xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 26dd3e4f)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73 
74 /*
75  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76  * address of the TRB.
77  */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 		union xhci_trb *trb)
80 {
81 	unsigned long segment_offset;
82 
83 	if (!seg || !trb || trb < seg->trbs)
84 		return 0;
85 	/* offset in TRBs */
86 	segment_offset = trb - seg->trbs;
87 	if (segment_offset >= TRBS_PER_SEGMENT)
88 		return 0;
89 	return seg->dma + (segment_offset * sizeof(*trb));
90 }
91 
92 static bool trb_is_noop(union xhci_trb *trb)
93 {
94 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
95 }
96 
97 static bool trb_is_link(union xhci_trb *trb)
98 {
99 	return TRB_TYPE_LINK_LE32(trb->link.control);
100 }
101 
102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
103 {
104 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
105 }
106 
107 static bool last_trb_on_ring(struct xhci_ring *ring,
108 			struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 	return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
111 }
112 
113 static bool link_trb_toggles_cycle(union xhci_trb *trb)
114 {
115 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
116 }
117 
118 static bool last_td_in_urb(struct xhci_td *td)
119 {
120 	struct urb_priv *urb_priv = td->urb->hcpriv;
121 
122 	return urb_priv->td_cnt == urb_priv->length;
123 }
124 
125 static void inc_td_cnt(struct urb *urb)
126 {
127 	struct urb_priv *urb_priv = urb->hcpriv;
128 
129 	urb_priv->td_cnt++;
130 }
131 
132 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
133  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
134  * effect the ring dequeue or enqueue pointers.
135  */
136 static void next_trb(struct xhci_hcd *xhci,
137 		struct xhci_ring *ring,
138 		struct xhci_segment **seg,
139 		union xhci_trb **trb)
140 {
141 	if (trb_is_link(*trb)) {
142 		*seg = (*seg)->next;
143 		*trb = ((*seg)->trbs);
144 	} else {
145 		(*trb)++;
146 	}
147 }
148 
149 /*
150  * See Cycle bit rules. SW is the consumer for the event ring only.
151  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
152  */
153 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
154 {
155 	ring->deq_updates++;
156 
157 	/* event ring doesn't have link trbs, check for last trb */
158 	if (ring->type == TYPE_EVENT) {
159 		if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
160 			ring->dequeue++;
161 			return;
162 		}
163 		if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
164 			ring->cycle_state ^= 1;
165 		ring->deq_seg = ring->deq_seg->next;
166 		ring->dequeue = ring->deq_seg->trbs;
167 		return;
168 	}
169 
170 	/* All other rings have link trbs */
171 	if (!trb_is_link(ring->dequeue)) {
172 		ring->dequeue++;
173 		ring->num_trbs_free++;
174 	}
175 	while (trb_is_link(ring->dequeue)) {
176 		ring->deq_seg = ring->deq_seg->next;
177 		ring->dequeue = ring->deq_seg->trbs;
178 	}
179 	return;
180 }
181 
182 /*
183  * See Cycle bit rules. SW is the consumer for the event ring only.
184  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
185  *
186  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
187  * chain bit is set), then set the chain bit in all the following link TRBs.
188  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
189  * have their chain bit cleared (so that each Link TRB is a separate TD).
190  *
191  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
192  * set, but other sections talk about dealing with the chain bit set.  This was
193  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
194  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
195  *
196  * @more_trbs_coming:	Will you enqueue more TRBs before calling
197  *			prepare_transfer()?
198  */
199 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
200 			bool more_trbs_coming)
201 {
202 	u32 chain;
203 	union xhci_trb *next;
204 
205 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
206 	/* If this is not event ring, there is one less usable TRB */
207 	if (!trb_is_link(ring->enqueue))
208 		ring->num_trbs_free--;
209 	next = ++(ring->enqueue);
210 
211 	ring->enq_updates++;
212 	/* Update the dequeue pointer further if that was a link TRB */
213 	while (trb_is_link(next)) {
214 
215 		/*
216 		 * If the caller doesn't plan on enqueueing more TDs before
217 		 * ringing the doorbell, then we don't want to give the link TRB
218 		 * to the hardware just yet. We'll give the link TRB back in
219 		 * prepare_ring() just before we enqueue the TD at the top of
220 		 * the ring.
221 		 */
222 		if (!chain && !more_trbs_coming)
223 			break;
224 
225 		/* If we're not dealing with 0.95 hardware or isoc rings on
226 		 * AMD 0.96 host, carry over the chain bit of the previous TRB
227 		 * (which may mean the chain bit is cleared).
228 		 */
229 		if (!(ring->type == TYPE_ISOC &&
230 		      (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
231 		    !xhci_link_trb_quirk(xhci)) {
232 			next->link.control &= cpu_to_le32(~TRB_CHAIN);
233 			next->link.control |= cpu_to_le32(chain);
234 		}
235 		/* Give this link TRB to the hardware */
236 		wmb();
237 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
238 
239 		/* Toggle the cycle bit after the last ring segment. */
240 		if (link_trb_toggles_cycle(next))
241 			ring->cycle_state ^= 1;
242 
243 		ring->enq_seg = ring->enq_seg->next;
244 		ring->enqueue = ring->enq_seg->trbs;
245 		next = ring->enqueue;
246 	}
247 }
248 
249 /*
250  * Check to see if there's room to enqueue num_trbs on the ring and make sure
251  * enqueue pointer will not advance into dequeue segment. See rules above.
252  */
253 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
254 		unsigned int num_trbs)
255 {
256 	int num_trbs_in_deq_seg;
257 
258 	if (ring->num_trbs_free < num_trbs)
259 		return 0;
260 
261 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
262 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
263 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
264 			return 0;
265 	}
266 
267 	return 1;
268 }
269 
270 /* Ring the host controller doorbell after placing a command on the ring */
271 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
272 {
273 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
274 		return;
275 
276 	xhci_dbg(xhci, "// Ding dong!\n");
277 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
278 	/* Flush PCI posted writes */
279 	readl(&xhci->dba->doorbell[0]);
280 }
281 
282 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
283 {
284 	u64 temp_64;
285 	int ret;
286 
287 	xhci_dbg(xhci, "Abort command ring\n");
288 
289 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
290 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
291 
292 	/*
293 	 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
294 	 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
295 	 * but the completion event in never sent. Use the cmd timeout timer to
296 	 * handle those cases. Use twice the time to cover the bit polling retry
297 	 */
298 	mod_timer(&xhci->cmd_timer, jiffies + (2 * XHCI_CMD_DEFAULT_TIMEOUT));
299 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
300 			&xhci->op_regs->cmd_ring);
301 
302 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
303 	 * time the completion od all xHCI commands, including
304 	 * the Command Abort operation. If software doesn't see
305 	 * CRR negated in a timely manner (e.g. longer than 5
306 	 * seconds), then it should assume that the there are
307 	 * larger problems with the xHC and assert HCRST.
308 	 */
309 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
310 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
311 	if (ret < 0) {
312 		/* we are about to kill xhci, give it one more chance */
313 		xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
314 			      &xhci->op_regs->cmd_ring);
315 		udelay(1000);
316 		ret = xhci_handshake(&xhci->op_regs->cmd_ring,
317 				     CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
318 		if (ret == 0)
319 			return 0;
320 
321 		xhci_err(xhci, "Stopped the command ring failed, "
322 				"maybe the host is dead\n");
323 		del_timer(&xhci->cmd_timer);
324 		xhci->xhc_state |= XHCI_STATE_DYING;
325 		xhci_halt(xhci);
326 		return -ESHUTDOWN;
327 	}
328 
329 	return 0;
330 }
331 
332 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
333 		unsigned int slot_id,
334 		unsigned int ep_index,
335 		unsigned int stream_id)
336 {
337 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
338 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
339 	unsigned int ep_state = ep->ep_state;
340 
341 	/* Don't ring the doorbell for this endpoint if there are pending
342 	 * cancellations because we don't want to interrupt processing.
343 	 * We don't want to restart any stream rings if there's a set dequeue
344 	 * pointer command pending because the device can choose to start any
345 	 * stream once the endpoint is on the HW schedule.
346 	 */
347 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
348 	    (ep_state & EP_HALTED))
349 		return;
350 	writel(DB_VALUE(ep_index, stream_id), db_addr);
351 	/* The CPU has better things to do at this point than wait for a
352 	 * write-posting flush.  It'll get there soon enough.
353 	 */
354 }
355 
356 /* Ring the doorbell for any rings with pending URBs */
357 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
358 		unsigned int slot_id,
359 		unsigned int ep_index)
360 {
361 	unsigned int stream_id;
362 	struct xhci_virt_ep *ep;
363 
364 	ep = &xhci->devs[slot_id]->eps[ep_index];
365 
366 	/* A ring has pending URBs if its TD list is not empty */
367 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
368 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
369 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
370 		return;
371 	}
372 
373 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
374 			stream_id++) {
375 		struct xhci_stream_info *stream_info = ep->stream_info;
376 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
377 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
378 						stream_id);
379 	}
380 }
381 
382 /* Get the right ring for the given slot_id, ep_index and stream_id.
383  * If the endpoint supports streams, boundary check the URB's stream ID.
384  * If the endpoint doesn't support streams, return the singular endpoint ring.
385  */
386 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
387 		unsigned int slot_id, unsigned int ep_index,
388 		unsigned int stream_id)
389 {
390 	struct xhci_virt_ep *ep;
391 
392 	ep = &xhci->devs[slot_id]->eps[ep_index];
393 	/* Common case: no streams */
394 	if (!(ep->ep_state & EP_HAS_STREAMS))
395 		return ep->ring;
396 
397 	if (stream_id == 0) {
398 		xhci_warn(xhci,
399 				"WARN: Slot ID %u, ep index %u has streams, "
400 				"but URB has no stream ID.\n",
401 				slot_id, ep_index);
402 		return NULL;
403 	}
404 
405 	if (stream_id < ep->stream_info->num_streams)
406 		return ep->stream_info->stream_rings[stream_id];
407 
408 	xhci_warn(xhci,
409 			"WARN: Slot ID %u, ep index %u has "
410 			"stream IDs 1 to %u allocated, "
411 			"but stream ID %u is requested.\n",
412 			slot_id, ep_index,
413 			ep->stream_info->num_streams - 1,
414 			stream_id);
415 	return NULL;
416 }
417 
418 /*
419  * Move the xHC's endpoint ring dequeue pointer past cur_td.
420  * Record the new state of the xHC's endpoint ring dequeue segment,
421  * dequeue pointer, and new consumer cycle state in state.
422  * Update our internal representation of the ring's dequeue pointer.
423  *
424  * We do this in three jumps:
425  *  - First we update our new ring state to be the same as when the xHC stopped.
426  *  - Then we traverse the ring to find the segment that contains
427  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
428  *    any link TRBs with the toggle cycle bit set.
429  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
430  *    if we've moved it past a link TRB with the toggle cycle bit set.
431  *
432  * Some of the uses of xhci_generic_trb are grotty, but if they're done
433  * with correct __le32 accesses they should work fine.  Only users of this are
434  * in here.
435  */
436 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
437 		unsigned int slot_id, unsigned int ep_index,
438 		unsigned int stream_id, struct xhci_td *cur_td,
439 		struct xhci_dequeue_state *state)
440 {
441 	struct xhci_virt_device *dev = xhci->devs[slot_id];
442 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
443 	struct xhci_ring *ep_ring;
444 	struct xhci_segment *new_seg;
445 	union xhci_trb *new_deq;
446 	dma_addr_t addr;
447 	u64 hw_dequeue;
448 	bool cycle_found = false;
449 	bool td_last_trb_found = false;
450 
451 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
452 			ep_index, stream_id);
453 	if (!ep_ring) {
454 		xhci_warn(xhci, "WARN can't find new dequeue state "
455 				"for invalid stream ID %u.\n",
456 				stream_id);
457 		return;
458 	}
459 
460 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
461 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
462 			"Finding endpoint context");
463 	/* 4.6.9 the css flag is written to the stream context for streams */
464 	if (ep->ep_state & EP_HAS_STREAMS) {
465 		struct xhci_stream_ctx *ctx =
466 			&ep->stream_info->stream_ctx_array[stream_id];
467 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
468 	} else {
469 		struct xhci_ep_ctx *ep_ctx
470 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
471 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
472 	}
473 
474 	new_seg = ep_ring->deq_seg;
475 	new_deq = ep_ring->dequeue;
476 	state->new_cycle_state = hw_dequeue & 0x1;
477 
478 	/*
479 	 * We want to find the pointer, segment and cycle state of the new trb
480 	 * (the one after current TD's last_trb). We know the cycle state at
481 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
482 	 * found.
483 	 */
484 	do {
485 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
486 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
487 			cycle_found = true;
488 			if (td_last_trb_found)
489 				break;
490 		}
491 		if (new_deq == cur_td->last_trb)
492 			td_last_trb_found = true;
493 
494 		if (cycle_found && trb_is_link(new_deq) &&
495 		    link_trb_toggles_cycle(new_deq))
496 			state->new_cycle_state ^= 0x1;
497 
498 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
499 
500 		/* Search wrapped around, bail out */
501 		if (new_deq == ep->ring->dequeue) {
502 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
503 			state->new_deq_seg = NULL;
504 			state->new_deq_ptr = NULL;
505 			return;
506 		}
507 
508 	} while (!cycle_found || !td_last_trb_found);
509 
510 	state->new_deq_seg = new_seg;
511 	state->new_deq_ptr = new_deq;
512 
513 	/* Don't update the ring cycle state for the producer (us). */
514 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
515 			"Cycle state = 0x%x", state->new_cycle_state);
516 
517 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
518 			"New dequeue segment = %p (virtual)",
519 			state->new_deq_seg);
520 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
521 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
522 			"New dequeue pointer = 0x%llx (DMA)",
523 			(unsigned long long) addr);
524 }
525 
526 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
527  * (The last TRB actually points to the ring enqueue pointer, which is not part
528  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
529  */
530 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
531 		       struct xhci_td *td, bool flip_cycle)
532 {
533 	struct xhci_segment *seg	= td->start_seg;
534 	union xhci_trb *trb		= td->first_trb;
535 
536 	while (1) {
537 		if (trb_is_link(trb)) {
538 			/* unchain chained link TRBs */
539 			trb->link.control &= cpu_to_le32(~TRB_CHAIN);
540 		} else {
541 			trb->generic.field[0] = 0;
542 			trb->generic.field[1] = 0;
543 			trb->generic.field[2] = 0;
544 			/* Preserve only the cycle bit of this TRB */
545 			trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
546 			trb->generic.field[3] |= cpu_to_le32(
547 				TRB_TYPE(TRB_TR_NOOP));
548 		}
549 		/* flip cycle if asked to */
550 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
551 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
552 
553 		if (trb == td->last_trb)
554 			break;
555 
556 		next_trb(xhci, ep_ring, &seg, &trb);
557 	}
558 }
559 
560 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
561 		struct xhci_virt_ep *ep)
562 {
563 	ep->ep_state &= ~EP_HALT_PENDING;
564 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
565 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
566 	 * (since we didn't successfully stop the watchdog timer).
567 	 */
568 	if (del_timer(&ep->stop_cmd_timer))
569 		ep->stop_cmds_pending--;
570 }
571 
572 /*
573  * Must be called with xhci->lock held in interrupt context,
574  * releases and re-acquires xhci->lock
575  */
576 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
577 				     struct xhci_td *cur_td, int status)
578 {
579 	struct urb	*urb		= cur_td->urb;
580 	struct urb_priv	*urb_priv	= urb->hcpriv;
581 	struct usb_hcd	*hcd		= bus_to_hcd(urb->dev->bus);
582 
583 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
584 		xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
585 		if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
586 			if (xhci->quirks & XHCI_AMD_PLL_FIX)
587 				usb_amd_quirk_pll_enable();
588 		}
589 	}
590 	xhci_urb_free_priv(urb_priv);
591 	usb_hcd_unlink_urb_from_ep(hcd, urb);
592 	spin_unlock(&xhci->lock);
593 	usb_hcd_giveback_urb(hcd, urb, status);
594 	spin_lock(&xhci->lock);
595 }
596 
597 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
598 		struct xhci_ring *ring, struct xhci_td *td)
599 {
600 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
601 	struct xhci_segment *seg = td->bounce_seg;
602 	struct urb *urb = td->urb;
603 
604 	if (!seg || !urb)
605 		return;
606 
607 	if (usb_urb_dir_out(urb)) {
608 		dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
609 				 DMA_TO_DEVICE);
610 		return;
611 	}
612 
613 	/* for in tranfers we need to copy the data from bounce to sg */
614 	sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
615 			     seg->bounce_len, seg->bounce_offs);
616 	dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
617 			 DMA_FROM_DEVICE);
618 	seg->bounce_len = 0;
619 	seg->bounce_offs = 0;
620 }
621 
622 /*
623  * When we get a command completion for a Stop Endpoint Command, we need to
624  * unlink any cancelled TDs from the ring.  There are two ways to do that:
625  *
626  *  1. If the HW was in the middle of processing the TD that needs to be
627  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
628  *     in the TD with a Set Dequeue Pointer Command.
629  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
630  *     bit cleared) so that the HW will skip over them.
631  */
632 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
633 		union xhci_trb *trb, struct xhci_event_cmd *event)
634 {
635 	unsigned int ep_index;
636 	struct xhci_ring *ep_ring;
637 	struct xhci_virt_ep *ep;
638 	struct list_head *entry;
639 	struct xhci_td *cur_td = NULL;
640 	struct xhci_td *last_unlinked_td;
641 
642 	struct xhci_dequeue_state deq_state;
643 
644 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
645 		if (!xhci->devs[slot_id])
646 			xhci_warn(xhci, "Stop endpoint command "
647 				"completion for disabled slot %u\n",
648 				slot_id);
649 		return;
650 	}
651 
652 	memset(&deq_state, 0, sizeof(deq_state));
653 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
654 	ep = &xhci->devs[slot_id]->eps[ep_index];
655 
656 	if (list_empty(&ep->cancelled_td_list)) {
657 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
658 		ep->stopped_td = NULL;
659 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
660 		return;
661 	}
662 
663 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
664 	 * We have the xHCI lock, so nothing can modify this list until we drop
665 	 * it.  We're also in the event handler, so we can't get re-interrupted
666 	 * if another Stop Endpoint command completes
667 	 */
668 	list_for_each(entry, &ep->cancelled_td_list) {
669 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
670 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
671 				"Removing canceled TD starting at 0x%llx (dma).",
672 				(unsigned long long)xhci_trb_virt_to_dma(
673 					cur_td->start_seg, cur_td->first_trb));
674 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
675 		if (!ep_ring) {
676 			/* This shouldn't happen unless a driver is mucking
677 			 * with the stream ID after submission.  This will
678 			 * leave the TD on the hardware ring, and the hardware
679 			 * will try to execute it, and may access a buffer
680 			 * that has already been freed.  In the best case, the
681 			 * hardware will execute it, and the event handler will
682 			 * ignore the completion event for that TD, since it was
683 			 * removed from the td_list for that endpoint.  In
684 			 * short, don't muck with the stream ID after
685 			 * submission.
686 			 */
687 			xhci_warn(xhci, "WARN Cancelled URB %p "
688 					"has invalid stream ID %u.\n",
689 					cur_td->urb,
690 					cur_td->urb->stream_id);
691 			goto remove_finished_td;
692 		}
693 		/*
694 		 * If we stopped on the TD we need to cancel, then we have to
695 		 * move the xHC endpoint ring dequeue pointer past this TD.
696 		 */
697 		if (cur_td == ep->stopped_td)
698 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
699 					cur_td->urb->stream_id,
700 					cur_td, &deq_state);
701 		else
702 			td_to_noop(xhci, ep_ring, cur_td, false);
703 remove_finished_td:
704 		/*
705 		 * The event handler won't see a completion for this TD anymore,
706 		 * so remove it from the endpoint ring's TD list.  Keep it in
707 		 * the cancelled TD list for URB completion later.
708 		 */
709 		list_del_init(&cur_td->td_list);
710 	}
711 	last_unlinked_td = cur_td;
712 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
713 
714 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
715 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
716 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
717 				ep->stopped_td->urb->stream_id, &deq_state);
718 		xhci_ring_cmd_db(xhci);
719 	} else {
720 		/* Otherwise ring the doorbell(s) to restart queued transfers */
721 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
722 	}
723 
724 	ep->stopped_td = NULL;
725 
726 	/*
727 	 * Drop the lock and complete the URBs in the cancelled TD list.
728 	 * New TDs to be cancelled might be added to the end of the list before
729 	 * we can complete all the URBs for the TDs we already unlinked.
730 	 * So stop when we've completed the URB for the last TD we unlinked.
731 	 */
732 	do {
733 		cur_td = list_entry(ep->cancelled_td_list.next,
734 				struct xhci_td, cancelled_td_list);
735 		list_del_init(&cur_td->cancelled_td_list);
736 
737 		/* Clean up the cancelled URB */
738 		/* Doesn't matter what we pass for status, since the core will
739 		 * just overwrite it (because the URB has been unlinked).
740 		 */
741 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
742 		if (ep_ring && cur_td->bounce_seg)
743 			xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
744 		inc_td_cnt(cur_td->urb);
745 		if (last_td_in_urb(cur_td))
746 			xhci_giveback_urb_in_irq(xhci, cur_td, 0);
747 
748 		/* Stop processing the cancelled list if the watchdog timer is
749 		 * running.
750 		 */
751 		if (xhci->xhc_state & XHCI_STATE_DYING)
752 			return;
753 	} while (cur_td != last_unlinked_td);
754 
755 	/* Return to the event handler with xhci->lock re-acquired */
756 }
757 
758 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
759 {
760 	struct xhci_td *cur_td;
761 
762 	while (!list_empty(&ring->td_list)) {
763 		cur_td = list_first_entry(&ring->td_list,
764 				struct xhci_td, td_list);
765 		list_del_init(&cur_td->td_list);
766 		if (!list_empty(&cur_td->cancelled_td_list))
767 			list_del_init(&cur_td->cancelled_td_list);
768 
769 		if (cur_td->bounce_seg)
770 			xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
771 
772 		inc_td_cnt(cur_td->urb);
773 		if (last_td_in_urb(cur_td))
774 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
775 	}
776 }
777 
778 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
779 		int slot_id, int ep_index)
780 {
781 	struct xhci_td *cur_td;
782 	struct xhci_virt_ep *ep;
783 	struct xhci_ring *ring;
784 
785 	ep = &xhci->devs[slot_id]->eps[ep_index];
786 	if ((ep->ep_state & EP_HAS_STREAMS) ||
787 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
788 		int stream_id;
789 
790 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
791 				stream_id++) {
792 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
793 					"Killing URBs for slot ID %u, ep index %u, stream %u",
794 					slot_id, ep_index, stream_id + 1);
795 			xhci_kill_ring_urbs(xhci,
796 					ep->stream_info->stream_rings[stream_id]);
797 		}
798 	} else {
799 		ring = ep->ring;
800 		if (!ring)
801 			return;
802 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
803 				"Killing URBs for slot ID %u, ep index %u",
804 				slot_id, ep_index);
805 		xhci_kill_ring_urbs(xhci, ring);
806 	}
807 	while (!list_empty(&ep->cancelled_td_list)) {
808 		cur_td = list_first_entry(&ep->cancelled_td_list,
809 				struct xhci_td, cancelled_td_list);
810 		list_del_init(&cur_td->cancelled_td_list);
811 
812 		inc_td_cnt(cur_td->urb);
813 		if (last_td_in_urb(cur_td))
814 			xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
815 	}
816 }
817 
818 /* Watchdog timer function for when a stop endpoint command fails to complete.
819  * In this case, we assume the host controller is broken or dying or dead.  The
820  * host may still be completing some other events, so we have to be careful to
821  * let the event ring handler and the URB dequeueing/enqueueing functions know
822  * through xhci->state.
823  *
824  * The timer may also fire if the host takes a very long time to respond to the
825  * command, and the stop endpoint command completion handler cannot delete the
826  * timer before the timer function is called.  Another endpoint cancellation may
827  * sneak in before the timer function can grab the lock, and that may queue
828  * another stop endpoint command and add the timer back.  So we cannot use a
829  * simple flag to say whether there is a pending stop endpoint command for a
830  * particular endpoint.
831  *
832  * Instead we use a combination of that flag and a counter for the number of
833  * pending stop endpoint commands.  If the timer is the tail end of the last
834  * stop endpoint command, and the endpoint's command is still pending, we assume
835  * the host is dying.
836  */
837 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
838 {
839 	struct xhci_hcd *xhci;
840 	struct xhci_virt_ep *ep;
841 	int ret, i, j;
842 	unsigned long flags;
843 
844 	ep = (struct xhci_virt_ep *) arg;
845 	xhci = ep->xhci;
846 
847 	spin_lock_irqsave(&xhci->lock, flags);
848 
849 	ep->stop_cmds_pending--;
850 	if (xhci->xhc_state & XHCI_STATE_REMOVING) {
851 		spin_unlock_irqrestore(&xhci->lock, flags);
852 		return;
853 	}
854 	if (xhci->xhc_state & XHCI_STATE_DYING) {
855 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
856 				"Stop EP timer ran, but another timer marked "
857 				"xHCI as DYING, exiting.");
858 		spin_unlock_irqrestore(&xhci->lock, flags);
859 		return;
860 	}
861 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
862 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
863 				"Stop EP timer ran, but no command pending, "
864 				"exiting.");
865 		spin_unlock_irqrestore(&xhci->lock, flags);
866 		return;
867 	}
868 
869 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
870 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
871 	/* Oops, HC is dead or dying or at least not responding to the stop
872 	 * endpoint command.
873 	 */
874 	xhci->xhc_state |= XHCI_STATE_DYING;
875 	/* Disable interrupts from the host controller and start halting it */
876 	xhci_quiesce(xhci);
877 	spin_unlock_irqrestore(&xhci->lock, flags);
878 
879 	ret = xhci_halt(xhci);
880 
881 	spin_lock_irqsave(&xhci->lock, flags);
882 	if (ret < 0) {
883 		/* This is bad; the host is not responding to commands and it's
884 		 * not allowing itself to be halted.  At least interrupts are
885 		 * disabled. If we call usb_hc_died(), it will attempt to
886 		 * disconnect all device drivers under this host.  Those
887 		 * disconnect() methods will wait for all URBs to be unlinked,
888 		 * so we must complete them.
889 		 */
890 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
891 		xhci_warn(xhci, "Completing active URBs anyway.\n");
892 		/* We could turn all TDs on the rings to no-ops.  This won't
893 		 * help if the host has cached part of the ring, and is slow if
894 		 * we want to preserve the cycle bit.  Skip it and hope the host
895 		 * doesn't touch the memory.
896 		 */
897 	}
898 	for (i = 0; i < MAX_HC_SLOTS; i++) {
899 		if (!xhci->devs[i])
900 			continue;
901 		for (j = 0; j < 31; j++)
902 			xhci_kill_endpoint_urbs(xhci, i, j);
903 	}
904 	spin_unlock_irqrestore(&xhci->lock, flags);
905 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
906 			"Calling usb_hc_died()");
907 	usb_hc_died(xhci_to_hcd(xhci));
908 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
909 			"xHCI host controller is dead.");
910 }
911 
912 
913 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
914 		struct xhci_virt_device *dev,
915 		struct xhci_ring *ep_ring,
916 		unsigned int ep_index)
917 {
918 	union xhci_trb *dequeue_temp;
919 	int num_trbs_free_temp;
920 	bool revert = false;
921 
922 	num_trbs_free_temp = ep_ring->num_trbs_free;
923 	dequeue_temp = ep_ring->dequeue;
924 
925 	/* If we get two back-to-back stalls, and the first stalled transfer
926 	 * ends just before a link TRB, the dequeue pointer will be left on
927 	 * the link TRB by the code in the while loop.  So we have to update
928 	 * the dequeue pointer one segment further, or we'll jump off
929 	 * the segment into la-la-land.
930 	 */
931 	if (trb_is_link(ep_ring->dequeue)) {
932 		ep_ring->deq_seg = ep_ring->deq_seg->next;
933 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
934 	}
935 
936 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
937 		/* We have more usable TRBs */
938 		ep_ring->num_trbs_free++;
939 		ep_ring->dequeue++;
940 		if (trb_is_link(ep_ring->dequeue)) {
941 			if (ep_ring->dequeue ==
942 					dev->eps[ep_index].queued_deq_ptr)
943 				break;
944 			ep_ring->deq_seg = ep_ring->deq_seg->next;
945 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
946 		}
947 		if (ep_ring->dequeue == dequeue_temp) {
948 			revert = true;
949 			break;
950 		}
951 	}
952 
953 	if (revert) {
954 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
955 		ep_ring->num_trbs_free = num_trbs_free_temp;
956 	}
957 }
958 
959 /*
960  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
961  * we need to clear the set deq pending flag in the endpoint ring state, so that
962  * the TD queueing code can ring the doorbell again.  We also need to ring the
963  * endpoint doorbell to restart the ring, but only if there aren't more
964  * cancellations pending.
965  */
966 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
967 		union xhci_trb *trb, u32 cmd_comp_code)
968 {
969 	unsigned int ep_index;
970 	unsigned int stream_id;
971 	struct xhci_ring *ep_ring;
972 	struct xhci_virt_device *dev;
973 	struct xhci_virt_ep *ep;
974 	struct xhci_ep_ctx *ep_ctx;
975 	struct xhci_slot_ctx *slot_ctx;
976 
977 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
978 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
979 	dev = xhci->devs[slot_id];
980 	ep = &dev->eps[ep_index];
981 
982 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
983 	if (!ep_ring) {
984 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
985 				stream_id);
986 		/* XXX: Harmless??? */
987 		goto cleanup;
988 	}
989 
990 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
991 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
992 
993 	if (cmd_comp_code != COMP_SUCCESS) {
994 		unsigned int ep_state;
995 		unsigned int slot_state;
996 
997 		switch (cmd_comp_code) {
998 		case COMP_TRB_ERR:
999 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1000 			break;
1001 		case COMP_CTX_STATE:
1002 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1003 			ep_state = GET_EP_CTX_STATE(ep_ctx);
1004 			slot_state = le32_to_cpu(slot_ctx->dev_state);
1005 			slot_state = GET_SLOT_STATE(slot_state);
1006 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1007 					"Slot state = %u, EP state = %u",
1008 					slot_state, ep_state);
1009 			break;
1010 		case COMP_EBADSLT:
1011 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1012 					slot_id);
1013 			break;
1014 		default:
1015 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1016 					cmd_comp_code);
1017 			break;
1018 		}
1019 		/* OK what do we do now?  The endpoint state is hosed, and we
1020 		 * should never get to this point if the synchronization between
1021 		 * queueing, and endpoint state are correct.  This might happen
1022 		 * if the device gets disconnected after we've finished
1023 		 * cancelling URBs, which might not be an error...
1024 		 */
1025 	} else {
1026 		u64 deq;
1027 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1028 		if (ep->ep_state & EP_HAS_STREAMS) {
1029 			struct xhci_stream_ctx *ctx =
1030 				&ep->stream_info->stream_ctx_array[stream_id];
1031 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1032 		} else {
1033 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1034 		}
1035 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1036 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1037 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1038 					 ep->queued_deq_ptr) == deq) {
1039 			/* Update the ring's dequeue segment and dequeue pointer
1040 			 * to reflect the new position.
1041 			 */
1042 			update_ring_for_set_deq_completion(xhci, dev,
1043 				ep_ring, ep_index);
1044 		} else {
1045 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1046 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1047 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1048 		}
1049 	}
1050 
1051 cleanup:
1052 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1053 	dev->eps[ep_index].queued_deq_seg = NULL;
1054 	dev->eps[ep_index].queued_deq_ptr = NULL;
1055 	/* Restart any rings with pending URBs */
1056 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1057 }
1058 
1059 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1060 		union xhci_trb *trb, u32 cmd_comp_code)
1061 {
1062 	unsigned int ep_index;
1063 
1064 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1065 	/* This command will only fail if the endpoint wasn't halted,
1066 	 * but we don't care.
1067 	 */
1068 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1069 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1070 
1071 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1072 	 * command complete before the endpoint can be used.  Queue that here
1073 	 * because the HW can't handle two commands being queued in a row.
1074 	 */
1075 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1076 		struct xhci_command *command;
1077 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1078 		if (!command) {
1079 			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1080 			return;
1081 		}
1082 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1083 				"Queueing configure endpoint command");
1084 		xhci_queue_configure_endpoint(xhci, command,
1085 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1086 				false);
1087 		xhci_ring_cmd_db(xhci);
1088 	} else {
1089 		/* Clear our internal halted state */
1090 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1091 	}
1092 }
1093 
1094 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1095 		struct xhci_command *command, u32 cmd_comp_code)
1096 {
1097 	if (cmd_comp_code == COMP_SUCCESS)
1098 		command->slot_id = slot_id;
1099 	else
1100 		command->slot_id = 0;
1101 }
1102 
1103 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1104 {
1105 	struct xhci_virt_device *virt_dev;
1106 
1107 	virt_dev = xhci->devs[slot_id];
1108 	if (!virt_dev)
1109 		return;
1110 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1111 		/* Delete default control endpoint resources */
1112 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1113 	xhci_free_virt_device(xhci, slot_id);
1114 }
1115 
1116 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1117 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1118 {
1119 	struct xhci_virt_device *virt_dev;
1120 	struct xhci_input_control_ctx *ctrl_ctx;
1121 	unsigned int ep_index;
1122 	unsigned int ep_state;
1123 	u32 add_flags, drop_flags;
1124 
1125 	/*
1126 	 * Configure endpoint commands can come from the USB core
1127 	 * configuration or alt setting changes, or because the HW
1128 	 * needed an extra configure endpoint command after a reset
1129 	 * endpoint command or streams were being configured.
1130 	 * If the command was for a halted endpoint, the xHCI driver
1131 	 * is not waiting on the configure endpoint command.
1132 	 */
1133 	virt_dev = xhci->devs[slot_id];
1134 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1135 	if (!ctrl_ctx) {
1136 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1137 		return;
1138 	}
1139 
1140 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1141 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1142 	/* Input ctx add_flags are the endpoint index plus one */
1143 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1144 
1145 	/* A usb_set_interface() call directly after clearing a halted
1146 	 * condition may race on this quirky hardware.  Not worth
1147 	 * worrying about, since this is prototype hardware.  Not sure
1148 	 * if this will work for streams, but streams support was
1149 	 * untested on this prototype.
1150 	 */
1151 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1152 			ep_index != (unsigned int) -1 &&
1153 			add_flags - SLOT_FLAG == drop_flags) {
1154 		ep_state = virt_dev->eps[ep_index].ep_state;
1155 		if (!(ep_state & EP_HALTED))
1156 			return;
1157 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1158 				"Completed config ep cmd - "
1159 				"last ep index = %d, state = %d",
1160 				ep_index, ep_state);
1161 		/* Clear internal halted state and restart ring(s) */
1162 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1163 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1164 		return;
1165 	}
1166 	return;
1167 }
1168 
1169 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1170 		struct xhci_event_cmd *event)
1171 {
1172 	xhci_dbg(xhci, "Completed reset device command.\n");
1173 	if (!xhci->devs[slot_id])
1174 		xhci_warn(xhci, "Reset device command completion "
1175 				"for disabled slot %u\n", slot_id);
1176 }
1177 
1178 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1179 		struct xhci_event_cmd *event)
1180 {
1181 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1182 		xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1183 		return;
1184 	}
1185 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1186 			"NEC firmware version %2x.%02x",
1187 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1188 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1189 }
1190 
1191 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1192 {
1193 	list_del(&cmd->cmd_list);
1194 
1195 	if (cmd->completion) {
1196 		cmd->status = status;
1197 		complete(cmd->completion);
1198 	} else {
1199 		kfree(cmd);
1200 	}
1201 }
1202 
1203 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1204 {
1205 	struct xhci_command *cur_cmd, *tmp_cmd;
1206 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1207 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1208 }
1209 
1210 /*
1211  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1212  * If there are other commands waiting then restart the ring and kick the timer.
1213  * This must be called with command ring stopped and xhci->lock held.
1214  */
1215 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1216 					 struct xhci_command *cur_cmd)
1217 {
1218 	struct xhci_command *i_cmd, *tmp_cmd;
1219 	u32 cycle_state;
1220 
1221 	/* Turn all aborted commands in list to no-ops, then restart */
1222 	list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1223 				 cmd_list) {
1224 
1225 		if (i_cmd->status != COMP_CMD_ABORT)
1226 			continue;
1227 
1228 		i_cmd->status = COMP_CMD_STOP;
1229 
1230 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1231 			 i_cmd->command_trb);
1232 		/* get cycle state from the original cmd trb */
1233 		cycle_state = le32_to_cpu(
1234 			i_cmd->command_trb->generic.field[3]) &	TRB_CYCLE;
1235 		/* modify the command trb to no-op command */
1236 		i_cmd->command_trb->generic.field[0] = 0;
1237 		i_cmd->command_trb->generic.field[1] = 0;
1238 		i_cmd->command_trb->generic.field[2] = 0;
1239 		i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1240 			TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1241 
1242 		/*
1243 		 * caller waiting for completion is called when command
1244 		 *  completion event is received for these no-op commands
1245 		 */
1246 	}
1247 
1248 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1249 
1250 	/* ring command ring doorbell to restart the command ring */
1251 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1252 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
1253 		xhci->current_cmd = cur_cmd;
1254 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1255 		xhci_ring_cmd_db(xhci);
1256 	}
1257 	return;
1258 }
1259 
1260 
1261 void xhci_handle_command_timeout(unsigned long data)
1262 {
1263 	struct xhci_hcd *xhci;
1264 	int ret;
1265 	unsigned long flags;
1266 	u64 hw_ring_state;
1267 	bool second_timeout = false;
1268 	xhci = (struct xhci_hcd *) data;
1269 
1270 	/* mark this command to be cancelled */
1271 	spin_lock_irqsave(&xhci->lock, flags);
1272 	if (xhci->current_cmd) {
1273 		if (xhci->current_cmd->status == COMP_CMD_ABORT)
1274 			second_timeout = true;
1275 		xhci->current_cmd->status = COMP_CMD_ABORT;
1276 	}
1277 
1278 	/* Make sure command ring is running before aborting it */
1279 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1280 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1281 	    (hw_ring_state & CMD_RING_RUNNING))  {
1282 		spin_unlock_irqrestore(&xhci->lock, flags);
1283 		xhci_dbg(xhci, "Command timeout\n");
1284 		ret = xhci_abort_cmd_ring(xhci);
1285 		if (unlikely(ret == -ESHUTDOWN)) {
1286 			xhci_err(xhci, "Abort command ring failed\n");
1287 			xhci_cleanup_command_queue(xhci);
1288 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1289 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
1290 		}
1291 		return;
1292 	}
1293 
1294 	/* command ring failed to restart, or host removed. Bail out */
1295 	if (second_timeout || xhci->xhc_state & XHCI_STATE_REMOVING) {
1296 		spin_unlock_irqrestore(&xhci->lock, flags);
1297 		xhci_dbg(xhci, "command timed out twice, ring start fail?\n");
1298 		xhci_cleanup_command_queue(xhci);
1299 		return;
1300 	}
1301 
1302 	/* command timeout on stopped ring, ring can't be aborted */
1303 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1304 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1305 	spin_unlock_irqrestore(&xhci->lock, flags);
1306 	return;
1307 }
1308 
1309 static void handle_cmd_completion(struct xhci_hcd *xhci,
1310 		struct xhci_event_cmd *event)
1311 {
1312 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1313 	u64 cmd_dma;
1314 	dma_addr_t cmd_dequeue_dma;
1315 	u32 cmd_comp_code;
1316 	union xhci_trb *cmd_trb;
1317 	struct xhci_command *cmd;
1318 	u32 cmd_type;
1319 
1320 	cmd_dma = le64_to_cpu(event->cmd_trb);
1321 	cmd_trb = xhci->cmd_ring->dequeue;
1322 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1323 			cmd_trb);
1324 	/*
1325 	 * Check whether the completion event is for our internal kept
1326 	 * command.
1327 	 */
1328 	if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1329 		xhci_warn(xhci,
1330 			  "ERROR mismatched command completion event\n");
1331 		return;
1332 	}
1333 
1334 	cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1335 
1336 	del_timer(&xhci->cmd_timer);
1337 
1338 	trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1339 
1340 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1341 
1342 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1343 	if (cmd_comp_code == COMP_CMD_STOP) {
1344 		xhci_handle_stopped_cmd_ring(xhci, cmd);
1345 		return;
1346 	}
1347 
1348 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1349 		xhci_err(xhci,
1350 			 "Command completion event does not match command\n");
1351 		return;
1352 	}
1353 
1354 	/*
1355 	 * Host aborted the command ring, check if the current command was
1356 	 * supposed to be aborted, otherwise continue normally.
1357 	 * The command ring is stopped now, but the xHC will issue a Command
1358 	 * Ring Stopped event which will cause us to restart it.
1359 	 */
1360 	if (cmd_comp_code == COMP_CMD_ABORT) {
1361 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1362 		if (cmd->status == COMP_CMD_ABORT)
1363 			goto event_handled;
1364 	}
1365 
1366 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1367 	switch (cmd_type) {
1368 	case TRB_ENABLE_SLOT:
1369 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1370 		break;
1371 	case TRB_DISABLE_SLOT:
1372 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1373 		break;
1374 	case TRB_CONFIG_EP:
1375 		if (!cmd->completion)
1376 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1377 						  cmd_comp_code);
1378 		break;
1379 	case TRB_EVAL_CONTEXT:
1380 		break;
1381 	case TRB_ADDR_DEV:
1382 		break;
1383 	case TRB_STOP_RING:
1384 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1385 				le32_to_cpu(cmd_trb->generic.field[3])));
1386 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1387 		break;
1388 	case TRB_SET_DEQ:
1389 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1390 				le32_to_cpu(cmd_trb->generic.field[3])));
1391 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1392 		break;
1393 	case TRB_CMD_NOOP:
1394 		/* Is this an aborted command turned to NO-OP? */
1395 		if (cmd->status == COMP_CMD_STOP)
1396 			cmd_comp_code = COMP_CMD_STOP;
1397 		break;
1398 	case TRB_RESET_EP:
1399 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1400 				le32_to_cpu(cmd_trb->generic.field[3])));
1401 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1402 		break;
1403 	case TRB_RESET_DEV:
1404 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1405 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1406 		 */
1407 		slot_id = TRB_TO_SLOT_ID(
1408 				le32_to_cpu(cmd_trb->generic.field[3]));
1409 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1410 		break;
1411 	case TRB_NEC_GET_FW:
1412 		xhci_handle_cmd_nec_get_fw(xhci, event);
1413 		break;
1414 	default:
1415 		/* Skip over unknown commands on the event ring */
1416 		xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1417 		break;
1418 	}
1419 
1420 	/* restart timer if this wasn't the last command */
1421 	if (cmd->cmd_list.next != &xhci->cmd_list) {
1422 		xhci->current_cmd = list_entry(cmd->cmd_list.next,
1423 					       struct xhci_command, cmd_list);
1424 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1425 	}
1426 
1427 event_handled:
1428 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1429 
1430 	inc_deq(xhci, xhci->cmd_ring);
1431 }
1432 
1433 static void handle_vendor_event(struct xhci_hcd *xhci,
1434 		union xhci_trb *event)
1435 {
1436 	u32 trb_type;
1437 
1438 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1439 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1440 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1441 		handle_cmd_completion(xhci, &event->event_cmd);
1442 }
1443 
1444 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1445  * port registers -- USB 3.0 and USB 2.0).
1446  *
1447  * Returns a zero-based port number, which is suitable for indexing into each of
1448  * the split roothubs' port arrays and bus state arrays.
1449  * Add one to it in order to call xhci_find_slot_id_by_port.
1450  */
1451 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1452 		struct xhci_hcd *xhci, u32 port_id)
1453 {
1454 	unsigned int i;
1455 	unsigned int num_similar_speed_ports = 0;
1456 
1457 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1458 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1459 	 * speed ports, up to 1 port before this port.
1460 	 */
1461 	for (i = 0; i < (port_id - 1); i++) {
1462 		u8 port_speed = xhci->port_array[i];
1463 
1464 		/*
1465 		 * Skip ports that don't have known speeds, or have duplicate
1466 		 * Extended Capabilities port speed entries.
1467 		 */
1468 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1469 			continue;
1470 
1471 		/*
1472 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1473 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1474 		 * matches the device speed, it's a similar speed port.
1475 		 */
1476 		if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1477 			num_similar_speed_ports++;
1478 	}
1479 	return num_similar_speed_ports;
1480 }
1481 
1482 static void handle_device_notification(struct xhci_hcd *xhci,
1483 		union xhci_trb *event)
1484 {
1485 	u32 slot_id;
1486 	struct usb_device *udev;
1487 
1488 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1489 	if (!xhci->devs[slot_id]) {
1490 		xhci_warn(xhci, "Device Notification event for "
1491 				"unused slot %u\n", slot_id);
1492 		return;
1493 	}
1494 
1495 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1496 			slot_id);
1497 	udev = xhci->devs[slot_id]->udev;
1498 	if (udev && udev->parent)
1499 		usb_wakeup_notification(udev->parent, udev->portnum);
1500 }
1501 
1502 static void handle_port_status(struct xhci_hcd *xhci,
1503 		union xhci_trb *event)
1504 {
1505 	struct usb_hcd *hcd;
1506 	u32 port_id;
1507 	u32 temp, temp1;
1508 	int max_ports;
1509 	int slot_id;
1510 	unsigned int faked_port_index;
1511 	u8 major_revision;
1512 	struct xhci_bus_state *bus_state;
1513 	__le32 __iomem **port_array;
1514 	bool bogus_port_status = false;
1515 
1516 	/* Port status change events always have a successful completion code */
1517 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1518 		xhci_warn(xhci,
1519 			  "WARN: xHC returned failed port status event\n");
1520 
1521 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1522 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1523 
1524 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1525 	if ((port_id <= 0) || (port_id > max_ports)) {
1526 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1527 		inc_deq(xhci, xhci->event_ring);
1528 		return;
1529 	}
1530 
1531 	/* Figure out which usb_hcd this port is attached to:
1532 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1533 	 */
1534 	major_revision = xhci->port_array[port_id - 1];
1535 
1536 	/* Find the right roothub. */
1537 	hcd = xhci_to_hcd(xhci);
1538 	if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1539 		hcd = xhci->shared_hcd;
1540 
1541 	if (major_revision == 0) {
1542 		xhci_warn(xhci, "Event for port %u not in "
1543 				"Extended Capabilities, ignoring.\n",
1544 				port_id);
1545 		bogus_port_status = true;
1546 		goto cleanup;
1547 	}
1548 	if (major_revision == DUPLICATE_ENTRY) {
1549 		xhci_warn(xhci, "Event for port %u duplicated in"
1550 				"Extended Capabilities, ignoring.\n",
1551 				port_id);
1552 		bogus_port_status = true;
1553 		goto cleanup;
1554 	}
1555 
1556 	/*
1557 	 * Hardware port IDs reported by a Port Status Change Event include USB
1558 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1559 	 * resume event, but we first need to translate the hardware port ID
1560 	 * into the index into the ports on the correct split roothub, and the
1561 	 * correct bus_state structure.
1562 	 */
1563 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1564 	if (hcd->speed >= HCD_USB3)
1565 		port_array = xhci->usb3_ports;
1566 	else
1567 		port_array = xhci->usb2_ports;
1568 	/* Find the faked port hub number */
1569 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1570 			port_id);
1571 
1572 	temp = readl(port_array[faked_port_index]);
1573 	if (hcd->state == HC_STATE_SUSPENDED) {
1574 		xhci_dbg(xhci, "resume root hub\n");
1575 		usb_hcd_resume_root_hub(hcd);
1576 	}
1577 
1578 	if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1579 		bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1580 
1581 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1582 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1583 
1584 		temp1 = readl(&xhci->op_regs->command);
1585 		if (!(temp1 & CMD_RUN)) {
1586 			xhci_warn(xhci, "xHC is not running.\n");
1587 			goto cleanup;
1588 		}
1589 
1590 		if (DEV_SUPERSPEED_ANY(temp)) {
1591 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1592 			/* Set a flag to say the port signaled remote wakeup,
1593 			 * so we can tell the difference between the end of
1594 			 * device and host initiated resume.
1595 			 */
1596 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1597 			xhci_test_and_clear_bit(xhci, port_array,
1598 					faked_port_index, PORT_PLC);
1599 			xhci_set_link_state(xhci, port_array, faked_port_index,
1600 						XDEV_U0);
1601 			/* Need to wait until the next link state change
1602 			 * indicates the device is actually in U0.
1603 			 */
1604 			bogus_port_status = true;
1605 			goto cleanup;
1606 		} else if (!test_bit(faked_port_index,
1607 				     &bus_state->resuming_ports)) {
1608 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1609 			bus_state->resume_done[faked_port_index] = jiffies +
1610 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1611 			set_bit(faked_port_index, &bus_state->resuming_ports);
1612 			mod_timer(&hcd->rh_timer,
1613 				  bus_state->resume_done[faked_port_index]);
1614 			/* Do the rest in GetPortStatus */
1615 		}
1616 	}
1617 
1618 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1619 			DEV_SUPERSPEED_ANY(temp)) {
1620 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1621 		/* We've just brought the device into U0 through either the
1622 		 * Resume state after a device remote wakeup, or through the
1623 		 * U3Exit state after a host-initiated resume.  If it's a device
1624 		 * initiated remote wake, don't pass up the link state change,
1625 		 * so the roothub behavior is consistent with external
1626 		 * USB 3.0 hub behavior.
1627 		 */
1628 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1629 				faked_port_index + 1);
1630 		if (slot_id && xhci->devs[slot_id])
1631 			xhci_ring_device(xhci, slot_id);
1632 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1633 			bus_state->port_remote_wakeup &=
1634 				~(1 << faked_port_index);
1635 			xhci_test_and_clear_bit(xhci, port_array,
1636 					faked_port_index, PORT_PLC);
1637 			usb_wakeup_notification(hcd->self.root_hub,
1638 					faked_port_index + 1);
1639 			bogus_port_status = true;
1640 			goto cleanup;
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1646 	 * RExit to a disconnect state).  If so, let the the driver know it's
1647 	 * out of the RExit state.
1648 	 */
1649 	if (!DEV_SUPERSPEED_ANY(temp) &&
1650 			test_and_clear_bit(faked_port_index,
1651 				&bus_state->rexit_ports)) {
1652 		complete(&bus_state->rexit_done[faked_port_index]);
1653 		bogus_port_status = true;
1654 		goto cleanup;
1655 	}
1656 
1657 	if (hcd->speed < HCD_USB3)
1658 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1659 					PORT_PLC);
1660 
1661 cleanup:
1662 	/* Update event ring dequeue pointer before dropping the lock */
1663 	inc_deq(xhci, xhci->event_ring);
1664 
1665 	/* Don't make the USB core poll the roothub if we got a bad port status
1666 	 * change event.  Besides, at that point we can't tell which roothub
1667 	 * (USB 2.0 or USB 3.0) to kick.
1668 	 */
1669 	if (bogus_port_status)
1670 		return;
1671 
1672 	/*
1673 	 * xHCI port-status-change events occur when the "or" of all the
1674 	 * status-change bits in the portsc register changes from 0 to 1.
1675 	 * New status changes won't cause an event if any other change
1676 	 * bits are still set.  When an event occurs, switch over to
1677 	 * polling to avoid losing status changes.
1678 	 */
1679 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1680 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1681 	spin_unlock(&xhci->lock);
1682 	/* Pass this up to the core */
1683 	usb_hcd_poll_rh_status(hcd);
1684 	spin_lock(&xhci->lock);
1685 }
1686 
1687 /*
1688  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1689  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1690  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1691  * returns 0.
1692  */
1693 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1694 		struct xhci_segment *start_seg,
1695 		union xhci_trb	*start_trb,
1696 		union xhci_trb	*end_trb,
1697 		dma_addr_t	suspect_dma,
1698 		bool		debug)
1699 {
1700 	dma_addr_t start_dma;
1701 	dma_addr_t end_seg_dma;
1702 	dma_addr_t end_trb_dma;
1703 	struct xhci_segment *cur_seg;
1704 
1705 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1706 	cur_seg = start_seg;
1707 
1708 	do {
1709 		if (start_dma == 0)
1710 			return NULL;
1711 		/* We may get an event for a Link TRB in the middle of a TD */
1712 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1713 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1714 		/* If the end TRB isn't in this segment, this is set to 0 */
1715 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1716 
1717 		if (debug)
1718 			xhci_warn(xhci,
1719 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1720 				(unsigned long long)suspect_dma,
1721 				(unsigned long long)start_dma,
1722 				(unsigned long long)end_trb_dma,
1723 				(unsigned long long)cur_seg->dma,
1724 				(unsigned long long)end_seg_dma);
1725 
1726 		if (end_trb_dma > 0) {
1727 			/* The end TRB is in this segment, so suspect should be here */
1728 			if (start_dma <= end_trb_dma) {
1729 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1730 					return cur_seg;
1731 			} else {
1732 				/* Case for one segment with
1733 				 * a TD wrapped around to the top
1734 				 */
1735 				if ((suspect_dma >= start_dma &&
1736 							suspect_dma <= end_seg_dma) ||
1737 						(suspect_dma >= cur_seg->dma &&
1738 						 suspect_dma <= end_trb_dma))
1739 					return cur_seg;
1740 			}
1741 			return NULL;
1742 		} else {
1743 			/* Might still be somewhere in this segment */
1744 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1745 				return cur_seg;
1746 		}
1747 		cur_seg = cur_seg->next;
1748 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1749 	} while (cur_seg != start_seg);
1750 
1751 	return NULL;
1752 }
1753 
1754 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1755 		unsigned int slot_id, unsigned int ep_index,
1756 		unsigned int stream_id,
1757 		struct xhci_td *td, union xhci_trb *ep_trb)
1758 {
1759 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1760 	struct xhci_command *command;
1761 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1762 	if (!command)
1763 		return;
1764 
1765 	ep->ep_state |= EP_HALTED;
1766 	ep->stopped_stream = stream_id;
1767 
1768 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1769 	xhci_cleanup_stalled_ring(xhci, ep_index, td);
1770 
1771 	ep->stopped_stream = 0;
1772 
1773 	xhci_ring_cmd_db(xhci);
1774 }
1775 
1776 /* Check if an error has halted the endpoint ring.  The class driver will
1777  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1778  * However, a babble and other errors also halt the endpoint ring, and the class
1779  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1780  * Ring Dequeue Pointer command manually.
1781  */
1782 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1783 		struct xhci_ep_ctx *ep_ctx,
1784 		unsigned int trb_comp_code)
1785 {
1786 	/* TRB completion codes that may require a manual halt cleanup */
1787 	if (trb_comp_code == COMP_TX_ERR ||
1788 			trb_comp_code == COMP_BABBLE ||
1789 			trb_comp_code == COMP_SPLIT_ERR)
1790 		/* The 0.95 spec says a babbling control endpoint
1791 		 * is not halted. The 0.96 spec says it is.  Some HW
1792 		 * claims to be 0.95 compliant, but it halts the control
1793 		 * endpoint anyway.  Check if a babble halted the
1794 		 * endpoint.
1795 		 */
1796 		if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1797 			return 1;
1798 
1799 	return 0;
1800 }
1801 
1802 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1803 {
1804 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1805 		/* Vendor defined "informational" completion code,
1806 		 * treat as not-an-error.
1807 		 */
1808 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1809 				trb_comp_code);
1810 		xhci_dbg(xhci, "Treating code as success.\n");
1811 		return 1;
1812 	}
1813 	return 0;
1814 }
1815 
1816 /*
1817  * Finish the td processing, remove the td from td list;
1818  * Return 1 if the urb can be given back.
1819  */
1820 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1821 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1822 	struct xhci_virt_ep *ep, int *status, bool skip)
1823 {
1824 	struct xhci_virt_device *xdev;
1825 	struct xhci_ring *ep_ring;
1826 	unsigned int slot_id;
1827 	int ep_index;
1828 	struct urb *urb = NULL;
1829 	struct xhci_ep_ctx *ep_ctx;
1830 	struct urb_priv	*urb_priv;
1831 	u32 trb_comp_code;
1832 
1833 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1834 	xdev = xhci->devs[slot_id];
1835 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1836 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1837 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1838 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1839 
1840 	if (skip)
1841 		goto td_cleanup;
1842 
1843 	if (trb_comp_code == COMP_STOP_INVAL ||
1844 			trb_comp_code == COMP_STOP ||
1845 			trb_comp_code == COMP_STOP_SHORT) {
1846 		/* The Endpoint Stop Command completion will take care of any
1847 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1848 		 * the ring dequeue pointer or take this TD off any lists yet.
1849 		 */
1850 		ep->stopped_td = td;
1851 		return 0;
1852 	}
1853 	if (trb_comp_code == COMP_STALL ||
1854 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1855 						trb_comp_code)) {
1856 		/* Issue a reset endpoint command to clear the host side
1857 		 * halt, followed by a set dequeue command to move the
1858 		 * dequeue pointer past the TD.
1859 		 * The class driver clears the device side halt later.
1860 		 */
1861 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1862 					ep_ring->stream_id, td, ep_trb);
1863 	} else {
1864 		/* Update ring dequeue pointer */
1865 		while (ep_ring->dequeue != td->last_trb)
1866 			inc_deq(xhci, ep_ring);
1867 		inc_deq(xhci, ep_ring);
1868 	}
1869 
1870 td_cleanup:
1871 	/* Clean up the endpoint's TD list */
1872 	urb = td->urb;
1873 	urb_priv = urb->hcpriv;
1874 
1875 	/* if a bounce buffer was used to align this td then unmap it */
1876 	if (td->bounce_seg)
1877 		xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1878 
1879 	/* Do one last check of the actual transfer length.
1880 	 * If the host controller said we transferred more data than the buffer
1881 	 * length, urb->actual_length will be a very big number (since it's
1882 	 * unsigned).  Play it safe and say we didn't transfer anything.
1883 	 */
1884 	if (urb->actual_length > urb->transfer_buffer_length) {
1885 		xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1886 			  urb->transfer_buffer_length, urb->actual_length);
1887 		urb->actual_length = 0;
1888 		*status = 0;
1889 	}
1890 	list_del_init(&td->td_list);
1891 	/* Was this TD slated to be cancelled but completed anyway? */
1892 	if (!list_empty(&td->cancelled_td_list))
1893 		list_del_init(&td->cancelled_td_list);
1894 
1895 	inc_td_cnt(urb);
1896 	/* Giveback the urb when all the tds are completed */
1897 	if (last_td_in_urb(td)) {
1898 		if ((urb->actual_length != urb->transfer_buffer_length &&
1899 		     (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1900 		    (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1901 			xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1902 				 urb, urb->actual_length,
1903 				 urb->transfer_buffer_length, *status);
1904 
1905 		/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1906 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1907 			*status = 0;
1908 		xhci_giveback_urb_in_irq(xhci, td, *status);
1909 	}
1910 	return 0;
1911 }
1912 
1913 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1914 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1915 			   union xhci_trb *stop_trb)
1916 {
1917 	u32 sum;
1918 	union xhci_trb *trb = ring->dequeue;
1919 	struct xhci_segment *seg = ring->deq_seg;
1920 
1921 	for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1922 		if (!trb_is_noop(trb) && !trb_is_link(trb))
1923 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1924 	}
1925 	return sum;
1926 }
1927 
1928 /*
1929  * Process control tds, update urb status and actual_length.
1930  */
1931 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1932 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1933 	struct xhci_virt_ep *ep, int *status)
1934 {
1935 	struct xhci_virt_device *xdev;
1936 	struct xhci_ring *ep_ring;
1937 	unsigned int slot_id;
1938 	int ep_index;
1939 	struct xhci_ep_ctx *ep_ctx;
1940 	u32 trb_comp_code;
1941 	u32 remaining, requested;
1942 	bool on_data_stage;
1943 
1944 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1945 	xdev = xhci->devs[slot_id];
1946 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1947 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1948 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1949 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1950 	requested = td->urb->transfer_buffer_length;
1951 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1952 
1953 	/* not setup (dequeue), or status stage means we are at data stage */
1954 	on_data_stage = (ep_trb != ep_ring->dequeue && ep_trb != td->last_trb);
1955 
1956 	switch (trb_comp_code) {
1957 	case COMP_SUCCESS:
1958 		if (ep_trb != td->last_trb) {
1959 			xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
1960 				  on_data_stage ? "data" : "setup");
1961 			*status = -ESHUTDOWN;
1962 			break;
1963 		}
1964 		*status = 0;
1965 		break;
1966 	case COMP_SHORT_TX:
1967 		*status = 0;
1968 		break;
1969 	case COMP_STOP_SHORT:
1970 		if (on_data_stage)
1971 			td->urb->actual_length = remaining;
1972 		else
1973 			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1974 		goto finish_td;
1975 	case COMP_STOP:
1976 		if (on_data_stage)
1977 			td->urb->actual_length = requested - remaining;
1978 		goto finish_td;
1979 	case COMP_STOP_INVAL:
1980 		goto finish_td;
1981 	default:
1982 		if (!xhci_requires_manual_halt_cleanup(xhci,
1983 						       ep_ctx, trb_comp_code))
1984 			break;
1985 		xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
1986 			 trb_comp_code, ep_index);
1987 		/* else fall through */
1988 	case COMP_STALL:
1989 		/* Did we transfer part of the data (middle) phase? */
1990 		if (on_data_stage)
1991 			td->urb->actual_length = requested - remaining;
1992 		else if (!td->urb_length_set)
1993 			td->urb->actual_length = 0;
1994 		goto finish_td;
1995 	}
1996 
1997 	/* stopped at setup stage, no data transferred */
1998 	if (ep_trb == ep_ring->dequeue)
1999 		goto finish_td;
2000 
2001 	/*
2002 	 * if on data stage then update the actual_length of the URB and flag it
2003 	 * as set, so it won't be overwritten in the event for the last TRB.
2004 	 */
2005 	if (on_data_stage) {
2006 		td->urb_length_set = true;
2007 		td->urb->actual_length = requested - remaining;
2008 		xhci_dbg(xhci, "Waiting for status stage event\n");
2009 		return 0;
2010 	}
2011 
2012 	/* at status stage */
2013 	if (!td->urb_length_set)
2014 		td->urb->actual_length = requested;
2015 
2016 finish_td:
2017 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2018 }
2019 
2020 /*
2021  * Process isochronous tds, update urb packet status and actual_length.
2022  */
2023 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2024 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2025 	struct xhci_virt_ep *ep, int *status)
2026 {
2027 	struct xhci_ring *ep_ring;
2028 	struct urb_priv *urb_priv;
2029 	int idx;
2030 	struct usb_iso_packet_descriptor *frame;
2031 	u32 trb_comp_code;
2032 	bool sum_trbs_for_length = false;
2033 	u32 remaining, requested, ep_trb_len;
2034 	int short_framestatus;
2035 
2036 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2037 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2038 	urb_priv = td->urb->hcpriv;
2039 	idx = urb_priv->td_cnt;
2040 	frame = &td->urb->iso_frame_desc[idx];
2041 	requested = frame->length;
2042 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2043 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2044 	short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2045 		-EREMOTEIO : 0;
2046 
2047 	/* handle completion code */
2048 	switch (trb_comp_code) {
2049 	case COMP_SUCCESS:
2050 		if (remaining) {
2051 			frame->status = short_framestatus;
2052 			if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2053 				sum_trbs_for_length = true;
2054 			break;
2055 		}
2056 		frame->status = 0;
2057 		break;
2058 	case COMP_SHORT_TX:
2059 		frame->status = short_framestatus;
2060 		sum_trbs_for_length = true;
2061 		break;
2062 	case COMP_BW_OVER:
2063 		frame->status = -ECOMM;
2064 		break;
2065 	case COMP_BUFF_OVER:
2066 	case COMP_BABBLE:
2067 		frame->status = -EOVERFLOW;
2068 		break;
2069 	case COMP_DEV_ERR:
2070 	case COMP_STALL:
2071 		frame->status = -EPROTO;
2072 		break;
2073 	case COMP_TX_ERR:
2074 		frame->status = -EPROTO;
2075 		if (ep_trb != td->last_trb)
2076 			return 0;
2077 		break;
2078 	case COMP_STOP:
2079 		sum_trbs_for_length = true;
2080 		break;
2081 	case COMP_STOP_SHORT:
2082 		/* field normally containing residue now contains tranferred */
2083 		frame->status = short_framestatus;
2084 		requested = remaining;
2085 		break;
2086 	case COMP_STOP_INVAL:
2087 		requested = 0;
2088 		remaining = 0;
2089 		break;
2090 	default:
2091 		sum_trbs_for_length = true;
2092 		frame->status = -1;
2093 		break;
2094 	}
2095 
2096 	if (sum_trbs_for_length)
2097 		frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2098 			ep_trb_len - remaining;
2099 	else
2100 		frame->actual_length = requested;
2101 
2102 	td->urb->actual_length += frame->actual_length;
2103 
2104 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2105 }
2106 
2107 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2108 			struct xhci_transfer_event *event,
2109 			struct xhci_virt_ep *ep, int *status)
2110 {
2111 	struct xhci_ring *ep_ring;
2112 	struct urb_priv *urb_priv;
2113 	struct usb_iso_packet_descriptor *frame;
2114 	int idx;
2115 
2116 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2117 	urb_priv = td->urb->hcpriv;
2118 	idx = urb_priv->td_cnt;
2119 	frame = &td->urb->iso_frame_desc[idx];
2120 
2121 	/* The transfer is partly done. */
2122 	frame->status = -EXDEV;
2123 
2124 	/* calc actual length */
2125 	frame->actual_length = 0;
2126 
2127 	/* Update ring dequeue pointer */
2128 	while (ep_ring->dequeue != td->last_trb)
2129 		inc_deq(xhci, ep_ring);
2130 	inc_deq(xhci, ep_ring);
2131 
2132 	return finish_td(xhci, td, NULL, event, ep, status, true);
2133 }
2134 
2135 /*
2136  * Process bulk and interrupt tds, update urb status and actual_length.
2137  */
2138 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2139 	union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2140 	struct xhci_virt_ep *ep, int *status)
2141 {
2142 	struct xhci_ring *ep_ring;
2143 	u32 trb_comp_code;
2144 	u32 remaining, requested, ep_trb_len;
2145 
2146 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2147 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2148 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2149 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2150 	requested = td->urb->transfer_buffer_length;
2151 
2152 	switch (trb_comp_code) {
2153 	case COMP_SUCCESS:
2154 		/* handle success with untransferred data as short packet */
2155 		if (ep_trb != td->last_trb || remaining) {
2156 			xhci_warn(xhci, "WARN Successful completion on short TX\n");
2157 			xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2158 				 td->urb->ep->desc.bEndpointAddress,
2159 				 requested, remaining);
2160 		}
2161 		*status = 0;
2162 		break;
2163 	case COMP_SHORT_TX:
2164 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2165 			 td->urb->ep->desc.bEndpointAddress,
2166 			 requested, remaining);
2167 		*status = 0;
2168 		break;
2169 	case COMP_STOP_SHORT:
2170 		td->urb->actual_length = remaining;
2171 		goto finish_td;
2172 	case COMP_STOP_INVAL:
2173 		/* stopped on ep trb with invalid length, exclude it */
2174 		ep_trb_len	= 0;
2175 		remaining	= 0;
2176 		break;
2177 	default:
2178 		/* do nothing */
2179 		break;
2180 	}
2181 
2182 	if (ep_trb == td->last_trb)
2183 		td->urb->actual_length = requested - remaining;
2184 	else
2185 		td->urb->actual_length =
2186 			sum_trb_lengths(xhci, ep_ring, ep_trb) +
2187 			ep_trb_len - remaining;
2188 finish_td:
2189 	if (remaining > requested) {
2190 		xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2191 			  remaining);
2192 		td->urb->actual_length = 0;
2193 	}
2194 	return finish_td(xhci, td, ep_trb, event, ep, status, false);
2195 }
2196 
2197 /*
2198  * If this function returns an error condition, it means it got a Transfer
2199  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2200  * At this point, the host controller is probably hosed and should be reset.
2201  */
2202 static int handle_tx_event(struct xhci_hcd *xhci,
2203 		struct xhci_transfer_event *event)
2204 	__releases(&xhci->lock)
2205 	__acquires(&xhci->lock)
2206 {
2207 	struct xhci_virt_device *xdev;
2208 	struct xhci_virt_ep *ep;
2209 	struct xhci_ring *ep_ring;
2210 	unsigned int slot_id;
2211 	int ep_index;
2212 	struct xhci_td *td = NULL;
2213 	dma_addr_t ep_trb_dma;
2214 	struct xhci_segment *ep_seg;
2215 	union xhci_trb *ep_trb;
2216 	int status = -EINPROGRESS;
2217 	struct xhci_ep_ctx *ep_ctx;
2218 	struct list_head *tmp;
2219 	u32 trb_comp_code;
2220 	int td_num = 0;
2221 	bool handling_skipped_tds = false;
2222 
2223 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2224 	xdev = xhci->devs[slot_id];
2225 	if (!xdev) {
2226 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2227 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2228 			 (unsigned long long) xhci_trb_virt_to_dma(
2229 				 xhci->event_ring->deq_seg,
2230 				 xhci->event_ring->dequeue),
2231 			 lower_32_bits(le64_to_cpu(event->buffer)),
2232 			 upper_32_bits(le64_to_cpu(event->buffer)),
2233 			 le32_to_cpu(event->transfer_len),
2234 			 le32_to_cpu(event->flags));
2235 		xhci_dbg(xhci, "Event ring:\n");
2236 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2237 		return -ENODEV;
2238 	}
2239 
2240 	/* Endpoint ID is 1 based, our index is zero based */
2241 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2242 	ep = &xdev->eps[ep_index];
2243 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2244 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2245 	if (!ep_ring ||  GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2246 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2247 				"or incorrect stream ring\n");
2248 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2249 			 (unsigned long long) xhci_trb_virt_to_dma(
2250 				 xhci->event_ring->deq_seg,
2251 				 xhci->event_ring->dequeue),
2252 			 lower_32_bits(le64_to_cpu(event->buffer)),
2253 			 upper_32_bits(le64_to_cpu(event->buffer)),
2254 			 le32_to_cpu(event->transfer_len),
2255 			 le32_to_cpu(event->flags));
2256 		xhci_dbg(xhci, "Event ring:\n");
2257 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2258 		return -ENODEV;
2259 	}
2260 
2261 	/* Count current td numbers if ep->skip is set */
2262 	if (ep->skip) {
2263 		list_for_each(tmp, &ep_ring->td_list)
2264 			td_num++;
2265 	}
2266 
2267 	ep_trb_dma = le64_to_cpu(event->buffer);
2268 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2269 	/* Look for common error cases */
2270 	switch (trb_comp_code) {
2271 	/* Skip codes that require special handling depending on
2272 	 * transfer type
2273 	 */
2274 	case COMP_SUCCESS:
2275 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2276 			break;
2277 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2278 			trb_comp_code = COMP_SHORT_TX;
2279 		else
2280 			xhci_warn_ratelimited(xhci,
2281 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2282 	case COMP_SHORT_TX:
2283 		break;
2284 	case COMP_STOP:
2285 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2286 		break;
2287 	case COMP_STOP_INVAL:
2288 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2289 		break;
2290 	case COMP_STOP_SHORT:
2291 		xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2292 		break;
2293 	case COMP_STALL:
2294 		xhci_dbg(xhci, "Stalled endpoint\n");
2295 		ep->ep_state |= EP_HALTED;
2296 		status = -EPIPE;
2297 		break;
2298 	case COMP_TRB_ERR:
2299 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2300 		status = -EILSEQ;
2301 		break;
2302 	case COMP_SPLIT_ERR:
2303 	case COMP_TX_ERR:
2304 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2305 		status = -EPROTO;
2306 		break;
2307 	case COMP_BABBLE:
2308 		xhci_dbg(xhci, "Babble error on endpoint\n");
2309 		status = -EOVERFLOW;
2310 		break;
2311 	case COMP_DB_ERR:
2312 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2313 		status = -ENOSR;
2314 		break;
2315 	case COMP_BW_OVER:
2316 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2317 		break;
2318 	case COMP_BUFF_OVER:
2319 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2320 		break;
2321 	case COMP_UNDERRUN:
2322 		/*
2323 		 * When the Isoch ring is empty, the xHC will generate
2324 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2325 		 * Underrun Event for OUT Isoch endpoint.
2326 		 */
2327 		xhci_dbg(xhci, "underrun event on endpoint\n");
2328 		if (!list_empty(&ep_ring->td_list))
2329 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2330 					"still with TDs queued?\n",
2331 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2332 				 ep_index);
2333 		goto cleanup;
2334 	case COMP_OVERRUN:
2335 		xhci_dbg(xhci, "overrun event on endpoint\n");
2336 		if (!list_empty(&ep_ring->td_list))
2337 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2338 					"still with TDs queued?\n",
2339 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2340 				 ep_index);
2341 		goto cleanup;
2342 	case COMP_DEV_ERR:
2343 		xhci_warn(xhci, "WARN: detect an incompatible device");
2344 		status = -EPROTO;
2345 		break;
2346 	case COMP_MISSED_INT:
2347 		/*
2348 		 * When encounter missed service error, one or more isoc tds
2349 		 * may be missed by xHC.
2350 		 * Set skip flag of the ep_ring; Complete the missed tds as
2351 		 * short transfer when process the ep_ring next time.
2352 		 */
2353 		ep->skip = true;
2354 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2355 		goto cleanup;
2356 	case COMP_PING_ERR:
2357 		ep->skip = true;
2358 		xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2359 		goto cleanup;
2360 	default:
2361 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2362 			status = 0;
2363 			break;
2364 		}
2365 		xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2366 			  trb_comp_code);
2367 		goto cleanup;
2368 	}
2369 
2370 	do {
2371 		/* This TRB should be in the TD at the head of this ring's
2372 		 * TD list.
2373 		 */
2374 		if (list_empty(&ep_ring->td_list)) {
2375 			/*
2376 			 * A stopped endpoint may generate an extra completion
2377 			 * event if the device was suspended.  Don't print
2378 			 * warnings.
2379 			 */
2380 			if (!(trb_comp_code == COMP_STOP ||
2381 						trb_comp_code == COMP_STOP_INVAL)) {
2382 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2383 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2384 						ep_index);
2385 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2386 						(le32_to_cpu(event->flags) &
2387 						 TRB_TYPE_BITMASK)>>10);
2388 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2389 			}
2390 			if (ep->skip) {
2391 				ep->skip = false;
2392 				xhci_dbg(xhci, "td_list is empty while skip "
2393 						"flag set. Clear skip flag.\n");
2394 			}
2395 			goto cleanup;
2396 		}
2397 
2398 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2399 		if (ep->skip && td_num == 0) {
2400 			ep->skip = false;
2401 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2402 						"Clear skip flag.\n");
2403 			goto cleanup;
2404 		}
2405 
2406 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2407 		if (ep->skip)
2408 			td_num--;
2409 
2410 		/* Is this a TRB in the currently executing TD? */
2411 		ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2412 				td->last_trb, ep_trb_dma, false);
2413 
2414 		/*
2415 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2416 		 * is not in the current TD pointed by ep_ring->dequeue because
2417 		 * that the hardware dequeue pointer still at the previous TRB
2418 		 * of the current TD. The previous TRB maybe a Link TD or the
2419 		 * last TRB of the previous TD. The command completion handle
2420 		 * will take care the rest.
2421 		 */
2422 		if (!ep_seg && (trb_comp_code == COMP_STOP ||
2423 				   trb_comp_code == COMP_STOP_INVAL)) {
2424 			goto cleanup;
2425 		}
2426 
2427 		if (!ep_seg) {
2428 			if (!ep->skip ||
2429 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2430 				/* Some host controllers give a spurious
2431 				 * successful event after a short transfer.
2432 				 * Ignore it.
2433 				 */
2434 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2435 						ep_ring->last_td_was_short) {
2436 					ep_ring->last_td_was_short = false;
2437 					goto cleanup;
2438 				}
2439 				/* HC is busted, give up! */
2440 				xhci_err(xhci,
2441 					"ERROR Transfer event TRB DMA ptr not "
2442 					"part of current TD ep_index %d "
2443 					"comp_code %u\n", ep_index,
2444 					trb_comp_code);
2445 				trb_in_td(xhci, ep_ring->deq_seg,
2446 					  ep_ring->dequeue, td->last_trb,
2447 					  ep_trb_dma, true);
2448 				return -ESHUTDOWN;
2449 			}
2450 
2451 			skip_isoc_td(xhci, td, event, ep, &status);
2452 			goto cleanup;
2453 		}
2454 		if (trb_comp_code == COMP_SHORT_TX)
2455 			ep_ring->last_td_was_short = true;
2456 		else
2457 			ep_ring->last_td_was_short = false;
2458 
2459 		if (ep->skip) {
2460 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2461 			ep->skip = false;
2462 		}
2463 
2464 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2465 						sizeof(*ep_trb)];
2466 		/*
2467 		 * No-op TRB should not trigger interrupts.
2468 		 * If ep_trb is a no-op TRB, it means the
2469 		 * corresponding TD has been cancelled. Just ignore
2470 		 * the TD.
2471 		 */
2472 		if (trb_is_noop(ep_trb)) {
2473 			xhci_dbg(xhci, "ep_trb is a no-op TRB. Skip it\n");
2474 			goto cleanup;
2475 		}
2476 
2477 		/* update the urb's actual_length and give back to the core */
2478 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2479 			process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2480 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2481 			process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2482 		else
2483 			process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2484 					     &status);
2485 cleanup:
2486 		handling_skipped_tds = ep->skip &&
2487 			trb_comp_code != COMP_MISSED_INT &&
2488 			trb_comp_code != COMP_PING_ERR;
2489 
2490 		/*
2491 		 * Do not update event ring dequeue pointer if we're in a loop
2492 		 * processing missed tds.
2493 		 */
2494 		if (!handling_skipped_tds)
2495 			inc_deq(xhci, xhci->event_ring);
2496 
2497 	/*
2498 	 * If ep->skip is set, it means there are missed tds on the
2499 	 * endpoint ring need to take care of.
2500 	 * Process them as short transfer until reach the td pointed by
2501 	 * the event.
2502 	 */
2503 	} while (handling_skipped_tds);
2504 
2505 	return 0;
2506 }
2507 
2508 /*
2509  * This function handles all OS-owned events on the event ring.  It may drop
2510  * xhci->lock between event processing (e.g. to pass up port status changes).
2511  * Returns >0 for "possibly more events to process" (caller should call again),
2512  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2513  */
2514 static int xhci_handle_event(struct xhci_hcd *xhci)
2515 {
2516 	union xhci_trb *event;
2517 	int update_ptrs = 1;
2518 	int ret;
2519 
2520 	/* Event ring hasn't been allocated yet. */
2521 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2522 		xhci_err(xhci, "ERROR event ring not ready\n");
2523 		return -ENOMEM;
2524 	}
2525 
2526 	event = xhci->event_ring->dequeue;
2527 	/* Does the HC or OS own the TRB? */
2528 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2529 	    xhci->event_ring->cycle_state)
2530 		return 0;
2531 
2532 	/*
2533 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2534 	 * speculative reads of the event's flags/data below.
2535 	 */
2536 	rmb();
2537 	/* FIXME: Handle more event types. */
2538 	switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2539 	case TRB_TYPE(TRB_COMPLETION):
2540 		handle_cmd_completion(xhci, &event->event_cmd);
2541 		break;
2542 	case TRB_TYPE(TRB_PORT_STATUS):
2543 		handle_port_status(xhci, event);
2544 		update_ptrs = 0;
2545 		break;
2546 	case TRB_TYPE(TRB_TRANSFER):
2547 		ret = handle_tx_event(xhci, &event->trans_event);
2548 		if (ret >= 0)
2549 			update_ptrs = 0;
2550 		break;
2551 	case TRB_TYPE(TRB_DEV_NOTE):
2552 		handle_device_notification(xhci, event);
2553 		break;
2554 	default:
2555 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2556 		    TRB_TYPE(48))
2557 			handle_vendor_event(xhci, event);
2558 		else
2559 			xhci_warn(xhci, "ERROR unknown event type %d\n",
2560 				  TRB_FIELD_TO_TYPE(
2561 				  le32_to_cpu(event->event_cmd.flags)));
2562 	}
2563 	/* Any of the above functions may drop and re-acquire the lock, so check
2564 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2565 	 */
2566 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2567 		xhci_dbg(xhci, "xHCI host dying, returning from "
2568 				"event handler.\n");
2569 		return 0;
2570 	}
2571 
2572 	if (update_ptrs)
2573 		/* Update SW event ring dequeue pointer */
2574 		inc_deq(xhci, xhci->event_ring);
2575 
2576 	/* Are there more items on the event ring?  Caller will call us again to
2577 	 * check.
2578 	 */
2579 	return 1;
2580 }
2581 
2582 /*
2583  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2584  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2585  * indicators of an event TRB error, but we check the status *first* to be safe.
2586  */
2587 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2588 {
2589 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2590 	u32 status;
2591 	u64 temp_64;
2592 	union xhci_trb *event_ring_deq;
2593 	dma_addr_t deq;
2594 
2595 	spin_lock(&xhci->lock);
2596 	/* Check if the xHC generated the interrupt, or the irq is shared */
2597 	status = readl(&xhci->op_regs->status);
2598 	if (status == 0xffffffff)
2599 		goto hw_died;
2600 
2601 	if (!(status & STS_EINT)) {
2602 		spin_unlock(&xhci->lock);
2603 		return IRQ_NONE;
2604 	}
2605 	if (status & STS_FATAL) {
2606 		xhci_warn(xhci, "WARNING: Host System Error\n");
2607 		xhci_halt(xhci);
2608 hw_died:
2609 		spin_unlock(&xhci->lock);
2610 		return IRQ_HANDLED;
2611 	}
2612 
2613 	/*
2614 	 * Clear the op reg interrupt status first,
2615 	 * so we can receive interrupts from other MSI-X interrupters.
2616 	 * Write 1 to clear the interrupt status.
2617 	 */
2618 	status |= STS_EINT;
2619 	writel(status, &xhci->op_regs->status);
2620 	/* FIXME when MSI-X is supported and there are multiple vectors */
2621 	/* Clear the MSI-X event interrupt status */
2622 
2623 	if (hcd->irq) {
2624 		u32 irq_pending;
2625 		/* Acknowledge the PCI interrupt */
2626 		irq_pending = readl(&xhci->ir_set->irq_pending);
2627 		irq_pending |= IMAN_IP;
2628 		writel(irq_pending, &xhci->ir_set->irq_pending);
2629 	}
2630 
2631 	if (xhci->xhc_state & XHCI_STATE_DYING ||
2632 	    xhci->xhc_state & XHCI_STATE_HALTED) {
2633 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2634 				"Shouldn't IRQs be disabled?\n");
2635 		/* Clear the event handler busy flag (RW1C);
2636 		 * the event ring should be empty.
2637 		 */
2638 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2639 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2640 				&xhci->ir_set->erst_dequeue);
2641 		spin_unlock(&xhci->lock);
2642 
2643 		return IRQ_HANDLED;
2644 	}
2645 
2646 	event_ring_deq = xhci->event_ring->dequeue;
2647 	/* FIXME this should be a delayed service routine
2648 	 * that clears the EHB.
2649 	 */
2650 	while (xhci_handle_event(xhci) > 0) {}
2651 
2652 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2653 	/* If necessary, update the HW's version of the event ring deq ptr. */
2654 	if (event_ring_deq != xhci->event_ring->dequeue) {
2655 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2656 				xhci->event_ring->dequeue);
2657 		if (deq == 0)
2658 			xhci_warn(xhci, "WARN something wrong with SW event "
2659 					"ring dequeue ptr.\n");
2660 		/* Update HC event ring dequeue pointer */
2661 		temp_64 &= ERST_PTR_MASK;
2662 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2663 	}
2664 
2665 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2666 	temp_64 |= ERST_EHB;
2667 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2668 
2669 	spin_unlock(&xhci->lock);
2670 
2671 	return IRQ_HANDLED;
2672 }
2673 
2674 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2675 {
2676 	return xhci_irq(hcd);
2677 }
2678 
2679 /****		Endpoint Ring Operations	****/
2680 
2681 /*
2682  * Generic function for queueing a TRB on a ring.
2683  * The caller must have checked to make sure there's room on the ring.
2684  *
2685  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2686  *			prepare_transfer()?
2687  */
2688 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2689 		bool more_trbs_coming,
2690 		u32 field1, u32 field2, u32 field3, u32 field4)
2691 {
2692 	struct xhci_generic_trb *trb;
2693 
2694 	trb = &ring->enqueue->generic;
2695 	trb->field[0] = cpu_to_le32(field1);
2696 	trb->field[1] = cpu_to_le32(field2);
2697 	trb->field[2] = cpu_to_le32(field3);
2698 	trb->field[3] = cpu_to_le32(field4);
2699 	inc_enq(xhci, ring, more_trbs_coming);
2700 }
2701 
2702 /*
2703  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2704  * FIXME allocate segments if the ring is full.
2705  */
2706 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2707 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2708 {
2709 	unsigned int num_trbs_needed;
2710 
2711 	/* Make sure the endpoint has been added to xHC schedule */
2712 	switch (ep_state) {
2713 	case EP_STATE_DISABLED:
2714 		/*
2715 		 * USB core changed config/interfaces without notifying us,
2716 		 * or hardware is reporting the wrong state.
2717 		 */
2718 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2719 		return -ENOENT;
2720 	case EP_STATE_ERROR:
2721 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2722 		/* FIXME event handling code for error needs to clear it */
2723 		/* XXX not sure if this should be -ENOENT or not */
2724 		return -EINVAL;
2725 	case EP_STATE_HALTED:
2726 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2727 	case EP_STATE_STOPPED:
2728 	case EP_STATE_RUNNING:
2729 		break;
2730 	default:
2731 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2732 		/*
2733 		 * FIXME issue Configure Endpoint command to try to get the HC
2734 		 * back into a known state.
2735 		 */
2736 		return -EINVAL;
2737 	}
2738 
2739 	while (1) {
2740 		if (room_on_ring(xhci, ep_ring, num_trbs))
2741 			break;
2742 
2743 		if (ep_ring == xhci->cmd_ring) {
2744 			xhci_err(xhci, "Do not support expand command ring\n");
2745 			return -ENOMEM;
2746 		}
2747 
2748 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2749 				"ERROR no room on ep ring, try ring expansion");
2750 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2751 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2752 					mem_flags)) {
2753 			xhci_err(xhci, "Ring expansion failed\n");
2754 			return -ENOMEM;
2755 		}
2756 	}
2757 
2758 	while (trb_is_link(ep_ring->enqueue)) {
2759 		/* If we're not dealing with 0.95 hardware or isoc rings
2760 		 * on AMD 0.96 host, clear the chain bit.
2761 		 */
2762 		if (!xhci_link_trb_quirk(xhci) &&
2763 		    !(ep_ring->type == TYPE_ISOC &&
2764 		      (xhci->quirks & XHCI_AMD_0x96_HOST)))
2765 			ep_ring->enqueue->link.control &=
2766 				cpu_to_le32(~TRB_CHAIN);
2767 		else
2768 			ep_ring->enqueue->link.control |=
2769 				cpu_to_le32(TRB_CHAIN);
2770 
2771 		wmb();
2772 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2773 
2774 		/* Toggle the cycle bit after the last ring segment. */
2775 		if (link_trb_toggles_cycle(ep_ring->enqueue))
2776 			ep_ring->cycle_state ^= 1;
2777 
2778 		ep_ring->enq_seg = ep_ring->enq_seg->next;
2779 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
2780 	}
2781 	return 0;
2782 }
2783 
2784 static int prepare_transfer(struct xhci_hcd *xhci,
2785 		struct xhci_virt_device *xdev,
2786 		unsigned int ep_index,
2787 		unsigned int stream_id,
2788 		unsigned int num_trbs,
2789 		struct urb *urb,
2790 		unsigned int td_index,
2791 		gfp_t mem_flags)
2792 {
2793 	int ret;
2794 	struct urb_priv *urb_priv;
2795 	struct xhci_td	*td;
2796 	struct xhci_ring *ep_ring;
2797 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2798 
2799 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2800 	if (!ep_ring) {
2801 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2802 				stream_id);
2803 		return -EINVAL;
2804 	}
2805 
2806 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2807 			   num_trbs, mem_flags);
2808 	if (ret)
2809 		return ret;
2810 
2811 	urb_priv = urb->hcpriv;
2812 	td = urb_priv->td[td_index];
2813 
2814 	INIT_LIST_HEAD(&td->td_list);
2815 	INIT_LIST_HEAD(&td->cancelled_td_list);
2816 
2817 	if (td_index == 0) {
2818 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2819 		if (unlikely(ret))
2820 			return ret;
2821 	}
2822 
2823 	td->urb = urb;
2824 	/* Add this TD to the tail of the endpoint ring's TD list */
2825 	list_add_tail(&td->td_list, &ep_ring->td_list);
2826 	td->start_seg = ep_ring->enq_seg;
2827 	td->first_trb = ep_ring->enqueue;
2828 
2829 	urb_priv->td[td_index] = td;
2830 
2831 	return 0;
2832 }
2833 
2834 static unsigned int count_trbs(u64 addr, u64 len)
2835 {
2836 	unsigned int num_trbs;
2837 
2838 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2839 			TRB_MAX_BUFF_SIZE);
2840 	if (num_trbs == 0)
2841 		num_trbs++;
2842 
2843 	return num_trbs;
2844 }
2845 
2846 static inline unsigned int count_trbs_needed(struct urb *urb)
2847 {
2848 	return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2849 }
2850 
2851 static unsigned int count_sg_trbs_needed(struct urb *urb)
2852 {
2853 	struct scatterlist *sg;
2854 	unsigned int i, len, full_len, num_trbs = 0;
2855 
2856 	full_len = urb->transfer_buffer_length;
2857 
2858 	for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2859 		len = sg_dma_len(sg);
2860 		num_trbs += count_trbs(sg_dma_address(sg), len);
2861 		len = min_t(unsigned int, len, full_len);
2862 		full_len -= len;
2863 		if (full_len == 0)
2864 			break;
2865 	}
2866 
2867 	return num_trbs;
2868 }
2869 
2870 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2871 {
2872 	u64 addr, len;
2873 
2874 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2875 	len = urb->iso_frame_desc[i].length;
2876 
2877 	return count_trbs(addr, len);
2878 }
2879 
2880 static void check_trb_math(struct urb *urb, int running_total)
2881 {
2882 	if (unlikely(running_total != urb->transfer_buffer_length))
2883 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2884 				"queued %#x (%d), asked for %#x (%d)\n",
2885 				__func__,
2886 				urb->ep->desc.bEndpointAddress,
2887 				running_total, running_total,
2888 				urb->transfer_buffer_length,
2889 				urb->transfer_buffer_length);
2890 }
2891 
2892 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2893 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2894 		struct xhci_generic_trb *start_trb)
2895 {
2896 	/*
2897 	 * Pass all the TRBs to the hardware at once and make sure this write
2898 	 * isn't reordered.
2899 	 */
2900 	wmb();
2901 	if (start_cycle)
2902 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2903 	else
2904 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2905 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2906 }
2907 
2908 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
2909 						struct xhci_ep_ctx *ep_ctx)
2910 {
2911 	int xhci_interval;
2912 	int ep_interval;
2913 
2914 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2915 	ep_interval = urb->interval;
2916 
2917 	/* Convert to microframes */
2918 	if (urb->dev->speed == USB_SPEED_LOW ||
2919 			urb->dev->speed == USB_SPEED_FULL)
2920 		ep_interval *= 8;
2921 
2922 	/* FIXME change this to a warning and a suggestion to use the new API
2923 	 * to set the polling interval (once the API is added).
2924 	 */
2925 	if (xhci_interval != ep_interval) {
2926 		dev_dbg_ratelimited(&urb->dev->dev,
2927 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
2928 				ep_interval, ep_interval == 1 ? "" : "s",
2929 				xhci_interval, xhci_interval == 1 ? "" : "s");
2930 		urb->interval = xhci_interval;
2931 		/* Convert back to frames for LS/FS devices */
2932 		if (urb->dev->speed == USB_SPEED_LOW ||
2933 				urb->dev->speed == USB_SPEED_FULL)
2934 			urb->interval /= 8;
2935 	}
2936 }
2937 
2938 /*
2939  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2940  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2941  * (comprised of sg list entries) can take several service intervals to
2942  * transmit.
2943  */
2944 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2945 		struct urb *urb, int slot_id, unsigned int ep_index)
2946 {
2947 	struct xhci_ep_ctx *ep_ctx;
2948 
2949 	ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
2950 	check_interval(xhci, urb, ep_ctx);
2951 
2952 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
2953 }
2954 
2955 /*
2956  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
2957  * packets remaining in the TD (*not* including this TRB).
2958  *
2959  * Total TD packet count = total_packet_count =
2960  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
2961  *
2962  * Packets transferred up to and including this TRB = packets_transferred =
2963  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2964  *
2965  * TD size = total_packet_count - packets_transferred
2966  *
2967  * For xHCI 0.96 and older, TD size field should be the remaining bytes
2968  * including this TRB, right shifted by 10
2969  *
2970  * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
2971  * This is taken care of in the TRB_TD_SIZE() macro
2972  *
2973  * The last TRB in a TD must have the TD size set to zero.
2974  */
2975 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
2976 			      int trb_buff_len, unsigned int td_total_len,
2977 			      struct urb *urb, bool more_trbs_coming)
2978 {
2979 	u32 maxp, total_packet_count;
2980 
2981 	/* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
2982 	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
2983 		return ((td_total_len - transferred) >> 10);
2984 
2985 	/* One TRB with a zero-length data packet. */
2986 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
2987 	    trb_buff_len == td_total_len)
2988 		return 0;
2989 
2990 	/* for MTK xHCI, TD size doesn't include this TRB */
2991 	if (xhci->quirks & XHCI_MTK_HOST)
2992 		trb_buff_len = 0;
2993 
2994 	maxp = usb_endpoint_maxp(&urb->ep->desc);
2995 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
2996 
2997 	/* Queueing functions don't count the current TRB into transferred */
2998 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
2999 }
3000 
3001 
3002 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3003 			 u32 *trb_buff_len, struct xhci_segment *seg)
3004 {
3005 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
3006 	unsigned int unalign;
3007 	unsigned int max_pkt;
3008 	u32 new_buff_len;
3009 
3010 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3011 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
3012 
3013 	/* we got lucky, last normal TRB data on segment is packet aligned */
3014 	if (unalign == 0)
3015 		return 0;
3016 
3017 	xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3018 		 unalign, *trb_buff_len);
3019 
3020 	/* is the last nornal TRB alignable by splitting it */
3021 	if (*trb_buff_len > unalign) {
3022 		*trb_buff_len -= unalign;
3023 		xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3024 		return 0;
3025 	}
3026 
3027 	/*
3028 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3029 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3030 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3031 	 */
3032 	new_buff_len = max_pkt - (enqd_len % max_pkt);
3033 
3034 	if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3035 		new_buff_len = (urb->transfer_buffer_length - enqd_len);
3036 
3037 	/* create a max max_pkt sized bounce buffer pointed to by last trb */
3038 	if (usb_urb_dir_out(urb)) {
3039 		sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3040 				   seg->bounce_buf, new_buff_len, enqd_len);
3041 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3042 						 max_pkt, DMA_TO_DEVICE);
3043 	} else {
3044 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3045 						 max_pkt, DMA_FROM_DEVICE);
3046 	}
3047 
3048 	if (dma_mapping_error(dev, seg->bounce_dma)) {
3049 		/* try without aligning. Some host controllers survive */
3050 		xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3051 		return 0;
3052 	}
3053 	*trb_buff_len = new_buff_len;
3054 	seg->bounce_len = new_buff_len;
3055 	seg->bounce_offs = enqd_len;
3056 
3057 	xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3058 
3059 	return 1;
3060 }
3061 
3062 /* This is very similar to what ehci-q.c qtd_fill() does */
3063 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3064 		struct urb *urb, int slot_id, unsigned int ep_index)
3065 {
3066 	struct xhci_ring *ring;
3067 	struct urb_priv *urb_priv;
3068 	struct xhci_td *td;
3069 	struct xhci_generic_trb *start_trb;
3070 	struct scatterlist *sg = NULL;
3071 	bool more_trbs_coming = true;
3072 	bool need_zero_pkt = false;
3073 	bool first_trb = true;
3074 	unsigned int num_trbs;
3075 	unsigned int start_cycle, num_sgs = 0;
3076 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
3077 	int sent_len, ret;
3078 	u32 field, length_field, remainder;
3079 	u64 addr, send_addr;
3080 
3081 	ring = xhci_urb_to_transfer_ring(xhci, urb);
3082 	if (!ring)
3083 		return -EINVAL;
3084 
3085 	full_len = urb->transfer_buffer_length;
3086 	/* If we have scatter/gather list, we use it. */
3087 	if (urb->num_sgs) {
3088 		num_sgs = urb->num_mapped_sgs;
3089 		sg = urb->sg;
3090 		addr = (u64) sg_dma_address(sg);
3091 		block_len = sg_dma_len(sg);
3092 		num_trbs = count_sg_trbs_needed(urb);
3093 	} else {
3094 		num_trbs = count_trbs_needed(urb);
3095 		addr = (u64) urb->transfer_dma;
3096 		block_len = full_len;
3097 	}
3098 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3099 			ep_index, urb->stream_id,
3100 			num_trbs, urb, 0, mem_flags);
3101 	if (unlikely(ret < 0))
3102 		return ret;
3103 
3104 	urb_priv = urb->hcpriv;
3105 
3106 	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3107 	if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->length > 1)
3108 		need_zero_pkt = true;
3109 
3110 	td = urb_priv->td[0];
3111 
3112 	/*
3113 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3114 	 * until we've finished creating all the other TRBs.  The ring's cycle
3115 	 * state may change as we enqueue the other TRBs, so save it too.
3116 	 */
3117 	start_trb = &ring->enqueue->generic;
3118 	start_cycle = ring->cycle_state;
3119 	send_addr = addr;
3120 
3121 	/* Queue the TRBs, even if they are zero-length */
3122 	for (enqd_len = 0; first_trb || enqd_len < full_len;
3123 			enqd_len += trb_buff_len) {
3124 		field = TRB_TYPE(TRB_NORMAL);
3125 
3126 		/* TRB buffer should not cross 64KB boundaries */
3127 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3128 		trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3129 
3130 		if (enqd_len + trb_buff_len > full_len)
3131 			trb_buff_len = full_len - enqd_len;
3132 
3133 		/* Don't change the cycle bit of the first TRB until later */
3134 		if (first_trb) {
3135 			first_trb = false;
3136 			if (start_cycle == 0)
3137 				field |= TRB_CYCLE;
3138 		} else
3139 			field |= ring->cycle_state;
3140 
3141 		/* Chain all the TRBs together; clear the chain bit in the last
3142 		 * TRB to indicate it's the last TRB in the chain.
3143 		 */
3144 		if (enqd_len + trb_buff_len < full_len) {
3145 			field |= TRB_CHAIN;
3146 			if (trb_is_link(ring->enqueue + 1)) {
3147 				if (xhci_align_td(xhci, urb, enqd_len,
3148 						  &trb_buff_len,
3149 						  ring->enq_seg)) {
3150 					send_addr = ring->enq_seg->bounce_dma;
3151 					/* assuming TD won't span 2 segs */
3152 					td->bounce_seg = ring->enq_seg;
3153 				}
3154 			}
3155 		}
3156 		if (enqd_len + trb_buff_len >= full_len) {
3157 			field &= ~TRB_CHAIN;
3158 			field |= TRB_IOC;
3159 			more_trbs_coming = false;
3160 			td->last_trb = ring->enqueue;
3161 		}
3162 
3163 		/* Only set interrupt on short packet for IN endpoints */
3164 		if (usb_urb_dir_in(urb))
3165 			field |= TRB_ISP;
3166 
3167 		/* Set the TRB length, TD size, and interrupter fields. */
3168 		remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3169 					      full_len, urb, more_trbs_coming);
3170 
3171 		length_field = TRB_LEN(trb_buff_len) |
3172 			TRB_TD_SIZE(remainder) |
3173 			TRB_INTR_TARGET(0);
3174 
3175 		queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3176 				lower_32_bits(send_addr),
3177 				upper_32_bits(send_addr),
3178 				length_field,
3179 				field);
3180 
3181 		addr += trb_buff_len;
3182 		sent_len = trb_buff_len;
3183 
3184 		while (sg && sent_len >= block_len) {
3185 			/* New sg entry */
3186 			--num_sgs;
3187 			sent_len -= block_len;
3188 			if (num_sgs != 0) {
3189 				sg = sg_next(sg);
3190 				block_len = sg_dma_len(sg);
3191 				addr = (u64) sg_dma_address(sg);
3192 				addr += sent_len;
3193 			}
3194 		}
3195 		block_len -= sent_len;
3196 		send_addr = addr;
3197 	}
3198 
3199 	if (need_zero_pkt) {
3200 		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3201 				       ep_index, urb->stream_id,
3202 				       1, urb, 1, mem_flags);
3203 		urb_priv->td[1]->last_trb = ring->enqueue;
3204 		field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3205 		queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3206 	}
3207 
3208 	check_trb_math(urb, enqd_len);
3209 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3210 			start_cycle, start_trb);
3211 	return 0;
3212 }
3213 
3214 /* Caller must have locked xhci->lock */
3215 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3216 		struct urb *urb, int slot_id, unsigned int ep_index)
3217 {
3218 	struct xhci_ring *ep_ring;
3219 	int num_trbs;
3220 	int ret;
3221 	struct usb_ctrlrequest *setup;
3222 	struct xhci_generic_trb *start_trb;
3223 	int start_cycle;
3224 	u32 field, length_field, remainder;
3225 	struct urb_priv *urb_priv;
3226 	struct xhci_td *td;
3227 
3228 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3229 	if (!ep_ring)
3230 		return -EINVAL;
3231 
3232 	/*
3233 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3234 	 * DMA address.
3235 	 */
3236 	if (!urb->setup_packet)
3237 		return -EINVAL;
3238 
3239 	/* 1 TRB for setup, 1 for status */
3240 	num_trbs = 2;
3241 	/*
3242 	 * Don't need to check if we need additional event data and normal TRBs,
3243 	 * since data in control transfers will never get bigger than 16MB
3244 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3245 	 */
3246 	if (urb->transfer_buffer_length > 0)
3247 		num_trbs++;
3248 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3249 			ep_index, urb->stream_id,
3250 			num_trbs, urb, 0, mem_flags);
3251 	if (ret < 0)
3252 		return ret;
3253 
3254 	urb_priv = urb->hcpriv;
3255 	td = urb_priv->td[0];
3256 
3257 	/*
3258 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3259 	 * until we've finished creating all the other TRBs.  The ring's cycle
3260 	 * state may change as we enqueue the other TRBs, so save it too.
3261 	 */
3262 	start_trb = &ep_ring->enqueue->generic;
3263 	start_cycle = ep_ring->cycle_state;
3264 
3265 	/* Queue setup TRB - see section 6.4.1.2.1 */
3266 	/* FIXME better way to translate setup_packet into two u32 fields? */
3267 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3268 	field = 0;
3269 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3270 	if (start_cycle == 0)
3271 		field |= 0x1;
3272 
3273 	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3274 	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3275 		if (urb->transfer_buffer_length > 0) {
3276 			if (setup->bRequestType & USB_DIR_IN)
3277 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3278 			else
3279 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3280 		}
3281 	}
3282 
3283 	queue_trb(xhci, ep_ring, true,
3284 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3285 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3286 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3287 		  /* Immediate data in pointer */
3288 		  field);
3289 
3290 	/* If there's data, queue data TRBs */
3291 	/* Only set interrupt on short packet for IN endpoints */
3292 	if (usb_urb_dir_in(urb))
3293 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3294 	else
3295 		field = TRB_TYPE(TRB_DATA);
3296 
3297 	remainder = xhci_td_remainder(xhci, 0,
3298 				   urb->transfer_buffer_length,
3299 				   urb->transfer_buffer_length,
3300 				   urb, 1);
3301 
3302 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3303 		TRB_TD_SIZE(remainder) |
3304 		TRB_INTR_TARGET(0);
3305 
3306 	if (urb->transfer_buffer_length > 0) {
3307 		if (setup->bRequestType & USB_DIR_IN)
3308 			field |= TRB_DIR_IN;
3309 		queue_trb(xhci, ep_ring, true,
3310 				lower_32_bits(urb->transfer_dma),
3311 				upper_32_bits(urb->transfer_dma),
3312 				length_field,
3313 				field | ep_ring->cycle_state);
3314 	}
3315 
3316 	/* Save the DMA address of the last TRB in the TD */
3317 	td->last_trb = ep_ring->enqueue;
3318 
3319 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3320 	/* If the device sent data, the status stage is an OUT transfer */
3321 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3322 		field = 0;
3323 	else
3324 		field = TRB_DIR_IN;
3325 	queue_trb(xhci, ep_ring, false,
3326 			0,
3327 			0,
3328 			TRB_INTR_TARGET(0),
3329 			/* Event on completion */
3330 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3331 
3332 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3333 			start_cycle, start_trb);
3334 	return 0;
3335 }
3336 
3337 /*
3338  * The transfer burst count field of the isochronous TRB defines the number of
3339  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3340  * devices can burst up to bMaxBurst number of packets per service interval.
3341  * This field is zero based, meaning a value of zero in the field means one
3342  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3343  * zero.  Only xHCI 1.0 host controllers support this field.
3344  */
3345 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3346 		struct urb *urb, unsigned int total_packet_count)
3347 {
3348 	unsigned int max_burst;
3349 
3350 	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3351 		return 0;
3352 
3353 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3354 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3355 }
3356 
3357 /*
3358  * Returns the number of packets in the last "burst" of packets.  This field is
3359  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3360  * the last burst packet count is equal to the total number of packets in the
3361  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3362  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3363  * contain 1 to (bMaxBurst + 1) packets.
3364  */
3365 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3366 		struct urb *urb, unsigned int total_packet_count)
3367 {
3368 	unsigned int max_burst;
3369 	unsigned int residue;
3370 
3371 	if (xhci->hci_version < 0x100)
3372 		return 0;
3373 
3374 	if (urb->dev->speed >= USB_SPEED_SUPER) {
3375 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3376 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3377 		residue = total_packet_count % (max_burst + 1);
3378 		/* If residue is zero, the last burst contains (max_burst + 1)
3379 		 * number of packets, but the TLBPC field is zero-based.
3380 		 */
3381 		if (residue == 0)
3382 			return max_burst;
3383 		return residue - 1;
3384 	}
3385 	if (total_packet_count == 0)
3386 		return 0;
3387 	return total_packet_count - 1;
3388 }
3389 
3390 /*
3391  * Calculates Frame ID field of the isochronous TRB identifies the
3392  * target frame that the Interval associated with this Isochronous
3393  * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3394  *
3395  * Returns actual frame id on success, negative value on error.
3396  */
3397 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3398 		struct urb *urb, int index)
3399 {
3400 	int start_frame, ist, ret = 0;
3401 	int start_frame_id, end_frame_id, current_frame_id;
3402 
3403 	if (urb->dev->speed == USB_SPEED_LOW ||
3404 			urb->dev->speed == USB_SPEED_FULL)
3405 		start_frame = urb->start_frame + index * urb->interval;
3406 	else
3407 		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3408 
3409 	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3410 	 *
3411 	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3412 	 * later than IST[2:0] Microframes before that TRB is scheduled to
3413 	 * be executed.
3414 	 * If bit [3] of IST is set to '1', software can add a TRB no later
3415 	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3416 	 */
3417 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3418 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3419 		ist <<= 3;
3420 
3421 	/* Software shall not schedule an Isoch TD with a Frame ID value that
3422 	 * is less than the Start Frame ID or greater than the End Frame ID,
3423 	 * where:
3424 	 *
3425 	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3426 	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3427 	 *
3428 	 * Both the End Frame ID and Start Frame ID values are calculated
3429 	 * in microframes. When software determines the valid Frame ID value;
3430 	 * The End Frame ID value should be rounded down to the nearest Frame
3431 	 * boundary, and the Start Frame ID value should be rounded up to the
3432 	 * nearest Frame boundary.
3433 	 */
3434 	current_frame_id = readl(&xhci->run_regs->microframe_index);
3435 	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3436 	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3437 
3438 	start_frame &= 0x7ff;
3439 	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3440 	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3441 
3442 	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3443 		 __func__, index, readl(&xhci->run_regs->microframe_index),
3444 		 start_frame_id, end_frame_id, start_frame);
3445 
3446 	if (start_frame_id < end_frame_id) {
3447 		if (start_frame > end_frame_id ||
3448 				start_frame < start_frame_id)
3449 			ret = -EINVAL;
3450 	} else if (start_frame_id > end_frame_id) {
3451 		if ((start_frame > end_frame_id &&
3452 				start_frame < start_frame_id))
3453 			ret = -EINVAL;
3454 	} else {
3455 			ret = -EINVAL;
3456 	}
3457 
3458 	if (index == 0) {
3459 		if (ret == -EINVAL || start_frame == start_frame_id) {
3460 			start_frame = start_frame_id + 1;
3461 			if (urb->dev->speed == USB_SPEED_LOW ||
3462 					urb->dev->speed == USB_SPEED_FULL)
3463 				urb->start_frame = start_frame;
3464 			else
3465 				urb->start_frame = start_frame << 3;
3466 			ret = 0;
3467 		}
3468 	}
3469 
3470 	if (ret) {
3471 		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3472 				start_frame, current_frame_id, index,
3473 				start_frame_id, end_frame_id);
3474 		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3475 		return ret;
3476 	}
3477 
3478 	return start_frame;
3479 }
3480 
3481 /* This is for isoc transfer */
3482 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3483 		struct urb *urb, int slot_id, unsigned int ep_index)
3484 {
3485 	struct xhci_ring *ep_ring;
3486 	struct urb_priv *urb_priv;
3487 	struct xhci_td *td;
3488 	int num_tds, trbs_per_td;
3489 	struct xhci_generic_trb *start_trb;
3490 	bool first_trb;
3491 	int start_cycle;
3492 	u32 field, length_field;
3493 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3494 	u64 start_addr, addr;
3495 	int i, j;
3496 	bool more_trbs_coming;
3497 	struct xhci_virt_ep *xep;
3498 	int frame_id;
3499 
3500 	xep = &xhci->devs[slot_id]->eps[ep_index];
3501 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3502 
3503 	num_tds = urb->number_of_packets;
3504 	if (num_tds < 1) {
3505 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3506 		return -EINVAL;
3507 	}
3508 	start_addr = (u64) urb->transfer_dma;
3509 	start_trb = &ep_ring->enqueue->generic;
3510 	start_cycle = ep_ring->cycle_state;
3511 
3512 	urb_priv = urb->hcpriv;
3513 	/* Queue the TRBs for each TD, even if they are zero-length */
3514 	for (i = 0; i < num_tds; i++) {
3515 		unsigned int total_pkt_count, max_pkt;
3516 		unsigned int burst_count, last_burst_pkt_count;
3517 		u32 sia_frame_id;
3518 
3519 		first_trb = true;
3520 		running_total = 0;
3521 		addr = start_addr + urb->iso_frame_desc[i].offset;
3522 		td_len = urb->iso_frame_desc[i].length;
3523 		td_remain_len = td_len;
3524 		max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3525 		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3526 
3527 		/* A zero-length transfer still involves at least one packet. */
3528 		if (total_pkt_count == 0)
3529 			total_pkt_count++;
3530 		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3531 		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3532 							urb, total_pkt_count);
3533 
3534 		trbs_per_td = count_isoc_trbs_needed(urb, i);
3535 
3536 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3537 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3538 		if (ret < 0) {
3539 			if (i == 0)
3540 				return ret;
3541 			goto cleanup;
3542 		}
3543 		td = urb_priv->td[i];
3544 
3545 		/* use SIA as default, if frame id is used overwrite it */
3546 		sia_frame_id = TRB_SIA;
3547 		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3548 		    HCC_CFC(xhci->hcc_params)) {
3549 			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3550 			if (frame_id >= 0)
3551 				sia_frame_id = TRB_FRAME_ID(frame_id);
3552 		}
3553 		/*
3554 		 * Set isoc specific data for the first TRB in a TD.
3555 		 * Prevent HW from getting the TRBs by keeping the cycle state
3556 		 * inverted in the first TDs isoc TRB.
3557 		 */
3558 		field = TRB_TYPE(TRB_ISOC) |
3559 			TRB_TLBPC(last_burst_pkt_count) |
3560 			sia_frame_id |
3561 			(i ? ep_ring->cycle_state : !start_cycle);
3562 
3563 		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3564 		if (!xep->use_extended_tbc)
3565 			field |= TRB_TBC(burst_count);
3566 
3567 		/* fill the rest of the TRB fields, and remaining normal TRBs */
3568 		for (j = 0; j < trbs_per_td; j++) {
3569 			u32 remainder = 0;
3570 
3571 			/* only first TRB is isoc, overwrite otherwise */
3572 			if (!first_trb)
3573 				field = TRB_TYPE(TRB_NORMAL) |
3574 					ep_ring->cycle_state;
3575 
3576 			/* Only set interrupt on short packet for IN EPs */
3577 			if (usb_urb_dir_in(urb))
3578 				field |= TRB_ISP;
3579 
3580 			/* Set the chain bit for all except the last TRB  */
3581 			if (j < trbs_per_td - 1) {
3582 				more_trbs_coming = true;
3583 				field |= TRB_CHAIN;
3584 			} else {
3585 				more_trbs_coming = false;
3586 				td->last_trb = ep_ring->enqueue;
3587 				field |= TRB_IOC;
3588 				/* set BEI, except for the last TD */
3589 				if (xhci->hci_version >= 0x100 &&
3590 				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3591 				    i < num_tds - 1)
3592 					field |= TRB_BEI;
3593 			}
3594 			/* Calculate TRB length */
3595 			trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3596 			if (trb_buff_len > td_remain_len)
3597 				trb_buff_len = td_remain_len;
3598 
3599 			/* Set the TRB length, TD size, & interrupter fields. */
3600 			remainder = xhci_td_remainder(xhci, running_total,
3601 						   trb_buff_len, td_len,
3602 						   urb, more_trbs_coming);
3603 
3604 			length_field = TRB_LEN(trb_buff_len) |
3605 				TRB_INTR_TARGET(0);
3606 
3607 			/* xhci 1.1 with ETE uses TD Size field for TBC */
3608 			if (first_trb && xep->use_extended_tbc)
3609 				length_field |= TRB_TD_SIZE_TBC(burst_count);
3610 			else
3611 				length_field |= TRB_TD_SIZE(remainder);
3612 			first_trb = false;
3613 
3614 			queue_trb(xhci, ep_ring, more_trbs_coming,
3615 				lower_32_bits(addr),
3616 				upper_32_bits(addr),
3617 				length_field,
3618 				field);
3619 			running_total += trb_buff_len;
3620 
3621 			addr += trb_buff_len;
3622 			td_remain_len -= trb_buff_len;
3623 		}
3624 
3625 		/* Check TD length */
3626 		if (running_total != td_len) {
3627 			xhci_err(xhci, "ISOC TD length unmatch\n");
3628 			ret = -EINVAL;
3629 			goto cleanup;
3630 		}
3631 	}
3632 
3633 	/* store the next frame id */
3634 	if (HCC_CFC(xhci->hcc_params))
3635 		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3636 
3637 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3638 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3639 			usb_amd_quirk_pll_disable();
3640 	}
3641 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3642 
3643 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3644 			start_cycle, start_trb);
3645 	return 0;
3646 cleanup:
3647 	/* Clean up a partially enqueued isoc transfer. */
3648 
3649 	for (i--; i >= 0; i--)
3650 		list_del_init(&urb_priv->td[i]->td_list);
3651 
3652 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3653 	 * into No-ops with a software-owned cycle bit. That way the hardware
3654 	 * won't accidentally start executing bogus TDs when we partially
3655 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3656 	 */
3657 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3658 	/* Every TRB except the first & last will have its cycle bit flipped. */
3659 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3660 
3661 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3662 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3663 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3664 	ep_ring->cycle_state = start_cycle;
3665 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3666 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3667 	return ret;
3668 }
3669 
3670 /*
3671  * Check transfer ring to guarantee there is enough room for the urb.
3672  * Update ISO URB start_frame and interval.
3673  * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3674  * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3675  * Contiguous Frame ID is not supported by HC.
3676  */
3677 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3678 		struct urb *urb, int slot_id, unsigned int ep_index)
3679 {
3680 	struct xhci_virt_device *xdev;
3681 	struct xhci_ring *ep_ring;
3682 	struct xhci_ep_ctx *ep_ctx;
3683 	int start_frame;
3684 	int num_tds, num_trbs, i;
3685 	int ret;
3686 	struct xhci_virt_ep *xep;
3687 	int ist;
3688 
3689 	xdev = xhci->devs[slot_id];
3690 	xep = &xhci->devs[slot_id]->eps[ep_index];
3691 	ep_ring = xdev->eps[ep_index].ring;
3692 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3693 
3694 	num_trbs = 0;
3695 	num_tds = urb->number_of_packets;
3696 	for (i = 0; i < num_tds; i++)
3697 		num_trbs += count_isoc_trbs_needed(urb, i);
3698 
3699 	/* Check the ring to guarantee there is enough room for the whole urb.
3700 	 * Do not insert any td of the urb to the ring if the check failed.
3701 	 */
3702 	ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3703 			   num_trbs, mem_flags);
3704 	if (ret)
3705 		return ret;
3706 
3707 	/*
3708 	 * Check interval value. This should be done before we start to
3709 	 * calculate the start frame value.
3710 	 */
3711 	check_interval(xhci, urb, ep_ctx);
3712 
3713 	/* Calculate the start frame and put it in urb->start_frame. */
3714 	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3715 		if (GET_EP_CTX_STATE(ep_ctx) ==	EP_STATE_RUNNING) {
3716 			urb->start_frame = xep->next_frame_id;
3717 			goto skip_start_over;
3718 		}
3719 	}
3720 
3721 	start_frame = readl(&xhci->run_regs->microframe_index);
3722 	start_frame &= 0x3fff;
3723 	/*
3724 	 * Round up to the next frame and consider the time before trb really
3725 	 * gets scheduled by hardare.
3726 	 */
3727 	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3728 	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3729 		ist <<= 3;
3730 	start_frame += ist + XHCI_CFC_DELAY;
3731 	start_frame = roundup(start_frame, 8);
3732 
3733 	/*
3734 	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3735 	 * is greate than 8 microframes.
3736 	 */
3737 	if (urb->dev->speed == USB_SPEED_LOW ||
3738 			urb->dev->speed == USB_SPEED_FULL) {
3739 		start_frame = roundup(start_frame, urb->interval << 3);
3740 		urb->start_frame = start_frame >> 3;
3741 	} else {
3742 		start_frame = roundup(start_frame, urb->interval);
3743 		urb->start_frame = start_frame;
3744 	}
3745 
3746 skip_start_over:
3747 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3748 
3749 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3750 }
3751 
3752 /****		Command Ring Operations		****/
3753 
3754 /* Generic function for queueing a command TRB on the command ring.
3755  * Check to make sure there's room on the command ring for one command TRB.
3756  * Also check that there's room reserved for commands that must not fail.
3757  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3758  * then only check for the number of reserved spots.
3759  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3760  * because the command event handler may want to resubmit a failed command.
3761  */
3762 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3763 			 u32 field1, u32 field2,
3764 			 u32 field3, u32 field4, bool command_must_succeed)
3765 {
3766 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3767 	int ret;
3768 
3769 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3770 		(xhci->xhc_state & XHCI_STATE_HALTED)) {
3771 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3772 		return -ESHUTDOWN;
3773 	}
3774 
3775 	if (!command_must_succeed)
3776 		reserved_trbs++;
3777 
3778 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3779 			reserved_trbs, GFP_ATOMIC);
3780 	if (ret < 0) {
3781 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3782 		if (command_must_succeed)
3783 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3784 					"unfailable commands failed.\n");
3785 		return ret;
3786 	}
3787 
3788 	cmd->command_trb = xhci->cmd_ring->enqueue;
3789 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3790 
3791 	/* if there are no other commands queued we start the timeout timer */
3792 	if (xhci->cmd_list.next == &cmd->cmd_list &&
3793 	    !timer_pending(&xhci->cmd_timer)) {
3794 		xhci->current_cmd = cmd;
3795 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
3796 	}
3797 
3798 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3799 			field4 | xhci->cmd_ring->cycle_state);
3800 	return 0;
3801 }
3802 
3803 /* Queue a slot enable or disable request on the command ring */
3804 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3805 		u32 trb_type, u32 slot_id)
3806 {
3807 	return queue_command(xhci, cmd, 0, 0, 0,
3808 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3809 }
3810 
3811 /* Queue an address device command TRB */
3812 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3813 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3814 {
3815 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3816 			upper_32_bits(in_ctx_ptr), 0,
3817 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3818 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3819 }
3820 
3821 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3822 		u32 field1, u32 field2, u32 field3, u32 field4)
3823 {
3824 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3825 }
3826 
3827 /* Queue a reset device command TRB */
3828 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3829 		u32 slot_id)
3830 {
3831 	return queue_command(xhci, cmd, 0, 0, 0,
3832 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3833 			false);
3834 }
3835 
3836 /* Queue a configure endpoint command TRB */
3837 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3838 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3839 		u32 slot_id, bool command_must_succeed)
3840 {
3841 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3842 			upper_32_bits(in_ctx_ptr), 0,
3843 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3844 			command_must_succeed);
3845 }
3846 
3847 /* Queue an evaluate context command TRB */
3848 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3849 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3850 {
3851 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3852 			upper_32_bits(in_ctx_ptr), 0,
3853 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3854 			command_must_succeed);
3855 }
3856 
3857 /*
3858  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3859  * activity on an endpoint that is about to be suspended.
3860  */
3861 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3862 			     int slot_id, unsigned int ep_index, int suspend)
3863 {
3864 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3865 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3866 	u32 type = TRB_TYPE(TRB_STOP_RING);
3867 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3868 
3869 	return queue_command(xhci, cmd, 0, 0, 0,
3870 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3871 }
3872 
3873 /* Set Transfer Ring Dequeue Pointer command */
3874 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3875 		unsigned int slot_id, unsigned int ep_index,
3876 		unsigned int stream_id,
3877 		struct xhci_dequeue_state *deq_state)
3878 {
3879 	dma_addr_t addr;
3880 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3881 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3882 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3883 	u32 trb_sct = 0;
3884 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3885 	struct xhci_virt_ep *ep;
3886 	struct xhci_command *cmd;
3887 	int ret;
3888 
3889 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3890 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3891 		deq_state->new_deq_seg,
3892 		(unsigned long long)deq_state->new_deq_seg->dma,
3893 		deq_state->new_deq_ptr,
3894 		(unsigned long long)xhci_trb_virt_to_dma(
3895 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
3896 		deq_state->new_cycle_state);
3897 
3898 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3899 				    deq_state->new_deq_ptr);
3900 	if (addr == 0) {
3901 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3902 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3903 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
3904 		return;
3905 	}
3906 	ep = &xhci->devs[slot_id]->eps[ep_index];
3907 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3908 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3909 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3910 		return;
3911 	}
3912 
3913 	/* This function gets called from contexts where it cannot sleep */
3914 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
3915 	if (!cmd) {
3916 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
3917 		return;
3918 	}
3919 
3920 	ep->queued_deq_seg = deq_state->new_deq_seg;
3921 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
3922 	if (stream_id)
3923 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3924 	ret = queue_command(xhci, cmd,
3925 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3926 		upper_32_bits(addr), trb_stream_id,
3927 		trb_slot_id | trb_ep_index | type, false);
3928 	if (ret < 0) {
3929 		xhci_free_command(xhci, cmd);
3930 		return;
3931 	}
3932 
3933 	/* Stop the TD queueing code from ringing the doorbell until
3934 	 * this command completes.  The HC won't set the dequeue pointer
3935 	 * if the ring is running, and ringing the doorbell starts the
3936 	 * ring running.
3937 	 */
3938 	ep->ep_state |= SET_DEQ_PENDING;
3939 }
3940 
3941 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
3942 			int slot_id, unsigned int ep_index)
3943 {
3944 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3945 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3946 	u32 type = TRB_TYPE(TRB_RESET_EP);
3947 
3948 	return queue_command(xhci, cmd, 0, 0, 0,
3949 			trb_slot_id | trb_ep_index | type, false);
3950 }
3951