1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 /* 24 * Ring initialization rules: 25 * 1. Each segment is initialized to zero, except for link TRBs. 26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or 27 * Consumer Cycle State (CCS), depending on ring function. 28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. 29 * 30 * Ring behavior rules: 31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at 32 * least one free TRB in the ring. This is useful if you want to turn that 33 * into a link TRB and expand the ring. 34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a 35 * link TRB, then load the pointer with the address in the link TRB. If the 36 * link TRB had its toggle bit set, you may need to update the ring cycle 37 * state (see cycle bit rules). You may have to do this multiple times 38 * until you reach a non-link TRB. 39 * 3. A ring is full if enqueue++ (for the definition of increment above) 40 * equals the dequeue pointer. 41 * 42 * Cycle bit rules: 43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit 44 * in a link TRB, it must toggle the ring cycle state. 45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit 46 * in a link TRB, it must toggle the ring cycle state. 47 * 48 * Producer rules: 49 * 1. Check if ring is full before you enqueue. 50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. 51 * Update enqueue pointer between each write (which may update the ring 52 * cycle state). 53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command 54 * and endpoint rings. If HC is the producer for the event ring, 55 * and it generates an interrupt according to interrupt modulation rules. 56 * 57 * Consumer rules: 58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, 59 * the TRB is owned by the consumer. 60 * 2. Update dequeue pointer (which may update the ring cycle state) and 61 * continue processing TRBs until you reach a TRB which is not owned by you. 62 * 3. Notify the producer. SW is the consumer for the event ring, and it 63 * updates event ring dequeue pointer. HC is the consumer for the command and 64 * endpoint rings; it generates events on the event ring for these. 65 */ 66 67 #include <linux/scatterlist.h> 68 #include <linux/slab.h> 69 #include "xhci.h" 70 #include "xhci-trace.h" 71 72 /* 73 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA 74 * address of the TRB. 75 */ 76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, 77 union xhci_trb *trb) 78 { 79 unsigned long segment_offset; 80 81 if (!seg || !trb || trb < seg->trbs) 82 return 0; 83 /* offset in TRBs */ 84 segment_offset = trb - seg->trbs; 85 if (segment_offset > TRBS_PER_SEGMENT) 86 return 0; 87 return seg->dma + (segment_offset * sizeof(*trb)); 88 } 89 90 /* Does this link TRB point to the first segment in a ring, 91 * or was the previous TRB the last TRB on the last segment in the ERST? 92 */ 93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, 94 struct xhci_segment *seg, union xhci_trb *trb) 95 { 96 if (ring == xhci->event_ring) 97 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && 98 (seg->next == xhci->event_ring->first_seg); 99 else 100 return le32_to_cpu(trb->link.control) & LINK_TOGGLE; 101 } 102 103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring 104 * segment? I.e. would the updated event TRB pointer step off the end of the 105 * event seg? 106 */ 107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 108 struct xhci_segment *seg, union xhci_trb *trb) 109 { 110 if (ring == xhci->event_ring) 111 return trb == &seg->trbs[TRBS_PER_SEGMENT]; 112 else 113 return TRB_TYPE_LINK_LE32(trb->link.control); 114 } 115 116 static int enqueue_is_link_trb(struct xhci_ring *ring) 117 { 118 struct xhci_link_trb *link = &ring->enqueue->link; 119 return TRB_TYPE_LINK_LE32(link->control); 120 } 121 122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next 123 * TRB is in a new segment. This does not skip over link TRBs, and it does not 124 * effect the ring dequeue or enqueue pointers. 125 */ 126 static void next_trb(struct xhci_hcd *xhci, 127 struct xhci_ring *ring, 128 struct xhci_segment **seg, 129 union xhci_trb **trb) 130 { 131 if (last_trb(xhci, ring, *seg, *trb)) { 132 *seg = (*seg)->next; 133 *trb = ((*seg)->trbs); 134 } else { 135 (*trb)++; 136 } 137 } 138 139 /* 140 * See Cycle bit rules. SW is the consumer for the event ring only. 141 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 142 */ 143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) 144 { 145 ring->deq_updates++; 146 147 /* 148 * If this is not event ring, and the dequeue pointer 149 * is not on a link TRB, there is one more usable TRB 150 */ 151 if (ring->type != TYPE_EVENT && 152 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) 153 ring->num_trbs_free++; 154 155 do { 156 /* 157 * Update the dequeue pointer further if that was a link TRB or 158 * we're at the end of an event ring segment (which doesn't have 159 * link TRBS) 160 */ 161 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) { 162 if (ring->type == TYPE_EVENT && 163 last_trb_on_last_seg(xhci, ring, 164 ring->deq_seg, ring->dequeue)) { 165 ring->cycle_state ^= 1; 166 } 167 ring->deq_seg = ring->deq_seg->next; 168 ring->dequeue = ring->deq_seg->trbs; 169 } else { 170 ring->dequeue++; 171 } 172 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)); 173 } 174 175 /* 176 * See Cycle bit rules. SW is the consumer for the event ring only. 177 * Don't make a ring full of link TRBs. That would be dumb and this would loop. 178 * 179 * If we've just enqueued a TRB that is in the middle of a TD (meaning the 180 * chain bit is set), then set the chain bit in all the following link TRBs. 181 * If we've enqueued the last TRB in a TD, make sure the following link TRBs 182 * have their chain bit cleared (so that each Link TRB is a separate TD). 183 * 184 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit 185 * set, but other sections talk about dealing with the chain bit set. This was 186 * fixed in the 0.96 specification errata, but we have to assume that all 0.95 187 * xHCI hardware can't handle the chain bit being cleared on a link TRB. 188 * 189 * @more_trbs_coming: Will you enqueue more TRBs before calling 190 * prepare_transfer()? 191 */ 192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, 193 bool more_trbs_coming) 194 { 195 u32 chain; 196 union xhci_trb *next; 197 198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; 199 /* If this is not event ring, there is one less usable TRB */ 200 if (ring->type != TYPE_EVENT && 201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue)) 202 ring->num_trbs_free--; 203 next = ++(ring->enqueue); 204 205 ring->enq_updates++; 206 /* Update the dequeue pointer further if that was a link TRB or we're at 207 * the end of an event ring segment (which doesn't have link TRBS) 208 */ 209 while (last_trb(xhci, ring, ring->enq_seg, next)) { 210 if (ring->type != TYPE_EVENT) { 211 /* 212 * If the caller doesn't plan on enqueueing more 213 * TDs before ringing the doorbell, then we 214 * don't want to give the link TRB to the 215 * hardware just yet. We'll give the link TRB 216 * back in prepare_ring() just before we enqueue 217 * the TD at the top of the ring. 218 */ 219 if (!chain && !more_trbs_coming) 220 break; 221 222 /* If we're not dealing with 0.95 hardware or 223 * isoc rings on AMD 0.96 host, 224 * carry over the chain bit of the previous TRB 225 * (which may mean the chain bit is cleared). 226 */ 227 if (!(ring->type == TYPE_ISOC && 228 (xhci->quirks & XHCI_AMD_0x96_HOST)) 229 && !xhci_link_trb_quirk(xhci)) { 230 next->link.control &= 231 cpu_to_le32(~TRB_CHAIN); 232 next->link.control |= 233 cpu_to_le32(chain); 234 } 235 /* Give this link TRB to the hardware */ 236 wmb(); 237 next->link.control ^= cpu_to_le32(TRB_CYCLE); 238 239 /* Toggle the cycle bit after the last ring segment. */ 240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 241 ring->cycle_state = (ring->cycle_state ? 0 : 1); 242 } 243 } 244 ring->enq_seg = ring->enq_seg->next; 245 ring->enqueue = ring->enq_seg->trbs; 246 next = ring->enqueue; 247 } 248 } 249 250 /* 251 * Check to see if there's room to enqueue num_trbs on the ring and make sure 252 * enqueue pointer will not advance into dequeue segment. See rules above. 253 */ 254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, 255 unsigned int num_trbs) 256 { 257 int num_trbs_in_deq_seg; 258 259 if (ring->num_trbs_free < num_trbs) 260 return 0; 261 262 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { 263 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; 264 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) 265 return 0; 266 } 267 268 return 1; 269 } 270 271 /* Ring the host controller doorbell after placing a command on the ring */ 272 void xhci_ring_cmd_db(struct xhci_hcd *xhci) 273 { 274 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) 275 return; 276 277 xhci_dbg(xhci, "// Ding dong!\n"); 278 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); 279 /* Flush PCI posted writes */ 280 readl(&xhci->dba->doorbell[0]); 281 } 282 283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci) 284 { 285 u64 temp_64; 286 int ret; 287 288 xhci_dbg(xhci, "Abort command ring\n"); 289 290 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 291 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; 292 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, 293 &xhci->op_regs->cmd_ring); 294 295 /* Section 4.6.1.2 of xHCI 1.0 spec says software should 296 * time the completion od all xHCI commands, including 297 * the Command Abort operation. If software doesn't see 298 * CRR negated in a timely manner (e.g. longer than 5 299 * seconds), then it should assume that the there are 300 * larger problems with the xHC and assert HCRST. 301 */ 302 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring, 303 CMD_RING_RUNNING, 0, 5 * 1000 * 1000); 304 if (ret < 0) { 305 xhci_err(xhci, "Stopped the command ring failed, " 306 "maybe the host is dead\n"); 307 xhci->xhc_state |= XHCI_STATE_DYING; 308 xhci_quiesce(xhci); 309 xhci_halt(xhci); 310 return -ESHUTDOWN; 311 } 312 313 return 0; 314 } 315 316 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, 317 unsigned int slot_id, 318 unsigned int ep_index, 319 unsigned int stream_id) 320 { 321 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; 322 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 323 unsigned int ep_state = ep->ep_state; 324 325 /* Don't ring the doorbell for this endpoint if there are pending 326 * cancellations because we don't want to interrupt processing. 327 * We don't want to restart any stream rings if there's a set dequeue 328 * pointer command pending because the device can choose to start any 329 * stream once the endpoint is on the HW schedule. 330 * FIXME - check all the stream rings for pending cancellations. 331 */ 332 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || 333 (ep_state & EP_HALTED)) 334 return; 335 writel(DB_VALUE(ep_index, stream_id), db_addr); 336 /* The CPU has better things to do at this point than wait for a 337 * write-posting flush. It'll get there soon enough. 338 */ 339 } 340 341 /* Ring the doorbell for any rings with pending URBs */ 342 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, 343 unsigned int slot_id, 344 unsigned int ep_index) 345 { 346 unsigned int stream_id; 347 struct xhci_virt_ep *ep; 348 349 ep = &xhci->devs[slot_id]->eps[ep_index]; 350 351 /* A ring has pending URBs if its TD list is not empty */ 352 if (!(ep->ep_state & EP_HAS_STREAMS)) { 353 if (ep->ring && !(list_empty(&ep->ring->td_list))) 354 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); 355 return; 356 } 357 358 for (stream_id = 1; stream_id < ep->stream_info->num_streams; 359 stream_id++) { 360 struct xhci_stream_info *stream_info = ep->stream_info; 361 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) 362 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 363 stream_id); 364 } 365 } 366 367 /* 368 * Find the segment that trb is in. Start searching in start_seg. 369 * If we must move past a segment that has a link TRB with a toggle cycle state 370 * bit set, then we will toggle the value pointed at by cycle_state. 371 */ 372 static struct xhci_segment *find_trb_seg( 373 struct xhci_segment *start_seg, 374 union xhci_trb *trb, int *cycle_state) 375 { 376 struct xhci_segment *cur_seg = start_seg; 377 struct xhci_generic_trb *generic_trb; 378 379 while (cur_seg->trbs > trb || 380 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { 381 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; 382 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) 383 *cycle_state ^= 0x1; 384 cur_seg = cur_seg->next; 385 if (cur_seg == start_seg) 386 /* Looped over the entire list. Oops! */ 387 return NULL; 388 } 389 return cur_seg; 390 } 391 392 393 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, 394 unsigned int slot_id, unsigned int ep_index, 395 unsigned int stream_id) 396 { 397 struct xhci_virt_ep *ep; 398 399 ep = &xhci->devs[slot_id]->eps[ep_index]; 400 /* Common case: no streams */ 401 if (!(ep->ep_state & EP_HAS_STREAMS)) 402 return ep->ring; 403 404 if (stream_id == 0) { 405 xhci_warn(xhci, 406 "WARN: Slot ID %u, ep index %u has streams, " 407 "but URB has no stream ID.\n", 408 slot_id, ep_index); 409 return NULL; 410 } 411 412 if (stream_id < ep->stream_info->num_streams) 413 return ep->stream_info->stream_rings[stream_id]; 414 415 xhci_warn(xhci, 416 "WARN: Slot ID %u, ep index %u has " 417 "stream IDs 1 to %u allocated, " 418 "but stream ID %u is requested.\n", 419 slot_id, ep_index, 420 ep->stream_info->num_streams - 1, 421 stream_id); 422 return NULL; 423 } 424 425 /* Get the right ring for the given URB. 426 * If the endpoint supports streams, boundary check the URB's stream ID. 427 * If the endpoint doesn't support streams, return the singular endpoint ring. 428 */ 429 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 430 struct urb *urb) 431 { 432 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, 433 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); 434 } 435 436 /* 437 * Move the xHC's endpoint ring dequeue pointer past cur_td. 438 * Record the new state of the xHC's endpoint ring dequeue segment, 439 * dequeue pointer, and new consumer cycle state in state. 440 * Update our internal representation of the ring's dequeue pointer. 441 * 442 * We do this in three jumps: 443 * - First we update our new ring state to be the same as when the xHC stopped. 444 * - Then we traverse the ring to find the segment that contains 445 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass 446 * any link TRBs with the toggle cycle bit set. 447 * - Finally we move the dequeue state one TRB further, toggling the cycle bit 448 * if we've moved it past a link TRB with the toggle cycle bit set. 449 * 450 * Some of the uses of xhci_generic_trb are grotty, but if they're done 451 * with correct __le32 accesses they should work fine. Only users of this are 452 * in here. 453 */ 454 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, 455 unsigned int slot_id, unsigned int ep_index, 456 unsigned int stream_id, struct xhci_td *cur_td, 457 struct xhci_dequeue_state *state) 458 { 459 struct xhci_virt_device *dev = xhci->devs[slot_id]; 460 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 461 struct xhci_ring *ep_ring; 462 struct xhci_generic_trb *trb; 463 dma_addr_t addr; 464 u64 hw_dequeue; 465 466 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, 467 ep_index, stream_id); 468 if (!ep_ring) { 469 xhci_warn(xhci, "WARN can't find new dequeue state " 470 "for invalid stream ID %u.\n", 471 stream_id); 472 return; 473 } 474 475 /* Dig out the cycle state saved by the xHC during the stop ep cmd */ 476 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 477 "Finding endpoint context"); 478 /* 4.6.9 the css flag is written to the stream context for streams */ 479 if (ep->ep_state & EP_HAS_STREAMS) { 480 struct xhci_stream_ctx *ctx = 481 &ep->stream_info->stream_ctx_array[stream_id]; 482 hw_dequeue = le64_to_cpu(ctx->stream_ring); 483 } else { 484 struct xhci_ep_ctx *ep_ctx 485 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 486 hw_dequeue = le64_to_cpu(ep_ctx->deq); 487 } 488 489 /* Find virtual address and segment of hardware dequeue pointer */ 490 state->new_deq_seg = ep_ring->deq_seg; 491 state->new_deq_ptr = ep_ring->dequeue; 492 while (xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr) 493 != (dma_addr_t)(hw_dequeue & ~0xf)) { 494 next_trb(xhci, ep_ring, &state->new_deq_seg, 495 &state->new_deq_ptr); 496 if (state->new_deq_ptr == ep_ring->dequeue) { 497 WARN_ON(1); 498 return; 499 } 500 } 501 /* 502 * Find cycle state for last_trb, starting at old cycle state of 503 * hw_dequeue. If there is only one segment ring, find_trb_seg() will 504 * return immediately and cannot toggle the cycle state if this search 505 * wraps around, so add one more toggle manually in that case. 506 */ 507 state->new_cycle_state = hw_dequeue & 0x1; 508 if (ep_ring->first_seg == ep_ring->first_seg->next && 509 cur_td->last_trb < state->new_deq_ptr) 510 state->new_cycle_state ^= 0x1; 511 512 state->new_deq_ptr = cur_td->last_trb; 513 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 514 "Finding segment containing last TRB in TD."); 515 state->new_deq_seg = find_trb_seg(state->new_deq_seg, 516 state->new_deq_ptr, &state->new_cycle_state); 517 if (!state->new_deq_seg) { 518 WARN_ON(1); 519 return; 520 } 521 522 /* Increment to find next TRB after last_trb. Cycle if appropriate. */ 523 trb = &state->new_deq_ptr->generic; 524 if (TRB_TYPE_LINK_LE32(trb->field[3]) && 525 (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) 526 state->new_cycle_state ^= 0x1; 527 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); 528 529 /* Don't update the ring cycle state for the producer (us). */ 530 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 531 "Cycle state = 0x%x", state->new_cycle_state); 532 533 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 534 "New dequeue segment = %p (virtual)", 535 state->new_deq_seg); 536 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); 537 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 538 "New dequeue pointer = 0x%llx (DMA)", 539 (unsigned long long) addr); 540 } 541 542 /* flip_cycle means flip the cycle bit of all but the first and last TRB. 543 * (The last TRB actually points to the ring enqueue pointer, which is not part 544 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. 545 */ 546 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 547 struct xhci_td *cur_td, bool flip_cycle) 548 { 549 struct xhci_segment *cur_seg; 550 union xhci_trb *cur_trb; 551 552 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; 553 true; 554 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 555 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { 556 /* Unchain any chained Link TRBs, but 557 * leave the pointers intact. 558 */ 559 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); 560 /* Flip the cycle bit (link TRBs can't be the first 561 * or last TRB). 562 */ 563 if (flip_cycle) 564 cur_trb->generic.field[3] ^= 565 cpu_to_le32(TRB_CYCLE); 566 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 567 "Cancel (unchain) link TRB"); 568 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 569 "Address = %p (0x%llx dma); " 570 "in seg %p (0x%llx dma)", 571 cur_trb, 572 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), 573 cur_seg, 574 (unsigned long long)cur_seg->dma); 575 } else { 576 cur_trb->generic.field[0] = 0; 577 cur_trb->generic.field[1] = 0; 578 cur_trb->generic.field[2] = 0; 579 /* Preserve only the cycle bit of this TRB */ 580 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); 581 /* Flip the cycle bit except on the first or last TRB */ 582 if (flip_cycle && cur_trb != cur_td->first_trb && 583 cur_trb != cur_td->last_trb) 584 cur_trb->generic.field[3] ^= 585 cpu_to_le32(TRB_CYCLE); 586 cur_trb->generic.field[3] |= cpu_to_le32( 587 TRB_TYPE(TRB_TR_NOOP)); 588 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 589 "TRB to noop at offset 0x%llx", 590 (unsigned long long) 591 xhci_trb_virt_to_dma(cur_seg, cur_trb)); 592 } 593 if (cur_trb == cur_td->last_trb) 594 break; 595 } 596 } 597 598 static int queue_set_tr_deq(struct xhci_hcd *xhci, 599 struct xhci_command *cmd, int slot_id, 600 unsigned int ep_index, unsigned int stream_id, 601 struct xhci_segment *deq_seg, 602 union xhci_trb *deq_ptr, u32 cycle_state); 603 604 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, 605 struct xhci_command *cmd, 606 unsigned int slot_id, unsigned int ep_index, 607 unsigned int stream_id, 608 struct xhci_dequeue_state *deq_state) 609 { 610 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 613 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " 614 "new deq ptr = %p (0x%llx dma), new cycle = %u", 615 deq_state->new_deq_seg, 616 (unsigned long long)deq_state->new_deq_seg->dma, 617 deq_state->new_deq_ptr, 618 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), 619 deq_state->new_cycle_state); 620 queue_set_tr_deq(xhci, cmd, slot_id, ep_index, stream_id, 621 deq_state->new_deq_seg, 622 deq_state->new_deq_ptr, 623 (u32) deq_state->new_cycle_state); 624 /* Stop the TD queueing code from ringing the doorbell until 625 * this command completes. The HC won't set the dequeue pointer 626 * if the ring is running, and ringing the doorbell starts the 627 * ring running. 628 */ 629 ep->ep_state |= SET_DEQ_PENDING; 630 } 631 632 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, 633 struct xhci_virt_ep *ep) 634 { 635 ep->ep_state &= ~EP_HALT_PENDING; 636 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the 637 * timer is running on another CPU, we don't decrement stop_cmds_pending 638 * (since we didn't successfully stop the watchdog timer). 639 */ 640 if (del_timer(&ep->stop_cmd_timer)) 641 ep->stop_cmds_pending--; 642 } 643 644 /* Must be called with xhci->lock held in interrupt context */ 645 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, 646 struct xhci_td *cur_td, int status) 647 { 648 struct usb_hcd *hcd; 649 struct urb *urb; 650 struct urb_priv *urb_priv; 651 652 urb = cur_td->urb; 653 urb_priv = urb->hcpriv; 654 urb_priv->td_cnt++; 655 hcd = bus_to_hcd(urb->dev->bus); 656 657 /* Only giveback urb when this is the last td in urb */ 658 if (urb_priv->td_cnt == urb_priv->length) { 659 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 660 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 661 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 662 if (xhci->quirks & XHCI_AMD_PLL_FIX) 663 usb_amd_quirk_pll_enable(); 664 } 665 } 666 usb_hcd_unlink_urb_from_ep(hcd, urb); 667 668 spin_unlock(&xhci->lock); 669 usb_hcd_giveback_urb(hcd, urb, status); 670 xhci_urb_free_priv(xhci, urb_priv); 671 spin_lock(&xhci->lock); 672 } 673 } 674 675 /* 676 * When we get a command completion for a Stop Endpoint Command, we need to 677 * unlink any cancelled TDs from the ring. There are two ways to do that: 678 * 679 * 1. If the HW was in the middle of processing the TD that needs to be 680 * cancelled, then we must move the ring's dequeue pointer past the last TRB 681 * in the TD with a Set Dequeue Pointer Command. 682 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain 683 * bit cleared) so that the HW will skip over them. 684 */ 685 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, 686 union xhci_trb *trb, struct xhci_event_cmd *event) 687 { 688 unsigned int ep_index; 689 struct xhci_ring *ep_ring; 690 struct xhci_virt_ep *ep; 691 struct list_head *entry; 692 struct xhci_td *cur_td = NULL; 693 struct xhci_td *last_unlinked_td; 694 695 struct xhci_dequeue_state deq_state; 696 697 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { 698 if (!xhci->devs[slot_id]) 699 xhci_warn(xhci, "Stop endpoint command " 700 "completion for disabled slot %u\n", 701 slot_id); 702 return; 703 } 704 705 memset(&deq_state, 0, sizeof(deq_state)); 706 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 707 ep = &xhci->devs[slot_id]->eps[ep_index]; 708 709 if (list_empty(&ep->cancelled_td_list)) { 710 xhci_stop_watchdog_timer_in_irq(xhci, ep); 711 ep->stopped_td = NULL; 712 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 713 return; 714 } 715 716 /* Fix up the ep ring first, so HW stops executing cancelled TDs. 717 * We have the xHCI lock, so nothing can modify this list until we drop 718 * it. We're also in the event handler, so we can't get re-interrupted 719 * if another Stop Endpoint command completes 720 */ 721 list_for_each(entry, &ep->cancelled_td_list) { 722 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); 723 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 724 "Removing canceled TD starting at 0x%llx (dma).", 725 (unsigned long long)xhci_trb_virt_to_dma( 726 cur_td->start_seg, cur_td->first_trb)); 727 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); 728 if (!ep_ring) { 729 /* This shouldn't happen unless a driver is mucking 730 * with the stream ID after submission. This will 731 * leave the TD on the hardware ring, and the hardware 732 * will try to execute it, and may access a buffer 733 * that has already been freed. In the best case, the 734 * hardware will execute it, and the event handler will 735 * ignore the completion event for that TD, since it was 736 * removed from the td_list for that endpoint. In 737 * short, don't muck with the stream ID after 738 * submission. 739 */ 740 xhci_warn(xhci, "WARN Cancelled URB %p " 741 "has invalid stream ID %u.\n", 742 cur_td->urb, 743 cur_td->urb->stream_id); 744 goto remove_finished_td; 745 } 746 /* 747 * If we stopped on the TD we need to cancel, then we have to 748 * move the xHC endpoint ring dequeue pointer past this TD. 749 */ 750 if (cur_td == ep->stopped_td) 751 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, 752 cur_td->urb->stream_id, 753 cur_td, &deq_state); 754 else 755 td_to_noop(xhci, ep_ring, cur_td, false); 756 remove_finished_td: 757 /* 758 * The event handler won't see a completion for this TD anymore, 759 * so remove it from the endpoint ring's TD list. Keep it in 760 * the cancelled TD list for URB completion later. 761 */ 762 list_del_init(&cur_td->td_list); 763 } 764 last_unlinked_td = cur_td; 765 xhci_stop_watchdog_timer_in_irq(xhci, ep); 766 767 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ 768 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { 769 struct xhci_command *command; 770 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 771 xhci_queue_new_dequeue_state(xhci, command, 772 slot_id, ep_index, 773 ep->stopped_td->urb->stream_id, 774 &deq_state); 775 xhci_ring_cmd_db(xhci); 776 } else { 777 /* Otherwise ring the doorbell(s) to restart queued transfers */ 778 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 779 } 780 781 /* Clear stopped_td if endpoint is not halted */ 782 if (!(ep->ep_state & EP_HALTED)) 783 ep->stopped_td = NULL; 784 785 /* 786 * Drop the lock and complete the URBs in the cancelled TD list. 787 * New TDs to be cancelled might be added to the end of the list before 788 * we can complete all the URBs for the TDs we already unlinked. 789 * So stop when we've completed the URB for the last TD we unlinked. 790 */ 791 do { 792 cur_td = list_entry(ep->cancelled_td_list.next, 793 struct xhci_td, cancelled_td_list); 794 list_del_init(&cur_td->cancelled_td_list); 795 796 /* Clean up the cancelled URB */ 797 /* Doesn't matter what we pass for status, since the core will 798 * just overwrite it (because the URB has been unlinked). 799 */ 800 xhci_giveback_urb_in_irq(xhci, cur_td, 0); 801 802 /* Stop processing the cancelled list if the watchdog timer is 803 * running. 804 */ 805 if (xhci->xhc_state & XHCI_STATE_DYING) 806 return; 807 } while (cur_td != last_unlinked_td); 808 809 /* Return to the event handler with xhci->lock re-acquired */ 810 } 811 812 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) 813 { 814 struct xhci_td *cur_td; 815 816 while (!list_empty(&ring->td_list)) { 817 cur_td = list_first_entry(&ring->td_list, 818 struct xhci_td, td_list); 819 list_del_init(&cur_td->td_list); 820 if (!list_empty(&cur_td->cancelled_td_list)) 821 list_del_init(&cur_td->cancelled_td_list); 822 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 823 } 824 } 825 826 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, 827 int slot_id, int ep_index) 828 { 829 struct xhci_td *cur_td; 830 struct xhci_virt_ep *ep; 831 struct xhci_ring *ring; 832 833 ep = &xhci->devs[slot_id]->eps[ep_index]; 834 if ((ep->ep_state & EP_HAS_STREAMS) || 835 (ep->ep_state & EP_GETTING_NO_STREAMS)) { 836 int stream_id; 837 838 for (stream_id = 0; stream_id < ep->stream_info->num_streams; 839 stream_id++) { 840 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 841 "Killing URBs for slot ID %u, ep index %u, stream %u", 842 slot_id, ep_index, stream_id + 1); 843 xhci_kill_ring_urbs(xhci, 844 ep->stream_info->stream_rings[stream_id]); 845 } 846 } else { 847 ring = ep->ring; 848 if (!ring) 849 return; 850 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 851 "Killing URBs for slot ID %u, ep index %u", 852 slot_id, ep_index); 853 xhci_kill_ring_urbs(xhci, ring); 854 } 855 while (!list_empty(&ep->cancelled_td_list)) { 856 cur_td = list_first_entry(&ep->cancelled_td_list, 857 struct xhci_td, cancelled_td_list); 858 list_del_init(&cur_td->cancelled_td_list); 859 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); 860 } 861 } 862 863 /* Watchdog timer function for when a stop endpoint command fails to complete. 864 * In this case, we assume the host controller is broken or dying or dead. The 865 * host may still be completing some other events, so we have to be careful to 866 * let the event ring handler and the URB dequeueing/enqueueing functions know 867 * through xhci->state. 868 * 869 * The timer may also fire if the host takes a very long time to respond to the 870 * command, and the stop endpoint command completion handler cannot delete the 871 * timer before the timer function is called. Another endpoint cancellation may 872 * sneak in before the timer function can grab the lock, and that may queue 873 * another stop endpoint command and add the timer back. So we cannot use a 874 * simple flag to say whether there is a pending stop endpoint command for a 875 * particular endpoint. 876 * 877 * Instead we use a combination of that flag and a counter for the number of 878 * pending stop endpoint commands. If the timer is the tail end of the last 879 * stop endpoint command, and the endpoint's command is still pending, we assume 880 * the host is dying. 881 */ 882 void xhci_stop_endpoint_command_watchdog(unsigned long arg) 883 { 884 struct xhci_hcd *xhci; 885 struct xhci_virt_ep *ep; 886 int ret, i, j; 887 unsigned long flags; 888 889 ep = (struct xhci_virt_ep *) arg; 890 xhci = ep->xhci; 891 892 spin_lock_irqsave(&xhci->lock, flags); 893 894 ep->stop_cmds_pending--; 895 if (xhci->xhc_state & XHCI_STATE_DYING) { 896 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 897 "Stop EP timer ran, but another timer marked " 898 "xHCI as DYING, exiting."); 899 spin_unlock_irqrestore(&xhci->lock, flags); 900 return; 901 } 902 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { 903 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 904 "Stop EP timer ran, but no command pending, " 905 "exiting."); 906 spin_unlock_irqrestore(&xhci->lock, flags); 907 return; 908 } 909 910 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); 911 xhci_warn(xhci, "Assuming host is dying, halting host.\n"); 912 /* Oops, HC is dead or dying or at least not responding to the stop 913 * endpoint command. 914 */ 915 xhci->xhc_state |= XHCI_STATE_DYING; 916 /* Disable interrupts from the host controller and start halting it */ 917 xhci_quiesce(xhci); 918 spin_unlock_irqrestore(&xhci->lock, flags); 919 920 ret = xhci_halt(xhci); 921 922 spin_lock_irqsave(&xhci->lock, flags); 923 if (ret < 0) { 924 /* This is bad; the host is not responding to commands and it's 925 * not allowing itself to be halted. At least interrupts are 926 * disabled. If we call usb_hc_died(), it will attempt to 927 * disconnect all device drivers under this host. Those 928 * disconnect() methods will wait for all URBs to be unlinked, 929 * so we must complete them. 930 */ 931 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); 932 xhci_warn(xhci, "Completing active URBs anyway.\n"); 933 /* We could turn all TDs on the rings to no-ops. This won't 934 * help if the host has cached part of the ring, and is slow if 935 * we want to preserve the cycle bit. Skip it and hope the host 936 * doesn't touch the memory. 937 */ 938 } 939 for (i = 0; i < MAX_HC_SLOTS; i++) { 940 if (!xhci->devs[i]) 941 continue; 942 for (j = 0; j < 31; j++) 943 xhci_kill_endpoint_urbs(xhci, i, j); 944 } 945 spin_unlock_irqrestore(&xhci->lock, flags); 946 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 947 "Calling usb_hc_died()"); 948 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 949 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 950 "xHCI host controller is dead."); 951 } 952 953 954 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, 955 struct xhci_virt_device *dev, 956 struct xhci_ring *ep_ring, 957 unsigned int ep_index) 958 { 959 union xhci_trb *dequeue_temp; 960 int num_trbs_free_temp; 961 bool revert = false; 962 963 num_trbs_free_temp = ep_ring->num_trbs_free; 964 dequeue_temp = ep_ring->dequeue; 965 966 /* If we get two back-to-back stalls, and the first stalled transfer 967 * ends just before a link TRB, the dequeue pointer will be left on 968 * the link TRB by the code in the while loop. So we have to update 969 * the dequeue pointer one segment further, or we'll jump off 970 * the segment into la-la-land. 971 */ 972 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { 973 ep_ring->deq_seg = ep_ring->deq_seg->next; 974 ep_ring->dequeue = ep_ring->deq_seg->trbs; 975 } 976 977 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { 978 /* We have more usable TRBs */ 979 ep_ring->num_trbs_free++; 980 ep_ring->dequeue++; 981 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, 982 ep_ring->dequeue)) { 983 if (ep_ring->dequeue == 984 dev->eps[ep_index].queued_deq_ptr) 985 break; 986 ep_ring->deq_seg = ep_ring->deq_seg->next; 987 ep_ring->dequeue = ep_ring->deq_seg->trbs; 988 } 989 if (ep_ring->dequeue == dequeue_temp) { 990 revert = true; 991 break; 992 } 993 } 994 995 if (revert) { 996 xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); 997 ep_ring->num_trbs_free = num_trbs_free_temp; 998 } 999 } 1000 1001 /* 1002 * When we get a completion for a Set Transfer Ring Dequeue Pointer command, 1003 * we need to clear the set deq pending flag in the endpoint ring state, so that 1004 * the TD queueing code can ring the doorbell again. We also need to ring the 1005 * endpoint doorbell to restart the ring, but only if there aren't more 1006 * cancellations pending. 1007 */ 1008 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, 1009 union xhci_trb *trb, u32 cmd_comp_code) 1010 { 1011 unsigned int ep_index; 1012 unsigned int stream_id; 1013 struct xhci_ring *ep_ring; 1014 struct xhci_virt_device *dev; 1015 struct xhci_virt_ep *ep; 1016 struct xhci_ep_ctx *ep_ctx; 1017 struct xhci_slot_ctx *slot_ctx; 1018 1019 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1020 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); 1021 dev = xhci->devs[slot_id]; 1022 ep = &dev->eps[ep_index]; 1023 1024 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); 1025 if (!ep_ring) { 1026 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", 1027 stream_id); 1028 /* XXX: Harmless??? */ 1029 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1030 return; 1031 } 1032 1033 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); 1034 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); 1035 1036 if (cmd_comp_code != COMP_SUCCESS) { 1037 unsigned int ep_state; 1038 unsigned int slot_state; 1039 1040 switch (cmd_comp_code) { 1041 case COMP_TRB_ERR: 1042 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); 1043 break; 1044 case COMP_CTX_STATE: 1045 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); 1046 ep_state = le32_to_cpu(ep_ctx->ep_info); 1047 ep_state &= EP_STATE_MASK; 1048 slot_state = le32_to_cpu(slot_ctx->dev_state); 1049 slot_state = GET_SLOT_STATE(slot_state); 1050 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1051 "Slot state = %u, EP state = %u", 1052 slot_state, ep_state); 1053 break; 1054 case COMP_EBADSLT: 1055 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", 1056 slot_id); 1057 break; 1058 default: 1059 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", 1060 cmd_comp_code); 1061 break; 1062 } 1063 /* OK what do we do now? The endpoint state is hosed, and we 1064 * should never get to this point if the synchronization between 1065 * queueing, and endpoint state are correct. This might happen 1066 * if the device gets disconnected after we've finished 1067 * cancelling URBs, which might not be an error... 1068 */ 1069 } else { 1070 u64 deq; 1071 /* 4.6.10 deq ptr is written to the stream ctx for streams */ 1072 if (ep->ep_state & EP_HAS_STREAMS) { 1073 struct xhci_stream_ctx *ctx = 1074 &ep->stream_info->stream_ctx_array[stream_id]; 1075 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; 1076 } else { 1077 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; 1078 } 1079 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1080 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); 1081 if (xhci_trb_virt_to_dma(ep->queued_deq_seg, 1082 ep->queued_deq_ptr) == deq) { 1083 /* Update the ring's dequeue segment and dequeue pointer 1084 * to reflect the new position. 1085 */ 1086 update_ring_for_set_deq_completion(xhci, dev, 1087 ep_ring, ep_index); 1088 } else { 1089 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); 1090 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", 1091 ep->queued_deq_seg, ep->queued_deq_ptr); 1092 } 1093 } 1094 1095 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; 1096 dev->eps[ep_index].queued_deq_seg = NULL; 1097 dev->eps[ep_index].queued_deq_ptr = NULL; 1098 /* Restart any rings with pending URBs */ 1099 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1100 } 1101 1102 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, 1103 union xhci_trb *trb, u32 cmd_comp_code) 1104 { 1105 unsigned int ep_index; 1106 1107 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); 1108 /* This command will only fail if the endpoint wasn't halted, 1109 * but we don't care. 1110 */ 1111 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 1112 "Ignoring reset ep completion code of %u", cmd_comp_code); 1113 1114 /* HW with the reset endpoint quirk needs to have a configure endpoint 1115 * command complete before the endpoint can be used. Queue that here 1116 * because the HW can't handle two commands being queued in a row. 1117 */ 1118 if (xhci->quirks & XHCI_RESET_EP_QUIRK) { 1119 struct xhci_command *command; 1120 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1121 if (!command) { 1122 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); 1123 return; 1124 } 1125 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1126 "Queueing configure endpoint command"); 1127 xhci_queue_configure_endpoint(xhci, command, 1128 xhci->devs[slot_id]->in_ctx->dma, slot_id, 1129 false); 1130 xhci_ring_cmd_db(xhci); 1131 } else { 1132 /* Clear our internal halted state and restart the ring(s) */ 1133 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; 1134 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1135 } 1136 } 1137 1138 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, 1139 u32 cmd_comp_code) 1140 { 1141 if (cmd_comp_code == COMP_SUCCESS) 1142 xhci->slot_id = slot_id; 1143 else 1144 xhci->slot_id = 0; 1145 } 1146 1147 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) 1148 { 1149 struct xhci_virt_device *virt_dev; 1150 1151 virt_dev = xhci->devs[slot_id]; 1152 if (!virt_dev) 1153 return; 1154 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) 1155 /* Delete default control endpoint resources */ 1156 xhci_free_device_endpoint_resources(xhci, virt_dev, true); 1157 xhci_free_virt_device(xhci, slot_id); 1158 } 1159 1160 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, 1161 struct xhci_event_cmd *event, u32 cmd_comp_code) 1162 { 1163 struct xhci_virt_device *virt_dev; 1164 struct xhci_input_control_ctx *ctrl_ctx; 1165 unsigned int ep_index; 1166 unsigned int ep_state; 1167 u32 add_flags, drop_flags; 1168 1169 /* 1170 * Configure endpoint commands can come from the USB core 1171 * configuration or alt setting changes, or because the HW 1172 * needed an extra configure endpoint command after a reset 1173 * endpoint command or streams were being configured. 1174 * If the command was for a halted endpoint, the xHCI driver 1175 * is not waiting on the configure endpoint command. 1176 */ 1177 virt_dev = xhci->devs[slot_id]; 1178 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1179 if (!ctrl_ctx) { 1180 xhci_warn(xhci, "Could not get input context, bad type.\n"); 1181 return; 1182 } 1183 1184 add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1185 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1186 /* Input ctx add_flags are the endpoint index plus one */ 1187 ep_index = xhci_last_valid_endpoint(add_flags) - 1; 1188 1189 /* A usb_set_interface() call directly after clearing a halted 1190 * condition may race on this quirky hardware. Not worth 1191 * worrying about, since this is prototype hardware. Not sure 1192 * if this will work for streams, but streams support was 1193 * untested on this prototype. 1194 */ 1195 if (xhci->quirks & XHCI_RESET_EP_QUIRK && 1196 ep_index != (unsigned int) -1 && 1197 add_flags - SLOT_FLAG == drop_flags) { 1198 ep_state = virt_dev->eps[ep_index].ep_state; 1199 if (!(ep_state & EP_HALTED)) 1200 return; 1201 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1202 "Completed config ep cmd - " 1203 "last ep index = %d, state = %d", 1204 ep_index, ep_state); 1205 /* Clear internal halted state and restart ring(s) */ 1206 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; 1207 ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 1208 return; 1209 } 1210 return; 1211 } 1212 1213 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, 1214 struct xhci_event_cmd *event) 1215 { 1216 xhci_dbg(xhci, "Completed reset device command.\n"); 1217 if (!xhci->devs[slot_id]) 1218 xhci_warn(xhci, "Reset device command completion " 1219 "for disabled slot %u\n", slot_id); 1220 } 1221 1222 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, 1223 struct xhci_event_cmd *event) 1224 { 1225 if (!(xhci->quirks & XHCI_NEC_HOST)) { 1226 xhci->error_bitmask |= 1 << 6; 1227 return; 1228 } 1229 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1230 "NEC firmware version %2x.%02x", 1231 NEC_FW_MAJOR(le32_to_cpu(event->status)), 1232 NEC_FW_MINOR(le32_to_cpu(event->status))); 1233 } 1234 1235 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) 1236 { 1237 list_del(&cmd->cmd_list); 1238 1239 if (cmd->completion) { 1240 cmd->status = status; 1241 complete(cmd->completion); 1242 } else { 1243 kfree(cmd); 1244 } 1245 } 1246 1247 void xhci_cleanup_command_queue(struct xhci_hcd *xhci) 1248 { 1249 struct xhci_command *cur_cmd, *tmp_cmd; 1250 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) 1251 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); 1252 } 1253 1254 /* 1255 * Turn all commands on command ring with status set to "aborted" to no-op trbs. 1256 * If there are other commands waiting then restart the ring and kick the timer. 1257 * This must be called with command ring stopped and xhci->lock held. 1258 */ 1259 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, 1260 struct xhci_command *cur_cmd) 1261 { 1262 struct xhci_command *i_cmd, *tmp_cmd; 1263 u32 cycle_state; 1264 1265 /* Turn all aborted commands in list to no-ops, then restart */ 1266 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, 1267 cmd_list) { 1268 1269 if (i_cmd->status != COMP_CMD_ABORT) 1270 continue; 1271 1272 i_cmd->status = COMP_CMD_STOP; 1273 1274 xhci_dbg(xhci, "Turn aborted command %p to no-op\n", 1275 i_cmd->command_trb); 1276 /* get cycle state from the original cmd trb */ 1277 cycle_state = le32_to_cpu( 1278 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; 1279 /* modify the command trb to no-op command */ 1280 i_cmd->command_trb->generic.field[0] = 0; 1281 i_cmd->command_trb->generic.field[1] = 0; 1282 i_cmd->command_trb->generic.field[2] = 0; 1283 i_cmd->command_trb->generic.field[3] = cpu_to_le32( 1284 TRB_TYPE(TRB_CMD_NOOP) | cycle_state); 1285 1286 /* 1287 * caller waiting for completion is called when command 1288 * completion event is received for these no-op commands 1289 */ 1290 } 1291 1292 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 1293 1294 /* ring command ring doorbell to restart the command ring */ 1295 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && 1296 !(xhci->xhc_state & XHCI_STATE_DYING)) { 1297 xhci->current_cmd = cur_cmd; 1298 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1299 xhci_ring_cmd_db(xhci); 1300 } 1301 return; 1302 } 1303 1304 1305 void xhci_handle_command_timeout(unsigned long data) 1306 { 1307 struct xhci_hcd *xhci; 1308 int ret; 1309 unsigned long flags; 1310 u64 hw_ring_state; 1311 struct xhci_command *cur_cmd = NULL; 1312 xhci = (struct xhci_hcd *) data; 1313 1314 /* mark this command to be cancelled */ 1315 spin_lock_irqsave(&xhci->lock, flags); 1316 if (xhci->current_cmd) { 1317 cur_cmd = xhci->current_cmd; 1318 cur_cmd->status = COMP_CMD_ABORT; 1319 } 1320 1321 1322 /* Make sure command ring is running before aborting it */ 1323 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1324 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && 1325 (hw_ring_state & CMD_RING_RUNNING)) { 1326 1327 spin_unlock_irqrestore(&xhci->lock, flags); 1328 xhci_dbg(xhci, "Command timeout\n"); 1329 ret = xhci_abort_cmd_ring(xhci); 1330 if (unlikely(ret == -ESHUTDOWN)) { 1331 xhci_err(xhci, "Abort command ring failed\n"); 1332 xhci_cleanup_command_queue(xhci); 1333 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); 1334 xhci_dbg(xhci, "xHCI host controller is dead.\n"); 1335 } 1336 return; 1337 } 1338 /* command timeout on stopped ring, ring can't be aborted */ 1339 xhci_dbg(xhci, "Command timeout on stopped ring\n"); 1340 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); 1341 spin_unlock_irqrestore(&xhci->lock, flags); 1342 return; 1343 } 1344 1345 static void handle_cmd_completion(struct xhci_hcd *xhci, 1346 struct xhci_event_cmd *event) 1347 { 1348 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1349 u64 cmd_dma; 1350 dma_addr_t cmd_dequeue_dma; 1351 u32 cmd_comp_code; 1352 union xhci_trb *cmd_trb; 1353 struct xhci_command *cmd; 1354 u32 cmd_type; 1355 1356 cmd_dma = le64_to_cpu(event->cmd_trb); 1357 cmd_trb = xhci->cmd_ring->dequeue; 1358 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 1359 cmd_trb); 1360 /* Is the command ring deq ptr out of sync with the deq seg ptr? */ 1361 if (cmd_dequeue_dma == 0) { 1362 xhci->error_bitmask |= 1 << 4; 1363 return; 1364 } 1365 /* Does the DMA address match our internal dequeue pointer address? */ 1366 if (cmd_dma != (u64) cmd_dequeue_dma) { 1367 xhci->error_bitmask |= 1 << 5; 1368 return; 1369 } 1370 1371 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); 1372 1373 if (cmd->command_trb != xhci->cmd_ring->dequeue) { 1374 xhci_err(xhci, 1375 "Command completion event does not match command\n"); 1376 return; 1377 } 1378 1379 del_timer(&xhci->cmd_timer); 1380 1381 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); 1382 1383 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); 1384 1385 /* If CMD ring stopped we own the trbs between enqueue and dequeue */ 1386 if (cmd_comp_code == COMP_CMD_STOP) { 1387 xhci_handle_stopped_cmd_ring(xhci, cmd); 1388 return; 1389 } 1390 /* 1391 * Host aborted the command ring, check if the current command was 1392 * supposed to be aborted, otherwise continue normally. 1393 * The command ring is stopped now, but the xHC will issue a Command 1394 * Ring Stopped event which will cause us to restart it. 1395 */ 1396 if (cmd_comp_code == COMP_CMD_ABORT) { 1397 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 1398 if (cmd->status == COMP_CMD_ABORT) 1399 goto event_handled; 1400 } 1401 1402 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); 1403 switch (cmd_type) { 1404 case TRB_ENABLE_SLOT: 1405 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); 1406 break; 1407 case TRB_DISABLE_SLOT: 1408 xhci_handle_cmd_disable_slot(xhci, slot_id); 1409 break; 1410 case TRB_CONFIG_EP: 1411 if (!cmd->completion) 1412 xhci_handle_cmd_config_ep(xhci, slot_id, event, 1413 cmd_comp_code); 1414 break; 1415 case TRB_EVAL_CONTEXT: 1416 break; 1417 case TRB_ADDR_DEV: 1418 break; 1419 case TRB_STOP_RING: 1420 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1421 le32_to_cpu(cmd_trb->generic.field[3]))); 1422 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); 1423 break; 1424 case TRB_SET_DEQ: 1425 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1426 le32_to_cpu(cmd_trb->generic.field[3]))); 1427 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); 1428 break; 1429 case TRB_CMD_NOOP: 1430 /* Is this an aborted command turned to NO-OP? */ 1431 if (cmd->status == COMP_CMD_STOP) 1432 cmd_comp_code = COMP_CMD_STOP; 1433 break; 1434 case TRB_RESET_EP: 1435 WARN_ON(slot_id != TRB_TO_SLOT_ID( 1436 le32_to_cpu(cmd_trb->generic.field[3]))); 1437 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); 1438 break; 1439 case TRB_RESET_DEV: 1440 /* SLOT_ID field in reset device cmd completion event TRB is 0. 1441 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) 1442 */ 1443 slot_id = TRB_TO_SLOT_ID( 1444 le32_to_cpu(cmd_trb->generic.field[3])); 1445 xhci_handle_cmd_reset_dev(xhci, slot_id, event); 1446 break; 1447 case TRB_NEC_GET_FW: 1448 xhci_handle_cmd_nec_get_fw(xhci, event); 1449 break; 1450 default: 1451 /* Skip over unknown commands on the event ring */ 1452 xhci->error_bitmask |= 1 << 6; 1453 break; 1454 } 1455 1456 /* restart timer if this wasn't the last command */ 1457 if (cmd->cmd_list.next != &xhci->cmd_list) { 1458 xhci->current_cmd = list_entry(cmd->cmd_list.next, 1459 struct xhci_command, cmd_list); 1460 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 1461 } 1462 1463 event_handled: 1464 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); 1465 1466 inc_deq(xhci, xhci->cmd_ring); 1467 } 1468 1469 static void handle_vendor_event(struct xhci_hcd *xhci, 1470 union xhci_trb *event) 1471 { 1472 u32 trb_type; 1473 1474 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); 1475 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); 1476 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) 1477 handle_cmd_completion(xhci, &event->event_cmd); 1478 } 1479 1480 /* @port_id: the one-based port ID from the hardware (indexed from array of all 1481 * port registers -- USB 3.0 and USB 2.0). 1482 * 1483 * Returns a zero-based port number, which is suitable for indexing into each of 1484 * the split roothubs' port arrays and bus state arrays. 1485 * Add one to it in order to call xhci_find_slot_id_by_port. 1486 */ 1487 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, 1488 struct xhci_hcd *xhci, u32 port_id) 1489 { 1490 unsigned int i; 1491 unsigned int num_similar_speed_ports = 0; 1492 1493 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], 1494 * and usb2_ports are 0-based indexes. Count the number of similar 1495 * speed ports, up to 1 port before this port. 1496 */ 1497 for (i = 0; i < (port_id - 1); i++) { 1498 u8 port_speed = xhci->port_array[i]; 1499 1500 /* 1501 * Skip ports that don't have known speeds, or have duplicate 1502 * Extended Capabilities port speed entries. 1503 */ 1504 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1505 continue; 1506 1507 /* 1508 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1509 * 1.1 ports are under the USB 2.0 hub. If the port speed 1510 * matches the device speed, it's a similar speed port. 1511 */ 1512 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) 1513 num_similar_speed_ports++; 1514 } 1515 return num_similar_speed_ports; 1516 } 1517 1518 static void handle_device_notification(struct xhci_hcd *xhci, 1519 union xhci_trb *event) 1520 { 1521 u32 slot_id; 1522 struct usb_device *udev; 1523 1524 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); 1525 if (!xhci->devs[slot_id]) { 1526 xhci_warn(xhci, "Device Notification event for " 1527 "unused slot %u\n", slot_id); 1528 return; 1529 } 1530 1531 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", 1532 slot_id); 1533 udev = xhci->devs[slot_id]->udev; 1534 if (udev && udev->parent) 1535 usb_wakeup_notification(udev->parent, udev->portnum); 1536 } 1537 1538 static void handle_port_status(struct xhci_hcd *xhci, 1539 union xhci_trb *event) 1540 { 1541 struct usb_hcd *hcd; 1542 u32 port_id; 1543 u32 temp, temp1; 1544 int max_ports; 1545 int slot_id; 1546 unsigned int faked_port_index; 1547 u8 major_revision; 1548 struct xhci_bus_state *bus_state; 1549 __le32 __iomem **port_array; 1550 bool bogus_port_status = false; 1551 1552 /* Port status change events always have a successful completion code */ 1553 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { 1554 xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); 1555 xhci->error_bitmask |= 1 << 8; 1556 } 1557 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); 1558 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); 1559 1560 max_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1561 if ((port_id <= 0) || (port_id > max_ports)) { 1562 xhci_warn(xhci, "Invalid port id %d\n", port_id); 1563 inc_deq(xhci, xhci->event_ring); 1564 return; 1565 } 1566 1567 /* Figure out which usb_hcd this port is attached to: 1568 * is it a USB 3.0 port or a USB 2.0/1.1 port? 1569 */ 1570 major_revision = xhci->port_array[port_id - 1]; 1571 1572 /* Find the right roothub. */ 1573 hcd = xhci_to_hcd(xhci); 1574 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) 1575 hcd = xhci->shared_hcd; 1576 1577 if (major_revision == 0) { 1578 xhci_warn(xhci, "Event for port %u not in " 1579 "Extended Capabilities, ignoring.\n", 1580 port_id); 1581 bogus_port_status = true; 1582 goto cleanup; 1583 } 1584 if (major_revision == DUPLICATE_ENTRY) { 1585 xhci_warn(xhci, "Event for port %u duplicated in" 1586 "Extended Capabilities, ignoring.\n", 1587 port_id); 1588 bogus_port_status = true; 1589 goto cleanup; 1590 } 1591 1592 /* 1593 * Hardware port IDs reported by a Port Status Change Event include USB 1594 * 3.0 and USB 2.0 ports. We want to check if the port has reported a 1595 * resume event, but we first need to translate the hardware port ID 1596 * into the index into the ports on the correct split roothub, and the 1597 * correct bus_state structure. 1598 */ 1599 bus_state = &xhci->bus_state[hcd_index(hcd)]; 1600 if (hcd->speed == HCD_USB3) 1601 port_array = xhci->usb3_ports; 1602 else 1603 port_array = xhci->usb2_ports; 1604 /* Find the faked port hub number */ 1605 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, 1606 port_id); 1607 1608 temp = readl(port_array[faked_port_index]); 1609 if (hcd->state == HC_STATE_SUSPENDED) { 1610 xhci_dbg(xhci, "resume root hub\n"); 1611 usb_hcd_resume_root_hub(hcd); 1612 } 1613 1614 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { 1615 xhci_dbg(xhci, "port resume event for port %d\n", port_id); 1616 1617 temp1 = readl(&xhci->op_regs->command); 1618 if (!(temp1 & CMD_RUN)) { 1619 xhci_warn(xhci, "xHC is not running.\n"); 1620 goto cleanup; 1621 } 1622 1623 if (DEV_SUPERSPEED(temp)) { 1624 xhci_dbg(xhci, "remote wake SS port %d\n", port_id); 1625 /* Set a flag to say the port signaled remote wakeup, 1626 * so we can tell the difference between the end of 1627 * device and host initiated resume. 1628 */ 1629 bus_state->port_remote_wakeup |= 1 << faked_port_index; 1630 xhci_test_and_clear_bit(xhci, port_array, 1631 faked_port_index, PORT_PLC); 1632 xhci_set_link_state(xhci, port_array, faked_port_index, 1633 XDEV_U0); 1634 /* Need to wait until the next link state change 1635 * indicates the device is actually in U0. 1636 */ 1637 bogus_port_status = true; 1638 goto cleanup; 1639 } else { 1640 xhci_dbg(xhci, "resume HS port %d\n", port_id); 1641 bus_state->resume_done[faked_port_index] = jiffies + 1642 msecs_to_jiffies(20); 1643 set_bit(faked_port_index, &bus_state->resuming_ports); 1644 mod_timer(&hcd->rh_timer, 1645 bus_state->resume_done[faked_port_index]); 1646 /* Do the rest in GetPortStatus */ 1647 } 1648 } 1649 1650 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && 1651 DEV_SUPERSPEED(temp)) { 1652 xhci_dbg(xhci, "resume SS port %d finished\n", port_id); 1653 /* We've just brought the device into U0 through either the 1654 * Resume state after a device remote wakeup, or through the 1655 * U3Exit state after a host-initiated resume. If it's a device 1656 * initiated remote wake, don't pass up the link state change, 1657 * so the roothub behavior is consistent with external 1658 * USB 3.0 hub behavior. 1659 */ 1660 slot_id = xhci_find_slot_id_by_port(hcd, xhci, 1661 faked_port_index + 1); 1662 if (slot_id && xhci->devs[slot_id]) 1663 xhci_ring_device(xhci, slot_id); 1664 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { 1665 bus_state->port_remote_wakeup &= 1666 ~(1 << faked_port_index); 1667 xhci_test_and_clear_bit(xhci, port_array, 1668 faked_port_index, PORT_PLC); 1669 usb_wakeup_notification(hcd->self.root_hub, 1670 faked_port_index + 1); 1671 bogus_port_status = true; 1672 goto cleanup; 1673 } 1674 } 1675 1676 /* 1677 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or 1678 * RExit to a disconnect state). If so, let the the driver know it's 1679 * out of the RExit state. 1680 */ 1681 if (!DEV_SUPERSPEED(temp) && 1682 test_and_clear_bit(faked_port_index, 1683 &bus_state->rexit_ports)) { 1684 complete(&bus_state->rexit_done[faked_port_index]); 1685 bogus_port_status = true; 1686 goto cleanup; 1687 } 1688 1689 if (hcd->speed != HCD_USB3) 1690 xhci_test_and_clear_bit(xhci, port_array, faked_port_index, 1691 PORT_PLC); 1692 1693 cleanup: 1694 /* Update event ring dequeue pointer before dropping the lock */ 1695 inc_deq(xhci, xhci->event_ring); 1696 1697 /* Don't make the USB core poll the roothub if we got a bad port status 1698 * change event. Besides, at that point we can't tell which roothub 1699 * (USB 2.0 or USB 3.0) to kick. 1700 */ 1701 if (bogus_port_status) 1702 return; 1703 1704 /* 1705 * xHCI port-status-change events occur when the "or" of all the 1706 * status-change bits in the portsc register changes from 0 to 1. 1707 * New status changes won't cause an event if any other change 1708 * bits are still set. When an event occurs, switch over to 1709 * polling to avoid losing status changes. 1710 */ 1711 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1712 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1713 spin_unlock(&xhci->lock); 1714 /* Pass this up to the core */ 1715 usb_hcd_poll_rh_status(hcd); 1716 spin_lock(&xhci->lock); 1717 } 1718 1719 /* 1720 * This TD is defined by the TRBs starting at start_trb in start_seg and ending 1721 * at end_trb, which may be in another segment. If the suspect DMA address is a 1722 * TRB in this TD, this function returns that TRB's segment. Otherwise it 1723 * returns 0. 1724 */ 1725 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, 1726 union xhci_trb *start_trb, 1727 union xhci_trb *end_trb, 1728 dma_addr_t suspect_dma) 1729 { 1730 dma_addr_t start_dma; 1731 dma_addr_t end_seg_dma; 1732 dma_addr_t end_trb_dma; 1733 struct xhci_segment *cur_seg; 1734 1735 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); 1736 cur_seg = start_seg; 1737 1738 do { 1739 if (start_dma == 0) 1740 return NULL; 1741 /* We may get an event for a Link TRB in the middle of a TD */ 1742 end_seg_dma = xhci_trb_virt_to_dma(cur_seg, 1743 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); 1744 /* If the end TRB isn't in this segment, this is set to 0 */ 1745 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); 1746 1747 if (end_trb_dma > 0) { 1748 /* The end TRB is in this segment, so suspect should be here */ 1749 if (start_dma <= end_trb_dma) { 1750 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) 1751 return cur_seg; 1752 } else { 1753 /* Case for one segment with 1754 * a TD wrapped around to the top 1755 */ 1756 if ((suspect_dma >= start_dma && 1757 suspect_dma <= end_seg_dma) || 1758 (suspect_dma >= cur_seg->dma && 1759 suspect_dma <= end_trb_dma)) 1760 return cur_seg; 1761 } 1762 return NULL; 1763 } else { 1764 /* Might still be somewhere in this segment */ 1765 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) 1766 return cur_seg; 1767 } 1768 cur_seg = cur_seg->next; 1769 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); 1770 } while (cur_seg != start_seg); 1771 1772 return NULL; 1773 } 1774 1775 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, 1776 unsigned int slot_id, unsigned int ep_index, 1777 unsigned int stream_id, 1778 struct xhci_td *td, union xhci_trb *event_trb) 1779 { 1780 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; 1781 struct xhci_command *command; 1782 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1783 if (!command) 1784 return; 1785 1786 ep->ep_state |= EP_HALTED; 1787 ep->stopped_td = td; 1788 ep->stopped_stream = stream_id; 1789 1790 xhci_queue_reset_ep(xhci, command, slot_id, ep_index); 1791 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); 1792 1793 ep->stopped_td = NULL; 1794 ep->stopped_stream = 0; 1795 1796 xhci_ring_cmd_db(xhci); 1797 } 1798 1799 /* Check if an error has halted the endpoint ring. The class driver will 1800 * cleanup the halt for a non-default control endpoint if we indicate a stall. 1801 * However, a babble and other errors also halt the endpoint ring, and the class 1802 * driver won't clear the halt in that case, so we need to issue a Set Transfer 1803 * Ring Dequeue Pointer command manually. 1804 */ 1805 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, 1806 struct xhci_ep_ctx *ep_ctx, 1807 unsigned int trb_comp_code) 1808 { 1809 /* TRB completion codes that may require a manual halt cleanup */ 1810 if (trb_comp_code == COMP_TX_ERR || 1811 trb_comp_code == COMP_BABBLE || 1812 trb_comp_code == COMP_SPLIT_ERR) 1813 /* The 0.96 spec says a babbling control endpoint 1814 * is not halted. The 0.96 spec says it is. Some HW 1815 * claims to be 0.95 compliant, but it halts the control 1816 * endpoint anyway. Check if a babble halted the 1817 * endpoint. 1818 */ 1819 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1820 cpu_to_le32(EP_STATE_HALTED)) 1821 return 1; 1822 1823 return 0; 1824 } 1825 1826 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) 1827 { 1828 if (trb_comp_code >= 224 && trb_comp_code <= 255) { 1829 /* Vendor defined "informational" completion code, 1830 * treat as not-an-error. 1831 */ 1832 xhci_dbg(xhci, "Vendor defined info completion code %u\n", 1833 trb_comp_code); 1834 xhci_dbg(xhci, "Treating code as success.\n"); 1835 return 1; 1836 } 1837 return 0; 1838 } 1839 1840 /* 1841 * Finish the td processing, remove the td from td list; 1842 * Return 1 if the urb can be given back. 1843 */ 1844 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, 1845 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1846 struct xhci_virt_ep *ep, int *status, bool skip) 1847 { 1848 struct xhci_virt_device *xdev; 1849 struct xhci_ring *ep_ring; 1850 unsigned int slot_id; 1851 int ep_index; 1852 struct urb *urb = NULL; 1853 struct xhci_ep_ctx *ep_ctx; 1854 int ret = 0; 1855 struct urb_priv *urb_priv; 1856 u32 trb_comp_code; 1857 1858 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1859 xdev = xhci->devs[slot_id]; 1860 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1861 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1862 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1863 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1864 1865 if (skip) 1866 goto td_cleanup; 1867 1868 if (trb_comp_code == COMP_STOP_INVAL || 1869 trb_comp_code == COMP_STOP) { 1870 /* The Endpoint Stop Command completion will take care of any 1871 * stopped TDs. A stopped TD may be restarted, so don't update 1872 * the ring dequeue pointer or take this TD off any lists yet. 1873 */ 1874 ep->stopped_td = td; 1875 return 0; 1876 } else { 1877 if (trb_comp_code == COMP_STALL) { 1878 /* The transfer is completed from the driver's 1879 * perspective, but we need to issue a set dequeue 1880 * command for this stalled endpoint to move the dequeue 1881 * pointer past the TD. We can't do that here because 1882 * the halt condition must be cleared first. Let the 1883 * USB class driver clear the stall later. 1884 */ 1885 ep->stopped_td = td; 1886 ep->stopped_stream = ep_ring->stream_id; 1887 } else if (xhci_requires_manual_halt_cleanup(xhci, 1888 ep_ctx, trb_comp_code)) { 1889 /* Other types of errors halt the endpoint, but the 1890 * class driver doesn't call usb_reset_endpoint() unless 1891 * the error is -EPIPE. Clear the halted status in the 1892 * xHCI hardware manually. 1893 */ 1894 xhci_cleanup_halted_endpoint(xhci, 1895 slot_id, ep_index, ep_ring->stream_id, 1896 td, event_trb); 1897 } else { 1898 /* Update ring dequeue pointer */ 1899 while (ep_ring->dequeue != td->last_trb) 1900 inc_deq(xhci, ep_ring); 1901 inc_deq(xhci, ep_ring); 1902 } 1903 1904 td_cleanup: 1905 /* Clean up the endpoint's TD list */ 1906 urb = td->urb; 1907 urb_priv = urb->hcpriv; 1908 1909 /* Do one last check of the actual transfer length. 1910 * If the host controller said we transferred more data than 1911 * the buffer length, urb->actual_length will be a very big 1912 * number (since it's unsigned). Play it safe and say we didn't 1913 * transfer anything. 1914 */ 1915 if (urb->actual_length > urb->transfer_buffer_length) { 1916 xhci_warn(xhci, "URB transfer length is wrong, " 1917 "xHC issue? req. len = %u, " 1918 "act. len = %u\n", 1919 urb->transfer_buffer_length, 1920 urb->actual_length); 1921 urb->actual_length = 0; 1922 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1923 *status = -EREMOTEIO; 1924 else 1925 *status = 0; 1926 } 1927 list_del_init(&td->td_list); 1928 /* Was this TD slated to be cancelled but completed anyway? */ 1929 if (!list_empty(&td->cancelled_td_list)) 1930 list_del_init(&td->cancelled_td_list); 1931 1932 urb_priv->td_cnt++; 1933 /* Giveback the urb when all the tds are completed */ 1934 if (urb_priv->td_cnt == urb_priv->length) { 1935 ret = 1; 1936 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { 1937 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; 1938 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs 1939 == 0) { 1940 if (xhci->quirks & XHCI_AMD_PLL_FIX) 1941 usb_amd_quirk_pll_enable(); 1942 } 1943 } 1944 } 1945 } 1946 1947 return ret; 1948 } 1949 1950 /* 1951 * Process control tds, update urb status and actual_length. 1952 */ 1953 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, 1954 union xhci_trb *event_trb, struct xhci_transfer_event *event, 1955 struct xhci_virt_ep *ep, int *status) 1956 { 1957 struct xhci_virt_device *xdev; 1958 struct xhci_ring *ep_ring; 1959 unsigned int slot_id; 1960 int ep_index; 1961 struct xhci_ep_ctx *ep_ctx; 1962 u32 trb_comp_code; 1963 1964 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 1965 xdev = xhci->devs[slot_id]; 1966 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 1967 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 1968 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 1969 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 1970 1971 switch (trb_comp_code) { 1972 case COMP_SUCCESS: 1973 if (event_trb == ep_ring->dequeue) { 1974 xhci_warn(xhci, "WARN: Success on ctrl setup TRB " 1975 "without IOC set??\n"); 1976 *status = -ESHUTDOWN; 1977 } else if (event_trb != td->last_trb) { 1978 xhci_warn(xhci, "WARN: Success on ctrl data TRB " 1979 "without IOC set??\n"); 1980 *status = -ESHUTDOWN; 1981 } else { 1982 *status = 0; 1983 } 1984 break; 1985 case COMP_SHORT_TX: 1986 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 1987 *status = -EREMOTEIO; 1988 else 1989 *status = 0; 1990 break; 1991 case COMP_STOP_INVAL: 1992 case COMP_STOP: 1993 return finish_td(xhci, td, event_trb, event, ep, status, false); 1994 default: 1995 if (!xhci_requires_manual_halt_cleanup(xhci, 1996 ep_ctx, trb_comp_code)) 1997 break; 1998 xhci_dbg(xhci, "TRB error code %u, " 1999 "halted endpoint index = %u\n", 2000 trb_comp_code, ep_index); 2001 /* else fall through */ 2002 case COMP_STALL: 2003 /* Did we transfer part of the data (middle) phase? */ 2004 if (event_trb != ep_ring->dequeue && 2005 event_trb != td->last_trb) 2006 td->urb->actual_length = 2007 td->urb->transfer_buffer_length - 2008 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2009 else 2010 td->urb->actual_length = 0; 2011 2012 xhci_cleanup_halted_endpoint(xhci, 2013 slot_id, ep_index, 0, td, event_trb); 2014 return finish_td(xhci, td, event_trb, event, ep, status, true); 2015 } 2016 /* 2017 * Did we transfer any data, despite the errors that might have 2018 * happened? I.e. did we get past the setup stage? 2019 */ 2020 if (event_trb != ep_ring->dequeue) { 2021 /* The event was for the status stage */ 2022 if (event_trb == td->last_trb) { 2023 if (td->urb->actual_length != 0) { 2024 /* Don't overwrite a previously set error code 2025 */ 2026 if ((*status == -EINPROGRESS || *status == 0) && 2027 (td->urb->transfer_flags 2028 & URB_SHORT_NOT_OK)) 2029 /* Did we already see a short data 2030 * stage? */ 2031 *status = -EREMOTEIO; 2032 } else { 2033 td->urb->actual_length = 2034 td->urb->transfer_buffer_length; 2035 } 2036 } else { 2037 /* Maybe the event was for the data stage? */ 2038 td->urb->actual_length = 2039 td->urb->transfer_buffer_length - 2040 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2041 xhci_dbg(xhci, "Waiting for status " 2042 "stage event\n"); 2043 return 0; 2044 } 2045 } 2046 2047 return finish_td(xhci, td, event_trb, event, ep, status, false); 2048 } 2049 2050 /* 2051 * Process isochronous tds, update urb packet status and actual_length. 2052 */ 2053 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2054 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2055 struct xhci_virt_ep *ep, int *status) 2056 { 2057 struct xhci_ring *ep_ring; 2058 struct urb_priv *urb_priv; 2059 int idx; 2060 int len = 0; 2061 union xhci_trb *cur_trb; 2062 struct xhci_segment *cur_seg; 2063 struct usb_iso_packet_descriptor *frame; 2064 u32 trb_comp_code; 2065 bool skip_td = false; 2066 2067 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2068 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2069 urb_priv = td->urb->hcpriv; 2070 idx = urb_priv->td_cnt; 2071 frame = &td->urb->iso_frame_desc[idx]; 2072 2073 /* handle completion code */ 2074 switch (trb_comp_code) { 2075 case COMP_SUCCESS: 2076 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { 2077 frame->status = 0; 2078 break; 2079 } 2080 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2081 trb_comp_code = COMP_SHORT_TX; 2082 case COMP_SHORT_TX: 2083 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? 2084 -EREMOTEIO : 0; 2085 break; 2086 case COMP_BW_OVER: 2087 frame->status = -ECOMM; 2088 skip_td = true; 2089 break; 2090 case COMP_BUFF_OVER: 2091 case COMP_BABBLE: 2092 frame->status = -EOVERFLOW; 2093 skip_td = true; 2094 break; 2095 case COMP_DEV_ERR: 2096 case COMP_STALL: 2097 case COMP_TX_ERR: 2098 frame->status = -EPROTO; 2099 skip_td = true; 2100 break; 2101 case COMP_STOP: 2102 case COMP_STOP_INVAL: 2103 break; 2104 default: 2105 frame->status = -1; 2106 break; 2107 } 2108 2109 if (trb_comp_code == COMP_SUCCESS || skip_td) { 2110 frame->actual_length = frame->length; 2111 td->urb->actual_length += frame->length; 2112 } else { 2113 for (cur_trb = ep_ring->dequeue, 2114 cur_seg = ep_ring->deq_seg; cur_trb != event_trb; 2115 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2116 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2117 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2118 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2119 } 2120 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2121 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2122 2123 if (trb_comp_code != COMP_STOP_INVAL) { 2124 frame->actual_length = len; 2125 td->urb->actual_length += len; 2126 } 2127 } 2128 2129 return finish_td(xhci, td, event_trb, event, ep, status, false); 2130 } 2131 2132 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, 2133 struct xhci_transfer_event *event, 2134 struct xhci_virt_ep *ep, int *status) 2135 { 2136 struct xhci_ring *ep_ring; 2137 struct urb_priv *urb_priv; 2138 struct usb_iso_packet_descriptor *frame; 2139 int idx; 2140 2141 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2142 urb_priv = td->urb->hcpriv; 2143 idx = urb_priv->td_cnt; 2144 frame = &td->urb->iso_frame_desc[idx]; 2145 2146 /* The transfer is partly done. */ 2147 frame->status = -EXDEV; 2148 2149 /* calc actual length */ 2150 frame->actual_length = 0; 2151 2152 /* Update ring dequeue pointer */ 2153 while (ep_ring->dequeue != td->last_trb) 2154 inc_deq(xhci, ep_ring); 2155 inc_deq(xhci, ep_ring); 2156 2157 return finish_td(xhci, td, NULL, event, ep, status, true); 2158 } 2159 2160 /* 2161 * Process bulk and interrupt tds, update urb status and actual_length. 2162 */ 2163 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, 2164 union xhci_trb *event_trb, struct xhci_transfer_event *event, 2165 struct xhci_virt_ep *ep, int *status) 2166 { 2167 struct xhci_ring *ep_ring; 2168 union xhci_trb *cur_trb; 2169 struct xhci_segment *cur_seg; 2170 u32 trb_comp_code; 2171 2172 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2173 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2174 2175 switch (trb_comp_code) { 2176 case COMP_SUCCESS: 2177 /* Double check that the HW transferred everything. */ 2178 if (event_trb != td->last_trb || 2179 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2180 xhci_warn(xhci, "WARN Successful completion " 2181 "on short TX\n"); 2182 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2183 *status = -EREMOTEIO; 2184 else 2185 *status = 0; 2186 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) 2187 trb_comp_code = COMP_SHORT_TX; 2188 } else { 2189 *status = 0; 2190 } 2191 break; 2192 case COMP_SHORT_TX: 2193 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2194 *status = -EREMOTEIO; 2195 else 2196 *status = 0; 2197 break; 2198 default: 2199 /* Others already handled above */ 2200 break; 2201 } 2202 if (trb_comp_code == COMP_SHORT_TX) 2203 xhci_dbg(xhci, "ep %#x - asked for %d bytes, " 2204 "%d bytes untransferred\n", 2205 td->urb->ep->desc.bEndpointAddress, 2206 td->urb->transfer_buffer_length, 2207 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2208 /* Fast path - was this the last TRB in the TD for this URB? */ 2209 if (event_trb == td->last_trb) { 2210 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { 2211 td->urb->actual_length = 2212 td->urb->transfer_buffer_length - 2213 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2214 if (td->urb->transfer_buffer_length < 2215 td->urb->actual_length) { 2216 xhci_warn(xhci, "HC gave bad length " 2217 "of %d bytes left\n", 2218 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); 2219 td->urb->actual_length = 0; 2220 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2221 *status = -EREMOTEIO; 2222 else 2223 *status = 0; 2224 } 2225 /* Don't overwrite a previously set error code */ 2226 if (*status == -EINPROGRESS) { 2227 if (td->urb->transfer_flags & URB_SHORT_NOT_OK) 2228 *status = -EREMOTEIO; 2229 else 2230 *status = 0; 2231 } 2232 } else { 2233 td->urb->actual_length = 2234 td->urb->transfer_buffer_length; 2235 /* Ignore a short packet completion if the 2236 * untransferred length was zero. 2237 */ 2238 if (*status == -EREMOTEIO) 2239 *status = 0; 2240 } 2241 } else { 2242 /* Slow path - walk the list, starting from the dequeue 2243 * pointer, to get the actual length transferred. 2244 */ 2245 td->urb->actual_length = 0; 2246 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; 2247 cur_trb != event_trb; 2248 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { 2249 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && 2250 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) 2251 td->urb->actual_length += 2252 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); 2253 } 2254 /* If the ring didn't stop on a Link or No-op TRB, add 2255 * in the actual bytes transferred from the Normal TRB 2256 */ 2257 if (trb_comp_code != COMP_STOP_INVAL) 2258 td->urb->actual_length += 2259 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - 2260 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); 2261 } 2262 2263 return finish_td(xhci, td, event_trb, event, ep, status, false); 2264 } 2265 2266 /* 2267 * If this function returns an error condition, it means it got a Transfer 2268 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. 2269 * At this point, the host controller is probably hosed and should be reset. 2270 */ 2271 static int handle_tx_event(struct xhci_hcd *xhci, 2272 struct xhci_transfer_event *event) 2273 __releases(&xhci->lock) 2274 __acquires(&xhci->lock) 2275 { 2276 struct xhci_virt_device *xdev; 2277 struct xhci_virt_ep *ep; 2278 struct xhci_ring *ep_ring; 2279 unsigned int slot_id; 2280 int ep_index; 2281 struct xhci_td *td = NULL; 2282 dma_addr_t event_dma; 2283 struct xhci_segment *event_seg; 2284 union xhci_trb *event_trb; 2285 struct urb *urb = NULL; 2286 int status = -EINPROGRESS; 2287 struct urb_priv *urb_priv; 2288 struct xhci_ep_ctx *ep_ctx; 2289 struct list_head *tmp; 2290 u32 trb_comp_code; 2291 int ret = 0; 2292 int td_num = 0; 2293 2294 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); 2295 xdev = xhci->devs[slot_id]; 2296 if (!xdev) { 2297 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); 2298 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2299 (unsigned long long) xhci_trb_virt_to_dma( 2300 xhci->event_ring->deq_seg, 2301 xhci->event_ring->dequeue), 2302 lower_32_bits(le64_to_cpu(event->buffer)), 2303 upper_32_bits(le64_to_cpu(event->buffer)), 2304 le32_to_cpu(event->transfer_len), 2305 le32_to_cpu(event->flags)); 2306 xhci_dbg(xhci, "Event ring:\n"); 2307 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2308 return -ENODEV; 2309 } 2310 2311 /* Endpoint ID is 1 based, our index is zero based */ 2312 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; 2313 ep = &xdev->eps[ep_index]; 2314 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); 2315 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2316 if (!ep_ring || 2317 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == 2318 EP_STATE_DISABLED) { 2319 xhci_err(xhci, "ERROR Transfer event for disabled endpoint " 2320 "or incorrect stream ring\n"); 2321 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", 2322 (unsigned long long) xhci_trb_virt_to_dma( 2323 xhci->event_ring->deq_seg, 2324 xhci->event_ring->dequeue), 2325 lower_32_bits(le64_to_cpu(event->buffer)), 2326 upper_32_bits(le64_to_cpu(event->buffer)), 2327 le32_to_cpu(event->transfer_len), 2328 le32_to_cpu(event->flags)); 2329 xhci_dbg(xhci, "Event ring:\n"); 2330 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 2331 return -ENODEV; 2332 } 2333 2334 /* Count current td numbers if ep->skip is set */ 2335 if (ep->skip) { 2336 list_for_each(tmp, &ep_ring->td_list) 2337 td_num++; 2338 } 2339 2340 event_dma = le64_to_cpu(event->buffer); 2341 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); 2342 /* Look for common error cases */ 2343 switch (trb_comp_code) { 2344 /* Skip codes that require special handling depending on 2345 * transfer type 2346 */ 2347 case COMP_SUCCESS: 2348 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) 2349 break; 2350 if (xhci->quirks & XHCI_TRUST_TX_LENGTH) 2351 trb_comp_code = COMP_SHORT_TX; 2352 else 2353 xhci_warn_ratelimited(xhci, 2354 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); 2355 case COMP_SHORT_TX: 2356 break; 2357 case COMP_STOP: 2358 xhci_dbg(xhci, "Stopped on Transfer TRB\n"); 2359 break; 2360 case COMP_STOP_INVAL: 2361 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); 2362 break; 2363 case COMP_STALL: 2364 xhci_dbg(xhci, "Stalled endpoint\n"); 2365 ep->ep_state |= EP_HALTED; 2366 status = -EPIPE; 2367 break; 2368 case COMP_TRB_ERR: 2369 xhci_warn(xhci, "WARN: TRB error on endpoint\n"); 2370 status = -EILSEQ; 2371 break; 2372 case COMP_SPLIT_ERR: 2373 case COMP_TX_ERR: 2374 xhci_dbg(xhci, "Transfer error on endpoint\n"); 2375 status = -EPROTO; 2376 break; 2377 case COMP_BABBLE: 2378 xhci_dbg(xhci, "Babble error on endpoint\n"); 2379 status = -EOVERFLOW; 2380 break; 2381 case COMP_DB_ERR: 2382 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); 2383 status = -ENOSR; 2384 break; 2385 case COMP_BW_OVER: 2386 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); 2387 break; 2388 case COMP_BUFF_OVER: 2389 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); 2390 break; 2391 case COMP_UNDERRUN: 2392 /* 2393 * When the Isoch ring is empty, the xHC will generate 2394 * a Ring Overrun Event for IN Isoch endpoint or Ring 2395 * Underrun Event for OUT Isoch endpoint. 2396 */ 2397 xhci_dbg(xhci, "underrun event on endpoint\n"); 2398 if (!list_empty(&ep_ring->td_list)) 2399 xhci_dbg(xhci, "Underrun Event for slot %d ep %d " 2400 "still with TDs queued?\n", 2401 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2402 ep_index); 2403 goto cleanup; 2404 case COMP_OVERRUN: 2405 xhci_dbg(xhci, "overrun event on endpoint\n"); 2406 if (!list_empty(&ep_ring->td_list)) 2407 xhci_dbg(xhci, "Overrun Event for slot %d ep %d " 2408 "still with TDs queued?\n", 2409 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2410 ep_index); 2411 goto cleanup; 2412 case COMP_DEV_ERR: 2413 xhci_warn(xhci, "WARN: detect an incompatible device"); 2414 status = -EPROTO; 2415 break; 2416 case COMP_MISSED_INT: 2417 /* 2418 * When encounter missed service error, one or more isoc tds 2419 * may be missed by xHC. 2420 * Set skip flag of the ep_ring; Complete the missed tds as 2421 * short transfer when process the ep_ring next time. 2422 */ 2423 ep->skip = true; 2424 xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); 2425 goto cleanup; 2426 default: 2427 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { 2428 status = 0; 2429 break; 2430 } 2431 xhci_warn(xhci, "ERROR Unknown event condition, HC probably " 2432 "busted\n"); 2433 goto cleanup; 2434 } 2435 2436 do { 2437 /* This TRB should be in the TD at the head of this ring's 2438 * TD list. 2439 */ 2440 if (list_empty(&ep_ring->td_list)) { 2441 /* 2442 * A stopped endpoint may generate an extra completion 2443 * event if the device was suspended. Don't print 2444 * warnings. 2445 */ 2446 if (!(trb_comp_code == COMP_STOP || 2447 trb_comp_code == COMP_STOP_INVAL)) { 2448 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", 2449 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), 2450 ep_index); 2451 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", 2452 (le32_to_cpu(event->flags) & 2453 TRB_TYPE_BITMASK)>>10); 2454 xhci_print_trb_offsets(xhci, (union xhci_trb *) event); 2455 } 2456 if (ep->skip) { 2457 ep->skip = false; 2458 xhci_dbg(xhci, "td_list is empty while skip " 2459 "flag set. Clear skip flag.\n"); 2460 } 2461 ret = 0; 2462 goto cleanup; 2463 } 2464 2465 /* We've skipped all the TDs on the ep ring when ep->skip set */ 2466 if (ep->skip && td_num == 0) { 2467 ep->skip = false; 2468 xhci_dbg(xhci, "All tds on the ep_ring skipped. " 2469 "Clear skip flag.\n"); 2470 ret = 0; 2471 goto cleanup; 2472 } 2473 2474 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); 2475 if (ep->skip) 2476 td_num--; 2477 2478 /* Is this a TRB in the currently executing TD? */ 2479 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, 2480 td->last_trb, event_dma); 2481 2482 /* 2483 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE 2484 * is not in the current TD pointed by ep_ring->dequeue because 2485 * that the hardware dequeue pointer still at the previous TRB 2486 * of the current TD. The previous TRB maybe a Link TD or the 2487 * last TRB of the previous TD. The command completion handle 2488 * will take care the rest. 2489 */ 2490 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { 2491 ret = 0; 2492 goto cleanup; 2493 } 2494 2495 if (!event_seg) { 2496 if (!ep->skip || 2497 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { 2498 /* Some host controllers give a spurious 2499 * successful event after a short transfer. 2500 * Ignore it. 2501 */ 2502 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 2503 ep_ring->last_td_was_short) { 2504 ep_ring->last_td_was_short = false; 2505 ret = 0; 2506 goto cleanup; 2507 } 2508 /* HC is busted, give up! */ 2509 xhci_err(xhci, 2510 "ERROR Transfer event TRB DMA ptr not " 2511 "part of current TD\n"); 2512 return -ESHUTDOWN; 2513 } 2514 2515 ret = skip_isoc_td(xhci, td, event, ep, &status); 2516 goto cleanup; 2517 } 2518 if (trb_comp_code == COMP_SHORT_TX) 2519 ep_ring->last_td_was_short = true; 2520 else 2521 ep_ring->last_td_was_short = false; 2522 2523 if (ep->skip) { 2524 xhci_dbg(xhci, "Found td. Clear skip flag.\n"); 2525 ep->skip = false; 2526 } 2527 2528 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / 2529 sizeof(*event_trb)]; 2530 /* 2531 * No-op TRB should not trigger interrupts. 2532 * If event_trb is a no-op TRB, it means the 2533 * corresponding TD has been cancelled. Just ignore 2534 * the TD. 2535 */ 2536 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { 2537 xhci_dbg(xhci, 2538 "event_trb is a no-op TRB. Skip it\n"); 2539 goto cleanup; 2540 } 2541 2542 /* Now update the urb's actual_length and give back to 2543 * the core 2544 */ 2545 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) 2546 ret = process_ctrl_td(xhci, td, event_trb, event, ep, 2547 &status); 2548 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) 2549 ret = process_isoc_td(xhci, td, event_trb, event, ep, 2550 &status); 2551 else 2552 ret = process_bulk_intr_td(xhci, td, event_trb, event, 2553 ep, &status); 2554 2555 cleanup: 2556 /* 2557 * Do not update event ring dequeue pointer if ep->skip is set. 2558 * Will roll back to continue process missed tds. 2559 */ 2560 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { 2561 inc_deq(xhci, xhci->event_ring); 2562 } 2563 2564 if (ret) { 2565 urb = td->urb; 2566 urb_priv = urb->hcpriv; 2567 /* Leave the TD around for the reset endpoint function 2568 * to use(but only if it's not a control endpoint, 2569 * since we already queued the Set TR dequeue pointer 2570 * command for stalled control endpoints). 2571 */ 2572 if (usb_endpoint_xfer_control(&urb->ep->desc) || 2573 (trb_comp_code != COMP_STALL && 2574 trb_comp_code != COMP_BABBLE)) 2575 xhci_urb_free_priv(xhci, urb_priv); 2576 else 2577 kfree(urb_priv); 2578 2579 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 2580 if ((urb->actual_length != urb->transfer_buffer_length && 2581 (urb->transfer_flags & 2582 URB_SHORT_NOT_OK)) || 2583 (status != 0 && 2584 !usb_endpoint_xfer_isoc(&urb->ep->desc))) 2585 xhci_dbg(xhci, "Giveback URB %p, len = %d, " 2586 "expected = %d, status = %d\n", 2587 urb, urb->actual_length, 2588 urb->transfer_buffer_length, 2589 status); 2590 spin_unlock(&xhci->lock); 2591 /* EHCI, UHCI, and OHCI always unconditionally set the 2592 * urb->status of an isochronous endpoint to 0. 2593 */ 2594 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) 2595 status = 0; 2596 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); 2597 spin_lock(&xhci->lock); 2598 } 2599 2600 /* 2601 * If ep->skip is set, it means there are missed tds on the 2602 * endpoint ring need to take care of. 2603 * Process them as short transfer until reach the td pointed by 2604 * the event. 2605 */ 2606 } while (ep->skip && trb_comp_code != COMP_MISSED_INT); 2607 2608 return 0; 2609 } 2610 2611 /* 2612 * This function handles all OS-owned events on the event ring. It may drop 2613 * xhci->lock between event processing (e.g. to pass up port status changes). 2614 * Returns >0 for "possibly more events to process" (caller should call again), 2615 * otherwise 0 if done. In future, <0 returns should indicate error code. 2616 */ 2617 static int xhci_handle_event(struct xhci_hcd *xhci) 2618 { 2619 union xhci_trb *event; 2620 int update_ptrs = 1; 2621 int ret; 2622 2623 if (!xhci->event_ring || !xhci->event_ring->dequeue) { 2624 xhci->error_bitmask |= 1 << 1; 2625 return 0; 2626 } 2627 2628 event = xhci->event_ring->dequeue; 2629 /* Does the HC or OS own the TRB? */ 2630 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != 2631 xhci->event_ring->cycle_state) { 2632 xhci->error_bitmask |= 1 << 2; 2633 return 0; 2634 } 2635 2636 /* 2637 * Barrier between reading the TRB_CYCLE (valid) flag above and any 2638 * speculative reads of the event's flags/data below. 2639 */ 2640 rmb(); 2641 /* FIXME: Handle more event types. */ 2642 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { 2643 case TRB_TYPE(TRB_COMPLETION): 2644 handle_cmd_completion(xhci, &event->event_cmd); 2645 break; 2646 case TRB_TYPE(TRB_PORT_STATUS): 2647 handle_port_status(xhci, event); 2648 update_ptrs = 0; 2649 break; 2650 case TRB_TYPE(TRB_TRANSFER): 2651 ret = handle_tx_event(xhci, &event->trans_event); 2652 if (ret < 0) 2653 xhci->error_bitmask |= 1 << 9; 2654 else 2655 update_ptrs = 0; 2656 break; 2657 case TRB_TYPE(TRB_DEV_NOTE): 2658 handle_device_notification(xhci, event); 2659 break; 2660 default: 2661 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= 2662 TRB_TYPE(48)) 2663 handle_vendor_event(xhci, event); 2664 else 2665 xhci->error_bitmask |= 1 << 3; 2666 } 2667 /* Any of the above functions may drop and re-acquire the lock, so check 2668 * to make sure a watchdog timer didn't mark the host as non-responsive. 2669 */ 2670 if (xhci->xhc_state & XHCI_STATE_DYING) { 2671 xhci_dbg(xhci, "xHCI host dying, returning from " 2672 "event handler.\n"); 2673 return 0; 2674 } 2675 2676 if (update_ptrs) 2677 /* Update SW event ring dequeue pointer */ 2678 inc_deq(xhci, xhci->event_ring); 2679 2680 /* Are there more items on the event ring? Caller will call us again to 2681 * check. 2682 */ 2683 return 1; 2684 } 2685 2686 /* 2687 * xHCI spec says we can get an interrupt, and if the HC has an error condition, 2688 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of 2689 * indicators of an event TRB error, but we check the status *first* to be safe. 2690 */ 2691 irqreturn_t xhci_irq(struct usb_hcd *hcd) 2692 { 2693 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2694 u32 status; 2695 u64 temp_64; 2696 union xhci_trb *event_ring_deq; 2697 dma_addr_t deq; 2698 2699 spin_lock(&xhci->lock); 2700 /* Check if the xHC generated the interrupt, or the irq is shared */ 2701 status = readl(&xhci->op_regs->status); 2702 if (status == 0xffffffff) 2703 goto hw_died; 2704 2705 if (!(status & STS_EINT)) { 2706 spin_unlock(&xhci->lock); 2707 return IRQ_NONE; 2708 } 2709 if (status & STS_FATAL) { 2710 xhci_warn(xhci, "WARNING: Host System Error\n"); 2711 xhci_halt(xhci); 2712 hw_died: 2713 spin_unlock(&xhci->lock); 2714 return -ESHUTDOWN; 2715 } 2716 2717 /* 2718 * Clear the op reg interrupt status first, 2719 * so we can receive interrupts from other MSI-X interrupters. 2720 * Write 1 to clear the interrupt status. 2721 */ 2722 status |= STS_EINT; 2723 writel(status, &xhci->op_regs->status); 2724 /* FIXME when MSI-X is supported and there are multiple vectors */ 2725 /* Clear the MSI-X event interrupt status */ 2726 2727 if (hcd->irq) { 2728 u32 irq_pending; 2729 /* Acknowledge the PCI interrupt */ 2730 irq_pending = readl(&xhci->ir_set->irq_pending); 2731 irq_pending |= IMAN_IP; 2732 writel(irq_pending, &xhci->ir_set->irq_pending); 2733 } 2734 2735 if (xhci->xhc_state & XHCI_STATE_DYING) { 2736 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " 2737 "Shouldn't IRQs be disabled?\n"); 2738 /* Clear the event handler busy flag (RW1C); 2739 * the event ring should be empty. 2740 */ 2741 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2742 xhci_write_64(xhci, temp_64 | ERST_EHB, 2743 &xhci->ir_set->erst_dequeue); 2744 spin_unlock(&xhci->lock); 2745 2746 return IRQ_HANDLED; 2747 } 2748 2749 event_ring_deq = xhci->event_ring->dequeue; 2750 /* FIXME this should be a delayed service routine 2751 * that clears the EHB. 2752 */ 2753 while (xhci_handle_event(xhci) > 0) {} 2754 2755 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2756 /* If necessary, update the HW's version of the event ring deq ptr. */ 2757 if (event_ring_deq != xhci->event_ring->dequeue) { 2758 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2759 xhci->event_ring->dequeue); 2760 if (deq == 0) 2761 xhci_warn(xhci, "WARN something wrong with SW event " 2762 "ring dequeue ptr.\n"); 2763 /* Update HC event ring dequeue pointer */ 2764 temp_64 &= ERST_PTR_MASK; 2765 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); 2766 } 2767 2768 /* Clear the event handler busy flag (RW1C); event ring is empty. */ 2769 temp_64 |= ERST_EHB; 2770 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); 2771 2772 spin_unlock(&xhci->lock); 2773 2774 return IRQ_HANDLED; 2775 } 2776 2777 irqreturn_t xhci_msi_irq(int irq, void *hcd) 2778 { 2779 return xhci_irq(hcd); 2780 } 2781 2782 /**** Endpoint Ring Operations ****/ 2783 2784 /* 2785 * Generic function for queueing a TRB on a ring. 2786 * The caller must have checked to make sure there's room on the ring. 2787 * 2788 * @more_trbs_coming: Will you enqueue more TRBs before calling 2789 * prepare_transfer()? 2790 */ 2791 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, 2792 bool more_trbs_coming, 2793 u32 field1, u32 field2, u32 field3, u32 field4) 2794 { 2795 struct xhci_generic_trb *trb; 2796 2797 trb = &ring->enqueue->generic; 2798 trb->field[0] = cpu_to_le32(field1); 2799 trb->field[1] = cpu_to_le32(field2); 2800 trb->field[2] = cpu_to_le32(field3); 2801 trb->field[3] = cpu_to_le32(field4); 2802 inc_enq(xhci, ring, more_trbs_coming); 2803 } 2804 2805 /* 2806 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. 2807 * FIXME allocate segments if the ring is full. 2808 */ 2809 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, 2810 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) 2811 { 2812 unsigned int num_trbs_needed; 2813 2814 /* Make sure the endpoint has been added to xHC schedule */ 2815 switch (ep_state) { 2816 case EP_STATE_DISABLED: 2817 /* 2818 * USB core changed config/interfaces without notifying us, 2819 * or hardware is reporting the wrong state. 2820 */ 2821 xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); 2822 return -ENOENT; 2823 case EP_STATE_ERROR: 2824 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); 2825 /* FIXME event handling code for error needs to clear it */ 2826 /* XXX not sure if this should be -ENOENT or not */ 2827 return -EINVAL; 2828 case EP_STATE_HALTED: 2829 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); 2830 case EP_STATE_STOPPED: 2831 case EP_STATE_RUNNING: 2832 break; 2833 default: 2834 xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); 2835 /* 2836 * FIXME issue Configure Endpoint command to try to get the HC 2837 * back into a known state. 2838 */ 2839 return -EINVAL; 2840 } 2841 2842 while (1) { 2843 if (room_on_ring(xhci, ep_ring, num_trbs)) 2844 break; 2845 2846 if (ep_ring == xhci->cmd_ring) { 2847 xhci_err(xhci, "Do not support expand command ring\n"); 2848 return -ENOMEM; 2849 } 2850 2851 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 2852 "ERROR no room on ep ring, try ring expansion"); 2853 num_trbs_needed = num_trbs - ep_ring->num_trbs_free; 2854 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, 2855 mem_flags)) { 2856 xhci_err(xhci, "Ring expansion failed\n"); 2857 return -ENOMEM; 2858 } 2859 } 2860 2861 if (enqueue_is_link_trb(ep_ring)) { 2862 struct xhci_ring *ring = ep_ring; 2863 union xhci_trb *next; 2864 2865 next = ring->enqueue; 2866 2867 while (last_trb(xhci, ring, ring->enq_seg, next)) { 2868 /* If we're not dealing with 0.95 hardware or isoc rings 2869 * on AMD 0.96 host, clear the chain bit. 2870 */ 2871 if (!xhci_link_trb_quirk(xhci) && 2872 !(ring->type == TYPE_ISOC && 2873 (xhci->quirks & XHCI_AMD_0x96_HOST))) 2874 next->link.control &= cpu_to_le32(~TRB_CHAIN); 2875 else 2876 next->link.control |= cpu_to_le32(TRB_CHAIN); 2877 2878 wmb(); 2879 next->link.control ^= cpu_to_le32(TRB_CYCLE); 2880 2881 /* Toggle the cycle bit after the last ring segment. */ 2882 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { 2883 ring->cycle_state = (ring->cycle_state ? 0 : 1); 2884 } 2885 ring->enq_seg = ring->enq_seg->next; 2886 ring->enqueue = ring->enq_seg->trbs; 2887 next = ring->enqueue; 2888 } 2889 } 2890 2891 return 0; 2892 } 2893 2894 static int prepare_transfer(struct xhci_hcd *xhci, 2895 struct xhci_virt_device *xdev, 2896 unsigned int ep_index, 2897 unsigned int stream_id, 2898 unsigned int num_trbs, 2899 struct urb *urb, 2900 unsigned int td_index, 2901 gfp_t mem_flags) 2902 { 2903 int ret; 2904 struct urb_priv *urb_priv; 2905 struct xhci_td *td; 2906 struct xhci_ring *ep_ring; 2907 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 2908 2909 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); 2910 if (!ep_ring) { 2911 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", 2912 stream_id); 2913 return -EINVAL; 2914 } 2915 2916 ret = prepare_ring(xhci, ep_ring, 2917 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 2918 num_trbs, mem_flags); 2919 if (ret) 2920 return ret; 2921 2922 urb_priv = urb->hcpriv; 2923 td = urb_priv->td[td_index]; 2924 2925 INIT_LIST_HEAD(&td->td_list); 2926 INIT_LIST_HEAD(&td->cancelled_td_list); 2927 2928 if (td_index == 0) { 2929 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); 2930 if (unlikely(ret)) 2931 return ret; 2932 } 2933 2934 td->urb = urb; 2935 /* Add this TD to the tail of the endpoint ring's TD list */ 2936 list_add_tail(&td->td_list, &ep_ring->td_list); 2937 td->start_seg = ep_ring->enq_seg; 2938 td->first_trb = ep_ring->enqueue; 2939 2940 urb_priv->td[td_index] = td; 2941 2942 return 0; 2943 } 2944 2945 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) 2946 { 2947 int num_sgs, num_trbs, running_total, temp, i; 2948 struct scatterlist *sg; 2949 2950 sg = NULL; 2951 num_sgs = urb->num_mapped_sgs; 2952 temp = urb->transfer_buffer_length; 2953 2954 num_trbs = 0; 2955 for_each_sg(urb->sg, sg, num_sgs, i) { 2956 unsigned int len = sg_dma_len(sg); 2957 2958 /* Scatter gather list entries may cross 64KB boundaries */ 2959 running_total = TRB_MAX_BUFF_SIZE - 2960 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); 2961 running_total &= TRB_MAX_BUFF_SIZE - 1; 2962 if (running_total != 0) 2963 num_trbs++; 2964 2965 /* How many more 64KB chunks to transfer, how many more TRBs? */ 2966 while (running_total < sg_dma_len(sg) && running_total < temp) { 2967 num_trbs++; 2968 running_total += TRB_MAX_BUFF_SIZE; 2969 } 2970 len = min_t(int, len, temp); 2971 temp -= len; 2972 if (temp == 0) 2973 break; 2974 } 2975 return num_trbs; 2976 } 2977 2978 static void check_trb_math(struct urb *urb, int num_trbs, int running_total) 2979 { 2980 if (num_trbs != 0) 2981 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " 2982 "TRBs, %d left\n", __func__, 2983 urb->ep->desc.bEndpointAddress, num_trbs); 2984 if (running_total != urb->transfer_buffer_length) 2985 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " 2986 "queued %#x (%d), asked for %#x (%d)\n", 2987 __func__, 2988 urb->ep->desc.bEndpointAddress, 2989 running_total, running_total, 2990 urb->transfer_buffer_length, 2991 urb->transfer_buffer_length); 2992 } 2993 2994 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, 2995 unsigned int ep_index, unsigned int stream_id, int start_cycle, 2996 struct xhci_generic_trb *start_trb) 2997 { 2998 /* 2999 * Pass all the TRBs to the hardware at once and make sure this write 3000 * isn't reordered. 3001 */ 3002 wmb(); 3003 if (start_cycle) 3004 start_trb->field[3] |= cpu_to_le32(start_cycle); 3005 else 3006 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); 3007 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); 3008 } 3009 3010 /* 3011 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt 3012 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD 3013 * (comprised of sg list entries) can take several service intervals to 3014 * transmit. 3015 */ 3016 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3017 struct urb *urb, int slot_id, unsigned int ep_index) 3018 { 3019 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, 3020 xhci->devs[slot_id]->out_ctx, ep_index); 3021 int xhci_interval; 3022 int ep_interval; 3023 3024 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3025 ep_interval = urb->interval; 3026 /* Convert to microframes */ 3027 if (urb->dev->speed == USB_SPEED_LOW || 3028 urb->dev->speed == USB_SPEED_FULL) 3029 ep_interval *= 8; 3030 /* FIXME change this to a warning and a suggestion to use the new API 3031 * to set the polling interval (once the API is added). 3032 */ 3033 if (xhci_interval != ep_interval) { 3034 dev_dbg_ratelimited(&urb->dev->dev, 3035 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3036 ep_interval, ep_interval == 1 ? "" : "s", 3037 xhci_interval, xhci_interval == 1 ? "" : "s"); 3038 urb->interval = xhci_interval; 3039 /* Convert back to frames for LS/FS devices */ 3040 if (urb->dev->speed == USB_SPEED_LOW || 3041 urb->dev->speed == USB_SPEED_FULL) 3042 urb->interval /= 8; 3043 } 3044 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); 3045 } 3046 3047 /* 3048 * The TD size is the number of bytes remaining in the TD (including this TRB), 3049 * right shifted by 10. 3050 * It must fit in bits 21:17, so it can't be bigger than 31. 3051 */ 3052 static u32 xhci_td_remainder(unsigned int remainder) 3053 { 3054 u32 max = (1 << (21 - 17 + 1)) - 1; 3055 3056 if ((remainder >> 10) >= max) 3057 return max << 17; 3058 else 3059 return (remainder >> 10) << 17; 3060 } 3061 3062 /* 3063 * For xHCI 1.0 host controllers, TD size is the number of max packet sized 3064 * packets remaining in the TD (*not* including this TRB). 3065 * 3066 * Total TD packet count = total_packet_count = 3067 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) 3068 * 3069 * Packets transferred up to and including this TRB = packets_transferred = 3070 * rounddown(total bytes transferred including this TRB / wMaxPacketSize) 3071 * 3072 * TD size = total_packet_count - packets_transferred 3073 * 3074 * It must fit in bits 21:17, so it can't be bigger than 31. 3075 * The last TRB in a TD must have the TD size set to zero. 3076 */ 3077 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, 3078 unsigned int total_packet_count, struct urb *urb, 3079 unsigned int num_trbs_left) 3080 { 3081 int packets_transferred; 3082 3083 /* One TRB with a zero-length data packet. */ 3084 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0)) 3085 return 0; 3086 3087 /* All the TRB queueing functions don't count the current TRB in 3088 * running_total. 3089 */ 3090 packets_transferred = (running_total + trb_buff_len) / 3091 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); 3092 3093 if ((total_packet_count - packets_transferred) > 31) 3094 return 31 << 17; 3095 return (total_packet_count - packets_transferred) << 17; 3096 } 3097 3098 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3099 struct urb *urb, int slot_id, unsigned int ep_index) 3100 { 3101 struct xhci_ring *ep_ring; 3102 unsigned int num_trbs; 3103 struct urb_priv *urb_priv; 3104 struct xhci_td *td; 3105 struct scatterlist *sg; 3106 int num_sgs; 3107 int trb_buff_len, this_sg_len, running_total; 3108 unsigned int total_packet_count; 3109 bool first_trb; 3110 u64 addr; 3111 bool more_trbs_coming; 3112 3113 struct xhci_generic_trb *start_trb; 3114 int start_cycle; 3115 3116 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3117 if (!ep_ring) 3118 return -EINVAL; 3119 3120 num_trbs = count_sg_trbs_needed(xhci, urb); 3121 num_sgs = urb->num_mapped_sgs; 3122 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3123 usb_endpoint_maxp(&urb->ep->desc)); 3124 3125 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], 3126 ep_index, urb->stream_id, 3127 num_trbs, urb, 0, mem_flags); 3128 if (trb_buff_len < 0) 3129 return trb_buff_len; 3130 3131 urb_priv = urb->hcpriv; 3132 td = urb_priv->td[0]; 3133 3134 /* 3135 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3136 * until we've finished creating all the other TRBs. The ring's cycle 3137 * state may change as we enqueue the other TRBs, so save it too. 3138 */ 3139 start_trb = &ep_ring->enqueue->generic; 3140 start_cycle = ep_ring->cycle_state; 3141 3142 running_total = 0; 3143 /* 3144 * How much data is in the first TRB? 3145 * 3146 * There are three forces at work for TRB buffer pointers and lengths: 3147 * 1. We don't want to walk off the end of this sg-list entry buffer. 3148 * 2. The transfer length that the driver requested may be smaller than 3149 * the amount of memory allocated for this scatter-gather list. 3150 * 3. TRBs buffers can't cross 64KB boundaries. 3151 */ 3152 sg = urb->sg; 3153 addr = (u64) sg_dma_address(sg); 3154 this_sg_len = sg_dma_len(sg); 3155 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); 3156 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3157 if (trb_buff_len > urb->transfer_buffer_length) 3158 trb_buff_len = urb->transfer_buffer_length; 3159 3160 first_trb = true; 3161 /* Queue the first TRB, even if it's zero-length */ 3162 do { 3163 u32 field = 0; 3164 u32 length_field = 0; 3165 u32 remainder = 0; 3166 3167 /* Don't change the cycle bit of the first TRB until later */ 3168 if (first_trb) { 3169 first_trb = false; 3170 if (start_cycle == 0) 3171 field |= 0x1; 3172 } else 3173 field |= ep_ring->cycle_state; 3174 3175 /* Chain all the TRBs together; clear the chain bit in the last 3176 * TRB to indicate it's the last TRB in the chain. 3177 */ 3178 if (num_trbs > 1) { 3179 field |= TRB_CHAIN; 3180 } else { 3181 /* FIXME - add check for ZERO_PACKET flag before this */ 3182 td->last_trb = ep_ring->enqueue; 3183 field |= TRB_IOC; 3184 } 3185 3186 /* Only set interrupt on short packet for IN endpoints */ 3187 if (usb_urb_dir_in(urb)) 3188 field |= TRB_ISP; 3189 3190 if (TRB_MAX_BUFF_SIZE - 3191 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { 3192 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); 3193 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", 3194 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), 3195 (unsigned int) addr + trb_buff_len); 3196 } 3197 3198 /* Set the TRB length, TD size, and interrupter fields. */ 3199 if (xhci->hci_version < 0x100) { 3200 remainder = xhci_td_remainder( 3201 urb->transfer_buffer_length - 3202 running_total); 3203 } else { 3204 remainder = xhci_v1_0_td_remainder(running_total, 3205 trb_buff_len, total_packet_count, urb, 3206 num_trbs - 1); 3207 } 3208 length_field = TRB_LEN(trb_buff_len) | 3209 remainder | 3210 TRB_INTR_TARGET(0); 3211 3212 if (num_trbs > 1) 3213 more_trbs_coming = true; 3214 else 3215 more_trbs_coming = false; 3216 queue_trb(xhci, ep_ring, more_trbs_coming, 3217 lower_32_bits(addr), 3218 upper_32_bits(addr), 3219 length_field, 3220 field | TRB_TYPE(TRB_NORMAL)); 3221 --num_trbs; 3222 running_total += trb_buff_len; 3223 3224 /* Calculate length for next transfer -- 3225 * Are we done queueing all the TRBs for this sg entry? 3226 */ 3227 this_sg_len -= trb_buff_len; 3228 if (this_sg_len == 0) { 3229 --num_sgs; 3230 if (num_sgs == 0) 3231 break; 3232 sg = sg_next(sg); 3233 addr = (u64) sg_dma_address(sg); 3234 this_sg_len = sg_dma_len(sg); 3235 } else { 3236 addr += trb_buff_len; 3237 } 3238 3239 trb_buff_len = TRB_MAX_BUFF_SIZE - 3240 (addr & (TRB_MAX_BUFF_SIZE - 1)); 3241 trb_buff_len = min_t(int, trb_buff_len, this_sg_len); 3242 if (running_total + trb_buff_len > urb->transfer_buffer_length) 3243 trb_buff_len = 3244 urb->transfer_buffer_length - running_total; 3245 } while (running_total < urb->transfer_buffer_length); 3246 3247 check_trb_math(urb, num_trbs, running_total); 3248 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3249 start_cycle, start_trb); 3250 return 0; 3251 } 3252 3253 /* This is very similar to what ehci-q.c qtd_fill() does */ 3254 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3255 struct urb *urb, int slot_id, unsigned int ep_index) 3256 { 3257 struct xhci_ring *ep_ring; 3258 struct urb_priv *urb_priv; 3259 struct xhci_td *td; 3260 int num_trbs; 3261 struct xhci_generic_trb *start_trb; 3262 bool first_trb; 3263 bool more_trbs_coming; 3264 int start_cycle; 3265 u32 field, length_field; 3266 3267 int running_total, trb_buff_len, ret; 3268 unsigned int total_packet_count; 3269 u64 addr; 3270 3271 if (urb->num_sgs) 3272 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); 3273 3274 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3275 if (!ep_ring) 3276 return -EINVAL; 3277 3278 num_trbs = 0; 3279 /* How much data is (potentially) left before the 64KB boundary? */ 3280 running_total = TRB_MAX_BUFF_SIZE - 3281 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3282 running_total &= TRB_MAX_BUFF_SIZE - 1; 3283 3284 /* If there's some data on this 64KB chunk, or we have to send a 3285 * zero-length transfer, we need at least one TRB 3286 */ 3287 if (running_total != 0 || urb->transfer_buffer_length == 0) 3288 num_trbs++; 3289 /* How many more 64KB chunks to transfer, how many more TRBs? */ 3290 while (running_total < urb->transfer_buffer_length) { 3291 num_trbs++; 3292 running_total += TRB_MAX_BUFF_SIZE; 3293 } 3294 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ 3295 3296 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3297 ep_index, urb->stream_id, 3298 num_trbs, urb, 0, mem_flags); 3299 if (ret < 0) 3300 return ret; 3301 3302 urb_priv = urb->hcpriv; 3303 td = urb_priv->td[0]; 3304 3305 /* 3306 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3307 * until we've finished creating all the other TRBs. The ring's cycle 3308 * state may change as we enqueue the other TRBs, so save it too. 3309 */ 3310 start_trb = &ep_ring->enqueue->generic; 3311 start_cycle = ep_ring->cycle_state; 3312 3313 running_total = 0; 3314 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, 3315 usb_endpoint_maxp(&urb->ep->desc)); 3316 /* How much data is in the first TRB? */ 3317 addr = (u64) urb->transfer_dma; 3318 trb_buff_len = TRB_MAX_BUFF_SIZE - 3319 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); 3320 if (trb_buff_len > urb->transfer_buffer_length) 3321 trb_buff_len = urb->transfer_buffer_length; 3322 3323 first_trb = true; 3324 3325 /* Queue the first TRB, even if it's zero-length */ 3326 do { 3327 u32 remainder = 0; 3328 field = 0; 3329 3330 /* Don't change the cycle bit of the first TRB until later */ 3331 if (first_trb) { 3332 first_trb = false; 3333 if (start_cycle == 0) 3334 field |= 0x1; 3335 } else 3336 field |= ep_ring->cycle_state; 3337 3338 /* Chain all the TRBs together; clear the chain bit in the last 3339 * TRB to indicate it's the last TRB in the chain. 3340 */ 3341 if (num_trbs > 1) { 3342 field |= TRB_CHAIN; 3343 } else { 3344 /* FIXME - add check for ZERO_PACKET flag before this */ 3345 td->last_trb = ep_ring->enqueue; 3346 field |= TRB_IOC; 3347 } 3348 3349 /* Only set interrupt on short packet for IN endpoints */ 3350 if (usb_urb_dir_in(urb)) 3351 field |= TRB_ISP; 3352 3353 /* Set the TRB length, TD size, and interrupter fields. */ 3354 if (xhci->hci_version < 0x100) { 3355 remainder = xhci_td_remainder( 3356 urb->transfer_buffer_length - 3357 running_total); 3358 } else { 3359 remainder = xhci_v1_0_td_remainder(running_total, 3360 trb_buff_len, total_packet_count, urb, 3361 num_trbs - 1); 3362 } 3363 length_field = TRB_LEN(trb_buff_len) | 3364 remainder | 3365 TRB_INTR_TARGET(0); 3366 3367 if (num_trbs > 1) 3368 more_trbs_coming = true; 3369 else 3370 more_trbs_coming = false; 3371 queue_trb(xhci, ep_ring, more_trbs_coming, 3372 lower_32_bits(addr), 3373 upper_32_bits(addr), 3374 length_field, 3375 field | TRB_TYPE(TRB_NORMAL)); 3376 --num_trbs; 3377 running_total += trb_buff_len; 3378 3379 /* Calculate length for next transfer */ 3380 addr += trb_buff_len; 3381 trb_buff_len = urb->transfer_buffer_length - running_total; 3382 if (trb_buff_len > TRB_MAX_BUFF_SIZE) 3383 trb_buff_len = TRB_MAX_BUFF_SIZE; 3384 } while (running_total < urb->transfer_buffer_length); 3385 3386 check_trb_math(urb, num_trbs, running_total); 3387 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3388 start_cycle, start_trb); 3389 return 0; 3390 } 3391 3392 /* Caller must have locked xhci->lock */ 3393 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3394 struct urb *urb, int slot_id, unsigned int ep_index) 3395 { 3396 struct xhci_ring *ep_ring; 3397 int num_trbs; 3398 int ret; 3399 struct usb_ctrlrequest *setup; 3400 struct xhci_generic_trb *start_trb; 3401 int start_cycle; 3402 u32 field, length_field; 3403 struct urb_priv *urb_priv; 3404 struct xhci_td *td; 3405 3406 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 3407 if (!ep_ring) 3408 return -EINVAL; 3409 3410 /* 3411 * Need to copy setup packet into setup TRB, so we can't use the setup 3412 * DMA address. 3413 */ 3414 if (!urb->setup_packet) 3415 return -EINVAL; 3416 3417 /* 1 TRB for setup, 1 for status */ 3418 num_trbs = 2; 3419 /* 3420 * Don't need to check if we need additional event data and normal TRBs, 3421 * since data in control transfers will never get bigger than 16MB 3422 * XXX: can we get a buffer that crosses 64KB boundaries? 3423 */ 3424 if (urb->transfer_buffer_length > 0) 3425 num_trbs++; 3426 ret = prepare_transfer(xhci, xhci->devs[slot_id], 3427 ep_index, urb->stream_id, 3428 num_trbs, urb, 0, mem_flags); 3429 if (ret < 0) 3430 return ret; 3431 3432 urb_priv = urb->hcpriv; 3433 td = urb_priv->td[0]; 3434 3435 /* 3436 * Don't give the first TRB to the hardware (by toggling the cycle bit) 3437 * until we've finished creating all the other TRBs. The ring's cycle 3438 * state may change as we enqueue the other TRBs, so save it too. 3439 */ 3440 start_trb = &ep_ring->enqueue->generic; 3441 start_cycle = ep_ring->cycle_state; 3442 3443 /* Queue setup TRB - see section 6.4.1.2.1 */ 3444 /* FIXME better way to translate setup_packet into two u32 fields? */ 3445 setup = (struct usb_ctrlrequest *) urb->setup_packet; 3446 field = 0; 3447 field |= TRB_IDT | TRB_TYPE(TRB_SETUP); 3448 if (start_cycle == 0) 3449 field |= 0x1; 3450 3451 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ 3452 if (xhci->hci_version == 0x100) { 3453 if (urb->transfer_buffer_length > 0) { 3454 if (setup->bRequestType & USB_DIR_IN) 3455 field |= TRB_TX_TYPE(TRB_DATA_IN); 3456 else 3457 field |= TRB_TX_TYPE(TRB_DATA_OUT); 3458 } 3459 } 3460 3461 queue_trb(xhci, ep_ring, true, 3462 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, 3463 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, 3464 TRB_LEN(8) | TRB_INTR_TARGET(0), 3465 /* Immediate data in pointer */ 3466 field); 3467 3468 /* If there's data, queue data TRBs */ 3469 /* Only set interrupt on short packet for IN endpoints */ 3470 if (usb_urb_dir_in(urb)) 3471 field = TRB_ISP | TRB_TYPE(TRB_DATA); 3472 else 3473 field = TRB_TYPE(TRB_DATA); 3474 3475 length_field = TRB_LEN(urb->transfer_buffer_length) | 3476 xhci_td_remainder(urb->transfer_buffer_length) | 3477 TRB_INTR_TARGET(0); 3478 if (urb->transfer_buffer_length > 0) { 3479 if (setup->bRequestType & USB_DIR_IN) 3480 field |= TRB_DIR_IN; 3481 queue_trb(xhci, ep_ring, true, 3482 lower_32_bits(urb->transfer_dma), 3483 upper_32_bits(urb->transfer_dma), 3484 length_field, 3485 field | ep_ring->cycle_state); 3486 } 3487 3488 /* Save the DMA address of the last TRB in the TD */ 3489 td->last_trb = ep_ring->enqueue; 3490 3491 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ 3492 /* If the device sent data, the status stage is an OUT transfer */ 3493 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) 3494 field = 0; 3495 else 3496 field = TRB_DIR_IN; 3497 queue_trb(xhci, ep_ring, false, 3498 0, 3499 0, 3500 TRB_INTR_TARGET(0), 3501 /* Event on completion */ 3502 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); 3503 3504 giveback_first_trb(xhci, slot_id, ep_index, 0, 3505 start_cycle, start_trb); 3506 return 0; 3507 } 3508 3509 static int count_isoc_trbs_needed(struct xhci_hcd *xhci, 3510 struct urb *urb, int i) 3511 { 3512 int num_trbs = 0; 3513 u64 addr, td_len; 3514 3515 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); 3516 td_len = urb->iso_frame_desc[i].length; 3517 3518 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), 3519 TRB_MAX_BUFF_SIZE); 3520 if (num_trbs == 0) 3521 num_trbs++; 3522 3523 return num_trbs; 3524 } 3525 3526 /* 3527 * The transfer burst count field of the isochronous TRB defines the number of 3528 * bursts that are required to move all packets in this TD. Only SuperSpeed 3529 * devices can burst up to bMaxBurst number of packets per service interval. 3530 * This field is zero based, meaning a value of zero in the field means one 3531 * burst. Basically, for everything but SuperSpeed devices, this field will be 3532 * zero. Only xHCI 1.0 host controllers support this field. 3533 */ 3534 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, 3535 struct usb_device *udev, 3536 struct urb *urb, unsigned int total_packet_count) 3537 { 3538 unsigned int max_burst; 3539 3540 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) 3541 return 0; 3542 3543 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3544 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; 3545 } 3546 3547 /* 3548 * Returns the number of packets in the last "burst" of packets. This field is 3549 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so 3550 * the last burst packet count is equal to the total number of packets in the 3551 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst 3552 * must contain (bMaxBurst + 1) number of packets, but the last burst can 3553 * contain 1 to (bMaxBurst + 1) packets. 3554 */ 3555 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, 3556 struct usb_device *udev, 3557 struct urb *urb, unsigned int total_packet_count) 3558 { 3559 unsigned int max_burst; 3560 unsigned int residue; 3561 3562 if (xhci->hci_version < 0x100) 3563 return 0; 3564 3565 switch (udev->speed) { 3566 case USB_SPEED_SUPER: 3567 /* bMaxBurst is zero based: 0 means 1 packet per burst */ 3568 max_burst = urb->ep->ss_ep_comp.bMaxBurst; 3569 residue = total_packet_count % (max_burst + 1); 3570 /* If residue is zero, the last burst contains (max_burst + 1) 3571 * number of packets, but the TLBPC field is zero-based. 3572 */ 3573 if (residue == 0) 3574 return max_burst; 3575 return residue - 1; 3576 default: 3577 if (total_packet_count == 0) 3578 return 0; 3579 return total_packet_count - 1; 3580 } 3581 } 3582 3583 /* This is for isoc transfer */ 3584 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, 3585 struct urb *urb, int slot_id, unsigned int ep_index) 3586 { 3587 struct xhci_ring *ep_ring; 3588 struct urb_priv *urb_priv; 3589 struct xhci_td *td; 3590 int num_tds, trbs_per_td; 3591 struct xhci_generic_trb *start_trb; 3592 bool first_trb; 3593 int start_cycle; 3594 u32 field, length_field; 3595 int running_total, trb_buff_len, td_len, td_remain_len, ret; 3596 u64 start_addr, addr; 3597 int i, j; 3598 bool more_trbs_coming; 3599 3600 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; 3601 3602 num_tds = urb->number_of_packets; 3603 if (num_tds < 1) { 3604 xhci_dbg(xhci, "Isoc URB with zero packets?\n"); 3605 return -EINVAL; 3606 } 3607 3608 start_addr = (u64) urb->transfer_dma; 3609 start_trb = &ep_ring->enqueue->generic; 3610 start_cycle = ep_ring->cycle_state; 3611 3612 urb_priv = urb->hcpriv; 3613 /* Queue the first TRB, even if it's zero-length */ 3614 for (i = 0; i < num_tds; i++) { 3615 unsigned int total_packet_count; 3616 unsigned int burst_count; 3617 unsigned int residue; 3618 3619 first_trb = true; 3620 running_total = 0; 3621 addr = start_addr + urb->iso_frame_desc[i].offset; 3622 td_len = urb->iso_frame_desc[i].length; 3623 td_remain_len = td_len; 3624 total_packet_count = DIV_ROUND_UP(td_len, 3625 GET_MAX_PACKET( 3626 usb_endpoint_maxp(&urb->ep->desc))); 3627 /* A zero-length transfer still involves at least one packet. */ 3628 if (total_packet_count == 0) 3629 total_packet_count++; 3630 burst_count = xhci_get_burst_count(xhci, urb->dev, urb, 3631 total_packet_count); 3632 residue = xhci_get_last_burst_packet_count(xhci, 3633 urb->dev, urb, total_packet_count); 3634 3635 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); 3636 3637 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, 3638 urb->stream_id, trbs_per_td, urb, i, mem_flags); 3639 if (ret < 0) { 3640 if (i == 0) 3641 return ret; 3642 goto cleanup; 3643 } 3644 3645 td = urb_priv->td[i]; 3646 for (j = 0; j < trbs_per_td; j++) { 3647 u32 remainder = 0; 3648 field = 0; 3649 3650 if (first_trb) { 3651 field = TRB_TBC(burst_count) | 3652 TRB_TLBPC(residue); 3653 /* Queue the isoc TRB */ 3654 field |= TRB_TYPE(TRB_ISOC); 3655 /* Assume URB_ISO_ASAP is set */ 3656 field |= TRB_SIA; 3657 if (i == 0) { 3658 if (start_cycle == 0) 3659 field |= 0x1; 3660 } else 3661 field |= ep_ring->cycle_state; 3662 first_trb = false; 3663 } else { 3664 /* Queue other normal TRBs */ 3665 field |= TRB_TYPE(TRB_NORMAL); 3666 field |= ep_ring->cycle_state; 3667 } 3668 3669 /* Only set interrupt on short packet for IN EPs */ 3670 if (usb_urb_dir_in(urb)) 3671 field |= TRB_ISP; 3672 3673 /* Chain all the TRBs together; clear the chain bit in 3674 * the last TRB to indicate it's the last TRB in the 3675 * chain. 3676 */ 3677 if (j < trbs_per_td - 1) { 3678 field |= TRB_CHAIN; 3679 more_trbs_coming = true; 3680 } else { 3681 td->last_trb = ep_ring->enqueue; 3682 field |= TRB_IOC; 3683 if (xhci->hci_version == 0x100 && 3684 !(xhci->quirks & 3685 XHCI_AVOID_BEI)) { 3686 /* Set BEI bit except for the last td */ 3687 if (i < num_tds - 1) 3688 field |= TRB_BEI; 3689 } 3690 more_trbs_coming = false; 3691 } 3692 3693 /* Calculate TRB length */ 3694 trb_buff_len = TRB_MAX_BUFF_SIZE - 3695 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); 3696 if (trb_buff_len > td_remain_len) 3697 trb_buff_len = td_remain_len; 3698 3699 /* Set the TRB length, TD size, & interrupter fields. */ 3700 if (xhci->hci_version < 0x100) { 3701 remainder = xhci_td_remainder( 3702 td_len - running_total); 3703 } else { 3704 remainder = xhci_v1_0_td_remainder( 3705 running_total, trb_buff_len, 3706 total_packet_count, urb, 3707 (trbs_per_td - j - 1)); 3708 } 3709 length_field = TRB_LEN(trb_buff_len) | 3710 remainder | 3711 TRB_INTR_TARGET(0); 3712 3713 queue_trb(xhci, ep_ring, more_trbs_coming, 3714 lower_32_bits(addr), 3715 upper_32_bits(addr), 3716 length_field, 3717 field); 3718 running_total += trb_buff_len; 3719 3720 addr += trb_buff_len; 3721 td_remain_len -= trb_buff_len; 3722 } 3723 3724 /* Check TD length */ 3725 if (running_total != td_len) { 3726 xhci_err(xhci, "ISOC TD length unmatch\n"); 3727 ret = -EINVAL; 3728 goto cleanup; 3729 } 3730 } 3731 3732 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { 3733 if (xhci->quirks & XHCI_AMD_PLL_FIX) 3734 usb_amd_quirk_pll_disable(); 3735 } 3736 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; 3737 3738 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, 3739 start_cycle, start_trb); 3740 return 0; 3741 cleanup: 3742 /* Clean up a partially enqueued isoc transfer. */ 3743 3744 for (i--; i >= 0; i--) 3745 list_del_init(&urb_priv->td[i]->td_list); 3746 3747 /* Use the first TD as a temporary variable to turn the TDs we've queued 3748 * into No-ops with a software-owned cycle bit. That way the hardware 3749 * won't accidentally start executing bogus TDs when we partially 3750 * overwrite them. td->first_trb and td->start_seg are already set. 3751 */ 3752 urb_priv->td[0]->last_trb = ep_ring->enqueue; 3753 /* Every TRB except the first & last will have its cycle bit flipped. */ 3754 td_to_noop(xhci, ep_ring, urb_priv->td[0], true); 3755 3756 /* Reset the ring enqueue back to the first TRB and its cycle bit. */ 3757 ep_ring->enqueue = urb_priv->td[0]->first_trb; 3758 ep_ring->enq_seg = urb_priv->td[0]->start_seg; 3759 ep_ring->cycle_state = start_cycle; 3760 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; 3761 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); 3762 return ret; 3763 } 3764 3765 /* 3766 * Check transfer ring to guarantee there is enough room for the urb. 3767 * Update ISO URB start_frame and interval. 3768 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to 3769 * update the urb->start_frame by now. 3770 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. 3771 */ 3772 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, 3773 struct urb *urb, int slot_id, unsigned int ep_index) 3774 { 3775 struct xhci_virt_device *xdev; 3776 struct xhci_ring *ep_ring; 3777 struct xhci_ep_ctx *ep_ctx; 3778 int start_frame; 3779 int xhci_interval; 3780 int ep_interval; 3781 int num_tds, num_trbs, i; 3782 int ret; 3783 3784 xdev = xhci->devs[slot_id]; 3785 ep_ring = xdev->eps[ep_index].ring; 3786 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); 3787 3788 num_trbs = 0; 3789 num_tds = urb->number_of_packets; 3790 for (i = 0; i < num_tds; i++) 3791 num_trbs += count_isoc_trbs_needed(xhci, urb, i); 3792 3793 /* Check the ring to guarantee there is enough room for the whole urb. 3794 * Do not insert any td of the urb to the ring if the check failed. 3795 */ 3796 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, 3797 num_trbs, mem_flags); 3798 if (ret) 3799 return ret; 3800 3801 start_frame = readl(&xhci->run_regs->microframe_index); 3802 start_frame &= 0x3fff; 3803 3804 urb->start_frame = start_frame; 3805 if (urb->dev->speed == USB_SPEED_LOW || 3806 urb->dev->speed == USB_SPEED_FULL) 3807 urb->start_frame >>= 3; 3808 3809 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); 3810 ep_interval = urb->interval; 3811 /* Convert to microframes */ 3812 if (urb->dev->speed == USB_SPEED_LOW || 3813 urb->dev->speed == USB_SPEED_FULL) 3814 ep_interval *= 8; 3815 /* FIXME change this to a warning and a suggestion to use the new API 3816 * to set the polling interval (once the API is added). 3817 */ 3818 if (xhci_interval != ep_interval) { 3819 dev_dbg_ratelimited(&urb->dev->dev, 3820 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", 3821 ep_interval, ep_interval == 1 ? "" : "s", 3822 xhci_interval, xhci_interval == 1 ? "" : "s"); 3823 urb->interval = xhci_interval; 3824 /* Convert back to frames for LS/FS devices */ 3825 if (urb->dev->speed == USB_SPEED_LOW || 3826 urb->dev->speed == USB_SPEED_FULL) 3827 urb->interval /= 8; 3828 } 3829 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; 3830 3831 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); 3832 } 3833 3834 /**** Command Ring Operations ****/ 3835 3836 /* Generic function for queueing a command TRB on the command ring. 3837 * Check to make sure there's room on the command ring for one command TRB. 3838 * Also check that there's room reserved for commands that must not fail. 3839 * If this is a command that must not fail, meaning command_must_succeed = TRUE, 3840 * then only check for the number of reserved spots. 3841 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB 3842 * because the command event handler may want to resubmit a failed command. 3843 */ 3844 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3845 u32 field1, u32 field2, 3846 u32 field3, u32 field4, bool command_must_succeed) 3847 { 3848 int reserved_trbs = xhci->cmd_ring_reserved_trbs; 3849 int ret; 3850 if (xhci->xhc_state & XHCI_STATE_DYING) 3851 return -ESHUTDOWN; 3852 3853 if (!command_must_succeed) 3854 reserved_trbs++; 3855 3856 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, 3857 reserved_trbs, GFP_ATOMIC); 3858 if (ret < 0) { 3859 xhci_err(xhci, "ERR: No room for command on command ring\n"); 3860 if (command_must_succeed) 3861 xhci_err(xhci, "ERR: Reserved TRB counting for " 3862 "unfailable commands failed.\n"); 3863 return ret; 3864 } 3865 3866 cmd->command_trb = xhci->cmd_ring->enqueue; 3867 list_add_tail(&cmd->cmd_list, &xhci->cmd_list); 3868 3869 /* if there are no other commands queued we start the timeout timer */ 3870 if (xhci->cmd_list.next == &cmd->cmd_list && 3871 !timer_pending(&xhci->cmd_timer)) { 3872 xhci->current_cmd = cmd; 3873 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); 3874 } 3875 3876 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, 3877 field4 | xhci->cmd_ring->cycle_state); 3878 return 0; 3879 } 3880 3881 /* Queue a slot enable or disable request on the command ring */ 3882 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, 3883 u32 trb_type, u32 slot_id) 3884 { 3885 return queue_command(xhci, cmd, 0, 0, 0, 3886 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); 3887 } 3888 3889 /* Queue an address device command TRB */ 3890 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3891 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) 3892 { 3893 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3894 upper_32_bits(in_ctx_ptr), 0, 3895 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) 3896 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); 3897 } 3898 3899 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, 3900 u32 field1, u32 field2, u32 field3, u32 field4) 3901 { 3902 return queue_command(xhci, cmd, field1, field2, field3, field4, false); 3903 } 3904 3905 /* Queue a reset device command TRB */ 3906 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, 3907 u32 slot_id) 3908 { 3909 return queue_command(xhci, cmd, 0, 0, 0, 3910 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), 3911 false); 3912 } 3913 3914 /* Queue a configure endpoint command TRB */ 3915 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, 3916 struct xhci_command *cmd, dma_addr_t in_ctx_ptr, 3917 u32 slot_id, bool command_must_succeed) 3918 { 3919 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3920 upper_32_bits(in_ctx_ptr), 0, 3921 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), 3922 command_must_succeed); 3923 } 3924 3925 /* Queue an evaluate context command TRB */ 3926 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, 3927 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) 3928 { 3929 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), 3930 upper_32_bits(in_ctx_ptr), 0, 3931 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), 3932 command_must_succeed); 3933 } 3934 3935 /* 3936 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop 3937 * activity on an endpoint that is about to be suspended. 3938 */ 3939 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, 3940 int slot_id, unsigned int ep_index, int suspend) 3941 { 3942 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3943 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3944 u32 type = TRB_TYPE(TRB_STOP_RING); 3945 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); 3946 3947 return queue_command(xhci, cmd, 0, 0, 0, 3948 trb_slot_id | trb_ep_index | type | trb_suspend, false); 3949 } 3950 3951 /* Set Transfer Ring Dequeue Pointer command. 3952 * This should not be used for endpoints that have streams enabled. 3953 */ 3954 static int queue_set_tr_deq(struct xhci_hcd *xhci, struct xhci_command *cmd, 3955 int slot_id, 3956 unsigned int ep_index, unsigned int stream_id, 3957 struct xhci_segment *deq_seg, 3958 union xhci_trb *deq_ptr, u32 cycle_state) 3959 { 3960 dma_addr_t addr; 3961 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3962 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3963 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); 3964 u32 trb_sct = 0; 3965 u32 type = TRB_TYPE(TRB_SET_DEQ); 3966 struct xhci_virt_ep *ep; 3967 3968 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); 3969 if (addr == 0) { 3970 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3971 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", 3972 deq_seg, deq_ptr); 3973 return 0; 3974 } 3975 ep = &xhci->devs[slot_id]->eps[ep_index]; 3976 if ((ep->ep_state & SET_DEQ_PENDING)) { 3977 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); 3978 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); 3979 return 0; 3980 } 3981 ep->queued_deq_seg = deq_seg; 3982 ep->queued_deq_ptr = deq_ptr; 3983 if (stream_id) 3984 trb_sct = SCT_FOR_TRB(SCT_PRI_TR); 3985 return queue_command(xhci, cmd, 3986 lower_32_bits(addr) | trb_sct | cycle_state, 3987 upper_32_bits(addr), trb_stream_id, 3988 trb_slot_id | trb_ep_index | type, false); 3989 } 3990 3991 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, 3992 int slot_id, unsigned int ep_index) 3993 { 3994 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); 3995 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); 3996 u32 type = TRB_TYPE(TRB_RESET_EP); 3997 3998 return queue_command(xhci, cmd, 0, 0, 0, 3999 trb_slot_id | trb_ep_index | type, false); 4000 } 4001