xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 3932b9ca)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71 
72 /*
73  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
74  * address of the TRB.
75  */
76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
77 		union xhci_trb *trb)
78 {
79 	unsigned long segment_offset;
80 
81 	if (!seg || !trb || trb < seg->trbs)
82 		return 0;
83 	/* offset in TRBs */
84 	segment_offset = trb - seg->trbs;
85 	if (segment_offset > TRBS_PER_SEGMENT)
86 		return 0;
87 	return seg->dma + (segment_offset * sizeof(*trb));
88 }
89 
90 /* Does this link TRB point to the first segment in a ring,
91  * or was the previous TRB the last TRB on the last segment in the ERST?
92  */
93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
94 		struct xhci_segment *seg, union xhci_trb *trb)
95 {
96 	if (ring == xhci->event_ring)
97 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
98 			(seg->next == xhci->event_ring->first_seg);
99 	else
100 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
101 }
102 
103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
104  * segment?  I.e. would the updated event TRB pointer step off the end of the
105  * event seg?
106  */
107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
108 		struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 	if (ring == xhci->event_ring)
111 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
112 	else
113 		return TRB_TYPE_LINK_LE32(trb->link.control);
114 }
115 
116 static int enqueue_is_link_trb(struct xhci_ring *ring)
117 {
118 	struct xhci_link_trb *link = &ring->enqueue->link;
119 	return TRB_TYPE_LINK_LE32(link->control);
120 }
121 
122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
123  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
124  * effect the ring dequeue or enqueue pointers.
125  */
126 static void next_trb(struct xhci_hcd *xhci,
127 		struct xhci_ring *ring,
128 		struct xhci_segment **seg,
129 		union xhci_trb **trb)
130 {
131 	if (last_trb(xhci, ring, *seg, *trb)) {
132 		*seg = (*seg)->next;
133 		*trb = ((*seg)->trbs);
134 	} else {
135 		(*trb)++;
136 	}
137 }
138 
139 /*
140  * See Cycle bit rules. SW is the consumer for the event ring only.
141  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
142  */
143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
144 {
145 	ring->deq_updates++;
146 
147 	/*
148 	 * If this is not event ring, and the dequeue pointer
149 	 * is not on a link TRB, there is one more usable TRB
150 	 */
151 	if (ring->type != TYPE_EVENT &&
152 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
153 		ring->num_trbs_free++;
154 
155 	do {
156 		/*
157 		 * Update the dequeue pointer further if that was a link TRB or
158 		 * we're at the end of an event ring segment (which doesn't have
159 		 * link TRBS)
160 		 */
161 		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
162 			if (ring->type == TYPE_EVENT &&
163 					last_trb_on_last_seg(xhci, ring,
164 						ring->deq_seg, ring->dequeue)) {
165 				ring->cycle_state ^= 1;
166 			}
167 			ring->deq_seg = ring->deq_seg->next;
168 			ring->dequeue = ring->deq_seg->trbs;
169 		} else {
170 			ring->dequeue++;
171 		}
172 	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
173 }
174 
175 /*
176  * See Cycle bit rules. SW is the consumer for the event ring only.
177  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
178  *
179  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
180  * chain bit is set), then set the chain bit in all the following link TRBs.
181  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
182  * have their chain bit cleared (so that each Link TRB is a separate TD).
183  *
184  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
185  * set, but other sections talk about dealing with the chain bit set.  This was
186  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
187  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
188  *
189  * @more_trbs_coming:	Will you enqueue more TRBs before calling
190  *			prepare_transfer()?
191  */
192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
193 			bool more_trbs_coming)
194 {
195 	u32 chain;
196 	union xhci_trb *next;
197 
198 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
199 	/* If this is not event ring, there is one less usable TRB */
200 	if (ring->type != TYPE_EVENT &&
201 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
202 		ring->num_trbs_free--;
203 	next = ++(ring->enqueue);
204 
205 	ring->enq_updates++;
206 	/* Update the dequeue pointer further if that was a link TRB or we're at
207 	 * the end of an event ring segment (which doesn't have link TRBS)
208 	 */
209 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
210 		if (ring->type != TYPE_EVENT) {
211 			/*
212 			 * If the caller doesn't plan on enqueueing more
213 			 * TDs before ringing the doorbell, then we
214 			 * don't want to give the link TRB to the
215 			 * hardware just yet.  We'll give the link TRB
216 			 * back in prepare_ring() just before we enqueue
217 			 * the TD at the top of the ring.
218 			 */
219 			if (!chain && !more_trbs_coming)
220 				break;
221 
222 			/* If we're not dealing with 0.95 hardware or
223 			 * isoc rings on AMD 0.96 host,
224 			 * carry over the chain bit of the previous TRB
225 			 * (which may mean the chain bit is cleared).
226 			 */
227 			if (!(ring->type == TYPE_ISOC &&
228 					(xhci->quirks & XHCI_AMD_0x96_HOST))
229 						&& !xhci_link_trb_quirk(xhci)) {
230 				next->link.control &=
231 					cpu_to_le32(~TRB_CHAIN);
232 				next->link.control |=
233 					cpu_to_le32(chain);
234 			}
235 			/* Give this link TRB to the hardware */
236 			wmb();
237 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
238 
239 			/* Toggle the cycle bit after the last ring segment. */
240 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
241 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
242 			}
243 		}
244 		ring->enq_seg = ring->enq_seg->next;
245 		ring->enqueue = ring->enq_seg->trbs;
246 		next = ring->enqueue;
247 	}
248 }
249 
250 /*
251  * Check to see if there's room to enqueue num_trbs on the ring and make sure
252  * enqueue pointer will not advance into dequeue segment. See rules above.
253  */
254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
255 		unsigned int num_trbs)
256 {
257 	int num_trbs_in_deq_seg;
258 
259 	if (ring->num_trbs_free < num_trbs)
260 		return 0;
261 
262 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
263 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
264 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
265 			return 0;
266 	}
267 
268 	return 1;
269 }
270 
271 /* Ring the host controller doorbell after placing a command on the ring */
272 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
273 {
274 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
275 		return;
276 
277 	xhci_dbg(xhci, "// Ding dong!\n");
278 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
279 	/* Flush PCI posted writes */
280 	readl(&xhci->dba->doorbell[0]);
281 }
282 
283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
284 {
285 	u64 temp_64;
286 	int ret;
287 
288 	xhci_dbg(xhci, "Abort command ring\n");
289 
290 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
291 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
292 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
293 			&xhci->op_regs->cmd_ring);
294 
295 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
296 	 * time the completion od all xHCI commands, including
297 	 * the Command Abort operation. If software doesn't see
298 	 * CRR negated in a timely manner (e.g. longer than 5
299 	 * seconds), then it should assume that the there are
300 	 * larger problems with the xHC and assert HCRST.
301 	 */
302 	ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
303 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
304 	if (ret < 0) {
305 		xhci_err(xhci, "Stopped the command ring failed, "
306 				"maybe the host is dead\n");
307 		xhci->xhc_state |= XHCI_STATE_DYING;
308 		xhci_quiesce(xhci);
309 		xhci_halt(xhci);
310 		return -ESHUTDOWN;
311 	}
312 
313 	return 0;
314 }
315 
316 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
317 		unsigned int slot_id,
318 		unsigned int ep_index,
319 		unsigned int stream_id)
320 {
321 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
322 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
323 	unsigned int ep_state = ep->ep_state;
324 
325 	/* Don't ring the doorbell for this endpoint if there are pending
326 	 * cancellations because we don't want to interrupt processing.
327 	 * We don't want to restart any stream rings if there's a set dequeue
328 	 * pointer command pending because the device can choose to start any
329 	 * stream once the endpoint is on the HW schedule.
330 	 * FIXME - check all the stream rings for pending cancellations.
331 	 */
332 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
333 	    (ep_state & EP_HALTED))
334 		return;
335 	writel(DB_VALUE(ep_index, stream_id), db_addr);
336 	/* The CPU has better things to do at this point than wait for a
337 	 * write-posting flush.  It'll get there soon enough.
338 	 */
339 }
340 
341 /* Ring the doorbell for any rings with pending URBs */
342 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
343 		unsigned int slot_id,
344 		unsigned int ep_index)
345 {
346 	unsigned int stream_id;
347 	struct xhci_virt_ep *ep;
348 
349 	ep = &xhci->devs[slot_id]->eps[ep_index];
350 
351 	/* A ring has pending URBs if its TD list is not empty */
352 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
353 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
354 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
355 		return;
356 	}
357 
358 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
359 			stream_id++) {
360 		struct xhci_stream_info *stream_info = ep->stream_info;
361 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
362 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
363 						stream_id);
364 	}
365 }
366 
367 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
368 		unsigned int slot_id, unsigned int ep_index,
369 		unsigned int stream_id)
370 {
371 	struct xhci_virt_ep *ep;
372 
373 	ep = &xhci->devs[slot_id]->eps[ep_index];
374 	/* Common case: no streams */
375 	if (!(ep->ep_state & EP_HAS_STREAMS))
376 		return ep->ring;
377 
378 	if (stream_id == 0) {
379 		xhci_warn(xhci,
380 				"WARN: Slot ID %u, ep index %u has streams, "
381 				"but URB has no stream ID.\n",
382 				slot_id, ep_index);
383 		return NULL;
384 	}
385 
386 	if (stream_id < ep->stream_info->num_streams)
387 		return ep->stream_info->stream_rings[stream_id];
388 
389 	xhci_warn(xhci,
390 			"WARN: Slot ID %u, ep index %u has "
391 			"stream IDs 1 to %u allocated, "
392 			"but stream ID %u is requested.\n",
393 			slot_id, ep_index,
394 			ep->stream_info->num_streams - 1,
395 			stream_id);
396 	return NULL;
397 }
398 
399 /* Get the right ring for the given URB.
400  * If the endpoint supports streams, boundary check the URB's stream ID.
401  * If the endpoint doesn't support streams, return the singular endpoint ring.
402  */
403 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
404 		struct urb *urb)
405 {
406 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
407 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
408 }
409 
410 /*
411  * Move the xHC's endpoint ring dequeue pointer past cur_td.
412  * Record the new state of the xHC's endpoint ring dequeue segment,
413  * dequeue pointer, and new consumer cycle state in state.
414  * Update our internal representation of the ring's dequeue pointer.
415  *
416  * We do this in three jumps:
417  *  - First we update our new ring state to be the same as when the xHC stopped.
418  *  - Then we traverse the ring to find the segment that contains
419  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
420  *    any link TRBs with the toggle cycle bit set.
421  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
422  *    if we've moved it past a link TRB with the toggle cycle bit set.
423  *
424  * Some of the uses of xhci_generic_trb are grotty, but if they're done
425  * with correct __le32 accesses they should work fine.  Only users of this are
426  * in here.
427  */
428 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
429 		unsigned int slot_id, unsigned int ep_index,
430 		unsigned int stream_id, struct xhci_td *cur_td,
431 		struct xhci_dequeue_state *state)
432 {
433 	struct xhci_virt_device *dev = xhci->devs[slot_id];
434 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
435 	struct xhci_ring *ep_ring;
436 	struct xhci_segment *new_seg;
437 	union xhci_trb *new_deq;
438 	dma_addr_t addr;
439 	u64 hw_dequeue;
440 	bool cycle_found = false;
441 	bool td_last_trb_found = false;
442 
443 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
444 			ep_index, stream_id);
445 	if (!ep_ring) {
446 		xhci_warn(xhci, "WARN can't find new dequeue state "
447 				"for invalid stream ID %u.\n",
448 				stream_id);
449 		return;
450 	}
451 
452 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
453 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
454 			"Finding endpoint context");
455 	/* 4.6.9 the css flag is written to the stream context for streams */
456 	if (ep->ep_state & EP_HAS_STREAMS) {
457 		struct xhci_stream_ctx *ctx =
458 			&ep->stream_info->stream_ctx_array[stream_id];
459 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
460 	} else {
461 		struct xhci_ep_ctx *ep_ctx
462 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
463 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
464 	}
465 
466 	new_seg = ep_ring->deq_seg;
467 	new_deq = ep_ring->dequeue;
468 	state->new_cycle_state = hw_dequeue & 0x1;
469 
470 	/*
471 	 * We want to find the pointer, segment and cycle state of the new trb
472 	 * (the one after current TD's last_trb). We know the cycle state at
473 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
474 	 * found.
475 	 */
476 	do {
477 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
478 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
479 			cycle_found = true;
480 			if (td_last_trb_found)
481 				break;
482 		}
483 		if (new_deq == cur_td->last_trb)
484 			td_last_trb_found = true;
485 
486 		if (cycle_found &&
487 		    TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
488 		    new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
489 			state->new_cycle_state ^= 0x1;
490 
491 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
492 
493 		/* Search wrapped around, bail out */
494 		if (new_deq == ep->ring->dequeue) {
495 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
496 			state->new_deq_seg = NULL;
497 			state->new_deq_ptr = NULL;
498 			return;
499 		}
500 
501 	} while (!cycle_found || !td_last_trb_found);
502 
503 	state->new_deq_seg = new_seg;
504 	state->new_deq_ptr = new_deq;
505 
506 	/* Don't update the ring cycle state for the producer (us). */
507 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
508 			"Cycle state = 0x%x", state->new_cycle_state);
509 
510 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
511 			"New dequeue segment = %p (virtual)",
512 			state->new_deq_seg);
513 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
514 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
515 			"New dequeue pointer = 0x%llx (DMA)",
516 			(unsigned long long) addr);
517 }
518 
519 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
520  * (The last TRB actually points to the ring enqueue pointer, which is not part
521  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
522  */
523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
524 		struct xhci_td *cur_td, bool flip_cycle)
525 {
526 	struct xhci_segment *cur_seg;
527 	union xhci_trb *cur_trb;
528 
529 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
530 			true;
531 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
532 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
533 			/* Unchain any chained Link TRBs, but
534 			 * leave the pointers intact.
535 			 */
536 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
537 			/* Flip the cycle bit (link TRBs can't be the first
538 			 * or last TRB).
539 			 */
540 			if (flip_cycle)
541 				cur_trb->generic.field[3] ^=
542 					cpu_to_le32(TRB_CYCLE);
543 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
544 					"Cancel (unchain) link TRB");
545 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
546 					"Address = %p (0x%llx dma); "
547 					"in seg %p (0x%llx dma)",
548 					cur_trb,
549 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
550 					cur_seg,
551 					(unsigned long long)cur_seg->dma);
552 		} else {
553 			cur_trb->generic.field[0] = 0;
554 			cur_trb->generic.field[1] = 0;
555 			cur_trb->generic.field[2] = 0;
556 			/* Preserve only the cycle bit of this TRB */
557 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
558 			/* Flip the cycle bit except on the first or last TRB */
559 			if (flip_cycle && cur_trb != cur_td->first_trb &&
560 					cur_trb != cur_td->last_trb)
561 				cur_trb->generic.field[3] ^=
562 					cpu_to_le32(TRB_CYCLE);
563 			cur_trb->generic.field[3] |= cpu_to_le32(
564 				TRB_TYPE(TRB_TR_NOOP));
565 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
566 					"TRB to noop at offset 0x%llx",
567 					(unsigned long long)
568 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
569 		}
570 		if (cur_trb == cur_td->last_trb)
571 			break;
572 	}
573 }
574 
575 static int queue_set_tr_deq(struct xhci_hcd *xhci,
576 		struct xhci_command *cmd, int slot_id,
577 		unsigned int ep_index, unsigned int stream_id,
578 		struct xhci_segment *deq_seg,
579 		union xhci_trb *deq_ptr, u32 cycle_state);
580 
581 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
582 		struct xhci_command *cmd,
583 		unsigned int slot_id, unsigned int ep_index,
584 		unsigned int stream_id,
585 		struct xhci_dequeue_state *deq_state)
586 {
587 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
588 
589 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
590 			"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
591 			"new deq ptr = %p (0x%llx dma), new cycle = %u",
592 			deq_state->new_deq_seg,
593 			(unsigned long long)deq_state->new_deq_seg->dma,
594 			deq_state->new_deq_ptr,
595 			(unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
596 			deq_state->new_cycle_state);
597 	queue_set_tr_deq(xhci, cmd, slot_id, ep_index, stream_id,
598 			deq_state->new_deq_seg,
599 			deq_state->new_deq_ptr,
600 			(u32) deq_state->new_cycle_state);
601 	/* Stop the TD queueing code from ringing the doorbell until
602 	 * this command completes.  The HC won't set the dequeue pointer
603 	 * if the ring is running, and ringing the doorbell starts the
604 	 * ring running.
605 	 */
606 	ep->ep_state |= SET_DEQ_PENDING;
607 }
608 
609 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
610 		struct xhci_virt_ep *ep)
611 {
612 	ep->ep_state &= ~EP_HALT_PENDING;
613 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
614 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
615 	 * (since we didn't successfully stop the watchdog timer).
616 	 */
617 	if (del_timer(&ep->stop_cmd_timer))
618 		ep->stop_cmds_pending--;
619 }
620 
621 /* Must be called with xhci->lock held in interrupt context */
622 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
623 		struct xhci_td *cur_td, int status)
624 {
625 	struct usb_hcd *hcd;
626 	struct urb	*urb;
627 	struct urb_priv	*urb_priv;
628 
629 	urb = cur_td->urb;
630 	urb_priv = urb->hcpriv;
631 	urb_priv->td_cnt++;
632 	hcd = bus_to_hcd(urb->dev->bus);
633 
634 	/* Only giveback urb when this is the last td in urb */
635 	if (urb_priv->td_cnt == urb_priv->length) {
636 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
637 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
638 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
639 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
640 					usb_amd_quirk_pll_enable();
641 			}
642 		}
643 		usb_hcd_unlink_urb_from_ep(hcd, urb);
644 
645 		spin_unlock(&xhci->lock);
646 		usb_hcd_giveback_urb(hcd, urb, status);
647 		xhci_urb_free_priv(xhci, urb_priv);
648 		spin_lock(&xhci->lock);
649 	}
650 }
651 
652 /*
653  * When we get a command completion for a Stop Endpoint Command, we need to
654  * unlink any cancelled TDs from the ring.  There are two ways to do that:
655  *
656  *  1. If the HW was in the middle of processing the TD that needs to be
657  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
658  *     in the TD with a Set Dequeue Pointer Command.
659  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
660  *     bit cleared) so that the HW will skip over them.
661  */
662 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
663 		union xhci_trb *trb, struct xhci_event_cmd *event)
664 {
665 	unsigned int ep_index;
666 	struct xhci_ring *ep_ring;
667 	struct xhci_virt_ep *ep;
668 	struct list_head *entry;
669 	struct xhci_td *cur_td = NULL;
670 	struct xhci_td *last_unlinked_td;
671 
672 	struct xhci_dequeue_state deq_state;
673 
674 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
675 		if (!xhci->devs[slot_id])
676 			xhci_warn(xhci, "Stop endpoint command "
677 				"completion for disabled slot %u\n",
678 				slot_id);
679 		return;
680 	}
681 
682 	memset(&deq_state, 0, sizeof(deq_state));
683 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
684 	ep = &xhci->devs[slot_id]->eps[ep_index];
685 
686 	if (list_empty(&ep->cancelled_td_list)) {
687 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
688 		ep->stopped_td = NULL;
689 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
690 		return;
691 	}
692 
693 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
694 	 * We have the xHCI lock, so nothing can modify this list until we drop
695 	 * it.  We're also in the event handler, so we can't get re-interrupted
696 	 * if another Stop Endpoint command completes
697 	 */
698 	list_for_each(entry, &ep->cancelled_td_list) {
699 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
700 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
701 				"Removing canceled TD starting at 0x%llx (dma).",
702 				(unsigned long long)xhci_trb_virt_to_dma(
703 					cur_td->start_seg, cur_td->first_trb));
704 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
705 		if (!ep_ring) {
706 			/* This shouldn't happen unless a driver is mucking
707 			 * with the stream ID after submission.  This will
708 			 * leave the TD on the hardware ring, and the hardware
709 			 * will try to execute it, and may access a buffer
710 			 * that has already been freed.  In the best case, the
711 			 * hardware will execute it, and the event handler will
712 			 * ignore the completion event for that TD, since it was
713 			 * removed from the td_list for that endpoint.  In
714 			 * short, don't muck with the stream ID after
715 			 * submission.
716 			 */
717 			xhci_warn(xhci, "WARN Cancelled URB %p "
718 					"has invalid stream ID %u.\n",
719 					cur_td->urb,
720 					cur_td->urb->stream_id);
721 			goto remove_finished_td;
722 		}
723 		/*
724 		 * If we stopped on the TD we need to cancel, then we have to
725 		 * move the xHC endpoint ring dequeue pointer past this TD.
726 		 */
727 		if (cur_td == ep->stopped_td)
728 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
729 					cur_td->urb->stream_id,
730 					cur_td, &deq_state);
731 		else
732 			td_to_noop(xhci, ep_ring, cur_td, false);
733 remove_finished_td:
734 		/*
735 		 * The event handler won't see a completion for this TD anymore,
736 		 * so remove it from the endpoint ring's TD list.  Keep it in
737 		 * the cancelled TD list for URB completion later.
738 		 */
739 		list_del_init(&cur_td->td_list);
740 	}
741 	last_unlinked_td = cur_td;
742 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
743 
744 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
745 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
746 		struct xhci_command *command;
747 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
748 		xhci_queue_new_dequeue_state(xhci, command,
749 				slot_id, ep_index,
750 				ep->stopped_td->urb->stream_id,
751 				&deq_state);
752 		xhci_ring_cmd_db(xhci);
753 	} else {
754 		/* Otherwise ring the doorbell(s) to restart queued transfers */
755 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
756 	}
757 
758 	/* Clear stopped_td if endpoint is not halted */
759 	if (!(ep->ep_state & EP_HALTED))
760 		ep->stopped_td = NULL;
761 
762 	/*
763 	 * Drop the lock and complete the URBs in the cancelled TD list.
764 	 * New TDs to be cancelled might be added to the end of the list before
765 	 * we can complete all the URBs for the TDs we already unlinked.
766 	 * So stop when we've completed the URB for the last TD we unlinked.
767 	 */
768 	do {
769 		cur_td = list_entry(ep->cancelled_td_list.next,
770 				struct xhci_td, cancelled_td_list);
771 		list_del_init(&cur_td->cancelled_td_list);
772 
773 		/* Clean up the cancelled URB */
774 		/* Doesn't matter what we pass for status, since the core will
775 		 * just overwrite it (because the URB has been unlinked).
776 		 */
777 		xhci_giveback_urb_in_irq(xhci, cur_td, 0);
778 
779 		/* Stop processing the cancelled list if the watchdog timer is
780 		 * running.
781 		 */
782 		if (xhci->xhc_state & XHCI_STATE_DYING)
783 			return;
784 	} while (cur_td != last_unlinked_td);
785 
786 	/* Return to the event handler with xhci->lock re-acquired */
787 }
788 
789 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
790 {
791 	struct xhci_td *cur_td;
792 
793 	while (!list_empty(&ring->td_list)) {
794 		cur_td = list_first_entry(&ring->td_list,
795 				struct xhci_td, td_list);
796 		list_del_init(&cur_td->td_list);
797 		if (!list_empty(&cur_td->cancelled_td_list))
798 			list_del_init(&cur_td->cancelled_td_list);
799 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
800 	}
801 }
802 
803 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
804 		int slot_id, int ep_index)
805 {
806 	struct xhci_td *cur_td;
807 	struct xhci_virt_ep *ep;
808 	struct xhci_ring *ring;
809 
810 	ep = &xhci->devs[slot_id]->eps[ep_index];
811 	if ((ep->ep_state & EP_HAS_STREAMS) ||
812 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
813 		int stream_id;
814 
815 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
816 				stream_id++) {
817 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
818 					"Killing URBs for slot ID %u, ep index %u, stream %u",
819 					slot_id, ep_index, stream_id + 1);
820 			xhci_kill_ring_urbs(xhci,
821 					ep->stream_info->stream_rings[stream_id]);
822 		}
823 	} else {
824 		ring = ep->ring;
825 		if (!ring)
826 			return;
827 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
828 				"Killing URBs for slot ID %u, ep index %u",
829 				slot_id, ep_index);
830 		xhci_kill_ring_urbs(xhci, ring);
831 	}
832 	while (!list_empty(&ep->cancelled_td_list)) {
833 		cur_td = list_first_entry(&ep->cancelled_td_list,
834 				struct xhci_td, cancelled_td_list);
835 		list_del_init(&cur_td->cancelled_td_list);
836 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
837 	}
838 }
839 
840 /* Watchdog timer function for when a stop endpoint command fails to complete.
841  * In this case, we assume the host controller is broken or dying or dead.  The
842  * host may still be completing some other events, so we have to be careful to
843  * let the event ring handler and the URB dequeueing/enqueueing functions know
844  * through xhci->state.
845  *
846  * The timer may also fire if the host takes a very long time to respond to the
847  * command, and the stop endpoint command completion handler cannot delete the
848  * timer before the timer function is called.  Another endpoint cancellation may
849  * sneak in before the timer function can grab the lock, and that may queue
850  * another stop endpoint command and add the timer back.  So we cannot use a
851  * simple flag to say whether there is a pending stop endpoint command for a
852  * particular endpoint.
853  *
854  * Instead we use a combination of that flag and a counter for the number of
855  * pending stop endpoint commands.  If the timer is the tail end of the last
856  * stop endpoint command, and the endpoint's command is still pending, we assume
857  * the host is dying.
858  */
859 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
860 {
861 	struct xhci_hcd *xhci;
862 	struct xhci_virt_ep *ep;
863 	int ret, i, j;
864 	unsigned long flags;
865 
866 	ep = (struct xhci_virt_ep *) arg;
867 	xhci = ep->xhci;
868 
869 	spin_lock_irqsave(&xhci->lock, flags);
870 
871 	ep->stop_cmds_pending--;
872 	if (xhci->xhc_state & XHCI_STATE_DYING) {
873 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
874 				"Stop EP timer ran, but another timer marked "
875 				"xHCI as DYING, exiting.");
876 		spin_unlock_irqrestore(&xhci->lock, flags);
877 		return;
878 	}
879 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
880 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
881 				"Stop EP timer ran, but no command pending, "
882 				"exiting.");
883 		spin_unlock_irqrestore(&xhci->lock, flags);
884 		return;
885 	}
886 
887 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
888 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
889 	/* Oops, HC is dead or dying or at least not responding to the stop
890 	 * endpoint command.
891 	 */
892 	xhci->xhc_state |= XHCI_STATE_DYING;
893 	/* Disable interrupts from the host controller and start halting it */
894 	xhci_quiesce(xhci);
895 	spin_unlock_irqrestore(&xhci->lock, flags);
896 
897 	ret = xhci_halt(xhci);
898 
899 	spin_lock_irqsave(&xhci->lock, flags);
900 	if (ret < 0) {
901 		/* This is bad; the host is not responding to commands and it's
902 		 * not allowing itself to be halted.  At least interrupts are
903 		 * disabled. If we call usb_hc_died(), it will attempt to
904 		 * disconnect all device drivers under this host.  Those
905 		 * disconnect() methods will wait for all URBs to be unlinked,
906 		 * so we must complete them.
907 		 */
908 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
909 		xhci_warn(xhci, "Completing active URBs anyway.\n");
910 		/* We could turn all TDs on the rings to no-ops.  This won't
911 		 * help if the host has cached part of the ring, and is slow if
912 		 * we want to preserve the cycle bit.  Skip it and hope the host
913 		 * doesn't touch the memory.
914 		 */
915 	}
916 	for (i = 0; i < MAX_HC_SLOTS; i++) {
917 		if (!xhci->devs[i])
918 			continue;
919 		for (j = 0; j < 31; j++)
920 			xhci_kill_endpoint_urbs(xhci, i, j);
921 	}
922 	spin_unlock_irqrestore(&xhci->lock, flags);
923 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
924 			"Calling usb_hc_died()");
925 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
926 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
927 			"xHCI host controller is dead.");
928 }
929 
930 
931 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
932 		struct xhci_virt_device *dev,
933 		struct xhci_ring *ep_ring,
934 		unsigned int ep_index)
935 {
936 	union xhci_trb *dequeue_temp;
937 	int num_trbs_free_temp;
938 	bool revert = false;
939 
940 	num_trbs_free_temp = ep_ring->num_trbs_free;
941 	dequeue_temp = ep_ring->dequeue;
942 
943 	/* If we get two back-to-back stalls, and the first stalled transfer
944 	 * ends just before a link TRB, the dequeue pointer will be left on
945 	 * the link TRB by the code in the while loop.  So we have to update
946 	 * the dequeue pointer one segment further, or we'll jump off
947 	 * the segment into la-la-land.
948 	 */
949 	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
950 		ep_ring->deq_seg = ep_ring->deq_seg->next;
951 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
952 	}
953 
954 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
955 		/* We have more usable TRBs */
956 		ep_ring->num_trbs_free++;
957 		ep_ring->dequeue++;
958 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
959 				ep_ring->dequeue)) {
960 			if (ep_ring->dequeue ==
961 					dev->eps[ep_index].queued_deq_ptr)
962 				break;
963 			ep_ring->deq_seg = ep_ring->deq_seg->next;
964 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
965 		}
966 		if (ep_ring->dequeue == dequeue_temp) {
967 			revert = true;
968 			break;
969 		}
970 	}
971 
972 	if (revert) {
973 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
974 		ep_ring->num_trbs_free = num_trbs_free_temp;
975 	}
976 }
977 
978 /*
979  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
980  * we need to clear the set deq pending flag in the endpoint ring state, so that
981  * the TD queueing code can ring the doorbell again.  We also need to ring the
982  * endpoint doorbell to restart the ring, but only if there aren't more
983  * cancellations pending.
984  */
985 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
986 		union xhci_trb *trb, u32 cmd_comp_code)
987 {
988 	unsigned int ep_index;
989 	unsigned int stream_id;
990 	struct xhci_ring *ep_ring;
991 	struct xhci_virt_device *dev;
992 	struct xhci_virt_ep *ep;
993 	struct xhci_ep_ctx *ep_ctx;
994 	struct xhci_slot_ctx *slot_ctx;
995 
996 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
997 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
998 	dev = xhci->devs[slot_id];
999 	ep = &dev->eps[ep_index];
1000 
1001 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1002 	if (!ep_ring) {
1003 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1004 				stream_id);
1005 		/* XXX: Harmless??? */
1006 		dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1007 		return;
1008 	}
1009 
1010 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1011 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1012 
1013 	if (cmd_comp_code != COMP_SUCCESS) {
1014 		unsigned int ep_state;
1015 		unsigned int slot_state;
1016 
1017 		switch (cmd_comp_code) {
1018 		case COMP_TRB_ERR:
1019 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1020 			break;
1021 		case COMP_CTX_STATE:
1022 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1023 			ep_state = le32_to_cpu(ep_ctx->ep_info);
1024 			ep_state &= EP_STATE_MASK;
1025 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1026 			slot_state = GET_SLOT_STATE(slot_state);
1027 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1028 					"Slot state = %u, EP state = %u",
1029 					slot_state, ep_state);
1030 			break;
1031 		case COMP_EBADSLT:
1032 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1033 					slot_id);
1034 			break;
1035 		default:
1036 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1037 					cmd_comp_code);
1038 			break;
1039 		}
1040 		/* OK what do we do now?  The endpoint state is hosed, and we
1041 		 * should never get to this point if the synchronization between
1042 		 * queueing, and endpoint state are correct.  This might happen
1043 		 * if the device gets disconnected after we've finished
1044 		 * cancelling URBs, which might not be an error...
1045 		 */
1046 	} else {
1047 		u64 deq;
1048 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1049 		if (ep->ep_state & EP_HAS_STREAMS) {
1050 			struct xhci_stream_ctx *ctx =
1051 				&ep->stream_info->stream_ctx_array[stream_id];
1052 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1053 		} else {
1054 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1055 		}
1056 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1057 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1058 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1059 					 ep->queued_deq_ptr) == deq) {
1060 			/* Update the ring's dequeue segment and dequeue pointer
1061 			 * to reflect the new position.
1062 			 */
1063 			update_ring_for_set_deq_completion(xhci, dev,
1064 				ep_ring, ep_index);
1065 		} else {
1066 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1067 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1068 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1069 		}
1070 	}
1071 
1072 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1073 	dev->eps[ep_index].queued_deq_seg = NULL;
1074 	dev->eps[ep_index].queued_deq_ptr = NULL;
1075 	/* Restart any rings with pending URBs */
1076 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1077 }
1078 
1079 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1080 		union xhci_trb *trb, u32 cmd_comp_code)
1081 {
1082 	unsigned int ep_index;
1083 
1084 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1085 	/* This command will only fail if the endpoint wasn't halted,
1086 	 * but we don't care.
1087 	 */
1088 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1089 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1090 
1091 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1092 	 * command complete before the endpoint can be used.  Queue that here
1093 	 * because the HW can't handle two commands being queued in a row.
1094 	 */
1095 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1096 		struct xhci_command *command;
1097 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1098 		if (!command) {
1099 			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1100 			return;
1101 		}
1102 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1103 				"Queueing configure endpoint command");
1104 		xhci_queue_configure_endpoint(xhci, command,
1105 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1106 				false);
1107 		xhci_ring_cmd_db(xhci);
1108 	} else {
1109 		/* Clear our internal halted state and restart the ring(s) */
1110 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1111 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1112 	}
1113 }
1114 
1115 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1116 		u32 cmd_comp_code)
1117 {
1118 	if (cmd_comp_code == COMP_SUCCESS)
1119 		xhci->slot_id = slot_id;
1120 	else
1121 		xhci->slot_id = 0;
1122 }
1123 
1124 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1125 {
1126 	struct xhci_virt_device *virt_dev;
1127 
1128 	virt_dev = xhci->devs[slot_id];
1129 	if (!virt_dev)
1130 		return;
1131 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1132 		/* Delete default control endpoint resources */
1133 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1134 	xhci_free_virt_device(xhci, slot_id);
1135 }
1136 
1137 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1138 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1139 {
1140 	struct xhci_virt_device *virt_dev;
1141 	struct xhci_input_control_ctx *ctrl_ctx;
1142 	unsigned int ep_index;
1143 	unsigned int ep_state;
1144 	u32 add_flags, drop_flags;
1145 
1146 	/*
1147 	 * Configure endpoint commands can come from the USB core
1148 	 * configuration or alt setting changes, or because the HW
1149 	 * needed an extra configure endpoint command after a reset
1150 	 * endpoint command or streams were being configured.
1151 	 * If the command was for a halted endpoint, the xHCI driver
1152 	 * is not waiting on the configure endpoint command.
1153 	 */
1154 	virt_dev = xhci->devs[slot_id];
1155 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1156 	if (!ctrl_ctx) {
1157 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1158 		return;
1159 	}
1160 
1161 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1162 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1163 	/* Input ctx add_flags are the endpoint index plus one */
1164 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1165 
1166 	/* A usb_set_interface() call directly after clearing a halted
1167 	 * condition may race on this quirky hardware.  Not worth
1168 	 * worrying about, since this is prototype hardware.  Not sure
1169 	 * if this will work for streams, but streams support was
1170 	 * untested on this prototype.
1171 	 */
1172 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1173 			ep_index != (unsigned int) -1 &&
1174 			add_flags - SLOT_FLAG == drop_flags) {
1175 		ep_state = virt_dev->eps[ep_index].ep_state;
1176 		if (!(ep_state & EP_HALTED))
1177 			return;
1178 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1179 				"Completed config ep cmd - "
1180 				"last ep index = %d, state = %d",
1181 				ep_index, ep_state);
1182 		/* Clear internal halted state and restart ring(s) */
1183 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1184 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1185 		return;
1186 	}
1187 	return;
1188 }
1189 
1190 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1191 		struct xhci_event_cmd *event)
1192 {
1193 	xhci_dbg(xhci, "Completed reset device command.\n");
1194 	if (!xhci->devs[slot_id])
1195 		xhci_warn(xhci, "Reset device command completion "
1196 				"for disabled slot %u\n", slot_id);
1197 }
1198 
1199 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1200 		struct xhci_event_cmd *event)
1201 {
1202 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1203 		xhci->error_bitmask |= 1 << 6;
1204 		return;
1205 	}
1206 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1207 			"NEC firmware version %2x.%02x",
1208 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1209 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1210 }
1211 
1212 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1213 {
1214 	list_del(&cmd->cmd_list);
1215 
1216 	if (cmd->completion) {
1217 		cmd->status = status;
1218 		complete(cmd->completion);
1219 	} else {
1220 		kfree(cmd);
1221 	}
1222 }
1223 
1224 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1225 {
1226 	struct xhci_command *cur_cmd, *tmp_cmd;
1227 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1228 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1229 }
1230 
1231 /*
1232  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1233  * If there are other commands waiting then restart the ring and kick the timer.
1234  * This must be called with command ring stopped and xhci->lock held.
1235  */
1236 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1237 					 struct xhci_command *cur_cmd)
1238 {
1239 	struct xhci_command *i_cmd, *tmp_cmd;
1240 	u32 cycle_state;
1241 
1242 	/* Turn all aborted commands in list to no-ops, then restart */
1243 	list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1244 				 cmd_list) {
1245 
1246 		if (i_cmd->status != COMP_CMD_ABORT)
1247 			continue;
1248 
1249 		i_cmd->status = COMP_CMD_STOP;
1250 
1251 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1252 			 i_cmd->command_trb);
1253 		/* get cycle state from the original cmd trb */
1254 		cycle_state = le32_to_cpu(
1255 			i_cmd->command_trb->generic.field[3]) &	TRB_CYCLE;
1256 		/* modify the command trb to no-op command */
1257 		i_cmd->command_trb->generic.field[0] = 0;
1258 		i_cmd->command_trb->generic.field[1] = 0;
1259 		i_cmd->command_trb->generic.field[2] = 0;
1260 		i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1261 			TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1262 
1263 		/*
1264 		 * caller waiting for completion is called when command
1265 		 *  completion event is received for these no-op commands
1266 		 */
1267 	}
1268 
1269 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1270 
1271 	/* ring command ring doorbell to restart the command ring */
1272 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1273 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
1274 		xhci->current_cmd = cur_cmd;
1275 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1276 		xhci_ring_cmd_db(xhci);
1277 	}
1278 	return;
1279 }
1280 
1281 
1282 void xhci_handle_command_timeout(unsigned long data)
1283 {
1284 	struct xhci_hcd *xhci;
1285 	int ret;
1286 	unsigned long flags;
1287 	u64 hw_ring_state;
1288 	struct xhci_command *cur_cmd = NULL;
1289 	xhci = (struct xhci_hcd *) data;
1290 
1291 	/* mark this command to be cancelled */
1292 	spin_lock_irqsave(&xhci->lock, flags);
1293 	if (xhci->current_cmd) {
1294 		cur_cmd = xhci->current_cmd;
1295 		cur_cmd->status = COMP_CMD_ABORT;
1296 	}
1297 
1298 
1299 	/* Make sure command ring is running before aborting it */
1300 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1301 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1302 	    (hw_ring_state & CMD_RING_RUNNING))  {
1303 
1304 		spin_unlock_irqrestore(&xhci->lock, flags);
1305 		xhci_dbg(xhci, "Command timeout\n");
1306 		ret = xhci_abort_cmd_ring(xhci);
1307 		if (unlikely(ret == -ESHUTDOWN)) {
1308 			xhci_err(xhci, "Abort command ring failed\n");
1309 			xhci_cleanup_command_queue(xhci);
1310 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1311 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
1312 		}
1313 		return;
1314 	}
1315 	/* command timeout on stopped ring, ring can't be aborted */
1316 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1317 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1318 	spin_unlock_irqrestore(&xhci->lock, flags);
1319 	return;
1320 }
1321 
1322 static void handle_cmd_completion(struct xhci_hcd *xhci,
1323 		struct xhci_event_cmd *event)
1324 {
1325 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1326 	u64 cmd_dma;
1327 	dma_addr_t cmd_dequeue_dma;
1328 	u32 cmd_comp_code;
1329 	union xhci_trb *cmd_trb;
1330 	struct xhci_command *cmd;
1331 	u32 cmd_type;
1332 
1333 	cmd_dma = le64_to_cpu(event->cmd_trb);
1334 	cmd_trb = xhci->cmd_ring->dequeue;
1335 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1336 			cmd_trb);
1337 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1338 	if (cmd_dequeue_dma == 0) {
1339 		xhci->error_bitmask |= 1 << 4;
1340 		return;
1341 	}
1342 	/* Does the DMA address match our internal dequeue pointer address? */
1343 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1344 		xhci->error_bitmask |= 1 << 5;
1345 		return;
1346 	}
1347 
1348 	cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1349 
1350 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1351 		xhci_err(xhci,
1352 			 "Command completion event does not match command\n");
1353 		return;
1354 	}
1355 
1356 	del_timer(&xhci->cmd_timer);
1357 
1358 	trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1359 
1360 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1361 
1362 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1363 	if (cmd_comp_code == COMP_CMD_STOP) {
1364 		xhci_handle_stopped_cmd_ring(xhci, cmd);
1365 		return;
1366 	}
1367 	/*
1368 	 * Host aborted the command ring, check if the current command was
1369 	 * supposed to be aborted, otherwise continue normally.
1370 	 * The command ring is stopped now, but the xHC will issue a Command
1371 	 * Ring Stopped event which will cause us to restart it.
1372 	 */
1373 	if (cmd_comp_code == COMP_CMD_ABORT) {
1374 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1375 		if (cmd->status == COMP_CMD_ABORT)
1376 			goto event_handled;
1377 	}
1378 
1379 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1380 	switch (cmd_type) {
1381 	case TRB_ENABLE_SLOT:
1382 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1383 		break;
1384 	case TRB_DISABLE_SLOT:
1385 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1386 		break;
1387 	case TRB_CONFIG_EP:
1388 		if (!cmd->completion)
1389 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1390 						  cmd_comp_code);
1391 		break;
1392 	case TRB_EVAL_CONTEXT:
1393 		break;
1394 	case TRB_ADDR_DEV:
1395 		break;
1396 	case TRB_STOP_RING:
1397 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1398 				le32_to_cpu(cmd_trb->generic.field[3])));
1399 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1400 		break;
1401 	case TRB_SET_DEQ:
1402 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1403 				le32_to_cpu(cmd_trb->generic.field[3])));
1404 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1405 		break;
1406 	case TRB_CMD_NOOP:
1407 		/* Is this an aborted command turned to NO-OP? */
1408 		if (cmd->status == COMP_CMD_STOP)
1409 			cmd_comp_code = COMP_CMD_STOP;
1410 		break;
1411 	case TRB_RESET_EP:
1412 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1413 				le32_to_cpu(cmd_trb->generic.field[3])));
1414 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1415 		break;
1416 	case TRB_RESET_DEV:
1417 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1418 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1419 		 */
1420 		slot_id = TRB_TO_SLOT_ID(
1421 				le32_to_cpu(cmd_trb->generic.field[3]));
1422 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1423 		break;
1424 	case TRB_NEC_GET_FW:
1425 		xhci_handle_cmd_nec_get_fw(xhci, event);
1426 		break;
1427 	default:
1428 		/* Skip over unknown commands on the event ring */
1429 		xhci->error_bitmask |= 1 << 6;
1430 		break;
1431 	}
1432 
1433 	/* restart timer if this wasn't the last command */
1434 	if (cmd->cmd_list.next != &xhci->cmd_list) {
1435 		xhci->current_cmd = list_entry(cmd->cmd_list.next,
1436 					       struct xhci_command, cmd_list);
1437 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1438 	}
1439 
1440 event_handled:
1441 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1442 
1443 	inc_deq(xhci, xhci->cmd_ring);
1444 }
1445 
1446 static void handle_vendor_event(struct xhci_hcd *xhci,
1447 		union xhci_trb *event)
1448 {
1449 	u32 trb_type;
1450 
1451 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1452 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1453 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1454 		handle_cmd_completion(xhci, &event->event_cmd);
1455 }
1456 
1457 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1458  * port registers -- USB 3.0 and USB 2.0).
1459  *
1460  * Returns a zero-based port number, which is suitable for indexing into each of
1461  * the split roothubs' port arrays and bus state arrays.
1462  * Add one to it in order to call xhci_find_slot_id_by_port.
1463  */
1464 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1465 		struct xhci_hcd *xhci, u32 port_id)
1466 {
1467 	unsigned int i;
1468 	unsigned int num_similar_speed_ports = 0;
1469 
1470 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1471 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1472 	 * speed ports, up to 1 port before this port.
1473 	 */
1474 	for (i = 0; i < (port_id - 1); i++) {
1475 		u8 port_speed = xhci->port_array[i];
1476 
1477 		/*
1478 		 * Skip ports that don't have known speeds, or have duplicate
1479 		 * Extended Capabilities port speed entries.
1480 		 */
1481 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1482 			continue;
1483 
1484 		/*
1485 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1486 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1487 		 * matches the device speed, it's a similar speed port.
1488 		 */
1489 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1490 			num_similar_speed_ports++;
1491 	}
1492 	return num_similar_speed_ports;
1493 }
1494 
1495 static void handle_device_notification(struct xhci_hcd *xhci,
1496 		union xhci_trb *event)
1497 {
1498 	u32 slot_id;
1499 	struct usb_device *udev;
1500 
1501 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1502 	if (!xhci->devs[slot_id]) {
1503 		xhci_warn(xhci, "Device Notification event for "
1504 				"unused slot %u\n", slot_id);
1505 		return;
1506 	}
1507 
1508 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1509 			slot_id);
1510 	udev = xhci->devs[slot_id]->udev;
1511 	if (udev && udev->parent)
1512 		usb_wakeup_notification(udev->parent, udev->portnum);
1513 }
1514 
1515 static void handle_port_status(struct xhci_hcd *xhci,
1516 		union xhci_trb *event)
1517 {
1518 	struct usb_hcd *hcd;
1519 	u32 port_id;
1520 	u32 temp, temp1;
1521 	int max_ports;
1522 	int slot_id;
1523 	unsigned int faked_port_index;
1524 	u8 major_revision;
1525 	struct xhci_bus_state *bus_state;
1526 	__le32 __iomem **port_array;
1527 	bool bogus_port_status = false;
1528 
1529 	/* Port status change events always have a successful completion code */
1530 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1531 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1532 		xhci->error_bitmask |= 1 << 8;
1533 	}
1534 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1535 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1536 
1537 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1538 	if ((port_id <= 0) || (port_id > max_ports)) {
1539 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1540 		inc_deq(xhci, xhci->event_ring);
1541 		return;
1542 	}
1543 
1544 	/* Figure out which usb_hcd this port is attached to:
1545 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1546 	 */
1547 	major_revision = xhci->port_array[port_id - 1];
1548 
1549 	/* Find the right roothub. */
1550 	hcd = xhci_to_hcd(xhci);
1551 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1552 		hcd = xhci->shared_hcd;
1553 
1554 	if (major_revision == 0) {
1555 		xhci_warn(xhci, "Event for port %u not in "
1556 				"Extended Capabilities, ignoring.\n",
1557 				port_id);
1558 		bogus_port_status = true;
1559 		goto cleanup;
1560 	}
1561 	if (major_revision == DUPLICATE_ENTRY) {
1562 		xhci_warn(xhci, "Event for port %u duplicated in"
1563 				"Extended Capabilities, ignoring.\n",
1564 				port_id);
1565 		bogus_port_status = true;
1566 		goto cleanup;
1567 	}
1568 
1569 	/*
1570 	 * Hardware port IDs reported by a Port Status Change Event include USB
1571 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1572 	 * resume event, but we first need to translate the hardware port ID
1573 	 * into the index into the ports on the correct split roothub, and the
1574 	 * correct bus_state structure.
1575 	 */
1576 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1577 	if (hcd->speed == HCD_USB3)
1578 		port_array = xhci->usb3_ports;
1579 	else
1580 		port_array = xhci->usb2_ports;
1581 	/* Find the faked port hub number */
1582 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1583 			port_id);
1584 
1585 	temp = readl(port_array[faked_port_index]);
1586 	if (hcd->state == HC_STATE_SUSPENDED) {
1587 		xhci_dbg(xhci, "resume root hub\n");
1588 		usb_hcd_resume_root_hub(hcd);
1589 	}
1590 
1591 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1592 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1593 
1594 		temp1 = readl(&xhci->op_regs->command);
1595 		if (!(temp1 & CMD_RUN)) {
1596 			xhci_warn(xhci, "xHC is not running.\n");
1597 			goto cleanup;
1598 		}
1599 
1600 		if (DEV_SUPERSPEED(temp)) {
1601 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1602 			/* Set a flag to say the port signaled remote wakeup,
1603 			 * so we can tell the difference between the end of
1604 			 * device and host initiated resume.
1605 			 */
1606 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1607 			xhci_test_and_clear_bit(xhci, port_array,
1608 					faked_port_index, PORT_PLC);
1609 			xhci_set_link_state(xhci, port_array, faked_port_index,
1610 						XDEV_U0);
1611 			/* Need to wait until the next link state change
1612 			 * indicates the device is actually in U0.
1613 			 */
1614 			bogus_port_status = true;
1615 			goto cleanup;
1616 		} else {
1617 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1618 			bus_state->resume_done[faked_port_index] = jiffies +
1619 				msecs_to_jiffies(20);
1620 			set_bit(faked_port_index, &bus_state->resuming_ports);
1621 			mod_timer(&hcd->rh_timer,
1622 				  bus_state->resume_done[faked_port_index]);
1623 			/* Do the rest in GetPortStatus */
1624 		}
1625 	}
1626 
1627 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1628 			DEV_SUPERSPEED(temp)) {
1629 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1630 		/* We've just brought the device into U0 through either the
1631 		 * Resume state after a device remote wakeup, or through the
1632 		 * U3Exit state after a host-initiated resume.  If it's a device
1633 		 * initiated remote wake, don't pass up the link state change,
1634 		 * so the roothub behavior is consistent with external
1635 		 * USB 3.0 hub behavior.
1636 		 */
1637 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1638 				faked_port_index + 1);
1639 		if (slot_id && xhci->devs[slot_id])
1640 			xhci_ring_device(xhci, slot_id);
1641 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1642 			bus_state->port_remote_wakeup &=
1643 				~(1 << faked_port_index);
1644 			xhci_test_and_clear_bit(xhci, port_array,
1645 					faked_port_index, PORT_PLC);
1646 			usb_wakeup_notification(hcd->self.root_hub,
1647 					faked_port_index + 1);
1648 			bogus_port_status = true;
1649 			goto cleanup;
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1655 	 * RExit to a disconnect state).  If so, let the the driver know it's
1656 	 * out of the RExit state.
1657 	 */
1658 	if (!DEV_SUPERSPEED(temp) &&
1659 			test_and_clear_bit(faked_port_index,
1660 				&bus_state->rexit_ports)) {
1661 		complete(&bus_state->rexit_done[faked_port_index]);
1662 		bogus_port_status = true;
1663 		goto cleanup;
1664 	}
1665 
1666 	if (hcd->speed != HCD_USB3)
1667 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1668 					PORT_PLC);
1669 
1670 cleanup:
1671 	/* Update event ring dequeue pointer before dropping the lock */
1672 	inc_deq(xhci, xhci->event_ring);
1673 
1674 	/* Don't make the USB core poll the roothub if we got a bad port status
1675 	 * change event.  Besides, at that point we can't tell which roothub
1676 	 * (USB 2.0 or USB 3.0) to kick.
1677 	 */
1678 	if (bogus_port_status)
1679 		return;
1680 
1681 	/*
1682 	 * xHCI port-status-change events occur when the "or" of all the
1683 	 * status-change bits in the portsc register changes from 0 to 1.
1684 	 * New status changes won't cause an event if any other change
1685 	 * bits are still set.  When an event occurs, switch over to
1686 	 * polling to avoid losing status changes.
1687 	 */
1688 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1689 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1690 	spin_unlock(&xhci->lock);
1691 	/* Pass this up to the core */
1692 	usb_hcd_poll_rh_status(hcd);
1693 	spin_lock(&xhci->lock);
1694 }
1695 
1696 /*
1697  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1698  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1699  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1700  * returns 0.
1701  */
1702 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1703 		union xhci_trb	*start_trb,
1704 		union xhci_trb	*end_trb,
1705 		dma_addr_t	suspect_dma)
1706 {
1707 	dma_addr_t start_dma;
1708 	dma_addr_t end_seg_dma;
1709 	dma_addr_t end_trb_dma;
1710 	struct xhci_segment *cur_seg;
1711 
1712 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1713 	cur_seg = start_seg;
1714 
1715 	do {
1716 		if (start_dma == 0)
1717 			return NULL;
1718 		/* We may get an event for a Link TRB in the middle of a TD */
1719 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1720 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1721 		/* If the end TRB isn't in this segment, this is set to 0 */
1722 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1723 
1724 		if (end_trb_dma > 0) {
1725 			/* The end TRB is in this segment, so suspect should be here */
1726 			if (start_dma <= end_trb_dma) {
1727 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1728 					return cur_seg;
1729 			} else {
1730 				/* Case for one segment with
1731 				 * a TD wrapped around to the top
1732 				 */
1733 				if ((suspect_dma >= start_dma &&
1734 							suspect_dma <= end_seg_dma) ||
1735 						(suspect_dma >= cur_seg->dma &&
1736 						 suspect_dma <= end_trb_dma))
1737 					return cur_seg;
1738 			}
1739 			return NULL;
1740 		} else {
1741 			/* Might still be somewhere in this segment */
1742 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1743 				return cur_seg;
1744 		}
1745 		cur_seg = cur_seg->next;
1746 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1747 	} while (cur_seg != start_seg);
1748 
1749 	return NULL;
1750 }
1751 
1752 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1753 		unsigned int slot_id, unsigned int ep_index,
1754 		unsigned int stream_id,
1755 		struct xhci_td *td, union xhci_trb *event_trb)
1756 {
1757 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1758 	struct xhci_command *command;
1759 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1760 	if (!command)
1761 		return;
1762 
1763 	ep->ep_state |= EP_HALTED;
1764 	ep->stopped_td = td;
1765 	ep->stopped_stream = stream_id;
1766 
1767 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1768 	xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1769 
1770 	ep->stopped_td = NULL;
1771 	ep->stopped_stream = 0;
1772 
1773 	xhci_ring_cmd_db(xhci);
1774 }
1775 
1776 /* Check if an error has halted the endpoint ring.  The class driver will
1777  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1778  * However, a babble and other errors also halt the endpoint ring, and the class
1779  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1780  * Ring Dequeue Pointer command manually.
1781  */
1782 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1783 		struct xhci_ep_ctx *ep_ctx,
1784 		unsigned int trb_comp_code)
1785 {
1786 	/* TRB completion codes that may require a manual halt cleanup */
1787 	if (trb_comp_code == COMP_TX_ERR ||
1788 			trb_comp_code == COMP_BABBLE ||
1789 			trb_comp_code == COMP_SPLIT_ERR)
1790 		/* The 0.96 spec says a babbling control endpoint
1791 		 * is not halted. The 0.96 spec says it is.  Some HW
1792 		 * claims to be 0.95 compliant, but it halts the control
1793 		 * endpoint anyway.  Check if a babble halted the
1794 		 * endpoint.
1795 		 */
1796 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1797 		    cpu_to_le32(EP_STATE_HALTED))
1798 			return 1;
1799 
1800 	return 0;
1801 }
1802 
1803 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1804 {
1805 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1806 		/* Vendor defined "informational" completion code,
1807 		 * treat as not-an-error.
1808 		 */
1809 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1810 				trb_comp_code);
1811 		xhci_dbg(xhci, "Treating code as success.\n");
1812 		return 1;
1813 	}
1814 	return 0;
1815 }
1816 
1817 /*
1818  * Finish the td processing, remove the td from td list;
1819  * Return 1 if the urb can be given back.
1820  */
1821 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1822 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1823 	struct xhci_virt_ep *ep, int *status, bool skip)
1824 {
1825 	struct xhci_virt_device *xdev;
1826 	struct xhci_ring *ep_ring;
1827 	unsigned int slot_id;
1828 	int ep_index;
1829 	struct urb *urb = NULL;
1830 	struct xhci_ep_ctx *ep_ctx;
1831 	int ret = 0;
1832 	struct urb_priv	*urb_priv;
1833 	u32 trb_comp_code;
1834 
1835 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1836 	xdev = xhci->devs[slot_id];
1837 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1838 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1839 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1840 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1841 
1842 	if (skip)
1843 		goto td_cleanup;
1844 
1845 	if (trb_comp_code == COMP_STOP_INVAL ||
1846 			trb_comp_code == COMP_STOP) {
1847 		/* The Endpoint Stop Command completion will take care of any
1848 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1849 		 * the ring dequeue pointer or take this TD off any lists yet.
1850 		 */
1851 		ep->stopped_td = td;
1852 		return 0;
1853 	} else {
1854 		if (trb_comp_code == COMP_STALL) {
1855 			/* The transfer is completed from the driver's
1856 			 * perspective, but we need to issue a set dequeue
1857 			 * command for this stalled endpoint to move the dequeue
1858 			 * pointer past the TD.  We can't do that here because
1859 			 * the halt condition must be cleared first.  Let the
1860 			 * USB class driver clear the stall later.
1861 			 */
1862 			ep->stopped_td = td;
1863 			ep->stopped_stream = ep_ring->stream_id;
1864 		} else if (xhci_requires_manual_halt_cleanup(xhci,
1865 					ep_ctx, trb_comp_code)) {
1866 			/* Other types of errors halt the endpoint, but the
1867 			 * class driver doesn't call usb_reset_endpoint() unless
1868 			 * the error is -EPIPE.  Clear the halted status in the
1869 			 * xHCI hardware manually.
1870 			 */
1871 			xhci_cleanup_halted_endpoint(xhci,
1872 					slot_id, ep_index, ep_ring->stream_id,
1873 					td, event_trb);
1874 		} else {
1875 			/* Update ring dequeue pointer */
1876 			while (ep_ring->dequeue != td->last_trb)
1877 				inc_deq(xhci, ep_ring);
1878 			inc_deq(xhci, ep_ring);
1879 		}
1880 
1881 td_cleanup:
1882 		/* Clean up the endpoint's TD list */
1883 		urb = td->urb;
1884 		urb_priv = urb->hcpriv;
1885 
1886 		/* Do one last check of the actual transfer length.
1887 		 * If the host controller said we transferred more data than
1888 		 * the buffer length, urb->actual_length will be a very big
1889 		 * number (since it's unsigned).  Play it safe and say we didn't
1890 		 * transfer anything.
1891 		 */
1892 		if (urb->actual_length > urb->transfer_buffer_length) {
1893 			xhci_warn(xhci, "URB transfer length is wrong, "
1894 					"xHC issue? req. len = %u, "
1895 					"act. len = %u\n",
1896 					urb->transfer_buffer_length,
1897 					urb->actual_length);
1898 			urb->actual_length = 0;
1899 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1900 				*status = -EREMOTEIO;
1901 			else
1902 				*status = 0;
1903 		}
1904 		list_del_init(&td->td_list);
1905 		/* Was this TD slated to be cancelled but completed anyway? */
1906 		if (!list_empty(&td->cancelled_td_list))
1907 			list_del_init(&td->cancelled_td_list);
1908 
1909 		urb_priv->td_cnt++;
1910 		/* Giveback the urb when all the tds are completed */
1911 		if (urb_priv->td_cnt == urb_priv->length) {
1912 			ret = 1;
1913 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1914 				xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1915 				if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1916 					== 0) {
1917 					if (xhci->quirks & XHCI_AMD_PLL_FIX)
1918 						usb_amd_quirk_pll_enable();
1919 				}
1920 			}
1921 		}
1922 	}
1923 
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Process control tds, update urb status and actual_length.
1929  */
1930 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1931 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1932 	struct xhci_virt_ep *ep, int *status)
1933 {
1934 	struct xhci_virt_device *xdev;
1935 	struct xhci_ring *ep_ring;
1936 	unsigned int slot_id;
1937 	int ep_index;
1938 	struct xhci_ep_ctx *ep_ctx;
1939 	u32 trb_comp_code;
1940 
1941 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1942 	xdev = xhci->devs[slot_id];
1943 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1944 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1945 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1946 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1947 
1948 	switch (trb_comp_code) {
1949 	case COMP_SUCCESS:
1950 		if (event_trb == ep_ring->dequeue) {
1951 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1952 					"without IOC set??\n");
1953 			*status = -ESHUTDOWN;
1954 		} else if (event_trb != td->last_trb) {
1955 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1956 					"without IOC set??\n");
1957 			*status = -ESHUTDOWN;
1958 		} else {
1959 			*status = 0;
1960 		}
1961 		break;
1962 	case COMP_SHORT_TX:
1963 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1964 			*status = -EREMOTEIO;
1965 		else
1966 			*status = 0;
1967 		break;
1968 	case COMP_STOP_INVAL:
1969 	case COMP_STOP:
1970 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1971 	default:
1972 		if (!xhci_requires_manual_halt_cleanup(xhci,
1973 					ep_ctx, trb_comp_code))
1974 			break;
1975 		xhci_dbg(xhci, "TRB error code %u, "
1976 				"halted endpoint index = %u\n",
1977 				trb_comp_code, ep_index);
1978 		/* else fall through */
1979 	case COMP_STALL:
1980 		/* Did we transfer part of the data (middle) phase? */
1981 		if (event_trb != ep_ring->dequeue &&
1982 				event_trb != td->last_trb)
1983 			td->urb->actual_length =
1984 				td->urb->transfer_buffer_length -
1985 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1986 		else
1987 			td->urb->actual_length = 0;
1988 
1989 		xhci_cleanup_halted_endpoint(xhci,
1990 			slot_id, ep_index, 0, td, event_trb);
1991 		return finish_td(xhci, td, event_trb, event, ep, status, true);
1992 	}
1993 	/*
1994 	 * Did we transfer any data, despite the errors that might have
1995 	 * happened?  I.e. did we get past the setup stage?
1996 	 */
1997 	if (event_trb != ep_ring->dequeue) {
1998 		/* The event was for the status stage */
1999 		if (event_trb == td->last_trb) {
2000 			if (td->urb->actual_length != 0) {
2001 				/* Don't overwrite a previously set error code
2002 				 */
2003 				if ((*status == -EINPROGRESS || *status == 0) &&
2004 						(td->urb->transfer_flags
2005 						 & URB_SHORT_NOT_OK))
2006 					/* Did we already see a short data
2007 					 * stage? */
2008 					*status = -EREMOTEIO;
2009 			} else {
2010 				td->urb->actual_length =
2011 					td->urb->transfer_buffer_length;
2012 			}
2013 		} else {
2014 		/* Maybe the event was for the data stage? */
2015 			td->urb->actual_length =
2016 				td->urb->transfer_buffer_length -
2017 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2018 			xhci_dbg(xhci, "Waiting for status "
2019 					"stage event\n");
2020 			return 0;
2021 		}
2022 	}
2023 
2024 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2025 }
2026 
2027 /*
2028  * Process isochronous tds, update urb packet status and actual_length.
2029  */
2030 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2031 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2032 	struct xhci_virt_ep *ep, int *status)
2033 {
2034 	struct xhci_ring *ep_ring;
2035 	struct urb_priv *urb_priv;
2036 	int idx;
2037 	int len = 0;
2038 	union xhci_trb *cur_trb;
2039 	struct xhci_segment *cur_seg;
2040 	struct usb_iso_packet_descriptor *frame;
2041 	u32 trb_comp_code;
2042 	bool skip_td = false;
2043 
2044 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2045 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2046 	urb_priv = td->urb->hcpriv;
2047 	idx = urb_priv->td_cnt;
2048 	frame = &td->urb->iso_frame_desc[idx];
2049 
2050 	/* handle completion code */
2051 	switch (trb_comp_code) {
2052 	case COMP_SUCCESS:
2053 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2054 			frame->status = 0;
2055 			break;
2056 		}
2057 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2058 			trb_comp_code = COMP_SHORT_TX;
2059 	case COMP_SHORT_TX:
2060 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2061 				-EREMOTEIO : 0;
2062 		break;
2063 	case COMP_BW_OVER:
2064 		frame->status = -ECOMM;
2065 		skip_td = true;
2066 		break;
2067 	case COMP_BUFF_OVER:
2068 	case COMP_BABBLE:
2069 		frame->status = -EOVERFLOW;
2070 		skip_td = true;
2071 		break;
2072 	case COMP_DEV_ERR:
2073 	case COMP_STALL:
2074 	case COMP_TX_ERR:
2075 		frame->status = -EPROTO;
2076 		skip_td = true;
2077 		break;
2078 	case COMP_STOP:
2079 	case COMP_STOP_INVAL:
2080 		break;
2081 	default:
2082 		frame->status = -1;
2083 		break;
2084 	}
2085 
2086 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
2087 		frame->actual_length = frame->length;
2088 		td->urb->actual_length += frame->length;
2089 	} else {
2090 		for (cur_trb = ep_ring->dequeue,
2091 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2092 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2093 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2094 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2095 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2096 		}
2097 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2098 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2099 
2100 		if (trb_comp_code != COMP_STOP_INVAL) {
2101 			frame->actual_length = len;
2102 			td->urb->actual_length += len;
2103 		}
2104 	}
2105 
2106 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2107 }
2108 
2109 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2110 			struct xhci_transfer_event *event,
2111 			struct xhci_virt_ep *ep, int *status)
2112 {
2113 	struct xhci_ring *ep_ring;
2114 	struct urb_priv *urb_priv;
2115 	struct usb_iso_packet_descriptor *frame;
2116 	int idx;
2117 
2118 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2119 	urb_priv = td->urb->hcpriv;
2120 	idx = urb_priv->td_cnt;
2121 	frame = &td->urb->iso_frame_desc[idx];
2122 
2123 	/* The transfer is partly done. */
2124 	frame->status = -EXDEV;
2125 
2126 	/* calc actual length */
2127 	frame->actual_length = 0;
2128 
2129 	/* Update ring dequeue pointer */
2130 	while (ep_ring->dequeue != td->last_trb)
2131 		inc_deq(xhci, ep_ring);
2132 	inc_deq(xhci, ep_ring);
2133 
2134 	return finish_td(xhci, td, NULL, event, ep, status, true);
2135 }
2136 
2137 /*
2138  * Process bulk and interrupt tds, update urb status and actual_length.
2139  */
2140 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2141 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2142 	struct xhci_virt_ep *ep, int *status)
2143 {
2144 	struct xhci_ring *ep_ring;
2145 	union xhci_trb *cur_trb;
2146 	struct xhci_segment *cur_seg;
2147 	u32 trb_comp_code;
2148 
2149 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2150 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2151 
2152 	switch (trb_comp_code) {
2153 	case COMP_SUCCESS:
2154 		/* Double check that the HW transferred everything. */
2155 		if (event_trb != td->last_trb ||
2156 		    EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2157 			xhci_warn(xhci, "WARN Successful completion "
2158 					"on short TX\n");
2159 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2160 				*status = -EREMOTEIO;
2161 			else
2162 				*status = 0;
2163 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2164 				trb_comp_code = COMP_SHORT_TX;
2165 		} else {
2166 			*status = 0;
2167 		}
2168 		break;
2169 	case COMP_SHORT_TX:
2170 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2171 			*status = -EREMOTEIO;
2172 		else
2173 			*status = 0;
2174 		break;
2175 	default:
2176 		/* Others already handled above */
2177 		break;
2178 	}
2179 	if (trb_comp_code == COMP_SHORT_TX)
2180 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2181 				"%d bytes untransferred\n",
2182 				td->urb->ep->desc.bEndpointAddress,
2183 				td->urb->transfer_buffer_length,
2184 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2185 	/* Fast path - was this the last TRB in the TD for this URB? */
2186 	if (event_trb == td->last_trb) {
2187 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2188 			td->urb->actual_length =
2189 				td->urb->transfer_buffer_length -
2190 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2191 			if (td->urb->transfer_buffer_length <
2192 					td->urb->actual_length) {
2193 				xhci_warn(xhci, "HC gave bad length "
2194 						"of %d bytes left\n",
2195 					  EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2196 				td->urb->actual_length = 0;
2197 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2198 					*status = -EREMOTEIO;
2199 				else
2200 					*status = 0;
2201 			}
2202 			/* Don't overwrite a previously set error code */
2203 			if (*status == -EINPROGRESS) {
2204 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2205 					*status = -EREMOTEIO;
2206 				else
2207 					*status = 0;
2208 			}
2209 		} else {
2210 			td->urb->actual_length =
2211 				td->urb->transfer_buffer_length;
2212 			/* Ignore a short packet completion if the
2213 			 * untransferred length was zero.
2214 			 */
2215 			if (*status == -EREMOTEIO)
2216 				*status = 0;
2217 		}
2218 	} else {
2219 		/* Slow path - walk the list, starting from the dequeue
2220 		 * pointer, to get the actual length transferred.
2221 		 */
2222 		td->urb->actual_length = 0;
2223 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2224 				cur_trb != event_trb;
2225 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2226 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2227 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2228 				td->urb->actual_length +=
2229 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2230 		}
2231 		/* If the ring didn't stop on a Link or No-op TRB, add
2232 		 * in the actual bytes transferred from the Normal TRB
2233 		 */
2234 		if (trb_comp_code != COMP_STOP_INVAL)
2235 			td->urb->actual_length +=
2236 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2237 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2238 	}
2239 
2240 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2241 }
2242 
2243 /*
2244  * If this function returns an error condition, it means it got a Transfer
2245  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2246  * At this point, the host controller is probably hosed and should be reset.
2247  */
2248 static int handle_tx_event(struct xhci_hcd *xhci,
2249 		struct xhci_transfer_event *event)
2250 	__releases(&xhci->lock)
2251 	__acquires(&xhci->lock)
2252 {
2253 	struct xhci_virt_device *xdev;
2254 	struct xhci_virt_ep *ep;
2255 	struct xhci_ring *ep_ring;
2256 	unsigned int slot_id;
2257 	int ep_index;
2258 	struct xhci_td *td = NULL;
2259 	dma_addr_t event_dma;
2260 	struct xhci_segment *event_seg;
2261 	union xhci_trb *event_trb;
2262 	struct urb *urb = NULL;
2263 	int status = -EINPROGRESS;
2264 	struct urb_priv *urb_priv;
2265 	struct xhci_ep_ctx *ep_ctx;
2266 	struct list_head *tmp;
2267 	u32 trb_comp_code;
2268 	int ret = 0;
2269 	int td_num = 0;
2270 
2271 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2272 	xdev = xhci->devs[slot_id];
2273 	if (!xdev) {
2274 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2275 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2276 			 (unsigned long long) xhci_trb_virt_to_dma(
2277 				 xhci->event_ring->deq_seg,
2278 				 xhci->event_ring->dequeue),
2279 			 lower_32_bits(le64_to_cpu(event->buffer)),
2280 			 upper_32_bits(le64_to_cpu(event->buffer)),
2281 			 le32_to_cpu(event->transfer_len),
2282 			 le32_to_cpu(event->flags));
2283 		xhci_dbg(xhci, "Event ring:\n");
2284 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2285 		return -ENODEV;
2286 	}
2287 
2288 	/* Endpoint ID is 1 based, our index is zero based */
2289 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2290 	ep = &xdev->eps[ep_index];
2291 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2292 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2293 	if (!ep_ring ||
2294 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2295 	    EP_STATE_DISABLED) {
2296 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2297 				"or incorrect stream ring\n");
2298 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2299 			 (unsigned long long) xhci_trb_virt_to_dma(
2300 				 xhci->event_ring->deq_seg,
2301 				 xhci->event_ring->dequeue),
2302 			 lower_32_bits(le64_to_cpu(event->buffer)),
2303 			 upper_32_bits(le64_to_cpu(event->buffer)),
2304 			 le32_to_cpu(event->transfer_len),
2305 			 le32_to_cpu(event->flags));
2306 		xhci_dbg(xhci, "Event ring:\n");
2307 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2308 		return -ENODEV;
2309 	}
2310 
2311 	/* Count current td numbers if ep->skip is set */
2312 	if (ep->skip) {
2313 		list_for_each(tmp, &ep_ring->td_list)
2314 			td_num++;
2315 	}
2316 
2317 	event_dma = le64_to_cpu(event->buffer);
2318 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2319 	/* Look for common error cases */
2320 	switch (trb_comp_code) {
2321 	/* Skip codes that require special handling depending on
2322 	 * transfer type
2323 	 */
2324 	case COMP_SUCCESS:
2325 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2326 			break;
2327 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2328 			trb_comp_code = COMP_SHORT_TX;
2329 		else
2330 			xhci_warn_ratelimited(xhci,
2331 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2332 	case COMP_SHORT_TX:
2333 		break;
2334 	case COMP_STOP:
2335 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2336 		break;
2337 	case COMP_STOP_INVAL:
2338 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2339 		break;
2340 	case COMP_STALL:
2341 		xhci_dbg(xhci, "Stalled endpoint\n");
2342 		ep->ep_state |= EP_HALTED;
2343 		status = -EPIPE;
2344 		break;
2345 	case COMP_TRB_ERR:
2346 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2347 		status = -EILSEQ;
2348 		break;
2349 	case COMP_SPLIT_ERR:
2350 	case COMP_TX_ERR:
2351 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2352 		status = -EPROTO;
2353 		break;
2354 	case COMP_BABBLE:
2355 		xhci_dbg(xhci, "Babble error on endpoint\n");
2356 		status = -EOVERFLOW;
2357 		break;
2358 	case COMP_DB_ERR:
2359 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2360 		status = -ENOSR;
2361 		break;
2362 	case COMP_BW_OVER:
2363 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2364 		break;
2365 	case COMP_BUFF_OVER:
2366 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2367 		break;
2368 	case COMP_UNDERRUN:
2369 		/*
2370 		 * When the Isoch ring is empty, the xHC will generate
2371 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2372 		 * Underrun Event for OUT Isoch endpoint.
2373 		 */
2374 		xhci_dbg(xhci, "underrun event on endpoint\n");
2375 		if (!list_empty(&ep_ring->td_list))
2376 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2377 					"still with TDs queued?\n",
2378 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2379 				 ep_index);
2380 		goto cleanup;
2381 	case COMP_OVERRUN:
2382 		xhci_dbg(xhci, "overrun event on endpoint\n");
2383 		if (!list_empty(&ep_ring->td_list))
2384 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2385 					"still with TDs queued?\n",
2386 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2387 				 ep_index);
2388 		goto cleanup;
2389 	case COMP_DEV_ERR:
2390 		xhci_warn(xhci, "WARN: detect an incompatible device");
2391 		status = -EPROTO;
2392 		break;
2393 	case COMP_MISSED_INT:
2394 		/*
2395 		 * When encounter missed service error, one or more isoc tds
2396 		 * may be missed by xHC.
2397 		 * Set skip flag of the ep_ring; Complete the missed tds as
2398 		 * short transfer when process the ep_ring next time.
2399 		 */
2400 		ep->skip = true;
2401 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2402 		goto cleanup;
2403 	default:
2404 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2405 			status = 0;
2406 			break;
2407 		}
2408 		xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2409 				"busted\n");
2410 		goto cleanup;
2411 	}
2412 
2413 	do {
2414 		/* This TRB should be in the TD at the head of this ring's
2415 		 * TD list.
2416 		 */
2417 		if (list_empty(&ep_ring->td_list)) {
2418 			/*
2419 			 * A stopped endpoint may generate an extra completion
2420 			 * event if the device was suspended.  Don't print
2421 			 * warnings.
2422 			 */
2423 			if (!(trb_comp_code == COMP_STOP ||
2424 						trb_comp_code == COMP_STOP_INVAL)) {
2425 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2426 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2427 						ep_index);
2428 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2429 						(le32_to_cpu(event->flags) &
2430 						 TRB_TYPE_BITMASK)>>10);
2431 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2432 			}
2433 			if (ep->skip) {
2434 				ep->skip = false;
2435 				xhci_dbg(xhci, "td_list is empty while skip "
2436 						"flag set. Clear skip flag.\n");
2437 			}
2438 			ret = 0;
2439 			goto cleanup;
2440 		}
2441 
2442 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2443 		if (ep->skip && td_num == 0) {
2444 			ep->skip = false;
2445 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2446 						"Clear skip flag.\n");
2447 			ret = 0;
2448 			goto cleanup;
2449 		}
2450 
2451 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2452 		if (ep->skip)
2453 			td_num--;
2454 
2455 		/* Is this a TRB in the currently executing TD? */
2456 		event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2457 				td->last_trb, event_dma);
2458 
2459 		/*
2460 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2461 		 * is not in the current TD pointed by ep_ring->dequeue because
2462 		 * that the hardware dequeue pointer still at the previous TRB
2463 		 * of the current TD. The previous TRB maybe a Link TD or the
2464 		 * last TRB of the previous TD. The command completion handle
2465 		 * will take care the rest.
2466 		 */
2467 		if (!event_seg && (trb_comp_code == COMP_STOP ||
2468 				   trb_comp_code == COMP_STOP_INVAL)) {
2469 			ret = 0;
2470 			goto cleanup;
2471 		}
2472 
2473 		if (!event_seg) {
2474 			if (!ep->skip ||
2475 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2476 				/* Some host controllers give a spurious
2477 				 * successful event after a short transfer.
2478 				 * Ignore it.
2479 				 */
2480 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2481 						ep_ring->last_td_was_short) {
2482 					ep_ring->last_td_was_short = false;
2483 					ret = 0;
2484 					goto cleanup;
2485 				}
2486 				/* HC is busted, give up! */
2487 				xhci_err(xhci,
2488 					"ERROR Transfer event TRB DMA ptr not "
2489 					"part of current TD\n");
2490 				return -ESHUTDOWN;
2491 			}
2492 
2493 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2494 			goto cleanup;
2495 		}
2496 		if (trb_comp_code == COMP_SHORT_TX)
2497 			ep_ring->last_td_was_short = true;
2498 		else
2499 			ep_ring->last_td_was_short = false;
2500 
2501 		if (ep->skip) {
2502 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2503 			ep->skip = false;
2504 		}
2505 
2506 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2507 						sizeof(*event_trb)];
2508 		/*
2509 		 * No-op TRB should not trigger interrupts.
2510 		 * If event_trb is a no-op TRB, it means the
2511 		 * corresponding TD has been cancelled. Just ignore
2512 		 * the TD.
2513 		 */
2514 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2515 			xhci_dbg(xhci,
2516 				 "event_trb is a no-op TRB. Skip it\n");
2517 			goto cleanup;
2518 		}
2519 
2520 		/* Now update the urb's actual_length and give back to
2521 		 * the core
2522 		 */
2523 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2524 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2525 						 &status);
2526 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2527 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2528 						 &status);
2529 		else
2530 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2531 						 ep, &status);
2532 
2533 cleanup:
2534 		/*
2535 		 * Do not update event ring dequeue pointer if ep->skip is set.
2536 		 * Will roll back to continue process missed tds.
2537 		 */
2538 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2539 			inc_deq(xhci, xhci->event_ring);
2540 		}
2541 
2542 		if (ret) {
2543 			urb = td->urb;
2544 			urb_priv = urb->hcpriv;
2545 			/* Leave the TD around for the reset endpoint function
2546 			 * to use(but only if it's not a control endpoint,
2547 			 * since we already queued the Set TR dequeue pointer
2548 			 * command for stalled control endpoints).
2549 			 */
2550 			if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2551 				(trb_comp_code != COMP_STALL &&
2552 					trb_comp_code != COMP_BABBLE))
2553 				xhci_urb_free_priv(xhci, urb_priv);
2554 			else
2555 				kfree(urb_priv);
2556 
2557 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2558 			if ((urb->actual_length != urb->transfer_buffer_length &&
2559 						(urb->transfer_flags &
2560 						 URB_SHORT_NOT_OK)) ||
2561 					(status != 0 &&
2562 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2563 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2564 						"expected = %d, status = %d\n",
2565 						urb, urb->actual_length,
2566 						urb->transfer_buffer_length,
2567 						status);
2568 			spin_unlock(&xhci->lock);
2569 			/* EHCI, UHCI, and OHCI always unconditionally set the
2570 			 * urb->status of an isochronous endpoint to 0.
2571 			 */
2572 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2573 				status = 0;
2574 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2575 			spin_lock(&xhci->lock);
2576 		}
2577 
2578 	/*
2579 	 * If ep->skip is set, it means there are missed tds on the
2580 	 * endpoint ring need to take care of.
2581 	 * Process them as short transfer until reach the td pointed by
2582 	 * the event.
2583 	 */
2584 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2585 
2586 	return 0;
2587 }
2588 
2589 /*
2590  * This function handles all OS-owned events on the event ring.  It may drop
2591  * xhci->lock between event processing (e.g. to pass up port status changes).
2592  * Returns >0 for "possibly more events to process" (caller should call again),
2593  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2594  */
2595 static int xhci_handle_event(struct xhci_hcd *xhci)
2596 {
2597 	union xhci_trb *event;
2598 	int update_ptrs = 1;
2599 	int ret;
2600 
2601 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2602 		xhci->error_bitmask |= 1 << 1;
2603 		return 0;
2604 	}
2605 
2606 	event = xhci->event_ring->dequeue;
2607 	/* Does the HC or OS own the TRB? */
2608 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2609 	    xhci->event_ring->cycle_state) {
2610 		xhci->error_bitmask |= 1 << 2;
2611 		return 0;
2612 	}
2613 
2614 	/*
2615 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2616 	 * speculative reads of the event's flags/data below.
2617 	 */
2618 	rmb();
2619 	/* FIXME: Handle more event types. */
2620 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2621 	case TRB_TYPE(TRB_COMPLETION):
2622 		handle_cmd_completion(xhci, &event->event_cmd);
2623 		break;
2624 	case TRB_TYPE(TRB_PORT_STATUS):
2625 		handle_port_status(xhci, event);
2626 		update_ptrs = 0;
2627 		break;
2628 	case TRB_TYPE(TRB_TRANSFER):
2629 		ret = handle_tx_event(xhci, &event->trans_event);
2630 		if (ret < 0)
2631 			xhci->error_bitmask |= 1 << 9;
2632 		else
2633 			update_ptrs = 0;
2634 		break;
2635 	case TRB_TYPE(TRB_DEV_NOTE):
2636 		handle_device_notification(xhci, event);
2637 		break;
2638 	default:
2639 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2640 		    TRB_TYPE(48))
2641 			handle_vendor_event(xhci, event);
2642 		else
2643 			xhci->error_bitmask |= 1 << 3;
2644 	}
2645 	/* Any of the above functions may drop and re-acquire the lock, so check
2646 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2647 	 */
2648 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2649 		xhci_dbg(xhci, "xHCI host dying, returning from "
2650 				"event handler.\n");
2651 		return 0;
2652 	}
2653 
2654 	if (update_ptrs)
2655 		/* Update SW event ring dequeue pointer */
2656 		inc_deq(xhci, xhci->event_ring);
2657 
2658 	/* Are there more items on the event ring?  Caller will call us again to
2659 	 * check.
2660 	 */
2661 	return 1;
2662 }
2663 
2664 /*
2665  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2666  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2667  * indicators of an event TRB error, but we check the status *first* to be safe.
2668  */
2669 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2670 {
2671 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2672 	u32 status;
2673 	u64 temp_64;
2674 	union xhci_trb *event_ring_deq;
2675 	dma_addr_t deq;
2676 
2677 	spin_lock(&xhci->lock);
2678 	/* Check if the xHC generated the interrupt, or the irq is shared */
2679 	status = readl(&xhci->op_regs->status);
2680 	if (status == 0xffffffff)
2681 		goto hw_died;
2682 
2683 	if (!(status & STS_EINT)) {
2684 		spin_unlock(&xhci->lock);
2685 		return IRQ_NONE;
2686 	}
2687 	if (status & STS_FATAL) {
2688 		xhci_warn(xhci, "WARNING: Host System Error\n");
2689 		xhci_halt(xhci);
2690 hw_died:
2691 		spin_unlock(&xhci->lock);
2692 		return -ESHUTDOWN;
2693 	}
2694 
2695 	/*
2696 	 * Clear the op reg interrupt status first,
2697 	 * so we can receive interrupts from other MSI-X interrupters.
2698 	 * Write 1 to clear the interrupt status.
2699 	 */
2700 	status |= STS_EINT;
2701 	writel(status, &xhci->op_regs->status);
2702 	/* FIXME when MSI-X is supported and there are multiple vectors */
2703 	/* Clear the MSI-X event interrupt status */
2704 
2705 	if (hcd->irq) {
2706 		u32 irq_pending;
2707 		/* Acknowledge the PCI interrupt */
2708 		irq_pending = readl(&xhci->ir_set->irq_pending);
2709 		irq_pending |= IMAN_IP;
2710 		writel(irq_pending, &xhci->ir_set->irq_pending);
2711 	}
2712 
2713 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2714 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2715 				"Shouldn't IRQs be disabled?\n");
2716 		/* Clear the event handler busy flag (RW1C);
2717 		 * the event ring should be empty.
2718 		 */
2719 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2720 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2721 				&xhci->ir_set->erst_dequeue);
2722 		spin_unlock(&xhci->lock);
2723 
2724 		return IRQ_HANDLED;
2725 	}
2726 
2727 	event_ring_deq = xhci->event_ring->dequeue;
2728 	/* FIXME this should be a delayed service routine
2729 	 * that clears the EHB.
2730 	 */
2731 	while (xhci_handle_event(xhci) > 0) {}
2732 
2733 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2734 	/* If necessary, update the HW's version of the event ring deq ptr. */
2735 	if (event_ring_deq != xhci->event_ring->dequeue) {
2736 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2737 				xhci->event_ring->dequeue);
2738 		if (deq == 0)
2739 			xhci_warn(xhci, "WARN something wrong with SW event "
2740 					"ring dequeue ptr.\n");
2741 		/* Update HC event ring dequeue pointer */
2742 		temp_64 &= ERST_PTR_MASK;
2743 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2744 	}
2745 
2746 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2747 	temp_64 |= ERST_EHB;
2748 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2749 
2750 	spin_unlock(&xhci->lock);
2751 
2752 	return IRQ_HANDLED;
2753 }
2754 
2755 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2756 {
2757 	return xhci_irq(hcd);
2758 }
2759 
2760 /****		Endpoint Ring Operations	****/
2761 
2762 /*
2763  * Generic function for queueing a TRB on a ring.
2764  * The caller must have checked to make sure there's room on the ring.
2765  *
2766  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2767  *			prepare_transfer()?
2768  */
2769 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2770 		bool more_trbs_coming,
2771 		u32 field1, u32 field2, u32 field3, u32 field4)
2772 {
2773 	struct xhci_generic_trb *trb;
2774 
2775 	trb = &ring->enqueue->generic;
2776 	trb->field[0] = cpu_to_le32(field1);
2777 	trb->field[1] = cpu_to_le32(field2);
2778 	trb->field[2] = cpu_to_le32(field3);
2779 	trb->field[3] = cpu_to_le32(field4);
2780 	inc_enq(xhci, ring, more_trbs_coming);
2781 }
2782 
2783 /*
2784  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2785  * FIXME allocate segments if the ring is full.
2786  */
2787 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2788 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2789 {
2790 	unsigned int num_trbs_needed;
2791 
2792 	/* Make sure the endpoint has been added to xHC schedule */
2793 	switch (ep_state) {
2794 	case EP_STATE_DISABLED:
2795 		/*
2796 		 * USB core changed config/interfaces without notifying us,
2797 		 * or hardware is reporting the wrong state.
2798 		 */
2799 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2800 		return -ENOENT;
2801 	case EP_STATE_ERROR:
2802 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2803 		/* FIXME event handling code for error needs to clear it */
2804 		/* XXX not sure if this should be -ENOENT or not */
2805 		return -EINVAL;
2806 	case EP_STATE_HALTED:
2807 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2808 	case EP_STATE_STOPPED:
2809 	case EP_STATE_RUNNING:
2810 		break;
2811 	default:
2812 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2813 		/*
2814 		 * FIXME issue Configure Endpoint command to try to get the HC
2815 		 * back into a known state.
2816 		 */
2817 		return -EINVAL;
2818 	}
2819 
2820 	while (1) {
2821 		if (room_on_ring(xhci, ep_ring, num_trbs))
2822 			break;
2823 
2824 		if (ep_ring == xhci->cmd_ring) {
2825 			xhci_err(xhci, "Do not support expand command ring\n");
2826 			return -ENOMEM;
2827 		}
2828 
2829 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2830 				"ERROR no room on ep ring, try ring expansion");
2831 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2832 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2833 					mem_flags)) {
2834 			xhci_err(xhci, "Ring expansion failed\n");
2835 			return -ENOMEM;
2836 		}
2837 	}
2838 
2839 	if (enqueue_is_link_trb(ep_ring)) {
2840 		struct xhci_ring *ring = ep_ring;
2841 		union xhci_trb *next;
2842 
2843 		next = ring->enqueue;
2844 
2845 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2846 			/* If we're not dealing with 0.95 hardware or isoc rings
2847 			 * on AMD 0.96 host, clear the chain bit.
2848 			 */
2849 			if (!xhci_link_trb_quirk(xhci) &&
2850 					!(ring->type == TYPE_ISOC &&
2851 					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2852 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2853 			else
2854 				next->link.control |= cpu_to_le32(TRB_CHAIN);
2855 
2856 			wmb();
2857 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2858 
2859 			/* Toggle the cycle bit after the last ring segment. */
2860 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2861 				ring->cycle_state = (ring->cycle_state ? 0 : 1);
2862 			}
2863 			ring->enq_seg = ring->enq_seg->next;
2864 			ring->enqueue = ring->enq_seg->trbs;
2865 			next = ring->enqueue;
2866 		}
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static int prepare_transfer(struct xhci_hcd *xhci,
2873 		struct xhci_virt_device *xdev,
2874 		unsigned int ep_index,
2875 		unsigned int stream_id,
2876 		unsigned int num_trbs,
2877 		struct urb *urb,
2878 		unsigned int td_index,
2879 		gfp_t mem_flags)
2880 {
2881 	int ret;
2882 	struct urb_priv *urb_priv;
2883 	struct xhci_td	*td;
2884 	struct xhci_ring *ep_ring;
2885 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2886 
2887 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2888 	if (!ep_ring) {
2889 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2890 				stream_id);
2891 		return -EINVAL;
2892 	}
2893 
2894 	ret = prepare_ring(xhci, ep_ring,
2895 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2896 			   num_trbs, mem_flags);
2897 	if (ret)
2898 		return ret;
2899 
2900 	urb_priv = urb->hcpriv;
2901 	td = urb_priv->td[td_index];
2902 
2903 	INIT_LIST_HEAD(&td->td_list);
2904 	INIT_LIST_HEAD(&td->cancelled_td_list);
2905 
2906 	if (td_index == 0) {
2907 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2908 		if (unlikely(ret))
2909 			return ret;
2910 	}
2911 
2912 	td->urb = urb;
2913 	/* Add this TD to the tail of the endpoint ring's TD list */
2914 	list_add_tail(&td->td_list, &ep_ring->td_list);
2915 	td->start_seg = ep_ring->enq_seg;
2916 	td->first_trb = ep_ring->enqueue;
2917 
2918 	urb_priv->td[td_index] = td;
2919 
2920 	return 0;
2921 }
2922 
2923 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2924 {
2925 	int num_sgs, num_trbs, running_total, temp, i;
2926 	struct scatterlist *sg;
2927 
2928 	sg = NULL;
2929 	num_sgs = urb->num_mapped_sgs;
2930 	temp = urb->transfer_buffer_length;
2931 
2932 	num_trbs = 0;
2933 	for_each_sg(urb->sg, sg, num_sgs, i) {
2934 		unsigned int len = sg_dma_len(sg);
2935 
2936 		/* Scatter gather list entries may cross 64KB boundaries */
2937 		running_total = TRB_MAX_BUFF_SIZE -
2938 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2939 		running_total &= TRB_MAX_BUFF_SIZE - 1;
2940 		if (running_total != 0)
2941 			num_trbs++;
2942 
2943 		/* How many more 64KB chunks to transfer, how many more TRBs? */
2944 		while (running_total < sg_dma_len(sg) && running_total < temp) {
2945 			num_trbs++;
2946 			running_total += TRB_MAX_BUFF_SIZE;
2947 		}
2948 		len = min_t(int, len, temp);
2949 		temp -= len;
2950 		if (temp == 0)
2951 			break;
2952 	}
2953 	return num_trbs;
2954 }
2955 
2956 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2957 {
2958 	if (num_trbs != 0)
2959 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2960 				"TRBs, %d left\n", __func__,
2961 				urb->ep->desc.bEndpointAddress, num_trbs);
2962 	if (running_total != urb->transfer_buffer_length)
2963 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2964 				"queued %#x (%d), asked for %#x (%d)\n",
2965 				__func__,
2966 				urb->ep->desc.bEndpointAddress,
2967 				running_total, running_total,
2968 				urb->transfer_buffer_length,
2969 				urb->transfer_buffer_length);
2970 }
2971 
2972 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2973 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2974 		struct xhci_generic_trb *start_trb)
2975 {
2976 	/*
2977 	 * Pass all the TRBs to the hardware at once and make sure this write
2978 	 * isn't reordered.
2979 	 */
2980 	wmb();
2981 	if (start_cycle)
2982 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2983 	else
2984 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2985 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2986 }
2987 
2988 /*
2989  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2990  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2991  * (comprised of sg list entries) can take several service intervals to
2992  * transmit.
2993  */
2994 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2995 		struct urb *urb, int slot_id, unsigned int ep_index)
2996 {
2997 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2998 			xhci->devs[slot_id]->out_ctx, ep_index);
2999 	int xhci_interval;
3000 	int ep_interval;
3001 
3002 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3003 	ep_interval = urb->interval;
3004 	/* Convert to microframes */
3005 	if (urb->dev->speed == USB_SPEED_LOW ||
3006 			urb->dev->speed == USB_SPEED_FULL)
3007 		ep_interval *= 8;
3008 	/* FIXME change this to a warning and a suggestion to use the new API
3009 	 * to set the polling interval (once the API is added).
3010 	 */
3011 	if (xhci_interval != ep_interval) {
3012 		dev_dbg_ratelimited(&urb->dev->dev,
3013 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3014 				ep_interval, ep_interval == 1 ? "" : "s",
3015 				xhci_interval, xhci_interval == 1 ? "" : "s");
3016 		urb->interval = xhci_interval;
3017 		/* Convert back to frames for LS/FS devices */
3018 		if (urb->dev->speed == USB_SPEED_LOW ||
3019 				urb->dev->speed == USB_SPEED_FULL)
3020 			urb->interval /= 8;
3021 	}
3022 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3023 }
3024 
3025 /*
3026  * The TD size is the number of bytes remaining in the TD (including this TRB),
3027  * right shifted by 10.
3028  * It must fit in bits 21:17, so it can't be bigger than 31.
3029  */
3030 static u32 xhci_td_remainder(unsigned int remainder)
3031 {
3032 	u32 max = (1 << (21 - 17 + 1)) - 1;
3033 
3034 	if ((remainder >> 10) >= max)
3035 		return max << 17;
3036 	else
3037 		return (remainder >> 10) << 17;
3038 }
3039 
3040 /*
3041  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3042  * packets remaining in the TD (*not* including this TRB).
3043  *
3044  * Total TD packet count = total_packet_count =
3045  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3046  *
3047  * Packets transferred up to and including this TRB = packets_transferred =
3048  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3049  *
3050  * TD size = total_packet_count - packets_transferred
3051  *
3052  * It must fit in bits 21:17, so it can't be bigger than 31.
3053  * The last TRB in a TD must have the TD size set to zero.
3054  */
3055 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3056 		unsigned int total_packet_count, struct urb *urb,
3057 		unsigned int num_trbs_left)
3058 {
3059 	int packets_transferred;
3060 
3061 	/* One TRB with a zero-length data packet. */
3062 	if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3063 		return 0;
3064 
3065 	/* All the TRB queueing functions don't count the current TRB in
3066 	 * running_total.
3067 	 */
3068 	packets_transferred = (running_total + trb_buff_len) /
3069 		GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3070 
3071 	if ((total_packet_count - packets_transferred) > 31)
3072 		return 31 << 17;
3073 	return (total_packet_count - packets_transferred) << 17;
3074 }
3075 
3076 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3077 		struct urb *urb, int slot_id, unsigned int ep_index)
3078 {
3079 	struct xhci_ring *ep_ring;
3080 	unsigned int num_trbs;
3081 	struct urb_priv *urb_priv;
3082 	struct xhci_td *td;
3083 	struct scatterlist *sg;
3084 	int num_sgs;
3085 	int trb_buff_len, this_sg_len, running_total;
3086 	unsigned int total_packet_count;
3087 	bool first_trb;
3088 	u64 addr;
3089 	bool more_trbs_coming;
3090 
3091 	struct xhci_generic_trb *start_trb;
3092 	int start_cycle;
3093 
3094 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3095 	if (!ep_ring)
3096 		return -EINVAL;
3097 
3098 	num_trbs = count_sg_trbs_needed(xhci, urb);
3099 	num_sgs = urb->num_mapped_sgs;
3100 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3101 			usb_endpoint_maxp(&urb->ep->desc));
3102 
3103 	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3104 			ep_index, urb->stream_id,
3105 			num_trbs, urb, 0, mem_flags);
3106 	if (trb_buff_len < 0)
3107 		return trb_buff_len;
3108 
3109 	urb_priv = urb->hcpriv;
3110 	td = urb_priv->td[0];
3111 
3112 	/*
3113 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3114 	 * until we've finished creating all the other TRBs.  The ring's cycle
3115 	 * state may change as we enqueue the other TRBs, so save it too.
3116 	 */
3117 	start_trb = &ep_ring->enqueue->generic;
3118 	start_cycle = ep_ring->cycle_state;
3119 
3120 	running_total = 0;
3121 	/*
3122 	 * How much data is in the first TRB?
3123 	 *
3124 	 * There are three forces at work for TRB buffer pointers and lengths:
3125 	 * 1. We don't want to walk off the end of this sg-list entry buffer.
3126 	 * 2. The transfer length that the driver requested may be smaller than
3127 	 *    the amount of memory allocated for this scatter-gather list.
3128 	 * 3. TRBs buffers can't cross 64KB boundaries.
3129 	 */
3130 	sg = urb->sg;
3131 	addr = (u64) sg_dma_address(sg);
3132 	this_sg_len = sg_dma_len(sg);
3133 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3134 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3135 	if (trb_buff_len > urb->transfer_buffer_length)
3136 		trb_buff_len = urb->transfer_buffer_length;
3137 
3138 	first_trb = true;
3139 	/* Queue the first TRB, even if it's zero-length */
3140 	do {
3141 		u32 field = 0;
3142 		u32 length_field = 0;
3143 		u32 remainder = 0;
3144 
3145 		/* Don't change the cycle bit of the first TRB until later */
3146 		if (first_trb) {
3147 			first_trb = false;
3148 			if (start_cycle == 0)
3149 				field |= 0x1;
3150 		} else
3151 			field |= ep_ring->cycle_state;
3152 
3153 		/* Chain all the TRBs together; clear the chain bit in the last
3154 		 * TRB to indicate it's the last TRB in the chain.
3155 		 */
3156 		if (num_trbs > 1) {
3157 			field |= TRB_CHAIN;
3158 		} else {
3159 			/* FIXME - add check for ZERO_PACKET flag before this */
3160 			td->last_trb = ep_ring->enqueue;
3161 			field |= TRB_IOC;
3162 		}
3163 
3164 		/* Only set interrupt on short packet for IN endpoints */
3165 		if (usb_urb_dir_in(urb))
3166 			field |= TRB_ISP;
3167 
3168 		if (TRB_MAX_BUFF_SIZE -
3169 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3170 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3171 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3172 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3173 					(unsigned int) addr + trb_buff_len);
3174 		}
3175 
3176 		/* Set the TRB length, TD size, and interrupter fields. */
3177 		if (xhci->hci_version < 0x100) {
3178 			remainder = xhci_td_remainder(
3179 					urb->transfer_buffer_length -
3180 					running_total);
3181 		} else {
3182 			remainder = xhci_v1_0_td_remainder(running_total,
3183 					trb_buff_len, total_packet_count, urb,
3184 					num_trbs - 1);
3185 		}
3186 		length_field = TRB_LEN(trb_buff_len) |
3187 			remainder |
3188 			TRB_INTR_TARGET(0);
3189 
3190 		if (num_trbs > 1)
3191 			more_trbs_coming = true;
3192 		else
3193 			more_trbs_coming = false;
3194 		queue_trb(xhci, ep_ring, more_trbs_coming,
3195 				lower_32_bits(addr),
3196 				upper_32_bits(addr),
3197 				length_field,
3198 				field | TRB_TYPE(TRB_NORMAL));
3199 		--num_trbs;
3200 		running_total += trb_buff_len;
3201 
3202 		/* Calculate length for next transfer --
3203 		 * Are we done queueing all the TRBs for this sg entry?
3204 		 */
3205 		this_sg_len -= trb_buff_len;
3206 		if (this_sg_len == 0) {
3207 			--num_sgs;
3208 			if (num_sgs == 0)
3209 				break;
3210 			sg = sg_next(sg);
3211 			addr = (u64) sg_dma_address(sg);
3212 			this_sg_len = sg_dma_len(sg);
3213 		} else {
3214 			addr += trb_buff_len;
3215 		}
3216 
3217 		trb_buff_len = TRB_MAX_BUFF_SIZE -
3218 			(addr & (TRB_MAX_BUFF_SIZE - 1));
3219 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3220 		if (running_total + trb_buff_len > urb->transfer_buffer_length)
3221 			trb_buff_len =
3222 				urb->transfer_buffer_length - running_total;
3223 	} while (running_total < urb->transfer_buffer_length);
3224 
3225 	check_trb_math(urb, num_trbs, running_total);
3226 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3227 			start_cycle, start_trb);
3228 	return 0;
3229 }
3230 
3231 /* This is very similar to what ehci-q.c qtd_fill() does */
3232 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3233 		struct urb *urb, int slot_id, unsigned int ep_index)
3234 {
3235 	struct xhci_ring *ep_ring;
3236 	struct urb_priv *urb_priv;
3237 	struct xhci_td *td;
3238 	int num_trbs;
3239 	struct xhci_generic_trb *start_trb;
3240 	bool first_trb;
3241 	bool more_trbs_coming;
3242 	int start_cycle;
3243 	u32 field, length_field;
3244 
3245 	int running_total, trb_buff_len, ret;
3246 	unsigned int total_packet_count;
3247 	u64 addr;
3248 
3249 	if (urb->num_sgs)
3250 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3251 
3252 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3253 	if (!ep_ring)
3254 		return -EINVAL;
3255 
3256 	num_trbs = 0;
3257 	/* How much data is (potentially) left before the 64KB boundary? */
3258 	running_total = TRB_MAX_BUFF_SIZE -
3259 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3260 	running_total &= TRB_MAX_BUFF_SIZE - 1;
3261 
3262 	/* If there's some data on this 64KB chunk, or we have to send a
3263 	 * zero-length transfer, we need at least one TRB
3264 	 */
3265 	if (running_total != 0 || urb->transfer_buffer_length == 0)
3266 		num_trbs++;
3267 	/* How many more 64KB chunks to transfer, how many more TRBs? */
3268 	while (running_total < urb->transfer_buffer_length) {
3269 		num_trbs++;
3270 		running_total += TRB_MAX_BUFF_SIZE;
3271 	}
3272 	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3273 
3274 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3275 			ep_index, urb->stream_id,
3276 			num_trbs, urb, 0, mem_flags);
3277 	if (ret < 0)
3278 		return ret;
3279 
3280 	urb_priv = urb->hcpriv;
3281 	td = urb_priv->td[0];
3282 
3283 	/*
3284 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3285 	 * until we've finished creating all the other TRBs.  The ring's cycle
3286 	 * state may change as we enqueue the other TRBs, so save it too.
3287 	 */
3288 	start_trb = &ep_ring->enqueue->generic;
3289 	start_cycle = ep_ring->cycle_state;
3290 
3291 	running_total = 0;
3292 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3293 			usb_endpoint_maxp(&urb->ep->desc));
3294 	/* How much data is in the first TRB? */
3295 	addr = (u64) urb->transfer_dma;
3296 	trb_buff_len = TRB_MAX_BUFF_SIZE -
3297 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3298 	if (trb_buff_len > urb->transfer_buffer_length)
3299 		trb_buff_len = urb->transfer_buffer_length;
3300 
3301 	first_trb = true;
3302 
3303 	/* Queue the first TRB, even if it's zero-length */
3304 	do {
3305 		u32 remainder = 0;
3306 		field = 0;
3307 
3308 		/* Don't change the cycle bit of the first TRB until later */
3309 		if (first_trb) {
3310 			first_trb = false;
3311 			if (start_cycle == 0)
3312 				field |= 0x1;
3313 		} else
3314 			field |= ep_ring->cycle_state;
3315 
3316 		/* Chain all the TRBs together; clear the chain bit in the last
3317 		 * TRB to indicate it's the last TRB in the chain.
3318 		 */
3319 		if (num_trbs > 1) {
3320 			field |= TRB_CHAIN;
3321 		} else {
3322 			/* FIXME - add check for ZERO_PACKET flag before this */
3323 			td->last_trb = ep_ring->enqueue;
3324 			field |= TRB_IOC;
3325 		}
3326 
3327 		/* Only set interrupt on short packet for IN endpoints */
3328 		if (usb_urb_dir_in(urb))
3329 			field |= TRB_ISP;
3330 
3331 		/* Set the TRB length, TD size, and interrupter fields. */
3332 		if (xhci->hci_version < 0x100) {
3333 			remainder = xhci_td_remainder(
3334 					urb->transfer_buffer_length -
3335 					running_total);
3336 		} else {
3337 			remainder = xhci_v1_0_td_remainder(running_total,
3338 					trb_buff_len, total_packet_count, urb,
3339 					num_trbs - 1);
3340 		}
3341 		length_field = TRB_LEN(trb_buff_len) |
3342 			remainder |
3343 			TRB_INTR_TARGET(0);
3344 
3345 		if (num_trbs > 1)
3346 			more_trbs_coming = true;
3347 		else
3348 			more_trbs_coming = false;
3349 		queue_trb(xhci, ep_ring, more_trbs_coming,
3350 				lower_32_bits(addr),
3351 				upper_32_bits(addr),
3352 				length_field,
3353 				field | TRB_TYPE(TRB_NORMAL));
3354 		--num_trbs;
3355 		running_total += trb_buff_len;
3356 
3357 		/* Calculate length for next transfer */
3358 		addr += trb_buff_len;
3359 		trb_buff_len = urb->transfer_buffer_length - running_total;
3360 		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3361 			trb_buff_len = TRB_MAX_BUFF_SIZE;
3362 	} while (running_total < urb->transfer_buffer_length);
3363 
3364 	check_trb_math(urb, num_trbs, running_total);
3365 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3366 			start_cycle, start_trb);
3367 	return 0;
3368 }
3369 
3370 /* Caller must have locked xhci->lock */
3371 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3372 		struct urb *urb, int slot_id, unsigned int ep_index)
3373 {
3374 	struct xhci_ring *ep_ring;
3375 	int num_trbs;
3376 	int ret;
3377 	struct usb_ctrlrequest *setup;
3378 	struct xhci_generic_trb *start_trb;
3379 	int start_cycle;
3380 	u32 field, length_field;
3381 	struct urb_priv *urb_priv;
3382 	struct xhci_td *td;
3383 
3384 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3385 	if (!ep_ring)
3386 		return -EINVAL;
3387 
3388 	/*
3389 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3390 	 * DMA address.
3391 	 */
3392 	if (!urb->setup_packet)
3393 		return -EINVAL;
3394 
3395 	/* 1 TRB for setup, 1 for status */
3396 	num_trbs = 2;
3397 	/*
3398 	 * Don't need to check if we need additional event data and normal TRBs,
3399 	 * since data in control transfers will never get bigger than 16MB
3400 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3401 	 */
3402 	if (urb->transfer_buffer_length > 0)
3403 		num_trbs++;
3404 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3405 			ep_index, urb->stream_id,
3406 			num_trbs, urb, 0, mem_flags);
3407 	if (ret < 0)
3408 		return ret;
3409 
3410 	urb_priv = urb->hcpriv;
3411 	td = urb_priv->td[0];
3412 
3413 	/*
3414 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3415 	 * until we've finished creating all the other TRBs.  The ring's cycle
3416 	 * state may change as we enqueue the other TRBs, so save it too.
3417 	 */
3418 	start_trb = &ep_ring->enqueue->generic;
3419 	start_cycle = ep_ring->cycle_state;
3420 
3421 	/* Queue setup TRB - see section 6.4.1.2.1 */
3422 	/* FIXME better way to translate setup_packet into two u32 fields? */
3423 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3424 	field = 0;
3425 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3426 	if (start_cycle == 0)
3427 		field |= 0x1;
3428 
3429 	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3430 	if (xhci->hci_version == 0x100) {
3431 		if (urb->transfer_buffer_length > 0) {
3432 			if (setup->bRequestType & USB_DIR_IN)
3433 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3434 			else
3435 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3436 		}
3437 	}
3438 
3439 	queue_trb(xhci, ep_ring, true,
3440 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3441 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3442 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3443 		  /* Immediate data in pointer */
3444 		  field);
3445 
3446 	/* If there's data, queue data TRBs */
3447 	/* Only set interrupt on short packet for IN endpoints */
3448 	if (usb_urb_dir_in(urb))
3449 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3450 	else
3451 		field = TRB_TYPE(TRB_DATA);
3452 
3453 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3454 		xhci_td_remainder(urb->transfer_buffer_length) |
3455 		TRB_INTR_TARGET(0);
3456 	if (urb->transfer_buffer_length > 0) {
3457 		if (setup->bRequestType & USB_DIR_IN)
3458 			field |= TRB_DIR_IN;
3459 		queue_trb(xhci, ep_ring, true,
3460 				lower_32_bits(urb->transfer_dma),
3461 				upper_32_bits(urb->transfer_dma),
3462 				length_field,
3463 				field | ep_ring->cycle_state);
3464 	}
3465 
3466 	/* Save the DMA address of the last TRB in the TD */
3467 	td->last_trb = ep_ring->enqueue;
3468 
3469 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3470 	/* If the device sent data, the status stage is an OUT transfer */
3471 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3472 		field = 0;
3473 	else
3474 		field = TRB_DIR_IN;
3475 	queue_trb(xhci, ep_ring, false,
3476 			0,
3477 			0,
3478 			TRB_INTR_TARGET(0),
3479 			/* Event on completion */
3480 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3481 
3482 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3483 			start_cycle, start_trb);
3484 	return 0;
3485 }
3486 
3487 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3488 		struct urb *urb, int i)
3489 {
3490 	int num_trbs = 0;
3491 	u64 addr, td_len;
3492 
3493 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3494 	td_len = urb->iso_frame_desc[i].length;
3495 
3496 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3497 			TRB_MAX_BUFF_SIZE);
3498 	if (num_trbs == 0)
3499 		num_trbs++;
3500 
3501 	return num_trbs;
3502 }
3503 
3504 /*
3505  * The transfer burst count field of the isochronous TRB defines the number of
3506  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3507  * devices can burst up to bMaxBurst number of packets per service interval.
3508  * This field is zero based, meaning a value of zero in the field means one
3509  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3510  * zero.  Only xHCI 1.0 host controllers support this field.
3511  */
3512 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3513 		struct usb_device *udev,
3514 		struct urb *urb, unsigned int total_packet_count)
3515 {
3516 	unsigned int max_burst;
3517 
3518 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3519 		return 0;
3520 
3521 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3522 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3523 }
3524 
3525 /*
3526  * Returns the number of packets in the last "burst" of packets.  This field is
3527  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3528  * the last burst packet count is equal to the total number of packets in the
3529  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3530  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3531  * contain 1 to (bMaxBurst + 1) packets.
3532  */
3533 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3534 		struct usb_device *udev,
3535 		struct urb *urb, unsigned int total_packet_count)
3536 {
3537 	unsigned int max_burst;
3538 	unsigned int residue;
3539 
3540 	if (xhci->hci_version < 0x100)
3541 		return 0;
3542 
3543 	switch (udev->speed) {
3544 	case USB_SPEED_SUPER:
3545 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3546 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3547 		residue = total_packet_count % (max_burst + 1);
3548 		/* If residue is zero, the last burst contains (max_burst + 1)
3549 		 * number of packets, but the TLBPC field is zero-based.
3550 		 */
3551 		if (residue == 0)
3552 			return max_burst;
3553 		return residue - 1;
3554 	default:
3555 		if (total_packet_count == 0)
3556 			return 0;
3557 		return total_packet_count - 1;
3558 	}
3559 }
3560 
3561 /* This is for isoc transfer */
3562 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3563 		struct urb *urb, int slot_id, unsigned int ep_index)
3564 {
3565 	struct xhci_ring *ep_ring;
3566 	struct urb_priv *urb_priv;
3567 	struct xhci_td *td;
3568 	int num_tds, trbs_per_td;
3569 	struct xhci_generic_trb *start_trb;
3570 	bool first_trb;
3571 	int start_cycle;
3572 	u32 field, length_field;
3573 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3574 	u64 start_addr, addr;
3575 	int i, j;
3576 	bool more_trbs_coming;
3577 
3578 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3579 
3580 	num_tds = urb->number_of_packets;
3581 	if (num_tds < 1) {
3582 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3583 		return -EINVAL;
3584 	}
3585 
3586 	start_addr = (u64) urb->transfer_dma;
3587 	start_trb = &ep_ring->enqueue->generic;
3588 	start_cycle = ep_ring->cycle_state;
3589 
3590 	urb_priv = urb->hcpriv;
3591 	/* Queue the first TRB, even if it's zero-length */
3592 	for (i = 0; i < num_tds; i++) {
3593 		unsigned int total_packet_count;
3594 		unsigned int burst_count;
3595 		unsigned int residue;
3596 
3597 		first_trb = true;
3598 		running_total = 0;
3599 		addr = start_addr + urb->iso_frame_desc[i].offset;
3600 		td_len = urb->iso_frame_desc[i].length;
3601 		td_remain_len = td_len;
3602 		total_packet_count = DIV_ROUND_UP(td_len,
3603 				GET_MAX_PACKET(
3604 					usb_endpoint_maxp(&urb->ep->desc)));
3605 		/* A zero-length transfer still involves at least one packet. */
3606 		if (total_packet_count == 0)
3607 			total_packet_count++;
3608 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3609 				total_packet_count);
3610 		residue = xhci_get_last_burst_packet_count(xhci,
3611 				urb->dev, urb, total_packet_count);
3612 
3613 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3614 
3615 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3616 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3617 		if (ret < 0) {
3618 			if (i == 0)
3619 				return ret;
3620 			goto cleanup;
3621 		}
3622 
3623 		td = urb_priv->td[i];
3624 		for (j = 0; j < trbs_per_td; j++) {
3625 			u32 remainder = 0;
3626 			field = 0;
3627 
3628 			if (first_trb) {
3629 				field = TRB_TBC(burst_count) |
3630 					TRB_TLBPC(residue);
3631 				/* Queue the isoc TRB */
3632 				field |= TRB_TYPE(TRB_ISOC);
3633 				/* Assume URB_ISO_ASAP is set */
3634 				field |= TRB_SIA;
3635 				if (i == 0) {
3636 					if (start_cycle == 0)
3637 						field |= 0x1;
3638 				} else
3639 					field |= ep_ring->cycle_state;
3640 				first_trb = false;
3641 			} else {
3642 				/* Queue other normal TRBs */
3643 				field |= TRB_TYPE(TRB_NORMAL);
3644 				field |= ep_ring->cycle_state;
3645 			}
3646 
3647 			/* Only set interrupt on short packet for IN EPs */
3648 			if (usb_urb_dir_in(urb))
3649 				field |= TRB_ISP;
3650 
3651 			/* Chain all the TRBs together; clear the chain bit in
3652 			 * the last TRB to indicate it's the last TRB in the
3653 			 * chain.
3654 			 */
3655 			if (j < trbs_per_td - 1) {
3656 				field |= TRB_CHAIN;
3657 				more_trbs_coming = true;
3658 			} else {
3659 				td->last_trb = ep_ring->enqueue;
3660 				field |= TRB_IOC;
3661 				if (xhci->hci_version == 0x100 &&
3662 						!(xhci->quirks &
3663 							XHCI_AVOID_BEI)) {
3664 					/* Set BEI bit except for the last td */
3665 					if (i < num_tds - 1)
3666 						field |= TRB_BEI;
3667 				}
3668 				more_trbs_coming = false;
3669 			}
3670 
3671 			/* Calculate TRB length */
3672 			trb_buff_len = TRB_MAX_BUFF_SIZE -
3673 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3674 			if (trb_buff_len > td_remain_len)
3675 				trb_buff_len = td_remain_len;
3676 
3677 			/* Set the TRB length, TD size, & interrupter fields. */
3678 			if (xhci->hci_version < 0x100) {
3679 				remainder = xhci_td_remainder(
3680 						td_len - running_total);
3681 			} else {
3682 				remainder = xhci_v1_0_td_remainder(
3683 						running_total, trb_buff_len,
3684 						total_packet_count, urb,
3685 						(trbs_per_td - j - 1));
3686 			}
3687 			length_field = TRB_LEN(trb_buff_len) |
3688 				remainder |
3689 				TRB_INTR_TARGET(0);
3690 
3691 			queue_trb(xhci, ep_ring, more_trbs_coming,
3692 				lower_32_bits(addr),
3693 				upper_32_bits(addr),
3694 				length_field,
3695 				field);
3696 			running_total += trb_buff_len;
3697 
3698 			addr += trb_buff_len;
3699 			td_remain_len -= trb_buff_len;
3700 		}
3701 
3702 		/* Check TD length */
3703 		if (running_total != td_len) {
3704 			xhci_err(xhci, "ISOC TD length unmatch\n");
3705 			ret = -EINVAL;
3706 			goto cleanup;
3707 		}
3708 	}
3709 
3710 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3711 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3712 			usb_amd_quirk_pll_disable();
3713 	}
3714 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3715 
3716 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3717 			start_cycle, start_trb);
3718 	return 0;
3719 cleanup:
3720 	/* Clean up a partially enqueued isoc transfer. */
3721 
3722 	for (i--; i >= 0; i--)
3723 		list_del_init(&urb_priv->td[i]->td_list);
3724 
3725 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3726 	 * into No-ops with a software-owned cycle bit. That way the hardware
3727 	 * won't accidentally start executing bogus TDs when we partially
3728 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3729 	 */
3730 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3731 	/* Every TRB except the first & last will have its cycle bit flipped. */
3732 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3733 
3734 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3735 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3736 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3737 	ep_ring->cycle_state = start_cycle;
3738 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3739 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3740 	return ret;
3741 }
3742 
3743 /*
3744  * Check transfer ring to guarantee there is enough room for the urb.
3745  * Update ISO URB start_frame and interval.
3746  * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3747  * update the urb->start_frame by now.
3748  * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3749  */
3750 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3751 		struct urb *urb, int slot_id, unsigned int ep_index)
3752 {
3753 	struct xhci_virt_device *xdev;
3754 	struct xhci_ring *ep_ring;
3755 	struct xhci_ep_ctx *ep_ctx;
3756 	int start_frame;
3757 	int xhci_interval;
3758 	int ep_interval;
3759 	int num_tds, num_trbs, i;
3760 	int ret;
3761 
3762 	xdev = xhci->devs[slot_id];
3763 	ep_ring = xdev->eps[ep_index].ring;
3764 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3765 
3766 	num_trbs = 0;
3767 	num_tds = urb->number_of_packets;
3768 	for (i = 0; i < num_tds; i++)
3769 		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3770 
3771 	/* Check the ring to guarantee there is enough room for the whole urb.
3772 	 * Do not insert any td of the urb to the ring if the check failed.
3773 	 */
3774 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3775 			   num_trbs, mem_flags);
3776 	if (ret)
3777 		return ret;
3778 
3779 	start_frame = readl(&xhci->run_regs->microframe_index);
3780 	start_frame &= 0x3fff;
3781 
3782 	urb->start_frame = start_frame;
3783 	if (urb->dev->speed == USB_SPEED_LOW ||
3784 			urb->dev->speed == USB_SPEED_FULL)
3785 		urb->start_frame >>= 3;
3786 
3787 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3788 	ep_interval = urb->interval;
3789 	/* Convert to microframes */
3790 	if (urb->dev->speed == USB_SPEED_LOW ||
3791 			urb->dev->speed == USB_SPEED_FULL)
3792 		ep_interval *= 8;
3793 	/* FIXME change this to a warning and a suggestion to use the new API
3794 	 * to set the polling interval (once the API is added).
3795 	 */
3796 	if (xhci_interval != ep_interval) {
3797 		dev_dbg_ratelimited(&urb->dev->dev,
3798 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3799 				ep_interval, ep_interval == 1 ? "" : "s",
3800 				xhci_interval, xhci_interval == 1 ? "" : "s");
3801 		urb->interval = xhci_interval;
3802 		/* Convert back to frames for LS/FS devices */
3803 		if (urb->dev->speed == USB_SPEED_LOW ||
3804 				urb->dev->speed == USB_SPEED_FULL)
3805 			urb->interval /= 8;
3806 	}
3807 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3808 
3809 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3810 }
3811 
3812 /****		Command Ring Operations		****/
3813 
3814 /* Generic function for queueing a command TRB on the command ring.
3815  * Check to make sure there's room on the command ring for one command TRB.
3816  * Also check that there's room reserved for commands that must not fail.
3817  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3818  * then only check for the number of reserved spots.
3819  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3820  * because the command event handler may want to resubmit a failed command.
3821  */
3822 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3823 			 u32 field1, u32 field2,
3824 			 u32 field3, u32 field4, bool command_must_succeed)
3825 {
3826 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3827 	int ret;
3828 	if (xhci->xhc_state & XHCI_STATE_DYING)
3829 		return -ESHUTDOWN;
3830 
3831 	if (!command_must_succeed)
3832 		reserved_trbs++;
3833 
3834 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3835 			reserved_trbs, GFP_ATOMIC);
3836 	if (ret < 0) {
3837 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3838 		if (command_must_succeed)
3839 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3840 					"unfailable commands failed.\n");
3841 		return ret;
3842 	}
3843 
3844 	cmd->command_trb = xhci->cmd_ring->enqueue;
3845 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3846 
3847 	/* if there are no other commands queued we start the timeout timer */
3848 	if (xhci->cmd_list.next == &cmd->cmd_list &&
3849 	    !timer_pending(&xhci->cmd_timer)) {
3850 		xhci->current_cmd = cmd;
3851 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
3852 	}
3853 
3854 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3855 			field4 | xhci->cmd_ring->cycle_state);
3856 	return 0;
3857 }
3858 
3859 /* Queue a slot enable or disable request on the command ring */
3860 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3861 		u32 trb_type, u32 slot_id)
3862 {
3863 	return queue_command(xhci, cmd, 0, 0, 0,
3864 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3865 }
3866 
3867 /* Queue an address device command TRB */
3868 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3869 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3870 {
3871 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3872 			upper_32_bits(in_ctx_ptr), 0,
3873 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3874 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3875 }
3876 
3877 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3878 		u32 field1, u32 field2, u32 field3, u32 field4)
3879 {
3880 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3881 }
3882 
3883 /* Queue a reset device command TRB */
3884 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3885 		u32 slot_id)
3886 {
3887 	return queue_command(xhci, cmd, 0, 0, 0,
3888 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3889 			false);
3890 }
3891 
3892 /* Queue a configure endpoint command TRB */
3893 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3894 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3895 		u32 slot_id, bool command_must_succeed)
3896 {
3897 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3898 			upper_32_bits(in_ctx_ptr), 0,
3899 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3900 			command_must_succeed);
3901 }
3902 
3903 /* Queue an evaluate context command TRB */
3904 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3905 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3906 {
3907 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3908 			upper_32_bits(in_ctx_ptr), 0,
3909 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3910 			command_must_succeed);
3911 }
3912 
3913 /*
3914  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3915  * activity on an endpoint that is about to be suspended.
3916  */
3917 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3918 			     int slot_id, unsigned int ep_index, int suspend)
3919 {
3920 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3921 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3922 	u32 type = TRB_TYPE(TRB_STOP_RING);
3923 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3924 
3925 	return queue_command(xhci, cmd, 0, 0, 0,
3926 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3927 }
3928 
3929 /* Set Transfer Ring Dequeue Pointer command.
3930  * This should not be used for endpoints that have streams enabled.
3931  */
3932 static int queue_set_tr_deq(struct xhci_hcd *xhci, struct xhci_command *cmd,
3933 			int slot_id,
3934 			unsigned int ep_index, unsigned int stream_id,
3935 			struct xhci_segment *deq_seg,
3936 			union xhci_trb *deq_ptr, u32 cycle_state)
3937 {
3938 	dma_addr_t addr;
3939 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3940 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3941 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3942 	u32 trb_sct = 0;
3943 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3944 	struct xhci_virt_ep *ep;
3945 
3946 	addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3947 	if (addr == 0) {
3948 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3949 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3950 				deq_seg, deq_ptr);
3951 		return 0;
3952 	}
3953 	ep = &xhci->devs[slot_id]->eps[ep_index];
3954 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3955 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3956 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3957 		return 0;
3958 	}
3959 	ep->queued_deq_seg = deq_seg;
3960 	ep->queued_deq_ptr = deq_ptr;
3961 	if (stream_id)
3962 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3963 	return queue_command(xhci, cmd,
3964 			lower_32_bits(addr) | trb_sct | cycle_state,
3965 			upper_32_bits(addr), trb_stream_id,
3966 			trb_slot_id | trb_ep_index | type, false);
3967 }
3968 
3969 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
3970 			int slot_id, unsigned int ep_index)
3971 {
3972 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3973 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3974 	u32 type = TRB_TYPE(TRB_RESET_EP);
3975 
3976 	return queue_command(xhci, cmd, 0, 0, 0,
3977 			trb_slot_id | trb_ep_index | type, false);
3978 }
3979