xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 293d5b43)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73 
74 /*
75  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76  * address of the TRB.
77  */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 		union xhci_trb *trb)
80 {
81 	unsigned long segment_offset;
82 
83 	if (!seg || !trb || trb < seg->trbs)
84 		return 0;
85 	/* offset in TRBs */
86 	segment_offset = trb - seg->trbs;
87 	if (segment_offset >= TRBS_PER_SEGMENT)
88 		return 0;
89 	return seg->dma + (segment_offset * sizeof(*trb));
90 }
91 
92 static bool trb_is_link(union xhci_trb *trb)
93 {
94 	return TRB_TYPE_LINK_LE32(trb->link.control);
95 }
96 
97 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
100 }
101 
102 static bool last_trb_on_ring(struct xhci_ring *ring,
103 			struct xhci_segment *seg, union xhci_trb *trb)
104 {
105 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
106 }
107 
108 static bool link_trb_toggles_cycle(union xhci_trb *trb)
109 {
110 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
111 }
112 
113 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
114  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
115  * effect the ring dequeue or enqueue pointers.
116  */
117 static void next_trb(struct xhci_hcd *xhci,
118 		struct xhci_ring *ring,
119 		struct xhci_segment **seg,
120 		union xhci_trb **trb)
121 {
122 	if (trb_is_link(*trb)) {
123 		*seg = (*seg)->next;
124 		*trb = ((*seg)->trbs);
125 	} else {
126 		(*trb)++;
127 	}
128 }
129 
130 /*
131  * See Cycle bit rules. SW is the consumer for the event ring only.
132  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
133  */
134 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
135 {
136 	ring->deq_updates++;
137 
138 	/* event ring doesn't have link trbs, check for last trb */
139 	if (ring->type == TYPE_EVENT) {
140 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
141 			ring->dequeue++;
142 			return;
143 		}
144 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
145 			ring->cycle_state ^= 1;
146 		ring->deq_seg = ring->deq_seg->next;
147 		ring->dequeue = ring->deq_seg->trbs;
148 		return;
149 	}
150 
151 	/* All other rings have link trbs */
152 	if (!trb_is_link(ring->dequeue)) {
153 		ring->dequeue++;
154 		ring->num_trbs_free++;
155 	}
156 	while (trb_is_link(ring->dequeue)) {
157 		ring->deq_seg = ring->deq_seg->next;
158 		ring->dequeue = ring->deq_seg->trbs;
159 	}
160 	return;
161 }
162 
163 /*
164  * See Cycle bit rules. SW is the consumer for the event ring only.
165  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
166  *
167  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
168  * chain bit is set), then set the chain bit in all the following link TRBs.
169  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
170  * have their chain bit cleared (so that each Link TRB is a separate TD).
171  *
172  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
173  * set, but other sections talk about dealing with the chain bit set.  This was
174  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
175  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
176  *
177  * @more_trbs_coming:	Will you enqueue more TRBs before calling
178  *			prepare_transfer()?
179  */
180 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
181 			bool more_trbs_coming)
182 {
183 	u32 chain;
184 	union xhci_trb *next;
185 
186 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
187 	/* If this is not event ring, there is one less usable TRB */
188 	if (!trb_is_link(ring->enqueue))
189 		ring->num_trbs_free--;
190 	next = ++(ring->enqueue);
191 
192 	ring->enq_updates++;
193 	/* Update the dequeue pointer further if that was a link TRB */
194 	while (trb_is_link(next)) {
195 
196 		/*
197 		 * If the caller doesn't plan on enqueueing more TDs before
198 		 * ringing the doorbell, then we don't want to give the link TRB
199 		 * to the hardware just yet. We'll give the link TRB back in
200 		 * prepare_ring() just before we enqueue the TD at the top of
201 		 * the ring.
202 		 */
203 		if (!chain && !more_trbs_coming)
204 			break;
205 
206 		/* If we're not dealing with 0.95 hardware or isoc rings on
207 		 * AMD 0.96 host, carry over the chain bit of the previous TRB
208 		 * (which may mean the chain bit is cleared).
209 		 */
210 		if (!(ring->type == TYPE_ISOC &&
211 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
212 		    !xhci_link_trb_quirk(xhci)) {
213 			next->link.control &= cpu_to_le32(~TRB_CHAIN);
214 			next->link.control |= cpu_to_le32(chain);
215 		}
216 		/* Give this link TRB to the hardware */
217 		wmb();
218 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
219 
220 		/* Toggle the cycle bit after the last ring segment. */
221 		if (link_trb_toggles_cycle(next))
222 			ring->cycle_state ^= 1;
223 
224 		ring->enq_seg = ring->enq_seg->next;
225 		ring->enqueue = ring->enq_seg->trbs;
226 		next = ring->enqueue;
227 	}
228 }
229 
230 /*
231  * Check to see if there's room to enqueue num_trbs on the ring and make sure
232  * enqueue pointer will not advance into dequeue segment. See rules above.
233  */
234 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
235 		unsigned int num_trbs)
236 {
237 	int num_trbs_in_deq_seg;
238 
239 	if (ring->num_trbs_free < num_trbs)
240 		return 0;
241 
242 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
243 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
244 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
245 			return 0;
246 	}
247 
248 	return 1;
249 }
250 
251 /* Ring the host controller doorbell after placing a command on the ring */
252 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
253 {
254 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
255 		return;
256 
257 	xhci_dbg(xhci, "// Ding dong!\n");
258 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
259 	/* Flush PCI posted writes */
260 	readl(&xhci->dba->doorbell[0]);
261 }
262 
263 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
264 {
265 	u64 temp_64;
266 	int ret;
267 
268 	xhci_dbg(xhci, "Abort command ring\n");
269 
270 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
271 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
272 
273 	/*
274 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
275 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
276 	 * but the completion event in never sent. Use the cmd timeout timer to
277 	 * handle those cases. Use twice the time to cover the bit polling retry
278 	 */
279 	mod_timer(&xhci->cmd_timer, jiffies + (2 * XHCI_CMD_DEFAULT_TIMEOUT));
280 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
281 			&xhci->op_regs->cmd_ring);
282 
283 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
284 	 * time the completion od all xHCI commands, including
285 	 * the Command Abort operation. If software doesn't see
286 	 * CRR negated in a timely manner (e.g. longer than 5
287 	 * seconds), then it should assume that the there are
288 	 * larger problems with the xHC and assert HCRST.
289 	 */
290 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
291 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
292 	if (ret < 0) {
293 		/* we are about to kill xhci, give it one more chance */
294 		xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
295 			      &xhci->op_regs->cmd_ring);
296 		udelay(1000);
297 		ret = xhci_handshake(&xhci->op_regs->cmd_ring,
298 				     CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
299 		if (ret == 0)
300 			return 0;
301 
302 		xhci_err(xhci, "Stopped the command ring failed, "
303 				"maybe the host is dead\n");
304 		del_timer(&xhci->cmd_timer);
305 		xhci->xhc_state |= XHCI_STATE_DYING;
306 		xhci_quiesce(xhci);
307 		xhci_halt(xhci);
308 		return -ESHUTDOWN;
309 	}
310 
311 	return 0;
312 }
313 
314 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
315 		unsigned int slot_id,
316 		unsigned int ep_index,
317 		unsigned int stream_id)
318 {
319 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
320 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
321 	unsigned int ep_state = ep->ep_state;
322 
323 	/* Don't ring the doorbell for this endpoint if there are pending
324 	 * cancellations because we don't want to interrupt processing.
325 	 * We don't want to restart any stream rings if there's a set dequeue
326 	 * pointer command pending because the device can choose to start any
327 	 * stream once the endpoint is on the HW schedule.
328 	 */
329 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
330 	    (ep_state & EP_HALTED))
331 		return;
332 	writel(DB_VALUE(ep_index, stream_id), db_addr);
333 	/* The CPU has better things to do at this point than wait for a
334 	 * write-posting flush.  It'll get there soon enough.
335 	 */
336 }
337 
338 /* Ring the doorbell for any rings with pending URBs */
339 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
340 		unsigned int slot_id,
341 		unsigned int ep_index)
342 {
343 	unsigned int stream_id;
344 	struct xhci_virt_ep *ep;
345 
346 	ep = &xhci->devs[slot_id]->eps[ep_index];
347 
348 	/* A ring has pending URBs if its TD list is not empty */
349 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
350 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
351 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
352 		return;
353 	}
354 
355 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
356 			stream_id++) {
357 		struct xhci_stream_info *stream_info = ep->stream_info;
358 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
359 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
360 						stream_id);
361 	}
362 }
363 
364 /* Get the right ring for the given slot_id, ep_index and stream_id.
365  * If the endpoint supports streams, boundary check the URB's stream ID.
366  * If the endpoint doesn't support streams, return the singular endpoint ring.
367  */
368 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
369 		unsigned int slot_id, unsigned int ep_index,
370 		unsigned int stream_id)
371 {
372 	struct xhci_virt_ep *ep;
373 
374 	ep = &xhci->devs[slot_id]->eps[ep_index];
375 	/* Common case: no streams */
376 	if (!(ep->ep_state & EP_HAS_STREAMS))
377 		return ep->ring;
378 
379 	if (stream_id == 0) {
380 		xhci_warn(xhci,
381 				"WARN: Slot ID %u, ep index %u has streams, "
382 				"but URB has no stream ID.\n",
383 				slot_id, ep_index);
384 		return NULL;
385 	}
386 
387 	if (stream_id < ep->stream_info->num_streams)
388 		return ep->stream_info->stream_rings[stream_id];
389 
390 	xhci_warn(xhci,
391 			"WARN: Slot ID %u, ep index %u has "
392 			"stream IDs 1 to %u allocated, "
393 			"but stream ID %u is requested.\n",
394 			slot_id, ep_index,
395 			ep->stream_info->num_streams - 1,
396 			stream_id);
397 	return NULL;
398 }
399 
400 /*
401  * Move the xHC's endpoint ring dequeue pointer past cur_td.
402  * Record the new state of the xHC's endpoint ring dequeue segment,
403  * dequeue pointer, and new consumer cycle state in state.
404  * Update our internal representation of the ring's dequeue pointer.
405  *
406  * We do this in three jumps:
407  *  - First we update our new ring state to be the same as when the xHC stopped.
408  *  - Then we traverse the ring to find the segment that contains
409  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
410  *    any link TRBs with the toggle cycle bit set.
411  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
412  *    if we've moved it past a link TRB with the toggle cycle bit set.
413  *
414  * Some of the uses of xhci_generic_trb are grotty, but if they're done
415  * with correct __le32 accesses they should work fine.  Only users of this are
416  * in here.
417  */
418 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
419 		unsigned int slot_id, unsigned int ep_index,
420 		unsigned int stream_id, struct xhci_td *cur_td,
421 		struct xhci_dequeue_state *state)
422 {
423 	struct xhci_virt_device *dev = xhci->devs[slot_id];
424 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
425 	struct xhci_ring *ep_ring;
426 	struct xhci_segment *new_seg;
427 	union xhci_trb *new_deq;
428 	dma_addr_t addr;
429 	u64 hw_dequeue;
430 	bool cycle_found = false;
431 	bool td_last_trb_found = false;
432 
433 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
434 			ep_index, stream_id);
435 	if (!ep_ring) {
436 		xhci_warn(xhci, "WARN can't find new dequeue state "
437 				"for invalid stream ID %u.\n",
438 				stream_id);
439 		return;
440 	}
441 
442 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
443 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
444 			"Finding endpoint context");
445 	/* 4.6.9 the css flag is written to the stream context for streams */
446 	if (ep->ep_state & EP_HAS_STREAMS) {
447 		struct xhci_stream_ctx *ctx =
448 			&ep->stream_info->stream_ctx_array[stream_id];
449 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
450 	} else {
451 		struct xhci_ep_ctx *ep_ctx
452 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
453 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
454 	}
455 
456 	new_seg = ep_ring->deq_seg;
457 	new_deq = ep_ring->dequeue;
458 	state->new_cycle_state = hw_dequeue & 0x1;
459 
460 	/*
461 	 * We want to find the pointer, segment and cycle state of the new trb
462 	 * (the one after current TD's last_trb). We know the cycle state at
463 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
464 	 * found.
465 	 */
466 	do {
467 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
468 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
469 			cycle_found = true;
470 			if (td_last_trb_found)
471 				break;
472 		}
473 		if (new_deq == cur_td->last_trb)
474 			td_last_trb_found = true;
475 
476 		if (cycle_found &&
477 		    TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
478 		    new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
479 			state->new_cycle_state ^= 0x1;
480 
481 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
482 
483 		/* Search wrapped around, bail out */
484 		if (new_deq == ep->ring->dequeue) {
485 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
486 			state->new_deq_seg = NULL;
487 			state->new_deq_ptr = NULL;
488 			return;
489 		}
490 
491 	} while (!cycle_found || !td_last_trb_found);
492 
493 	state->new_deq_seg = new_seg;
494 	state->new_deq_ptr = new_deq;
495 
496 	/* Don't update the ring cycle state for the producer (us). */
497 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
498 			"Cycle state = 0x%x", state->new_cycle_state);
499 
500 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
501 			"New dequeue segment = %p (virtual)",
502 			state->new_deq_seg);
503 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
504 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
505 			"New dequeue pointer = 0x%llx (DMA)",
506 			(unsigned long long) addr);
507 }
508 
509 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
510  * (The last TRB actually points to the ring enqueue pointer, which is not part
511  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
512  */
513 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
514 		struct xhci_td *cur_td, bool flip_cycle)
515 {
516 	struct xhci_segment *cur_seg;
517 	union xhci_trb *cur_trb;
518 
519 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
520 			true;
521 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
522 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
523 			/* Unchain any chained Link TRBs, but
524 			 * leave the pointers intact.
525 			 */
526 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
527 			/* Flip the cycle bit (link TRBs can't be the first
528 			 * or last TRB).
529 			 */
530 			if (flip_cycle)
531 				cur_trb->generic.field[3] ^=
532 					cpu_to_le32(TRB_CYCLE);
533 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
534 					"Cancel (unchain) link TRB");
535 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
536 					"Address = %p (0x%llx dma); "
537 					"in seg %p (0x%llx dma)",
538 					cur_trb,
539 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
540 					cur_seg,
541 					(unsigned long long)cur_seg->dma);
542 		} else {
543 			cur_trb->generic.field[0] = 0;
544 			cur_trb->generic.field[1] = 0;
545 			cur_trb->generic.field[2] = 0;
546 			/* Preserve only the cycle bit of this TRB */
547 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
548 			/* Flip the cycle bit except on the first or last TRB */
549 			if (flip_cycle && cur_trb != cur_td->first_trb &&
550 					cur_trb != cur_td->last_trb)
551 				cur_trb->generic.field[3] ^=
552 					cpu_to_le32(TRB_CYCLE);
553 			cur_trb->generic.field[3] |= cpu_to_le32(
554 				TRB_TYPE(TRB_TR_NOOP));
555 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
556 					"TRB to noop at offset 0x%llx",
557 					(unsigned long long)
558 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
559 		}
560 		if (cur_trb == cur_td->last_trb)
561 			break;
562 	}
563 }
564 
565 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
566 		struct xhci_virt_ep *ep)
567 {
568 	ep->ep_state &= ~EP_HALT_PENDING;
569 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
570 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
571 	 * (since we didn't successfully stop the watchdog timer).
572 	 */
573 	if (del_timer(&ep->stop_cmd_timer))
574 		ep->stop_cmds_pending--;
575 }
576 
577 /* Must be called with xhci->lock held in interrupt context */
578 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
579 		struct xhci_td *cur_td, int status)
580 {
581 	struct usb_hcd *hcd;
582 	struct urb	*urb;
583 	struct urb_priv	*urb_priv;
584 
585 	urb = cur_td->urb;
586 	urb_priv = urb->hcpriv;
587 	urb_priv->td_cnt++;
588 	hcd = bus_to_hcd(urb->dev->bus);
589 
590 	/* Only giveback urb when this is the last td in urb */
591 	if (urb_priv->td_cnt == urb_priv->length) {
592 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
593 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
594 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
595 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
596 					usb_amd_quirk_pll_enable();
597 			}
598 		}
599 		usb_hcd_unlink_urb_from_ep(hcd, urb);
600 
601 		spin_unlock(&xhci->lock);
602 		usb_hcd_giveback_urb(hcd, urb, status);
603 		xhci_urb_free_priv(urb_priv);
604 		spin_lock(&xhci->lock);
605 	}
606 }
607 
608 void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, struct xhci_ring *ring,
609 				 struct xhci_td *td)
610 {
611 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
612 	struct xhci_segment *seg = td->bounce_seg;
613 	struct urb *urb = td->urb;
614 
615 	if (!seg || !urb)
616 		return;
617 
618 	if (usb_urb_dir_out(urb)) {
619 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
620 				 DMA_TO_DEVICE);
621 		return;
622 	}
623 
624 	/* for in tranfers we need to copy the data from bounce to sg */
625 	sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
626 			     seg->bounce_len, seg->bounce_offs);
627 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
628 			 DMA_FROM_DEVICE);
629 	seg->bounce_len = 0;
630 	seg->bounce_offs = 0;
631 }
632 
633 /*
634  * When we get a command completion for a Stop Endpoint Command, we need to
635  * unlink any cancelled TDs from the ring.  There are two ways to do that:
636  *
637  *  1. If the HW was in the middle of processing the TD that needs to be
638  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
639  *     in the TD with a Set Dequeue Pointer Command.
640  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
641  *     bit cleared) so that the HW will skip over them.
642  */
643 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
644 		union xhci_trb *trb, struct xhci_event_cmd *event)
645 {
646 	unsigned int ep_index;
647 	struct xhci_ring *ep_ring;
648 	struct xhci_virt_ep *ep;
649 	struct list_head *entry;
650 	struct xhci_td *cur_td = NULL;
651 	struct xhci_td *last_unlinked_td;
652 
653 	struct xhci_dequeue_state deq_state;
654 
655 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
656 		if (!xhci->devs[slot_id])
657 			xhci_warn(xhci, "Stop endpoint command "
658 				"completion for disabled slot %u\n",
659 				slot_id);
660 		return;
661 	}
662 
663 	memset(&deq_state, 0, sizeof(deq_state));
664 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
665 	ep = &xhci->devs[slot_id]->eps[ep_index];
666 
667 	if (list_empty(&ep->cancelled_td_list)) {
668 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
669 		ep->stopped_td = NULL;
670 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
671 		return;
672 	}
673 
674 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
675 	 * We have the xHCI lock, so nothing can modify this list until we drop
676 	 * it.  We're also in the event handler, so we can't get re-interrupted
677 	 * if another Stop Endpoint command completes
678 	 */
679 	list_for_each(entry, &ep->cancelled_td_list) {
680 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
681 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
682 				"Removing canceled TD starting at 0x%llx (dma).",
683 				(unsigned long long)xhci_trb_virt_to_dma(
684 					cur_td->start_seg, cur_td->first_trb));
685 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
686 		if (!ep_ring) {
687 			/* This shouldn't happen unless a driver is mucking
688 			 * with the stream ID after submission.  This will
689 			 * leave the TD on the hardware ring, and the hardware
690 			 * will try to execute it, and may access a buffer
691 			 * that has already been freed.  In the best case, the
692 			 * hardware will execute it, and the event handler will
693 			 * ignore the completion event for that TD, since it was
694 			 * removed from the td_list for that endpoint.  In
695 			 * short, don't muck with the stream ID after
696 			 * submission.
697 			 */
698 			xhci_warn(xhci, "WARN Cancelled URB %p "
699 					"has invalid stream ID %u.\n",
700 					cur_td->urb,
701 					cur_td->urb->stream_id);
702 			goto remove_finished_td;
703 		}
704 		/*
705 		 * If we stopped on the TD we need to cancel, then we have to
706 		 * move the xHC endpoint ring dequeue pointer past this TD.
707 		 */
708 		if (cur_td == ep->stopped_td)
709 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
710 					cur_td->urb->stream_id,
711 					cur_td, &deq_state);
712 		else
713 			td_to_noop(xhci, ep_ring, cur_td, false);
714 remove_finished_td:
715 		/*
716 		 * The event handler won't see a completion for this TD anymore,
717 		 * so remove it from the endpoint ring's TD list.  Keep it in
718 		 * the cancelled TD list for URB completion later.
719 		 */
720 		list_del_init(&cur_td->td_list);
721 	}
722 	last_unlinked_td = cur_td;
723 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
724 
725 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
726 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
727 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
728 				ep->stopped_td->urb->stream_id, &deq_state);
729 		xhci_ring_cmd_db(xhci);
730 	} else {
731 		/* Otherwise ring the doorbell(s) to restart queued transfers */
732 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
733 	}
734 
735 	ep->stopped_td = NULL;
736 
737 	/*
738 	 * Drop the lock and complete the URBs in the cancelled TD list.
739 	 * New TDs to be cancelled might be added to the end of the list before
740 	 * we can complete all the URBs for the TDs we already unlinked.
741 	 * So stop when we've completed the URB for the last TD we unlinked.
742 	 */
743 	do {
744 		cur_td = list_entry(ep->cancelled_td_list.next,
745 				struct xhci_td, cancelled_td_list);
746 		list_del_init(&cur_td->cancelled_td_list);
747 
748 		/* Clean up the cancelled URB */
749 		/* Doesn't matter what we pass for status, since the core will
750 		 * just overwrite it (because the URB has been unlinked).
751 		 */
752 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
753 		if (ep_ring && cur_td->bounce_seg)
754 			xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
755 		xhci_giveback_urb_in_irq(xhci, cur_td, 0);
756 
757 		/* Stop processing the cancelled list if the watchdog timer is
758 		 * running.
759 		 */
760 		if (xhci->xhc_state & XHCI_STATE_DYING)
761 			return;
762 	} while (cur_td != last_unlinked_td);
763 
764 	/* Return to the event handler with xhci->lock re-acquired */
765 }
766 
767 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
768 {
769 	struct xhci_td *cur_td;
770 
771 	while (!list_empty(&ring->td_list)) {
772 		cur_td = list_first_entry(&ring->td_list,
773 				struct xhci_td, td_list);
774 		list_del_init(&cur_td->td_list);
775 		if (!list_empty(&cur_td->cancelled_td_list))
776 			list_del_init(&cur_td->cancelled_td_list);
777 
778 		if (cur_td->bounce_seg)
779 			xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
780 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
781 	}
782 }
783 
784 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
785 		int slot_id, int ep_index)
786 {
787 	struct xhci_td *cur_td;
788 	struct xhci_virt_ep *ep;
789 	struct xhci_ring *ring;
790 
791 	ep = &xhci->devs[slot_id]->eps[ep_index];
792 	if ((ep->ep_state & EP_HAS_STREAMS) ||
793 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
794 		int stream_id;
795 
796 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
797 				stream_id++) {
798 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
799 					"Killing URBs for slot ID %u, ep index %u, stream %u",
800 					slot_id, ep_index, stream_id + 1);
801 			xhci_kill_ring_urbs(xhci,
802 					ep->stream_info->stream_rings[stream_id]);
803 		}
804 	} else {
805 		ring = ep->ring;
806 		if (!ring)
807 			return;
808 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
809 				"Killing URBs for slot ID %u, ep index %u",
810 				slot_id, ep_index);
811 		xhci_kill_ring_urbs(xhci, ring);
812 	}
813 	while (!list_empty(&ep->cancelled_td_list)) {
814 		cur_td = list_first_entry(&ep->cancelled_td_list,
815 				struct xhci_td, cancelled_td_list);
816 		list_del_init(&cur_td->cancelled_td_list);
817 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
818 	}
819 }
820 
821 /* Watchdog timer function for when a stop endpoint command fails to complete.
822  * In this case, we assume the host controller is broken or dying or dead.  The
823  * host may still be completing some other events, so we have to be careful to
824  * let the event ring handler and the URB dequeueing/enqueueing functions know
825  * through xhci->state.
826  *
827  * The timer may also fire if the host takes a very long time to respond to the
828  * command, and the stop endpoint command completion handler cannot delete the
829  * timer before the timer function is called.  Another endpoint cancellation may
830  * sneak in before the timer function can grab the lock, and that may queue
831  * another stop endpoint command and add the timer back.  So we cannot use a
832  * simple flag to say whether there is a pending stop endpoint command for a
833  * particular endpoint.
834  *
835  * Instead we use a combination of that flag and a counter for the number of
836  * pending stop endpoint commands.  If the timer is the tail end of the last
837  * stop endpoint command, and the endpoint's command is still pending, we assume
838  * the host is dying.
839  */
840 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
841 {
842 	struct xhci_hcd *xhci;
843 	struct xhci_virt_ep *ep;
844 	int ret, i, j;
845 	unsigned long flags;
846 
847 	ep = (struct xhci_virt_ep *) arg;
848 	xhci = ep->xhci;
849 
850 	spin_lock_irqsave(&xhci->lock, flags);
851 
852 	ep->stop_cmds_pending--;
853 	if (xhci->xhc_state & XHCI_STATE_DYING) {
854 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
855 				"Stop EP timer ran, but another timer marked "
856 				"xHCI as DYING, exiting.");
857 		spin_unlock_irqrestore(&xhci->lock, flags);
858 		return;
859 	}
860 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
861 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
862 				"Stop EP timer ran, but no command pending, "
863 				"exiting.");
864 		spin_unlock_irqrestore(&xhci->lock, flags);
865 		return;
866 	}
867 
868 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
869 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
870 	/* Oops, HC is dead or dying or at least not responding to the stop
871 	 * endpoint command.
872 	 */
873 	xhci->xhc_state |= XHCI_STATE_DYING;
874 	/* Disable interrupts from the host controller and start halting it */
875 	xhci_quiesce(xhci);
876 	spin_unlock_irqrestore(&xhci->lock, flags);
877 
878 	ret = xhci_halt(xhci);
879 
880 	spin_lock_irqsave(&xhci->lock, flags);
881 	if (ret < 0) {
882 		/* This is bad; the host is not responding to commands and it's
883 		 * not allowing itself to be halted.  At least interrupts are
884 		 * disabled. If we call usb_hc_died(), it will attempt to
885 		 * disconnect all device drivers under this host.  Those
886 		 * disconnect() methods will wait for all URBs to be unlinked,
887 		 * so we must complete them.
888 		 */
889 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
890 		xhci_warn(xhci, "Completing active URBs anyway.\n");
891 		/* We could turn all TDs on the rings to no-ops.  This won't
892 		 * help if the host has cached part of the ring, and is slow if
893 		 * we want to preserve the cycle bit.  Skip it and hope the host
894 		 * doesn't touch the memory.
895 		 */
896 	}
897 	for (i = 0; i < MAX_HC_SLOTS; i++) {
898 		if (!xhci->devs[i])
899 			continue;
900 		for (j = 0; j < 31; j++)
901 			xhci_kill_endpoint_urbs(xhci, i, j);
902 	}
903 	spin_unlock_irqrestore(&xhci->lock, flags);
904 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
905 			"Calling usb_hc_died()");
906 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
907 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
908 			"xHCI host controller is dead.");
909 }
910 
911 
912 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
913 		struct xhci_virt_device *dev,
914 		struct xhci_ring *ep_ring,
915 		unsigned int ep_index)
916 {
917 	union xhci_trb *dequeue_temp;
918 	int num_trbs_free_temp;
919 	bool revert = false;
920 
921 	num_trbs_free_temp = ep_ring->num_trbs_free;
922 	dequeue_temp = ep_ring->dequeue;
923 
924 	/* If we get two back-to-back stalls, and the first stalled transfer
925 	 * ends just before a link TRB, the dequeue pointer will be left on
926 	 * the link TRB by the code in the while loop.  So we have to update
927 	 * the dequeue pointer one segment further, or we'll jump off
928 	 * the segment into la-la-land.
929 	 */
930 	if (trb_is_link(ep_ring->dequeue)) {
931 		ep_ring->deq_seg = ep_ring->deq_seg->next;
932 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
933 	}
934 
935 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
936 		/* We have more usable TRBs */
937 		ep_ring->num_trbs_free++;
938 		ep_ring->dequeue++;
939 		if (trb_is_link(ep_ring->dequeue)) {
940 			if (ep_ring->dequeue ==
941 					dev->eps[ep_index].queued_deq_ptr)
942 				break;
943 			ep_ring->deq_seg = ep_ring->deq_seg->next;
944 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
945 		}
946 		if (ep_ring->dequeue == dequeue_temp) {
947 			revert = true;
948 			break;
949 		}
950 	}
951 
952 	if (revert) {
953 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
954 		ep_ring->num_trbs_free = num_trbs_free_temp;
955 	}
956 }
957 
958 /*
959  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
960  * we need to clear the set deq pending flag in the endpoint ring state, so that
961  * the TD queueing code can ring the doorbell again.  We also need to ring the
962  * endpoint doorbell to restart the ring, but only if there aren't more
963  * cancellations pending.
964  */
965 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
966 		union xhci_trb *trb, u32 cmd_comp_code)
967 {
968 	unsigned int ep_index;
969 	unsigned int stream_id;
970 	struct xhci_ring *ep_ring;
971 	struct xhci_virt_device *dev;
972 	struct xhci_virt_ep *ep;
973 	struct xhci_ep_ctx *ep_ctx;
974 	struct xhci_slot_ctx *slot_ctx;
975 
976 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
977 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
978 	dev = xhci->devs[slot_id];
979 	ep = &dev->eps[ep_index];
980 
981 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
982 	if (!ep_ring) {
983 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
984 				stream_id);
985 		/* XXX: Harmless??? */
986 		goto cleanup;
987 	}
988 
989 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
990 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
991 
992 	if (cmd_comp_code != COMP_SUCCESS) {
993 		unsigned int ep_state;
994 		unsigned int slot_state;
995 
996 		switch (cmd_comp_code) {
997 		case COMP_TRB_ERR:
998 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
999 			break;
1000 		case COMP_CTX_STATE:
1001 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1002 			ep_state = le32_to_cpu(ep_ctx->ep_info);
1003 			ep_state &= EP_STATE_MASK;
1004 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1005 			slot_state = GET_SLOT_STATE(slot_state);
1006 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1007 					"Slot state = %u, EP state = %u",
1008 					slot_state, ep_state);
1009 			break;
1010 		case COMP_EBADSLT:
1011 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1012 					slot_id);
1013 			break;
1014 		default:
1015 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1016 					cmd_comp_code);
1017 			break;
1018 		}
1019 		/* OK what do we do now?  The endpoint state is hosed, and we
1020 		 * should never get to this point if the synchronization between
1021 		 * queueing, and endpoint state are correct.  This might happen
1022 		 * if the device gets disconnected after we've finished
1023 		 * cancelling URBs, which might not be an error...
1024 		 */
1025 	} else {
1026 		u64 deq;
1027 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1028 		if (ep->ep_state & EP_HAS_STREAMS) {
1029 			struct xhci_stream_ctx *ctx =
1030 				&ep->stream_info->stream_ctx_array[stream_id];
1031 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1032 		} else {
1033 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1034 		}
1035 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1036 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1037 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1038 					 ep->queued_deq_ptr) == deq) {
1039 			/* Update the ring's dequeue segment and dequeue pointer
1040 			 * to reflect the new position.
1041 			 */
1042 			update_ring_for_set_deq_completion(xhci, dev,
1043 				ep_ring, ep_index);
1044 		} else {
1045 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1046 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1047 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1048 		}
1049 	}
1050 
1051 cleanup:
1052 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1053 	dev->eps[ep_index].queued_deq_seg = NULL;
1054 	dev->eps[ep_index].queued_deq_ptr = NULL;
1055 	/* Restart any rings with pending URBs */
1056 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1057 }
1058 
1059 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1060 		union xhci_trb *trb, u32 cmd_comp_code)
1061 {
1062 	unsigned int ep_index;
1063 
1064 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1065 	/* This command will only fail if the endpoint wasn't halted,
1066 	 * but we don't care.
1067 	 */
1068 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1069 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1070 
1071 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1072 	 * command complete before the endpoint can be used.  Queue that here
1073 	 * because the HW can't handle two commands being queued in a row.
1074 	 */
1075 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1076 		struct xhci_command *command;
1077 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1078 		if (!command) {
1079 			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1080 			return;
1081 		}
1082 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1083 				"Queueing configure endpoint command");
1084 		xhci_queue_configure_endpoint(xhci, command,
1085 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1086 				false);
1087 		xhci_ring_cmd_db(xhci);
1088 	} else {
1089 		/* Clear our internal halted state */
1090 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1091 	}
1092 }
1093 
1094 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1095 		u32 cmd_comp_code)
1096 {
1097 	if (cmd_comp_code == COMP_SUCCESS)
1098 		xhci->slot_id = slot_id;
1099 	else
1100 		xhci->slot_id = 0;
1101 }
1102 
1103 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1104 {
1105 	struct xhci_virt_device *virt_dev;
1106 
1107 	virt_dev = xhci->devs[slot_id];
1108 	if (!virt_dev)
1109 		return;
1110 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1111 		/* Delete default control endpoint resources */
1112 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1113 	xhci_free_virt_device(xhci, slot_id);
1114 }
1115 
1116 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1117 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1118 {
1119 	struct xhci_virt_device *virt_dev;
1120 	struct xhci_input_control_ctx *ctrl_ctx;
1121 	unsigned int ep_index;
1122 	unsigned int ep_state;
1123 	u32 add_flags, drop_flags;
1124 
1125 	/*
1126 	 * Configure endpoint commands can come from the USB core
1127 	 * configuration or alt setting changes, or because the HW
1128 	 * needed an extra configure endpoint command after a reset
1129 	 * endpoint command or streams were being configured.
1130 	 * If the command was for a halted endpoint, the xHCI driver
1131 	 * is not waiting on the configure endpoint command.
1132 	 */
1133 	virt_dev = xhci->devs[slot_id];
1134 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1135 	if (!ctrl_ctx) {
1136 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1137 		return;
1138 	}
1139 
1140 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1141 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1142 	/* Input ctx add_flags are the endpoint index plus one */
1143 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1144 
1145 	/* A usb_set_interface() call directly after clearing a halted
1146 	 * condition may race on this quirky hardware.  Not worth
1147 	 * worrying about, since this is prototype hardware.  Not sure
1148 	 * if this will work for streams, but streams support was
1149 	 * untested on this prototype.
1150 	 */
1151 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1152 			ep_index != (unsigned int) -1 &&
1153 			add_flags - SLOT_FLAG == drop_flags) {
1154 		ep_state = virt_dev->eps[ep_index].ep_state;
1155 		if (!(ep_state & EP_HALTED))
1156 			return;
1157 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1158 				"Completed config ep cmd - "
1159 				"last ep index = %d, state = %d",
1160 				ep_index, ep_state);
1161 		/* Clear internal halted state and restart ring(s) */
1162 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1163 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1164 		return;
1165 	}
1166 	return;
1167 }
1168 
1169 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1170 		struct xhci_event_cmd *event)
1171 {
1172 	xhci_dbg(xhci, "Completed reset device command.\n");
1173 	if (!xhci->devs[slot_id])
1174 		xhci_warn(xhci, "Reset device command completion "
1175 				"for disabled slot %u\n", slot_id);
1176 }
1177 
1178 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1179 		struct xhci_event_cmd *event)
1180 {
1181 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1182 		xhci->error_bitmask |= 1 << 6;
1183 		return;
1184 	}
1185 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1186 			"NEC firmware version %2x.%02x",
1187 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1188 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1189 }
1190 
1191 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1192 {
1193 	list_del(&cmd->cmd_list);
1194 
1195 	if (cmd->completion) {
1196 		cmd->status = status;
1197 		complete(cmd->completion);
1198 	} else {
1199 		kfree(cmd);
1200 	}
1201 }
1202 
1203 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1204 {
1205 	struct xhci_command *cur_cmd, *tmp_cmd;
1206 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1207 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1208 }
1209 
1210 /*
1211  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1212  * If there are other commands waiting then restart the ring and kick the timer.
1213  * This must be called with command ring stopped and xhci->lock held.
1214  */
1215 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1216 					 struct xhci_command *cur_cmd)
1217 {
1218 	struct xhci_command *i_cmd, *tmp_cmd;
1219 	u32 cycle_state;
1220 
1221 	/* Turn all aborted commands in list to no-ops, then restart */
1222 	list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1223 				 cmd_list) {
1224 
1225 		if (i_cmd->status != COMP_CMD_ABORT)
1226 			continue;
1227 
1228 		i_cmd->status = COMP_CMD_STOP;
1229 
1230 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1231 			 i_cmd->command_trb);
1232 		/* get cycle state from the original cmd trb */
1233 		cycle_state = le32_to_cpu(
1234 			i_cmd->command_trb->generic.field[3]) &	TRB_CYCLE;
1235 		/* modify the command trb to no-op command */
1236 		i_cmd->command_trb->generic.field[0] = 0;
1237 		i_cmd->command_trb->generic.field[1] = 0;
1238 		i_cmd->command_trb->generic.field[2] = 0;
1239 		i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1240 			TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1241 
1242 		/*
1243 		 * caller waiting for completion is called when command
1244 		 *  completion event is received for these no-op commands
1245 		 */
1246 	}
1247 
1248 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1249 
1250 	/* ring command ring doorbell to restart the command ring */
1251 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1252 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
1253 		xhci->current_cmd = cur_cmd;
1254 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1255 		xhci_ring_cmd_db(xhci);
1256 	}
1257 	return;
1258 }
1259 
1260 
1261 void xhci_handle_command_timeout(unsigned long data)
1262 {
1263 	struct xhci_hcd *xhci;
1264 	int ret;
1265 	unsigned long flags;
1266 	u64 hw_ring_state;
1267 	bool second_timeout = false;
1268 	xhci = (struct xhci_hcd *) data;
1269 
1270 	/* mark this command to be cancelled */
1271 	spin_lock_irqsave(&xhci->lock, flags);
1272 	if (xhci->current_cmd) {
1273 		if (xhci->current_cmd->status == COMP_CMD_ABORT)
1274 			second_timeout = true;
1275 		xhci->current_cmd->status = COMP_CMD_ABORT;
1276 	}
1277 
1278 	/* Make sure command ring is running before aborting it */
1279 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1280 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1281 	    (hw_ring_state & CMD_RING_RUNNING))  {
1282 		spin_unlock_irqrestore(&xhci->lock, flags);
1283 		xhci_dbg(xhci, "Command timeout\n");
1284 		ret = xhci_abort_cmd_ring(xhci);
1285 		if (unlikely(ret == -ESHUTDOWN)) {
1286 			xhci_err(xhci, "Abort command ring failed\n");
1287 			xhci_cleanup_command_queue(xhci);
1288 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1289 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
1290 		}
1291 		return;
1292 	}
1293 
1294 	/* command ring failed to restart, or host removed. Bail out */
1295 	if (second_timeout || xhci->xhc_state & XHCI_STATE_REMOVING) {
1296 		spin_unlock_irqrestore(&xhci->lock, flags);
1297 		xhci_dbg(xhci, "command timed out twice, ring start fail?\n");
1298 		xhci_cleanup_command_queue(xhci);
1299 		return;
1300 	}
1301 
1302 	/* command timeout on stopped ring, ring can't be aborted */
1303 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1304 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1305 	spin_unlock_irqrestore(&xhci->lock, flags);
1306 	return;
1307 }
1308 
1309 static void handle_cmd_completion(struct xhci_hcd *xhci,
1310 		struct xhci_event_cmd *event)
1311 {
1312 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1313 	u64 cmd_dma;
1314 	dma_addr_t cmd_dequeue_dma;
1315 	u32 cmd_comp_code;
1316 	union xhci_trb *cmd_trb;
1317 	struct xhci_command *cmd;
1318 	u32 cmd_type;
1319 
1320 	cmd_dma = le64_to_cpu(event->cmd_trb);
1321 	cmd_trb = xhci->cmd_ring->dequeue;
1322 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1323 			cmd_trb);
1324 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1325 	if (cmd_dequeue_dma == 0) {
1326 		xhci->error_bitmask |= 1 << 4;
1327 		return;
1328 	}
1329 	/* Does the DMA address match our internal dequeue pointer address? */
1330 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1331 		xhci->error_bitmask |= 1 << 5;
1332 		return;
1333 	}
1334 
1335 	cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1336 
1337 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1338 		xhci_err(xhci,
1339 			 "Command completion event does not match command\n");
1340 		return;
1341 	}
1342 
1343 	del_timer(&xhci->cmd_timer);
1344 
1345 	trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1346 
1347 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1348 
1349 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1350 	if (cmd_comp_code == COMP_CMD_STOP) {
1351 		xhci_handle_stopped_cmd_ring(xhci, cmd);
1352 		return;
1353 	}
1354 	/*
1355 	 * Host aborted the command ring, check if the current command was
1356 	 * supposed to be aborted, otherwise continue normally.
1357 	 * The command ring is stopped now, but the xHC will issue a Command
1358 	 * Ring Stopped event which will cause us to restart it.
1359 	 */
1360 	if (cmd_comp_code == COMP_CMD_ABORT) {
1361 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1362 		if (cmd->status == COMP_CMD_ABORT)
1363 			goto event_handled;
1364 	}
1365 
1366 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1367 	switch (cmd_type) {
1368 	case TRB_ENABLE_SLOT:
1369 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1370 		break;
1371 	case TRB_DISABLE_SLOT:
1372 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1373 		break;
1374 	case TRB_CONFIG_EP:
1375 		if (!cmd->completion)
1376 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1377 						  cmd_comp_code);
1378 		break;
1379 	case TRB_EVAL_CONTEXT:
1380 		break;
1381 	case TRB_ADDR_DEV:
1382 		break;
1383 	case TRB_STOP_RING:
1384 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1385 				le32_to_cpu(cmd_trb->generic.field[3])));
1386 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1387 		break;
1388 	case TRB_SET_DEQ:
1389 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1390 				le32_to_cpu(cmd_trb->generic.field[3])));
1391 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1392 		break;
1393 	case TRB_CMD_NOOP:
1394 		/* Is this an aborted command turned to NO-OP? */
1395 		if (cmd->status == COMP_CMD_STOP)
1396 			cmd_comp_code = COMP_CMD_STOP;
1397 		break;
1398 	case TRB_RESET_EP:
1399 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1400 				le32_to_cpu(cmd_trb->generic.field[3])));
1401 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1402 		break;
1403 	case TRB_RESET_DEV:
1404 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1405 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1406 		 */
1407 		slot_id = TRB_TO_SLOT_ID(
1408 				le32_to_cpu(cmd_trb->generic.field[3]));
1409 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1410 		break;
1411 	case TRB_NEC_GET_FW:
1412 		xhci_handle_cmd_nec_get_fw(xhci, event);
1413 		break;
1414 	default:
1415 		/* Skip over unknown commands on the event ring */
1416 		xhci->error_bitmask |= 1 << 6;
1417 		break;
1418 	}
1419 
1420 	/* restart timer if this wasn't the last command */
1421 	if (cmd->cmd_list.next != &xhci->cmd_list) {
1422 		xhci->current_cmd = list_entry(cmd->cmd_list.next,
1423 					       struct xhci_command, cmd_list);
1424 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1425 	}
1426 
1427 event_handled:
1428 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1429 
1430 	inc_deq(xhci, xhci->cmd_ring);
1431 }
1432 
1433 static void handle_vendor_event(struct xhci_hcd *xhci,
1434 		union xhci_trb *event)
1435 {
1436 	u32 trb_type;
1437 
1438 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1439 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1440 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1441 		handle_cmd_completion(xhci, &event->event_cmd);
1442 }
1443 
1444 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1445  * port registers -- USB 3.0 and USB 2.0).
1446  *
1447  * Returns a zero-based port number, which is suitable for indexing into each of
1448  * the split roothubs' port arrays and bus state arrays.
1449  * Add one to it in order to call xhci_find_slot_id_by_port.
1450  */
1451 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1452 		struct xhci_hcd *xhci, u32 port_id)
1453 {
1454 	unsigned int i;
1455 	unsigned int num_similar_speed_ports = 0;
1456 
1457 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1458 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1459 	 * speed ports, up to 1 port before this port.
1460 	 */
1461 	for (i = 0; i < (port_id - 1); i++) {
1462 		u8 port_speed = xhci->port_array[i];
1463 
1464 		/*
1465 		 * Skip ports that don't have known speeds, or have duplicate
1466 		 * Extended Capabilities port speed entries.
1467 		 */
1468 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1469 			continue;
1470 
1471 		/*
1472 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1473 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1474 		 * matches the device speed, it's a similar speed port.
1475 		 */
1476 		if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1477 			num_similar_speed_ports++;
1478 	}
1479 	return num_similar_speed_ports;
1480 }
1481 
1482 static void handle_device_notification(struct xhci_hcd *xhci,
1483 		union xhci_trb *event)
1484 {
1485 	u32 slot_id;
1486 	struct usb_device *udev;
1487 
1488 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1489 	if (!xhci->devs[slot_id]) {
1490 		xhci_warn(xhci, "Device Notification event for "
1491 				"unused slot %u\n", slot_id);
1492 		return;
1493 	}
1494 
1495 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1496 			slot_id);
1497 	udev = xhci->devs[slot_id]->udev;
1498 	if (udev && udev->parent)
1499 		usb_wakeup_notification(udev->parent, udev->portnum);
1500 }
1501 
1502 static void handle_port_status(struct xhci_hcd *xhci,
1503 		union xhci_trb *event)
1504 {
1505 	struct usb_hcd *hcd;
1506 	u32 port_id;
1507 	u32 temp, temp1;
1508 	int max_ports;
1509 	int slot_id;
1510 	unsigned int faked_port_index;
1511 	u8 major_revision;
1512 	struct xhci_bus_state *bus_state;
1513 	__le32 __iomem **port_array;
1514 	bool bogus_port_status = false;
1515 
1516 	/* Port status change events always have a successful completion code */
1517 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1518 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1519 		xhci->error_bitmask |= 1 << 8;
1520 	}
1521 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1522 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1523 
1524 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1525 	if ((port_id <= 0) || (port_id > max_ports)) {
1526 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1527 		inc_deq(xhci, xhci->event_ring);
1528 		return;
1529 	}
1530 
1531 	/* Figure out which usb_hcd this port is attached to:
1532 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1533 	 */
1534 	major_revision = xhci->port_array[port_id - 1];
1535 
1536 	/* Find the right roothub. */
1537 	hcd = xhci_to_hcd(xhci);
1538 	if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1539 		hcd = xhci->shared_hcd;
1540 
1541 	if (major_revision == 0) {
1542 		xhci_warn(xhci, "Event for port %u not in "
1543 				"Extended Capabilities, ignoring.\n",
1544 				port_id);
1545 		bogus_port_status = true;
1546 		goto cleanup;
1547 	}
1548 	if (major_revision == DUPLICATE_ENTRY) {
1549 		xhci_warn(xhci, "Event for port %u duplicated in"
1550 				"Extended Capabilities, ignoring.\n",
1551 				port_id);
1552 		bogus_port_status = true;
1553 		goto cleanup;
1554 	}
1555 
1556 	/*
1557 	 * Hardware port IDs reported by a Port Status Change Event include USB
1558 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1559 	 * resume event, but we first need to translate the hardware port ID
1560 	 * into the index into the ports on the correct split roothub, and the
1561 	 * correct bus_state structure.
1562 	 */
1563 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1564 	if (hcd->speed >= HCD_USB3)
1565 		port_array = xhci->usb3_ports;
1566 	else
1567 		port_array = xhci->usb2_ports;
1568 	/* Find the faked port hub number */
1569 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1570 			port_id);
1571 
1572 	temp = readl(port_array[faked_port_index]);
1573 	if (hcd->state == HC_STATE_SUSPENDED) {
1574 		xhci_dbg(xhci, "resume root hub\n");
1575 		usb_hcd_resume_root_hub(hcd);
1576 	}
1577 
1578 	if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1579 		bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1580 
1581 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1582 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1583 
1584 		temp1 = readl(&xhci->op_regs->command);
1585 		if (!(temp1 & CMD_RUN)) {
1586 			xhci_warn(xhci, "xHC is not running.\n");
1587 			goto cleanup;
1588 		}
1589 
1590 		if (DEV_SUPERSPEED_ANY(temp)) {
1591 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1592 			/* Set a flag to say the port signaled remote wakeup,
1593 			 * so we can tell the difference between the end of
1594 			 * device and host initiated resume.
1595 			 */
1596 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1597 			xhci_test_and_clear_bit(xhci, port_array,
1598 					faked_port_index, PORT_PLC);
1599 			xhci_set_link_state(xhci, port_array, faked_port_index,
1600 						XDEV_U0);
1601 			/* Need to wait until the next link state change
1602 			 * indicates the device is actually in U0.
1603 			 */
1604 			bogus_port_status = true;
1605 			goto cleanup;
1606 		} else if (!test_bit(faked_port_index,
1607 				     &bus_state->resuming_ports)) {
1608 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1609 			bus_state->resume_done[faked_port_index] = jiffies +
1610 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1611 			set_bit(faked_port_index, &bus_state->resuming_ports);
1612 			mod_timer(&hcd->rh_timer,
1613 				  bus_state->resume_done[faked_port_index]);
1614 			/* Do the rest in GetPortStatus */
1615 		}
1616 	}
1617 
1618 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1619 			DEV_SUPERSPEED_ANY(temp)) {
1620 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1621 		/* We've just brought the device into U0 through either the
1622 		 * Resume state after a device remote wakeup, or through the
1623 		 * U3Exit state after a host-initiated resume.  If it's a device
1624 		 * initiated remote wake, don't pass up the link state change,
1625 		 * so the roothub behavior is consistent with external
1626 		 * USB 3.0 hub behavior.
1627 		 */
1628 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1629 				faked_port_index + 1);
1630 		if (slot_id && xhci->devs[slot_id])
1631 			xhci_ring_device(xhci, slot_id);
1632 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1633 			bus_state->port_remote_wakeup &=
1634 				~(1 << faked_port_index);
1635 			xhci_test_and_clear_bit(xhci, port_array,
1636 					faked_port_index, PORT_PLC);
1637 			usb_wakeup_notification(hcd->self.root_hub,
1638 					faked_port_index + 1);
1639 			bogus_port_status = true;
1640 			goto cleanup;
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1646 	 * RExit to a disconnect state).  If so, let the the driver know it's
1647 	 * out of the RExit state.
1648 	 */
1649 	if (!DEV_SUPERSPEED_ANY(temp) &&
1650 			test_and_clear_bit(faked_port_index,
1651 				&bus_state->rexit_ports)) {
1652 		complete(&bus_state->rexit_done[faked_port_index]);
1653 		bogus_port_status = true;
1654 		goto cleanup;
1655 	}
1656 
1657 	if (hcd->speed < HCD_USB3)
1658 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1659 					PORT_PLC);
1660 
1661 cleanup:
1662 	/* Update event ring dequeue pointer before dropping the lock */
1663 	inc_deq(xhci, xhci->event_ring);
1664 
1665 	/* Don't make the USB core poll the roothub if we got a bad port status
1666 	 * change event.  Besides, at that point we can't tell which roothub
1667 	 * (USB 2.0 or USB 3.0) to kick.
1668 	 */
1669 	if (bogus_port_status)
1670 		return;
1671 
1672 	/*
1673 	 * xHCI port-status-change events occur when the "or" of all the
1674 	 * status-change bits in the portsc register changes from 0 to 1.
1675 	 * New status changes won't cause an event if any other change
1676 	 * bits are still set.  When an event occurs, switch over to
1677 	 * polling to avoid losing status changes.
1678 	 */
1679 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1680 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1681 	spin_unlock(&xhci->lock);
1682 	/* Pass this up to the core */
1683 	usb_hcd_poll_rh_status(hcd);
1684 	spin_lock(&xhci->lock);
1685 }
1686 
1687 /*
1688  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1689  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1690  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1691  * returns 0.
1692  */
1693 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1694 		struct xhci_segment *start_seg,
1695 		union xhci_trb	*start_trb,
1696 		union xhci_trb	*end_trb,
1697 		dma_addr_t	suspect_dma,
1698 		bool		debug)
1699 {
1700 	dma_addr_t start_dma;
1701 	dma_addr_t end_seg_dma;
1702 	dma_addr_t end_trb_dma;
1703 	struct xhci_segment *cur_seg;
1704 
1705 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1706 	cur_seg = start_seg;
1707 
1708 	do {
1709 		if (start_dma == 0)
1710 			return NULL;
1711 		/* We may get an event for a Link TRB in the middle of a TD */
1712 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1713 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1714 		/* If the end TRB isn't in this segment, this is set to 0 */
1715 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1716 
1717 		if (debug)
1718 			xhci_warn(xhci,
1719 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1720 				(unsigned long long)suspect_dma,
1721 				(unsigned long long)start_dma,
1722 				(unsigned long long)end_trb_dma,
1723 				(unsigned long long)cur_seg->dma,
1724 				(unsigned long long)end_seg_dma);
1725 
1726 		if (end_trb_dma > 0) {
1727 			/* The end TRB is in this segment, so suspect should be here */
1728 			if (start_dma <= end_trb_dma) {
1729 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1730 					return cur_seg;
1731 			} else {
1732 				/* Case for one segment with
1733 				 * a TD wrapped around to the top
1734 				 */
1735 				if ((suspect_dma >= start_dma &&
1736 							suspect_dma <= end_seg_dma) ||
1737 						(suspect_dma >= cur_seg->dma &&
1738 						 suspect_dma <= end_trb_dma))
1739 					return cur_seg;
1740 			}
1741 			return NULL;
1742 		} else {
1743 			/* Might still be somewhere in this segment */
1744 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1745 				return cur_seg;
1746 		}
1747 		cur_seg = cur_seg->next;
1748 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1749 	} while (cur_seg != start_seg);
1750 
1751 	return NULL;
1752 }
1753 
1754 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1755 		unsigned int slot_id, unsigned int ep_index,
1756 		unsigned int stream_id,
1757 		struct xhci_td *td, union xhci_trb *event_trb)
1758 {
1759 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1760 	struct xhci_command *command;
1761 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1762 	if (!command)
1763 		return;
1764 
1765 	ep->ep_state |= EP_HALTED;
1766 	ep->stopped_stream = stream_id;
1767 
1768 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1769 	xhci_cleanup_stalled_ring(xhci, ep_index, td);
1770 
1771 	ep->stopped_stream = 0;
1772 
1773 	xhci_ring_cmd_db(xhci);
1774 }
1775 
1776 /* Check if an error has halted the endpoint ring.  The class driver will
1777  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1778  * However, a babble and other errors also halt the endpoint ring, and the class
1779  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1780  * Ring Dequeue Pointer command manually.
1781  */
1782 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1783 		struct xhci_ep_ctx *ep_ctx,
1784 		unsigned int trb_comp_code)
1785 {
1786 	/* TRB completion codes that may require a manual halt cleanup */
1787 	if (trb_comp_code == COMP_TX_ERR ||
1788 			trb_comp_code == COMP_BABBLE ||
1789 			trb_comp_code == COMP_SPLIT_ERR)
1790 		/* The 0.95 spec says a babbling control endpoint
1791 		 * is not halted. The 0.96 spec says it is.  Some HW
1792 		 * claims to be 0.95 compliant, but it halts the control
1793 		 * endpoint anyway.  Check if a babble halted the
1794 		 * endpoint.
1795 		 */
1796 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1797 		    cpu_to_le32(EP_STATE_HALTED))
1798 			return 1;
1799 
1800 	return 0;
1801 }
1802 
1803 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1804 {
1805 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1806 		/* Vendor defined "informational" completion code,
1807 		 * treat as not-an-error.
1808 		 */
1809 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1810 				trb_comp_code);
1811 		xhci_dbg(xhci, "Treating code as success.\n");
1812 		return 1;
1813 	}
1814 	return 0;
1815 }
1816 
1817 /*
1818  * Finish the td processing, remove the td from td list;
1819  * Return 1 if the urb can be given back.
1820  */
1821 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1822 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1823 	struct xhci_virt_ep *ep, int *status, bool skip)
1824 {
1825 	struct xhci_virt_device *xdev;
1826 	struct xhci_ring *ep_ring;
1827 	unsigned int slot_id;
1828 	int ep_index;
1829 	struct urb *urb = NULL;
1830 	struct xhci_ep_ctx *ep_ctx;
1831 	int ret = 0;
1832 	struct urb_priv	*urb_priv;
1833 	u32 trb_comp_code;
1834 
1835 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1836 	xdev = xhci->devs[slot_id];
1837 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1838 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1839 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1840 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1841 
1842 	if (skip)
1843 		goto td_cleanup;
1844 
1845 	if (trb_comp_code == COMP_STOP_INVAL ||
1846 			trb_comp_code == COMP_STOP ||
1847 			trb_comp_code == COMP_STOP_SHORT) {
1848 		/* The Endpoint Stop Command completion will take care of any
1849 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1850 		 * the ring dequeue pointer or take this TD off any lists yet.
1851 		 */
1852 		ep->stopped_td = td;
1853 		return 0;
1854 	}
1855 	if (trb_comp_code == COMP_STALL ||
1856 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1857 						trb_comp_code)) {
1858 		/* Issue a reset endpoint command to clear the host side
1859 		 * halt, followed by a set dequeue command to move the
1860 		 * dequeue pointer past the TD.
1861 		 * The class driver clears the device side halt later.
1862 		 */
1863 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1864 					ep_ring->stream_id, td, event_trb);
1865 	} else {
1866 		/* Update ring dequeue pointer */
1867 		while (ep_ring->dequeue != td->last_trb)
1868 			inc_deq(xhci, ep_ring);
1869 		inc_deq(xhci, ep_ring);
1870 	}
1871 
1872 td_cleanup:
1873 	/* Clean up the endpoint's TD list */
1874 	urb = td->urb;
1875 	urb_priv = urb->hcpriv;
1876 
1877 	/* if a bounce buffer was used to align this td then unmap it */
1878 	if (td->bounce_seg)
1879 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1880 
1881 	/* Do one last check of the actual transfer length.
1882 	 * If the host controller said we transferred more data than the buffer
1883 	 * length, urb->actual_length will be a very big number (since it's
1884 	 * unsigned).  Play it safe and say we didn't transfer anything.
1885 	 */
1886 	if (urb->actual_length > urb->transfer_buffer_length) {
1887 		xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1888 			urb->transfer_buffer_length,
1889 			urb->actual_length);
1890 		urb->actual_length = 0;
1891 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1892 			*status = -EREMOTEIO;
1893 		else
1894 			*status = 0;
1895 	}
1896 	list_del_init(&td->td_list);
1897 	/* Was this TD slated to be cancelled but completed anyway? */
1898 	if (!list_empty(&td->cancelled_td_list))
1899 		list_del_init(&td->cancelled_td_list);
1900 
1901 	urb_priv->td_cnt++;
1902 	/* Giveback the urb when all the tds are completed */
1903 	if (urb_priv->td_cnt == urb_priv->length) {
1904 		ret = 1;
1905 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1906 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1907 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1908 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
1909 					usb_amd_quirk_pll_enable();
1910 			}
1911 		}
1912 	}
1913 
1914 	return ret;
1915 }
1916 
1917 /*
1918  * Process control tds, update urb status and actual_length.
1919  */
1920 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1921 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1922 	struct xhci_virt_ep *ep, int *status)
1923 {
1924 	struct xhci_virt_device *xdev;
1925 	struct xhci_ring *ep_ring;
1926 	unsigned int slot_id;
1927 	int ep_index;
1928 	struct xhci_ep_ctx *ep_ctx;
1929 	u32 trb_comp_code;
1930 
1931 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1932 	xdev = xhci->devs[slot_id];
1933 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1934 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1935 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1936 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1937 
1938 	switch (trb_comp_code) {
1939 	case COMP_SUCCESS:
1940 		if (event_trb == ep_ring->dequeue) {
1941 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1942 					"without IOC set??\n");
1943 			*status = -ESHUTDOWN;
1944 		} else if (event_trb != td->last_trb) {
1945 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1946 					"without IOC set??\n");
1947 			*status = -ESHUTDOWN;
1948 		} else {
1949 			*status = 0;
1950 		}
1951 		break;
1952 	case COMP_SHORT_TX:
1953 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1954 			*status = -EREMOTEIO;
1955 		else
1956 			*status = 0;
1957 		break;
1958 	case COMP_STOP_SHORT:
1959 		if (event_trb == ep_ring->dequeue || event_trb == td->last_trb)
1960 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1961 		else
1962 			td->urb->actual_length =
1963 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1964 
1965 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1966 	case COMP_STOP:
1967 		/* Did we stop at data stage? */
1968 		if (event_trb != ep_ring->dequeue && event_trb != td->last_trb)
1969 			td->urb->actual_length =
1970 				td->urb->transfer_buffer_length -
1971 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1972 		/* fall through */
1973 	case COMP_STOP_INVAL:
1974 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1975 	default:
1976 		if (!xhci_requires_manual_halt_cleanup(xhci,
1977 					ep_ctx, trb_comp_code))
1978 			break;
1979 		xhci_dbg(xhci, "TRB error code %u, "
1980 				"halted endpoint index = %u\n",
1981 				trb_comp_code, ep_index);
1982 		/* else fall through */
1983 	case COMP_STALL:
1984 		/* Did we transfer part of the data (middle) phase? */
1985 		if (event_trb != ep_ring->dequeue &&
1986 				event_trb != td->last_trb)
1987 			td->urb->actual_length =
1988 				td->urb->transfer_buffer_length -
1989 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1990 		else if (!td->urb_length_set)
1991 			td->urb->actual_length = 0;
1992 
1993 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1994 	}
1995 	/*
1996 	 * Did we transfer any data, despite the errors that might have
1997 	 * happened?  I.e. did we get past the setup stage?
1998 	 */
1999 	if (event_trb != ep_ring->dequeue) {
2000 		/* The event was for the status stage */
2001 		if (event_trb == td->last_trb) {
2002 			if (td->urb_length_set) {
2003 				/* Don't overwrite a previously set error code
2004 				 */
2005 				if ((*status == -EINPROGRESS || *status == 0) &&
2006 						(td->urb->transfer_flags
2007 						 & URB_SHORT_NOT_OK))
2008 					/* Did we already see a short data
2009 					 * stage? */
2010 					*status = -EREMOTEIO;
2011 			} else {
2012 				td->urb->actual_length =
2013 					td->urb->transfer_buffer_length;
2014 			}
2015 		} else {
2016 			/*
2017 			 * Maybe the event was for the data stage? If so, update
2018 			 * already the actual_length of the URB and flag it as
2019 			 * set, so that it is not overwritten in the event for
2020 			 * the last TRB.
2021 			 */
2022 			td->urb_length_set = true;
2023 			td->urb->actual_length =
2024 				td->urb->transfer_buffer_length -
2025 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2026 			xhci_dbg(xhci, "Waiting for status "
2027 					"stage event\n");
2028 			return 0;
2029 		}
2030 	}
2031 
2032 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2033 }
2034 
2035 /*
2036  * Process isochronous tds, update urb packet status and actual_length.
2037  */
2038 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2039 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2040 	struct xhci_virt_ep *ep, int *status)
2041 {
2042 	struct xhci_ring *ep_ring;
2043 	struct urb_priv *urb_priv;
2044 	int idx;
2045 	int len = 0;
2046 	union xhci_trb *cur_trb;
2047 	struct xhci_segment *cur_seg;
2048 	struct usb_iso_packet_descriptor *frame;
2049 	u32 trb_comp_code;
2050 	bool skip_td = false;
2051 
2052 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2053 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2054 	urb_priv = td->urb->hcpriv;
2055 	idx = urb_priv->td_cnt;
2056 	frame = &td->urb->iso_frame_desc[idx];
2057 
2058 	/* handle completion code */
2059 	switch (trb_comp_code) {
2060 	case COMP_SUCCESS:
2061 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2062 			frame->status = 0;
2063 			break;
2064 		}
2065 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2066 			trb_comp_code = COMP_SHORT_TX;
2067 	/* fallthrough */
2068 	case COMP_STOP_SHORT:
2069 	case COMP_SHORT_TX:
2070 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2071 				-EREMOTEIO : 0;
2072 		break;
2073 	case COMP_BW_OVER:
2074 		frame->status = -ECOMM;
2075 		skip_td = true;
2076 		break;
2077 	case COMP_BUFF_OVER:
2078 	case COMP_BABBLE:
2079 		frame->status = -EOVERFLOW;
2080 		skip_td = true;
2081 		break;
2082 	case COMP_DEV_ERR:
2083 	case COMP_STALL:
2084 		frame->status = -EPROTO;
2085 		skip_td = true;
2086 		break;
2087 	case COMP_TX_ERR:
2088 		frame->status = -EPROTO;
2089 		if (event_trb != td->last_trb)
2090 			return 0;
2091 		skip_td = true;
2092 		break;
2093 	case COMP_STOP:
2094 	case COMP_STOP_INVAL:
2095 		break;
2096 	default:
2097 		frame->status = -1;
2098 		break;
2099 	}
2100 
2101 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
2102 		frame->actual_length = frame->length;
2103 		td->urb->actual_length += frame->length;
2104 	} else if (trb_comp_code == COMP_STOP_SHORT) {
2105 		frame->actual_length =
2106 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2107 		td->urb->actual_length += frame->actual_length;
2108 	} else {
2109 		for (cur_trb = ep_ring->dequeue,
2110 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2111 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2112 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2113 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2114 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2115 		}
2116 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2117 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2118 
2119 		if (trb_comp_code != COMP_STOP_INVAL) {
2120 			frame->actual_length = len;
2121 			td->urb->actual_length += len;
2122 		}
2123 	}
2124 
2125 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2126 }
2127 
2128 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2129 			struct xhci_transfer_event *event,
2130 			struct xhci_virt_ep *ep, int *status)
2131 {
2132 	struct xhci_ring *ep_ring;
2133 	struct urb_priv *urb_priv;
2134 	struct usb_iso_packet_descriptor *frame;
2135 	int idx;
2136 
2137 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2138 	urb_priv = td->urb->hcpriv;
2139 	idx = urb_priv->td_cnt;
2140 	frame = &td->urb->iso_frame_desc[idx];
2141 
2142 	/* The transfer is partly done. */
2143 	frame->status = -EXDEV;
2144 
2145 	/* calc actual length */
2146 	frame->actual_length = 0;
2147 
2148 	/* Update ring dequeue pointer */
2149 	while (ep_ring->dequeue != td->last_trb)
2150 		inc_deq(xhci, ep_ring);
2151 	inc_deq(xhci, ep_ring);
2152 
2153 	return finish_td(xhci, td, NULL, event, ep, status, true);
2154 }
2155 
2156 /*
2157  * Process bulk and interrupt tds, update urb status and actual_length.
2158  */
2159 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2160 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2161 	struct xhci_virt_ep *ep, int *status)
2162 {
2163 	struct xhci_ring *ep_ring;
2164 	union xhci_trb *cur_trb;
2165 	struct xhci_segment *cur_seg;
2166 	u32 trb_comp_code;
2167 
2168 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2169 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2170 
2171 	switch (trb_comp_code) {
2172 	case COMP_SUCCESS:
2173 		/* Double check that the HW transferred everything. */
2174 		if (event_trb != td->last_trb ||
2175 		    EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2176 			xhci_warn(xhci, "WARN Successful completion "
2177 					"on short TX\n");
2178 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2179 				*status = -EREMOTEIO;
2180 			else
2181 				*status = 0;
2182 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2183 				trb_comp_code = COMP_SHORT_TX;
2184 		} else {
2185 			*status = 0;
2186 		}
2187 		break;
2188 	case COMP_STOP_SHORT:
2189 	case COMP_SHORT_TX:
2190 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2191 			*status = -EREMOTEIO;
2192 		else
2193 			*status = 0;
2194 		break;
2195 	default:
2196 		/* Others already handled above */
2197 		break;
2198 	}
2199 	if (trb_comp_code == COMP_SHORT_TX)
2200 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2201 				"%d bytes untransferred\n",
2202 				td->urb->ep->desc.bEndpointAddress,
2203 				td->urb->transfer_buffer_length,
2204 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2205 	/* Stopped - short packet completion */
2206 	if (trb_comp_code == COMP_STOP_SHORT) {
2207 		td->urb->actual_length =
2208 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2209 
2210 		if (td->urb->transfer_buffer_length <
2211 				td->urb->actual_length) {
2212 			xhci_warn(xhci, "HC gave bad length of %d bytes txed\n",
2213 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2214 			td->urb->actual_length = 0;
2215 			 /* status will be set by usb core for canceled urbs */
2216 		}
2217 	/* Fast path - was this the last TRB in the TD for this URB? */
2218 	} else if (event_trb == td->last_trb) {
2219 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2220 			td->urb->actual_length =
2221 				td->urb->transfer_buffer_length -
2222 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2223 			if (td->urb->transfer_buffer_length <
2224 					td->urb->actual_length) {
2225 				xhci_warn(xhci, "HC gave bad length "
2226 						"of %d bytes left\n",
2227 					  EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2228 				td->urb->actual_length = 0;
2229 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2230 					*status = -EREMOTEIO;
2231 				else
2232 					*status = 0;
2233 			}
2234 			/* Don't overwrite a previously set error code */
2235 			if (*status == -EINPROGRESS) {
2236 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2237 					*status = -EREMOTEIO;
2238 				else
2239 					*status = 0;
2240 			}
2241 		} else {
2242 			td->urb->actual_length =
2243 				td->urb->transfer_buffer_length;
2244 			/* Ignore a short packet completion if the
2245 			 * untransferred length was zero.
2246 			 */
2247 			if (*status == -EREMOTEIO)
2248 				*status = 0;
2249 		}
2250 	} else {
2251 		/* Slow path - walk the list, starting from the dequeue
2252 		 * pointer, to get the actual length transferred.
2253 		 */
2254 		td->urb->actual_length = 0;
2255 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2256 				cur_trb != event_trb;
2257 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2258 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2259 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2260 				td->urb->actual_length +=
2261 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2262 		}
2263 		/* If the ring didn't stop on a Link or No-op TRB, add
2264 		 * in the actual bytes transferred from the Normal TRB
2265 		 */
2266 		if (trb_comp_code != COMP_STOP_INVAL)
2267 			td->urb->actual_length +=
2268 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2269 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2270 	}
2271 
2272 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2273 }
2274 
2275 /*
2276  * If this function returns an error condition, it means it got a Transfer
2277  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2278  * At this point, the host controller is probably hosed and should be reset.
2279  */
2280 static int handle_tx_event(struct xhci_hcd *xhci,
2281 		struct xhci_transfer_event *event)
2282 	__releases(&xhci->lock)
2283 	__acquires(&xhci->lock)
2284 {
2285 	struct xhci_virt_device *xdev;
2286 	struct xhci_virt_ep *ep;
2287 	struct xhci_ring *ep_ring;
2288 	unsigned int slot_id;
2289 	int ep_index;
2290 	struct xhci_td *td = NULL;
2291 	dma_addr_t event_dma;
2292 	struct xhci_segment *event_seg;
2293 	union xhci_trb *event_trb;
2294 	struct urb *urb = NULL;
2295 	int status = -EINPROGRESS;
2296 	struct urb_priv *urb_priv;
2297 	struct xhci_ep_ctx *ep_ctx;
2298 	struct list_head *tmp;
2299 	u32 trb_comp_code;
2300 	int ret = 0;
2301 	int td_num = 0;
2302 	bool handling_skipped_tds = false;
2303 
2304 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2305 	xdev = xhci->devs[slot_id];
2306 	if (!xdev) {
2307 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2308 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2309 			 (unsigned long long) xhci_trb_virt_to_dma(
2310 				 xhci->event_ring->deq_seg,
2311 				 xhci->event_ring->dequeue),
2312 			 lower_32_bits(le64_to_cpu(event->buffer)),
2313 			 upper_32_bits(le64_to_cpu(event->buffer)),
2314 			 le32_to_cpu(event->transfer_len),
2315 			 le32_to_cpu(event->flags));
2316 		xhci_dbg(xhci, "Event ring:\n");
2317 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2318 		return -ENODEV;
2319 	}
2320 
2321 	/* Endpoint ID is 1 based, our index is zero based */
2322 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2323 	ep = &xdev->eps[ep_index];
2324 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2325 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2326 	if (!ep_ring ||
2327 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2328 	    EP_STATE_DISABLED) {
2329 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2330 				"or incorrect stream ring\n");
2331 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2332 			 (unsigned long long) xhci_trb_virt_to_dma(
2333 				 xhci->event_ring->deq_seg,
2334 				 xhci->event_ring->dequeue),
2335 			 lower_32_bits(le64_to_cpu(event->buffer)),
2336 			 upper_32_bits(le64_to_cpu(event->buffer)),
2337 			 le32_to_cpu(event->transfer_len),
2338 			 le32_to_cpu(event->flags));
2339 		xhci_dbg(xhci, "Event ring:\n");
2340 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2341 		return -ENODEV;
2342 	}
2343 
2344 	/* Count current td numbers if ep->skip is set */
2345 	if (ep->skip) {
2346 		list_for_each(tmp, &ep_ring->td_list)
2347 			td_num++;
2348 	}
2349 
2350 	event_dma = le64_to_cpu(event->buffer);
2351 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2352 	/* Look for common error cases */
2353 	switch (trb_comp_code) {
2354 	/* Skip codes that require special handling depending on
2355 	 * transfer type
2356 	 */
2357 	case COMP_SUCCESS:
2358 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2359 			break;
2360 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2361 			trb_comp_code = COMP_SHORT_TX;
2362 		else
2363 			xhci_warn_ratelimited(xhci,
2364 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2365 	case COMP_SHORT_TX:
2366 		break;
2367 	case COMP_STOP:
2368 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2369 		break;
2370 	case COMP_STOP_INVAL:
2371 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2372 		break;
2373 	case COMP_STOP_SHORT:
2374 		xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2375 		break;
2376 	case COMP_STALL:
2377 		xhci_dbg(xhci, "Stalled endpoint\n");
2378 		ep->ep_state |= EP_HALTED;
2379 		status = -EPIPE;
2380 		break;
2381 	case COMP_TRB_ERR:
2382 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2383 		status = -EILSEQ;
2384 		break;
2385 	case COMP_SPLIT_ERR:
2386 	case COMP_TX_ERR:
2387 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2388 		status = -EPROTO;
2389 		break;
2390 	case COMP_BABBLE:
2391 		xhci_dbg(xhci, "Babble error on endpoint\n");
2392 		status = -EOVERFLOW;
2393 		break;
2394 	case COMP_DB_ERR:
2395 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2396 		status = -ENOSR;
2397 		break;
2398 	case COMP_BW_OVER:
2399 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2400 		break;
2401 	case COMP_BUFF_OVER:
2402 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2403 		break;
2404 	case COMP_UNDERRUN:
2405 		/*
2406 		 * When the Isoch ring is empty, the xHC will generate
2407 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2408 		 * Underrun Event for OUT Isoch endpoint.
2409 		 */
2410 		xhci_dbg(xhci, "underrun event on endpoint\n");
2411 		if (!list_empty(&ep_ring->td_list))
2412 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2413 					"still with TDs queued?\n",
2414 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2415 				 ep_index);
2416 		goto cleanup;
2417 	case COMP_OVERRUN:
2418 		xhci_dbg(xhci, "overrun event on endpoint\n");
2419 		if (!list_empty(&ep_ring->td_list))
2420 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2421 					"still with TDs queued?\n",
2422 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2423 				 ep_index);
2424 		goto cleanup;
2425 	case COMP_DEV_ERR:
2426 		xhci_warn(xhci, "WARN: detect an incompatible device");
2427 		status = -EPROTO;
2428 		break;
2429 	case COMP_MISSED_INT:
2430 		/*
2431 		 * When encounter missed service error, one or more isoc tds
2432 		 * may be missed by xHC.
2433 		 * Set skip flag of the ep_ring; Complete the missed tds as
2434 		 * short transfer when process the ep_ring next time.
2435 		 */
2436 		ep->skip = true;
2437 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2438 		goto cleanup;
2439 	case COMP_PING_ERR:
2440 		ep->skip = true;
2441 		xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2442 		goto cleanup;
2443 	default:
2444 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2445 			status = 0;
2446 			break;
2447 		}
2448 		xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2449 			  trb_comp_code);
2450 		goto cleanup;
2451 	}
2452 
2453 	do {
2454 		/* This TRB should be in the TD at the head of this ring's
2455 		 * TD list.
2456 		 */
2457 		if (list_empty(&ep_ring->td_list)) {
2458 			/*
2459 			 * A stopped endpoint may generate an extra completion
2460 			 * event if the device was suspended.  Don't print
2461 			 * warnings.
2462 			 */
2463 			if (!(trb_comp_code == COMP_STOP ||
2464 						trb_comp_code == COMP_STOP_INVAL)) {
2465 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2466 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2467 						ep_index);
2468 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2469 						(le32_to_cpu(event->flags) &
2470 						 TRB_TYPE_BITMASK)>>10);
2471 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2472 			}
2473 			if (ep->skip) {
2474 				ep->skip = false;
2475 				xhci_dbg(xhci, "td_list is empty while skip "
2476 						"flag set. Clear skip flag.\n");
2477 			}
2478 			ret = 0;
2479 			goto cleanup;
2480 		}
2481 
2482 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2483 		if (ep->skip && td_num == 0) {
2484 			ep->skip = false;
2485 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2486 						"Clear skip flag.\n");
2487 			ret = 0;
2488 			goto cleanup;
2489 		}
2490 
2491 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2492 		if (ep->skip)
2493 			td_num--;
2494 
2495 		/* Is this a TRB in the currently executing TD? */
2496 		event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2497 				td->last_trb, event_dma, false);
2498 
2499 		/*
2500 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2501 		 * is not in the current TD pointed by ep_ring->dequeue because
2502 		 * that the hardware dequeue pointer still at the previous TRB
2503 		 * of the current TD. The previous TRB maybe a Link TD or the
2504 		 * last TRB of the previous TD. The command completion handle
2505 		 * will take care the rest.
2506 		 */
2507 		if (!event_seg && (trb_comp_code == COMP_STOP ||
2508 				   trb_comp_code == COMP_STOP_INVAL)) {
2509 			ret = 0;
2510 			goto cleanup;
2511 		}
2512 
2513 		if (!event_seg) {
2514 			if (!ep->skip ||
2515 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2516 				/* Some host controllers give a spurious
2517 				 * successful event after a short transfer.
2518 				 * Ignore it.
2519 				 */
2520 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2521 						ep_ring->last_td_was_short) {
2522 					ep_ring->last_td_was_short = false;
2523 					ret = 0;
2524 					goto cleanup;
2525 				}
2526 				/* HC is busted, give up! */
2527 				xhci_err(xhci,
2528 					"ERROR Transfer event TRB DMA ptr not "
2529 					"part of current TD ep_index %d "
2530 					"comp_code %u\n", ep_index,
2531 					trb_comp_code);
2532 				trb_in_td(xhci, ep_ring->deq_seg,
2533 					  ep_ring->dequeue, td->last_trb,
2534 					  event_dma, true);
2535 				return -ESHUTDOWN;
2536 			}
2537 
2538 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2539 			goto cleanup;
2540 		}
2541 		if (trb_comp_code == COMP_SHORT_TX)
2542 			ep_ring->last_td_was_short = true;
2543 		else
2544 			ep_ring->last_td_was_short = false;
2545 
2546 		if (ep->skip) {
2547 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2548 			ep->skip = false;
2549 		}
2550 
2551 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2552 						sizeof(*event_trb)];
2553 		/*
2554 		 * No-op TRB should not trigger interrupts.
2555 		 * If event_trb is a no-op TRB, it means the
2556 		 * corresponding TD has been cancelled. Just ignore
2557 		 * the TD.
2558 		 */
2559 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2560 			xhci_dbg(xhci,
2561 				 "event_trb is a no-op TRB. Skip it\n");
2562 			goto cleanup;
2563 		}
2564 
2565 		/* Now update the urb's actual_length and give back to
2566 		 * the core
2567 		 */
2568 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2569 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2570 						 &status);
2571 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2572 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2573 						 &status);
2574 		else
2575 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2576 						 ep, &status);
2577 
2578 cleanup:
2579 
2580 
2581 		handling_skipped_tds = ep->skip &&
2582 			trb_comp_code != COMP_MISSED_INT &&
2583 			trb_comp_code != COMP_PING_ERR;
2584 
2585 		/*
2586 		 * Do not update event ring dequeue pointer if we're in a loop
2587 		 * processing missed tds.
2588 		 */
2589 		if (!handling_skipped_tds)
2590 			inc_deq(xhci, xhci->event_ring);
2591 
2592 		if (ret) {
2593 			urb = td->urb;
2594 			urb_priv = urb->hcpriv;
2595 
2596 			xhci_urb_free_priv(urb_priv);
2597 
2598 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2599 			if ((urb->actual_length != urb->transfer_buffer_length &&
2600 						(urb->transfer_flags &
2601 						 URB_SHORT_NOT_OK)) ||
2602 					(status != 0 &&
2603 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2604 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2605 						"expected = %d, status = %d\n",
2606 						urb, urb->actual_length,
2607 						urb->transfer_buffer_length,
2608 						status);
2609 			spin_unlock(&xhci->lock);
2610 			/* EHCI, UHCI, and OHCI always unconditionally set the
2611 			 * urb->status of an isochronous endpoint to 0.
2612 			 */
2613 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2614 				status = 0;
2615 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2616 			spin_lock(&xhci->lock);
2617 		}
2618 
2619 	/*
2620 	 * If ep->skip is set, it means there are missed tds on the
2621 	 * endpoint ring need to take care of.
2622 	 * Process them as short transfer until reach the td pointed by
2623 	 * the event.
2624 	 */
2625 	} while (handling_skipped_tds);
2626 
2627 	return 0;
2628 }
2629 
2630 /*
2631  * This function handles all OS-owned events on the event ring.  It may drop
2632  * xhci->lock between event processing (e.g. to pass up port status changes).
2633  * Returns >0 for "possibly more events to process" (caller should call again),
2634  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2635  */
2636 static int xhci_handle_event(struct xhci_hcd *xhci)
2637 {
2638 	union xhci_trb *event;
2639 	int update_ptrs = 1;
2640 	int ret;
2641 
2642 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2643 		xhci->error_bitmask |= 1 << 1;
2644 		return 0;
2645 	}
2646 
2647 	event = xhci->event_ring->dequeue;
2648 	/* Does the HC or OS own the TRB? */
2649 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2650 	    xhci->event_ring->cycle_state) {
2651 		xhci->error_bitmask |= 1 << 2;
2652 		return 0;
2653 	}
2654 
2655 	/*
2656 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2657 	 * speculative reads of the event's flags/data below.
2658 	 */
2659 	rmb();
2660 	/* FIXME: Handle more event types. */
2661 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2662 	case TRB_TYPE(TRB_COMPLETION):
2663 		handle_cmd_completion(xhci, &event->event_cmd);
2664 		break;
2665 	case TRB_TYPE(TRB_PORT_STATUS):
2666 		handle_port_status(xhci, event);
2667 		update_ptrs = 0;
2668 		break;
2669 	case TRB_TYPE(TRB_TRANSFER):
2670 		ret = handle_tx_event(xhci, &event->trans_event);
2671 		if (ret < 0)
2672 			xhci->error_bitmask |= 1 << 9;
2673 		else
2674 			update_ptrs = 0;
2675 		break;
2676 	case TRB_TYPE(TRB_DEV_NOTE):
2677 		handle_device_notification(xhci, event);
2678 		break;
2679 	default:
2680 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2681 		    TRB_TYPE(48))
2682 			handle_vendor_event(xhci, event);
2683 		else
2684 			xhci->error_bitmask |= 1 << 3;
2685 	}
2686 	/* Any of the above functions may drop and re-acquire the lock, so check
2687 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2688 	 */
2689 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2690 		xhci_dbg(xhci, "xHCI host dying, returning from "
2691 				"event handler.\n");
2692 		return 0;
2693 	}
2694 
2695 	if (update_ptrs)
2696 		/* Update SW event ring dequeue pointer */
2697 		inc_deq(xhci, xhci->event_ring);
2698 
2699 	/* Are there more items on the event ring?  Caller will call us again to
2700 	 * check.
2701 	 */
2702 	return 1;
2703 }
2704 
2705 /*
2706  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2707  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2708  * indicators of an event TRB error, but we check the status *first* to be safe.
2709  */
2710 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2711 {
2712 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2713 	u32 status;
2714 	u64 temp_64;
2715 	union xhci_trb *event_ring_deq;
2716 	dma_addr_t deq;
2717 
2718 	spin_lock(&xhci->lock);
2719 	/* Check if the xHC generated the interrupt, or the irq is shared */
2720 	status = readl(&xhci->op_regs->status);
2721 	if (status == 0xffffffff)
2722 		goto hw_died;
2723 
2724 	if (!(status & STS_EINT)) {
2725 		spin_unlock(&xhci->lock);
2726 		return IRQ_NONE;
2727 	}
2728 	if (status & STS_FATAL) {
2729 		xhci_warn(xhci, "WARNING: Host System Error\n");
2730 		xhci_halt(xhci);
2731 hw_died:
2732 		spin_unlock(&xhci->lock);
2733 		return IRQ_HANDLED;
2734 	}
2735 
2736 	/*
2737 	 * Clear the op reg interrupt status first,
2738 	 * so we can receive interrupts from other MSI-X interrupters.
2739 	 * Write 1 to clear the interrupt status.
2740 	 */
2741 	status |= STS_EINT;
2742 	writel(status, &xhci->op_regs->status);
2743 	/* FIXME when MSI-X is supported and there are multiple vectors */
2744 	/* Clear the MSI-X event interrupt status */
2745 
2746 	if (hcd->irq) {
2747 		u32 irq_pending;
2748 		/* Acknowledge the PCI interrupt */
2749 		irq_pending = readl(&xhci->ir_set->irq_pending);
2750 		irq_pending |= IMAN_IP;
2751 		writel(irq_pending, &xhci->ir_set->irq_pending);
2752 	}
2753 
2754 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2755 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2756 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2757 				"Shouldn't IRQs be disabled?\n");
2758 		/* Clear the event handler busy flag (RW1C);
2759 		 * the event ring should be empty.
2760 		 */
2761 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2762 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2763 				&xhci->ir_set->erst_dequeue);
2764 		spin_unlock(&xhci->lock);
2765 
2766 		return IRQ_HANDLED;
2767 	}
2768 
2769 	event_ring_deq = xhci->event_ring->dequeue;
2770 	/* FIXME this should be a delayed service routine
2771 	 * that clears the EHB.
2772 	 */
2773 	while (xhci_handle_event(xhci) > 0) {}
2774 
2775 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2776 	/* If necessary, update the HW's version of the event ring deq ptr. */
2777 	if (event_ring_deq != xhci->event_ring->dequeue) {
2778 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2779 				xhci->event_ring->dequeue);
2780 		if (deq == 0)
2781 			xhci_warn(xhci, "WARN something wrong with SW event "
2782 					"ring dequeue ptr.\n");
2783 		/* Update HC event ring dequeue pointer */
2784 		temp_64 &= ERST_PTR_MASK;
2785 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2786 	}
2787 
2788 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2789 	temp_64 |= ERST_EHB;
2790 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2791 
2792 	spin_unlock(&xhci->lock);
2793 
2794 	return IRQ_HANDLED;
2795 }
2796 
2797 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2798 {
2799 	return xhci_irq(hcd);
2800 }
2801 
2802 /****		Endpoint Ring Operations	****/
2803 
2804 /*
2805  * Generic function for queueing a TRB on a ring.
2806  * The caller must have checked to make sure there's room on the ring.
2807  *
2808  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2809  *			prepare_transfer()?
2810  */
2811 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2812 		bool more_trbs_coming,
2813 		u32 field1, u32 field2, u32 field3, u32 field4)
2814 {
2815 	struct xhci_generic_trb *trb;
2816 
2817 	trb = &ring->enqueue->generic;
2818 	trb->field[0] = cpu_to_le32(field1);
2819 	trb->field[1] = cpu_to_le32(field2);
2820 	trb->field[2] = cpu_to_le32(field3);
2821 	trb->field[3] = cpu_to_le32(field4);
2822 	inc_enq(xhci, ring, more_trbs_coming);
2823 }
2824 
2825 /*
2826  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2827  * FIXME allocate segments if the ring is full.
2828  */
2829 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2830 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2831 {
2832 	unsigned int num_trbs_needed;
2833 
2834 	/* Make sure the endpoint has been added to xHC schedule */
2835 	switch (ep_state) {
2836 	case EP_STATE_DISABLED:
2837 		/*
2838 		 * USB core changed config/interfaces without notifying us,
2839 		 * or hardware is reporting the wrong state.
2840 		 */
2841 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2842 		return -ENOENT;
2843 	case EP_STATE_ERROR:
2844 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2845 		/* FIXME event handling code for error needs to clear it */
2846 		/* XXX not sure if this should be -ENOENT or not */
2847 		return -EINVAL;
2848 	case EP_STATE_HALTED:
2849 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2850 	case EP_STATE_STOPPED:
2851 	case EP_STATE_RUNNING:
2852 		break;
2853 	default:
2854 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2855 		/*
2856 		 * FIXME issue Configure Endpoint command to try to get the HC
2857 		 * back into a known state.
2858 		 */
2859 		return -EINVAL;
2860 	}
2861 
2862 	while (1) {
2863 		if (room_on_ring(xhci, ep_ring, num_trbs))
2864 			break;
2865 
2866 		if (ep_ring == xhci->cmd_ring) {
2867 			xhci_err(xhci, "Do not support expand command ring\n");
2868 			return -ENOMEM;
2869 		}
2870 
2871 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2872 				"ERROR no room on ep ring, try ring expansion");
2873 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2874 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2875 					mem_flags)) {
2876 			xhci_err(xhci, "Ring expansion failed\n");
2877 			return -ENOMEM;
2878 		}
2879 	}
2880 
2881 	while (trb_is_link(ep_ring->enqueue)) {
2882 		/* If we're not dealing with 0.95 hardware or isoc rings
2883 		 * on AMD 0.96 host, clear the chain bit.
2884 		 */
2885 		if (!xhci_link_trb_quirk(xhci) &&
2886 		    !(ep_ring->type == TYPE_ISOC &&
2887 		      (xhci->quirks & XHCI_AMD_0x96_HOST)))
2888 			ep_ring->enqueue->link.control &=
2889 				cpu_to_le32(~TRB_CHAIN);
2890 		else
2891 			ep_ring->enqueue->link.control |=
2892 				cpu_to_le32(TRB_CHAIN);
2893 
2894 		wmb();
2895 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2896 
2897 		/* Toggle the cycle bit after the last ring segment. */
2898 		if (link_trb_toggles_cycle(ep_ring->enqueue))
2899 			ep_ring->cycle_state ^= 1;
2900 
2901 		ep_ring->enq_seg = ep_ring->enq_seg->next;
2902 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
2903 	}
2904 	return 0;
2905 }
2906 
2907 static int prepare_transfer(struct xhci_hcd *xhci,
2908 		struct xhci_virt_device *xdev,
2909 		unsigned int ep_index,
2910 		unsigned int stream_id,
2911 		unsigned int num_trbs,
2912 		struct urb *urb,
2913 		unsigned int td_index,
2914 		gfp_t mem_flags)
2915 {
2916 	int ret;
2917 	struct urb_priv *urb_priv;
2918 	struct xhci_td	*td;
2919 	struct xhci_ring *ep_ring;
2920 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2921 
2922 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2923 	if (!ep_ring) {
2924 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2925 				stream_id);
2926 		return -EINVAL;
2927 	}
2928 
2929 	ret = prepare_ring(xhci, ep_ring,
2930 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2931 			   num_trbs, mem_flags);
2932 	if (ret)
2933 		return ret;
2934 
2935 	urb_priv = urb->hcpriv;
2936 	td = urb_priv->td[td_index];
2937 
2938 	INIT_LIST_HEAD(&td->td_list);
2939 	INIT_LIST_HEAD(&td->cancelled_td_list);
2940 
2941 	if (td_index == 0) {
2942 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2943 		if (unlikely(ret))
2944 			return ret;
2945 	}
2946 
2947 	td->urb = urb;
2948 	/* Add this TD to the tail of the endpoint ring's TD list */
2949 	list_add_tail(&td->td_list, &ep_ring->td_list);
2950 	td->start_seg = ep_ring->enq_seg;
2951 	td->first_trb = ep_ring->enqueue;
2952 
2953 	urb_priv->td[td_index] = td;
2954 
2955 	return 0;
2956 }
2957 
2958 static unsigned int count_trbs(u64 addr, u64 len)
2959 {
2960 	unsigned int num_trbs;
2961 
2962 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2963 			TRB_MAX_BUFF_SIZE);
2964 	if (num_trbs == 0)
2965 		num_trbs++;
2966 
2967 	return num_trbs;
2968 }
2969 
2970 static inline unsigned int count_trbs_needed(struct urb *urb)
2971 {
2972 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2973 }
2974 
2975 static unsigned int count_sg_trbs_needed(struct urb *urb)
2976 {
2977 	struct scatterlist *sg;
2978 	unsigned int i, len, full_len, num_trbs = 0;
2979 
2980 	full_len = urb->transfer_buffer_length;
2981 
2982 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2983 		len = sg_dma_len(sg);
2984 		num_trbs += count_trbs(sg_dma_address(sg), len);
2985 		len = min_t(unsigned int, len, full_len);
2986 		full_len -= len;
2987 		if (full_len == 0)
2988 			break;
2989 	}
2990 
2991 	return num_trbs;
2992 }
2993 
2994 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2995 {
2996 	u64 addr, len;
2997 
2998 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2999 	len = urb->iso_frame_desc[i].length;
3000 
3001 	return count_trbs(addr, len);
3002 }
3003 
3004 static void check_trb_math(struct urb *urb, int running_total)
3005 {
3006 	if (unlikely(running_total != urb->transfer_buffer_length))
3007 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3008 				"queued %#x (%d), asked for %#x (%d)\n",
3009 				__func__,
3010 				urb->ep->desc.bEndpointAddress,
3011 				running_total, running_total,
3012 				urb->transfer_buffer_length,
3013 				urb->transfer_buffer_length);
3014 }
3015 
3016 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3017 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
3018 		struct xhci_generic_trb *start_trb)
3019 {
3020 	/*
3021 	 * Pass all the TRBs to the hardware at once and make sure this write
3022 	 * isn't reordered.
3023 	 */
3024 	wmb();
3025 	if (start_cycle)
3026 		start_trb->field[3] |= cpu_to_le32(start_cycle);
3027 	else
3028 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3029 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3030 }
3031 
3032 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3033 						struct xhci_ep_ctx *ep_ctx)
3034 {
3035 	int xhci_interval;
3036 	int ep_interval;
3037 
3038 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3039 	ep_interval = urb->interval;
3040 
3041 	/* Convert to microframes */
3042 	if (urb->dev->speed == USB_SPEED_LOW ||
3043 			urb->dev->speed == USB_SPEED_FULL)
3044 		ep_interval *= 8;
3045 
3046 	/* FIXME change this to a warning and a suggestion to use the new API
3047 	 * to set the polling interval (once the API is added).
3048 	 */
3049 	if (xhci_interval != ep_interval) {
3050 		dev_dbg_ratelimited(&urb->dev->dev,
3051 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3052 				ep_interval, ep_interval == 1 ? "" : "s",
3053 				xhci_interval, xhci_interval == 1 ? "" : "s");
3054 		urb->interval = xhci_interval;
3055 		/* Convert back to frames for LS/FS devices */
3056 		if (urb->dev->speed == USB_SPEED_LOW ||
3057 				urb->dev->speed == USB_SPEED_FULL)
3058 			urb->interval /= 8;
3059 	}
3060 }
3061 
3062 /*
3063  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3064  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3065  * (comprised of sg list entries) can take several service intervals to
3066  * transmit.
3067  */
3068 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3069 		struct urb *urb, int slot_id, unsigned int ep_index)
3070 {
3071 	struct xhci_ep_ctx *ep_ctx;
3072 
3073 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3074 	check_interval(xhci, urb, ep_ctx);
3075 
3076 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3077 }
3078 
3079 /*
3080  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3081  * packets remaining in the TD (*not* including this TRB).
3082  *
3083  * Total TD packet count = total_packet_count =
3084  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3085  *
3086  * Packets transferred up to and including this TRB = packets_transferred =
3087  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3088  *
3089  * TD size = total_packet_count - packets_transferred
3090  *
3091  * For xHCI 0.96 and older, TD size field should be the remaining bytes
3092  * including this TRB, right shifted by 10
3093  *
3094  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3095  * This is taken care of in the TRB_TD_SIZE() macro
3096  *
3097  * The last TRB in a TD must have the TD size set to zero.
3098  */
3099 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3100 			      int trb_buff_len, unsigned int td_total_len,
3101 			      struct urb *urb, bool more_trbs_coming)
3102 {
3103 	u32 maxp, total_packet_count;
3104 
3105 	/* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3106 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3107 		return ((td_total_len - transferred) >> 10);
3108 
3109 	/* One TRB with a zero-length data packet. */
3110 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3111 	    trb_buff_len == td_total_len)
3112 		return 0;
3113 
3114 	/* for MTK xHCI, TD size doesn't include this TRB */
3115 	if (xhci->quirks & XHCI_MTK_HOST)
3116 		trb_buff_len = 0;
3117 
3118 	maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3119 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3120 
3121 	/* Queueing functions don't count the current TRB into transferred */
3122 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3123 }
3124 
3125 
3126 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3127 			 u32 *trb_buff_len, struct xhci_segment *seg)
3128 {
3129 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
3130 	unsigned int unalign;
3131 	unsigned int max_pkt;
3132 	u32 new_buff_len;
3133 
3134 	max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3135 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
3136 
3137 	/* we got lucky, last normal TRB data on segment is packet aligned */
3138 	if (unalign == 0)
3139 		return 0;
3140 
3141 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3142 		 unalign, *trb_buff_len);
3143 
3144 	/* is the last nornal TRB alignable by splitting it */
3145 	if (*trb_buff_len > unalign) {
3146 		*trb_buff_len -= unalign;
3147 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3148 		return 0;
3149 	}
3150 
3151 	/*
3152 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3153 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3154 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3155 	 */
3156 	new_buff_len = max_pkt - (enqd_len % max_pkt);
3157 
3158 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3159 		new_buff_len = (urb->transfer_buffer_length - enqd_len);
3160 
3161 	/* create a max max_pkt sized bounce buffer pointed to by last trb */
3162 	if (usb_urb_dir_out(urb)) {
3163 		sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3164 				   seg->bounce_buf, new_buff_len, enqd_len);
3165 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3166 						 max_pkt, DMA_TO_DEVICE);
3167 	} else {
3168 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3169 						 max_pkt, DMA_FROM_DEVICE);
3170 	}
3171 
3172 	if (dma_mapping_error(dev, seg->bounce_dma)) {
3173 		/* try without aligning. Some host controllers survive */
3174 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3175 		return 0;
3176 	}
3177 	*trb_buff_len = new_buff_len;
3178 	seg->bounce_len = new_buff_len;
3179 	seg->bounce_offs = enqd_len;
3180 
3181 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3182 
3183 	return 1;
3184 }
3185 
3186 /* This is very similar to what ehci-q.c qtd_fill() does */
3187 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3188 		struct urb *urb, int slot_id, unsigned int ep_index)
3189 {
3190 	struct xhci_ring *ring;
3191 	struct urb_priv *urb_priv;
3192 	struct xhci_td *td;
3193 	struct xhci_generic_trb *start_trb;
3194 	struct scatterlist *sg = NULL;
3195 	bool more_trbs_coming = true;
3196 	bool need_zero_pkt = false;
3197 	bool first_trb = true;
3198 	unsigned int num_trbs;
3199 	unsigned int start_cycle, num_sgs = 0;
3200 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
3201 	int sent_len, ret;
3202 	u32 field, length_field, remainder;
3203 	u64 addr, send_addr;
3204 
3205 	ring = xhci_urb_to_transfer_ring(xhci, urb);
3206 	if (!ring)
3207 		return -EINVAL;
3208 
3209 	full_len = urb->transfer_buffer_length;
3210 	/* If we have scatter/gather list, we use it. */
3211 	if (urb->num_sgs) {
3212 		num_sgs = urb->num_mapped_sgs;
3213 		sg = urb->sg;
3214 		addr = (u64) sg_dma_address(sg);
3215 		block_len = sg_dma_len(sg);
3216 		num_trbs = count_sg_trbs_needed(urb);
3217 	} else {
3218 		num_trbs = count_trbs_needed(urb);
3219 		addr = (u64) urb->transfer_dma;
3220 		block_len = full_len;
3221 	}
3222 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3223 			ep_index, urb->stream_id,
3224 			num_trbs, urb, 0, mem_flags);
3225 	if (unlikely(ret < 0))
3226 		return ret;
3227 
3228 	urb_priv = urb->hcpriv;
3229 
3230 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3231 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->length > 1)
3232 		need_zero_pkt = true;
3233 
3234 	td = urb_priv->td[0];
3235 
3236 	/*
3237 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3238 	 * until we've finished creating all the other TRBs.  The ring's cycle
3239 	 * state may change as we enqueue the other TRBs, so save it too.
3240 	 */
3241 	start_trb = &ring->enqueue->generic;
3242 	start_cycle = ring->cycle_state;
3243 	send_addr = addr;
3244 
3245 	/* Queue the TRBs, even if they are zero-length */
3246 	for (enqd_len = 0; enqd_len < full_len; enqd_len += trb_buff_len) {
3247 		field = TRB_TYPE(TRB_NORMAL);
3248 
3249 		/* TRB buffer should not cross 64KB boundaries */
3250 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3251 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3252 
3253 		if (enqd_len + trb_buff_len > full_len)
3254 			trb_buff_len = full_len - enqd_len;
3255 
3256 		/* Don't change the cycle bit of the first TRB until later */
3257 		if (first_trb) {
3258 			first_trb = false;
3259 			if (start_cycle == 0)
3260 				field |= TRB_CYCLE;
3261 		} else
3262 			field |= ring->cycle_state;
3263 
3264 		/* Chain all the TRBs together; clear the chain bit in the last
3265 		 * TRB to indicate it's the last TRB in the chain.
3266 		 */
3267 		if (enqd_len + trb_buff_len < full_len) {
3268 			field |= TRB_CHAIN;
3269 			if (trb_is_link(ring->enqueue + 1)) {
3270 				if (xhci_align_td(xhci, urb, enqd_len,
3271 						  &trb_buff_len,
3272 						  ring->enq_seg)) {
3273 					send_addr = ring->enq_seg->bounce_dma;
3274 					/* assuming TD won't span 2 segs */
3275 					td->bounce_seg = ring->enq_seg;
3276 				}
3277 			}
3278 		}
3279 		if (enqd_len + trb_buff_len >= full_len) {
3280 			field &= ~TRB_CHAIN;
3281 			field |= TRB_IOC;
3282 			more_trbs_coming = false;
3283 			td->last_trb = ring->enqueue;
3284 		}
3285 
3286 		/* Only set interrupt on short packet for IN endpoints */
3287 		if (usb_urb_dir_in(urb))
3288 			field |= TRB_ISP;
3289 
3290 		/* Set the TRB length, TD size, and interrupter fields. */
3291 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3292 					      full_len, urb, more_trbs_coming);
3293 
3294 		length_field = TRB_LEN(trb_buff_len) |
3295 			TRB_TD_SIZE(remainder) |
3296 			TRB_INTR_TARGET(0);
3297 
3298 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3299 				lower_32_bits(send_addr),
3300 				upper_32_bits(send_addr),
3301 				length_field,
3302 				field);
3303 
3304 		addr += trb_buff_len;
3305 		sent_len = trb_buff_len;
3306 
3307 		while (sg && sent_len >= block_len) {
3308 			/* New sg entry */
3309 			--num_sgs;
3310 			sent_len -= block_len;
3311 			if (num_sgs != 0) {
3312 				sg = sg_next(sg);
3313 				block_len = sg_dma_len(sg);
3314 				addr = (u64) sg_dma_address(sg);
3315 				addr += sent_len;
3316 			}
3317 		}
3318 		block_len -= sent_len;
3319 		send_addr = addr;
3320 	}
3321 
3322 	if (need_zero_pkt) {
3323 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3324 				       ep_index, urb->stream_id,
3325 				       1, urb, 1, mem_flags);
3326 		urb_priv->td[1]->last_trb = ring->enqueue;
3327 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3328 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3329 	}
3330 
3331 	check_trb_math(urb, enqd_len);
3332 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3333 			start_cycle, start_trb);
3334 	return 0;
3335 }
3336 
3337 /* Caller must have locked xhci->lock */
3338 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3339 		struct urb *urb, int slot_id, unsigned int ep_index)
3340 {
3341 	struct xhci_ring *ep_ring;
3342 	int num_trbs;
3343 	int ret;
3344 	struct usb_ctrlrequest *setup;
3345 	struct xhci_generic_trb *start_trb;
3346 	int start_cycle;
3347 	u32 field, length_field, remainder;
3348 	struct urb_priv *urb_priv;
3349 	struct xhci_td *td;
3350 
3351 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3352 	if (!ep_ring)
3353 		return -EINVAL;
3354 
3355 	/*
3356 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3357 	 * DMA address.
3358 	 */
3359 	if (!urb->setup_packet)
3360 		return -EINVAL;
3361 
3362 	/* 1 TRB for setup, 1 for status */
3363 	num_trbs = 2;
3364 	/*
3365 	 * Don't need to check if we need additional event data and normal TRBs,
3366 	 * since data in control transfers will never get bigger than 16MB
3367 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3368 	 */
3369 	if (urb->transfer_buffer_length > 0)
3370 		num_trbs++;
3371 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3372 			ep_index, urb->stream_id,
3373 			num_trbs, urb, 0, mem_flags);
3374 	if (ret < 0)
3375 		return ret;
3376 
3377 	urb_priv = urb->hcpriv;
3378 	td = urb_priv->td[0];
3379 
3380 	/*
3381 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3382 	 * until we've finished creating all the other TRBs.  The ring's cycle
3383 	 * state may change as we enqueue the other TRBs, so save it too.
3384 	 */
3385 	start_trb = &ep_ring->enqueue->generic;
3386 	start_cycle = ep_ring->cycle_state;
3387 
3388 	/* Queue setup TRB - see section 6.4.1.2.1 */
3389 	/* FIXME better way to translate setup_packet into two u32 fields? */
3390 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3391 	field = 0;
3392 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3393 	if (start_cycle == 0)
3394 		field |= 0x1;
3395 
3396 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3397 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3398 		if (urb->transfer_buffer_length > 0) {
3399 			if (setup->bRequestType & USB_DIR_IN)
3400 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3401 			else
3402 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3403 		}
3404 	}
3405 
3406 	queue_trb(xhci, ep_ring, true,
3407 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3408 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3409 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3410 		  /* Immediate data in pointer */
3411 		  field);
3412 
3413 	/* If there's data, queue data TRBs */
3414 	/* Only set interrupt on short packet for IN endpoints */
3415 	if (usb_urb_dir_in(urb))
3416 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3417 	else
3418 		field = TRB_TYPE(TRB_DATA);
3419 
3420 	remainder = xhci_td_remainder(xhci, 0,
3421 				   urb->transfer_buffer_length,
3422 				   urb->transfer_buffer_length,
3423 				   urb, 1);
3424 
3425 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3426 		TRB_TD_SIZE(remainder) |
3427 		TRB_INTR_TARGET(0);
3428 
3429 	if (urb->transfer_buffer_length > 0) {
3430 		if (setup->bRequestType & USB_DIR_IN)
3431 			field |= TRB_DIR_IN;
3432 		queue_trb(xhci, ep_ring, true,
3433 				lower_32_bits(urb->transfer_dma),
3434 				upper_32_bits(urb->transfer_dma),
3435 				length_field,
3436 				field | ep_ring->cycle_state);
3437 	}
3438 
3439 	/* Save the DMA address of the last TRB in the TD */
3440 	td->last_trb = ep_ring->enqueue;
3441 
3442 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3443 	/* If the device sent data, the status stage is an OUT transfer */
3444 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3445 		field = 0;
3446 	else
3447 		field = TRB_DIR_IN;
3448 	queue_trb(xhci, ep_ring, false,
3449 			0,
3450 			0,
3451 			TRB_INTR_TARGET(0),
3452 			/* Event on completion */
3453 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3454 
3455 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3456 			start_cycle, start_trb);
3457 	return 0;
3458 }
3459 
3460 /*
3461  * The transfer burst count field of the isochronous TRB defines the number of
3462  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3463  * devices can burst up to bMaxBurst number of packets per service interval.
3464  * This field is zero based, meaning a value of zero in the field means one
3465  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3466  * zero.  Only xHCI 1.0 host controllers support this field.
3467  */
3468 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3469 		struct urb *urb, unsigned int total_packet_count)
3470 {
3471 	unsigned int max_burst;
3472 
3473 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3474 		return 0;
3475 
3476 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3477 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3478 }
3479 
3480 /*
3481  * Returns the number of packets in the last "burst" of packets.  This field is
3482  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3483  * the last burst packet count is equal to the total number of packets in the
3484  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3485  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3486  * contain 1 to (bMaxBurst + 1) packets.
3487  */
3488 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3489 		struct urb *urb, unsigned int total_packet_count)
3490 {
3491 	unsigned int max_burst;
3492 	unsigned int residue;
3493 
3494 	if (xhci->hci_version < 0x100)
3495 		return 0;
3496 
3497 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3498 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3499 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3500 		residue = total_packet_count % (max_burst + 1);
3501 		/* If residue is zero, the last burst contains (max_burst + 1)
3502 		 * number of packets, but the TLBPC field is zero-based.
3503 		 */
3504 		if (residue == 0)
3505 			return max_burst;
3506 		return residue - 1;
3507 	}
3508 	if (total_packet_count == 0)
3509 		return 0;
3510 	return total_packet_count - 1;
3511 }
3512 
3513 /*
3514  * Calculates Frame ID field of the isochronous TRB identifies the
3515  * target frame that the Interval associated with this Isochronous
3516  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3517  *
3518  * Returns actual frame id on success, negative value on error.
3519  */
3520 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3521 		struct urb *urb, int index)
3522 {
3523 	int start_frame, ist, ret = 0;
3524 	int start_frame_id, end_frame_id, current_frame_id;
3525 
3526 	if (urb->dev->speed == USB_SPEED_LOW ||
3527 			urb->dev->speed == USB_SPEED_FULL)
3528 		start_frame = urb->start_frame + index * urb->interval;
3529 	else
3530 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3531 
3532 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3533 	 *
3534 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3535 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3536 	 * be executed.
3537 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3538 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3539 	 */
3540 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3541 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3542 		ist <<= 3;
3543 
3544 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3545 	 * is less than the Start Frame ID or greater than the End Frame ID,
3546 	 * where:
3547 	 *
3548 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3549 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3550 	 *
3551 	 * Both the End Frame ID and Start Frame ID values are calculated
3552 	 * in microframes. When software determines the valid Frame ID value;
3553 	 * The End Frame ID value should be rounded down to the nearest Frame
3554 	 * boundary, and the Start Frame ID value should be rounded up to the
3555 	 * nearest Frame boundary.
3556 	 */
3557 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3558 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3559 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3560 
3561 	start_frame &= 0x7ff;
3562 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3563 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3564 
3565 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3566 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3567 		 start_frame_id, end_frame_id, start_frame);
3568 
3569 	if (start_frame_id < end_frame_id) {
3570 		if (start_frame > end_frame_id ||
3571 				start_frame < start_frame_id)
3572 			ret = -EINVAL;
3573 	} else if (start_frame_id > end_frame_id) {
3574 		if ((start_frame > end_frame_id &&
3575 				start_frame < start_frame_id))
3576 			ret = -EINVAL;
3577 	} else {
3578 			ret = -EINVAL;
3579 	}
3580 
3581 	if (index == 0) {
3582 		if (ret == -EINVAL || start_frame == start_frame_id) {
3583 			start_frame = start_frame_id + 1;
3584 			if (urb->dev->speed == USB_SPEED_LOW ||
3585 					urb->dev->speed == USB_SPEED_FULL)
3586 				urb->start_frame = start_frame;
3587 			else
3588 				urb->start_frame = start_frame << 3;
3589 			ret = 0;
3590 		}
3591 	}
3592 
3593 	if (ret) {
3594 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3595 				start_frame, current_frame_id, index,
3596 				start_frame_id, end_frame_id);
3597 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3598 		return ret;
3599 	}
3600 
3601 	return start_frame;
3602 }
3603 
3604 /* This is for isoc transfer */
3605 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3606 		struct urb *urb, int slot_id, unsigned int ep_index)
3607 {
3608 	struct xhci_ring *ep_ring;
3609 	struct urb_priv *urb_priv;
3610 	struct xhci_td *td;
3611 	int num_tds, trbs_per_td;
3612 	struct xhci_generic_trb *start_trb;
3613 	bool first_trb;
3614 	int start_cycle;
3615 	u32 field, length_field;
3616 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3617 	u64 start_addr, addr;
3618 	int i, j;
3619 	bool more_trbs_coming;
3620 	struct xhci_virt_ep *xep;
3621 	int frame_id;
3622 
3623 	xep = &xhci->devs[slot_id]->eps[ep_index];
3624 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3625 
3626 	num_tds = urb->number_of_packets;
3627 	if (num_tds < 1) {
3628 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3629 		return -EINVAL;
3630 	}
3631 	start_addr = (u64) urb->transfer_dma;
3632 	start_trb = &ep_ring->enqueue->generic;
3633 	start_cycle = ep_ring->cycle_state;
3634 
3635 	urb_priv = urb->hcpriv;
3636 	/* Queue the TRBs for each TD, even if they are zero-length */
3637 	for (i = 0; i < num_tds; i++) {
3638 		unsigned int total_pkt_count, max_pkt;
3639 		unsigned int burst_count, last_burst_pkt_count;
3640 		u32 sia_frame_id;
3641 
3642 		first_trb = true;
3643 		running_total = 0;
3644 		addr = start_addr + urb->iso_frame_desc[i].offset;
3645 		td_len = urb->iso_frame_desc[i].length;
3646 		td_remain_len = td_len;
3647 		max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3648 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3649 
3650 		/* A zero-length transfer still involves at least one packet. */
3651 		if (total_pkt_count == 0)
3652 			total_pkt_count++;
3653 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3654 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3655 							urb, total_pkt_count);
3656 
3657 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3658 
3659 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3660 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3661 		if (ret < 0) {
3662 			if (i == 0)
3663 				return ret;
3664 			goto cleanup;
3665 		}
3666 		td = urb_priv->td[i];
3667 
3668 		/* use SIA as default, if frame id is used overwrite it */
3669 		sia_frame_id = TRB_SIA;
3670 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3671 		    HCC_CFC(xhci->hcc_params)) {
3672 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3673 			if (frame_id >= 0)
3674 				sia_frame_id = TRB_FRAME_ID(frame_id);
3675 		}
3676 		/*
3677 		 * Set isoc specific data for the first TRB in a TD.
3678 		 * Prevent HW from getting the TRBs by keeping the cycle state
3679 		 * inverted in the first TDs isoc TRB.
3680 		 */
3681 		field = TRB_TYPE(TRB_ISOC) |
3682 			TRB_TLBPC(last_burst_pkt_count) |
3683 			sia_frame_id |
3684 			(i ? ep_ring->cycle_state : !start_cycle);
3685 
3686 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3687 		if (!xep->use_extended_tbc)
3688 			field |= TRB_TBC(burst_count);
3689 
3690 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3691 		for (j = 0; j < trbs_per_td; j++) {
3692 			u32 remainder = 0;
3693 
3694 			/* only first TRB is isoc, overwrite otherwise */
3695 			if (!first_trb)
3696 				field = TRB_TYPE(TRB_NORMAL) |
3697 					ep_ring->cycle_state;
3698 
3699 			/* Only set interrupt on short packet for IN EPs */
3700 			if (usb_urb_dir_in(urb))
3701 				field |= TRB_ISP;
3702 
3703 			/* Set the chain bit for all except the last TRB  */
3704 			if (j < trbs_per_td - 1) {
3705 				more_trbs_coming = true;
3706 				field |= TRB_CHAIN;
3707 			} else {
3708 				more_trbs_coming = false;
3709 				td->last_trb = ep_ring->enqueue;
3710 				field |= TRB_IOC;
3711 				/* set BEI, except for the last TD */
3712 				if (xhci->hci_version >= 0x100 &&
3713 				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3714 				    i < num_tds - 1)
3715 					field |= TRB_BEI;
3716 			}
3717 			/* Calculate TRB length */
3718 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3719 			if (trb_buff_len > td_remain_len)
3720 				trb_buff_len = td_remain_len;
3721 
3722 			/* Set the TRB length, TD size, & interrupter fields. */
3723 			remainder = xhci_td_remainder(xhci, running_total,
3724 						   trb_buff_len, td_len,
3725 						   urb, more_trbs_coming);
3726 
3727 			length_field = TRB_LEN(trb_buff_len) |
3728 				TRB_INTR_TARGET(0);
3729 
3730 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3731 			if (first_trb && xep->use_extended_tbc)
3732 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3733 			else
3734 				length_field |= TRB_TD_SIZE(remainder);
3735 			first_trb = false;
3736 
3737 			queue_trb(xhci, ep_ring, more_trbs_coming,
3738 				lower_32_bits(addr),
3739 				upper_32_bits(addr),
3740 				length_field,
3741 				field);
3742 			running_total += trb_buff_len;
3743 
3744 			addr += trb_buff_len;
3745 			td_remain_len -= trb_buff_len;
3746 		}
3747 
3748 		/* Check TD length */
3749 		if (running_total != td_len) {
3750 			xhci_err(xhci, "ISOC TD length unmatch\n");
3751 			ret = -EINVAL;
3752 			goto cleanup;
3753 		}
3754 	}
3755 
3756 	/* store the next frame id */
3757 	if (HCC_CFC(xhci->hcc_params))
3758 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3759 
3760 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3761 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3762 			usb_amd_quirk_pll_disable();
3763 	}
3764 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3765 
3766 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3767 			start_cycle, start_trb);
3768 	return 0;
3769 cleanup:
3770 	/* Clean up a partially enqueued isoc transfer. */
3771 
3772 	for (i--; i >= 0; i--)
3773 		list_del_init(&urb_priv->td[i]->td_list);
3774 
3775 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3776 	 * into No-ops with a software-owned cycle bit. That way the hardware
3777 	 * won't accidentally start executing bogus TDs when we partially
3778 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3779 	 */
3780 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3781 	/* Every TRB except the first & last will have its cycle bit flipped. */
3782 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3783 
3784 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3785 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3786 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3787 	ep_ring->cycle_state = start_cycle;
3788 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3789 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3790 	return ret;
3791 }
3792 
3793 /*
3794  * Check transfer ring to guarantee there is enough room for the urb.
3795  * Update ISO URB start_frame and interval.
3796  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3797  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3798  * Contiguous Frame ID is not supported by HC.
3799  */
3800 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3801 		struct urb *urb, int slot_id, unsigned int ep_index)
3802 {
3803 	struct xhci_virt_device *xdev;
3804 	struct xhci_ring *ep_ring;
3805 	struct xhci_ep_ctx *ep_ctx;
3806 	int start_frame;
3807 	int num_tds, num_trbs, i;
3808 	int ret;
3809 	struct xhci_virt_ep *xep;
3810 	int ist;
3811 
3812 	xdev = xhci->devs[slot_id];
3813 	xep = &xhci->devs[slot_id]->eps[ep_index];
3814 	ep_ring = xdev->eps[ep_index].ring;
3815 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3816 
3817 	num_trbs = 0;
3818 	num_tds = urb->number_of_packets;
3819 	for (i = 0; i < num_tds; i++)
3820 		num_trbs += count_isoc_trbs_needed(urb, i);
3821 
3822 	/* Check the ring to guarantee there is enough room for the whole urb.
3823 	 * Do not insert any td of the urb to the ring if the check failed.
3824 	 */
3825 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3826 			   num_trbs, mem_flags);
3827 	if (ret)
3828 		return ret;
3829 
3830 	/*
3831 	 * Check interval value. This should be done before we start to
3832 	 * calculate the start frame value.
3833 	 */
3834 	check_interval(xhci, urb, ep_ctx);
3835 
3836 	/* Calculate the start frame and put it in urb->start_frame. */
3837 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3838 		if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
3839 				EP_STATE_RUNNING) {
3840 			urb->start_frame = xep->next_frame_id;
3841 			goto skip_start_over;
3842 		}
3843 	}
3844 
3845 	start_frame = readl(&xhci->run_regs->microframe_index);
3846 	start_frame &= 0x3fff;
3847 	/*
3848 	 * Round up to the next frame and consider the time before trb really
3849 	 * gets scheduled by hardare.
3850 	 */
3851 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3852 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3853 		ist <<= 3;
3854 	start_frame += ist + XHCI_CFC_DELAY;
3855 	start_frame = roundup(start_frame, 8);
3856 
3857 	/*
3858 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3859 	 * is greate than 8 microframes.
3860 	 */
3861 	if (urb->dev->speed == USB_SPEED_LOW ||
3862 			urb->dev->speed == USB_SPEED_FULL) {
3863 		start_frame = roundup(start_frame, urb->interval << 3);
3864 		urb->start_frame = start_frame >> 3;
3865 	} else {
3866 		start_frame = roundup(start_frame, urb->interval);
3867 		urb->start_frame = start_frame;
3868 	}
3869 
3870 skip_start_over:
3871 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3872 
3873 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3874 }
3875 
3876 /****		Command Ring Operations		****/
3877 
3878 /* Generic function for queueing a command TRB on the command ring.
3879  * Check to make sure there's room on the command ring for one command TRB.
3880  * Also check that there's room reserved for commands that must not fail.
3881  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3882  * then only check for the number of reserved spots.
3883  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3884  * because the command event handler may want to resubmit a failed command.
3885  */
3886 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3887 			 u32 field1, u32 field2,
3888 			 u32 field3, u32 field4, bool command_must_succeed)
3889 {
3890 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3891 	int ret;
3892 
3893 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3894 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
3895 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3896 		return -ESHUTDOWN;
3897 	}
3898 
3899 	if (!command_must_succeed)
3900 		reserved_trbs++;
3901 
3902 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3903 			reserved_trbs, GFP_ATOMIC);
3904 	if (ret < 0) {
3905 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3906 		if (command_must_succeed)
3907 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3908 					"unfailable commands failed.\n");
3909 		return ret;
3910 	}
3911 
3912 	cmd->command_trb = xhci->cmd_ring->enqueue;
3913 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3914 
3915 	/* if there are no other commands queued we start the timeout timer */
3916 	if (xhci->cmd_list.next == &cmd->cmd_list &&
3917 	    !timer_pending(&xhci->cmd_timer)) {
3918 		xhci->current_cmd = cmd;
3919 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
3920 	}
3921 
3922 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3923 			field4 | xhci->cmd_ring->cycle_state);
3924 	return 0;
3925 }
3926 
3927 /* Queue a slot enable or disable request on the command ring */
3928 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3929 		u32 trb_type, u32 slot_id)
3930 {
3931 	return queue_command(xhci, cmd, 0, 0, 0,
3932 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3933 }
3934 
3935 /* Queue an address device command TRB */
3936 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3937 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3938 {
3939 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3940 			upper_32_bits(in_ctx_ptr), 0,
3941 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3942 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3943 }
3944 
3945 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3946 		u32 field1, u32 field2, u32 field3, u32 field4)
3947 {
3948 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3949 }
3950 
3951 /* Queue a reset device command TRB */
3952 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3953 		u32 slot_id)
3954 {
3955 	return queue_command(xhci, cmd, 0, 0, 0,
3956 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3957 			false);
3958 }
3959 
3960 /* Queue a configure endpoint command TRB */
3961 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3962 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3963 		u32 slot_id, bool command_must_succeed)
3964 {
3965 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3966 			upper_32_bits(in_ctx_ptr), 0,
3967 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3968 			command_must_succeed);
3969 }
3970 
3971 /* Queue an evaluate context command TRB */
3972 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3973 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3974 {
3975 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3976 			upper_32_bits(in_ctx_ptr), 0,
3977 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3978 			command_must_succeed);
3979 }
3980 
3981 /*
3982  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3983  * activity on an endpoint that is about to be suspended.
3984  */
3985 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3986 			     int slot_id, unsigned int ep_index, int suspend)
3987 {
3988 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3989 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3990 	u32 type = TRB_TYPE(TRB_STOP_RING);
3991 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3992 
3993 	return queue_command(xhci, cmd, 0, 0, 0,
3994 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3995 }
3996 
3997 /* Set Transfer Ring Dequeue Pointer command */
3998 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3999 		unsigned int slot_id, unsigned int ep_index,
4000 		unsigned int stream_id,
4001 		struct xhci_dequeue_state *deq_state)
4002 {
4003 	dma_addr_t addr;
4004 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4005 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4006 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4007 	u32 trb_sct = 0;
4008 	u32 type = TRB_TYPE(TRB_SET_DEQ);
4009 	struct xhci_virt_ep *ep;
4010 	struct xhci_command *cmd;
4011 	int ret;
4012 
4013 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4014 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4015 		deq_state->new_deq_seg,
4016 		(unsigned long long)deq_state->new_deq_seg->dma,
4017 		deq_state->new_deq_ptr,
4018 		(unsigned long long)xhci_trb_virt_to_dma(
4019 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
4020 		deq_state->new_cycle_state);
4021 
4022 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4023 				    deq_state->new_deq_ptr);
4024 	if (addr == 0) {
4025 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4026 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4027 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
4028 		return;
4029 	}
4030 	ep = &xhci->devs[slot_id]->eps[ep_index];
4031 	if ((ep->ep_state & SET_DEQ_PENDING)) {
4032 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4033 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4034 		return;
4035 	}
4036 
4037 	/* This function gets called from contexts where it cannot sleep */
4038 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4039 	if (!cmd) {
4040 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
4041 		return;
4042 	}
4043 
4044 	ep->queued_deq_seg = deq_state->new_deq_seg;
4045 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
4046 	if (stream_id)
4047 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4048 	ret = queue_command(xhci, cmd,
4049 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4050 		upper_32_bits(addr), trb_stream_id,
4051 		trb_slot_id | trb_ep_index | type, false);
4052 	if (ret < 0) {
4053 		xhci_free_command(xhci, cmd);
4054 		return;
4055 	}
4056 
4057 	/* Stop the TD queueing code from ringing the doorbell until
4058 	 * this command completes.  The HC won't set the dequeue pointer
4059 	 * if the ring is running, and ringing the doorbell starts the
4060 	 * ring running.
4061 	 */
4062 	ep->ep_state |= SET_DEQ_PENDING;
4063 }
4064 
4065 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4066 			int slot_id, unsigned int ep_index)
4067 {
4068 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4069 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4070 	u32 type = TRB_TYPE(TRB_RESET_EP);
4071 
4072 	return queue_command(xhci, cmd, 0, 0, 0,
4073 			trb_slot_id | trb_ep_index | type, false);
4074 }
4075