1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 /* 12 * Ring initialization rules: 13 * 1. Each segment is initialized to zero, except for link TRBs. 14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 15 * Consumer Cycle State (CCS), depending on ring function. 16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 17 * 18 * Ring behavior rules: 19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 20 * least one free TRB in the ring. This is useful if you want to turn that 21 * into a link TRB and expand the ring. 22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 23 * link TRB, then load the pointer with the address in the link TRB. If the 24 * link TRB had its toggle bit set, you may need to update the ring cycle 25 * state (see cycle bit rules). You may have to do this multiple times 26 * until you reach a non-link TRB. 27 * 3. A ring is full if enqueue++ (for the definition of increment above) 28 * equals the dequeue pointer. 29 * 30 * Cycle bit rules: 31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 32 * in a link TRB, it must toggle the ring cycle state. 33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 34 * in a link TRB, it must toggle the ring cycle state. 35 * 36 * Producer rules: 37 * 1. Check if ring is full before you enqueue. 38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 39 * Update enqueue pointer between each write (which may update the ring 40 * cycle state). 41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 42 * and endpoint rings. If HC is the producer for the event ring, 43 * and it generates an interrupt according to interrupt modulation rules. 44 * 45 * Consumer rules: 46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 47 * the TRB is owned by the consumer. 48 * 2. Update dequeue pointer (which may update the ring cycle state) and 49 * continue processing TRBs until you reach a TRB which is not owned by you. 50 * 3. Notify the producer. SW is the consumer for the event ring, and it 51 * updates event ring dequeue pointer. HC is the consumer for the command and 52 * endpoint rings; it generates events on the event ring for these. 53 */ 54 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/dma-mapping.h> 58 #include "xhci.h" 59 #include "xhci-trace.h" 60 61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 62 u32 field1, u32 field2, 63 u32 field3, u32 field4, bool command_must_succeed); 64 65 /* 66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 67 * address of the TRB. 68 */ 69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 70 union xhci_trb *trb) 71 { 72 unsigned long segment_offset; 73 74 if (!seg || !trb || trb < seg->trbs) 75 return 0; 76 /* offset in TRBs */ 77 segment_offset = trb - seg->trbs; 78 if (segment_offset >= TRBS_PER_SEGMENT) 79 return 0; 80 return seg->dma + (segment_offset * sizeof(*trb)); 81 } 82 83 static bool trb_is_noop(union xhci_trb *trb) 84 { 85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); 86 } 87 88 static bool trb_is_link(union xhci_trb *trb) 89 { 90 return TRB_TYPE_LINK_LE32(trb->link.control); 91 } 92 93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) 94 { 95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; 96 } 97 98 static bool last_trb_on_ring(struct xhci_ring *ring, 99 struct xhci_segment *seg, union xhci_trb *trb) 100 { 101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); 102 } 103 104 static bool link_trb_toggles_cycle(union xhci_trb *trb) 105 { 106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 107 } 108 109 static bool last_td_in_urb(struct xhci_td *td) 110 { 111 struct urb_priv *urb_priv = td->urb->hcpriv; 112 113 return urb_priv->num_tds_done == urb_priv->num_tds; 114 } 115 116 static void inc_td_cnt(struct urb *urb) 117 { 118 struct urb_priv *urb_priv = urb->hcpriv; 119 120 urb_priv->num_tds_done++; 121 } 122 123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type) 124 { 125 if (trb_is_link(trb)) { 126 /* unchain chained link TRBs */ 127 trb->link.control &= cpu_to_le32(~TRB_CHAIN); 128 } else { 129 trb->generic.field[0] = 0; 130 trb->generic.field[1] = 0; 131 trb->generic.field[2] = 0; 132 /* Preserve only the cycle bit of this TRB */ 133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); 135 } 136 } 137 138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 139 * TRB is in a new segment. This does not skip over link TRBs, and it does not 140 * effect the ring dequeue or enqueue pointers. 141 */ 142 static void next_trb(struct xhci_hcd *xhci, 143 struct xhci_ring *ring, 144 struct xhci_segment **seg, 145 union xhci_trb **trb) 146 { 147 if (trb_is_link(*trb)) { 148 *seg = (*seg)->next; 149 *trb = ((*seg)->trbs); 150 } else { 151 (*trb)++; 152 } 153 } 154 155 /* 156 * See Cycle bit rules. SW is the consumer for the event ring only. 157 */ 158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 159 { 160 unsigned int link_trb_count = 0; 161 162 /* event ring doesn't have link trbs, check for last trb */ 163 if (ring->type == TYPE_EVENT) { 164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { 165 ring->dequeue++; 166 goto out; 167 } 168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) 169 ring->cycle_state ^= 1; 170 ring->deq_seg = ring->deq_seg->next; 171 ring->dequeue = ring->deq_seg->trbs; 172 goto out; 173 } 174 175 /* All other rings have link trbs */ 176 if (!trb_is_link(ring->dequeue)) { 177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue)) 178 xhci_warn(xhci, "Missing link TRB at end of segment\n"); 179 else 180 ring->dequeue++; 181 } 182 183 while (trb_is_link(ring->dequeue)) { 184 ring->deq_seg = ring->deq_seg->next; 185 ring->dequeue = ring->deq_seg->trbs; 186 187 if (link_trb_count++ > ring->num_segs) { 188 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 189 break; 190 } 191 } 192 out: 193 trace_xhci_inc_deq(ring); 194 195 return; 196 } 197 198 /* 199 * See Cycle bit rules. SW is the consumer for the event ring only. 200 * 201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 202 * chain bit is set), then set the chain bit in all the following link TRBs. 203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 204 * have their chain bit cleared (so that each Link TRB is a separate TD). 205 * 206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 207 * set, but other sections talk about dealing with the chain bit set. This was 208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 209 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 210 * 211 * @more_trbs_coming: Will you enqueue more TRBs before calling 212 * prepare_transfer()? 213 */ 214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 215 bool more_trbs_coming) 216 { 217 u32 chain; 218 union xhci_trb *next; 219 unsigned int link_trb_count = 0; 220 221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 222 223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) { 224 xhci_err(xhci, "Tried to move enqueue past ring segment\n"); 225 return; 226 } 227 228 next = ++(ring->enqueue); 229 230 /* Update the dequeue pointer further if that was a link TRB */ 231 while (trb_is_link(next)) { 232 233 /* 234 * If the caller doesn't plan on enqueueing more TDs before 235 * ringing the doorbell, then we don't want to give the link TRB 236 * to the hardware just yet. We'll give the link TRB back in 237 * prepare_ring() just before we enqueue the TD at the top of 238 * the ring. 239 */ 240 if (!chain && !more_trbs_coming) 241 break; 242 243 /* If we're not dealing with 0.95 hardware or isoc rings on 244 * AMD 0.96 host, carry over the chain bit of the previous TRB 245 * (which may mean the chain bit is cleared). 246 */ 247 if (!(ring->type == TYPE_ISOC && 248 (xhci->quirks & XHCI_AMD_0x96_HOST)) && 249 !xhci_link_trb_quirk(xhci)) { 250 next->link.control &= cpu_to_le32(~TRB_CHAIN); 251 next->link.control |= cpu_to_le32(chain); 252 } 253 /* Give this link TRB to the hardware */ 254 wmb(); 255 next->link.control ^= cpu_to_le32(TRB_CYCLE); 256 257 /* Toggle the cycle bit after the last ring segment. */ 258 if (link_trb_toggles_cycle(next)) 259 ring->cycle_state ^= 1; 260 261 ring->enq_seg = ring->enq_seg->next; 262 ring->enqueue = ring->enq_seg->trbs; 263 next = ring->enqueue; 264 265 if (link_trb_count++ > ring->num_segs) { 266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__); 267 break; 268 } 269 } 270 271 trace_xhci_inc_enq(ring); 272 } 273 274 /* 275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring. 276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment. 277 * Only for transfer and command rings where driver is the producer, not for 278 * event rings. 279 */ 280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 struct xhci_segment *enq_seg = ring->enq_seg; 283 union xhci_trb *enq = ring->enqueue; 284 union xhci_trb *last_on_seg; 285 unsigned int free = 0; 286 int i = 0; 287 288 /* Ring might be empty even if enq != deq if enq is left on a link trb */ 289 if (trb_is_link(enq)) { 290 enq_seg = enq_seg->next; 291 enq = enq_seg->trbs; 292 } 293 294 /* Empty ring, common case, don't walk the segments */ 295 if (enq == ring->dequeue) 296 return ring->num_segs * (TRBS_PER_SEGMENT - 1); 297 298 do { 299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq) 300 return free + (ring->dequeue - enq); 301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1]; 302 free += last_on_seg - enq; 303 enq_seg = enq_seg->next; 304 enq = enq_seg->trbs; 305 } while (i++ <= ring->num_segs); 306 307 return free; 308 } 309 310 /* 311 * Check to see if there's room to enqueue num_trbs on the ring and make sure 312 * enqueue pointer will not advance into dequeue segment. See rules above. 313 * return number of new segments needed to ensure this. 314 */ 315 316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring, 317 unsigned int num_trbs) 318 { 319 struct xhci_segment *seg; 320 int trbs_past_seg; 321 int enq_used; 322 int new_segs; 323 324 enq_used = ring->enqueue - ring->enq_seg->trbs; 325 326 /* how many trbs will be queued past the enqueue segment? */ 327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1); 328 329 /* 330 * Consider expanding the ring already if num_trbs fills the current 331 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into 332 * the next segment. Avoids confusing full ring with special empty ring 333 * case below 334 */ 335 if (trbs_past_seg < 0) 336 return 0; 337 338 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */ 339 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue) 340 return 0; 341 342 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1)); 343 seg = ring->enq_seg; 344 345 while (new_segs > 0) { 346 seg = seg->next; 347 if (seg == ring->deq_seg) { 348 xhci_dbg(xhci, "Ring expansion by %d segments needed\n", 349 new_segs); 350 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n", 351 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT); 352 return new_segs; 353 } 354 new_segs--; 355 } 356 357 return 0; 358 } 359 360 /* Ring the host controller doorbell after placing a command on the ring */ 361 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 362 { 363 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 364 return; 365 366 xhci_dbg(xhci, "// Ding dong!\n"); 367 368 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST); 369 370 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 371 /* Flush PCI posted writes */ 372 readl(&xhci->dba->doorbell[0]); 373 } 374 375 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci) 376 { 377 return mod_delayed_work(system_wq, &xhci->cmd_timer, 378 msecs_to_jiffies(xhci->current_cmd->timeout_ms)); 379 } 380 381 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) 382 { 383 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, 384 cmd_list); 385 } 386 387 /* 388 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 389 * If there are other commands waiting then restart the ring and kick the timer. 390 * This must be called with command ring stopped and xhci->lock held. 391 */ 392 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 393 struct xhci_command *cur_cmd) 394 { 395 struct xhci_command *i_cmd; 396 397 /* Turn all aborted commands in list to no-ops, then restart */ 398 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { 399 400 if (i_cmd->status != COMP_COMMAND_ABORTED) 401 continue; 402 403 i_cmd->status = COMP_COMMAND_RING_STOPPED; 404 405 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 406 i_cmd->command_trb); 407 408 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); 409 410 /* 411 * caller waiting for completion is called when command 412 * completion event is received for these no-op commands 413 */ 414 } 415 416 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 417 418 /* ring command ring doorbell to restart the command ring */ 419 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 420 !(xhci->xhc_state & XHCI_STATE_DYING)) { 421 xhci->current_cmd = cur_cmd; 422 xhci_mod_cmd_timer(xhci); 423 xhci_ring_cmd_db(xhci); 424 } 425 } 426 427 /* Must be called with xhci->lock held, releases and aquires lock back */ 428 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) 429 { 430 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg; 431 union xhci_trb *new_deq = xhci->cmd_ring->dequeue; 432 u64 crcr; 433 int ret; 434 435 xhci_dbg(xhci, "Abort command ring\n"); 436 437 reinit_completion(&xhci->cmd_ring_stop_completion); 438 439 /* 440 * The control bits like command stop, abort are located in lower 441 * dword of the command ring control register. 442 * Some controllers require all 64 bits to be written to abort the ring. 443 * Make sure the upper dword is valid, pointing to the next command, 444 * avoiding corrupting the command ring pointer in case the command ring 445 * is stopped by the time the upper dword is written. 446 */ 447 next_trb(xhci, NULL, &new_seg, &new_deq); 448 if (trb_is_link(new_deq)) 449 next_trb(xhci, NULL, &new_seg, &new_deq); 450 451 crcr = xhci_trb_virt_to_dma(new_seg, new_deq); 452 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); 453 454 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the 455 * completion of the Command Abort operation. If CRR is not negated in 5 456 * seconds then driver handles it as if host died (-ENODEV). 457 * In the future we should distinguish between -ENODEV and -ETIMEDOUT 458 * and try to recover a -ETIMEDOUT with a host controller reset. 459 */ 460 ret = xhci_handshake(&xhci->op_regs->cmd_ring, 461 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 462 if (ret < 0) { 463 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); 464 xhci_halt(xhci); 465 xhci_hc_died(xhci); 466 return ret; 467 } 468 /* 469 * Writing the CMD_RING_ABORT bit should cause a cmd completion event, 470 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared 471 * but the completion event in never sent. Wait 2 secs (arbitrary 472 * number) to handle those cases after negation of CMD_RING_RUNNING. 473 */ 474 spin_unlock_irqrestore(&xhci->lock, flags); 475 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, 476 msecs_to_jiffies(2000)); 477 spin_lock_irqsave(&xhci->lock, flags); 478 if (!ret) { 479 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); 480 xhci_cleanup_command_queue(xhci); 481 } else { 482 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); 483 } 484 return 0; 485 } 486 487 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 488 unsigned int slot_id, 489 unsigned int ep_index, 490 unsigned int stream_id) 491 { 492 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 493 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 494 unsigned int ep_state = ep->ep_state; 495 496 /* Don't ring the doorbell for this endpoint if there are pending 497 * cancellations because we don't want to interrupt processing. 498 * We don't want to restart any stream rings if there's a set dequeue 499 * pointer command pending because the device can choose to start any 500 * stream once the endpoint is on the HW schedule. 501 */ 502 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || 503 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) 504 return; 505 506 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id)); 507 508 writel(DB_VALUE(ep_index, stream_id), db_addr); 509 /* flush the write */ 510 readl(db_addr); 511 } 512 513 /* Ring the doorbell for any rings with pending URBs */ 514 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 515 unsigned int slot_id, 516 unsigned int ep_index) 517 { 518 unsigned int stream_id; 519 struct xhci_virt_ep *ep; 520 521 ep = &xhci->devs[slot_id]->eps[ep_index]; 522 523 /* A ring has pending URBs if its TD list is not empty */ 524 if (!(ep->ep_state & EP_HAS_STREAMS)) { 525 if (ep->ring && !(list_empty(&ep->ring->td_list))) 526 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 527 return; 528 } 529 530 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 531 stream_id++) { 532 struct xhci_stream_info *stream_info = ep->stream_info; 533 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 534 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 535 stream_id); 536 } 537 } 538 539 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 540 unsigned int slot_id, 541 unsigned int ep_index) 542 { 543 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 544 } 545 546 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci, 547 unsigned int slot_id, 548 unsigned int ep_index) 549 { 550 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) { 551 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 552 return NULL; 553 } 554 if (ep_index >= EP_CTX_PER_DEV) { 555 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index); 556 return NULL; 557 } 558 if (!xhci->devs[slot_id]) { 559 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id); 560 return NULL; 561 } 562 563 return &xhci->devs[slot_id]->eps[ep_index]; 564 } 565 566 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci, 567 struct xhci_virt_ep *ep, 568 unsigned int stream_id) 569 { 570 /* common case, no streams */ 571 if (!(ep->ep_state & EP_HAS_STREAMS)) 572 return ep->ring; 573 574 if (!ep->stream_info) 575 return NULL; 576 577 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) { 578 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n", 579 stream_id, ep->vdev->slot_id, ep->ep_index); 580 return NULL; 581 } 582 583 return ep->stream_info->stream_rings[stream_id]; 584 } 585 586 /* Get the right ring for the given slot_id, ep_index and stream_id. 587 * If the endpoint supports streams, boundary check the URB's stream ID. 588 * If the endpoint doesn't support streams, return the singular endpoint ring. 589 */ 590 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 591 unsigned int slot_id, unsigned int ep_index, 592 unsigned int stream_id) 593 { 594 struct xhci_virt_ep *ep; 595 596 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 597 if (!ep) 598 return NULL; 599 600 return xhci_virt_ep_to_ring(xhci, ep, stream_id); 601 } 602 603 604 /* 605 * Get the hw dequeue pointer xHC stopped on, either directly from the 606 * endpoint context, or if streams are in use from the stream context. 607 * The returned hw_dequeue contains the lowest four bits with cycle state 608 * and possbile stream context type. 609 */ 610 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, 611 unsigned int ep_index, unsigned int stream_id) 612 { 613 struct xhci_ep_ctx *ep_ctx; 614 struct xhci_stream_ctx *st_ctx; 615 struct xhci_virt_ep *ep; 616 617 ep = &vdev->eps[ep_index]; 618 619 if (ep->ep_state & EP_HAS_STREAMS) { 620 st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; 621 return le64_to_cpu(st_ctx->stream_ring); 622 } 623 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); 624 return le64_to_cpu(ep_ctx->deq); 625 } 626 627 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci, 628 unsigned int slot_id, unsigned int ep_index, 629 unsigned int stream_id, struct xhci_td *td) 630 { 631 struct xhci_virt_device *dev = xhci->devs[slot_id]; 632 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 633 struct xhci_ring *ep_ring; 634 struct xhci_command *cmd; 635 struct xhci_segment *new_seg; 636 union xhci_trb *new_deq; 637 int new_cycle; 638 dma_addr_t addr; 639 u64 hw_dequeue; 640 bool cycle_found = false; 641 bool td_last_trb_found = false; 642 u32 trb_sct = 0; 643 int ret; 644 645 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 646 ep_index, stream_id); 647 if (!ep_ring) { 648 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n", 649 stream_id); 650 return -ENODEV; 651 } 652 /* 653 * A cancelled TD can complete with a stall if HW cached the trb. 654 * In this case driver can't find td, but if the ring is empty we 655 * can move the dequeue pointer to the current enqueue position. 656 * We shouldn't hit this anymore as cached cancelled TRBs are given back 657 * after clearing the cache, but be on the safe side and keep it anyway 658 */ 659 if (!td) { 660 if (list_empty(&ep_ring->td_list)) { 661 new_seg = ep_ring->enq_seg; 662 new_deq = ep_ring->enqueue; 663 new_cycle = ep_ring->cycle_state; 664 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue"); 665 goto deq_found; 666 } else { 667 xhci_warn(xhci, "Can't find new dequeue state, missing td\n"); 668 return -EINVAL; 669 } 670 } 671 672 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); 673 new_seg = ep_ring->deq_seg; 674 new_deq = ep_ring->dequeue; 675 new_cycle = hw_dequeue & 0x1; 676 677 /* 678 * We want to find the pointer, segment and cycle state of the new trb 679 * (the one after current TD's last_trb). We know the cycle state at 680 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are 681 * found. 682 */ 683 do { 684 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) 685 == (dma_addr_t)(hw_dequeue & ~0xf)) { 686 cycle_found = true; 687 if (td_last_trb_found) 688 break; 689 } 690 if (new_deq == td->last_trb) 691 td_last_trb_found = true; 692 693 if (cycle_found && trb_is_link(new_deq) && 694 link_trb_toggles_cycle(new_deq)) 695 new_cycle ^= 0x1; 696 697 next_trb(xhci, ep_ring, &new_seg, &new_deq); 698 699 /* Search wrapped around, bail out */ 700 if (new_deq == ep->ring->dequeue) { 701 xhci_err(xhci, "Error: Failed finding new dequeue state\n"); 702 return -EINVAL; 703 } 704 705 } while (!cycle_found || !td_last_trb_found); 706 707 deq_found: 708 709 /* Don't update the ring cycle state for the producer (us). */ 710 addr = xhci_trb_virt_to_dma(new_seg, new_deq); 711 if (addr == 0) { 712 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n"); 713 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq); 714 return -EINVAL; 715 } 716 717 if ((ep->ep_state & SET_DEQ_PENDING)) { 718 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n", 719 &addr); 720 return -EBUSY; 721 } 722 723 /* This function gets called from contexts where it cannot sleep */ 724 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); 725 if (!cmd) { 726 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr); 727 return -ENOMEM; 728 } 729 730 if (stream_id) 731 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 732 ret = queue_command(xhci, cmd, 733 lower_32_bits(addr) | trb_sct | new_cycle, 734 upper_32_bits(addr), 735 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) | 736 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false); 737 if (ret < 0) { 738 xhci_free_command(xhci, cmd); 739 return ret; 740 } 741 ep->queued_deq_seg = new_seg; 742 ep->queued_deq_ptr = new_deq; 743 744 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 745 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle); 746 747 /* Stop the TD queueing code from ringing the doorbell until 748 * this command completes. The HC won't set the dequeue pointer 749 * if the ring is running, and ringing the doorbell starts the 750 * ring running. 751 */ 752 ep->ep_state |= SET_DEQ_PENDING; 753 xhci_ring_cmd_db(xhci); 754 return 0; 755 } 756 757 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 758 * (The last TRB actually points to the ring enqueue pointer, which is not part 759 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 760 */ 761 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 762 struct xhci_td *td, bool flip_cycle) 763 { 764 struct xhci_segment *seg = td->start_seg; 765 union xhci_trb *trb = td->first_trb; 766 767 while (1) { 768 trb_to_noop(trb, TRB_TR_NOOP); 769 770 /* flip cycle if asked to */ 771 if (flip_cycle && trb != td->first_trb && trb != td->last_trb) 772 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); 773 774 if (trb == td->last_trb) 775 break; 776 777 next_trb(xhci, ep_ring, &seg, &trb); 778 } 779 } 780 781 /* 782 * Must be called with xhci->lock held in interrupt context, 783 * releases and re-acquires xhci->lock 784 */ 785 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 786 struct xhci_td *cur_td, int status) 787 { 788 struct urb *urb = cur_td->urb; 789 struct urb_priv *urb_priv = urb->hcpriv; 790 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 791 792 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 793 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 794 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 795 if (xhci->quirks & XHCI_AMD_PLL_FIX) 796 usb_amd_quirk_pll_enable(); 797 } 798 } 799 xhci_urb_free_priv(urb_priv); 800 usb_hcd_unlink_urb_from_ep(hcd, urb); 801 trace_xhci_urb_giveback(urb); 802 usb_hcd_giveback_urb(hcd, urb, status); 803 } 804 805 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, 806 struct xhci_ring *ring, struct xhci_td *td) 807 { 808 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 809 struct xhci_segment *seg = td->bounce_seg; 810 struct urb *urb = td->urb; 811 size_t len; 812 813 if (!ring || !seg || !urb) 814 return; 815 816 if (usb_urb_dir_out(urb)) { 817 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 818 DMA_TO_DEVICE); 819 return; 820 } 821 822 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, 823 DMA_FROM_DEVICE); 824 /* for in tranfers we need to copy the data from bounce to sg */ 825 if (urb->num_sgs) { 826 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, 827 seg->bounce_len, seg->bounce_offs); 828 if (len != seg->bounce_len) 829 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", 830 len, seg->bounce_len); 831 } else { 832 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf, 833 seg->bounce_len); 834 } 835 seg->bounce_len = 0; 836 seg->bounce_offs = 0; 837 } 838 839 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, 840 struct xhci_ring *ep_ring, int status) 841 { 842 struct urb *urb = NULL; 843 844 /* Clean up the endpoint's TD list */ 845 urb = td->urb; 846 847 /* if a bounce buffer was used to align this td then unmap it */ 848 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); 849 850 /* Do one last check of the actual transfer length. 851 * If the host controller said we transferred more data than the buffer 852 * length, urb->actual_length will be a very big number (since it's 853 * unsigned). Play it safe and say we didn't transfer anything. 854 */ 855 if (urb->actual_length > urb->transfer_buffer_length) { 856 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", 857 urb->transfer_buffer_length, urb->actual_length); 858 urb->actual_length = 0; 859 status = 0; 860 } 861 /* TD might be removed from td_list if we are giving back a cancelled URB */ 862 if (!list_empty(&td->td_list)) 863 list_del_init(&td->td_list); 864 /* Giving back a cancelled URB, or if a slated TD completed anyway */ 865 if (!list_empty(&td->cancelled_td_list)) 866 list_del_init(&td->cancelled_td_list); 867 868 inc_td_cnt(urb); 869 /* Giveback the urb when all the tds are completed */ 870 if (last_td_in_urb(td)) { 871 if ((urb->actual_length != urb->transfer_buffer_length && 872 (urb->transfer_flags & URB_SHORT_NOT_OK)) || 873 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) 874 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", 875 urb, urb->actual_length, 876 urb->transfer_buffer_length, status); 877 878 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ 879 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 880 status = 0; 881 xhci_giveback_urb_in_irq(xhci, td, status); 882 } 883 884 return 0; 885 } 886 887 888 /* Complete the cancelled URBs we unlinked from td_list. */ 889 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep) 890 { 891 struct xhci_ring *ring; 892 struct xhci_td *td, *tmp_td; 893 894 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 895 cancelled_td_list) { 896 897 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 898 899 if (td->cancel_status == TD_CLEARED) { 900 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 901 __func__, td->urb); 902 xhci_td_cleanup(ep->xhci, td, ring, td->status); 903 } else { 904 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 905 __func__, td->urb, td->cancel_status); 906 } 907 if (ep->xhci->xhc_state & XHCI_STATE_DYING) 908 return; 909 } 910 } 911 912 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id, 913 unsigned int ep_index, enum xhci_ep_reset_type reset_type) 914 { 915 struct xhci_command *command; 916 int ret = 0; 917 918 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 919 if (!command) { 920 ret = -ENOMEM; 921 goto done; 922 } 923 924 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n", 925 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft", 926 ep_index, slot_id); 927 928 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); 929 done: 930 if (ret) 931 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n", 932 slot_id, ep_index, ret); 933 return ret; 934 } 935 936 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci, 937 struct xhci_virt_ep *ep, 938 struct xhci_td *td, 939 enum xhci_ep_reset_type reset_type) 940 { 941 unsigned int slot_id = ep->vdev->slot_id; 942 int err; 943 944 /* 945 * Avoid resetting endpoint if link is inactive. Can cause host hang. 946 * Device will be reset soon to recover the link so don't do anything 947 */ 948 if (ep->vdev->flags & VDEV_PORT_ERROR) 949 return -ENODEV; 950 951 /* add td to cancelled list and let reset ep handler take care of it */ 952 if (reset_type == EP_HARD_RESET) { 953 ep->ep_state |= EP_HARD_CLEAR_TOGGLE; 954 if (td && list_empty(&td->cancelled_td_list)) { 955 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 956 td->cancel_status = TD_HALTED; 957 } 958 } 959 960 if (ep->ep_state & EP_HALTED) { 961 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n", 962 ep->ep_index); 963 return 0; 964 } 965 966 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type); 967 if (err) 968 return err; 969 970 ep->ep_state |= EP_HALTED; 971 972 xhci_ring_cmd_db(xhci); 973 974 return 0; 975 } 976 977 /* 978 * Fix up the ep ring first, so HW stops executing cancelled TDs. 979 * We have the xHCI lock, so nothing can modify this list until we drop it. 980 * We're also in the event handler, so we can't get re-interrupted if another 981 * Stop Endpoint command completes. 982 * 983 * only call this when ring is not in a running state 984 */ 985 986 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep) 987 { 988 struct xhci_hcd *xhci; 989 struct xhci_td *td = NULL; 990 struct xhci_td *tmp_td = NULL; 991 struct xhci_td *cached_td = NULL; 992 struct xhci_ring *ring; 993 u64 hw_deq; 994 unsigned int slot_id = ep->vdev->slot_id; 995 int err; 996 997 xhci = ep->xhci; 998 999 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1000 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1001 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p", 1002 (unsigned long long)xhci_trb_virt_to_dma( 1003 td->start_seg, td->first_trb), 1004 td->urb->stream_id, td->urb); 1005 list_del_init(&td->td_list); 1006 ring = xhci_urb_to_transfer_ring(xhci, td->urb); 1007 if (!ring) { 1008 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n", 1009 td->urb, td->urb->stream_id); 1010 continue; 1011 } 1012 /* 1013 * If a ring stopped on the TD we need to cancel then we have to 1014 * move the xHC endpoint ring dequeue pointer past this TD. 1015 * Rings halted due to STALL may show hw_deq is past the stalled 1016 * TD, but still require a set TR Deq command to flush xHC cache. 1017 */ 1018 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index, 1019 td->urb->stream_id); 1020 hw_deq &= ~0xf; 1021 1022 if (td->cancel_status == TD_HALTED || 1023 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) { 1024 switch (td->cancel_status) { 1025 case TD_CLEARED: /* TD is already no-op */ 1026 case TD_CLEARING_CACHE: /* set TR deq command already queued */ 1027 break; 1028 case TD_DIRTY: /* TD is cached, clear it */ 1029 case TD_HALTED: 1030 case TD_CLEARING_CACHE_DEFERRED: 1031 if (cached_td) { 1032 if (cached_td->urb->stream_id != td->urb->stream_id) { 1033 /* Multiple streams case, defer move dq */ 1034 xhci_dbg(xhci, 1035 "Move dq deferred: stream %u URB %p\n", 1036 td->urb->stream_id, td->urb); 1037 td->cancel_status = TD_CLEARING_CACHE_DEFERRED; 1038 break; 1039 } 1040 1041 /* Should never happen, but clear the TD if it does */ 1042 xhci_warn(xhci, 1043 "Found multiple active URBs %p and %p in stream %u?\n", 1044 td->urb, cached_td->urb, 1045 td->urb->stream_id); 1046 td_to_noop(xhci, ring, cached_td, false); 1047 cached_td->cancel_status = TD_CLEARED; 1048 } 1049 1050 td->cancel_status = TD_CLEARING_CACHE; 1051 cached_td = td; 1052 break; 1053 } 1054 } else { 1055 td_to_noop(xhci, ring, td, false); 1056 td->cancel_status = TD_CLEARED; 1057 } 1058 } 1059 1060 /* If there's no need to move the dequeue pointer then we're done */ 1061 if (!cached_td) 1062 return 0; 1063 1064 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index, 1065 cached_td->urb->stream_id, 1066 cached_td); 1067 if (err) { 1068 /* Failed to move past cached td, just set cached TDs to no-op */ 1069 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) { 1070 /* 1071 * Deferred TDs need to have the deq pointer set after the above command 1072 * completes, so if that failed we just give up on all of them (and 1073 * complain loudly since this could cause issues due to caching). 1074 */ 1075 if (td->cancel_status != TD_CLEARING_CACHE && 1076 td->cancel_status != TD_CLEARING_CACHE_DEFERRED) 1077 continue; 1078 xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n", 1079 td->urb); 1080 td_to_noop(xhci, ring, td, false); 1081 td->cancel_status = TD_CLEARED; 1082 } 1083 } 1084 return 0; 1085 } 1086 1087 /* 1088 * Returns the TD the endpoint ring halted on. 1089 * Only call for non-running rings without streams. 1090 */ 1091 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep) 1092 { 1093 struct xhci_td *td; 1094 u64 hw_deq; 1095 1096 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */ 1097 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0); 1098 hw_deq &= ~0xf; 1099 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list); 1100 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb, 1101 td->last_trb, hw_deq, false)) 1102 return td; 1103 } 1104 return NULL; 1105 } 1106 1107 /* 1108 * When we get a command completion for a Stop Endpoint Command, we need to 1109 * unlink any cancelled TDs from the ring. There are two ways to do that: 1110 * 1111 * 1. If the HW was in the middle of processing the TD that needs to be 1112 * cancelled, then we must move the ring's dequeue pointer past the last TRB 1113 * in the TD with a Set Dequeue Pointer Command. 1114 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 1115 * bit cleared) so that the HW will skip over them. 1116 */ 1117 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 1118 union xhci_trb *trb, u32 comp_code) 1119 { 1120 unsigned int ep_index; 1121 struct xhci_virt_ep *ep; 1122 struct xhci_ep_ctx *ep_ctx; 1123 struct xhci_td *td = NULL; 1124 enum xhci_ep_reset_type reset_type; 1125 struct xhci_command *command; 1126 int err; 1127 1128 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 1129 if (!xhci->devs[slot_id]) 1130 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n", 1131 slot_id); 1132 return; 1133 } 1134 1135 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1136 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1137 if (!ep) 1138 return; 1139 1140 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1141 1142 trace_xhci_handle_cmd_stop_ep(ep_ctx); 1143 1144 if (comp_code == COMP_CONTEXT_STATE_ERROR) { 1145 /* 1146 * If stop endpoint command raced with a halting endpoint we need to 1147 * reset the host side endpoint first. 1148 * If the TD we halted on isn't cancelled the TD should be given back 1149 * with a proper error code, and the ring dequeue moved past the TD. 1150 * If streams case we can't find hw_deq, or the TD we halted on so do a 1151 * soft reset. 1152 * 1153 * Proper error code is unknown here, it would be -EPIPE if device side 1154 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error) 1155 * We use -EPROTO, if device is stalled it should return a stall error on 1156 * next transfer, which then will return -EPIPE, and device side stall is 1157 * noted and cleared by class driver. 1158 */ 1159 switch (GET_EP_CTX_STATE(ep_ctx)) { 1160 case EP_STATE_HALTED: 1161 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n"); 1162 if (ep->ep_state & EP_HAS_STREAMS) { 1163 reset_type = EP_SOFT_RESET; 1164 } else { 1165 reset_type = EP_HARD_RESET; 1166 td = find_halted_td(ep); 1167 if (td) 1168 td->status = -EPROTO; 1169 } 1170 /* reset ep, reset handler cleans up cancelled tds */ 1171 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type); 1172 if (err) 1173 break; 1174 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1175 return; 1176 case EP_STATE_RUNNING: 1177 /* Race, HW handled stop ep cmd before ep was running */ 1178 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n"); 1179 1180 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1181 if (!command) { 1182 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1183 return; 1184 } 1185 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0); 1186 xhci_ring_cmd_db(xhci); 1187 1188 return; 1189 default: 1190 break; 1191 } 1192 } 1193 1194 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */ 1195 xhci_invalidate_cancelled_tds(ep); 1196 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1197 1198 /* Otherwise ring the doorbell(s) to restart queued transfers */ 1199 xhci_giveback_invalidated_tds(ep); 1200 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1201 } 1202 1203 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 1204 { 1205 struct xhci_td *cur_td; 1206 struct xhci_td *tmp; 1207 1208 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { 1209 list_del_init(&cur_td->td_list); 1210 1211 if (!list_empty(&cur_td->cancelled_td_list)) 1212 list_del_init(&cur_td->cancelled_td_list); 1213 1214 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); 1215 1216 inc_td_cnt(cur_td->urb); 1217 if (last_td_in_urb(cur_td)) 1218 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1219 } 1220 } 1221 1222 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 1223 int slot_id, int ep_index) 1224 { 1225 struct xhci_td *cur_td; 1226 struct xhci_td *tmp; 1227 struct xhci_virt_ep *ep; 1228 struct xhci_ring *ring; 1229 1230 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1231 if (!ep) 1232 return; 1233 1234 if ((ep->ep_state & EP_HAS_STREAMS) || 1235 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 1236 int stream_id; 1237 1238 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 1239 stream_id++) { 1240 ring = ep->stream_info->stream_rings[stream_id]; 1241 if (!ring) 1242 continue; 1243 1244 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1245 "Killing URBs for slot ID %u, ep index %u, stream %u", 1246 slot_id, ep_index, stream_id); 1247 xhci_kill_ring_urbs(xhci, ring); 1248 } 1249 } else { 1250 ring = ep->ring; 1251 if (!ring) 1252 return; 1253 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1254 "Killing URBs for slot ID %u, ep index %u", 1255 slot_id, ep_index); 1256 xhci_kill_ring_urbs(xhci, ring); 1257 } 1258 1259 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, 1260 cancelled_td_list) { 1261 list_del_init(&cur_td->cancelled_td_list); 1262 inc_td_cnt(cur_td->urb); 1263 1264 if (last_td_in_urb(cur_td)) 1265 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 1266 } 1267 } 1268 1269 /* 1270 * host controller died, register read returns 0xffffffff 1271 * Complete pending commands, mark them ABORTED. 1272 * URBs need to be given back as usb core might be waiting with device locks 1273 * held for the URBs to finish during device disconnect, blocking host remove. 1274 * 1275 * Call with xhci->lock held. 1276 * lock is relased and re-acquired while giving back urb. 1277 */ 1278 void xhci_hc_died(struct xhci_hcd *xhci) 1279 { 1280 int i, j; 1281 1282 if (xhci->xhc_state & XHCI_STATE_DYING) 1283 return; 1284 1285 xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); 1286 xhci->xhc_state |= XHCI_STATE_DYING; 1287 1288 xhci_cleanup_command_queue(xhci); 1289 1290 /* return any pending urbs, remove may be waiting for them */ 1291 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1292 if (!xhci->devs[i]) 1293 continue; 1294 for (j = 0; j < 31; j++) 1295 xhci_kill_endpoint_urbs(xhci, i, j); 1296 } 1297 1298 /* inform usb core hc died if PCI remove isn't already handling it */ 1299 if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) 1300 usb_hc_died(xhci_to_hcd(xhci)); 1301 } 1302 1303 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 1304 struct xhci_virt_device *dev, 1305 struct xhci_ring *ep_ring, 1306 unsigned int ep_index) 1307 { 1308 union xhci_trb *dequeue_temp; 1309 1310 dequeue_temp = ep_ring->dequeue; 1311 1312 /* If we get two back-to-back stalls, and the first stalled transfer 1313 * ends just before a link TRB, the dequeue pointer will be left on 1314 * the link TRB by the code in the while loop. So we have to update 1315 * the dequeue pointer one segment further, or we'll jump off 1316 * the segment into la-la-land. 1317 */ 1318 if (trb_is_link(ep_ring->dequeue)) { 1319 ep_ring->deq_seg = ep_ring->deq_seg->next; 1320 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1321 } 1322 1323 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 1324 /* We have more usable TRBs */ 1325 ep_ring->dequeue++; 1326 if (trb_is_link(ep_ring->dequeue)) { 1327 if (ep_ring->dequeue == 1328 dev->eps[ep_index].queued_deq_ptr) 1329 break; 1330 ep_ring->deq_seg = ep_ring->deq_seg->next; 1331 ep_ring->dequeue = ep_ring->deq_seg->trbs; 1332 } 1333 if (ep_ring->dequeue == dequeue_temp) { 1334 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 1335 break; 1336 } 1337 } 1338 } 1339 1340 /* 1341 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1342 * we need to clear the set deq pending flag in the endpoint ring state, so that 1343 * the TD queueing code can ring the doorbell again. We also need to ring the 1344 * endpoint doorbell to restart the ring, but only if there aren't more 1345 * cancellations pending. 1346 */ 1347 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1348 union xhci_trb *trb, u32 cmd_comp_code) 1349 { 1350 unsigned int ep_index; 1351 unsigned int stream_id; 1352 struct xhci_ring *ep_ring; 1353 struct xhci_virt_ep *ep; 1354 struct xhci_ep_ctx *ep_ctx; 1355 struct xhci_slot_ctx *slot_ctx; 1356 struct xhci_td *td, *tmp_td; 1357 bool deferred = false; 1358 1359 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1360 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1361 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1362 if (!ep) 1363 return; 1364 1365 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id); 1366 if (!ep_ring) { 1367 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1368 stream_id); 1369 /* XXX: Harmless??? */ 1370 goto cleanup; 1371 } 1372 1373 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1374 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 1375 trace_xhci_handle_cmd_set_deq(slot_ctx); 1376 trace_xhci_handle_cmd_set_deq_ep(ep_ctx); 1377 1378 if (cmd_comp_code != COMP_SUCCESS) { 1379 unsigned int ep_state; 1380 unsigned int slot_state; 1381 1382 switch (cmd_comp_code) { 1383 case COMP_TRB_ERROR: 1384 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1385 break; 1386 case COMP_CONTEXT_STATE_ERROR: 1387 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1388 ep_state = GET_EP_CTX_STATE(ep_ctx); 1389 slot_state = le32_to_cpu(slot_ctx->dev_state); 1390 slot_state = GET_SLOT_STATE(slot_state); 1391 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1392 "Slot state = %u, EP state = %u", 1393 slot_state, ep_state); 1394 break; 1395 case COMP_SLOT_NOT_ENABLED_ERROR: 1396 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1397 slot_id); 1398 break; 1399 default: 1400 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1401 cmd_comp_code); 1402 break; 1403 } 1404 /* OK what do we do now? The endpoint state is hosed, and we 1405 * should never get to this point if the synchronization between 1406 * queueing, and endpoint state are correct. This might happen 1407 * if the device gets disconnected after we've finished 1408 * cancelling URBs, which might not be an error... 1409 */ 1410 } else { 1411 u64 deq; 1412 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1413 if (ep->ep_state & EP_HAS_STREAMS) { 1414 struct xhci_stream_ctx *ctx = 1415 &ep->stream_info->stream_ctx_array[stream_id]; 1416 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1417 1418 /* 1419 * Cadence xHCI controllers store some endpoint state 1420 * information within Rsvd0 fields of Stream Endpoint 1421 * context. This field is not cleared during Set TR 1422 * Dequeue Pointer command which causes XDMA to skip 1423 * over transfer ring and leads to data loss on stream 1424 * pipe. 1425 * To fix this issue driver must clear Rsvd0 field. 1426 */ 1427 if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) { 1428 ctx->reserved[0] = 0; 1429 ctx->reserved[1] = 0; 1430 } 1431 } else { 1432 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1433 } 1434 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1435 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1436 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1437 ep->queued_deq_ptr) == deq) { 1438 /* Update the ring's dequeue segment and dequeue pointer 1439 * to reflect the new position. 1440 */ 1441 update_ring_for_set_deq_completion(xhci, ep->vdev, 1442 ep_ring, ep_index); 1443 } else { 1444 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1445 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1446 ep->queued_deq_seg, ep->queued_deq_ptr); 1447 } 1448 } 1449 /* HW cached TDs cleared from cache, give them back */ 1450 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, 1451 cancelled_td_list) { 1452 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb); 1453 if (td->cancel_status == TD_CLEARING_CACHE) { 1454 td->cancel_status = TD_CLEARED; 1455 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n", 1456 __func__, td->urb); 1457 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status); 1458 } else if (td->cancel_status == TD_CLEARING_CACHE_DEFERRED) { 1459 deferred = true; 1460 } else { 1461 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n", 1462 __func__, td->urb, td->cancel_status); 1463 } 1464 } 1465 cleanup: 1466 ep->ep_state &= ~SET_DEQ_PENDING; 1467 ep->queued_deq_seg = NULL; 1468 ep->queued_deq_ptr = NULL; 1469 1470 if (deferred) { 1471 /* We have more streams to clear */ 1472 xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n", 1473 __func__); 1474 xhci_invalidate_cancelled_tds(ep); 1475 } else { 1476 /* Restart any rings with pending URBs */ 1477 xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__); 1478 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1479 } 1480 } 1481 1482 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1483 union xhci_trb *trb, u32 cmd_comp_code) 1484 { 1485 struct xhci_virt_ep *ep; 1486 struct xhci_ep_ctx *ep_ctx; 1487 unsigned int ep_index; 1488 1489 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1490 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 1491 if (!ep) 1492 return; 1493 1494 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 1495 trace_xhci_handle_cmd_reset_ep(ep_ctx); 1496 1497 /* This command will only fail if the endpoint wasn't halted, 1498 * but we don't care. 1499 */ 1500 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1501 "Ignoring reset ep completion code of %u", cmd_comp_code); 1502 1503 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */ 1504 xhci_invalidate_cancelled_tds(ep); 1505 1506 /* Clear our internal halted state */ 1507 ep->ep_state &= ~EP_HALTED; 1508 1509 xhci_giveback_invalidated_tds(ep); 1510 1511 /* if this was a soft reset, then restart */ 1512 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) 1513 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1514 } 1515 1516 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1517 struct xhci_command *command, u32 cmd_comp_code) 1518 { 1519 if (cmd_comp_code == COMP_SUCCESS) 1520 command->slot_id = slot_id; 1521 else 1522 command->slot_id = 0; 1523 } 1524 1525 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1526 { 1527 struct xhci_virt_device *virt_dev; 1528 struct xhci_slot_ctx *slot_ctx; 1529 1530 virt_dev = xhci->devs[slot_id]; 1531 if (!virt_dev) 1532 return; 1533 1534 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 1535 trace_xhci_handle_cmd_disable_slot(slot_ctx); 1536 1537 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1538 /* Delete default control endpoint resources */ 1539 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1540 } 1541 1542 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1543 u32 cmd_comp_code) 1544 { 1545 struct xhci_virt_device *virt_dev; 1546 struct xhci_input_control_ctx *ctrl_ctx; 1547 struct xhci_ep_ctx *ep_ctx; 1548 unsigned int ep_index; 1549 u32 add_flags; 1550 1551 /* 1552 * Configure endpoint commands can come from the USB core configuration 1553 * or alt setting changes, or when streams were being configured. 1554 */ 1555 1556 virt_dev = xhci->devs[slot_id]; 1557 if (!virt_dev) 1558 return; 1559 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1560 if (!ctrl_ctx) { 1561 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1562 return; 1563 } 1564 1565 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1566 1567 /* Input ctx add_flags are the endpoint index plus one */ 1568 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1569 1570 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); 1571 trace_xhci_handle_cmd_config_ep(ep_ctx); 1572 1573 return; 1574 } 1575 1576 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) 1577 { 1578 struct xhci_virt_device *vdev; 1579 struct xhci_slot_ctx *slot_ctx; 1580 1581 vdev = xhci->devs[slot_id]; 1582 if (!vdev) 1583 return; 1584 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1585 trace_xhci_handle_cmd_addr_dev(slot_ctx); 1586 } 1587 1588 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id) 1589 { 1590 struct xhci_virt_device *vdev; 1591 struct xhci_slot_ctx *slot_ctx; 1592 1593 vdev = xhci->devs[slot_id]; 1594 if (!vdev) { 1595 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n", 1596 slot_id); 1597 return; 1598 } 1599 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 1600 trace_xhci_handle_cmd_reset_dev(slot_ctx); 1601 1602 xhci_dbg(xhci, "Completed reset device command.\n"); 1603 } 1604 1605 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1606 struct xhci_event_cmd *event) 1607 { 1608 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1609 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); 1610 return; 1611 } 1612 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1613 "NEC firmware version %2x.%02x", 1614 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1615 NEC_FW_MINOR(le32_to_cpu(event->status))); 1616 } 1617 1618 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1619 { 1620 list_del(&cmd->cmd_list); 1621 1622 if (cmd->completion) { 1623 cmd->status = status; 1624 complete(cmd->completion); 1625 } else { 1626 kfree(cmd); 1627 } 1628 } 1629 1630 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1631 { 1632 struct xhci_command *cur_cmd, *tmp_cmd; 1633 xhci->current_cmd = NULL; 1634 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1635 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); 1636 } 1637 1638 void xhci_handle_command_timeout(struct work_struct *work) 1639 { 1640 struct xhci_hcd *xhci; 1641 unsigned long flags; 1642 char str[XHCI_MSG_MAX]; 1643 u64 hw_ring_state; 1644 u32 cmd_field3; 1645 u32 usbsts; 1646 1647 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); 1648 1649 spin_lock_irqsave(&xhci->lock, flags); 1650 1651 /* 1652 * If timeout work is pending, or current_cmd is NULL, it means we 1653 * raced with command completion. Command is handled so just return. 1654 */ 1655 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { 1656 spin_unlock_irqrestore(&xhci->lock, flags); 1657 return; 1658 } 1659 1660 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]); 1661 usbsts = readl(&xhci->op_regs->status); 1662 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts)); 1663 1664 /* Bail out and tear down xhci if a stop endpoint command failed */ 1665 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) { 1666 struct xhci_virt_ep *ep; 1667 1668 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n"); 1669 1670 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3), 1671 TRB_TO_EP_INDEX(cmd_field3)); 1672 if (ep) 1673 ep->ep_state &= ~EP_STOP_CMD_PENDING; 1674 1675 xhci_halt(xhci); 1676 xhci_hc_died(xhci); 1677 goto time_out_completed; 1678 } 1679 1680 /* mark this command to be cancelled */ 1681 xhci->current_cmd->status = COMP_COMMAND_ABORTED; 1682 1683 /* Make sure command ring is running before aborting it */ 1684 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1685 if (hw_ring_state == ~(u64)0) { 1686 xhci_hc_died(xhci); 1687 goto time_out_completed; 1688 } 1689 1690 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1691 (hw_ring_state & CMD_RING_RUNNING)) { 1692 /* Prevent new doorbell, and start command abort */ 1693 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 1694 xhci_dbg(xhci, "Command timeout\n"); 1695 xhci_abort_cmd_ring(xhci, flags); 1696 goto time_out_completed; 1697 } 1698 1699 /* host removed. Bail out */ 1700 if (xhci->xhc_state & XHCI_STATE_REMOVING) { 1701 xhci_dbg(xhci, "host removed, ring start fail?\n"); 1702 xhci_cleanup_command_queue(xhci); 1703 1704 goto time_out_completed; 1705 } 1706 1707 /* command timeout on stopped ring, ring can't be aborted */ 1708 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1709 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1710 1711 time_out_completed: 1712 spin_unlock_irqrestore(&xhci->lock, flags); 1713 return; 1714 } 1715 1716 static void handle_cmd_completion(struct xhci_hcd *xhci, 1717 struct xhci_event_cmd *event) 1718 { 1719 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1720 u64 cmd_dma; 1721 dma_addr_t cmd_dequeue_dma; 1722 u32 cmd_comp_code; 1723 union xhci_trb *cmd_trb; 1724 struct xhci_command *cmd; 1725 u32 cmd_type; 1726 1727 if (slot_id >= MAX_HC_SLOTS) { 1728 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id); 1729 return; 1730 } 1731 1732 cmd_dma = le64_to_cpu(event->cmd_trb); 1733 cmd_trb = xhci->cmd_ring->dequeue; 1734 1735 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); 1736 1737 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1738 cmd_trb); 1739 /* 1740 * Check whether the completion event is for our internal kept 1741 * command. 1742 */ 1743 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { 1744 xhci_warn(xhci, 1745 "ERROR mismatched command completion event\n"); 1746 return; 1747 } 1748 1749 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); 1750 1751 cancel_delayed_work(&xhci->cmd_timer); 1752 1753 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1754 1755 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1756 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { 1757 complete_all(&xhci->cmd_ring_stop_completion); 1758 return; 1759 } 1760 1761 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1762 xhci_err(xhci, 1763 "Command completion event does not match command\n"); 1764 return; 1765 } 1766 1767 /* 1768 * Host aborted the command ring, check if the current command was 1769 * supposed to be aborted, otherwise continue normally. 1770 * The command ring is stopped now, but the xHC will issue a Command 1771 * Ring Stopped event which will cause us to restart it. 1772 */ 1773 if (cmd_comp_code == COMP_COMMAND_ABORTED) { 1774 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1775 if (cmd->status == COMP_COMMAND_ABORTED) { 1776 if (xhci->current_cmd == cmd) 1777 xhci->current_cmd = NULL; 1778 goto event_handled; 1779 } 1780 } 1781 1782 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1783 switch (cmd_type) { 1784 case TRB_ENABLE_SLOT: 1785 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); 1786 break; 1787 case TRB_DISABLE_SLOT: 1788 xhci_handle_cmd_disable_slot(xhci, slot_id); 1789 break; 1790 case TRB_CONFIG_EP: 1791 if (!cmd->completion) 1792 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code); 1793 break; 1794 case TRB_EVAL_CONTEXT: 1795 break; 1796 case TRB_ADDR_DEV: 1797 xhci_handle_cmd_addr_dev(xhci, slot_id); 1798 break; 1799 case TRB_STOP_RING: 1800 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1801 le32_to_cpu(cmd_trb->generic.field[3]))); 1802 if (!cmd->completion) 1803 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, 1804 cmd_comp_code); 1805 break; 1806 case TRB_SET_DEQ: 1807 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1808 le32_to_cpu(cmd_trb->generic.field[3]))); 1809 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1810 break; 1811 case TRB_CMD_NOOP: 1812 /* Is this an aborted command turned to NO-OP? */ 1813 if (cmd->status == COMP_COMMAND_RING_STOPPED) 1814 cmd_comp_code = COMP_COMMAND_RING_STOPPED; 1815 break; 1816 case TRB_RESET_EP: 1817 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1818 le32_to_cpu(cmd_trb->generic.field[3]))); 1819 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1820 break; 1821 case TRB_RESET_DEV: 1822 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1823 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1824 */ 1825 slot_id = TRB_TO_SLOT_ID( 1826 le32_to_cpu(cmd_trb->generic.field[3])); 1827 xhci_handle_cmd_reset_dev(xhci, slot_id); 1828 break; 1829 case TRB_NEC_GET_FW: 1830 xhci_handle_cmd_nec_get_fw(xhci, event); 1831 break; 1832 default: 1833 /* Skip over unknown commands on the event ring */ 1834 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); 1835 break; 1836 } 1837 1838 /* restart timer if this wasn't the last command */ 1839 if (!list_is_singular(&xhci->cmd_list)) { 1840 xhci->current_cmd = list_first_entry(&cmd->cmd_list, 1841 struct xhci_command, cmd_list); 1842 xhci_mod_cmd_timer(xhci); 1843 } else if (xhci->current_cmd == cmd) { 1844 xhci->current_cmd = NULL; 1845 } 1846 1847 event_handled: 1848 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1849 1850 inc_deq(xhci, xhci->cmd_ring); 1851 } 1852 1853 static void handle_vendor_event(struct xhci_hcd *xhci, 1854 union xhci_trb *event, u32 trb_type) 1855 { 1856 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1857 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1858 handle_cmd_completion(xhci, &event->event_cmd); 1859 } 1860 1861 static void handle_device_notification(struct xhci_hcd *xhci, 1862 union xhci_trb *event) 1863 { 1864 u32 slot_id; 1865 struct usb_device *udev; 1866 1867 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1868 if (!xhci->devs[slot_id]) { 1869 xhci_warn(xhci, "Device Notification event for " 1870 "unused slot %u\n", slot_id); 1871 return; 1872 } 1873 1874 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1875 slot_id); 1876 udev = xhci->devs[slot_id]->udev; 1877 if (udev && udev->parent) 1878 usb_wakeup_notification(udev->parent, udev->portnum); 1879 } 1880 1881 /* 1882 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI 1883 * Controller. 1884 * As per ThunderX2errata-129 USB 2 device may come up as USB 1 1885 * If a connection to a USB 1 device is followed by another connection 1886 * to a USB 2 device. 1887 * 1888 * Reset the PHY after the USB device is disconnected if device speed 1889 * is less than HCD_USB3. 1890 * Retry the reset sequence max of 4 times checking the PLL lock status. 1891 * 1892 */ 1893 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) 1894 { 1895 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1896 u32 pll_lock_check; 1897 u32 retry_count = 4; 1898 1899 do { 1900 /* Assert PHY reset */ 1901 writel(0x6F, hcd->regs + 0x1048); 1902 udelay(10); 1903 /* De-assert the PHY reset */ 1904 writel(0x7F, hcd->regs + 0x1048); 1905 udelay(200); 1906 pll_lock_check = readl(hcd->regs + 0x1070); 1907 } while (!(pll_lock_check & 0x1) && --retry_count); 1908 } 1909 1910 static void handle_port_status(struct xhci_hcd *xhci, 1911 struct xhci_interrupter *ir, 1912 union xhci_trb *event) 1913 { 1914 struct usb_hcd *hcd; 1915 u32 port_id; 1916 u32 portsc, cmd_reg; 1917 int max_ports; 1918 int slot_id; 1919 unsigned int hcd_portnum; 1920 struct xhci_bus_state *bus_state; 1921 bool bogus_port_status = false; 1922 struct xhci_port *port; 1923 1924 /* Port status change events always have a successful completion code */ 1925 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) 1926 xhci_warn(xhci, 1927 "WARN: xHC returned failed port status event\n"); 1928 1929 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1930 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1931 1932 if ((port_id <= 0) || (port_id > max_ports)) { 1933 xhci_warn(xhci, "Port change event with invalid port ID %d\n", 1934 port_id); 1935 inc_deq(xhci, ir->event_ring); 1936 return; 1937 } 1938 1939 port = &xhci->hw_ports[port_id - 1]; 1940 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { 1941 xhci_warn(xhci, "Port change event, no port for port ID %u\n", 1942 port_id); 1943 bogus_port_status = true; 1944 goto cleanup; 1945 } 1946 1947 /* We might get interrupts after shared_hcd is removed */ 1948 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { 1949 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); 1950 bogus_port_status = true; 1951 goto cleanup; 1952 } 1953 1954 hcd = port->rhub->hcd; 1955 bus_state = &port->rhub->bus_state; 1956 hcd_portnum = port->hcd_portnum; 1957 portsc = readl(port->addr); 1958 1959 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", 1960 hcd->self.busnum, hcd_portnum + 1, port_id, portsc); 1961 1962 trace_xhci_handle_port_status(hcd_portnum, portsc); 1963 1964 if (hcd->state == HC_STATE_SUSPENDED) { 1965 xhci_dbg(xhci, "resume root hub\n"); 1966 usb_hcd_resume_root_hub(hcd); 1967 } 1968 1969 if (hcd->speed >= HCD_USB3 && 1970 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) { 1971 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 1972 if (slot_id && xhci->devs[slot_id]) 1973 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR; 1974 } 1975 1976 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { 1977 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1978 1979 cmd_reg = readl(&xhci->op_regs->command); 1980 if (!(cmd_reg & CMD_RUN)) { 1981 xhci_warn(xhci, "xHC is not running.\n"); 1982 goto cleanup; 1983 } 1984 1985 if (DEV_SUPERSPEED_ANY(portsc)) { 1986 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1987 /* Set a flag to say the port signaled remote wakeup, 1988 * so we can tell the difference between the end of 1989 * device and host initiated resume. 1990 */ 1991 bus_state->port_remote_wakeup |= 1 << hcd_portnum; 1992 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 1993 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 1994 xhci_set_link_state(xhci, port, XDEV_U0); 1995 /* Need to wait until the next link state change 1996 * indicates the device is actually in U0. 1997 */ 1998 bogus_port_status = true; 1999 goto cleanup; 2000 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { 2001 xhci_dbg(xhci, "resume HS port %d\n", port_id); 2002 port->resume_timestamp = jiffies + 2003 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2004 set_bit(hcd_portnum, &bus_state->resuming_ports); 2005 /* Do the rest in GetPortStatus after resume time delay. 2006 * Avoid polling roothub status before that so that a 2007 * usb device auto-resume latency around ~40ms. 2008 */ 2009 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2010 mod_timer(&hcd->rh_timer, 2011 port->resume_timestamp); 2012 usb_hcd_start_port_resume(&hcd->self, hcd_portnum); 2013 bogus_port_status = true; 2014 } 2015 } 2016 2017 if ((portsc & PORT_PLC) && 2018 DEV_SUPERSPEED_ANY(portsc) && 2019 ((portsc & PORT_PLS_MASK) == XDEV_U0 || 2020 (portsc & PORT_PLS_MASK) == XDEV_U1 || 2021 (portsc & PORT_PLS_MASK) == XDEV_U2)) { 2022 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 2023 complete(&port->u3exit_done); 2024 /* We've just brought the device into U0/1/2 through either the 2025 * Resume state after a device remote wakeup, or through the 2026 * U3Exit state after a host-initiated resume. If it's a device 2027 * initiated remote wake, don't pass up the link state change, 2028 * so the roothub behavior is consistent with external 2029 * USB 3.0 hub behavior. 2030 */ 2031 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); 2032 if (slot_id && xhci->devs[slot_id]) 2033 xhci_ring_device(xhci, slot_id); 2034 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { 2035 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2036 usb_wakeup_notification(hcd->self.root_hub, 2037 hcd_portnum + 1); 2038 bogus_port_status = true; 2039 goto cleanup; 2040 } 2041 } 2042 2043 /* 2044 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 2045 * RExit to a disconnect state). If so, let the driver know it's 2046 * out of the RExit state. 2047 */ 2048 if (hcd->speed < HCD_USB3 && port->rexit_active) { 2049 complete(&port->rexit_done); 2050 port->rexit_active = false; 2051 bogus_port_status = true; 2052 goto cleanup; 2053 } 2054 2055 if (hcd->speed < HCD_USB3) { 2056 xhci_test_and_clear_bit(xhci, port, PORT_PLC); 2057 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && 2058 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) 2059 xhci_cavium_reset_phy_quirk(xhci); 2060 } 2061 2062 cleanup: 2063 /* Update event ring dequeue pointer before dropping the lock */ 2064 inc_deq(xhci, ir->event_ring); 2065 2066 /* Don't make the USB core poll the roothub if we got a bad port status 2067 * change event. Besides, at that point we can't tell which roothub 2068 * (USB 2.0 or USB 3.0) to kick. 2069 */ 2070 if (bogus_port_status) 2071 return; 2072 2073 /* 2074 * xHCI port-status-change events occur when the "or" of all the 2075 * status-change bits in the portsc register changes from 0 to 1. 2076 * New status changes won't cause an event if any other change 2077 * bits are still set. When an event occurs, switch over to 2078 * polling to avoid losing status changes. 2079 */ 2080 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 2081 __func__, hcd->self.busnum); 2082 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2083 spin_unlock(&xhci->lock); 2084 /* Pass this up to the core */ 2085 usb_hcd_poll_rh_status(hcd); 2086 spin_lock(&xhci->lock); 2087 } 2088 2089 /* 2090 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 2091 * at end_trb, which may be in another segment. If the suspect DMA address is a 2092 * TRB in this TD, this function returns that TRB's segment. Otherwise it 2093 * returns 0. 2094 */ 2095 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, 2096 struct xhci_segment *start_seg, 2097 union xhci_trb *start_trb, 2098 union xhci_trb *end_trb, 2099 dma_addr_t suspect_dma, 2100 bool debug) 2101 { 2102 dma_addr_t start_dma; 2103 dma_addr_t end_seg_dma; 2104 dma_addr_t end_trb_dma; 2105 struct xhci_segment *cur_seg; 2106 2107 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 2108 cur_seg = start_seg; 2109 2110 do { 2111 if (start_dma == 0) 2112 return NULL; 2113 /* We may get an event for a Link TRB in the middle of a TD */ 2114 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 2115 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 2116 /* If the end TRB isn't in this segment, this is set to 0 */ 2117 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 2118 2119 if (debug) 2120 xhci_warn(xhci, 2121 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", 2122 (unsigned long long)suspect_dma, 2123 (unsigned long long)start_dma, 2124 (unsigned long long)end_trb_dma, 2125 (unsigned long long)cur_seg->dma, 2126 (unsigned long long)end_seg_dma); 2127 2128 if (end_trb_dma > 0) { 2129 /* The end TRB is in this segment, so suspect should be here */ 2130 if (start_dma <= end_trb_dma) { 2131 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 2132 return cur_seg; 2133 } else { 2134 /* Case for one segment with 2135 * a TD wrapped around to the top 2136 */ 2137 if ((suspect_dma >= start_dma && 2138 suspect_dma <= end_seg_dma) || 2139 (suspect_dma >= cur_seg->dma && 2140 suspect_dma <= end_trb_dma)) 2141 return cur_seg; 2142 } 2143 return NULL; 2144 } else { 2145 /* Might still be somewhere in this segment */ 2146 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 2147 return cur_seg; 2148 } 2149 cur_seg = cur_seg->next; 2150 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 2151 } while (cur_seg != start_seg); 2152 2153 return NULL; 2154 } 2155 2156 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, 2157 struct xhci_virt_ep *ep) 2158 { 2159 /* 2160 * As part of low/full-speed endpoint-halt processing 2161 * we must clear the TT buffer (USB 2.0 specification 11.17.5). 2162 */ 2163 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && 2164 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && 2165 !(ep->ep_state & EP_CLEARING_TT)) { 2166 ep->ep_state |= EP_CLEARING_TT; 2167 td->urb->ep->hcpriv = td->urb->dev; 2168 if (usb_hub_clear_tt_buffer(td->urb)) 2169 ep->ep_state &= ~EP_CLEARING_TT; 2170 } 2171 } 2172 2173 /* Check if an error has halted the endpoint ring. The class driver will 2174 * cleanup the halt for a non-default control endpoint if we indicate a stall. 2175 * However, a babble and other errors also halt the endpoint ring, and the class 2176 * driver won't clear the halt in that case, so we need to issue a Set Transfer 2177 * Ring Dequeue Pointer command manually. 2178 */ 2179 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 2180 struct xhci_ep_ctx *ep_ctx, 2181 unsigned int trb_comp_code) 2182 { 2183 /* TRB completion codes that may require a manual halt cleanup */ 2184 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || 2185 trb_comp_code == COMP_BABBLE_DETECTED_ERROR || 2186 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) 2187 /* The 0.95 spec says a babbling control endpoint 2188 * is not halted. The 0.96 spec says it is. Some HW 2189 * claims to be 0.95 compliant, but it halts the control 2190 * endpoint anyway. Check if a babble halted the 2191 * endpoint. 2192 */ 2193 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) 2194 return 1; 2195 2196 return 0; 2197 } 2198 2199 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 2200 { 2201 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 2202 /* Vendor defined "informational" completion code, 2203 * treat as not-an-error. 2204 */ 2205 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 2206 trb_comp_code); 2207 xhci_dbg(xhci, "Treating code as success.\n"); 2208 return 1; 2209 } 2210 return 0; 2211 } 2212 2213 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2214 struct xhci_ring *ep_ring, struct xhci_td *td, 2215 u32 trb_comp_code) 2216 { 2217 struct xhci_ep_ctx *ep_ctx; 2218 2219 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2220 2221 switch (trb_comp_code) { 2222 case COMP_STOPPED_LENGTH_INVALID: 2223 case COMP_STOPPED_SHORT_PACKET: 2224 case COMP_STOPPED: 2225 /* 2226 * The "Stop Endpoint" completion will take care of any 2227 * stopped TDs. A stopped TD may be restarted, so don't update 2228 * the ring dequeue pointer or take this TD off any lists yet. 2229 */ 2230 return 0; 2231 case COMP_USB_TRANSACTION_ERROR: 2232 case COMP_BABBLE_DETECTED_ERROR: 2233 case COMP_SPLIT_TRANSACTION_ERROR: 2234 /* 2235 * If endpoint context state is not halted we might be 2236 * racing with a reset endpoint command issued by a unsuccessful 2237 * stop endpoint completion (context error). In that case the 2238 * td should be on the cancelled list, and EP_HALTED flag set. 2239 * 2240 * Or then it's not halted due to the 0.95 spec stating that a 2241 * babbling control endpoint should not halt. The 0.96 spec 2242 * again says it should. Some HW claims to be 0.95 compliant, 2243 * but it halts the control endpoint anyway. 2244 */ 2245 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) { 2246 /* 2247 * If EP_HALTED is set and TD is on the cancelled list 2248 * the TD and dequeue pointer will be handled by reset 2249 * ep command completion 2250 */ 2251 if ((ep->ep_state & EP_HALTED) && 2252 !list_empty(&td->cancelled_td_list)) { 2253 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n", 2254 (unsigned long long)xhci_trb_virt_to_dma( 2255 td->start_seg, td->first_trb)); 2256 return 0; 2257 } 2258 /* endpoint not halted, don't reset it */ 2259 break; 2260 } 2261 /* Almost same procedure as for STALL_ERROR below */ 2262 xhci_clear_hub_tt_buffer(xhci, td, ep); 2263 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2264 return 0; 2265 case COMP_STALL_ERROR: 2266 /* 2267 * xhci internal endpoint state will go to a "halt" state for 2268 * any stall, including default control pipe protocol stall. 2269 * To clear the host side halt we need to issue a reset endpoint 2270 * command, followed by a set dequeue command to move past the 2271 * TD. 2272 * Class drivers clear the device side halt from a functional 2273 * stall later. Hub TT buffer should only be cleared for FS/LS 2274 * devices behind HS hubs for functional stalls. 2275 */ 2276 if (ep->ep_index != 0) 2277 xhci_clear_hub_tt_buffer(xhci, td, ep); 2278 2279 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET); 2280 2281 return 0; /* xhci_handle_halted_endpoint marked td cancelled */ 2282 default: 2283 break; 2284 } 2285 2286 /* Update ring dequeue pointer */ 2287 ep_ring->dequeue = td->last_trb; 2288 ep_ring->deq_seg = td->last_trb_seg; 2289 inc_deq(xhci, ep_ring); 2290 2291 return xhci_td_cleanup(xhci, td, ep_ring, td->status); 2292 } 2293 2294 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ 2295 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, 2296 union xhci_trb *stop_trb) 2297 { 2298 u32 sum; 2299 union xhci_trb *trb = ring->dequeue; 2300 struct xhci_segment *seg = ring->deq_seg; 2301 2302 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { 2303 if (!trb_is_noop(trb) && !trb_is_link(trb)) 2304 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); 2305 } 2306 return sum; 2307 } 2308 2309 /* 2310 * Process control tds, update urb status and actual_length. 2311 */ 2312 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2313 struct xhci_ring *ep_ring, struct xhci_td *td, 2314 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2315 { 2316 struct xhci_ep_ctx *ep_ctx; 2317 u32 trb_comp_code; 2318 u32 remaining, requested; 2319 u32 trb_type; 2320 2321 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); 2322 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index); 2323 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2324 requested = td->urb->transfer_buffer_length; 2325 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2326 2327 switch (trb_comp_code) { 2328 case COMP_SUCCESS: 2329 if (trb_type != TRB_STATUS) { 2330 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", 2331 (trb_type == TRB_DATA) ? "data" : "setup"); 2332 td->status = -ESHUTDOWN; 2333 break; 2334 } 2335 td->status = 0; 2336 break; 2337 case COMP_SHORT_PACKET: 2338 td->status = 0; 2339 break; 2340 case COMP_STOPPED_SHORT_PACKET: 2341 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2342 td->urb->actual_length = remaining; 2343 else 2344 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); 2345 goto finish_td; 2346 case COMP_STOPPED: 2347 switch (trb_type) { 2348 case TRB_SETUP: 2349 td->urb->actual_length = 0; 2350 goto finish_td; 2351 case TRB_DATA: 2352 case TRB_NORMAL: 2353 td->urb->actual_length = requested - remaining; 2354 goto finish_td; 2355 case TRB_STATUS: 2356 td->urb->actual_length = requested; 2357 goto finish_td; 2358 default: 2359 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", 2360 trb_type); 2361 goto finish_td; 2362 } 2363 case COMP_STOPPED_LENGTH_INVALID: 2364 goto finish_td; 2365 default: 2366 if (!xhci_requires_manual_halt_cleanup(xhci, 2367 ep_ctx, trb_comp_code)) 2368 break; 2369 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", 2370 trb_comp_code, ep->ep_index); 2371 fallthrough; 2372 case COMP_STALL_ERROR: 2373 /* Did we transfer part of the data (middle) phase? */ 2374 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) 2375 td->urb->actual_length = requested - remaining; 2376 else if (!td->urb_length_set) 2377 td->urb->actual_length = 0; 2378 goto finish_td; 2379 } 2380 2381 /* stopped at setup stage, no data transferred */ 2382 if (trb_type == TRB_SETUP) 2383 goto finish_td; 2384 2385 /* 2386 * if on data stage then update the actual_length of the URB and flag it 2387 * as set, so it won't be overwritten in the event for the last TRB. 2388 */ 2389 if (trb_type == TRB_DATA || 2390 trb_type == TRB_NORMAL) { 2391 td->urb_length_set = true; 2392 td->urb->actual_length = requested - remaining; 2393 xhci_dbg(xhci, "Waiting for status stage event\n"); 2394 return 0; 2395 } 2396 2397 /* at status stage */ 2398 if (!td->urb_length_set) 2399 td->urb->actual_length = requested; 2400 2401 finish_td: 2402 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2403 } 2404 2405 /* 2406 * Process isochronous tds, update urb packet status and actual_length. 2407 */ 2408 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2409 struct xhci_ring *ep_ring, struct xhci_td *td, 2410 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2411 { 2412 struct urb_priv *urb_priv; 2413 int idx; 2414 struct usb_iso_packet_descriptor *frame; 2415 u32 trb_comp_code; 2416 bool sum_trbs_for_length = false; 2417 u32 remaining, requested, ep_trb_len; 2418 int short_framestatus; 2419 2420 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2421 urb_priv = td->urb->hcpriv; 2422 idx = urb_priv->num_tds_done; 2423 frame = &td->urb->iso_frame_desc[idx]; 2424 requested = frame->length; 2425 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2426 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2427 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2428 -EREMOTEIO : 0; 2429 2430 /* handle completion code */ 2431 switch (trb_comp_code) { 2432 case COMP_SUCCESS: 2433 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */ 2434 if (td->error_mid_td) 2435 break; 2436 if (remaining) { 2437 frame->status = short_framestatus; 2438 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2439 sum_trbs_for_length = true; 2440 break; 2441 } 2442 frame->status = 0; 2443 break; 2444 case COMP_SHORT_PACKET: 2445 frame->status = short_framestatus; 2446 sum_trbs_for_length = true; 2447 break; 2448 case COMP_BANDWIDTH_OVERRUN_ERROR: 2449 frame->status = -ECOMM; 2450 break; 2451 case COMP_BABBLE_DETECTED_ERROR: 2452 sum_trbs_for_length = true; 2453 fallthrough; 2454 case COMP_ISOCH_BUFFER_OVERRUN: 2455 frame->status = -EOVERFLOW; 2456 if (ep_trb != td->last_trb) 2457 td->error_mid_td = true; 2458 break; 2459 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2460 case COMP_STALL_ERROR: 2461 frame->status = -EPROTO; 2462 break; 2463 case COMP_USB_TRANSACTION_ERROR: 2464 frame->status = -EPROTO; 2465 sum_trbs_for_length = true; 2466 if (ep_trb != td->last_trb) 2467 td->error_mid_td = true; 2468 break; 2469 case COMP_STOPPED: 2470 sum_trbs_for_length = true; 2471 break; 2472 case COMP_STOPPED_SHORT_PACKET: 2473 /* field normally containing residue now contains tranferred */ 2474 frame->status = short_framestatus; 2475 requested = remaining; 2476 break; 2477 case COMP_STOPPED_LENGTH_INVALID: 2478 requested = 0; 2479 remaining = 0; 2480 break; 2481 default: 2482 sum_trbs_for_length = true; 2483 frame->status = -1; 2484 break; 2485 } 2486 2487 if (td->urb_length_set) 2488 goto finish_td; 2489 2490 if (sum_trbs_for_length) 2491 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) + 2492 ep_trb_len - remaining; 2493 else 2494 frame->actual_length = requested; 2495 2496 td->urb->actual_length += frame->actual_length; 2497 2498 finish_td: 2499 /* Don't give back TD yet if we encountered an error mid TD */ 2500 if (td->error_mid_td && ep_trb != td->last_trb) { 2501 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n"); 2502 td->urb_length_set = true; 2503 return 0; 2504 } 2505 2506 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2507 } 2508 2509 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2510 struct xhci_virt_ep *ep, int status) 2511 { 2512 struct urb_priv *urb_priv; 2513 struct usb_iso_packet_descriptor *frame; 2514 int idx; 2515 2516 urb_priv = td->urb->hcpriv; 2517 idx = urb_priv->num_tds_done; 2518 frame = &td->urb->iso_frame_desc[idx]; 2519 2520 /* The transfer is partly done. */ 2521 frame->status = -EXDEV; 2522 2523 /* calc actual length */ 2524 frame->actual_length = 0; 2525 2526 /* Update ring dequeue pointer */ 2527 ep->ring->dequeue = td->last_trb; 2528 ep->ring->deq_seg = td->last_trb_seg; 2529 inc_deq(xhci, ep->ring); 2530 2531 return xhci_td_cleanup(xhci, td, ep->ring, status); 2532 } 2533 2534 /* 2535 * Process bulk and interrupt tds, update urb status and actual_length. 2536 */ 2537 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, 2538 struct xhci_ring *ep_ring, struct xhci_td *td, 2539 union xhci_trb *ep_trb, struct xhci_transfer_event *event) 2540 { 2541 struct xhci_slot_ctx *slot_ctx; 2542 u32 trb_comp_code; 2543 u32 remaining, requested, ep_trb_len; 2544 2545 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx); 2546 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2547 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2548 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); 2549 requested = td->urb->transfer_buffer_length; 2550 2551 switch (trb_comp_code) { 2552 case COMP_SUCCESS: 2553 ep->err_count = 0; 2554 /* handle success with untransferred data as short packet */ 2555 if (ep_trb != td->last_trb || remaining) { 2556 xhci_warn(xhci, "WARN Successful completion on short TX\n"); 2557 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2558 td->urb->ep->desc.bEndpointAddress, 2559 requested, remaining); 2560 } 2561 td->status = 0; 2562 break; 2563 case COMP_SHORT_PACKET: 2564 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", 2565 td->urb->ep->desc.bEndpointAddress, 2566 requested, remaining); 2567 td->status = 0; 2568 break; 2569 case COMP_STOPPED_SHORT_PACKET: 2570 td->urb->actual_length = remaining; 2571 goto finish_td; 2572 case COMP_STOPPED_LENGTH_INVALID: 2573 /* stopped on ep trb with invalid length, exclude it */ 2574 td->urb->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb); 2575 goto finish_td; 2576 case COMP_USB_TRANSACTION_ERROR: 2577 if (xhci->quirks & XHCI_NO_SOFT_RETRY || 2578 (ep->err_count++ > MAX_SOFT_RETRY) || 2579 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) 2580 break; 2581 2582 td->status = 0; 2583 2584 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET); 2585 return 0; 2586 default: 2587 /* do nothing */ 2588 break; 2589 } 2590 2591 if (ep_trb == td->last_trb) 2592 td->urb->actual_length = requested - remaining; 2593 else 2594 td->urb->actual_length = 2595 sum_trb_lengths(xhci, ep_ring, ep_trb) + 2596 ep_trb_len - remaining; 2597 finish_td: 2598 if (remaining > requested) { 2599 xhci_warn(xhci, "bad transfer trb length %d in event trb\n", 2600 remaining); 2601 td->urb->actual_length = 0; 2602 } 2603 2604 return finish_td(xhci, ep, ep_ring, td, trb_comp_code); 2605 } 2606 2607 /* 2608 * If this function returns an error condition, it means it got a Transfer 2609 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2610 * At this point, the host controller is probably hosed and should be reset. 2611 */ 2612 static int handle_tx_event(struct xhci_hcd *xhci, 2613 struct xhci_interrupter *ir, 2614 struct xhci_transfer_event *event) 2615 { 2616 struct xhci_virt_ep *ep; 2617 struct xhci_ring *ep_ring; 2618 unsigned int slot_id; 2619 int ep_index; 2620 struct xhci_td *td = NULL; 2621 dma_addr_t ep_trb_dma; 2622 struct xhci_segment *ep_seg; 2623 union xhci_trb *ep_trb; 2624 int status = -EINPROGRESS; 2625 struct xhci_ep_ctx *ep_ctx; 2626 u32 trb_comp_code; 2627 int td_num = 0; 2628 bool handling_skipped_tds = false; 2629 2630 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2631 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2632 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2633 ep_trb_dma = le64_to_cpu(event->buffer); 2634 2635 ep = xhci_get_virt_ep(xhci, slot_id, ep_index); 2636 if (!ep) { 2637 xhci_err(xhci, "ERROR Invalid Transfer event\n"); 2638 goto err_out; 2639 } 2640 2641 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); 2642 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index); 2643 2644 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { 2645 xhci_err(xhci, 2646 "ERROR Transfer event for disabled endpoint slot %u ep %u\n", 2647 slot_id, ep_index); 2648 goto err_out; 2649 } 2650 2651 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ 2652 if (!ep_ring) { 2653 switch (trb_comp_code) { 2654 case COMP_STALL_ERROR: 2655 case COMP_USB_TRANSACTION_ERROR: 2656 case COMP_INVALID_STREAM_TYPE_ERROR: 2657 case COMP_INVALID_STREAM_ID_ERROR: 2658 xhci_dbg(xhci, "Stream transaction error ep %u no id\n", 2659 ep_index); 2660 if (ep->err_count++ > MAX_SOFT_RETRY) 2661 xhci_handle_halted_endpoint(xhci, ep, NULL, 2662 EP_HARD_RESET); 2663 else 2664 xhci_handle_halted_endpoint(xhci, ep, NULL, 2665 EP_SOFT_RESET); 2666 goto cleanup; 2667 case COMP_RING_UNDERRUN: 2668 case COMP_RING_OVERRUN: 2669 case COMP_STOPPED_LENGTH_INVALID: 2670 goto cleanup; 2671 default: 2672 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", 2673 slot_id, ep_index); 2674 goto err_out; 2675 } 2676 } 2677 2678 /* Count current td numbers if ep->skip is set */ 2679 if (ep->skip) 2680 td_num += list_count_nodes(&ep_ring->td_list); 2681 2682 /* Look for common error cases */ 2683 switch (trb_comp_code) { 2684 /* Skip codes that require special handling depending on 2685 * transfer type 2686 */ 2687 case COMP_SUCCESS: 2688 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2689 break; 2690 if (xhci->quirks & XHCI_TRUST_TX_LENGTH || 2691 ep_ring->last_td_was_short) 2692 trb_comp_code = COMP_SHORT_PACKET; 2693 else 2694 xhci_warn_ratelimited(xhci, 2695 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", 2696 slot_id, ep_index); 2697 break; 2698 case COMP_SHORT_PACKET: 2699 break; 2700 /* Completion codes for endpoint stopped state */ 2701 case COMP_STOPPED: 2702 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", 2703 slot_id, ep_index); 2704 break; 2705 case COMP_STOPPED_LENGTH_INVALID: 2706 xhci_dbg(xhci, 2707 "Stopped on No-op or Link TRB for slot %u ep %u\n", 2708 slot_id, ep_index); 2709 break; 2710 case COMP_STOPPED_SHORT_PACKET: 2711 xhci_dbg(xhci, 2712 "Stopped with short packet transfer detected for slot %u ep %u\n", 2713 slot_id, ep_index); 2714 break; 2715 /* Completion codes for endpoint halted state */ 2716 case COMP_STALL_ERROR: 2717 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, 2718 ep_index); 2719 status = -EPIPE; 2720 break; 2721 case COMP_SPLIT_TRANSACTION_ERROR: 2722 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n", 2723 slot_id, ep_index); 2724 status = -EPROTO; 2725 break; 2726 case COMP_USB_TRANSACTION_ERROR: 2727 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", 2728 slot_id, ep_index); 2729 status = -EPROTO; 2730 break; 2731 case COMP_BABBLE_DETECTED_ERROR: 2732 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", 2733 slot_id, ep_index); 2734 status = -EOVERFLOW; 2735 break; 2736 /* Completion codes for endpoint error state */ 2737 case COMP_TRB_ERROR: 2738 xhci_warn(xhci, 2739 "WARN: TRB error for slot %u ep %u on endpoint\n", 2740 slot_id, ep_index); 2741 status = -EILSEQ; 2742 break; 2743 /* completion codes not indicating endpoint state change */ 2744 case COMP_DATA_BUFFER_ERROR: 2745 xhci_warn(xhci, 2746 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", 2747 slot_id, ep_index); 2748 status = -ENOSR; 2749 break; 2750 case COMP_BANDWIDTH_OVERRUN_ERROR: 2751 xhci_warn(xhci, 2752 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", 2753 slot_id, ep_index); 2754 break; 2755 case COMP_ISOCH_BUFFER_OVERRUN: 2756 xhci_warn(xhci, 2757 "WARN: buffer overrun event for slot %u ep %u on endpoint", 2758 slot_id, ep_index); 2759 break; 2760 case COMP_RING_UNDERRUN: 2761 /* 2762 * When the Isoch ring is empty, the xHC will generate 2763 * a Ring Overrun Event for IN Isoch endpoint or Ring 2764 * Underrun Event for OUT Isoch endpoint. 2765 */ 2766 xhci_dbg(xhci, "underrun event on endpoint\n"); 2767 if (!list_empty(&ep_ring->td_list)) 2768 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2769 "still with TDs queued?\n", 2770 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2771 ep_index); 2772 goto cleanup; 2773 case COMP_RING_OVERRUN: 2774 xhci_dbg(xhci, "overrun event on endpoint\n"); 2775 if (!list_empty(&ep_ring->td_list)) 2776 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2777 "still with TDs queued?\n", 2778 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2779 ep_index); 2780 goto cleanup; 2781 case COMP_MISSED_SERVICE_ERROR: 2782 /* 2783 * When encounter missed service error, one or more isoc tds 2784 * may be missed by xHC. 2785 * Set skip flag of the ep_ring; Complete the missed tds as 2786 * short transfer when process the ep_ring next time. 2787 */ 2788 ep->skip = true; 2789 xhci_dbg(xhci, 2790 "Miss service interval error for slot %u ep %u, set skip flag\n", 2791 slot_id, ep_index); 2792 goto cleanup; 2793 case COMP_NO_PING_RESPONSE_ERROR: 2794 ep->skip = true; 2795 xhci_dbg(xhci, 2796 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", 2797 slot_id, ep_index); 2798 goto cleanup; 2799 2800 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2801 /* needs disable slot command to recover */ 2802 xhci_warn(xhci, 2803 "WARN: detect an incompatible device for slot %u ep %u", 2804 slot_id, ep_index); 2805 status = -EPROTO; 2806 break; 2807 default: 2808 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2809 status = 0; 2810 break; 2811 } 2812 xhci_warn(xhci, 2813 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", 2814 trb_comp_code, slot_id, ep_index); 2815 goto cleanup; 2816 } 2817 2818 do { 2819 /* This TRB should be in the TD at the head of this ring's 2820 * TD list. 2821 */ 2822 if (list_empty(&ep_ring->td_list)) { 2823 /* 2824 * Don't print wanings if it's due to a stopped endpoint 2825 * generating an extra completion event if the device 2826 * was suspended. Or, a event for the last TRB of a 2827 * short TD we already got a short event for. 2828 * The short TD is already removed from the TD list. 2829 */ 2830 2831 if (!(trb_comp_code == COMP_STOPPED || 2832 trb_comp_code == COMP_STOPPED_LENGTH_INVALID || 2833 ep_ring->last_td_was_short)) { 2834 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2835 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2836 ep_index); 2837 } 2838 if (ep->skip) { 2839 ep->skip = false; 2840 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", 2841 slot_id, ep_index); 2842 } 2843 if (trb_comp_code == COMP_STALL_ERROR || 2844 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2845 trb_comp_code)) { 2846 xhci_handle_halted_endpoint(xhci, ep, NULL, 2847 EP_HARD_RESET); 2848 } 2849 goto cleanup; 2850 } 2851 2852 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2853 if (ep->skip && td_num == 0) { 2854 ep->skip = false; 2855 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", 2856 slot_id, ep_index); 2857 goto cleanup; 2858 } 2859 2860 td = list_first_entry(&ep_ring->td_list, struct xhci_td, 2861 td_list); 2862 if (ep->skip) 2863 td_num--; 2864 2865 /* Is this a TRB in the currently executing TD? */ 2866 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, 2867 td->last_trb, ep_trb_dma, false); 2868 2869 /* 2870 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2871 * is not in the current TD pointed by ep_ring->dequeue because 2872 * that the hardware dequeue pointer still at the previous TRB 2873 * of the current TD. The previous TRB maybe a Link TD or the 2874 * last TRB of the previous TD. The command completion handle 2875 * will take care the rest. 2876 */ 2877 if (!ep_seg && (trb_comp_code == COMP_STOPPED || 2878 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { 2879 goto cleanup; 2880 } 2881 2882 if (!ep_seg) { 2883 2884 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2885 skip_isoc_td(xhci, td, ep, status); 2886 goto cleanup; 2887 } 2888 2889 /* 2890 * Some hosts give a spurious success event after a short 2891 * transfer. Ignore it. 2892 */ 2893 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2894 ep_ring->last_td_was_short) { 2895 ep_ring->last_td_was_short = false; 2896 goto cleanup; 2897 } 2898 2899 /* 2900 * xhci 4.10.2 states isoc endpoints should continue 2901 * processing the next TD if there was an error mid TD. 2902 * So host like NEC don't generate an event for the last 2903 * isoc TRB even if the IOC flag is set. 2904 * xhci 4.9.1 states that if there are errors in mult-TRB 2905 * TDs xHC should generate an error for that TRB, and if xHC 2906 * proceeds to the next TD it should genete an event for 2907 * any TRB with IOC flag on the way. Other host follow this. 2908 * So this event might be for the next TD. 2909 */ 2910 if (td->error_mid_td && 2911 !list_is_last(&td->td_list, &ep_ring->td_list)) { 2912 struct xhci_td *td_next = list_next_entry(td, td_list); 2913 2914 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb, 2915 td_next->last_trb, ep_trb_dma, false); 2916 if (ep_seg) { 2917 /* give back previous TD, start handling new */ 2918 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n"); 2919 ep_ring->dequeue = td->last_trb; 2920 ep_ring->deq_seg = td->last_trb_seg; 2921 inc_deq(xhci, ep_ring); 2922 xhci_td_cleanup(xhci, td, ep_ring, td->status); 2923 td = td_next; 2924 } 2925 } 2926 2927 if (!ep_seg) { 2928 /* HC is busted, give up! */ 2929 xhci_err(xhci, 2930 "ERROR Transfer event TRB DMA ptr not " 2931 "part of current TD ep_index %d " 2932 "comp_code %u\n", ep_index, 2933 trb_comp_code); 2934 trb_in_td(xhci, ep_ring->deq_seg, 2935 ep_ring->dequeue, td->last_trb, 2936 ep_trb_dma, true); 2937 return -ESHUTDOWN; 2938 } 2939 } 2940 if (trb_comp_code == COMP_SHORT_PACKET) 2941 ep_ring->last_td_was_short = true; 2942 else 2943 ep_ring->last_td_was_short = false; 2944 2945 if (ep->skip) { 2946 xhci_dbg(xhci, 2947 "Found td. Clear skip flag for slot %u ep %u.\n", 2948 slot_id, ep_index); 2949 ep->skip = false; 2950 } 2951 2952 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / 2953 sizeof(*ep_trb)]; 2954 2955 trace_xhci_handle_transfer(ep_ring, 2956 (struct xhci_generic_trb *) ep_trb); 2957 2958 /* 2959 * No-op TRB could trigger interrupts in a case where 2960 * a URB was killed and a STALL_ERROR happens right 2961 * after the endpoint ring stopped. Reset the halted 2962 * endpoint. Otherwise, the endpoint remains stalled 2963 * indefinitely. 2964 */ 2965 2966 if (trb_is_noop(ep_trb)) { 2967 if (trb_comp_code == COMP_STALL_ERROR || 2968 xhci_requires_manual_halt_cleanup(xhci, ep_ctx, 2969 trb_comp_code)) 2970 xhci_handle_halted_endpoint(xhci, ep, td, 2971 EP_HARD_RESET); 2972 goto cleanup; 2973 } 2974 2975 td->status = status; 2976 2977 /* update the urb's actual_length and give back to the core */ 2978 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2979 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event); 2980 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2981 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event); 2982 else 2983 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event); 2984 cleanup: 2985 handling_skipped_tds = ep->skip && 2986 trb_comp_code != COMP_MISSED_SERVICE_ERROR && 2987 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; 2988 2989 /* 2990 * Do not update event ring dequeue pointer if we're in a loop 2991 * processing missed tds. 2992 */ 2993 if (!handling_skipped_tds) 2994 inc_deq(xhci, ir->event_ring); 2995 2996 /* 2997 * If ep->skip is set, it means there are missed tds on the 2998 * endpoint ring need to take care of. 2999 * Process them as short transfer until reach the td pointed by 3000 * the event. 3001 */ 3002 } while (handling_skipped_tds); 3003 3004 return 0; 3005 3006 err_out: 3007 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 3008 (unsigned long long) xhci_trb_virt_to_dma( 3009 ir->event_ring->deq_seg, 3010 ir->event_ring->dequeue), 3011 lower_32_bits(le64_to_cpu(event->buffer)), 3012 upper_32_bits(le64_to_cpu(event->buffer)), 3013 le32_to_cpu(event->transfer_len), 3014 le32_to_cpu(event->flags)); 3015 return -ENODEV; 3016 } 3017 3018 /* 3019 * This function handles all OS-owned events on the event ring. It may drop 3020 * xhci->lock between event processing (e.g. to pass up port status changes). 3021 * Returns >0 for "possibly more events to process" (caller should call again), 3022 * otherwise 0 if done. In future, <0 returns should indicate error code. 3023 */ 3024 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 3025 { 3026 union xhci_trb *event; 3027 int update_ptrs = 1; 3028 u32 trb_type; 3029 int ret; 3030 3031 /* Event ring hasn't been allocated yet. */ 3032 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) { 3033 xhci_err(xhci, "ERROR interrupter not ready\n"); 3034 return -ENOMEM; 3035 } 3036 3037 event = ir->event_ring->dequeue; 3038 /* Does the HC or OS own the TRB? */ 3039 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 3040 ir->event_ring->cycle_state) 3041 return 0; 3042 3043 trace_xhci_handle_event(ir->event_ring, &event->generic); 3044 3045 /* 3046 * Barrier between reading the TRB_CYCLE (valid) flag above and any 3047 * speculative reads of the event's flags/data below. 3048 */ 3049 rmb(); 3050 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags)); 3051 /* FIXME: Handle more event types. */ 3052 3053 switch (trb_type) { 3054 case TRB_COMPLETION: 3055 handle_cmd_completion(xhci, &event->event_cmd); 3056 break; 3057 case TRB_PORT_STATUS: 3058 handle_port_status(xhci, ir, event); 3059 update_ptrs = 0; 3060 break; 3061 case TRB_TRANSFER: 3062 ret = handle_tx_event(xhci, ir, &event->trans_event); 3063 if (ret >= 0) 3064 update_ptrs = 0; 3065 break; 3066 case TRB_DEV_NOTE: 3067 handle_device_notification(xhci, event); 3068 break; 3069 default: 3070 if (trb_type >= TRB_VENDOR_DEFINED_LOW) 3071 handle_vendor_event(xhci, event, trb_type); 3072 else 3073 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type); 3074 } 3075 /* Any of the above functions may drop and re-acquire the lock, so check 3076 * to make sure a watchdog timer didn't mark the host as non-responsive. 3077 */ 3078 if (xhci->xhc_state & XHCI_STATE_DYING) { 3079 xhci_dbg(xhci, "xHCI host dying, returning from " 3080 "event handler.\n"); 3081 return 0; 3082 } 3083 3084 if (update_ptrs) 3085 /* Update SW event ring dequeue pointer */ 3086 inc_deq(xhci, ir->event_ring); 3087 3088 /* Are there more items on the event ring? Caller will call us again to 3089 * check. 3090 */ 3091 return 1; 3092 } 3093 3094 /* 3095 * Update Event Ring Dequeue Pointer: 3096 * - When all events have finished 3097 * - To avoid "Event Ring Full Error" condition 3098 */ 3099 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci, 3100 struct xhci_interrupter *ir, 3101 union xhci_trb *event_ring_deq, 3102 bool clear_ehb) 3103 { 3104 u64 temp_64; 3105 dma_addr_t deq; 3106 3107 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3108 /* If necessary, update the HW's version of the event ring deq ptr. */ 3109 if (event_ring_deq != ir->event_ring->dequeue) { 3110 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 3111 ir->event_ring->dequeue); 3112 if (deq == 0) 3113 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n"); 3114 /* 3115 * Per 4.9.4, Software writes to the ERDP register shall 3116 * always advance the Event Ring Dequeue Pointer value. 3117 */ 3118 if ((temp_64 & (u64) ~ERST_PTR_MASK) == 3119 ((u64) deq & (u64) ~ERST_PTR_MASK)) 3120 return; 3121 3122 /* Update HC event ring dequeue pointer */ 3123 temp_64 &= ERST_DESI_MASK; 3124 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 3125 } 3126 3127 /* Clear the event handler busy flag (RW1C) */ 3128 if (clear_ehb) 3129 temp_64 |= ERST_EHB; 3130 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue); 3131 } 3132 3133 /* 3134 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 3135 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 3136 * indicators of an event TRB error, but we check the status *first* to be safe. 3137 */ 3138 irqreturn_t xhci_irq(struct usb_hcd *hcd) 3139 { 3140 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3141 union xhci_trb *event_ring_deq; 3142 struct xhci_interrupter *ir; 3143 irqreturn_t ret = IRQ_NONE; 3144 u64 temp_64; 3145 u32 status; 3146 int event_loop = 0; 3147 3148 spin_lock(&xhci->lock); 3149 /* Check if the xHC generated the interrupt, or the irq is shared */ 3150 status = readl(&xhci->op_regs->status); 3151 if (status == ~(u32)0) { 3152 xhci_hc_died(xhci); 3153 ret = IRQ_HANDLED; 3154 goto out; 3155 } 3156 3157 if (!(status & STS_EINT)) 3158 goto out; 3159 3160 if (status & STS_HCE) { 3161 xhci_warn(xhci, "WARNING: Host Controller Error\n"); 3162 goto out; 3163 } 3164 3165 if (status & STS_FATAL) { 3166 xhci_warn(xhci, "WARNING: Host System Error\n"); 3167 xhci_halt(xhci); 3168 ret = IRQ_HANDLED; 3169 goto out; 3170 } 3171 3172 /* 3173 * Clear the op reg interrupt status first, 3174 * so we can receive interrupts from other MSI-X interrupters. 3175 * Write 1 to clear the interrupt status. 3176 */ 3177 status |= STS_EINT; 3178 writel(status, &xhci->op_regs->status); 3179 3180 /* This is the handler of the primary interrupter */ 3181 ir = xhci->interrupter; 3182 if (!hcd->msi_enabled) { 3183 u32 irq_pending; 3184 irq_pending = readl(&ir->ir_set->irq_pending); 3185 irq_pending |= IMAN_IP; 3186 writel(irq_pending, &ir->ir_set->irq_pending); 3187 } 3188 3189 if (xhci->xhc_state & XHCI_STATE_DYING || 3190 xhci->xhc_state & XHCI_STATE_HALTED) { 3191 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 3192 "Shouldn't IRQs be disabled?\n"); 3193 /* Clear the event handler busy flag (RW1C); 3194 * the event ring should be empty. 3195 */ 3196 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 3197 xhci_write_64(xhci, temp_64 | ERST_EHB, 3198 &ir->ir_set->erst_dequeue); 3199 ret = IRQ_HANDLED; 3200 goto out; 3201 } 3202 3203 event_ring_deq = ir->event_ring->dequeue; 3204 /* FIXME this should be a delayed service routine 3205 * that clears the EHB. 3206 */ 3207 while (xhci_handle_event(xhci, ir) > 0) { 3208 if (event_loop++ < TRBS_PER_SEGMENT / 2) 3209 continue; 3210 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, false); 3211 event_ring_deq = ir->event_ring->dequeue; 3212 3213 /* ring is half-full, force isoc trbs to interrupt more often */ 3214 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN) 3215 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2; 3216 3217 event_loop = 0; 3218 } 3219 3220 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, true); 3221 ret = IRQ_HANDLED; 3222 3223 out: 3224 spin_unlock(&xhci->lock); 3225 3226 return ret; 3227 } 3228 3229 irqreturn_t xhci_msi_irq(int irq, void *hcd) 3230 { 3231 return xhci_irq(hcd); 3232 } 3233 EXPORT_SYMBOL_GPL(xhci_msi_irq); 3234 3235 /**** Endpoint Ring Operations ****/ 3236 3237 /* 3238 * Generic function for queueing a TRB on a ring. 3239 * The caller must have checked to make sure there's room on the ring. 3240 * 3241 * @more_trbs_coming: Will you enqueue more TRBs before calling 3242 * prepare_transfer()? 3243 */ 3244 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 3245 bool more_trbs_coming, 3246 u32 field1, u32 field2, u32 field3, u32 field4) 3247 { 3248 struct xhci_generic_trb *trb; 3249 3250 trb = &ring->enqueue->generic; 3251 trb->field[0] = cpu_to_le32(field1); 3252 trb->field[1] = cpu_to_le32(field2); 3253 trb->field[2] = cpu_to_le32(field3); 3254 /* make sure TRB is fully written before giving it to the controller */ 3255 wmb(); 3256 trb->field[3] = cpu_to_le32(field4); 3257 3258 trace_xhci_queue_trb(ring, trb); 3259 3260 inc_enq(xhci, ring, more_trbs_coming); 3261 } 3262 3263 /* 3264 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 3265 * expand ring if it start to be full. 3266 */ 3267 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 3268 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 3269 { 3270 unsigned int link_trb_count = 0; 3271 unsigned int new_segs = 0; 3272 3273 /* Make sure the endpoint has been added to xHC schedule */ 3274 switch (ep_state) { 3275 case EP_STATE_DISABLED: 3276 /* 3277 * USB core changed config/interfaces without notifying us, 3278 * or hardware is reporting the wrong state. 3279 */ 3280 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 3281 return -ENOENT; 3282 case EP_STATE_ERROR: 3283 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 3284 /* FIXME event handling code for error needs to clear it */ 3285 /* XXX not sure if this should be -ENOENT or not */ 3286 return -EINVAL; 3287 case EP_STATE_HALTED: 3288 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 3289 break; 3290 case EP_STATE_STOPPED: 3291 case EP_STATE_RUNNING: 3292 break; 3293 default: 3294 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 3295 /* 3296 * FIXME issue Configure Endpoint command to try to get the HC 3297 * back into a known state. 3298 */ 3299 return -EINVAL; 3300 } 3301 3302 if (ep_ring != xhci->cmd_ring) { 3303 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs); 3304 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) { 3305 xhci_err(xhci, "Do not support expand command ring\n"); 3306 return -ENOMEM; 3307 } 3308 3309 if (new_segs) { 3310 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 3311 "ERROR no room on ep ring, try ring expansion"); 3312 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) { 3313 xhci_err(xhci, "Ring expansion failed\n"); 3314 return -ENOMEM; 3315 } 3316 } 3317 3318 while (trb_is_link(ep_ring->enqueue)) { 3319 /* If we're not dealing with 0.95 hardware or isoc rings 3320 * on AMD 0.96 host, clear the chain bit. 3321 */ 3322 if (!xhci_link_trb_quirk(xhci) && 3323 !(ep_ring->type == TYPE_ISOC && 3324 (xhci->quirks & XHCI_AMD_0x96_HOST))) 3325 ep_ring->enqueue->link.control &= 3326 cpu_to_le32(~TRB_CHAIN); 3327 else 3328 ep_ring->enqueue->link.control |= 3329 cpu_to_le32(TRB_CHAIN); 3330 3331 wmb(); 3332 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); 3333 3334 /* Toggle the cycle bit after the last ring segment. */ 3335 if (link_trb_toggles_cycle(ep_ring->enqueue)) 3336 ep_ring->cycle_state ^= 1; 3337 3338 ep_ring->enq_seg = ep_ring->enq_seg->next; 3339 ep_ring->enqueue = ep_ring->enq_seg->trbs; 3340 3341 /* prevent infinite loop if all first trbs are link trbs */ 3342 if (link_trb_count++ > ep_ring->num_segs) { 3343 xhci_warn(xhci, "Ring is an endless link TRB loop\n"); 3344 return -EINVAL; 3345 } 3346 } 3347 3348 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) { 3349 xhci_warn(xhci, "Missing link TRB at end of ring segment\n"); 3350 return -EINVAL; 3351 } 3352 3353 return 0; 3354 } 3355 3356 static int prepare_transfer(struct xhci_hcd *xhci, 3357 struct xhci_virt_device *xdev, 3358 unsigned int ep_index, 3359 unsigned int stream_id, 3360 unsigned int num_trbs, 3361 struct urb *urb, 3362 unsigned int td_index, 3363 gfp_t mem_flags) 3364 { 3365 int ret; 3366 struct urb_priv *urb_priv; 3367 struct xhci_td *td; 3368 struct xhci_ring *ep_ring; 3369 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3370 3371 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index, 3372 stream_id); 3373 if (!ep_ring) { 3374 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 3375 stream_id); 3376 return -EINVAL; 3377 } 3378 3379 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 3380 num_trbs, mem_flags); 3381 if (ret) 3382 return ret; 3383 3384 urb_priv = urb->hcpriv; 3385 td = &urb_priv->td[td_index]; 3386 3387 INIT_LIST_HEAD(&td->td_list); 3388 INIT_LIST_HEAD(&td->cancelled_td_list); 3389 3390 if (td_index == 0) { 3391 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 3392 if (unlikely(ret)) 3393 return ret; 3394 } 3395 3396 td->urb = urb; 3397 /* Add this TD to the tail of the endpoint ring's TD list */ 3398 list_add_tail(&td->td_list, &ep_ring->td_list); 3399 td->start_seg = ep_ring->enq_seg; 3400 td->first_trb = ep_ring->enqueue; 3401 3402 return 0; 3403 } 3404 3405 unsigned int count_trbs(u64 addr, u64 len) 3406 { 3407 unsigned int num_trbs; 3408 3409 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3410 TRB_MAX_BUFF_SIZE); 3411 if (num_trbs == 0) 3412 num_trbs++; 3413 3414 return num_trbs; 3415 } 3416 3417 static inline unsigned int count_trbs_needed(struct urb *urb) 3418 { 3419 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); 3420 } 3421 3422 static unsigned int count_sg_trbs_needed(struct urb *urb) 3423 { 3424 struct scatterlist *sg; 3425 unsigned int i, len, full_len, num_trbs = 0; 3426 3427 full_len = urb->transfer_buffer_length; 3428 3429 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { 3430 len = sg_dma_len(sg); 3431 num_trbs += count_trbs(sg_dma_address(sg), len); 3432 len = min_t(unsigned int, len, full_len); 3433 full_len -= len; 3434 if (full_len == 0) 3435 break; 3436 } 3437 3438 return num_trbs; 3439 } 3440 3441 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) 3442 { 3443 u64 addr, len; 3444 3445 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3446 len = urb->iso_frame_desc[i].length; 3447 3448 return count_trbs(addr, len); 3449 } 3450 3451 static void check_trb_math(struct urb *urb, int running_total) 3452 { 3453 if (unlikely(running_total != urb->transfer_buffer_length)) 3454 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 3455 "queued %#x (%d), asked for %#x (%d)\n", 3456 __func__, 3457 urb->ep->desc.bEndpointAddress, 3458 running_total, running_total, 3459 urb->transfer_buffer_length, 3460 urb->transfer_buffer_length); 3461 } 3462 3463 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 3464 unsigned int ep_index, unsigned int stream_id, int start_cycle, 3465 struct xhci_generic_trb *start_trb) 3466 { 3467 /* 3468 * Pass all the TRBs to the hardware at once and make sure this write 3469 * isn't reordered. 3470 */ 3471 wmb(); 3472 if (start_cycle) 3473 start_trb->field[3] |= cpu_to_le32(start_cycle); 3474 else 3475 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3476 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3477 } 3478 3479 static void check_interval(struct xhci_hcd *xhci, struct urb *urb, 3480 struct xhci_ep_ctx *ep_ctx) 3481 { 3482 int xhci_interval; 3483 int ep_interval; 3484 3485 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3486 ep_interval = urb->interval; 3487 3488 /* Convert to microframes */ 3489 if (urb->dev->speed == USB_SPEED_LOW || 3490 urb->dev->speed == USB_SPEED_FULL) 3491 ep_interval *= 8; 3492 3493 /* FIXME change this to a warning and a suggestion to use the new API 3494 * to set the polling interval (once the API is added). 3495 */ 3496 if (xhci_interval != ep_interval) { 3497 dev_dbg_ratelimited(&urb->dev->dev, 3498 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3499 ep_interval, ep_interval == 1 ? "" : "s", 3500 xhci_interval, xhci_interval == 1 ? "" : "s"); 3501 urb->interval = xhci_interval; 3502 /* Convert back to frames for LS/FS devices */ 3503 if (urb->dev->speed == USB_SPEED_LOW || 3504 urb->dev->speed == USB_SPEED_FULL) 3505 urb->interval /= 8; 3506 } 3507 } 3508 3509 /* 3510 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3511 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3512 * (comprised of sg list entries) can take several service intervals to 3513 * transmit. 3514 */ 3515 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3516 struct urb *urb, int slot_id, unsigned int ep_index) 3517 { 3518 struct xhci_ep_ctx *ep_ctx; 3519 3520 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); 3521 check_interval(xhci, urb, ep_ctx); 3522 3523 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3524 } 3525 3526 /* 3527 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3528 * packets remaining in the TD (*not* including this TRB). 3529 * 3530 * Total TD packet count = total_packet_count = 3531 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3532 * 3533 * Packets transferred up to and including this TRB = packets_transferred = 3534 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3535 * 3536 * TD size = total_packet_count - packets_transferred 3537 * 3538 * For xHCI 0.96 and older, TD size field should be the remaining bytes 3539 * including this TRB, right shifted by 10 3540 * 3541 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. 3542 * This is taken care of in the TRB_TD_SIZE() macro 3543 * 3544 * The last TRB in a TD must have the TD size set to zero. 3545 */ 3546 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, 3547 int trb_buff_len, unsigned int td_total_len, 3548 struct urb *urb, bool more_trbs_coming) 3549 { 3550 u32 maxp, total_packet_count; 3551 3552 /* MTK xHCI 0.96 contains some features from 1.0 */ 3553 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) 3554 return ((td_total_len - transferred) >> 10); 3555 3556 /* One TRB with a zero-length data packet. */ 3557 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || 3558 trb_buff_len == td_total_len) 3559 return 0; 3560 3561 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ 3562 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) 3563 trb_buff_len = 0; 3564 3565 maxp = usb_endpoint_maxp(&urb->ep->desc); 3566 total_packet_count = DIV_ROUND_UP(td_total_len, maxp); 3567 3568 /* Queueing functions don't count the current TRB into transferred */ 3569 return (total_packet_count - ((transferred + trb_buff_len) / maxp)); 3570 } 3571 3572 3573 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, 3574 u32 *trb_buff_len, struct xhci_segment *seg) 3575 { 3576 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 3577 unsigned int unalign; 3578 unsigned int max_pkt; 3579 u32 new_buff_len; 3580 size_t len; 3581 3582 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 3583 unalign = (enqd_len + *trb_buff_len) % max_pkt; 3584 3585 /* we got lucky, last normal TRB data on segment is packet aligned */ 3586 if (unalign == 0) 3587 return 0; 3588 3589 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", 3590 unalign, *trb_buff_len); 3591 3592 /* is the last nornal TRB alignable by splitting it */ 3593 if (*trb_buff_len > unalign) { 3594 *trb_buff_len -= unalign; 3595 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); 3596 return 0; 3597 } 3598 3599 /* 3600 * We want enqd_len + trb_buff_len to sum up to a number aligned to 3601 * number which is divisible by the endpoint's wMaxPacketSize. IOW: 3602 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. 3603 */ 3604 new_buff_len = max_pkt - (enqd_len % max_pkt); 3605 3606 if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) 3607 new_buff_len = (urb->transfer_buffer_length - enqd_len); 3608 3609 /* create a max max_pkt sized bounce buffer pointed to by last trb */ 3610 if (usb_urb_dir_out(urb)) { 3611 if (urb->num_sgs) { 3612 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 3613 seg->bounce_buf, new_buff_len, enqd_len); 3614 if (len != new_buff_len) 3615 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", 3616 len, new_buff_len); 3617 } else { 3618 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len); 3619 } 3620 3621 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3622 max_pkt, DMA_TO_DEVICE); 3623 } else { 3624 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, 3625 max_pkt, DMA_FROM_DEVICE); 3626 } 3627 3628 if (dma_mapping_error(dev, seg->bounce_dma)) { 3629 /* try without aligning. Some host controllers survive */ 3630 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); 3631 return 0; 3632 } 3633 *trb_buff_len = new_buff_len; 3634 seg->bounce_len = new_buff_len; 3635 seg->bounce_offs = enqd_len; 3636 3637 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); 3638 3639 return 1; 3640 } 3641 3642 /* This is very similar to what ehci-q.c qtd_fill() does */ 3643 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3644 struct urb *urb, int slot_id, unsigned int ep_index) 3645 { 3646 struct xhci_ring *ring; 3647 struct urb_priv *urb_priv; 3648 struct xhci_td *td; 3649 struct xhci_generic_trb *start_trb; 3650 struct scatterlist *sg = NULL; 3651 bool more_trbs_coming = true; 3652 bool need_zero_pkt = false; 3653 bool first_trb = true; 3654 unsigned int num_trbs; 3655 unsigned int start_cycle, num_sgs = 0; 3656 unsigned int enqd_len, block_len, trb_buff_len, full_len; 3657 int sent_len, ret; 3658 u32 field, length_field, remainder; 3659 u64 addr, send_addr; 3660 3661 ring = xhci_urb_to_transfer_ring(xhci, urb); 3662 if (!ring) 3663 return -EINVAL; 3664 3665 full_len = urb->transfer_buffer_length; 3666 /* If we have scatter/gather list, we use it. */ 3667 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) { 3668 num_sgs = urb->num_mapped_sgs; 3669 sg = urb->sg; 3670 addr = (u64) sg_dma_address(sg); 3671 block_len = sg_dma_len(sg); 3672 num_trbs = count_sg_trbs_needed(urb); 3673 } else { 3674 num_trbs = count_trbs_needed(urb); 3675 addr = (u64) urb->transfer_dma; 3676 block_len = full_len; 3677 } 3678 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3679 ep_index, urb->stream_id, 3680 num_trbs, urb, 0, mem_flags); 3681 if (unlikely(ret < 0)) 3682 return ret; 3683 3684 urb_priv = urb->hcpriv; 3685 3686 /* Deal with URB_ZERO_PACKET - need one more td/trb */ 3687 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) 3688 need_zero_pkt = true; 3689 3690 td = &urb_priv->td[0]; 3691 3692 /* 3693 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3694 * until we've finished creating all the other TRBs. The ring's cycle 3695 * state may change as we enqueue the other TRBs, so save it too. 3696 */ 3697 start_trb = &ring->enqueue->generic; 3698 start_cycle = ring->cycle_state; 3699 send_addr = addr; 3700 3701 /* Queue the TRBs, even if they are zero-length */ 3702 for (enqd_len = 0; first_trb || enqd_len < full_len; 3703 enqd_len += trb_buff_len) { 3704 field = TRB_TYPE(TRB_NORMAL); 3705 3706 /* TRB buffer should not cross 64KB boundaries */ 3707 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 3708 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); 3709 3710 if (enqd_len + trb_buff_len > full_len) 3711 trb_buff_len = full_len - enqd_len; 3712 3713 /* Don't change the cycle bit of the first TRB until later */ 3714 if (first_trb) { 3715 first_trb = false; 3716 if (start_cycle == 0) 3717 field |= TRB_CYCLE; 3718 } else 3719 field |= ring->cycle_state; 3720 3721 /* Chain all the TRBs together; clear the chain bit in the last 3722 * TRB to indicate it's the last TRB in the chain. 3723 */ 3724 if (enqd_len + trb_buff_len < full_len) { 3725 field |= TRB_CHAIN; 3726 if (trb_is_link(ring->enqueue + 1)) { 3727 if (xhci_align_td(xhci, urb, enqd_len, 3728 &trb_buff_len, 3729 ring->enq_seg)) { 3730 send_addr = ring->enq_seg->bounce_dma; 3731 /* assuming TD won't span 2 segs */ 3732 td->bounce_seg = ring->enq_seg; 3733 } 3734 } 3735 } 3736 if (enqd_len + trb_buff_len >= full_len) { 3737 field &= ~TRB_CHAIN; 3738 field |= TRB_IOC; 3739 more_trbs_coming = false; 3740 td->last_trb = ring->enqueue; 3741 td->last_trb_seg = ring->enq_seg; 3742 if (xhci_urb_suitable_for_idt(urb)) { 3743 memcpy(&send_addr, urb->transfer_buffer, 3744 trb_buff_len); 3745 le64_to_cpus(&send_addr); 3746 field |= TRB_IDT; 3747 } 3748 } 3749 3750 /* Only set interrupt on short packet for IN endpoints */ 3751 if (usb_urb_dir_in(urb)) 3752 field |= TRB_ISP; 3753 3754 /* Set the TRB length, TD size, and interrupter fields. */ 3755 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, 3756 full_len, urb, more_trbs_coming); 3757 3758 length_field = TRB_LEN(trb_buff_len) | 3759 TRB_TD_SIZE(remainder) | 3760 TRB_INTR_TARGET(0); 3761 3762 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, 3763 lower_32_bits(send_addr), 3764 upper_32_bits(send_addr), 3765 length_field, 3766 field); 3767 td->num_trbs++; 3768 addr += trb_buff_len; 3769 sent_len = trb_buff_len; 3770 3771 while (sg && sent_len >= block_len) { 3772 /* New sg entry */ 3773 --num_sgs; 3774 sent_len -= block_len; 3775 sg = sg_next(sg); 3776 if (num_sgs != 0 && sg) { 3777 block_len = sg_dma_len(sg); 3778 addr = (u64) sg_dma_address(sg); 3779 addr += sent_len; 3780 } 3781 } 3782 block_len -= sent_len; 3783 send_addr = addr; 3784 } 3785 3786 if (need_zero_pkt) { 3787 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3788 ep_index, urb->stream_id, 3789 1, urb, 1, mem_flags); 3790 urb_priv->td[1].last_trb = ring->enqueue; 3791 urb_priv->td[1].last_trb_seg = ring->enq_seg; 3792 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; 3793 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); 3794 urb_priv->td[1].num_trbs++; 3795 } 3796 3797 check_trb_math(urb, enqd_len); 3798 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3799 start_cycle, start_trb); 3800 return 0; 3801 } 3802 3803 /* Caller must have locked xhci->lock */ 3804 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3805 struct urb *urb, int slot_id, unsigned int ep_index) 3806 { 3807 struct xhci_ring *ep_ring; 3808 int num_trbs; 3809 int ret; 3810 struct usb_ctrlrequest *setup; 3811 struct xhci_generic_trb *start_trb; 3812 int start_cycle; 3813 u32 field; 3814 struct urb_priv *urb_priv; 3815 struct xhci_td *td; 3816 3817 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3818 if (!ep_ring) 3819 return -EINVAL; 3820 3821 /* 3822 * Need to copy setup packet into setup TRB, so we can't use the setup 3823 * DMA address. 3824 */ 3825 if (!urb->setup_packet) 3826 return -EINVAL; 3827 3828 /* 1 TRB for setup, 1 for status */ 3829 num_trbs = 2; 3830 /* 3831 * Don't need to check if we need additional event data and normal TRBs, 3832 * since data in control transfers will never get bigger than 16MB 3833 * XXX: can we get a buffer that crosses 64KB boundaries? 3834 */ 3835 if (urb->transfer_buffer_length > 0) 3836 num_trbs++; 3837 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3838 ep_index, urb->stream_id, 3839 num_trbs, urb, 0, mem_flags); 3840 if (ret < 0) 3841 return ret; 3842 3843 urb_priv = urb->hcpriv; 3844 td = &urb_priv->td[0]; 3845 td->num_trbs = num_trbs; 3846 3847 /* 3848 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3849 * until we've finished creating all the other TRBs. The ring's cycle 3850 * state may change as we enqueue the other TRBs, so save it too. 3851 */ 3852 start_trb = &ep_ring->enqueue->generic; 3853 start_cycle = ep_ring->cycle_state; 3854 3855 /* Queue setup TRB - see section 6.4.1.2.1 */ 3856 /* FIXME better way to translate setup_packet into two u32 fields? */ 3857 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3858 field = 0; 3859 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3860 if (start_cycle == 0) 3861 field |= 0x1; 3862 3863 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ 3864 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { 3865 if (urb->transfer_buffer_length > 0) { 3866 if (setup->bRequestType & USB_DIR_IN) 3867 field |= TRB_TX_TYPE(TRB_DATA_IN); 3868 else 3869 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3870 } 3871 } 3872 3873 queue_trb(xhci, ep_ring, true, 3874 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3875 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3876 TRB_LEN(8) | TRB_INTR_TARGET(0), 3877 /* Immediate data in pointer */ 3878 field); 3879 3880 /* If there's data, queue data TRBs */ 3881 /* Only set interrupt on short packet for IN endpoints */ 3882 if (usb_urb_dir_in(urb)) 3883 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3884 else 3885 field = TRB_TYPE(TRB_DATA); 3886 3887 if (urb->transfer_buffer_length > 0) { 3888 u32 length_field, remainder; 3889 u64 addr; 3890 3891 if (xhci_urb_suitable_for_idt(urb)) { 3892 memcpy(&addr, urb->transfer_buffer, 3893 urb->transfer_buffer_length); 3894 le64_to_cpus(&addr); 3895 field |= TRB_IDT; 3896 } else { 3897 addr = (u64) urb->transfer_dma; 3898 } 3899 3900 remainder = xhci_td_remainder(xhci, 0, 3901 urb->transfer_buffer_length, 3902 urb->transfer_buffer_length, 3903 urb, 1); 3904 length_field = TRB_LEN(urb->transfer_buffer_length) | 3905 TRB_TD_SIZE(remainder) | 3906 TRB_INTR_TARGET(0); 3907 if (setup->bRequestType & USB_DIR_IN) 3908 field |= TRB_DIR_IN; 3909 queue_trb(xhci, ep_ring, true, 3910 lower_32_bits(addr), 3911 upper_32_bits(addr), 3912 length_field, 3913 field | ep_ring->cycle_state); 3914 } 3915 3916 /* Save the DMA address of the last TRB in the TD */ 3917 td->last_trb = ep_ring->enqueue; 3918 td->last_trb_seg = ep_ring->enq_seg; 3919 3920 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3921 /* If the device sent data, the status stage is an OUT transfer */ 3922 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3923 field = 0; 3924 else 3925 field = TRB_DIR_IN; 3926 queue_trb(xhci, ep_ring, false, 3927 0, 3928 0, 3929 TRB_INTR_TARGET(0), 3930 /* Event on completion */ 3931 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3932 3933 giveback_first_trb(xhci, slot_id, ep_index, 0, 3934 start_cycle, start_trb); 3935 return 0; 3936 } 3937 3938 /* 3939 * The transfer burst count field of the isochronous TRB defines the number of 3940 * bursts that are required to move all packets in this TD. Only SuperSpeed 3941 * devices can burst up to bMaxBurst number of packets per service interval. 3942 * This field is zero based, meaning a value of zero in the field means one 3943 * burst. Basically, for everything but SuperSpeed devices, this field will be 3944 * zero. Only xHCI 1.0 host controllers support this field. 3945 */ 3946 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3947 struct urb *urb, unsigned int total_packet_count) 3948 { 3949 unsigned int max_burst; 3950 3951 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) 3952 return 0; 3953 3954 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3955 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3956 } 3957 3958 /* 3959 * Returns the number of packets in the last "burst" of packets. This field is 3960 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3961 * the last burst packet count is equal to the total number of packets in the 3962 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3963 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3964 * contain 1 to (bMaxBurst + 1) packets. 3965 */ 3966 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3967 struct urb *urb, unsigned int total_packet_count) 3968 { 3969 unsigned int max_burst; 3970 unsigned int residue; 3971 3972 if (xhci->hci_version < 0x100) 3973 return 0; 3974 3975 if (urb->dev->speed >= USB_SPEED_SUPER) { 3976 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3977 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3978 residue = total_packet_count % (max_burst + 1); 3979 /* If residue is zero, the last burst contains (max_burst + 1) 3980 * number of packets, but the TLBPC field is zero-based. 3981 */ 3982 if (residue == 0) 3983 return max_burst; 3984 return residue - 1; 3985 } 3986 if (total_packet_count == 0) 3987 return 0; 3988 return total_packet_count - 1; 3989 } 3990 3991 /* 3992 * Calculates Frame ID field of the isochronous TRB identifies the 3993 * target frame that the Interval associated with this Isochronous 3994 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. 3995 * 3996 * Returns actual frame id on success, negative value on error. 3997 */ 3998 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, 3999 struct urb *urb, int index) 4000 { 4001 int start_frame, ist, ret = 0; 4002 int start_frame_id, end_frame_id, current_frame_id; 4003 4004 if (urb->dev->speed == USB_SPEED_LOW || 4005 urb->dev->speed == USB_SPEED_FULL) 4006 start_frame = urb->start_frame + index * urb->interval; 4007 else 4008 start_frame = (urb->start_frame + index * urb->interval) >> 3; 4009 4010 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): 4011 * 4012 * If bit [3] of IST is cleared to '0', software can add a TRB no 4013 * later than IST[2:0] Microframes before that TRB is scheduled to 4014 * be executed. 4015 * If bit [3] of IST is set to '1', software can add a TRB no later 4016 * than IST[2:0] Frames before that TRB is scheduled to be executed. 4017 */ 4018 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4019 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4020 ist <<= 3; 4021 4022 /* Software shall not schedule an Isoch TD with a Frame ID value that 4023 * is less than the Start Frame ID or greater than the End Frame ID, 4024 * where: 4025 * 4026 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 4027 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 4028 * 4029 * Both the End Frame ID and Start Frame ID values are calculated 4030 * in microframes. When software determines the valid Frame ID value; 4031 * The End Frame ID value should be rounded down to the nearest Frame 4032 * boundary, and the Start Frame ID value should be rounded up to the 4033 * nearest Frame boundary. 4034 */ 4035 current_frame_id = readl(&xhci->run_regs->microframe_index); 4036 start_frame_id = roundup(current_frame_id + ist + 1, 8); 4037 end_frame_id = rounddown(current_frame_id + 895 * 8, 8); 4038 4039 start_frame &= 0x7ff; 4040 start_frame_id = (start_frame_id >> 3) & 0x7ff; 4041 end_frame_id = (end_frame_id >> 3) & 0x7ff; 4042 4043 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", 4044 __func__, index, readl(&xhci->run_regs->microframe_index), 4045 start_frame_id, end_frame_id, start_frame); 4046 4047 if (start_frame_id < end_frame_id) { 4048 if (start_frame > end_frame_id || 4049 start_frame < start_frame_id) 4050 ret = -EINVAL; 4051 } else if (start_frame_id > end_frame_id) { 4052 if ((start_frame > end_frame_id && 4053 start_frame < start_frame_id)) 4054 ret = -EINVAL; 4055 } else { 4056 ret = -EINVAL; 4057 } 4058 4059 if (index == 0) { 4060 if (ret == -EINVAL || start_frame == start_frame_id) { 4061 start_frame = start_frame_id + 1; 4062 if (urb->dev->speed == USB_SPEED_LOW || 4063 urb->dev->speed == USB_SPEED_FULL) 4064 urb->start_frame = start_frame; 4065 else 4066 urb->start_frame = start_frame << 3; 4067 ret = 0; 4068 } 4069 } 4070 4071 if (ret) { 4072 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", 4073 start_frame, current_frame_id, index, 4074 start_frame_id, end_frame_id); 4075 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); 4076 return ret; 4077 } 4078 4079 return start_frame; 4080 } 4081 4082 /* Check if we should generate event interrupt for a TD in an isoc URB */ 4083 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i) 4084 { 4085 if (xhci->hci_version < 0x100) 4086 return false; 4087 /* always generate an event interrupt for the last TD */ 4088 if (i == num_tds - 1) 4089 return false; 4090 /* 4091 * If AVOID_BEI is set the host handles full event rings poorly, 4092 * generate an event at least every 8th TD to clear the event ring 4093 */ 4094 if (i && xhci->quirks & XHCI_AVOID_BEI) 4095 return !!(i % xhci->isoc_bei_interval); 4096 4097 return true; 4098 } 4099 4100 /* This is for isoc transfer */ 4101 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 4102 struct urb *urb, int slot_id, unsigned int ep_index) 4103 { 4104 struct xhci_ring *ep_ring; 4105 struct urb_priv *urb_priv; 4106 struct xhci_td *td; 4107 int num_tds, trbs_per_td; 4108 struct xhci_generic_trb *start_trb; 4109 bool first_trb; 4110 int start_cycle; 4111 u32 field, length_field; 4112 int running_total, trb_buff_len, td_len, td_remain_len, ret; 4113 u64 start_addr, addr; 4114 int i, j; 4115 bool more_trbs_coming; 4116 struct xhci_virt_ep *xep; 4117 int frame_id; 4118 4119 xep = &xhci->devs[slot_id]->eps[ep_index]; 4120 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 4121 4122 num_tds = urb->number_of_packets; 4123 if (num_tds < 1) { 4124 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 4125 return -EINVAL; 4126 } 4127 start_addr = (u64) urb->transfer_dma; 4128 start_trb = &ep_ring->enqueue->generic; 4129 start_cycle = ep_ring->cycle_state; 4130 4131 urb_priv = urb->hcpriv; 4132 /* Queue the TRBs for each TD, even if they are zero-length */ 4133 for (i = 0; i < num_tds; i++) { 4134 unsigned int total_pkt_count, max_pkt; 4135 unsigned int burst_count, last_burst_pkt_count; 4136 u32 sia_frame_id; 4137 4138 first_trb = true; 4139 running_total = 0; 4140 addr = start_addr + urb->iso_frame_desc[i].offset; 4141 td_len = urb->iso_frame_desc[i].length; 4142 td_remain_len = td_len; 4143 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 4144 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); 4145 4146 /* A zero-length transfer still involves at least one packet. */ 4147 if (total_pkt_count == 0) 4148 total_pkt_count++; 4149 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); 4150 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, 4151 urb, total_pkt_count); 4152 4153 trbs_per_td = count_isoc_trbs_needed(urb, i); 4154 4155 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 4156 urb->stream_id, trbs_per_td, urb, i, mem_flags); 4157 if (ret < 0) { 4158 if (i == 0) 4159 return ret; 4160 goto cleanup; 4161 } 4162 td = &urb_priv->td[i]; 4163 td->num_trbs = trbs_per_td; 4164 /* use SIA as default, if frame id is used overwrite it */ 4165 sia_frame_id = TRB_SIA; 4166 if (!(urb->transfer_flags & URB_ISO_ASAP) && 4167 HCC_CFC(xhci->hcc_params)) { 4168 frame_id = xhci_get_isoc_frame_id(xhci, urb, i); 4169 if (frame_id >= 0) 4170 sia_frame_id = TRB_FRAME_ID(frame_id); 4171 } 4172 /* 4173 * Set isoc specific data for the first TRB in a TD. 4174 * Prevent HW from getting the TRBs by keeping the cycle state 4175 * inverted in the first TDs isoc TRB. 4176 */ 4177 field = TRB_TYPE(TRB_ISOC) | 4178 TRB_TLBPC(last_burst_pkt_count) | 4179 sia_frame_id | 4180 (i ? ep_ring->cycle_state : !start_cycle); 4181 4182 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ 4183 if (!xep->use_extended_tbc) 4184 field |= TRB_TBC(burst_count); 4185 4186 /* fill the rest of the TRB fields, and remaining normal TRBs */ 4187 for (j = 0; j < trbs_per_td; j++) { 4188 u32 remainder = 0; 4189 4190 /* only first TRB is isoc, overwrite otherwise */ 4191 if (!first_trb) 4192 field = TRB_TYPE(TRB_NORMAL) | 4193 ep_ring->cycle_state; 4194 4195 /* Only set interrupt on short packet for IN EPs */ 4196 if (usb_urb_dir_in(urb)) 4197 field |= TRB_ISP; 4198 4199 /* Set the chain bit for all except the last TRB */ 4200 if (j < trbs_per_td - 1) { 4201 more_trbs_coming = true; 4202 field |= TRB_CHAIN; 4203 } else { 4204 more_trbs_coming = false; 4205 td->last_trb = ep_ring->enqueue; 4206 td->last_trb_seg = ep_ring->enq_seg; 4207 field |= TRB_IOC; 4208 if (trb_block_event_intr(xhci, num_tds, i)) 4209 field |= TRB_BEI; 4210 } 4211 /* Calculate TRB length */ 4212 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); 4213 if (trb_buff_len > td_remain_len) 4214 trb_buff_len = td_remain_len; 4215 4216 /* Set the TRB length, TD size, & interrupter fields. */ 4217 remainder = xhci_td_remainder(xhci, running_total, 4218 trb_buff_len, td_len, 4219 urb, more_trbs_coming); 4220 4221 length_field = TRB_LEN(trb_buff_len) | 4222 TRB_INTR_TARGET(0); 4223 4224 /* xhci 1.1 with ETE uses TD Size field for TBC */ 4225 if (first_trb && xep->use_extended_tbc) 4226 length_field |= TRB_TD_SIZE_TBC(burst_count); 4227 else 4228 length_field |= TRB_TD_SIZE(remainder); 4229 first_trb = false; 4230 4231 queue_trb(xhci, ep_ring, more_trbs_coming, 4232 lower_32_bits(addr), 4233 upper_32_bits(addr), 4234 length_field, 4235 field); 4236 running_total += trb_buff_len; 4237 4238 addr += trb_buff_len; 4239 td_remain_len -= trb_buff_len; 4240 } 4241 4242 /* Check TD length */ 4243 if (running_total != td_len) { 4244 xhci_err(xhci, "ISOC TD length unmatch\n"); 4245 ret = -EINVAL; 4246 goto cleanup; 4247 } 4248 } 4249 4250 /* store the next frame id */ 4251 if (HCC_CFC(xhci->hcc_params)) 4252 xep->next_frame_id = urb->start_frame + num_tds * urb->interval; 4253 4254 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 4255 if (xhci->quirks & XHCI_AMD_PLL_FIX) 4256 usb_amd_quirk_pll_disable(); 4257 } 4258 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 4259 4260 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 4261 start_cycle, start_trb); 4262 return 0; 4263 cleanup: 4264 /* Clean up a partially enqueued isoc transfer. */ 4265 4266 for (i--; i >= 0; i--) 4267 list_del_init(&urb_priv->td[i].td_list); 4268 4269 /* Use the first TD as a temporary variable to turn the TDs we've queued 4270 * into No-ops with a software-owned cycle bit. That way the hardware 4271 * won't accidentally start executing bogus TDs when we partially 4272 * overwrite them. td->first_trb and td->start_seg are already set. 4273 */ 4274 urb_priv->td[0].last_trb = ep_ring->enqueue; 4275 /* Every TRB except the first & last will have its cycle bit flipped. */ 4276 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); 4277 4278 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 4279 ep_ring->enqueue = urb_priv->td[0].first_trb; 4280 ep_ring->enq_seg = urb_priv->td[0].start_seg; 4281 ep_ring->cycle_state = start_cycle; 4282 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 4283 return ret; 4284 } 4285 4286 /* 4287 * Check transfer ring to guarantee there is enough room for the urb. 4288 * Update ISO URB start_frame and interval. 4289 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to 4290 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or 4291 * Contiguous Frame ID is not supported by HC. 4292 */ 4293 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 4294 struct urb *urb, int slot_id, unsigned int ep_index) 4295 { 4296 struct xhci_virt_device *xdev; 4297 struct xhci_ring *ep_ring; 4298 struct xhci_ep_ctx *ep_ctx; 4299 int start_frame; 4300 int num_tds, num_trbs, i; 4301 int ret; 4302 struct xhci_virt_ep *xep; 4303 int ist; 4304 4305 xdev = xhci->devs[slot_id]; 4306 xep = &xhci->devs[slot_id]->eps[ep_index]; 4307 ep_ring = xdev->eps[ep_index].ring; 4308 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 4309 4310 num_trbs = 0; 4311 num_tds = urb->number_of_packets; 4312 for (i = 0; i < num_tds; i++) 4313 num_trbs += count_isoc_trbs_needed(urb, i); 4314 4315 /* Check the ring to guarantee there is enough room for the whole urb. 4316 * Do not insert any td of the urb to the ring if the check failed. 4317 */ 4318 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), 4319 num_trbs, mem_flags); 4320 if (ret) 4321 return ret; 4322 4323 /* 4324 * Check interval value. This should be done before we start to 4325 * calculate the start frame value. 4326 */ 4327 check_interval(xhci, urb, ep_ctx); 4328 4329 /* Calculate the start frame and put it in urb->start_frame. */ 4330 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { 4331 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { 4332 urb->start_frame = xep->next_frame_id; 4333 goto skip_start_over; 4334 } 4335 } 4336 4337 start_frame = readl(&xhci->run_regs->microframe_index); 4338 start_frame &= 0x3fff; 4339 /* 4340 * Round up to the next frame and consider the time before trb really 4341 * gets scheduled by hardare. 4342 */ 4343 ist = HCS_IST(xhci->hcs_params2) & 0x7; 4344 if (HCS_IST(xhci->hcs_params2) & (1 << 3)) 4345 ist <<= 3; 4346 start_frame += ist + XHCI_CFC_DELAY; 4347 start_frame = roundup(start_frame, 8); 4348 4349 /* 4350 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT 4351 * is greate than 8 microframes. 4352 */ 4353 if (urb->dev->speed == USB_SPEED_LOW || 4354 urb->dev->speed == USB_SPEED_FULL) { 4355 start_frame = roundup(start_frame, urb->interval << 3); 4356 urb->start_frame = start_frame >> 3; 4357 } else { 4358 start_frame = roundup(start_frame, urb->interval); 4359 urb->start_frame = start_frame; 4360 } 4361 4362 skip_start_over: 4363 4364 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 4365 } 4366 4367 /**** Command Ring Operations ****/ 4368 4369 /* Generic function for queueing a command TRB on the command ring. 4370 * Check to make sure there's room on the command ring for one command TRB. 4371 * Also check that there's room reserved for commands that must not fail. 4372 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 4373 * then only check for the number of reserved spots. 4374 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 4375 * because the command event handler may want to resubmit a failed command. 4376 */ 4377 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4378 u32 field1, u32 field2, 4379 u32 field3, u32 field4, bool command_must_succeed) 4380 { 4381 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 4382 int ret; 4383 4384 if ((xhci->xhc_state & XHCI_STATE_DYING) || 4385 (xhci->xhc_state & XHCI_STATE_HALTED)) { 4386 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); 4387 return -ESHUTDOWN; 4388 } 4389 4390 if (!command_must_succeed) 4391 reserved_trbs++; 4392 4393 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 4394 reserved_trbs, GFP_ATOMIC); 4395 if (ret < 0) { 4396 xhci_err(xhci, "ERR: No room for command on command ring\n"); 4397 if (command_must_succeed) 4398 xhci_err(xhci, "ERR: Reserved TRB counting for " 4399 "unfailable commands failed.\n"); 4400 return ret; 4401 } 4402 4403 cmd->command_trb = xhci->cmd_ring->enqueue; 4404 4405 /* if there are no other commands queued we start the timeout timer */ 4406 if (list_empty(&xhci->cmd_list)) { 4407 xhci->current_cmd = cmd; 4408 xhci_mod_cmd_timer(xhci); 4409 } 4410 4411 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 4412 4413 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 4414 field4 | xhci->cmd_ring->cycle_state); 4415 return 0; 4416 } 4417 4418 /* Queue a slot enable or disable request on the command ring */ 4419 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 4420 u32 trb_type, u32 slot_id) 4421 { 4422 return queue_command(xhci, cmd, 0, 0, 0, 4423 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 4424 } 4425 4426 /* Queue an address device command TRB */ 4427 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4428 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 4429 { 4430 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4431 upper_32_bits(in_ctx_ptr), 0, 4432 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 4433 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 4434 } 4435 4436 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 4437 u32 field1, u32 field2, u32 field3, u32 field4) 4438 { 4439 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 4440 } 4441 4442 /* Queue a reset device command TRB */ 4443 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 4444 u32 slot_id) 4445 { 4446 return queue_command(xhci, cmd, 0, 0, 0, 4447 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 4448 false); 4449 } 4450 4451 /* Queue a configure endpoint command TRB */ 4452 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 4453 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 4454 u32 slot_id, bool command_must_succeed) 4455 { 4456 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4457 upper_32_bits(in_ctx_ptr), 0, 4458 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 4459 command_must_succeed); 4460 } 4461 4462 /* Queue an evaluate context command TRB */ 4463 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 4464 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 4465 { 4466 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 4467 upper_32_bits(in_ctx_ptr), 0, 4468 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 4469 command_must_succeed); 4470 } 4471 4472 /* 4473 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 4474 * activity on an endpoint that is about to be suspended. 4475 */ 4476 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 4477 int slot_id, unsigned int ep_index, int suspend) 4478 { 4479 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4480 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4481 u32 type = TRB_TYPE(TRB_STOP_RING); 4482 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 4483 4484 return queue_command(xhci, cmd, 0, 0, 0, 4485 trb_slot_id | trb_ep_index | type | trb_suspend, false); 4486 } 4487 4488 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 4489 int slot_id, unsigned int ep_index, 4490 enum xhci_ep_reset_type reset_type) 4491 { 4492 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 4493 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 4494 u32 type = TRB_TYPE(TRB_RESET_EP); 4495 4496 if (reset_type == EP_SOFT_RESET) 4497 type |= TRB_TSP; 4498 4499 return queue_command(xhci, cmd, 0, 0, 0, 4500 trb_slot_id | trb_ep_index | type, false); 4501 } 4502