1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 } else { 180 ring->dequeue++; 181 ring->num_trbs_free++; 182 } 183 } 184 185 while (trb_is_link(ring->dequeue)) { 186 ring->deq_seg = ring->deq_seg->next; 187 ring->dequeue = ring->deq_seg->trbs; 188 189 if (link_trb_count++ > ring->num_segs) { 190 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 191 break; 192 } 193 } 194 out: 195 trace_xhci_inc_deq(ring); 196 197 return; 198 } 199 200 /* 201 * See Cycle bit rules. SW is the consumer for the event ring only. 202 * 203 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 204 * chain bit is set), then set the chain bit in all the following link TRBs. 205 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 206 * have their chain bit cleared (so that each Link TRB is a separate TD). 207 * 208 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 209 * set, but other sections talk about dealing with the chain bit set. This was 210 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 211 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 212 * 213 * @more_trbs_coming: Will you enqueue more TRBs before calling 214 * prepare_transfer()? 215 */ 216 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 217 bool more_trbs_coming) 218 { 219 u32 chain; 220 union xhci_trb *next; 221 unsigned int link_trb_count = 0; 222 223 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 224 /* If this is not event ring, there is one less usable TRB */ 225 if (!trb_is_link(ring->enqueue)) 226 ring->num_trbs_free--; 227 228 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 229 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 230 return; 231 } 232 233 next = ++(ring->enqueue); 234 235 /* Update the dequeue pointer further if that was a link TRB */ 236 while (trb_is_link(next)) { 237 238 /* 239 * If the caller doesn't plan on enqueueing more TDs before 240 * ringing the doorbell, then we don't want to give the link TRB 241 * to the hardware just yet. We'll give the link TRB back in 242 * prepare_ring() just before we enqueue the TD at the top of 243 * the ring. 244 */ 245 if (!chain && !more_trbs_coming) 246 break; 247 248 /* If we're not dealing with 0.95 hardware or isoc rings on 249 * AMD 0.96 host, carry over the chain bit of the previous TRB 250 * (which may mean the chain bit is cleared). 251 */ 252 if (!(ring->type == TYPE_ISOC && 253 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 254 !xhci_link_trb_quirk(xhci)) { 255 next->link.control &= cpu_to_le32(~TRB_CHAIN); 256 next->link.control |= cpu_to_le32(chain); 257 } 258 /* Give this link TRB to the hardware */ 259 wmb(); 260 next->link.control ^= cpu_to_le32(TRB_CYCLE); 261 262 /* Toggle the cycle bit after the last ring segment. */ 263 if (link_trb_toggles_cycle(next)) 264 ring->cycle_state ^= 1; 265 266 ring->enq_seg = ring->enq_seg->next; 267 ring->enqueue = ring->enq_seg->trbs; 268 next = ring->enqueue; 269 270 if (link_trb_count++ > ring->num_segs) { 271 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 272 break; 273 } 274 } 275 276 trace_xhci_inc_enq(ring); 277 } 278 279 /* 280 * Check to see if there's room to enqueue num_trbs on the ring and make sure 281 * enqueue pointer will not advance into dequeue segment. See rules above. 282 */ 283 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 284 unsigned int num_trbs) 285 { 286 int num_trbs_in_deq_seg; 287 288 if (ring->num_trbs_free < num_trbs) 289 return 0; 290 291 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 292 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 293 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 294 return 0; 295 } 296 297 return 1; 298 } 299 300 /* Ring the host controller doorbell after placing a command on the ring */ 301 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 302 { 303 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 304 return; 305 306 xhci_dbg(xhci, "// Ding dong!\n"); 307 308 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 309 310 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 311 /* Flush PCI posted writes */ 312 readl(&xhci->dba->doorbell[0]); 313 } 314 315 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) 316 { 317 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); 318 } 319 320 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 321 { 322 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 323 cmd_list); 324 } 325 326 /* 327 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 328 * If there are other commands waiting then restart the ring and kick the timer. 329 * This must be called with command ring stopped and xhci->lock held. 330 */ 331 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 332 struct xhci_command *cur_cmd) 333 { 334 struct xhci_command *i_cmd; 335 336 /* Turn all aborted commands in list to no-ops, then restart */ 337 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 338 339 if (i_cmd->status != COMP_COMMAND_ABORTED) 340 continue; 341 342 i_cmd->status = COMP_COMMAND_RING_STOPPED; 343 344 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 345 i_cmd->command_trb); 346 347 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 348 349 /* 350 * caller waiting for completion is called when command 351 * completion event is received for these no-op commands 352 */ 353 } 354 355 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 356 357 /* ring command ring doorbell to restart the command ring */ 358 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 359 !(xhci->xhc_state & XHCI_STATE_DYING)) { 360 xhci->current_cmd = cur_cmd; 361 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 362 xhci_ring_cmd_db(xhci); 363 } 364 } 365 366 /* Must be called with xhci->lock held, releases and aquires lock back */ 367 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 368 { 369 u64 temp_64; 370 int ret; 371 372 xhci_dbg(xhci, "Abort command ring\n"); 373 374 reinit_completion(&xhci->cmd_ring_stop_completion); 375 376 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 377 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 378 &xhci->op_regs->cmd_ring); 379 380 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 381 * completion of the Command Abort operation. If CRR is not negated in 5 382 * seconds then driver handles it as if host died (-ENODEV). 383 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 384 * and try to recover a -ETIMEDOUT with a host controller reset. 385 */ 386 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 387 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 388 if (ret < 0) { 389 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 390 xhci_halt(xhci); 391 xhci_hc_died(xhci); 392 return ret; 393 } 394 /* 395 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 396 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 397 * but the completion event in never sent. Wait 2 secs (arbitrary 398 * number) to handle those cases after negation of CMD_RING_RUNNING. 399 */ 400 spin_unlock_irqrestore(&xhci->lock, flags); 401 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 402 msecs_to_jiffies(2000)); 403 spin_lock_irqsave(&xhci->lock, flags); 404 if (!ret) { 405 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 406 xhci_cleanup_command_queue(xhci); 407 } else { 408 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 409 } 410 return 0; 411 } 412 413 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 414 unsigned int slot_id, 415 unsigned int ep_index, 416 unsigned int stream_id) 417 { 418 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 419 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 420 unsigned int ep_state = ep->ep_state; 421 422 /* Don't ring the doorbell for this endpoint if there are pending 423 * cancellations because we don't want to interrupt processing. 424 * We don't want to restart any stream rings if there's a set dequeue 425 * pointer command pending because the device can choose to start any 426 * stream once the endpoint is on the HW schedule. 427 */ 428 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 429 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 430 return; 431 432 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 433 434 writel(DB_VALUE(ep_index, stream_id), db_addr); 435 /* flush the write */ 436 readl(db_addr); 437 } 438 439 /* Ring the doorbell for any rings with pending URBs */ 440 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 441 unsigned int slot_id, 442 unsigned int ep_index) 443 { 444 unsigned int stream_id; 445 struct xhci_virt_ep *ep; 446 447 ep = &xhci->devs[slot_id]->eps[ep_index]; 448 449 /* A ring has pending URBs if its TD list is not empty */ 450 if (!(ep->ep_state & EP_HAS_STREAMS)) { 451 if (ep->ring && !(list_empty(&ep->ring->td_list))) 452 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 453 return; 454 } 455 456 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 457 stream_id++) { 458 struct xhci_stream_info *stream_info = ep->stream_info; 459 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 460 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 461 stream_id); 462 } 463 } 464 465 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 466 unsigned int slot_id, 467 unsigned int ep_index) 468 { 469 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 470 } 471 472 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 473 unsigned int slot_id, 474 unsigned int ep_index) 475 { 476 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 477 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 478 return NULL; 479 } 480 if (ep_index >= EP_CTX_PER_DEV) { 481 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 482 return NULL; 483 } 484 if (!xhci->devs[slot_id]) { 485 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 486 return NULL; 487 } 488 489 return &xhci->devs[slot_id]->eps[ep_index]; 490 } 491 492 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 493 struct xhci_virt_ep *ep, 494 unsigned int stream_id) 495 { 496 /* common case, no streams */ 497 if (!(ep->ep_state & EP_HAS_STREAMS)) 498 return ep->ring; 499 500 if (!ep->stream_info) 501 return NULL; 502 503 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 504 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 505 stream_id, ep->vdev->slot_id, ep->ep_index); 506 return NULL; 507 } 508 509 return ep->stream_info->stream_rings[stream_id]; 510 } 511 512 /* Get the right ring for the given slot_id, ep_index and stream_id. 513 * If the endpoint supports streams, boundary check the URB's stream ID. 514 * If the endpoint doesn't support streams, return the singular endpoint ring. 515 */ 516 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 517 unsigned int slot_id, unsigned int ep_index, 518 unsigned int stream_id) 519 { 520 struct xhci_virt_ep *ep; 521 522 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 523 if (!ep) 524 return NULL; 525 526 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 527 } 528 529 530 /* 531 * Get the hw dequeue pointer xHC stopped on, either directly from the 532 * endpoint context, or if streams are in use from the stream context. 533 * The returned hw_dequeue contains the lowest four bits with cycle state 534 * and possbile stream context type. 535 */ 536 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 537 unsigned int ep_index, unsigned int stream_id) 538 { 539 struct xhci_ep_ctx *ep_ctx; 540 struct xhci_stream_ctx *st_ctx; 541 struct xhci_virt_ep *ep; 542 543 ep = &vdev->eps[ep_index]; 544 545 if (ep->ep_state & EP_HAS_STREAMS) { 546 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 547 return le64_to_cpu(st_ctx->stream_ring); 548 } 549 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 550 return le64_to_cpu(ep_ctx->deq); 551 } 552 553 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 554 unsigned int slot_id, unsigned int ep_index, 555 unsigned int stream_id, struct xhci_td *td) 556 { 557 struct xhci_virt_device *dev = xhci->devs[slot_id]; 558 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 559 struct xhci_ring *ep_ring; 560 struct xhci_command *cmd; 561 struct xhci_segment *new_seg; 562 union xhci_trb *new_deq; 563 int new_cycle; 564 dma_addr_t addr; 565 u64 hw_dequeue; 566 bool cycle_found = false; 567 bool td_last_trb_found = false; 568 u32 trb_sct = 0; 569 int ret; 570 571 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 572 ep_index, stream_id); 573 if (!ep_ring) { 574 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 575 stream_id); 576 return -ENODEV; 577 } 578 /* 579 * A cancelled TD can complete with a stall if HW cached the trb. 580 * In this case driver can't find td, but if the ring is empty we 581 * can move the dequeue pointer to the current enqueue position. 582 * We shouldn't hit this anymore as cached cancelled TRBs are given back 583 * after clearing the cache, but be on the safe side and keep it anyway 584 */ 585 if (!td) { 586 if (list_empty(&ep_ring->td_list)) { 587 new_seg = ep_ring->enq_seg; 588 new_deq = ep_ring->enqueue; 589 new_cycle = ep_ring->cycle_state; 590 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 591 goto deq_found; 592 } else { 593 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 594 return -EINVAL; 595 } 596 } 597 598 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 599 new_seg = ep_ring->deq_seg; 600 new_deq = ep_ring->dequeue; 601 new_cycle = hw_dequeue & 0x1; 602 603 /* 604 * We want to find the pointer, segment and cycle state of the new trb 605 * (the one after current TD's last_trb). We know the cycle state at 606 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 607 * found. 608 */ 609 do { 610 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 611 == (dma_addr_t)(hw_dequeue & ~0xf)) { 612 cycle_found = true; 613 if (td_last_trb_found) 614 break; 615 } 616 if (new_deq == td->last_trb) 617 td_last_trb_found = true; 618 619 if (cycle_found && trb_is_link(new_deq) && 620 link_trb_toggles_cycle(new_deq)) 621 new_cycle ^= 0x1; 622 623 next_trb(xhci, ep_ring, &new_seg, &new_deq); 624 625 /* Search wrapped around, bail out */ 626 if (new_deq == ep->ring->dequeue) { 627 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 628 return -EINVAL; 629 } 630 631 } while (!cycle_found || !td_last_trb_found); 632 633 deq_found: 634 635 /* Don't update the ring cycle state for the producer (us). */ 636 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 637 if (addr == 0) { 638 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 639 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 640 return -EINVAL; 641 } 642 643 if ((ep->ep_state & SET_DEQ_PENDING)) { 644 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 645 &addr); 646 return -EBUSY; 647 } 648 649 /* This function gets called from contexts where it cannot sleep */ 650 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 651 if (!cmd) { 652 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 653 return -ENOMEM; 654 } 655 656 if (stream_id) 657 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 658 ret = queue_command(xhci, cmd, 659 lower_32_bits(addr) | trb_sct | new_cycle, 660 upper_32_bits(addr), 661 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 662 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 663 if (ret < 0) { 664 xhci_free_command(xhci, cmd); 665 return ret; 666 } 667 ep->queued_deq_seg = new_seg; 668 ep->queued_deq_ptr = new_deq; 669 670 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 671 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 672 673 /* Stop the TD queueing code from ringing the doorbell until 674 * this command completes. The HC won't set the dequeue pointer 675 * if the ring is running, and ringing the doorbell starts the 676 * ring running. 677 */ 678 ep->ep_state |= SET_DEQ_PENDING; 679 xhci_ring_cmd_db(xhci); 680 return 0; 681 } 682 683 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 684 * (The last TRB actually points to the ring enqueue pointer, which is not part 685 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 686 */ 687 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 688 struct xhci_td *td, bool flip_cycle) 689 { 690 struct xhci_segment *seg = td->start_seg; 691 union xhci_trb *trb = td->first_trb; 692 693 while (1) { 694 trb_to_noop(trb, TRB_TR_NOOP); 695 696 /* flip cycle if asked to */ 697 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 698 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 699 700 if (trb == td->last_trb) 701 break; 702 703 next_trb(xhci, ep_ring, &seg, &trb); 704 } 705 } 706 707 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 708 struct xhci_virt_ep *ep) 709 { 710 ep->ep_state &= ~EP_STOP_CMD_PENDING; 711 /* Can't del_timer_sync in interrupt */ 712 del_timer(&ep->stop_cmd_timer); 713 } 714 715 /* 716 * Must be called with xhci->lock held in interrupt context, 717 * releases and re-acquires xhci->lock 718 */ 719 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 720 struct xhci_td *cur_td, int status) 721 { 722 struct urb *urb = cur_td->urb; 723 struct urb_priv *urb_priv = urb->hcpriv; 724 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 725 726 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 727 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 728 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 729 if (xhci->quirks & XHCI_AMD_PLL_FIX) 730 usb_amd_quirk_pll_enable(); 731 } 732 } 733 xhci_urb_free_priv(urb_priv); 734 usb_hcd_unlink_urb_from_ep(hcd, urb); 735 trace_xhci_urb_giveback(urb); 736 usb_hcd_giveback_urb(hcd, urb, status); 737 } 738 739 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 740 struct xhci_ring *ring, struct xhci_td *td) 741 { 742 struct device *dev = xhci_to_hcd(xhci)->self.controller; 743 struct xhci_segment *seg = td->bounce_seg; 744 struct urb *urb = td->urb; 745 size_t len; 746 747 if (!ring || !seg || !urb) 748 return; 749 750 if (usb_urb_dir_out(urb)) { 751 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 752 DMA_TO_DEVICE); 753 return; 754 } 755 756 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 757 DMA_FROM_DEVICE); 758 /* for in tranfers we need to copy the data from bounce to sg */ 759 if (urb->num_sgs) { 760 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 761 seg->bounce_len, seg->bounce_offs); 762 if (len != seg->bounce_len) 763 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 764 len, seg->bounce_len); 765 } else { 766 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 767 seg->bounce_len); 768 } 769 seg->bounce_len = 0; 770 seg->bounce_offs = 0; 771 } 772 773 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 774 struct xhci_ring *ep_ring, int status) 775 { 776 struct urb *urb = NULL; 777 778 /* Clean up the endpoint's TD list */ 779 urb = td->urb; 780 781 /* if a bounce buffer was used to align this td then unmap it */ 782 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 783 784 /* Do one last check of the actual transfer length. 785 * If the host controller said we transferred more data than the buffer 786 * length, urb->actual_length will be a very big number (since it's 787 * unsigned). Play it safe and say we didn't transfer anything. 788 */ 789 if (urb->actual_length > urb->transfer_buffer_length) { 790 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 791 urb->transfer_buffer_length, urb->actual_length); 792 urb->actual_length = 0; 793 status = 0; 794 } 795 /* TD might be removed from td_list if we are giving back a cancelled URB */ 796 if (!list_empty(&td->td_list)) 797 list_del_init(&td->td_list); 798 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 799 if (!list_empty(&td->cancelled_td_list)) 800 list_del_init(&td->cancelled_td_list); 801 802 inc_td_cnt(urb); 803 /* Giveback the urb when all the tds are completed */ 804 if (last_td_in_urb(td)) { 805 if ((urb->actual_length != urb->transfer_buffer_length && 806 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 807 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 808 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 809 urb, urb->actual_length, 810 urb->transfer_buffer_length, status); 811 812 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 813 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 814 status = 0; 815 xhci_giveback_urb_in_irq(xhci, td, status); 816 } 817 818 return 0; 819 } 820 821 822 /* Complete the cancelled URBs we unlinked from td_list. */ 823 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 824 { 825 struct xhci_ring *ring; 826 struct xhci_td *td, *tmp_td; 827 828 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 829 cancelled_td_list) { 830 831 /* 832 * Doesn't matter what we pass for status, since the core will 833 * just overwrite it (because the URB has been unlinked). 834 */ 835 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 836 837 if (td->cancel_status == TD_CLEARED) 838 xhci_td_cleanup(ep->xhci, td, ring, 0); 839 840 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 841 return; 842 } 843 } 844 845 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 846 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 847 { 848 struct xhci_command *command; 849 int ret = 0; 850 851 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 852 if (!command) { 853 ret = -ENOMEM; 854 goto done; 855 } 856 857 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 858 done: 859 if (ret) 860 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 861 slot_id, ep_index, ret); 862 return ret; 863 } 864 865 static void xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 866 struct xhci_virt_ep *ep, unsigned int stream_id, 867 struct xhci_td *td, 868 enum xhci_ep_reset_type reset_type) 869 { 870 unsigned int slot_id = ep->vdev->slot_id; 871 int err; 872 873 /* 874 * Avoid resetting endpoint if link is inactive. Can cause host hang. 875 * Device will be reset soon to recover the link so don't do anything 876 */ 877 if (ep->vdev->flags & VDEV_PORT_ERROR) 878 return; 879 880 /* add td to cancelled list and let reset ep handler take care of it */ 881 if (reset_type == EP_HARD_RESET) { 882 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 883 if (td && list_empty(&td->cancelled_td_list)) { 884 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 885 td->cancel_status = TD_HALTED; 886 } 887 } 888 889 if (ep->ep_state & EP_HALTED) { 890 xhci_dbg(xhci, "Reset ep command already pending\n"); 891 return; 892 } 893 894 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 895 if (err) 896 return; 897 898 ep->ep_state |= EP_HALTED; 899 900 xhci_ring_cmd_db(xhci); 901 } 902 903 /* 904 * Fix up the ep ring first, so HW stops executing cancelled TDs. 905 * We have the xHCI lock, so nothing can modify this list until we drop it. 906 * We're also in the event handler, so we can't get re-interrupted if another 907 * Stop Endpoint command completes. 908 * 909 * only call this when ring is not in a running state 910 */ 911 912 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 913 { 914 struct xhci_hcd *xhci; 915 struct xhci_td *td = NULL; 916 struct xhci_td *tmp_td = NULL; 917 struct xhci_td *cached_td = NULL; 918 struct xhci_ring *ring; 919 u64 hw_deq; 920 unsigned int slot_id = ep->vdev->slot_id; 921 int err; 922 923 xhci = ep->xhci; 924 925 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 926 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 927 "Removing canceled TD starting at 0x%llx (dma).", 928 (unsigned long long)xhci_trb_virt_to_dma( 929 td->start_seg, td->first_trb)); 930 list_del_init(&td->td_list); 931 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 932 if (!ring) { 933 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 934 td->urb, td->urb->stream_id); 935 continue; 936 } 937 /* 938 * If ring stopped on the TD we need to cancel, then we have to 939 * move the xHC endpoint ring dequeue pointer past this TD. 940 */ 941 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 942 td->urb->stream_id); 943 hw_deq &= ~0xf; 944 945 if (trb_in_td(xhci, td->start_seg, td->first_trb, 946 td->last_trb, hw_deq, false)) { 947 switch (td->cancel_status) { 948 case TD_CLEARED: /* TD is already no-op */ 949 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 950 break; 951 case TD_DIRTY: /* TD is cached, clear it */ 952 case TD_HALTED: 953 /* FIXME stream case, several stopped rings */ 954 cached_td = td; 955 break; 956 } 957 } else { 958 td_to_noop(xhci, ring, td, false); 959 td->cancel_status = TD_CLEARED; 960 } 961 } 962 if (cached_td) { 963 cached_td->cancel_status = TD_CLEARING_CACHE; 964 965 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 966 cached_td->urb->stream_id, 967 cached_td); 968 /* Failed to move past cached td, try just setting it noop */ 969 if (err) { 970 td_to_noop(xhci, ring, cached_td, false); 971 cached_td->cancel_status = TD_CLEARED; 972 } 973 cached_td = NULL; 974 } 975 return 0; 976 } 977 978 /* 979 * Returns the TD the endpoint ring halted on. 980 * Only call for non-running rings without streams. 981 */ 982 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 983 { 984 struct xhci_td *td; 985 u64 hw_deq; 986 987 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 988 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 989 hw_deq &= ~0xf; 990 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 991 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 992 td->last_trb, hw_deq, false)) 993 return td; 994 } 995 return NULL; 996 } 997 998 /* 999 * When we get a command completion for a Stop Endpoint Command, we need to 1000 * unlink any cancelled TDs from the ring. There are two ways to do that: 1001 * 1002 * 1. If the HW was in the middle of processing the TD that needs to be 1003 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1004 * in the TD with a Set Dequeue Pointer Command. 1005 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1006 * bit cleared) so that the HW will skip over them. 1007 */ 1008 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1009 union xhci_trb *trb, u32 comp_code) 1010 { 1011 unsigned int ep_index; 1012 struct xhci_virt_ep *ep; 1013 struct xhci_ep_ctx *ep_ctx; 1014 struct xhci_td *td = NULL; 1015 enum xhci_ep_reset_type reset_type; 1016 struct xhci_command *command; 1017 1018 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1019 if (!xhci->devs[slot_id]) 1020 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1021 slot_id); 1022 return; 1023 } 1024 1025 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1026 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1027 if (!ep) 1028 return; 1029 1030 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1031 1032 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1033 1034 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1035 /* 1036 * If stop endpoint command raced with a halting endpoint we need to 1037 * reset the host side endpoint first. 1038 * If the TD we halted on isn't cancelled the TD should be given back 1039 * with a proper error code, and the ring dequeue moved past the TD. 1040 * If streams case we can't find hw_deq, or the TD we halted on so do a 1041 * soft reset. 1042 * 1043 * Proper error code is unknown here, it would be -EPIPE if device side 1044 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1045 * We use -EPROTO, if device is stalled it should return a stall error on 1046 * next transfer, which then will return -EPIPE, and device side stall is 1047 * noted and cleared by class driver. 1048 */ 1049 switch (GET_EP_CTX_STATE(ep_ctx)) { 1050 case EP_STATE_HALTED: 1051 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1052 if (ep->ep_state & EP_HAS_STREAMS) { 1053 reset_type = EP_SOFT_RESET; 1054 } else { 1055 reset_type = EP_HARD_RESET; 1056 td = find_halted_td(ep); 1057 if (td) 1058 td->status = -EPROTO; 1059 } 1060 /* reset ep, reset handler cleans up cancelled tds */ 1061 xhci_handle_halted_endpoint(xhci, ep, 0, td, reset_type); 1062 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1063 return; 1064 case EP_STATE_RUNNING: 1065 /* Race, HW handled stop ep cmd before ep was running */ 1066 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1067 if (!command) 1068 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1069 1070 mod_timer(&ep->stop_cmd_timer, 1071 jiffies + XHCI_STOP_EP_CMD_TIMEOUT * HZ); 1072 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1073 xhci_ring_cmd_db(xhci); 1074 1075 return; 1076 default: 1077 break; 1078 } 1079 } 1080 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1081 xhci_invalidate_cancelled_tds(ep); 1082 xhci_stop_watchdog_timer_in_irq(xhci, ep); 1083 1084 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1085 xhci_giveback_invalidated_tds(ep); 1086 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1087 } 1088 1089 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1090 { 1091 struct xhci_td *cur_td; 1092 struct xhci_td *tmp; 1093 1094 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1095 list_del_init(&cur_td->td_list); 1096 1097 if (!list_empty(&cur_td->cancelled_td_list)) 1098 list_del_init(&cur_td->cancelled_td_list); 1099 1100 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1101 1102 inc_td_cnt(cur_td->urb); 1103 if (last_td_in_urb(cur_td)) 1104 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1105 } 1106 } 1107 1108 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1109 int slot_id, int ep_index) 1110 { 1111 struct xhci_td *cur_td; 1112 struct xhci_td *tmp; 1113 struct xhci_virt_ep *ep; 1114 struct xhci_ring *ring; 1115 1116 ep = &xhci->devs[slot_id]->eps[ep_index]; 1117 if ((ep->ep_state & EP_HAS_STREAMS) || 1118 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1119 int stream_id; 1120 1121 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1122 stream_id++) { 1123 ring = ep->stream_info->stream_rings[stream_id]; 1124 if (!ring) 1125 continue; 1126 1127 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1128 "Killing URBs for slot ID %u, ep index %u, stream %u", 1129 slot_id, ep_index, stream_id); 1130 xhci_kill_ring_urbs(xhci, ring); 1131 } 1132 } else { 1133 ring = ep->ring; 1134 if (!ring) 1135 return; 1136 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1137 "Killing URBs for slot ID %u, ep index %u", 1138 slot_id, ep_index); 1139 xhci_kill_ring_urbs(xhci, ring); 1140 } 1141 1142 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1143 cancelled_td_list) { 1144 list_del_init(&cur_td->cancelled_td_list); 1145 inc_td_cnt(cur_td->urb); 1146 1147 if (last_td_in_urb(cur_td)) 1148 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1149 } 1150 } 1151 1152 /* 1153 * host controller died, register read returns 0xffffffff 1154 * Complete pending commands, mark them ABORTED. 1155 * URBs need to be given back as usb core might be waiting with device locks 1156 * held for the URBs to finish during device disconnect, blocking host remove. 1157 * 1158 * Call with xhci->lock held. 1159 * lock is relased and re-acquired while giving back urb. 1160 */ 1161 void xhci_hc_died(struct xhci_hcd *xhci) 1162 { 1163 int i, j; 1164 1165 if (xhci->xhc_state & XHCI_STATE_DYING) 1166 return; 1167 1168 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1169 xhci->xhc_state |= XHCI_STATE_DYING; 1170 1171 xhci_cleanup_command_queue(xhci); 1172 1173 /* return any pending urbs, remove may be waiting for them */ 1174 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1175 if (!xhci->devs[i]) 1176 continue; 1177 for (j = 0; j < 31; j++) 1178 xhci_kill_endpoint_urbs(xhci, i, j); 1179 } 1180 1181 /* inform usb core hc died if PCI remove isn't already handling it */ 1182 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1183 usb_hc_died(xhci_to_hcd(xhci)); 1184 } 1185 1186 /* Watchdog timer function for when a stop endpoint command fails to complete. 1187 * In this case, we assume the host controller is broken or dying or dead. The 1188 * host may still be completing some other events, so we have to be careful to 1189 * let the event ring handler and the URB dequeueing/enqueueing functions know 1190 * through xhci->state. 1191 * 1192 * The timer may also fire if the host takes a very long time to respond to the 1193 * command, and the stop endpoint command completion handler cannot delete the 1194 * timer before the timer function is called. Another endpoint cancellation may 1195 * sneak in before the timer function can grab the lock, and that may queue 1196 * another stop endpoint command and add the timer back. So we cannot use a 1197 * simple flag to say whether there is a pending stop endpoint command for a 1198 * particular endpoint. 1199 * 1200 * Instead we use a combination of that flag and checking if a new timer is 1201 * pending. 1202 */ 1203 void xhci_stop_endpoint_command_watchdog(struct timer_list *t) 1204 { 1205 struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); 1206 struct xhci_hcd *xhci = ep->xhci; 1207 unsigned long flags; 1208 u32 usbsts; 1209 1210 spin_lock_irqsave(&xhci->lock, flags); 1211 1212 /* bail out if cmd completed but raced with stop ep watchdog timer.*/ 1213 if (!(ep->ep_state & EP_STOP_CMD_PENDING) || 1214 timer_pending(&ep->stop_cmd_timer)) { 1215 spin_unlock_irqrestore(&xhci->lock, flags); 1216 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); 1217 return; 1218 } 1219 usbsts = readl(&xhci->op_regs->status); 1220 1221 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 1222 xhci_warn(xhci, "USBSTS:%s\n", xhci_decode_usbsts(usbsts)); 1223 1224 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1225 1226 xhci_halt(xhci); 1227 1228 /* 1229 * handle a stop endpoint cmd timeout as if host died (-ENODEV). 1230 * In the future we could distinguish between -ENODEV and -ETIMEDOUT 1231 * and try to recover a -ETIMEDOUT with a host controller reset 1232 */ 1233 xhci_hc_died(xhci); 1234 1235 spin_unlock_irqrestore(&xhci->lock, flags); 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1237 "xHCI host controller is dead."); 1238 } 1239 1240 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1241 struct xhci_virt_device *dev, 1242 struct xhci_ring *ep_ring, 1243 unsigned int ep_index) 1244 { 1245 union xhci_trb *dequeue_temp; 1246 int num_trbs_free_temp; 1247 bool revert = false; 1248 1249 num_trbs_free_temp = ep_ring->num_trbs_free; 1250 dequeue_temp = ep_ring->dequeue; 1251 1252 /* If we get two back-to-back stalls, and the first stalled transfer 1253 * ends just before a link TRB, the dequeue pointer will be left on 1254 * the link TRB by the code in the while loop. So we have to update 1255 * the dequeue pointer one segment further, or we'll jump off 1256 * the segment into la-la-land. 1257 */ 1258 if (trb_is_link(ep_ring->dequeue)) { 1259 ep_ring->deq_seg = ep_ring->deq_seg->next; 1260 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1261 } 1262 1263 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1264 /* We have more usable TRBs */ 1265 ep_ring->num_trbs_free++; 1266 ep_ring->dequeue++; 1267 if (trb_is_link(ep_ring->dequeue)) { 1268 if (ep_ring->dequeue == 1269 dev->eps[ep_index].queued_deq_ptr) 1270 break; 1271 ep_ring->deq_seg = ep_ring->deq_seg->next; 1272 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1273 } 1274 if (ep_ring->dequeue == dequeue_temp) { 1275 revert = true; 1276 break; 1277 } 1278 } 1279 1280 if (revert) { 1281 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1282 ep_ring->num_trbs_free = num_trbs_free_temp; 1283 } 1284 } 1285 1286 /* 1287 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1288 * we need to clear the set deq pending flag in the endpoint ring state, so that 1289 * the TD queueing code can ring the doorbell again. We also need to ring the 1290 * endpoint doorbell to restart the ring, but only if there aren't more 1291 * cancellations pending. 1292 */ 1293 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1294 union xhci_trb *trb, u32 cmd_comp_code) 1295 { 1296 unsigned int ep_index; 1297 unsigned int stream_id; 1298 struct xhci_ring *ep_ring; 1299 struct xhci_virt_ep *ep; 1300 struct xhci_ep_ctx *ep_ctx; 1301 struct xhci_slot_ctx *slot_ctx; 1302 struct xhci_td *td, *tmp_td; 1303 1304 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1305 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1306 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1307 if (!ep) 1308 return; 1309 1310 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1311 if (!ep_ring) { 1312 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1313 stream_id); 1314 /* XXX: Harmless??? */ 1315 goto cleanup; 1316 } 1317 1318 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1319 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1320 trace_xhci_handle_cmd_set_deq(slot_ctx); 1321 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1322 1323 if (cmd_comp_code != COMP_SUCCESS) { 1324 unsigned int ep_state; 1325 unsigned int slot_state; 1326 1327 switch (cmd_comp_code) { 1328 case COMP_TRB_ERROR: 1329 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1330 break; 1331 case COMP_CONTEXT_STATE_ERROR: 1332 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1333 ep_state = GET_EP_CTX_STATE(ep_ctx); 1334 slot_state = le32_to_cpu(slot_ctx->dev_state); 1335 slot_state = GET_SLOT_STATE(slot_state); 1336 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1337 "Slot state = %u, EP state = %u", 1338 slot_state, ep_state); 1339 break; 1340 case COMP_SLOT_NOT_ENABLED_ERROR: 1341 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1342 slot_id); 1343 break; 1344 default: 1345 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1346 cmd_comp_code); 1347 break; 1348 } 1349 /* OK what do we do now? The endpoint state is hosed, and we 1350 * should never get to this point if the synchronization between 1351 * queueing, and endpoint state are correct. This might happen 1352 * if the device gets disconnected after we've finished 1353 * cancelling URBs, which might not be an error... 1354 */ 1355 } else { 1356 u64 deq; 1357 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1358 if (ep->ep_state & EP_HAS_STREAMS) { 1359 struct xhci_stream_ctx *ctx = 1360 &ep->stream_info->stream_ctx_array[stream_id]; 1361 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1362 } else { 1363 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1364 } 1365 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1366 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1367 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1368 ep->queued_deq_ptr) == deq) { 1369 /* Update the ring's dequeue segment and dequeue pointer 1370 * to reflect the new position. 1371 */ 1372 update_ring_for_set_deq_completion(xhci, ep->vdev, 1373 ep_ring, ep_index); 1374 } else { 1375 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1376 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1377 ep->queued_deq_seg, ep->queued_deq_ptr); 1378 } 1379 } 1380 /* HW cached TDs cleared from cache, give them back */ 1381 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1382 cancelled_td_list) { 1383 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1384 if (td->cancel_status == TD_CLEARING_CACHE) { 1385 td->cancel_status = TD_CLEARED; 1386 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1387 } 1388 } 1389 cleanup: 1390 ep->ep_state &= ~SET_DEQ_PENDING; 1391 ep->queued_deq_seg = NULL; 1392 ep->queued_deq_ptr = NULL; 1393 /* Restart any rings with pending URBs */ 1394 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1395 } 1396 1397 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1398 union xhci_trb *trb, u32 cmd_comp_code) 1399 { 1400 struct xhci_virt_ep *ep; 1401 struct xhci_ep_ctx *ep_ctx; 1402 unsigned int ep_index; 1403 1404 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1405 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1406 if (!ep) 1407 return; 1408 1409 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1410 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1411 1412 /* This command will only fail if the endpoint wasn't halted, 1413 * but we don't care. 1414 */ 1415 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1416 "Ignoring reset ep completion code of %u", cmd_comp_code); 1417 1418 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1419 xhci_invalidate_cancelled_tds(ep); 1420 1421 if (xhci->quirks & XHCI_RESET_EP_QUIRK) 1422 xhci_dbg(xhci, "Note: Removed workaround to queue config ep for this hw"); 1423 /* Clear our internal halted state */ 1424 ep->ep_state &= ~EP_HALTED; 1425 1426 xhci_giveback_invalidated_tds(ep); 1427 1428 /* if this was a soft reset, then restart */ 1429 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1430 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1431 } 1432 1433 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1434 struct xhci_command *command, u32 cmd_comp_code) 1435 { 1436 if (cmd_comp_code == COMP_SUCCESS) 1437 command->slot_id = slot_id; 1438 else 1439 command->slot_id = 0; 1440 } 1441 1442 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1443 { 1444 struct xhci_virt_device *virt_dev; 1445 struct xhci_slot_ctx *slot_ctx; 1446 1447 virt_dev = xhci->devs[slot_id]; 1448 if (!virt_dev) 1449 return; 1450 1451 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1452 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1453 1454 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1455 /* Delete default control endpoint resources */ 1456 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1457 xhci_free_virt_device(xhci, slot_id); 1458 } 1459 1460 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1461 u32 cmd_comp_code) 1462 { 1463 struct xhci_virt_device *virt_dev; 1464 struct xhci_input_control_ctx *ctrl_ctx; 1465 struct xhci_ep_ctx *ep_ctx; 1466 unsigned int ep_index; 1467 unsigned int ep_state; 1468 u32 add_flags, drop_flags; 1469 1470 /* 1471 * Configure endpoint commands can come from the USB core 1472 * configuration or alt setting changes, or because the HW 1473 * needed an extra configure endpoint command after a reset 1474 * endpoint command or streams were being configured. 1475 * If the command was for a halted endpoint, the xHCI driver 1476 * is not waiting on the configure endpoint command. 1477 */ 1478 virt_dev = xhci->devs[slot_id]; 1479 if (!virt_dev) 1480 return; 1481 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1482 if (!ctrl_ctx) { 1483 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1484 return; 1485 } 1486 1487 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1488 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1489 /* Input ctx add_flags are the endpoint index plus one */ 1490 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1491 1492 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1493 trace_xhci_handle_cmd_config_ep(ep_ctx); 1494 1495 /* A usb_set_interface() call directly after clearing a halted 1496 * condition may race on this quirky hardware. Not worth 1497 * worrying about, since this is prototype hardware. Not sure 1498 * if this will work for streams, but streams support was 1499 * untested on this prototype. 1500 */ 1501 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1502 ep_index != (unsigned int) -1 && 1503 add_flags - SLOT_FLAG == drop_flags) { 1504 ep_state = virt_dev->eps[ep_index].ep_state; 1505 if (!(ep_state & EP_HALTED)) 1506 return; 1507 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1508 "Completed config ep cmd - " 1509 "last ep index = %d, state = %d", 1510 ep_index, ep_state); 1511 /* Clear internal halted state and restart ring(s) */ 1512 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1513 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1514 return; 1515 } 1516 return; 1517 } 1518 1519 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1520 { 1521 struct xhci_virt_device *vdev; 1522 struct xhci_slot_ctx *slot_ctx; 1523 1524 vdev = xhci->devs[slot_id]; 1525 if (!vdev) 1526 return; 1527 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1528 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1529 } 1530 1531 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1532 { 1533 struct xhci_virt_device *vdev; 1534 struct xhci_slot_ctx *slot_ctx; 1535 1536 vdev = xhci->devs[slot_id]; 1537 if (!vdev) { 1538 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1539 slot_id); 1540 return; 1541 } 1542 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1543 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1544 1545 xhci_dbg(xhci, "Completed reset device command.\n"); 1546 } 1547 1548 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1549 struct xhci_event_cmd *event) 1550 { 1551 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1552 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1553 return; 1554 } 1555 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1556 "NEC firmware version %2x.%02x", 1557 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1558 NEC_FW_MINOR(le32_to_cpu(event->status))); 1559 } 1560 1561 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1562 { 1563 list_del(&cmd->cmd_list); 1564 1565 if (cmd->completion) { 1566 cmd->status = status; 1567 complete(cmd->completion); 1568 } else { 1569 kfree(cmd); 1570 } 1571 } 1572 1573 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1574 { 1575 struct xhci_command *cur_cmd, *tmp_cmd; 1576 xhci->current_cmd = NULL; 1577 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1578 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1579 } 1580 1581 void xhci_handle_command_timeout(struct work_struct *work) 1582 { 1583 struct xhci_hcd *xhci; 1584 unsigned long flags; 1585 u64 hw_ring_state; 1586 1587 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1588 1589 spin_lock_irqsave(&xhci->lock, flags); 1590 1591 /* 1592 * If timeout work is pending, or current_cmd is NULL, it means we 1593 * raced with command completion. Command is handled so just return. 1594 */ 1595 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1596 spin_unlock_irqrestore(&xhci->lock, flags); 1597 return; 1598 } 1599 /* mark this command to be cancelled */ 1600 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1601 1602 /* Make sure command ring is running before aborting it */ 1603 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1604 if (hw_ring_state == ~(u64)0) { 1605 xhci_hc_died(xhci); 1606 goto time_out_completed; 1607 } 1608 1609 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1610 (hw_ring_state & CMD_RING_RUNNING)) { 1611 /* Prevent new doorbell, and start command abort */ 1612 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1613 xhci_dbg(xhci, "Command timeout\n"); 1614 xhci_abort_cmd_ring(xhci, flags); 1615 goto time_out_completed; 1616 } 1617 1618 /* host removed. Bail out */ 1619 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1620 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1621 xhci_cleanup_command_queue(xhci); 1622 1623 goto time_out_completed; 1624 } 1625 1626 /* command timeout on stopped ring, ring can't be aborted */ 1627 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1628 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1629 1630 time_out_completed: 1631 spin_unlock_irqrestore(&xhci->lock, flags); 1632 return; 1633 } 1634 1635 static void handle_cmd_completion(struct xhci_hcd *xhci, 1636 struct xhci_event_cmd *event) 1637 { 1638 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1639 u64 cmd_dma; 1640 dma_addr_t cmd_dequeue_dma; 1641 u32 cmd_comp_code; 1642 union xhci_trb *cmd_trb; 1643 struct xhci_command *cmd; 1644 u32 cmd_type; 1645 1646 if (slot_id >= MAX_HC_SLOTS) { 1647 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1648 return; 1649 } 1650 1651 cmd_dma = le64_to_cpu(event->cmd_trb); 1652 cmd_trb = xhci->cmd_ring->dequeue; 1653 1654 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1655 1656 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1657 cmd_trb); 1658 /* 1659 * Check whether the completion event is for our internal kept 1660 * command. 1661 */ 1662 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1663 xhci_warn(xhci, 1664 "ERROR mismatched command completion event\n"); 1665 return; 1666 } 1667 1668 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1669 1670 cancel_delayed_work(&xhci->cmd_timer); 1671 1672 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1673 1674 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1675 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1676 complete_all(&xhci->cmd_ring_stop_completion); 1677 return; 1678 } 1679 1680 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1681 xhci_err(xhci, 1682 "Command completion event does not match command\n"); 1683 return; 1684 } 1685 1686 /* 1687 * Host aborted the command ring, check if the current command was 1688 * supposed to be aborted, otherwise continue normally. 1689 * The command ring is stopped now, but the xHC will issue a Command 1690 * Ring Stopped event which will cause us to restart it. 1691 */ 1692 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1693 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1694 if (cmd->status == COMP_COMMAND_ABORTED) { 1695 if (xhci->current_cmd == cmd) 1696 xhci->current_cmd = NULL; 1697 goto event_handled; 1698 } 1699 } 1700 1701 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1702 switch (cmd_type) { 1703 case TRB_ENABLE_SLOT: 1704 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1705 break; 1706 case TRB_DISABLE_SLOT: 1707 xhci_handle_cmd_disable_slot(xhci, slot_id); 1708 break; 1709 case TRB_CONFIG_EP: 1710 if (!cmd->completion) 1711 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1712 break; 1713 case TRB_EVAL_CONTEXT: 1714 break; 1715 case TRB_ADDR_DEV: 1716 xhci_handle_cmd_addr_dev(xhci, slot_id); 1717 break; 1718 case TRB_STOP_RING: 1719 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1720 le32_to_cpu(cmd_trb->generic.field[3]))); 1721 if (!cmd->completion) 1722 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1723 cmd_comp_code); 1724 break; 1725 case TRB_SET_DEQ: 1726 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1727 le32_to_cpu(cmd_trb->generic.field[3]))); 1728 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1729 break; 1730 case TRB_CMD_NOOP: 1731 /* Is this an aborted command turned to NO-OP? */ 1732 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1733 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1734 break; 1735 case TRB_RESET_EP: 1736 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1737 le32_to_cpu(cmd_trb->generic.field[3]))); 1738 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1739 break; 1740 case TRB_RESET_DEV: 1741 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1742 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1743 */ 1744 slot_id = TRB_TO_SLOT_ID( 1745 le32_to_cpu(cmd_trb->generic.field[3])); 1746 xhci_handle_cmd_reset_dev(xhci, slot_id); 1747 break; 1748 case TRB_NEC_GET_FW: 1749 xhci_handle_cmd_nec_get_fw(xhci, event); 1750 break; 1751 default: 1752 /* Skip over unknown commands on the event ring */ 1753 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1754 break; 1755 } 1756 1757 /* restart timer if this wasn't the last command */ 1758 if (!list_is_singular(&xhci->cmd_list)) { 1759 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1760 struct xhci_command, cmd_list); 1761 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 1762 } else if (xhci->current_cmd == cmd) { 1763 xhci->current_cmd = NULL; 1764 } 1765 1766 event_handled: 1767 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1768 1769 inc_deq(xhci, xhci->cmd_ring); 1770 } 1771 1772 static void handle_vendor_event(struct xhci_hcd *xhci, 1773 union xhci_trb *event, u32 trb_type) 1774 { 1775 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1776 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1777 handle_cmd_completion(xhci, &event->event_cmd); 1778 } 1779 1780 static void handle_device_notification(struct xhci_hcd *xhci, 1781 union xhci_trb *event) 1782 { 1783 u32 slot_id; 1784 struct usb_device *udev; 1785 1786 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1787 if (!xhci->devs[slot_id]) { 1788 xhci_warn(xhci, "Device Notification event for " 1789 "unused slot %u\n", slot_id); 1790 return; 1791 } 1792 1793 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1794 slot_id); 1795 udev = xhci->devs[slot_id]->udev; 1796 if (udev && udev->parent) 1797 usb_wakeup_notification(udev->parent, udev->portnum); 1798 } 1799 1800 /* 1801 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1802 * Controller. 1803 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1804 * If a connection to a USB 1 device is followed by another connection 1805 * to a USB 2 device. 1806 * 1807 * Reset the PHY after the USB device is disconnected if device speed 1808 * is less than HCD_USB3. 1809 * Retry the reset sequence max of 4 times checking the PLL lock status. 1810 * 1811 */ 1812 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1813 { 1814 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1815 u32 pll_lock_check; 1816 u32 retry_count = 4; 1817 1818 do { 1819 /* Assert PHY reset */ 1820 writel(0x6F, hcd->regs + 0x1048); 1821 udelay(10); 1822 /* De-assert the PHY reset */ 1823 writel(0x7F, hcd->regs + 0x1048); 1824 udelay(200); 1825 pll_lock_check = readl(hcd->regs + 0x1070); 1826 } while (!(pll_lock_check & 0x1) && --retry_count); 1827 } 1828 1829 static void handle_port_status(struct xhci_hcd *xhci, 1830 union xhci_trb *event) 1831 { 1832 struct usb_hcd *hcd; 1833 u32 port_id; 1834 u32 portsc, cmd_reg; 1835 int max_ports; 1836 int slot_id; 1837 unsigned int hcd_portnum; 1838 struct xhci_bus_state *bus_state; 1839 bool bogus_port_status = false; 1840 struct xhci_port *port; 1841 1842 /* Port status change events always have a successful completion code */ 1843 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1844 xhci_warn(xhci, 1845 "WARN: xHC returned failed port status event\n"); 1846 1847 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1848 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1849 1850 if ((port_id <= 0) || (port_id > max_ports)) { 1851 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1852 port_id); 1853 inc_deq(xhci, xhci->event_ring); 1854 return; 1855 } 1856 1857 port = &xhci->hw_ports[port_id - 1]; 1858 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1859 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1860 port_id); 1861 bogus_port_status = true; 1862 goto cleanup; 1863 } 1864 1865 /* We might get interrupts after shared_hcd is removed */ 1866 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1867 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1868 bogus_port_status = true; 1869 goto cleanup; 1870 } 1871 1872 hcd = port->rhub->hcd; 1873 bus_state = &port->rhub->bus_state; 1874 hcd_portnum = port->hcd_portnum; 1875 portsc = readl(port->addr); 1876 1877 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1878 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1879 1880 trace_xhci_handle_port_status(hcd_portnum, portsc); 1881 1882 if (hcd->state == HC_STATE_SUSPENDED) { 1883 xhci_dbg(xhci, "resume root hub\n"); 1884 usb_hcd_resume_root_hub(hcd); 1885 } 1886 1887 if (hcd->speed >= HCD_USB3 && 1888 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1889 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1890 if (slot_id && xhci->devs[slot_id]) 1891 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1892 } 1893 1894 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1895 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1896 1897 cmd_reg = readl(&xhci->op_regs->command); 1898 if (!(cmd_reg & CMD_RUN)) { 1899 xhci_warn(xhci, "xHC is not running.\n"); 1900 goto cleanup; 1901 } 1902 1903 if (DEV_SUPERSPEED_ANY(portsc)) { 1904 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1905 /* Set a flag to say the port signaled remote wakeup, 1906 * so we can tell the difference between the end of 1907 * device and host initiated resume. 1908 */ 1909 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1910 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1911 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1912 xhci_set_link_state(xhci, port, XDEV_U0); 1913 /* Need to wait until the next link state change 1914 * indicates the device is actually in U0. 1915 */ 1916 bogus_port_status = true; 1917 goto cleanup; 1918 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 1919 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1920 bus_state->resume_done[hcd_portnum] = jiffies + 1921 msecs_to_jiffies(USB_RESUME_TIMEOUT); 1922 set_bit(hcd_portnum, &bus_state->resuming_ports); 1923 /* Do the rest in GetPortStatus after resume time delay. 1924 * Avoid polling roothub status before that so that a 1925 * usb device auto-resume latency around ~40ms. 1926 */ 1927 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1928 mod_timer(&hcd->rh_timer, 1929 bus_state->resume_done[hcd_portnum]); 1930 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1931 bogus_port_status = true; 1932 } 1933 } 1934 1935 if ((portsc & PORT_PLC) && 1936 DEV_SUPERSPEED_ANY(portsc) && 1937 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 1938 (portsc & PORT_PLS_MASK) == XDEV_U1 || 1939 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 1940 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1941 complete(&bus_state->u3exit_done[hcd_portnum]); 1942 /* We've just brought the device into U0/1/2 through either the 1943 * Resume state after a device remote wakeup, or through the 1944 * U3Exit state after a host-initiated resume. If it's a device 1945 * initiated remote wake, don't pass up the link state change, 1946 * so the roothub behavior is consistent with external 1947 * USB 3.0 hub behavior. 1948 */ 1949 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1950 if (slot_id && xhci->devs[slot_id]) 1951 xhci_ring_device(xhci, slot_id); 1952 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 1953 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1954 usb_wakeup_notification(hcd->self.root_hub, 1955 hcd_portnum + 1); 1956 bogus_port_status = true; 1957 goto cleanup; 1958 } 1959 } 1960 1961 /* 1962 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1963 * RExit to a disconnect state). If so, let the the driver know it's 1964 * out of the RExit state. 1965 */ 1966 if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && 1967 test_and_clear_bit(hcd_portnum, 1968 &bus_state->rexit_ports)) { 1969 complete(&bus_state->rexit_done[hcd_portnum]); 1970 bogus_port_status = true; 1971 goto cleanup; 1972 } 1973 1974 if (hcd->speed < HCD_USB3) { 1975 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1976 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 1977 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 1978 xhci_cavium_reset_phy_quirk(xhci); 1979 } 1980 1981 cleanup: 1982 /* Update event ring dequeue pointer before dropping the lock */ 1983 inc_deq(xhci, xhci->event_ring); 1984 1985 /* Don't make the USB core poll the roothub if we got a bad port status 1986 * change event. Besides, at that point we can't tell which roothub 1987 * (USB 2.0 or USB 3.0) to kick. 1988 */ 1989 if (bogus_port_status) 1990 return; 1991 1992 /* 1993 * xHCI port-status-change events occur when the "or" of all the 1994 * status-change bits in the portsc register changes from 0 to 1. 1995 * New status changes won't cause an event if any other change 1996 * bits are still set. When an event occurs, switch over to 1997 * polling to avoid losing status changes. 1998 */ 1999 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 2000 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2001 spin_unlock(&xhci->lock); 2002 /* Pass this up to the core */ 2003 usb_hcd_poll_rh_status(hcd); 2004 spin_lock(&xhci->lock); 2005 } 2006 2007 /* 2008 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2009 * at end_trb, which may be in another segment. If the suspect DMA address is a 2010 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2011 * returns 0. 2012 */ 2013 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2014 struct xhci_segment *start_seg, 2015 union xhci_trb *start_trb, 2016 union xhci_trb *end_trb, 2017 dma_addr_t suspect_dma, 2018 bool debug) 2019 { 2020 dma_addr_t start_dma; 2021 dma_addr_t end_seg_dma; 2022 dma_addr_t end_trb_dma; 2023 struct xhci_segment *cur_seg; 2024 2025 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2026 cur_seg = start_seg; 2027 2028 do { 2029 if (start_dma == 0) 2030 return NULL; 2031 /* We may get an event for a Link TRB in the middle of a TD */ 2032 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2033 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2034 /* If the end TRB isn't in this segment, this is set to 0 */ 2035 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2036 2037 if (debug) 2038 xhci_warn(xhci, 2039 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2040 (unsigned long long)suspect_dma, 2041 (unsigned long long)start_dma, 2042 (unsigned long long)end_trb_dma, 2043 (unsigned long long)cur_seg->dma, 2044 (unsigned long long)end_seg_dma); 2045 2046 if (end_trb_dma > 0) { 2047 /* The end TRB is in this segment, so suspect should be here */ 2048 if (start_dma <= end_trb_dma) { 2049 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2050 return cur_seg; 2051 } else { 2052 /* Case for one segment with 2053 * a TD wrapped around to the top 2054 */ 2055 if ((suspect_dma >= start_dma && 2056 suspect_dma <= end_seg_dma) || 2057 (suspect_dma >= cur_seg->dma && 2058 suspect_dma <= end_trb_dma)) 2059 return cur_seg; 2060 } 2061 return NULL; 2062 } else { 2063 /* Might still be somewhere in this segment */ 2064 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2065 return cur_seg; 2066 } 2067 cur_seg = cur_seg->next; 2068 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2069 } while (cur_seg != start_seg); 2070 2071 return NULL; 2072 } 2073 2074 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2075 struct xhci_virt_ep *ep) 2076 { 2077 /* 2078 * As part of low/full-speed endpoint-halt processing 2079 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2080 */ 2081 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2082 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2083 !(ep->ep_state & EP_CLEARING_TT)) { 2084 ep->ep_state |= EP_CLEARING_TT; 2085 td->urb->ep->hcpriv = td->urb->dev; 2086 if (usb_hub_clear_tt_buffer(td->urb)) 2087 ep->ep_state &= ~EP_CLEARING_TT; 2088 } 2089 } 2090 2091 /* Check if an error has halted the endpoint ring. The class driver will 2092 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2093 * However, a babble and other errors also halt the endpoint ring, and the class 2094 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2095 * Ring Dequeue Pointer command manually. 2096 */ 2097 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2098 struct xhci_ep_ctx *ep_ctx, 2099 unsigned int trb_comp_code) 2100 { 2101 /* TRB completion codes that may require a manual halt cleanup */ 2102 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2103 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2104 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2105 /* The 0.95 spec says a babbling control endpoint 2106 * is not halted. The 0.96 spec says it is. Some HW 2107 * claims to be 0.95 compliant, but it halts the control 2108 * endpoint anyway. Check if a babble halted the 2109 * endpoint. 2110 */ 2111 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2112 return 1; 2113 2114 return 0; 2115 } 2116 2117 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2118 { 2119 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2120 /* Vendor defined "informational" completion code, 2121 * treat as not-an-error. 2122 */ 2123 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2124 trb_comp_code); 2125 xhci_dbg(xhci, "Treating code as success.\n"); 2126 return 1; 2127 } 2128 return 0; 2129 } 2130 2131 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2132 struct xhci_ring *ep_ring, struct xhci_td *td, 2133 u32 trb_comp_code) 2134 { 2135 struct xhci_ep_ctx *ep_ctx; 2136 2137 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2138 2139 switch (trb_comp_code) { 2140 case COMP_STOPPED_LENGTH_INVALID: 2141 case COMP_STOPPED_SHORT_PACKET: 2142 case COMP_STOPPED: 2143 /* 2144 * The "Stop Endpoint" completion will take care of any 2145 * stopped TDs. A stopped TD may be restarted, so don't update 2146 * the ring dequeue pointer or take this TD off any lists yet. 2147 */ 2148 return 0; 2149 case COMP_USB_TRANSACTION_ERROR: 2150 case COMP_BABBLE_DETECTED_ERROR: 2151 case COMP_SPLIT_TRANSACTION_ERROR: 2152 /* 2153 * If endpoint context state is not halted we might be 2154 * racing with a reset endpoint command issued by a unsuccessful 2155 * stop endpoint completion (context error). In that case the 2156 * td should be on the cancelled list, and EP_HALTED flag set. 2157 * 2158 * Or then it's not halted due to the 0.95 spec stating that a 2159 * babbling control endpoint should not halt. The 0.96 spec 2160 * again says it should. Some HW claims to be 0.95 compliant, 2161 * but it halts the control endpoint anyway. 2162 */ 2163 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2164 /* 2165 * If EP_HALTED is set and TD is on the cancelled list 2166 * the TD and dequeue pointer will be handled by reset 2167 * ep command completion 2168 */ 2169 if ((ep->ep_state & EP_HALTED) && 2170 !list_empty(&td->cancelled_td_list)) { 2171 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2172 (unsigned long long)xhci_trb_virt_to_dma( 2173 td->start_seg, td->first_trb)); 2174 return 0; 2175 } 2176 /* endpoint not halted, don't reset it */ 2177 break; 2178 } 2179 /* Almost same procedure as for STALL_ERROR below */ 2180 xhci_clear_hub_tt_buffer(xhci, td, ep); 2181 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2182 EP_HARD_RESET); 2183 return 0; 2184 case COMP_STALL_ERROR: 2185 /* 2186 * xhci internal endpoint state will go to a "halt" state for 2187 * any stall, including default control pipe protocol stall. 2188 * To clear the host side halt we need to issue a reset endpoint 2189 * command, followed by a set dequeue command to move past the 2190 * TD. 2191 * Class drivers clear the device side halt from a functional 2192 * stall later. Hub TT buffer should only be cleared for FS/LS 2193 * devices behind HS hubs for functional stalls. 2194 */ 2195 if (ep->ep_index != 0) 2196 xhci_clear_hub_tt_buffer(xhci, td, ep); 2197 2198 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2199 EP_HARD_RESET); 2200 2201 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2202 default: 2203 break; 2204 } 2205 2206 /* Update ring dequeue pointer */ 2207 ep_ring->dequeue = td->last_trb; 2208 ep_ring->deq_seg = td->last_trb_seg; 2209 ep_ring->num_trbs_free += td->num_trbs - 1; 2210 inc_deq(xhci, ep_ring); 2211 2212 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2213 } 2214 2215 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2216 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2217 union xhci_trb *stop_trb) 2218 { 2219 u32 sum; 2220 union xhci_trb *trb = ring->dequeue; 2221 struct xhci_segment *seg = ring->deq_seg; 2222 2223 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2224 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2225 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2226 } 2227 return sum; 2228 } 2229 2230 /* 2231 * Process control tds, update urb status and actual_length. 2232 */ 2233 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2234 struct xhci_ring *ep_ring, struct xhci_td *td, 2235 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2236 { 2237 struct xhci_ep_ctx *ep_ctx; 2238 u32 trb_comp_code; 2239 u32 remaining, requested; 2240 u32 trb_type; 2241 2242 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2243 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2244 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2245 requested = td->urb->transfer_buffer_length; 2246 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2247 2248 switch (trb_comp_code) { 2249 case COMP_SUCCESS: 2250 if (trb_type != TRB_STATUS) { 2251 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2252 (trb_type == TRB_DATA) ? "data" : "setup"); 2253 td->status = -ESHUTDOWN; 2254 break; 2255 } 2256 td->status = 0; 2257 break; 2258 case COMP_SHORT_PACKET: 2259 td->status = 0; 2260 break; 2261 case COMP_STOPPED_SHORT_PACKET: 2262 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2263 td->urb->actual_length = remaining; 2264 else 2265 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2266 goto finish_td; 2267 case COMP_STOPPED: 2268 switch (trb_type) { 2269 case TRB_SETUP: 2270 td->urb->actual_length = 0; 2271 goto finish_td; 2272 case TRB_DATA: 2273 case TRB_NORMAL: 2274 td->urb->actual_length = requested - remaining; 2275 goto finish_td; 2276 case TRB_STATUS: 2277 td->urb->actual_length = requested; 2278 goto finish_td; 2279 default: 2280 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2281 trb_type); 2282 goto finish_td; 2283 } 2284 case COMP_STOPPED_LENGTH_INVALID: 2285 goto finish_td; 2286 default: 2287 if (!xhci_requires_manual_halt_cleanup(xhci, 2288 ep_ctx, trb_comp_code)) 2289 break; 2290 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2291 trb_comp_code, ep->ep_index); 2292 fallthrough; 2293 case COMP_STALL_ERROR: 2294 /* Did we transfer part of the data (middle) phase? */ 2295 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2296 td->urb->actual_length = requested - remaining; 2297 else if (!td->urb_length_set) 2298 td->urb->actual_length = 0; 2299 goto finish_td; 2300 } 2301 2302 /* stopped at setup stage, no data transferred */ 2303 if (trb_type == TRB_SETUP) 2304 goto finish_td; 2305 2306 /* 2307 * if on data stage then update the actual_length of the URB and flag it 2308 * as set, so it won't be overwritten in the event for the last TRB. 2309 */ 2310 if (trb_type == TRB_DATA || 2311 trb_type == TRB_NORMAL) { 2312 td->urb_length_set = true; 2313 td->urb->actual_length = requested - remaining; 2314 xhci_dbg(xhci, "Waiting for status stage event\n"); 2315 return 0; 2316 } 2317 2318 /* at status stage */ 2319 if (!td->urb_length_set) 2320 td->urb->actual_length = requested; 2321 2322 finish_td: 2323 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2324 } 2325 2326 /* 2327 * Process isochronous tds, update urb packet status and actual_length. 2328 */ 2329 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2330 struct xhci_ring *ep_ring, struct xhci_td *td, 2331 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2332 { 2333 struct urb_priv *urb_priv; 2334 int idx; 2335 struct usb_iso_packet_descriptor *frame; 2336 u32 trb_comp_code; 2337 bool sum_trbs_for_length = false; 2338 u32 remaining, requested, ep_trb_len; 2339 int short_framestatus; 2340 2341 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2342 urb_priv = td->urb->hcpriv; 2343 idx = urb_priv->num_tds_done; 2344 frame = &td->urb->iso_frame_desc[idx]; 2345 requested = frame->length; 2346 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2347 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2348 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2349 -EREMOTEIO : 0; 2350 2351 /* handle completion code */ 2352 switch (trb_comp_code) { 2353 case COMP_SUCCESS: 2354 if (remaining) { 2355 frame->status = short_framestatus; 2356 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2357 sum_trbs_for_length = true; 2358 break; 2359 } 2360 frame->status = 0; 2361 break; 2362 case COMP_SHORT_PACKET: 2363 frame->status = short_framestatus; 2364 sum_trbs_for_length = true; 2365 break; 2366 case COMP_BANDWIDTH_OVERRUN_ERROR: 2367 frame->status = -ECOMM; 2368 break; 2369 case COMP_ISOCH_BUFFER_OVERRUN: 2370 case COMP_BABBLE_DETECTED_ERROR: 2371 frame->status = -EOVERFLOW; 2372 break; 2373 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2374 case COMP_STALL_ERROR: 2375 frame->status = -EPROTO; 2376 break; 2377 case COMP_USB_TRANSACTION_ERROR: 2378 frame->status = -EPROTO; 2379 if (ep_trb != td->last_trb) 2380 return 0; 2381 break; 2382 case COMP_STOPPED: 2383 sum_trbs_for_length = true; 2384 break; 2385 case COMP_STOPPED_SHORT_PACKET: 2386 /* field normally containing residue now contains tranferred */ 2387 frame->status = short_framestatus; 2388 requested = remaining; 2389 break; 2390 case COMP_STOPPED_LENGTH_INVALID: 2391 requested = 0; 2392 remaining = 0; 2393 break; 2394 default: 2395 sum_trbs_for_length = true; 2396 frame->status = -1; 2397 break; 2398 } 2399 2400 if (sum_trbs_for_length) 2401 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2402 ep_trb_len - remaining; 2403 else 2404 frame->actual_length = requested; 2405 2406 td->urb->actual_length += frame->actual_length; 2407 2408 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2409 } 2410 2411 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2412 struct xhci_virt_ep *ep, int status) 2413 { 2414 struct urb_priv *urb_priv; 2415 struct usb_iso_packet_descriptor *frame; 2416 int idx; 2417 2418 urb_priv = td->urb->hcpriv; 2419 idx = urb_priv->num_tds_done; 2420 frame = &td->urb->iso_frame_desc[idx]; 2421 2422 /* The transfer is partly done. */ 2423 frame->status = -EXDEV; 2424 2425 /* calc actual length */ 2426 frame->actual_length = 0; 2427 2428 /* Update ring dequeue pointer */ 2429 ep->ring->dequeue = td->last_trb; 2430 ep->ring->deq_seg = td->last_trb_seg; 2431 ep->ring->num_trbs_free += td->num_trbs - 1; 2432 inc_deq(xhci, ep->ring); 2433 2434 return xhci_td_cleanup(xhci, td, ep->ring, status); 2435 } 2436 2437 /* 2438 * Process bulk and interrupt tds, update urb status and actual_length. 2439 */ 2440 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2441 struct xhci_ring *ep_ring, struct xhci_td *td, 2442 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2443 { 2444 struct xhci_slot_ctx *slot_ctx; 2445 u32 trb_comp_code; 2446 u32 remaining, requested, ep_trb_len; 2447 2448 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2449 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2450 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2451 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2452 requested = td->urb->transfer_buffer_length; 2453 2454 switch (trb_comp_code) { 2455 case COMP_SUCCESS: 2456 ep_ring->err_count = 0; 2457 /* handle success with untransferred data as short packet */ 2458 if (ep_trb != td->last_trb || remaining) { 2459 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2460 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2461 td->urb->ep->desc.bEndpointAddress, 2462 requested, remaining); 2463 } 2464 td->status = 0; 2465 break; 2466 case COMP_SHORT_PACKET: 2467 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2468 td->urb->ep->desc.bEndpointAddress, 2469 requested, remaining); 2470 td->status = 0; 2471 break; 2472 case COMP_STOPPED_SHORT_PACKET: 2473 td->urb->actual_length = remaining; 2474 goto finish_td; 2475 case COMP_STOPPED_LENGTH_INVALID: 2476 /* stopped on ep trb with invalid length, exclude it */ 2477 ep_trb_len = 0; 2478 remaining = 0; 2479 break; 2480 case COMP_USB_TRANSACTION_ERROR: 2481 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2482 (ep_ring->err_count++ > MAX_SOFT_RETRY) || 2483 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2484 break; 2485 2486 td->status = 0; 2487 2488 xhci_handle_halted_endpoint(xhci, ep, ep_ring->stream_id, td, 2489 EP_SOFT_RESET); 2490 return 0; 2491 default: 2492 /* do nothing */ 2493 break; 2494 } 2495 2496 if (ep_trb == td->last_trb) 2497 td->urb->actual_length = requested - remaining; 2498 else 2499 td->urb->actual_length = 2500 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2501 ep_trb_len - remaining; 2502 finish_td: 2503 if (remaining > requested) { 2504 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2505 remaining); 2506 td->urb->actual_length = 0; 2507 } 2508 2509 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2510 } 2511 2512 /* 2513 * If this function returns an error condition, it means it got a Transfer 2514 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2515 * At this point, the host controller is probably hosed and should be reset. 2516 */ 2517 static int handle_tx_event(struct xhci_hcd *xhci, 2518 struct xhci_transfer_event *event) 2519 { 2520 struct xhci_virt_ep *ep; 2521 struct xhci_ring *ep_ring; 2522 unsigned int slot_id; 2523 int ep_index; 2524 struct xhci_td *td = NULL; 2525 dma_addr_t ep_trb_dma; 2526 struct xhci_segment *ep_seg; 2527 union xhci_trb *ep_trb; 2528 int status = -EINPROGRESS; 2529 struct xhci_ep_ctx *ep_ctx; 2530 struct list_head *tmp; 2531 u32 trb_comp_code; 2532 int td_num = 0; 2533 bool handling_skipped_tds = false; 2534 2535 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2536 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2537 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2538 ep_trb_dma = le64_to_cpu(event->buffer); 2539 2540 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2541 if (!ep) { 2542 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2543 goto err_out; 2544 } 2545 2546 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2547 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2548 2549 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2550 xhci_err(xhci, 2551 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2552 slot_id, ep_index); 2553 goto err_out; 2554 } 2555 2556 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2557 if (!ep_ring) { 2558 switch (trb_comp_code) { 2559 case COMP_STALL_ERROR: 2560 case COMP_USB_TRANSACTION_ERROR: 2561 case COMP_INVALID_STREAM_TYPE_ERROR: 2562 case COMP_INVALID_STREAM_ID_ERROR: 2563 xhci_handle_halted_endpoint(xhci, ep, 0, NULL, 2564 EP_SOFT_RESET); 2565 goto cleanup; 2566 case COMP_RING_UNDERRUN: 2567 case COMP_RING_OVERRUN: 2568 case COMP_STOPPED_LENGTH_INVALID: 2569 goto cleanup; 2570 default: 2571 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2572 slot_id, ep_index); 2573 goto err_out; 2574 } 2575 } 2576 2577 /* Count current td numbers if ep->skip is set */ 2578 if (ep->skip) { 2579 list_for_each(tmp, &ep_ring->td_list) 2580 td_num++; 2581 } 2582 2583 /* Look for common error cases */ 2584 switch (trb_comp_code) { 2585 /* Skip codes that require special handling depending on 2586 * transfer type 2587 */ 2588 case COMP_SUCCESS: 2589 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2590 break; 2591 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2592 ep_ring->last_td_was_short) 2593 trb_comp_code = COMP_SHORT_PACKET; 2594 else 2595 xhci_warn_ratelimited(xhci, 2596 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2597 slot_id, ep_index); 2598 break; 2599 case COMP_SHORT_PACKET: 2600 break; 2601 /* Completion codes for endpoint stopped state */ 2602 case COMP_STOPPED: 2603 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2604 slot_id, ep_index); 2605 break; 2606 case COMP_STOPPED_LENGTH_INVALID: 2607 xhci_dbg(xhci, 2608 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2609 slot_id, ep_index); 2610 break; 2611 case COMP_STOPPED_SHORT_PACKET: 2612 xhci_dbg(xhci, 2613 "Stopped with short packet transfer detected for slot %u ep %u\n", 2614 slot_id, ep_index); 2615 break; 2616 /* Completion codes for endpoint halted state */ 2617 case COMP_STALL_ERROR: 2618 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2619 ep_index); 2620 status = -EPIPE; 2621 break; 2622 case COMP_SPLIT_TRANSACTION_ERROR: 2623 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2624 slot_id, ep_index); 2625 status = -EPROTO; 2626 break; 2627 case COMP_USB_TRANSACTION_ERROR: 2628 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2629 slot_id, ep_index); 2630 status = -EPROTO; 2631 break; 2632 case COMP_BABBLE_DETECTED_ERROR: 2633 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2634 slot_id, ep_index); 2635 status = -EOVERFLOW; 2636 break; 2637 /* Completion codes for endpoint error state */ 2638 case COMP_TRB_ERROR: 2639 xhci_warn(xhci, 2640 "WARN: TRB error for slot %u ep %u on endpoint\n", 2641 slot_id, ep_index); 2642 status = -EILSEQ; 2643 break; 2644 /* completion codes not indicating endpoint state change */ 2645 case COMP_DATA_BUFFER_ERROR: 2646 xhci_warn(xhci, 2647 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2648 slot_id, ep_index); 2649 status = -ENOSR; 2650 break; 2651 case COMP_BANDWIDTH_OVERRUN_ERROR: 2652 xhci_warn(xhci, 2653 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2654 slot_id, ep_index); 2655 break; 2656 case COMP_ISOCH_BUFFER_OVERRUN: 2657 xhci_warn(xhci, 2658 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2659 slot_id, ep_index); 2660 break; 2661 case COMP_RING_UNDERRUN: 2662 /* 2663 * When the Isoch ring is empty, the xHC will generate 2664 * a Ring Overrun Event for IN Isoch endpoint or Ring 2665 * Underrun Event for OUT Isoch endpoint. 2666 */ 2667 xhci_dbg(xhci, "underrun event on endpoint\n"); 2668 if (!list_empty(&ep_ring->td_list)) 2669 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2670 "still with TDs queued?\n", 2671 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2672 ep_index); 2673 goto cleanup; 2674 case COMP_RING_OVERRUN: 2675 xhci_dbg(xhci, "overrun event on endpoint\n"); 2676 if (!list_empty(&ep_ring->td_list)) 2677 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2678 "still with TDs queued?\n", 2679 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2680 ep_index); 2681 goto cleanup; 2682 case COMP_MISSED_SERVICE_ERROR: 2683 /* 2684 * When encounter missed service error, one or more isoc tds 2685 * may be missed by xHC. 2686 * Set skip flag of the ep_ring; Complete the missed tds as 2687 * short transfer when process the ep_ring next time. 2688 */ 2689 ep->skip = true; 2690 xhci_dbg(xhci, 2691 "Miss service interval error for slot %u ep %u, set skip flag\n", 2692 slot_id, ep_index); 2693 goto cleanup; 2694 case COMP_NO_PING_RESPONSE_ERROR: 2695 ep->skip = true; 2696 xhci_dbg(xhci, 2697 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2698 slot_id, ep_index); 2699 goto cleanup; 2700 2701 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2702 /* needs disable slot command to recover */ 2703 xhci_warn(xhci, 2704 "WARN: detect an incompatible device for slot %u ep %u", 2705 slot_id, ep_index); 2706 status = -EPROTO; 2707 break; 2708 default: 2709 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2710 status = 0; 2711 break; 2712 } 2713 xhci_warn(xhci, 2714 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2715 trb_comp_code, slot_id, ep_index); 2716 goto cleanup; 2717 } 2718 2719 do { 2720 /* This TRB should be in the TD at the head of this ring's 2721 * TD list. 2722 */ 2723 if (list_empty(&ep_ring->td_list)) { 2724 /* 2725 * Don't print wanings if it's due to a stopped endpoint 2726 * generating an extra completion event if the device 2727 * was suspended. Or, a event for the last TRB of a 2728 * short TD we already got a short event for. 2729 * The short TD is already removed from the TD list. 2730 */ 2731 2732 if (!(trb_comp_code == COMP_STOPPED || 2733 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2734 ep_ring->last_td_was_short)) { 2735 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2736 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2737 ep_index); 2738 } 2739 if (ep->skip) { 2740 ep->skip = false; 2741 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2742 slot_id, ep_index); 2743 } 2744 if (trb_comp_code == COMP_STALL_ERROR || 2745 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2746 trb_comp_code)) { 2747 xhci_handle_halted_endpoint(xhci, ep, 2748 ep_ring->stream_id, 2749 NULL, 2750 EP_HARD_RESET); 2751 } 2752 goto cleanup; 2753 } 2754 2755 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2756 if (ep->skip && td_num == 0) { 2757 ep->skip = false; 2758 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2759 slot_id, ep_index); 2760 goto cleanup; 2761 } 2762 2763 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2764 td_list); 2765 if (ep->skip) 2766 td_num--; 2767 2768 /* Is this a TRB in the currently executing TD? */ 2769 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2770 td->last_trb, ep_trb_dma, false); 2771 2772 /* 2773 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2774 * is not in the current TD pointed by ep_ring->dequeue because 2775 * that the hardware dequeue pointer still at the previous TRB 2776 * of the current TD. The previous TRB maybe a Link TD or the 2777 * last TRB of the previous TD. The command completion handle 2778 * will take care the rest. 2779 */ 2780 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2781 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2782 goto cleanup; 2783 } 2784 2785 if (!ep_seg) { 2786 if (!ep->skip || 2787 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2788 /* Some host controllers give a spurious 2789 * successful event after a short transfer. 2790 * Ignore it. 2791 */ 2792 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2793 ep_ring->last_td_was_short) { 2794 ep_ring->last_td_was_short = false; 2795 goto cleanup; 2796 } 2797 /* HC is busted, give up! */ 2798 xhci_err(xhci, 2799 "ERROR Transfer event TRB DMA ptr not " 2800 "part of current TD ep_index %d " 2801 "comp_code %u\n", ep_index, 2802 trb_comp_code); 2803 trb_in_td(xhci, ep_ring->deq_seg, 2804 ep_ring->dequeue, td->last_trb, 2805 ep_trb_dma, true); 2806 return -ESHUTDOWN; 2807 } 2808 2809 skip_isoc_td(xhci, td, ep, status); 2810 goto cleanup; 2811 } 2812 if (trb_comp_code == COMP_SHORT_PACKET) 2813 ep_ring->last_td_was_short = true; 2814 else 2815 ep_ring->last_td_was_short = false; 2816 2817 if (ep->skip) { 2818 xhci_dbg(xhci, 2819 "Found td. Clear skip flag for slot %u ep %u.\n", 2820 slot_id, ep_index); 2821 ep->skip = false; 2822 } 2823 2824 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2825 sizeof(*ep_trb)]; 2826 2827 trace_xhci_handle_transfer(ep_ring, 2828 (struct xhci_generic_trb *) ep_trb); 2829 2830 /* 2831 * No-op TRB could trigger interrupts in a case where 2832 * a URB was killed and a STALL_ERROR happens right 2833 * after the endpoint ring stopped. Reset the halted 2834 * endpoint. Otherwise, the endpoint remains stalled 2835 * indefinitely. 2836 */ 2837 2838 if (trb_is_noop(ep_trb)) { 2839 if (trb_comp_code == COMP_STALL_ERROR || 2840 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2841 trb_comp_code)) 2842 xhci_handle_halted_endpoint(xhci, ep, 2843 ep_ring->stream_id, 2844 td, EP_HARD_RESET); 2845 goto cleanup; 2846 } 2847 2848 td->status = status; 2849 2850 /* update the urb's actual_length and give back to the core */ 2851 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2852 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2853 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2854 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2855 else 2856 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2857 cleanup: 2858 handling_skipped_tds = ep->skip && 2859 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2860 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2861 2862 /* 2863 * Do not update event ring dequeue pointer if we're in a loop 2864 * processing missed tds. 2865 */ 2866 if (!handling_skipped_tds) 2867 inc_deq(xhci, xhci->event_ring); 2868 2869 /* 2870 * If ep->skip is set, it means there are missed tds on the 2871 * endpoint ring need to take care of. 2872 * Process them as short transfer until reach the td pointed by 2873 * the event. 2874 */ 2875 } while (handling_skipped_tds); 2876 2877 return 0; 2878 2879 err_out: 2880 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2881 (unsigned long long) xhci_trb_virt_to_dma( 2882 xhci->event_ring->deq_seg, 2883 xhci->event_ring->dequeue), 2884 lower_32_bits(le64_to_cpu(event->buffer)), 2885 upper_32_bits(le64_to_cpu(event->buffer)), 2886 le32_to_cpu(event->transfer_len), 2887 le32_to_cpu(event->flags)); 2888 return -ENODEV; 2889 } 2890 2891 /* 2892 * This function handles all OS-owned events on the event ring. It may drop 2893 * xhci->lock between event processing (e.g. to pass up port status changes). 2894 * Returns >0 for "possibly more events to process" (caller should call again), 2895 * otherwise 0 if done. In future, <0 returns should indicate error code. 2896 */ 2897 static int xhci_handle_event(struct xhci_hcd *xhci) 2898 { 2899 union xhci_trb *event; 2900 int update_ptrs = 1; 2901 u32 trb_type; 2902 int ret; 2903 2904 /* Event ring hasn't been allocated yet. */ 2905 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2906 xhci_err(xhci, "ERROR event ring not ready\n"); 2907 return -ENOMEM; 2908 } 2909 2910 event = xhci->event_ring->dequeue; 2911 /* Does the HC or OS own the TRB? */ 2912 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2913 xhci->event_ring->cycle_state) 2914 return 0; 2915 2916 trace_xhci_handle_event(xhci->event_ring, &event->generic); 2917 2918 /* 2919 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2920 * speculative reads of the event's flags/data below. 2921 */ 2922 rmb(); 2923 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 2924 /* FIXME: Handle more event types. */ 2925 2926 switch (trb_type) { 2927 case TRB_COMPLETION: 2928 handle_cmd_completion(xhci, &event->event_cmd); 2929 break; 2930 case TRB_PORT_STATUS: 2931 handle_port_status(xhci, event); 2932 update_ptrs = 0; 2933 break; 2934 case TRB_TRANSFER: 2935 ret = handle_tx_event(xhci, &event->trans_event); 2936 if (ret >= 0) 2937 update_ptrs = 0; 2938 break; 2939 case TRB_DEV_NOTE: 2940 handle_device_notification(xhci, event); 2941 break; 2942 default: 2943 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 2944 handle_vendor_event(xhci, event, trb_type); 2945 else 2946 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 2947 } 2948 /* Any of the above functions may drop and re-acquire the lock, so check 2949 * to make sure a watchdog timer didn't mark the host as non-responsive. 2950 */ 2951 if (xhci->xhc_state & XHCI_STATE_DYING) { 2952 xhci_dbg(xhci, "xHCI host dying, returning from " 2953 "event handler.\n"); 2954 return 0; 2955 } 2956 2957 if (update_ptrs) 2958 /* Update SW event ring dequeue pointer */ 2959 inc_deq(xhci, xhci->event_ring); 2960 2961 /* Are there more items on the event ring? Caller will call us again to 2962 * check. 2963 */ 2964 return 1; 2965 } 2966 2967 /* 2968 * Update Event Ring Dequeue Pointer: 2969 * - When all events have finished 2970 * - To avoid "Event Ring Full Error" condition 2971 */ 2972 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 2973 union xhci_trb *event_ring_deq) 2974 { 2975 u64 temp_64; 2976 dma_addr_t deq; 2977 2978 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2979 /* If necessary, update the HW's version of the event ring deq ptr. */ 2980 if (event_ring_deq != xhci->event_ring->dequeue) { 2981 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2982 xhci->event_ring->dequeue); 2983 if (deq == 0) 2984 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 2985 /* 2986 * Per 4.9.4, Software writes to the ERDP register shall 2987 * always advance the Event Ring Dequeue Pointer value. 2988 */ 2989 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 2990 ((u64) deq & (u64) ~ERST_PTR_MASK)) 2991 return; 2992 2993 /* Update HC event ring dequeue pointer */ 2994 temp_64 &= ERST_PTR_MASK; 2995 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2996 } 2997 2998 /* Clear the event handler busy flag (RW1C) */ 2999 temp_64 |= ERST_EHB; 3000 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 3001 } 3002 3003 /* 3004 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3005 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3006 * indicators of an event TRB error, but we check the status *first* to be safe. 3007 */ 3008 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3009 { 3010 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3011 union xhci_trb *event_ring_deq; 3012 irqreturn_t ret = IRQ_NONE; 3013 u64 temp_64; 3014 u32 status; 3015 int event_loop = 0; 3016 3017 spin_lock(&xhci->lock); 3018 /* Check if the xHC generated the interrupt, or the irq is shared */ 3019 status = readl(&xhci->op_regs->status); 3020 if (status == ~(u32)0) { 3021 xhci_hc_died(xhci); 3022 ret = IRQ_HANDLED; 3023 goto out; 3024 } 3025 3026 if (!(status & STS_EINT)) 3027 goto out; 3028 3029 if (status & STS_FATAL) { 3030 xhci_warn(xhci, "WARNING: Host System Error\n"); 3031 xhci_halt(xhci); 3032 ret = IRQ_HANDLED; 3033 goto out; 3034 } 3035 3036 /* 3037 * Clear the op reg interrupt status first, 3038 * so we can receive interrupts from other MSI-X interrupters. 3039 * Write 1 to clear the interrupt status. 3040 */ 3041 status |= STS_EINT; 3042 writel(status, &xhci->op_regs->status); 3043 3044 if (!hcd->msi_enabled) { 3045 u32 irq_pending; 3046 irq_pending = readl(&xhci->ir_set->irq_pending); 3047 irq_pending |= IMAN_IP; 3048 writel(irq_pending, &xhci->ir_set->irq_pending); 3049 } 3050 3051 if (xhci->xhc_state & XHCI_STATE_DYING || 3052 xhci->xhc_state & XHCI_STATE_HALTED) { 3053 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3054 "Shouldn't IRQs be disabled?\n"); 3055 /* Clear the event handler busy flag (RW1C); 3056 * the event ring should be empty. 3057 */ 3058 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 3059 xhci_write_64(xhci, temp_64 | ERST_EHB, 3060 &xhci->ir_set->erst_dequeue); 3061 ret = IRQ_HANDLED; 3062 goto out; 3063 } 3064 3065 event_ring_deq = xhci->event_ring->dequeue; 3066 /* FIXME this should be a delayed service routine 3067 * that clears the EHB. 3068 */ 3069 while (xhci_handle_event(xhci) > 0) { 3070 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3071 continue; 3072 xhci_update_erst_dequeue(xhci, event_ring_deq); 3073 event_loop = 0; 3074 } 3075 3076 xhci_update_erst_dequeue(xhci, event_ring_deq); 3077 ret = IRQ_HANDLED; 3078 3079 out: 3080 spin_unlock(&xhci->lock); 3081 3082 return ret; 3083 } 3084 3085 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3086 { 3087 return xhci_irq(hcd); 3088 } 3089 3090 /**** Endpoint Ring Operations ****/ 3091 3092 /* 3093 * Generic function for queueing a TRB on a ring. 3094 * The caller must have checked to make sure there's room on the ring. 3095 * 3096 * @more_trbs_coming: Will you enqueue more TRBs before calling 3097 * prepare_transfer()? 3098 */ 3099 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3100 bool more_trbs_coming, 3101 u32 field1, u32 field2, u32 field3, u32 field4) 3102 { 3103 struct xhci_generic_trb *trb; 3104 3105 trb = &ring->enqueue->generic; 3106 trb->field[0] = cpu_to_le32(field1); 3107 trb->field[1] = cpu_to_le32(field2); 3108 trb->field[2] = cpu_to_le32(field3); 3109 /* make sure TRB is fully written before giving it to the controller */ 3110 wmb(); 3111 trb->field[3] = cpu_to_le32(field4); 3112 3113 trace_xhci_queue_trb(ring, trb); 3114 3115 inc_enq(xhci, ring, more_trbs_coming); 3116 } 3117 3118 /* 3119 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3120 * FIXME allocate segments if the ring is full. 3121 */ 3122 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3123 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3124 { 3125 unsigned int num_trbs_needed; 3126 unsigned int link_trb_count = 0; 3127 3128 /* Make sure the endpoint has been added to xHC schedule */ 3129 switch (ep_state) { 3130 case EP_STATE_DISABLED: 3131 /* 3132 * USB core changed config/interfaces without notifying us, 3133 * or hardware is reporting the wrong state. 3134 */ 3135 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3136 return -ENOENT; 3137 case EP_STATE_ERROR: 3138 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3139 /* FIXME event handling code for error needs to clear it */ 3140 /* XXX not sure if this should be -ENOENT or not */ 3141 return -EINVAL; 3142 case EP_STATE_HALTED: 3143 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3144 break; 3145 case EP_STATE_STOPPED: 3146 case EP_STATE_RUNNING: 3147 break; 3148 default: 3149 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3150 /* 3151 * FIXME issue Configure Endpoint command to try to get the HC 3152 * back into a known state. 3153 */ 3154 return -EINVAL; 3155 } 3156 3157 while (1) { 3158 if (room_on_ring(xhci, ep_ring, num_trbs)) 3159 break; 3160 3161 if (ep_ring == xhci->cmd_ring) { 3162 xhci_err(xhci, "Do not support expand command ring\n"); 3163 return -ENOMEM; 3164 } 3165 3166 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3167 "ERROR no room on ep ring, try ring expansion"); 3168 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 3169 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 3170 mem_flags)) { 3171 xhci_err(xhci, "Ring expansion failed\n"); 3172 return -ENOMEM; 3173 } 3174 } 3175 3176 while (trb_is_link(ep_ring->enqueue)) { 3177 /* If we're not dealing with 0.95 hardware or isoc rings 3178 * on AMD 0.96 host, clear the chain bit. 3179 */ 3180 if (!xhci_link_trb_quirk(xhci) && 3181 !(ep_ring->type == TYPE_ISOC && 3182 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3183 ep_ring->enqueue->link.control &= 3184 cpu_to_le32(~TRB_CHAIN); 3185 else 3186 ep_ring->enqueue->link.control |= 3187 cpu_to_le32(TRB_CHAIN); 3188 3189 wmb(); 3190 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3191 3192 /* Toggle the cycle bit after the last ring segment. */ 3193 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3194 ep_ring->cycle_state ^= 1; 3195 3196 ep_ring->enq_seg = ep_ring->enq_seg->next; 3197 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3198 3199 /* prevent infinite loop if all first trbs are link trbs */ 3200 if (link_trb_count++ > ep_ring->num_segs) { 3201 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3202 return -EINVAL; 3203 } 3204 } 3205 3206 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3207 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3208 return -EINVAL; 3209 } 3210 3211 return 0; 3212 } 3213 3214 static int prepare_transfer(struct xhci_hcd *xhci, 3215 struct xhci_virt_device *xdev, 3216 unsigned int ep_index, 3217 unsigned int stream_id, 3218 unsigned int num_trbs, 3219 struct urb *urb, 3220 unsigned int td_index, 3221 gfp_t mem_flags) 3222 { 3223 int ret; 3224 struct urb_priv *urb_priv; 3225 struct xhci_td *td; 3226 struct xhci_ring *ep_ring; 3227 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3228 3229 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3230 stream_id); 3231 if (!ep_ring) { 3232 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3233 stream_id); 3234 return -EINVAL; 3235 } 3236 3237 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3238 num_trbs, mem_flags); 3239 if (ret) 3240 return ret; 3241 3242 urb_priv = urb->hcpriv; 3243 td = &urb_priv->td[td_index]; 3244 3245 INIT_LIST_HEAD(&td->td_list); 3246 INIT_LIST_HEAD(&td->cancelled_td_list); 3247 3248 if (td_index == 0) { 3249 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3250 if (unlikely(ret)) 3251 return ret; 3252 } 3253 3254 td->urb = urb; 3255 /* Add this TD to the tail of the endpoint ring's TD list */ 3256 list_add_tail(&td->td_list, &ep_ring->td_list); 3257 td->start_seg = ep_ring->enq_seg; 3258 td->first_trb = ep_ring->enqueue; 3259 3260 return 0; 3261 } 3262 3263 unsigned int count_trbs(u64 addr, u64 len) 3264 { 3265 unsigned int num_trbs; 3266 3267 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3268 TRB_MAX_BUFF_SIZE); 3269 if (num_trbs == 0) 3270 num_trbs++; 3271 3272 return num_trbs; 3273 } 3274 3275 static inline unsigned int count_trbs_needed(struct urb *urb) 3276 { 3277 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3278 } 3279 3280 static unsigned int count_sg_trbs_needed(struct urb *urb) 3281 { 3282 struct scatterlist *sg; 3283 unsigned int i, len, full_len, num_trbs = 0; 3284 3285 full_len = urb->transfer_buffer_length; 3286 3287 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3288 len = sg_dma_len(sg); 3289 num_trbs += count_trbs(sg_dma_address(sg), len); 3290 len = min_t(unsigned int, len, full_len); 3291 full_len -= len; 3292 if (full_len == 0) 3293 break; 3294 } 3295 3296 return num_trbs; 3297 } 3298 3299 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3300 { 3301 u64 addr, len; 3302 3303 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3304 len = urb->iso_frame_desc[i].length; 3305 3306 return count_trbs(addr, len); 3307 } 3308 3309 static void check_trb_math(struct urb *urb, int running_total) 3310 { 3311 if (unlikely(running_total != urb->transfer_buffer_length)) 3312 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3313 "queued %#x (%d), asked for %#x (%d)\n", 3314 __func__, 3315 urb->ep->desc.bEndpointAddress, 3316 running_total, running_total, 3317 urb->transfer_buffer_length, 3318 urb->transfer_buffer_length); 3319 } 3320 3321 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3322 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3323 struct xhci_generic_trb *start_trb) 3324 { 3325 /* 3326 * Pass all the TRBs to the hardware at once and make sure this write 3327 * isn't reordered. 3328 */ 3329 wmb(); 3330 if (start_cycle) 3331 start_trb->field[3] |= cpu_to_le32(start_cycle); 3332 else 3333 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3334 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3335 } 3336 3337 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3338 struct xhci_ep_ctx *ep_ctx) 3339 { 3340 int xhci_interval; 3341 int ep_interval; 3342 3343 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3344 ep_interval = urb->interval; 3345 3346 /* Convert to microframes */ 3347 if (urb->dev->speed == USB_SPEED_LOW || 3348 urb->dev->speed == USB_SPEED_FULL) 3349 ep_interval *= 8; 3350 3351 /* FIXME change this to a warning and a suggestion to use the new API 3352 * to set the polling interval (once the API is added). 3353 */ 3354 if (xhci_interval != ep_interval) { 3355 dev_dbg_ratelimited(&urb->dev->dev, 3356 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3357 ep_interval, ep_interval == 1 ? "" : "s", 3358 xhci_interval, xhci_interval == 1 ? "" : "s"); 3359 urb->interval = xhci_interval; 3360 /* Convert back to frames for LS/FS devices */ 3361 if (urb->dev->speed == USB_SPEED_LOW || 3362 urb->dev->speed == USB_SPEED_FULL) 3363 urb->interval /= 8; 3364 } 3365 } 3366 3367 /* 3368 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3369 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3370 * (comprised of sg list entries) can take several service intervals to 3371 * transmit. 3372 */ 3373 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3374 struct urb *urb, int slot_id, unsigned int ep_index) 3375 { 3376 struct xhci_ep_ctx *ep_ctx; 3377 3378 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3379 check_interval(xhci, urb, ep_ctx); 3380 3381 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3382 } 3383 3384 /* 3385 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3386 * packets remaining in the TD (*not* including this TRB). 3387 * 3388 * Total TD packet count = total_packet_count = 3389 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3390 * 3391 * Packets transferred up to and including this TRB = packets_transferred = 3392 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3393 * 3394 * TD size = total_packet_count - packets_transferred 3395 * 3396 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3397 * including this TRB, right shifted by 10 3398 * 3399 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3400 * This is taken care of in the TRB_TD_SIZE() macro 3401 * 3402 * The last TRB in a TD must have the TD size set to zero. 3403 */ 3404 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3405 int trb_buff_len, unsigned int td_total_len, 3406 struct urb *urb, bool more_trbs_coming) 3407 { 3408 u32 maxp, total_packet_count; 3409 3410 /* MTK xHCI 0.96 contains some features from 1.0 */ 3411 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3412 return ((td_total_len - transferred) >> 10); 3413 3414 /* One TRB with a zero-length data packet. */ 3415 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3416 trb_buff_len == td_total_len) 3417 return 0; 3418 3419 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3420 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3421 trb_buff_len = 0; 3422 3423 maxp = usb_endpoint_maxp(&urb->ep->desc); 3424 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3425 3426 /* Queueing functions don't count the current TRB into transferred */ 3427 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3428 } 3429 3430 3431 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3432 u32 *trb_buff_len, struct xhci_segment *seg) 3433 { 3434 struct device *dev = xhci_to_hcd(xhci)->self.controller; 3435 unsigned int unalign; 3436 unsigned int max_pkt; 3437 u32 new_buff_len; 3438 size_t len; 3439 3440 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3441 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3442 3443 /* we got lucky, last normal TRB data on segment is packet aligned */ 3444 if (unalign == 0) 3445 return 0; 3446 3447 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3448 unalign, *trb_buff_len); 3449 3450 /* is the last nornal TRB alignable by splitting it */ 3451 if (*trb_buff_len > unalign) { 3452 *trb_buff_len -= unalign; 3453 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3454 return 0; 3455 } 3456 3457 /* 3458 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3459 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3460 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3461 */ 3462 new_buff_len = max_pkt - (enqd_len % max_pkt); 3463 3464 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3465 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3466 3467 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3468 if (usb_urb_dir_out(urb)) { 3469 if (urb->num_sgs) { 3470 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3471 seg->bounce_buf, new_buff_len, enqd_len); 3472 if (len != new_buff_len) 3473 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3474 len, new_buff_len); 3475 } else { 3476 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3477 } 3478 3479 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3480 max_pkt, DMA_TO_DEVICE); 3481 } else { 3482 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3483 max_pkt, DMA_FROM_DEVICE); 3484 } 3485 3486 if (dma_mapping_error(dev, seg->bounce_dma)) { 3487 /* try without aligning. Some host controllers survive */ 3488 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3489 return 0; 3490 } 3491 *trb_buff_len = new_buff_len; 3492 seg->bounce_len = new_buff_len; 3493 seg->bounce_offs = enqd_len; 3494 3495 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3496 3497 return 1; 3498 } 3499 3500 /* This is very similar to what ehci-q.c qtd_fill() does */ 3501 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3502 struct urb *urb, int slot_id, unsigned int ep_index) 3503 { 3504 struct xhci_ring *ring; 3505 struct urb_priv *urb_priv; 3506 struct xhci_td *td; 3507 struct xhci_generic_trb *start_trb; 3508 struct scatterlist *sg = NULL; 3509 bool more_trbs_coming = true; 3510 bool need_zero_pkt = false; 3511 bool first_trb = true; 3512 unsigned int num_trbs; 3513 unsigned int start_cycle, num_sgs = 0; 3514 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3515 int sent_len, ret; 3516 u32 field, length_field, remainder; 3517 u64 addr, send_addr; 3518 3519 ring = xhci_urb_to_transfer_ring(xhci, urb); 3520 if (!ring) 3521 return -EINVAL; 3522 3523 full_len = urb->transfer_buffer_length; 3524 /* If we have scatter/gather list, we use it. */ 3525 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3526 num_sgs = urb->num_mapped_sgs; 3527 sg = urb->sg; 3528 addr = (u64) sg_dma_address(sg); 3529 block_len = sg_dma_len(sg); 3530 num_trbs = count_sg_trbs_needed(urb); 3531 } else { 3532 num_trbs = count_trbs_needed(urb); 3533 addr = (u64) urb->transfer_dma; 3534 block_len = full_len; 3535 } 3536 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3537 ep_index, urb->stream_id, 3538 num_trbs, urb, 0, mem_flags); 3539 if (unlikely(ret < 0)) 3540 return ret; 3541 3542 urb_priv = urb->hcpriv; 3543 3544 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3545 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3546 need_zero_pkt = true; 3547 3548 td = &urb_priv->td[0]; 3549 3550 /* 3551 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3552 * until we've finished creating all the other TRBs. The ring's cycle 3553 * state may change as we enqueue the other TRBs, so save it too. 3554 */ 3555 start_trb = &ring->enqueue->generic; 3556 start_cycle = ring->cycle_state; 3557 send_addr = addr; 3558 3559 /* Queue the TRBs, even if they are zero-length */ 3560 for (enqd_len = 0; first_trb || enqd_len < full_len; 3561 enqd_len += trb_buff_len) { 3562 field = TRB_TYPE(TRB_NORMAL); 3563 3564 /* TRB buffer should not cross 64KB boundaries */ 3565 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3566 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3567 3568 if (enqd_len + trb_buff_len > full_len) 3569 trb_buff_len = full_len - enqd_len; 3570 3571 /* Don't change the cycle bit of the first TRB until later */ 3572 if (first_trb) { 3573 first_trb = false; 3574 if (start_cycle == 0) 3575 field |= TRB_CYCLE; 3576 } else 3577 field |= ring->cycle_state; 3578 3579 /* Chain all the TRBs together; clear the chain bit in the last 3580 * TRB to indicate it's the last TRB in the chain. 3581 */ 3582 if (enqd_len + trb_buff_len < full_len) { 3583 field |= TRB_CHAIN; 3584 if (trb_is_link(ring->enqueue + 1)) { 3585 if (xhci_align_td(xhci, urb, enqd_len, 3586 &trb_buff_len, 3587 ring->enq_seg)) { 3588 send_addr = ring->enq_seg->bounce_dma; 3589 /* assuming TD won't span 2 segs */ 3590 td->bounce_seg = ring->enq_seg; 3591 } 3592 } 3593 } 3594 if (enqd_len + trb_buff_len >= full_len) { 3595 field &= ~TRB_CHAIN; 3596 field |= TRB_IOC; 3597 more_trbs_coming = false; 3598 td->last_trb = ring->enqueue; 3599 td->last_trb_seg = ring->enq_seg; 3600 if (xhci_urb_suitable_for_idt(urb)) { 3601 memcpy(&send_addr, urb->transfer_buffer, 3602 trb_buff_len); 3603 le64_to_cpus(&send_addr); 3604 field |= TRB_IDT; 3605 } 3606 } 3607 3608 /* Only set interrupt on short packet for IN endpoints */ 3609 if (usb_urb_dir_in(urb)) 3610 field |= TRB_ISP; 3611 3612 /* Set the TRB length, TD size, and interrupter fields. */ 3613 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3614 full_len, urb, more_trbs_coming); 3615 3616 length_field = TRB_LEN(trb_buff_len) | 3617 TRB_TD_SIZE(remainder) | 3618 TRB_INTR_TARGET(0); 3619 3620 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3621 lower_32_bits(send_addr), 3622 upper_32_bits(send_addr), 3623 length_field, 3624 field); 3625 td->num_trbs++; 3626 addr += trb_buff_len; 3627 sent_len = trb_buff_len; 3628 3629 while (sg && sent_len >= block_len) { 3630 /* New sg entry */ 3631 --num_sgs; 3632 sent_len -= block_len; 3633 sg = sg_next(sg); 3634 if (num_sgs != 0 && sg) { 3635 block_len = sg_dma_len(sg); 3636 addr = (u64) sg_dma_address(sg); 3637 addr += sent_len; 3638 } 3639 } 3640 block_len -= sent_len; 3641 send_addr = addr; 3642 } 3643 3644 if (need_zero_pkt) { 3645 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3646 ep_index, urb->stream_id, 3647 1, urb, 1, mem_flags); 3648 urb_priv->td[1].last_trb = ring->enqueue; 3649 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3650 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3651 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3652 urb_priv->td[1].num_trbs++; 3653 } 3654 3655 check_trb_math(urb, enqd_len); 3656 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3657 start_cycle, start_trb); 3658 return 0; 3659 } 3660 3661 /* Caller must have locked xhci->lock */ 3662 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3663 struct urb *urb, int slot_id, unsigned int ep_index) 3664 { 3665 struct xhci_ring *ep_ring; 3666 int num_trbs; 3667 int ret; 3668 struct usb_ctrlrequest *setup; 3669 struct xhci_generic_trb *start_trb; 3670 int start_cycle; 3671 u32 field; 3672 struct urb_priv *urb_priv; 3673 struct xhci_td *td; 3674 3675 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3676 if (!ep_ring) 3677 return -EINVAL; 3678 3679 /* 3680 * Need to copy setup packet into setup TRB, so we can't use the setup 3681 * DMA address. 3682 */ 3683 if (!urb->setup_packet) 3684 return -EINVAL; 3685 3686 /* 1 TRB for setup, 1 for status */ 3687 num_trbs = 2; 3688 /* 3689 * Don't need to check if we need additional event data and normal TRBs, 3690 * since data in control transfers will never get bigger than 16MB 3691 * XXX: can we get a buffer that crosses 64KB boundaries? 3692 */ 3693 if (urb->transfer_buffer_length > 0) 3694 num_trbs++; 3695 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3696 ep_index, urb->stream_id, 3697 num_trbs, urb, 0, mem_flags); 3698 if (ret < 0) 3699 return ret; 3700 3701 urb_priv = urb->hcpriv; 3702 td = &urb_priv->td[0]; 3703 td->num_trbs = num_trbs; 3704 3705 /* 3706 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3707 * until we've finished creating all the other TRBs. The ring's cycle 3708 * state may change as we enqueue the other TRBs, so save it too. 3709 */ 3710 start_trb = &ep_ring->enqueue->generic; 3711 start_cycle = ep_ring->cycle_state; 3712 3713 /* Queue setup TRB - see section 6.4.1.2.1 */ 3714 /* FIXME better way to translate setup_packet into two u32 fields? */ 3715 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3716 field = 0; 3717 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3718 if (start_cycle == 0) 3719 field |= 0x1; 3720 3721 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3722 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3723 if (urb->transfer_buffer_length > 0) { 3724 if (setup->bRequestType & USB_DIR_IN) 3725 field |= TRB_TX_TYPE(TRB_DATA_IN); 3726 else 3727 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3728 } 3729 } 3730 3731 queue_trb(xhci, ep_ring, true, 3732 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3733 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3734 TRB_LEN(8) | TRB_INTR_TARGET(0), 3735 /* Immediate data in pointer */ 3736 field); 3737 3738 /* If there's data, queue data TRBs */ 3739 /* Only set interrupt on short packet for IN endpoints */ 3740 if (usb_urb_dir_in(urb)) 3741 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3742 else 3743 field = TRB_TYPE(TRB_DATA); 3744 3745 if (urb->transfer_buffer_length > 0) { 3746 u32 length_field, remainder; 3747 u64 addr; 3748 3749 if (xhci_urb_suitable_for_idt(urb)) { 3750 memcpy(&addr, urb->transfer_buffer, 3751 urb->transfer_buffer_length); 3752 le64_to_cpus(&addr); 3753 field |= TRB_IDT; 3754 } else { 3755 addr = (u64) urb->transfer_dma; 3756 } 3757 3758 remainder = xhci_td_remainder(xhci, 0, 3759 urb->transfer_buffer_length, 3760 urb->transfer_buffer_length, 3761 urb, 1); 3762 length_field = TRB_LEN(urb->transfer_buffer_length) | 3763 TRB_TD_SIZE(remainder) | 3764 TRB_INTR_TARGET(0); 3765 if (setup->bRequestType & USB_DIR_IN) 3766 field |= TRB_DIR_IN; 3767 queue_trb(xhci, ep_ring, true, 3768 lower_32_bits(addr), 3769 upper_32_bits(addr), 3770 length_field, 3771 field | ep_ring->cycle_state); 3772 } 3773 3774 /* Save the DMA address of the last TRB in the TD */ 3775 td->last_trb = ep_ring->enqueue; 3776 td->last_trb_seg = ep_ring->enq_seg; 3777 3778 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3779 /* If the device sent data, the status stage is an OUT transfer */ 3780 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3781 field = 0; 3782 else 3783 field = TRB_DIR_IN; 3784 queue_trb(xhci, ep_ring, false, 3785 0, 3786 0, 3787 TRB_INTR_TARGET(0), 3788 /* Event on completion */ 3789 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3790 3791 giveback_first_trb(xhci, slot_id, ep_index, 0, 3792 start_cycle, start_trb); 3793 return 0; 3794 } 3795 3796 /* 3797 * The transfer burst count field of the isochronous TRB defines the number of 3798 * bursts that are required to move all packets in this TD. Only SuperSpeed 3799 * devices can burst up to bMaxBurst number of packets per service interval. 3800 * This field is zero based, meaning a value of zero in the field means one 3801 * burst. Basically, for everything but SuperSpeed devices, this field will be 3802 * zero. Only xHCI 1.0 host controllers support this field. 3803 */ 3804 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3805 struct urb *urb, unsigned int total_packet_count) 3806 { 3807 unsigned int max_burst; 3808 3809 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3810 return 0; 3811 3812 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3813 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3814 } 3815 3816 /* 3817 * Returns the number of packets in the last "burst" of packets. This field is 3818 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3819 * the last burst packet count is equal to the total number of packets in the 3820 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3821 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3822 * contain 1 to (bMaxBurst + 1) packets. 3823 */ 3824 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3825 struct urb *urb, unsigned int total_packet_count) 3826 { 3827 unsigned int max_burst; 3828 unsigned int residue; 3829 3830 if (xhci->hci_version < 0x100) 3831 return 0; 3832 3833 if (urb->dev->speed >= USB_SPEED_SUPER) { 3834 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3835 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3836 residue = total_packet_count % (max_burst + 1); 3837 /* If residue is zero, the last burst contains (max_burst + 1) 3838 * number of packets, but the TLBPC field is zero-based. 3839 */ 3840 if (residue == 0) 3841 return max_burst; 3842 return residue - 1; 3843 } 3844 if (total_packet_count == 0) 3845 return 0; 3846 return total_packet_count - 1; 3847 } 3848 3849 /* 3850 * Calculates Frame ID field of the isochronous TRB identifies the 3851 * target frame that the Interval associated with this Isochronous 3852 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3853 * 3854 * Returns actual frame id on success, negative value on error. 3855 */ 3856 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3857 struct urb *urb, int index) 3858 { 3859 int start_frame, ist, ret = 0; 3860 int start_frame_id, end_frame_id, current_frame_id; 3861 3862 if (urb->dev->speed == USB_SPEED_LOW || 3863 urb->dev->speed == USB_SPEED_FULL) 3864 start_frame = urb->start_frame + index * urb->interval; 3865 else 3866 start_frame = (urb->start_frame + index * urb->interval) >> 3; 3867 3868 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 3869 * 3870 * If bit [3] of IST is cleared to '0', software can add a TRB no 3871 * later than IST[2:0] Microframes before that TRB is scheduled to 3872 * be executed. 3873 * If bit [3] of IST is set to '1', software can add a TRB no later 3874 * than IST[2:0] Frames before that TRB is scheduled to be executed. 3875 */ 3876 ist = HCS_IST(xhci->hcs_params2) & 0x7; 3877 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 3878 ist <<= 3; 3879 3880 /* Software shall not schedule an Isoch TD with a Frame ID value that 3881 * is less than the Start Frame ID or greater than the End Frame ID, 3882 * where: 3883 * 3884 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 3885 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 3886 * 3887 * Both the End Frame ID and Start Frame ID values are calculated 3888 * in microframes. When software determines the valid Frame ID value; 3889 * The End Frame ID value should be rounded down to the nearest Frame 3890 * boundary, and the Start Frame ID value should be rounded up to the 3891 * nearest Frame boundary. 3892 */ 3893 current_frame_id = readl(&xhci->run_regs->microframe_index); 3894 start_frame_id = roundup(current_frame_id + ist + 1, 8); 3895 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 3896 3897 start_frame &= 0x7ff; 3898 start_frame_id = (start_frame_id >> 3) & 0x7ff; 3899 end_frame_id = (end_frame_id >> 3) & 0x7ff; 3900 3901 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 3902 __func__, index, readl(&xhci->run_regs->microframe_index), 3903 start_frame_id, end_frame_id, start_frame); 3904 3905 if (start_frame_id < end_frame_id) { 3906 if (start_frame > end_frame_id || 3907 start_frame < start_frame_id) 3908 ret = -EINVAL; 3909 } else if (start_frame_id > end_frame_id) { 3910 if ((start_frame > end_frame_id && 3911 start_frame < start_frame_id)) 3912 ret = -EINVAL; 3913 } else { 3914 ret = -EINVAL; 3915 } 3916 3917 if (index == 0) { 3918 if (ret == -EINVAL || start_frame == start_frame_id) { 3919 start_frame = start_frame_id + 1; 3920 if (urb->dev->speed == USB_SPEED_LOW || 3921 urb->dev->speed == USB_SPEED_FULL) 3922 urb->start_frame = start_frame; 3923 else 3924 urb->start_frame = start_frame << 3; 3925 ret = 0; 3926 } 3927 } 3928 3929 if (ret) { 3930 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 3931 start_frame, current_frame_id, index, 3932 start_frame_id, end_frame_id); 3933 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 3934 return ret; 3935 } 3936 3937 return start_frame; 3938 } 3939 3940 /* Check if we should generate event interrupt for a TD in an isoc URB */ 3941 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 3942 { 3943 if (xhci->hci_version < 0x100) 3944 return false; 3945 /* always generate an event interrupt for the last TD */ 3946 if (i == num_tds - 1) 3947 return false; 3948 /* 3949 * If AVOID_BEI is set the host handles full event rings poorly, 3950 * generate an event at least every 8th TD to clear the event ring 3951 */ 3952 if (i && xhci->quirks & XHCI_AVOID_BEI) 3953 return !!(i % 8); 3954 3955 return true; 3956 } 3957 3958 /* This is for isoc transfer */ 3959 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3960 struct urb *urb, int slot_id, unsigned int ep_index) 3961 { 3962 struct xhci_ring *ep_ring; 3963 struct urb_priv *urb_priv; 3964 struct xhci_td *td; 3965 int num_tds, trbs_per_td; 3966 struct xhci_generic_trb *start_trb; 3967 bool first_trb; 3968 int start_cycle; 3969 u32 field, length_field; 3970 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3971 u64 start_addr, addr; 3972 int i, j; 3973 bool more_trbs_coming; 3974 struct xhci_virt_ep *xep; 3975 int frame_id; 3976 3977 xep = &xhci->devs[slot_id]->eps[ep_index]; 3978 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3979 3980 num_tds = urb->number_of_packets; 3981 if (num_tds < 1) { 3982 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3983 return -EINVAL; 3984 } 3985 start_addr = (u64) urb->transfer_dma; 3986 start_trb = &ep_ring->enqueue->generic; 3987 start_cycle = ep_ring->cycle_state; 3988 3989 urb_priv = urb->hcpriv; 3990 /* Queue the TRBs for each TD, even if they are zero-length */ 3991 for (i = 0; i < num_tds; i++) { 3992 unsigned int total_pkt_count, max_pkt; 3993 unsigned int burst_count, last_burst_pkt_count; 3994 u32 sia_frame_id; 3995 3996 first_trb = true; 3997 running_total = 0; 3998 addr = start_addr + urb->iso_frame_desc[i].offset; 3999 td_len = urb->iso_frame_desc[i].length; 4000 td_remain_len = td_len; 4001 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4002 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4003 4004 /* A zero-length transfer still involves at least one packet. */ 4005 if (total_pkt_count == 0) 4006 total_pkt_count++; 4007 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4008 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4009 urb, total_pkt_count); 4010 4011 trbs_per_td = count_isoc_trbs_needed(urb, i); 4012 4013 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4014 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4015 if (ret < 0) { 4016 if (i == 0) 4017 return ret; 4018 goto cleanup; 4019 } 4020 td = &urb_priv->td[i]; 4021 td->num_trbs = trbs_per_td; 4022 /* use SIA as default, if frame id is used overwrite it */ 4023 sia_frame_id = TRB_SIA; 4024 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4025 HCC_CFC(xhci->hcc_params)) { 4026 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4027 if (frame_id >= 0) 4028 sia_frame_id = TRB_FRAME_ID(frame_id); 4029 } 4030 /* 4031 * Set isoc specific data for the first TRB in a TD. 4032 * Prevent HW from getting the TRBs by keeping the cycle state 4033 * inverted in the first TDs isoc TRB. 4034 */ 4035 field = TRB_TYPE(TRB_ISOC) | 4036 TRB_TLBPC(last_burst_pkt_count) | 4037 sia_frame_id | 4038 (i ? ep_ring->cycle_state : !start_cycle); 4039 4040 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4041 if (!xep->use_extended_tbc) 4042 field |= TRB_TBC(burst_count); 4043 4044 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4045 for (j = 0; j < trbs_per_td; j++) { 4046 u32 remainder = 0; 4047 4048 /* only first TRB is isoc, overwrite otherwise */ 4049 if (!first_trb) 4050 field = TRB_TYPE(TRB_NORMAL) | 4051 ep_ring->cycle_state; 4052 4053 /* Only set interrupt on short packet for IN EPs */ 4054 if (usb_urb_dir_in(urb)) 4055 field |= TRB_ISP; 4056 4057 /* Set the chain bit for all except the last TRB */ 4058 if (j < trbs_per_td - 1) { 4059 more_trbs_coming = true; 4060 field |= TRB_CHAIN; 4061 } else { 4062 more_trbs_coming = false; 4063 td->last_trb = ep_ring->enqueue; 4064 td->last_trb_seg = ep_ring->enq_seg; 4065 field |= TRB_IOC; 4066 if (trb_block_event_intr(xhci, num_tds, i)) 4067 field |= TRB_BEI; 4068 } 4069 /* Calculate TRB length */ 4070 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4071 if (trb_buff_len > td_remain_len) 4072 trb_buff_len = td_remain_len; 4073 4074 /* Set the TRB length, TD size, & interrupter fields. */ 4075 remainder = xhci_td_remainder(xhci, running_total, 4076 trb_buff_len, td_len, 4077 urb, more_trbs_coming); 4078 4079 length_field = TRB_LEN(trb_buff_len) | 4080 TRB_INTR_TARGET(0); 4081 4082 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4083 if (first_trb && xep->use_extended_tbc) 4084 length_field |= TRB_TD_SIZE_TBC(burst_count); 4085 else 4086 length_field |= TRB_TD_SIZE(remainder); 4087 first_trb = false; 4088 4089 queue_trb(xhci, ep_ring, more_trbs_coming, 4090 lower_32_bits(addr), 4091 upper_32_bits(addr), 4092 length_field, 4093 field); 4094 running_total += trb_buff_len; 4095 4096 addr += trb_buff_len; 4097 td_remain_len -= trb_buff_len; 4098 } 4099 4100 /* Check TD length */ 4101 if (running_total != td_len) { 4102 xhci_err(xhci, "ISOC TD length unmatch\n"); 4103 ret = -EINVAL; 4104 goto cleanup; 4105 } 4106 } 4107 4108 /* store the next frame id */ 4109 if (HCC_CFC(xhci->hcc_params)) 4110 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4111 4112 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4113 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4114 usb_amd_quirk_pll_disable(); 4115 } 4116 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4117 4118 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4119 start_cycle, start_trb); 4120 return 0; 4121 cleanup: 4122 /* Clean up a partially enqueued isoc transfer. */ 4123 4124 for (i--; i >= 0; i--) 4125 list_del_init(&urb_priv->td[i].td_list); 4126 4127 /* Use the first TD as a temporary variable to turn the TDs we've queued 4128 * into No-ops with a software-owned cycle bit. That way the hardware 4129 * won't accidentally start executing bogus TDs when we partially 4130 * overwrite them. td->first_trb and td->start_seg are already set. 4131 */ 4132 urb_priv->td[0].last_trb = ep_ring->enqueue; 4133 /* Every TRB except the first & last will have its cycle bit flipped. */ 4134 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4135 4136 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4137 ep_ring->enqueue = urb_priv->td[0].first_trb; 4138 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4139 ep_ring->cycle_state = start_cycle; 4140 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 4141 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4142 return ret; 4143 } 4144 4145 /* 4146 * Check transfer ring to guarantee there is enough room for the urb. 4147 * Update ISO URB start_frame and interval. 4148 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4149 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4150 * Contiguous Frame ID is not supported by HC. 4151 */ 4152 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4153 struct urb *urb, int slot_id, unsigned int ep_index) 4154 { 4155 struct xhci_virt_device *xdev; 4156 struct xhci_ring *ep_ring; 4157 struct xhci_ep_ctx *ep_ctx; 4158 int start_frame; 4159 int num_tds, num_trbs, i; 4160 int ret; 4161 struct xhci_virt_ep *xep; 4162 int ist; 4163 4164 xdev = xhci->devs[slot_id]; 4165 xep = &xhci->devs[slot_id]->eps[ep_index]; 4166 ep_ring = xdev->eps[ep_index].ring; 4167 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4168 4169 num_trbs = 0; 4170 num_tds = urb->number_of_packets; 4171 for (i = 0; i < num_tds; i++) 4172 num_trbs += count_isoc_trbs_needed(urb, i); 4173 4174 /* Check the ring to guarantee there is enough room for the whole urb. 4175 * Do not insert any td of the urb to the ring if the check failed. 4176 */ 4177 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4178 num_trbs, mem_flags); 4179 if (ret) 4180 return ret; 4181 4182 /* 4183 * Check interval value. This should be done before we start to 4184 * calculate the start frame value. 4185 */ 4186 check_interval(xhci, urb, ep_ctx); 4187 4188 /* Calculate the start frame and put it in urb->start_frame. */ 4189 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4190 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4191 urb->start_frame = xep->next_frame_id; 4192 goto skip_start_over; 4193 } 4194 } 4195 4196 start_frame = readl(&xhci->run_regs->microframe_index); 4197 start_frame &= 0x3fff; 4198 /* 4199 * Round up to the next frame and consider the time before trb really 4200 * gets scheduled by hardare. 4201 */ 4202 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4203 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4204 ist <<= 3; 4205 start_frame += ist + XHCI_CFC_DELAY; 4206 start_frame = roundup(start_frame, 8); 4207 4208 /* 4209 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4210 * is greate than 8 microframes. 4211 */ 4212 if (urb->dev->speed == USB_SPEED_LOW || 4213 urb->dev->speed == USB_SPEED_FULL) { 4214 start_frame = roundup(start_frame, urb->interval << 3); 4215 urb->start_frame = start_frame >> 3; 4216 } else { 4217 start_frame = roundup(start_frame, urb->interval); 4218 urb->start_frame = start_frame; 4219 } 4220 4221 skip_start_over: 4222 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 4223 4224 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4225 } 4226 4227 /**** Command Ring Operations ****/ 4228 4229 /* Generic function for queueing a command TRB on the command ring. 4230 * Check to make sure there's room on the command ring for one command TRB. 4231 * Also check that there's room reserved for commands that must not fail. 4232 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4233 * then only check for the number of reserved spots. 4234 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4235 * because the command event handler may want to resubmit a failed command. 4236 */ 4237 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4238 u32 field1, u32 field2, 4239 u32 field3, u32 field4, bool command_must_succeed) 4240 { 4241 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4242 int ret; 4243 4244 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4245 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4246 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4247 return -ESHUTDOWN; 4248 } 4249 4250 if (!command_must_succeed) 4251 reserved_trbs++; 4252 4253 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4254 reserved_trbs, GFP_ATOMIC); 4255 if (ret < 0) { 4256 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4257 if (command_must_succeed) 4258 xhci_err(xhci, "ERR: Reserved TRB counting for " 4259 "unfailable commands failed.\n"); 4260 return ret; 4261 } 4262 4263 cmd->command_trb = xhci->cmd_ring->enqueue; 4264 4265 /* if there are no other commands queued we start the timeout timer */ 4266 if (list_empty(&xhci->cmd_list)) { 4267 xhci->current_cmd = cmd; 4268 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); 4269 } 4270 4271 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4272 4273 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4274 field4 | xhci->cmd_ring->cycle_state); 4275 return 0; 4276 } 4277 4278 /* Queue a slot enable or disable request on the command ring */ 4279 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4280 u32 trb_type, u32 slot_id) 4281 { 4282 return queue_command(xhci, cmd, 0, 0, 0, 4283 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4284 } 4285 4286 /* Queue an address device command TRB */ 4287 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4288 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4289 { 4290 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4291 upper_32_bits(in_ctx_ptr), 0, 4292 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4293 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4294 } 4295 4296 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4297 u32 field1, u32 field2, u32 field3, u32 field4) 4298 { 4299 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4300 } 4301 4302 /* Queue a reset device command TRB */ 4303 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4304 u32 slot_id) 4305 { 4306 return queue_command(xhci, cmd, 0, 0, 0, 4307 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4308 false); 4309 } 4310 4311 /* Queue a configure endpoint command TRB */ 4312 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4313 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4314 u32 slot_id, bool command_must_succeed) 4315 { 4316 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4317 upper_32_bits(in_ctx_ptr), 0, 4318 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4319 command_must_succeed); 4320 } 4321 4322 /* Queue an evaluate context command TRB */ 4323 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4324 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4325 { 4326 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4327 upper_32_bits(in_ctx_ptr), 0, 4328 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4329 command_must_succeed); 4330 } 4331 4332 /* 4333 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4334 * activity on an endpoint that is about to be suspended. 4335 */ 4336 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4337 int slot_id, unsigned int ep_index, int suspend) 4338 { 4339 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4340 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4341 u32 type = TRB_TYPE(TRB_STOP_RING); 4342 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4343 4344 return queue_command(xhci, cmd, 0, 0, 0, 4345 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4346 } 4347 4348 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4349 int slot_id, unsigned int ep_index, 4350 enum xhci_ep_reset_type reset_type) 4351 { 4352 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4353 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4354 u32 type = TRB_TYPE(TRB_RESET_EP); 4355 4356 if (reset_type == EP_SOFT_RESET) 4357 type |= TRB_TSP; 4358 4359 return queue_command(xhci, cmd, 0, 0, 0, 4360 trb_slot_id | trb_ep_index | type, false); 4361 } 4362