * to set the polling interval (once the API is added). 3992 */ 3993 if (xhci_interval != ep_interval) { 3994 dev_dbg_ratelimited(&urb->dev->dev, 3995 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3996 ep_interval, ep_interval == 1 ? "" : "s", 3997 xhci_interval, xhci_interval == 1 ? "" : "s"); 3998 urb->interval = xhci_interval; 3999 /* Convert back to frames for LS/FS devices */ 4000 if (urb->dev->speed == USB_SPEED_LOW || 4001 urb->dev->speed == USB_SPEED_FULL) 4002 urb->interval /= 8; 4003 } 4004 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4005 4006 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4007 } 4008 4009 /**** Command Ring Operations ****/ 4010 4011 /* Generic function for queueing a command TRB on the command ring. 4012 * Check to make sure there's room on the command ring for one command TRB. 4013 * Also check that there's room reserved for commands that must not fail. 4014 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4015 * then only check for the number of reserved spots. 4016 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4017 * because the command event handler may want to resubmit a failed command. 4018 */ 4019 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, 4020 u32 field3, u32 field4, bool command_must_succeed) 4021 { 4022 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4023 int ret; 4024 4025 if (!command_must_succeed) 4026 reserved_trbs++; 4027 4028 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4029 reserved_trbs, GFP_ATOMIC); 4030 if (ret < 0) { 4031 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4032 if (command_must_succeed) 4033 xhci_err(xhci, "ERR: Reserved TRB counting for " 4034 "unfailable commands failed.\n"); 4035 return ret; 4036 } 4037 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4038 field4 | xhci->cmd_ring->cycle_state); 4039 return 0; 4040 } 4041 4042 /* Queue a slot enable or disable request on the command ring */ 4043 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) 4044 { 4045 return queue_command(xhci, 0, 0, 0, 4046 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4047 } 4048 4049 /* Queue an address device command TRB */ 4050 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4051 u32 slot_id, enum xhci_setup_dev setup) 4052 { 4053 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4054 upper_32_bits(in_ctx_ptr), 0, 4055 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4056 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4057 } 4058 4059 int xhci_queue_vendor_command(struct xhci_hcd *xhci, 4060 u32 field1, u32 field2, u32 field3, u32 field4) 4061 { 4062 return queue_command(xhci, field1, field2, field3, field4, false); 4063 } 4064 4065 /* Queue a reset device command TRB */ 4066 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) 4067 { 4068 return queue_command(xhci, 0, 0, 0, 4069 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4070 false); 4071 } 4072 4073 /* Queue a configure endpoint command TRB */ 4074 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4075 u32 slot_id, bool command_must_succeed) 4076 { 4077 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4078 upper_32_bits(in_ctx_ptr), 0, 4079 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4080 command_must_succeed); 4081 } 4082 4083 /* Queue an evaluate context command TRB */ 4084 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, 4085 u32 slot_id, bool command_must_succeed) 4086 { 4087 return queue_command(xhci, lower_32_bits(in_ctx_ptr), 4088 upper_32_bits(in_ctx_ptr), 0, 4089 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4090 command_must_succeed); 4091 } 4092 4093 /* 4094 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4095 * activity on an endpoint that is about to be suspended. 4096 */ 4097 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, 4098 unsigned int ep_index, int suspend) 4099 { 4100 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4101 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4102 u32 type = TRB_TYPE(TRB_STOP_RING); 4103 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4104 4105 return queue_command(xhci, 0, 0, 0, 4106 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4107 } 4108 4109 /* Set Transfer Ring Dequeue Pointer command. 4110 * This should not be used for endpoints that have streams enabled. 4111 */ 4112 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, 4113 unsigned int ep_index, unsigned int stream_id, 4114 struct xhci_segment *deq_seg, 4115 union xhci_trb *deq_ptr, u32 cycle_state) 4116 { 4117 dma_addr_t addr; 4118 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4119 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4120 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 4121 u32 type = TRB_TYPE(TRB_SET_DEQ); 4122 struct xhci_virt_ep *ep; 4123 4124 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 4125 if (addr == 0) { 4126 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4127 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 4128 deq_seg, deq_ptr); 4129 return 0; 4130 } 4131 ep = &xhci->devs[slot_id]->eps[ep_index]; 4132 if ((ep->ep_state & SET_DEQ_PENDING)) { 4133 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 4134 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 4135 return 0; 4136 } 4137 ep->queued_deq_seg = deq_seg; 4138 ep->queued_deq_ptr = deq_ptr; 4139 return queue_command(xhci, lower_32_bits(addr) | cycle_state, 4140 upper_32_bits(addr), trb_stream_id, 4141 trb_slot_id | trb_ep_index | type, false); 4142 } 4143 4144 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, 4145 unsigned int ep_index) 4146 { 4147 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4148 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4149 u32 type = TRB_TYPE(TRB_RESET_EP); 4150 4151 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, 4152 false); 4153 } 4154