xref: /openbmc/linux/drivers/usb/host/xhci-ring.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 /*
24  * Ring initialization rules:
25  * 1. Each segment is initialized to zero, except for link TRBs.
26  * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
27  *    Consumer Cycle State (CCS), depending on ring function.
28  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29  *
30  * Ring behavior rules:
31  * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
32  *    least one free TRB in the ring.  This is useful if you want to turn that
33  *    into a link TRB and expand the ring.
34  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35  *    link TRB, then load the pointer with the address in the link TRB.  If the
36  *    link TRB had its toggle bit set, you may need to update the ring cycle
37  *    state (see cycle bit rules).  You may have to do this multiple times
38  *    until you reach a non-link TRB.
39  * 3. A ring is full if enqueue++ (for the definition of increment above)
40  *    equals the dequeue pointer.
41  *
42  * Cycle bit rules:
43  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44  *    in a link TRB, it must toggle the ring cycle state.
45  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46  *    in a link TRB, it must toggle the ring cycle state.
47  *
48  * Producer rules:
49  * 1. Check if ring is full before you enqueue.
50  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51  *    Update enqueue pointer between each write (which may update the ring
52  *    cycle state).
53  * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
54  *    and endpoint rings.  If HC is the producer for the event ring,
55  *    and it generates an interrupt according to interrupt modulation rules.
56  *
57  * Consumer rules:
58  * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
59  *    the TRB is owned by the consumer.
60  * 2. Update dequeue pointer (which may update the ring cycle state) and
61  *    continue processing TRBs until you reach a TRB which is not owned by you.
62  * 3. Notify the producer.  SW is the consumer for the event ring, and it
63  *   updates event ring dequeue pointer.  HC is the consumer for the command and
64  *   endpoint rings; it generates events on the event ring for these.
65  */
66 
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71 
72 /*
73  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
74  * address of the TRB.
75  */
76 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
77 		union xhci_trb *trb)
78 {
79 	unsigned long segment_offset;
80 
81 	if (!seg || !trb || trb < seg->trbs)
82 		return 0;
83 	/* offset in TRBs */
84 	segment_offset = trb - seg->trbs;
85 	if (segment_offset > TRBS_PER_SEGMENT)
86 		return 0;
87 	return seg->dma + (segment_offset * sizeof(*trb));
88 }
89 
90 /* Does this link TRB point to the first segment in a ring,
91  * or was the previous TRB the last TRB on the last segment in the ERST?
92  */
93 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
94 		struct xhci_segment *seg, union xhci_trb *trb)
95 {
96 	if (ring == xhci->event_ring)
97 		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
98 			(seg->next == xhci->event_ring->first_seg);
99 	else
100 		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
101 }
102 
103 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
104  * segment?  I.e. would the updated event TRB pointer step off the end of the
105  * event seg?
106  */
107 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
108 		struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 	if (ring == xhci->event_ring)
111 		return trb == &seg->trbs[TRBS_PER_SEGMENT];
112 	else
113 		return TRB_TYPE_LINK_LE32(trb->link.control);
114 }
115 
116 static int enqueue_is_link_trb(struct xhci_ring *ring)
117 {
118 	struct xhci_link_trb *link = &ring->enqueue->link;
119 	return TRB_TYPE_LINK_LE32(link->control);
120 }
121 
122 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
123  * TRB is in a new segment.  This does not skip over link TRBs, and it does not
124  * effect the ring dequeue or enqueue pointers.
125  */
126 static void next_trb(struct xhci_hcd *xhci,
127 		struct xhci_ring *ring,
128 		struct xhci_segment **seg,
129 		union xhci_trb **trb)
130 {
131 	if (last_trb(xhci, ring, *seg, *trb)) {
132 		*seg = (*seg)->next;
133 		*trb = ((*seg)->trbs);
134 	} else {
135 		(*trb)++;
136 	}
137 }
138 
139 /*
140  * See Cycle bit rules. SW is the consumer for the event ring only.
141  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
142  */
143 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
144 {
145 	ring->deq_updates++;
146 
147 	/*
148 	 * If this is not event ring, and the dequeue pointer
149 	 * is not on a link TRB, there is one more usable TRB
150 	 */
151 	if (ring->type != TYPE_EVENT &&
152 			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
153 		ring->num_trbs_free++;
154 
155 	do {
156 		/*
157 		 * Update the dequeue pointer further if that was a link TRB or
158 		 * we're at the end of an event ring segment (which doesn't have
159 		 * link TRBS)
160 		 */
161 		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
162 			if (ring->type == TYPE_EVENT &&
163 					last_trb_on_last_seg(xhci, ring,
164 						ring->deq_seg, ring->dequeue)) {
165 				ring->cycle_state ^= 1;
166 			}
167 			ring->deq_seg = ring->deq_seg->next;
168 			ring->dequeue = ring->deq_seg->trbs;
169 		} else {
170 			ring->dequeue++;
171 		}
172 	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
173 }
174 
175 /*
176  * See Cycle bit rules. SW is the consumer for the event ring only.
177  * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
178  *
179  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
180  * chain bit is set), then set the chain bit in all the following link TRBs.
181  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
182  * have their chain bit cleared (so that each Link TRB is a separate TD).
183  *
184  * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
185  * set, but other sections talk about dealing with the chain bit set.  This was
186  * fixed in the 0.96 specification errata, but we have to assume that all 0.95
187  * xHCI hardware can't handle the chain bit being cleared on a link TRB.
188  *
189  * @more_trbs_coming:	Will you enqueue more TRBs before calling
190  *			prepare_transfer()?
191  */
192 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
193 			bool more_trbs_coming)
194 {
195 	u32 chain;
196 	union xhci_trb *next;
197 
198 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
199 	/* If this is not event ring, there is one less usable TRB */
200 	if (ring->type != TYPE_EVENT &&
201 			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
202 		ring->num_trbs_free--;
203 	next = ++(ring->enqueue);
204 
205 	ring->enq_updates++;
206 	/* Update the dequeue pointer further if that was a link TRB or we're at
207 	 * the end of an event ring segment (which doesn't have link TRBS)
208 	 */
209 	while (last_trb(xhci, ring, ring->enq_seg, next)) {
210 		if (ring->type != TYPE_EVENT) {
211 			/*
212 			 * If the caller doesn't plan on enqueueing more
213 			 * TDs before ringing the doorbell, then we
214 			 * don't want to give the link TRB to the
215 			 * hardware just yet.  We'll give the link TRB
216 			 * back in prepare_ring() just before we enqueue
217 			 * the TD at the top of the ring.
218 			 */
219 			if (!chain && !more_trbs_coming)
220 				break;
221 
222 			/* If we're not dealing with 0.95 hardware or
223 			 * isoc rings on AMD 0.96 host,
224 			 * carry over the chain bit of the previous TRB
225 			 * (which may mean the chain bit is cleared).
226 			 */
227 			if (!(ring->type == TYPE_ISOC &&
228 					(xhci->quirks & XHCI_AMD_0x96_HOST))
229 						&& !xhci_link_trb_quirk(xhci)) {
230 				next->link.control &=
231 					cpu_to_le32(~TRB_CHAIN);
232 				next->link.control |=
233 					cpu_to_le32(chain);
234 			}
235 			/* Give this link TRB to the hardware */
236 			wmb();
237 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
238 
239 			/* Toggle the cycle bit after the last ring segment. */
240 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
241 				ring->cycle_state ^= 1;
242 			}
243 		}
244 		ring->enq_seg = ring->enq_seg->next;
245 		ring->enqueue = ring->enq_seg->trbs;
246 		next = ring->enqueue;
247 	}
248 }
249 
250 /*
251  * Check to see if there's room to enqueue num_trbs on the ring and make sure
252  * enqueue pointer will not advance into dequeue segment. See rules above.
253  */
254 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
255 		unsigned int num_trbs)
256 {
257 	int num_trbs_in_deq_seg;
258 
259 	if (ring->num_trbs_free < num_trbs)
260 		return 0;
261 
262 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
263 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
264 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
265 			return 0;
266 	}
267 
268 	return 1;
269 }
270 
271 /* Ring the host controller doorbell after placing a command on the ring */
272 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
273 {
274 	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
275 		return;
276 
277 	xhci_dbg(xhci, "// Ding dong!\n");
278 	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
279 	/* Flush PCI posted writes */
280 	readl(&xhci->dba->doorbell[0]);
281 }
282 
283 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
284 {
285 	u64 temp_64;
286 	int ret;
287 
288 	xhci_dbg(xhci, "Abort command ring\n");
289 
290 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
291 	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
292 	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
293 			&xhci->op_regs->cmd_ring);
294 
295 	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
296 	 * time the completion od all xHCI commands, including
297 	 * the Command Abort operation. If software doesn't see
298 	 * CRR negated in a timely manner (e.g. longer than 5
299 	 * seconds), then it should assume that the there are
300 	 * larger problems with the xHC and assert HCRST.
301 	 */
302 	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
303 			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
304 	if (ret < 0) {
305 		xhci_err(xhci, "Stopped the command ring failed, "
306 				"maybe the host is dead\n");
307 		xhci->xhc_state |= XHCI_STATE_DYING;
308 		xhci_quiesce(xhci);
309 		xhci_halt(xhci);
310 		return -ESHUTDOWN;
311 	}
312 
313 	return 0;
314 }
315 
316 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
317 		unsigned int slot_id,
318 		unsigned int ep_index,
319 		unsigned int stream_id)
320 {
321 	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
322 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
323 	unsigned int ep_state = ep->ep_state;
324 
325 	/* Don't ring the doorbell for this endpoint if there are pending
326 	 * cancellations because we don't want to interrupt processing.
327 	 * We don't want to restart any stream rings if there's a set dequeue
328 	 * pointer command pending because the device can choose to start any
329 	 * stream once the endpoint is on the HW schedule.
330 	 */
331 	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
332 	    (ep_state & EP_HALTED))
333 		return;
334 	writel(DB_VALUE(ep_index, stream_id), db_addr);
335 	/* The CPU has better things to do at this point than wait for a
336 	 * write-posting flush.  It'll get there soon enough.
337 	 */
338 }
339 
340 /* Ring the doorbell for any rings with pending URBs */
341 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
342 		unsigned int slot_id,
343 		unsigned int ep_index)
344 {
345 	unsigned int stream_id;
346 	struct xhci_virt_ep *ep;
347 
348 	ep = &xhci->devs[slot_id]->eps[ep_index];
349 
350 	/* A ring has pending URBs if its TD list is not empty */
351 	if (!(ep->ep_state & EP_HAS_STREAMS)) {
352 		if (ep->ring && !(list_empty(&ep->ring->td_list)))
353 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
354 		return;
355 	}
356 
357 	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
358 			stream_id++) {
359 		struct xhci_stream_info *stream_info = ep->stream_info;
360 		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
361 			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
362 						stream_id);
363 	}
364 }
365 
366 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
367 		unsigned int slot_id, unsigned int ep_index,
368 		unsigned int stream_id)
369 {
370 	struct xhci_virt_ep *ep;
371 
372 	ep = &xhci->devs[slot_id]->eps[ep_index];
373 	/* Common case: no streams */
374 	if (!(ep->ep_state & EP_HAS_STREAMS))
375 		return ep->ring;
376 
377 	if (stream_id == 0) {
378 		xhci_warn(xhci,
379 				"WARN: Slot ID %u, ep index %u has streams, "
380 				"but URB has no stream ID.\n",
381 				slot_id, ep_index);
382 		return NULL;
383 	}
384 
385 	if (stream_id < ep->stream_info->num_streams)
386 		return ep->stream_info->stream_rings[stream_id];
387 
388 	xhci_warn(xhci,
389 			"WARN: Slot ID %u, ep index %u has "
390 			"stream IDs 1 to %u allocated, "
391 			"but stream ID %u is requested.\n",
392 			slot_id, ep_index,
393 			ep->stream_info->num_streams - 1,
394 			stream_id);
395 	return NULL;
396 }
397 
398 /* Get the right ring for the given URB.
399  * If the endpoint supports streams, boundary check the URB's stream ID.
400  * If the endpoint doesn't support streams, return the singular endpoint ring.
401  */
402 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
403 		struct urb *urb)
404 {
405 	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
406 		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
407 }
408 
409 /*
410  * Move the xHC's endpoint ring dequeue pointer past cur_td.
411  * Record the new state of the xHC's endpoint ring dequeue segment,
412  * dequeue pointer, and new consumer cycle state in state.
413  * Update our internal representation of the ring's dequeue pointer.
414  *
415  * We do this in three jumps:
416  *  - First we update our new ring state to be the same as when the xHC stopped.
417  *  - Then we traverse the ring to find the segment that contains
418  *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
419  *    any link TRBs with the toggle cycle bit set.
420  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
421  *    if we've moved it past a link TRB with the toggle cycle bit set.
422  *
423  * Some of the uses of xhci_generic_trb are grotty, but if they're done
424  * with correct __le32 accesses they should work fine.  Only users of this are
425  * in here.
426  */
427 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
428 		unsigned int slot_id, unsigned int ep_index,
429 		unsigned int stream_id, struct xhci_td *cur_td,
430 		struct xhci_dequeue_state *state)
431 {
432 	struct xhci_virt_device *dev = xhci->devs[slot_id];
433 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
434 	struct xhci_ring *ep_ring;
435 	struct xhci_segment *new_seg;
436 	union xhci_trb *new_deq;
437 	dma_addr_t addr;
438 	u64 hw_dequeue;
439 	bool cycle_found = false;
440 	bool td_last_trb_found = false;
441 
442 	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
443 			ep_index, stream_id);
444 	if (!ep_ring) {
445 		xhci_warn(xhci, "WARN can't find new dequeue state "
446 				"for invalid stream ID %u.\n",
447 				stream_id);
448 		return;
449 	}
450 
451 	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
452 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
453 			"Finding endpoint context");
454 	/* 4.6.9 the css flag is written to the stream context for streams */
455 	if (ep->ep_state & EP_HAS_STREAMS) {
456 		struct xhci_stream_ctx *ctx =
457 			&ep->stream_info->stream_ctx_array[stream_id];
458 		hw_dequeue = le64_to_cpu(ctx->stream_ring);
459 	} else {
460 		struct xhci_ep_ctx *ep_ctx
461 			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
462 		hw_dequeue = le64_to_cpu(ep_ctx->deq);
463 	}
464 
465 	new_seg = ep_ring->deq_seg;
466 	new_deq = ep_ring->dequeue;
467 	state->new_cycle_state = hw_dequeue & 0x1;
468 
469 	/*
470 	 * We want to find the pointer, segment and cycle state of the new trb
471 	 * (the one after current TD's last_trb). We know the cycle state at
472 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
473 	 * found.
474 	 */
475 	do {
476 		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
477 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
478 			cycle_found = true;
479 			if (td_last_trb_found)
480 				break;
481 		}
482 		if (new_deq == cur_td->last_trb)
483 			td_last_trb_found = true;
484 
485 		if (cycle_found &&
486 		    TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
487 		    new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
488 			state->new_cycle_state ^= 0x1;
489 
490 		next_trb(xhci, ep_ring, &new_seg, &new_deq);
491 
492 		/* Search wrapped around, bail out */
493 		if (new_deq == ep->ring->dequeue) {
494 			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
495 			state->new_deq_seg = NULL;
496 			state->new_deq_ptr = NULL;
497 			return;
498 		}
499 
500 	} while (!cycle_found || !td_last_trb_found);
501 
502 	state->new_deq_seg = new_seg;
503 	state->new_deq_ptr = new_deq;
504 
505 	/* Don't update the ring cycle state for the producer (us). */
506 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
507 			"Cycle state = 0x%x", state->new_cycle_state);
508 
509 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
510 			"New dequeue segment = %p (virtual)",
511 			state->new_deq_seg);
512 	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
513 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
514 			"New dequeue pointer = 0x%llx (DMA)",
515 			(unsigned long long) addr);
516 }
517 
518 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
519  * (The last TRB actually points to the ring enqueue pointer, which is not part
520  * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
521  */
522 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
523 		struct xhci_td *cur_td, bool flip_cycle)
524 {
525 	struct xhci_segment *cur_seg;
526 	union xhci_trb *cur_trb;
527 
528 	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
529 			true;
530 			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
531 		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
532 			/* Unchain any chained Link TRBs, but
533 			 * leave the pointers intact.
534 			 */
535 			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
536 			/* Flip the cycle bit (link TRBs can't be the first
537 			 * or last TRB).
538 			 */
539 			if (flip_cycle)
540 				cur_trb->generic.field[3] ^=
541 					cpu_to_le32(TRB_CYCLE);
542 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
543 					"Cancel (unchain) link TRB");
544 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
545 					"Address = %p (0x%llx dma); "
546 					"in seg %p (0x%llx dma)",
547 					cur_trb,
548 					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
549 					cur_seg,
550 					(unsigned long long)cur_seg->dma);
551 		} else {
552 			cur_trb->generic.field[0] = 0;
553 			cur_trb->generic.field[1] = 0;
554 			cur_trb->generic.field[2] = 0;
555 			/* Preserve only the cycle bit of this TRB */
556 			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
557 			/* Flip the cycle bit except on the first or last TRB */
558 			if (flip_cycle && cur_trb != cur_td->first_trb &&
559 					cur_trb != cur_td->last_trb)
560 				cur_trb->generic.field[3] ^=
561 					cpu_to_le32(TRB_CYCLE);
562 			cur_trb->generic.field[3] |= cpu_to_le32(
563 				TRB_TYPE(TRB_TR_NOOP));
564 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
565 					"TRB to noop at offset 0x%llx",
566 					(unsigned long long)
567 					xhci_trb_virt_to_dma(cur_seg, cur_trb));
568 		}
569 		if (cur_trb == cur_td->last_trb)
570 			break;
571 	}
572 }
573 
574 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
575 		struct xhci_virt_ep *ep)
576 {
577 	ep->ep_state &= ~EP_HALT_PENDING;
578 	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
579 	 * timer is running on another CPU, we don't decrement stop_cmds_pending
580 	 * (since we didn't successfully stop the watchdog timer).
581 	 */
582 	if (del_timer(&ep->stop_cmd_timer))
583 		ep->stop_cmds_pending--;
584 }
585 
586 /* Must be called with xhci->lock held in interrupt context */
587 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
588 		struct xhci_td *cur_td, int status)
589 {
590 	struct usb_hcd *hcd;
591 	struct urb	*urb;
592 	struct urb_priv	*urb_priv;
593 
594 	urb = cur_td->urb;
595 	urb_priv = urb->hcpriv;
596 	urb_priv->td_cnt++;
597 	hcd = bus_to_hcd(urb->dev->bus);
598 
599 	/* Only giveback urb when this is the last td in urb */
600 	if (urb_priv->td_cnt == urb_priv->length) {
601 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
602 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
603 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
604 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
605 					usb_amd_quirk_pll_enable();
606 			}
607 		}
608 		usb_hcd_unlink_urb_from_ep(hcd, urb);
609 
610 		spin_unlock(&xhci->lock);
611 		usb_hcd_giveback_urb(hcd, urb, status);
612 		xhci_urb_free_priv(urb_priv);
613 		spin_lock(&xhci->lock);
614 	}
615 }
616 
617 /*
618  * When we get a command completion for a Stop Endpoint Command, we need to
619  * unlink any cancelled TDs from the ring.  There are two ways to do that:
620  *
621  *  1. If the HW was in the middle of processing the TD that needs to be
622  *     cancelled, then we must move the ring's dequeue pointer past the last TRB
623  *     in the TD with a Set Dequeue Pointer Command.
624  *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
625  *     bit cleared) so that the HW will skip over them.
626  */
627 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
628 		union xhci_trb *trb, struct xhci_event_cmd *event)
629 {
630 	unsigned int ep_index;
631 	struct xhci_ring *ep_ring;
632 	struct xhci_virt_ep *ep;
633 	struct list_head *entry;
634 	struct xhci_td *cur_td = NULL;
635 	struct xhci_td *last_unlinked_td;
636 
637 	struct xhci_dequeue_state deq_state;
638 
639 	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
640 		if (!xhci->devs[slot_id])
641 			xhci_warn(xhci, "Stop endpoint command "
642 				"completion for disabled slot %u\n",
643 				slot_id);
644 		return;
645 	}
646 
647 	memset(&deq_state, 0, sizeof(deq_state));
648 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
649 	ep = &xhci->devs[slot_id]->eps[ep_index];
650 
651 	if (list_empty(&ep->cancelled_td_list)) {
652 		xhci_stop_watchdog_timer_in_irq(xhci, ep);
653 		ep->stopped_td = NULL;
654 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
655 		return;
656 	}
657 
658 	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
659 	 * We have the xHCI lock, so nothing can modify this list until we drop
660 	 * it.  We're also in the event handler, so we can't get re-interrupted
661 	 * if another Stop Endpoint command completes
662 	 */
663 	list_for_each(entry, &ep->cancelled_td_list) {
664 		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
665 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
666 				"Removing canceled TD starting at 0x%llx (dma).",
667 				(unsigned long long)xhci_trb_virt_to_dma(
668 					cur_td->start_seg, cur_td->first_trb));
669 		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
670 		if (!ep_ring) {
671 			/* This shouldn't happen unless a driver is mucking
672 			 * with the stream ID after submission.  This will
673 			 * leave the TD on the hardware ring, and the hardware
674 			 * will try to execute it, and may access a buffer
675 			 * that has already been freed.  In the best case, the
676 			 * hardware will execute it, and the event handler will
677 			 * ignore the completion event for that TD, since it was
678 			 * removed from the td_list for that endpoint.  In
679 			 * short, don't muck with the stream ID after
680 			 * submission.
681 			 */
682 			xhci_warn(xhci, "WARN Cancelled URB %p "
683 					"has invalid stream ID %u.\n",
684 					cur_td->urb,
685 					cur_td->urb->stream_id);
686 			goto remove_finished_td;
687 		}
688 		/*
689 		 * If we stopped on the TD we need to cancel, then we have to
690 		 * move the xHC endpoint ring dequeue pointer past this TD.
691 		 */
692 		if (cur_td == ep->stopped_td)
693 			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
694 					cur_td->urb->stream_id,
695 					cur_td, &deq_state);
696 		else
697 			td_to_noop(xhci, ep_ring, cur_td, false);
698 remove_finished_td:
699 		/*
700 		 * The event handler won't see a completion for this TD anymore,
701 		 * so remove it from the endpoint ring's TD list.  Keep it in
702 		 * the cancelled TD list for URB completion later.
703 		 */
704 		list_del_init(&cur_td->td_list);
705 	}
706 	last_unlinked_td = cur_td;
707 	xhci_stop_watchdog_timer_in_irq(xhci, ep);
708 
709 	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
710 	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
711 		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
712 				ep->stopped_td->urb->stream_id, &deq_state);
713 		xhci_ring_cmd_db(xhci);
714 	} else {
715 		/* Otherwise ring the doorbell(s) to restart queued transfers */
716 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
717 	}
718 
719 	ep->stopped_td = NULL;
720 
721 	/*
722 	 * Drop the lock and complete the URBs in the cancelled TD list.
723 	 * New TDs to be cancelled might be added to the end of the list before
724 	 * we can complete all the URBs for the TDs we already unlinked.
725 	 * So stop when we've completed the URB for the last TD we unlinked.
726 	 */
727 	do {
728 		cur_td = list_entry(ep->cancelled_td_list.next,
729 				struct xhci_td, cancelled_td_list);
730 		list_del_init(&cur_td->cancelled_td_list);
731 
732 		/* Clean up the cancelled URB */
733 		/* Doesn't matter what we pass for status, since the core will
734 		 * just overwrite it (because the URB has been unlinked).
735 		 */
736 		xhci_giveback_urb_in_irq(xhci, cur_td, 0);
737 
738 		/* Stop processing the cancelled list if the watchdog timer is
739 		 * running.
740 		 */
741 		if (xhci->xhc_state & XHCI_STATE_DYING)
742 			return;
743 	} while (cur_td != last_unlinked_td);
744 
745 	/* Return to the event handler with xhci->lock re-acquired */
746 }
747 
748 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
749 {
750 	struct xhci_td *cur_td;
751 
752 	while (!list_empty(&ring->td_list)) {
753 		cur_td = list_first_entry(&ring->td_list,
754 				struct xhci_td, td_list);
755 		list_del_init(&cur_td->td_list);
756 		if (!list_empty(&cur_td->cancelled_td_list))
757 			list_del_init(&cur_td->cancelled_td_list);
758 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
759 	}
760 }
761 
762 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
763 		int slot_id, int ep_index)
764 {
765 	struct xhci_td *cur_td;
766 	struct xhci_virt_ep *ep;
767 	struct xhci_ring *ring;
768 
769 	ep = &xhci->devs[slot_id]->eps[ep_index];
770 	if ((ep->ep_state & EP_HAS_STREAMS) ||
771 			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
772 		int stream_id;
773 
774 		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
775 				stream_id++) {
776 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
777 					"Killing URBs for slot ID %u, ep index %u, stream %u",
778 					slot_id, ep_index, stream_id + 1);
779 			xhci_kill_ring_urbs(xhci,
780 					ep->stream_info->stream_rings[stream_id]);
781 		}
782 	} else {
783 		ring = ep->ring;
784 		if (!ring)
785 			return;
786 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
787 				"Killing URBs for slot ID %u, ep index %u",
788 				slot_id, ep_index);
789 		xhci_kill_ring_urbs(xhci, ring);
790 	}
791 	while (!list_empty(&ep->cancelled_td_list)) {
792 		cur_td = list_first_entry(&ep->cancelled_td_list,
793 				struct xhci_td, cancelled_td_list);
794 		list_del_init(&cur_td->cancelled_td_list);
795 		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
796 	}
797 }
798 
799 /* Watchdog timer function for when a stop endpoint command fails to complete.
800  * In this case, we assume the host controller is broken or dying or dead.  The
801  * host may still be completing some other events, so we have to be careful to
802  * let the event ring handler and the URB dequeueing/enqueueing functions know
803  * through xhci->state.
804  *
805  * The timer may also fire if the host takes a very long time to respond to the
806  * command, and the stop endpoint command completion handler cannot delete the
807  * timer before the timer function is called.  Another endpoint cancellation may
808  * sneak in before the timer function can grab the lock, and that may queue
809  * another stop endpoint command and add the timer back.  So we cannot use a
810  * simple flag to say whether there is a pending stop endpoint command for a
811  * particular endpoint.
812  *
813  * Instead we use a combination of that flag and a counter for the number of
814  * pending stop endpoint commands.  If the timer is the tail end of the last
815  * stop endpoint command, and the endpoint's command is still pending, we assume
816  * the host is dying.
817  */
818 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
819 {
820 	struct xhci_hcd *xhci;
821 	struct xhci_virt_ep *ep;
822 	int ret, i, j;
823 	unsigned long flags;
824 
825 	ep = (struct xhci_virt_ep *) arg;
826 	xhci = ep->xhci;
827 
828 	spin_lock_irqsave(&xhci->lock, flags);
829 
830 	ep->stop_cmds_pending--;
831 	if (xhci->xhc_state & XHCI_STATE_DYING) {
832 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
833 				"Stop EP timer ran, but another timer marked "
834 				"xHCI as DYING, exiting.");
835 		spin_unlock_irqrestore(&xhci->lock, flags);
836 		return;
837 	}
838 	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
839 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
840 				"Stop EP timer ran, but no command pending, "
841 				"exiting.");
842 		spin_unlock_irqrestore(&xhci->lock, flags);
843 		return;
844 	}
845 
846 	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
847 	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
848 	/* Oops, HC is dead or dying or at least not responding to the stop
849 	 * endpoint command.
850 	 */
851 	xhci->xhc_state |= XHCI_STATE_DYING;
852 	/* Disable interrupts from the host controller and start halting it */
853 	xhci_quiesce(xhci);
854 	spin_unlock_irqrestore(&xhci->lock, flags);
855 
856 	ret = xhci_halt(xhci);
857 
858 	spin_lock_irqsave(&xhci->lock, flags);
859 	if (ret < 0) {
860 		/* This is bad; the host is not responding to commands and it's
861 		 * not allowing itself to be halted.  At least interrupts are
862 		 * disabled. If we call usb_hc_died(), it will attempt to
863 		 * disconnect all device drivers under this host.  Those
864 		 * disconnect() methods will wait for all URBs to be unlinked,
865 		 * so we must complete them.
866 		 */
867 		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
868 		xhci_warn(xhci, "Completing active URBs anyway.\n");
869 		/* We could turn all TDs on the rings to no-ops.  This won't
870 		 * help if the host has cached part of the ring, and is slow if
871 		 * we want to preserve the cycle bit.  Skip it and hope the host
872 		 * doesn't touch the memory.
873 		 */
874 	}
875 	for (i = 0; i < MAX_HC_SLOTS; i++) {
876 		if (!xhci->devs[i])
877 			continue;
878 		for (j = 0; j < 31; j++)
879 			xhci_kill_endpoint_urbs(xhci, i, j);
880 	}
881 	spin_unlock_irqrestore(&xhci->lock, flags);
882 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
883 			"Calling usb_hc_died()");
884 	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
885 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
886 			"xHCI host controller is dead.");
887 }
888 
889 
890 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
891 		struct xhci_virt_device *dev,
892 		struct xhci_ring *ep_ring,
893 		unsigned int ep_index)
894 {
895 	union xhci_trb *dequeue_temp;
896 	int num_trbs_free_temp;
897 	bool revert = false;
898 
899 	num_trbs_free_temp = ep_ring->num_trbs_free;
900 	dequeue_temp = ep_ring->dequeue;
901 
902 	/* If we get two back-to-back stalls, and the first stalled transfer
903 	 * ends just before a link TRB, the dequeue pointer will be left on
904 	 * the link TRB by the code in the while loop.  So we have to update
905 	 * the dequeue pointer one segment further, or we'll jump off
906 	 * the segment into la-la-land.
907 	 */
908 	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
909 		ep_ring->deq_seg = ep_ring->deq_seg->next;
910 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
911 	}
912 
913 	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
914 		/* We have more usable TRBs */
915 		ep_ring->num_trbs_free++;
916 		ep_ring->dequeue++;
917 		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
918 				ep_ring->dequeue)) {
919 			if (ep_ring->dequeue ==
920 					dev->eps[ep_index].queued_deq_ptr)
921 				break;
922 			ep_ring->deq_seg = ep_ring->deq_seg->next;
923 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
924 		}
925 		if (ep_ring->dequeue == dequeue_temp) {
926 			revert = true;
927 			break;
928 		}
929 	}
930 
931 	if (revert) {
932 		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
933 		ep_ring->num_trbs_free = num_trbs_free_temp;
934 	}
935 }
936 
937 /*
938  * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
939  * we need to clear the set deq pending flag in the endpoint ring state, so that
940  * the TD queueing code can ring the doorbell again.  We also need to ring the
941  * endpoint doorbell to restart the ring, but only if there aren't more
942  * cancellations pending.
943  */
944 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
945 		union xhci_trb *trb, u32 cmd_comp_code)
946 {
947 	unsigned int ep_index;
948 	unsigned int stream_id;
949 	struct xhci_ring *ep_ring;
950 	struct xhci_virt_device *dev;
951 	struct xhci_virt_ep *ep;
952 	struct xhci_ep_ctx *ep_ctx;
953 	struct xhci_slot_ctx *slot_ctx;
954 
955 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
956 	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
957 	dev = xhci->devs[slot_id];
958 	ep = &dev->eps[ep_index];
959 
960 	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
961 	if (!ep_ring) {
962 		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
963 				stream_id);
964 		/* XXX: Harmless??? */
965 		goto cleanup;
966 	}
967 
968 	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
969 	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
970 
971 	if (cmd_comp_code != COMP_SUCCESS) {
972 		unsigned int ep_state;
973 		unsigned int slot_state;
974 
975 		switch (cmd_comp_code) {
976 		case COMP_TRB_ERR:
977 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
978 			break;
979 		case COMP_CTX_STATE:
980 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
981 			ep_state = le32_to_cpu(ep_ctx->ep_info);
982 			ep_state &= EP_STATE_MASK;
983 			slot_state = le32_to_cpu(slot_ctx->dev_state);
984 			slot_state = GET_SLOT_STATE(slot_state);
985 			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
986 					"Slot state = %u, EP state = %u",
987 					slot_state, ep_state);
988 			break;
989 		case COMP_EBADSLT:
990 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
991 					slot_id);
992 			break;
993 		default:
994 			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
995 					cmd_comp_code);
996 			break;
997 		}
998 		/* OK what do we do now?  The endpoint state is hosed, and we
999 		 * should never get to this point if the synchronization between
1000 		 * queueing, and endpoint state are correct.  This might happen
1001 		 * if the device gets disconnected after we've finished
1002 		 * cancelling URBs, which might not be an error...
1003 		 */
1004 	} else {
1005 		u64 deq;
1006 		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1007 		if (ep->ep_state & EP_HAS_STREAMS) {
1008 			struct xhci_stream_ctx *ctx =
1009 				&ep->stream_info->stream_ctx_array[stream_id];
1010 			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1011 		} else {
1012 			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1013 		}
1014 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1015 			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1016 		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1017 					 ep->queued_deq_ptr) == deq) {
1018 			/* Update the ring's dequeue segment and dequeue pointer
1019 			 * to reflect the new position.
1020 			 */
1021 			update_ring_for_set_deq_completion(xhci, dev,
1022 				ep_ring, ep_index);
1023 		} else {
1024 			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1025 			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1026 				  ep->queued_deq_seg, ep->queued_deq_ptr);
1027 		}
1028 	}
1029 
1030 cleanup:
1031 	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1032 	dev->eps[ep_index].queued_deq_seg = NULL;
1033 	dev->eps[ep_index].queued_deq_ptr = NULL;
1034 	/* Restart any rings with pending URBs */
1035 	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1036 }
1037 
1038 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1039 		union xhci_trb *trb, u32 cmd_comp_code)
1040 {
1041 	unsigned int ep_index;
1042 
1043 	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1044 	/* This command will only fail if the endpoint wasn't halted,
1045 	 * but we don't care.
1046 	 */
1047 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1048 		"Ignoring reset ep completion code of %u", cmd_comp_code);
1049 
1050 	/* HW with the reset endpoint quirk needs to have a configure endpoint
1051 	 * command complete before the endpoint can be used.  Queue that here
1052 	 * because the HW can't handle two commands being queued in a row.
1053 	 */
1054 	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1055 		struct xhci_command *command;
1056 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1057 		if (!command) {
1058 			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1059 			return;
1060 		}
1061 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1062 				"Queueing configure endpoint command");
1063 		xhci_queue_configure_endpoint(xhci, command,
1064 				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1065 				false);
1066 		xhci_ring_cmd_db(xhci);
1067 	} else {
1068 		/* Clear our internal halted state */
1069 		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1070 	}
1071 }
1072 
1073 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1074 		u32 cmd_comp_code)
1075 {
1076 	if (cmd_comp_code == COMP_SUCCESS)
1077 		xhci->slot_id = slot_id;
1078 	else
1079 		xhci->slot_id = 0;
1080 }
1081 
1082 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1083 {
1084 	struct xhci_virt_device *virt_dev;
1085 
1086 	virt_dev = xhci->devs[slot_id];
1087 	if (!virt_dev)
1088 		return;
1089 	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1090 		/* Delete default control endpoint resources */
1091 		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1092 	xhci_free_virt_device(xhci, slot_id);
1093 }
1094 
1095 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1096 		struct xhci_event_cmd *event, u32 cmd_comp_code)
1097 {
1098 	struct xhci_virt_device *virt_dev;
1099 	struct xhci_input_control_ctx *ctrl_ctx;
1100 	unsigned int ep_index;
1101 	unsigned int ep_state;
1102 	u32 add_flags, drop_flags;
1103 
1104 	/*
1105 	 * Configure endpoint commands can come from the USB core
1106 	 * configuration or alt setting changes, or because the HW
1107 	 * needed an extra configure endpoint command after a reset
1108 	 * endpoint command or streams were being configured.
1109 	 * If the command was for a halted endpoint, the xHCI driver
1110 	 * is not waiting on the configure endpoint command.
1111 	 */
1112 	virt_dev = xhci->devs[slot_id];
1113 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1114 	if (!ctrl_ctx) {
1115 		xhci_warn(xhci, "Could not get input context, bad type.\n");
1116 		return;
1117 	}
1118 
1119 	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1120 	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1121 	/* Input ctx add_flags are the endpoint index plus one */
1122 	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1123 
1124 	/* A usb_set_interface() call directly after clearing a halted
1125 	 * condition may race on this quirky hardware.  Not worth
1126 	 * worrying about, since this is prototype hardware.  Not sure
1127 	 * if this will work for streams, but streams support was
1128 	 * untested on this prototype.
1129 	 */
1130 	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1131 			ep_index != (unsigned int) -1 &&
1132 			add_flags - SLOT_FLAG == drop_flags) {
1133 		ep_state = virt_dev->eps[ep_index].ep_state;
1134 		if (!(ep_state & EP_HALTED))
1135 			return;
1136 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1137 				"Completed config ep cmd - "
1138 				"last ep index = %d, state = %d",
1139 				ep_index, ep_state);
1140 		/* Clear internal halted state and restart ring(s) */
1141 		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1142 		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1143 		return;
1144 	}
1145 	return;
1146 }
1147 
1148 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1149 		struct xhci_event_cmd *event)
1150 {
1151 	xhci_dbg(xhci, "Completed reset device command.\n");
1152 	if (!xhci->devs[slot_id])
1153 		xhci_warn(xhci, "Reset device command completion "
1154 				"for disabled slot %u\n", slot_id);
1155 }
1156 
1157 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1158 		struct xhci_event_cmd *event)
1159 {
1160 	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1161 		xhci->error_bitmask |= 1 << 6;
1162 		return;
1163 	}
1164 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1165 			"NEC firmware version %2x.%02x",
1166 			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1167 			NEC_FW_MINOR(le32_to_cpu(event->status)));
1168 }
1169 
1170 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1171 {
1172 	list_del(&cmd->cmd_list);
1173 
1174 	if (cmd->completion) {
1175 		cmd->status = status;
1176 		complete(cmd->completion);
1177 	} else {
1178 		kfree(cmd);
1179 	}
1180 }
1181 
1182 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1183 {
1184 	struct xhci_command *cur_cmd, *tmp_cmd;
1185 	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1186 		xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1187 }
1188 
1189 /*
1190  * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1191  * If there are other commands waiting then restart the ring and kick the timer.
1192  * This must be called with command ring stopped and xhci->lock held.
1193  */
1194 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1195 					 struct xhci_command *cur_cmd)
1196 {
1197 	struct xhci_command *i_cmd, *tmp_cmd;
1198 	u32 cycle_state;
1199 
1200 	/* Turn all aborted commands in list to no-ops, then restart */
1201 	list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1202 				 cmd_list) {
1203 
1204 		if (i_cmd->status != COMP_CMD_ABORT)
1205 			continue;
1206 
1207 		i_cmd->status = COMP_CMD_STOP;
1208 
1209 		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1210 			 i_cmd->command_trb);
1211 		/* get cycle state from the original cmd trb */
1212 		cycle_state = le32_to_cpu(
1213 			i_cmd->command_trb->generic.field[3]) &	TRB_CYCLE;
1214 		/* modify the command trb to no-op command */
1215 		i_cmd->command_trb->generic.field[0] = 0;
1216 		i_cmd->command_trb->generic.field[1] = 0;
1217 		i_cmd->command_trb->generic.field[2] = 0;
1218 		i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1219 			TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1220 
1221 		/*
1222 		 * caller waiting for completion is called when command
1223 		 *  completion event is received for these no-op commands
1224 		 */
1225 	}
1226 
1227 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1228 
1229 	/* ring command ring doorbell to restart the command ring */
1230 	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1231 	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
1232 		xhci->current_cmd = cur_cmd;
1233 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1234 		xhci_ring_cmd_db(xhci);
1235 	}
1236 	return;
1237 }
1238 
1239 
1240 void xhci_handle_command_timeout(unsigned long data)
1241 {
1242 	struct xhci_hcd *xhci;
1243 	int ret;
1244 	unsigned long flags;
1245 	u64 hw_ring_state;
1246 	struct xhci_command *cur_cmd = NULL;
1247 	xhci = (struct xhci_hcd *) data;
1248 
1249 	/* mark this command to be cancelled */
1250 	spin_lock_irqsave(&xhci->lock, flags);
1251 	if (xhci->current_cmd) {
1252 		cur_cmd = xhci->current_cmd;
1253 		cur_cmd->status = COMP_CMD_ABORT;
1254 	}
1255 
1256 
1257 	/* Make sure command ring is running before aborting it */
1258 	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1259 	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1260 	    (hw_ring_state & CMD_RING_RUNNING))  {
1261 
1262 		spin_unlock_irqrestore(&xhci->lock, flags);
1263 		xhci_dbg(xhci, "Command timeout\n");
1264 		ret = xhci_abort_cmd_ring(xhci);
1265 		if (unlikely(ret == -ESHUTDOWN)) {
1266 			xhci_err(xhci, "Abort command ring failed\n");
1267 			xhci_cleanup_command_queue(xhci);
1268 			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1269 			xhci_dbg(xhci, "xHCI host controller is dead.\n");
1270 		}
1271 		return;
1272 	}
1273 	/* command timeout on stopped ring, ring can't be aborted */
1274 	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1275 	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1276 	spin_unlock_irqrestore(&xhci->lock, flags);
1277 	return;
1278 }
1279 
1280 static void handle_cmd_completion(struct xhci_hcd *xhci,
1281 		struct xhci_event_cmd *event)
1282 {
1283 	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1284 	u64 cmd_dma;
1285 	dma_addr_t cmd_dequeue_dma;
1286 	u32 cmd_comp_code;
1287 	union xhci_trb *cmd_trb;
1288 	struct xhci_command *cmd;
1289 	u32 cmd_type;
1290 
1291 	cmd_dma = le64_to_cpu(event->cmd_trb);
1292 	cmd_trb = xhci->cmd_ring->dequeue;
1293 	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1294 			cmd_trb);
1295 	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1296 	if (cmd_dequeue_dma == 0) {
1297 		xhci->error_bitmask |= 1 << 4;
1298 		return;
1299 	}
1300 	/* Does the DMA address match our internal dequeue pointer address? */
1301 	if (cmd_dma != (u64) cmd_dequeue_dma) {
1302 		xhci->error_bitmask |= 1 << 5;
1303 		return;
1304 	}
1305 
1306 	cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1307 
1308 	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1309 		xhci_err(xhci,
1310 			 "Command completion event does not match command\n");
1311 		return;
1312 	}
1313 
1314 	del_timer(&xhci->cmd_timer);
1315 
1316 	trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1317 
1318 	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1319 
1320 	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1321 	if (cmd_comp_code == COMP_CMD_STOP) {
1322 		xhci_handle_stopped_cmd_ring(xhci, cmd);
1323 		return;
1324 	}
1325 	/*
1326 	 * Host aborted the command ring, check if the current command was
1327 	 * supposed to be aborted, otherwise continue normally.
1328 	 * The command ring is stopped now, but the xHC will issue a Command
1329 	 * Ring Stopped event which will cause us to restart it.
1330 	 */
1331 	if (cmd_comp_code == COMP_CMD_ABORT) {
1332 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1333 		if (cmd->status == COMP_CMD_ABORT)
1334 			goto event_handled;
1335 	}
1336 
1337 	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1338 	switch (cmd_type) {
1339 	case TRB_ENABLE_SLOT:
1340 		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1341 		break;
1342 	case TRB_DISABLE_SLOT:
1343 		xhci_handle_cmd_disable_slot(xhci, slot_id);
1344 		break;
1345 	case TRB_CONFIG_EP:
1346 		if (!cmd->completion)
1347 			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1348 						  cmd_comp_code);
1349 		break;
1350 	case TRB_EVAL_CONTEXT:
1351 		break;
1352 	case TRB_ADDR_DEV:
1353 		break;
1354 	case TRB_STOP_RING:
1355 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1356 				le32_to_cpu(cmd_trb->generic.field[3])));
1357 		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1358 		break;
1359 	case TRB_SET_DEQ:
1360 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1361 				le32_to_cpu(cmd_trb->generic.field[3])));
1362 		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1363 		break;
1364 	case TRB_CMD_NOOP:
1365 		/* Is this an aborted command turned to NO-OP? */
1366 		if (cmd->status == COMP_CMD_STOP)
1367 			cmd_comp_code = COMP_CMD_STOP;
1368 		break;
1369 	case TRB_RESET_EP:
1370 		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1371 				le32_to_cpu(cmd_trb->generic.field[3])));
1372 		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1373 		break;
1374 	case TRB_RESET_DEV:
1375 		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1376 		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1377 		 */
1378 		slot_id = TRB_TO_SLOT_ID(
1379 				le32_to_cpu(cmd_trb->generic.field[3]));
1380 		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1381 		break;
1382 	case TRB_NEC_GET_FW:
1383 		xhci_handle_cmd_nec_get_fw(xhci, event);
1384 		break;
1385 	default:
1386 		/* Skip over unknown commands on the event ring */
1387 		xhci->error_bitmask |= 1 << 6;
1388 		break;
1389 	}
1390 
1391 	/* restart timer if this wasn't the last command */
1392 	if (cmd->cmd_list.next != &xhci->cmd_list) {
1393 		xhci->current_cmd = list_entry(cmd->cmd_list.next,
1394 					       struct xhci_command, cmd_list);
1395 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1396 	}
1397 
1398 event_handled:
1399 	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1400 
1401 	inc_deq(xhci, xhci->cmd_ring);
1402 }
1403 
1404 static void handle_vendor_event(struct xhci_hcd *xhci,
1405 		union xhci_trb *event)
1406 {
1407 	u32 trb_type;
1408 
1409 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1410 	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1411 	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1412 		handle_cmd_completion(xhci, &event->event_cmd);
1413 }
1414 
1415 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1416  * port registers -- USB 3.0 and USB 2.0).
1417  *
1418  * Returns a zero-based port number, which is suitable for indexing into each of
1419  * the split roothubs' port arrays and bus state arrays.
1420  * Add one to it in order to call xhci_find_slot_id_by_port.
1421  */
1422 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1423 		struct xhci_hcd *xhci, u32 port_id)
1424 {
1425 	unsigned int i;
1426 	unsigned int num_similar_speed_ports = 0;
1427 
1428 	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1429 	 * and usb2_ports are 0-based indexes.  Count the number of similar
1430 	 * speed ports, up to 1 port before this port.
1431 	 */
1432 	for (i = 0; i < (port_id - 1); i++) {
1433 		u8 port_speed = xhci->port_array[i];
1434 
1435 		/*
1436 		 * Skip ports that don't have known speeds, or have duplicate
1437 		 * Extended Capabilities port speed entries.
1438 		 */
1439 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1440 			continue;
1441 
1442 		/*
1443 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1444 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1445 		 * matches the device speed, it's a similar speed port.
1446 		 */
1447 		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1448 			num_similar_speed_ports++;
1449 	}
1450 	return num_similar_speed_ports;
1451 }
1452 
1453 static void handle_device_notification(struct xhci_hcd *xhci,
1454 		union xhci_trb *event)
1455 {
1456 	u32 slot_id;
1457 	struct usb_device *udev;
1458 
1459 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1460 	if (!xhci->devs[slot_id]) {
1461 		xhci_warn(xhci, "Device Notification event for "
1462 				"unused slot %u\n", slot_id);
1463 		return;
1464 	}
1465 
1466 	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1467 			slot_id);
1468 	udev = xhci->devs[slot_id]->udev;
1469 	if (udev && udev->parent)
1470 		usb_wakeup_notification(udev->parent, udev->portnum);
1471 }
1472 
1473 static void handle_port_status(struct xhci_hcd *xhci,
1474 		union xhci_trb *event)
1475 {
1476 	struct usb_hcd *hcd;
1477 	u32 port_id;
1478 	u32 temp, temp1;
1479 	int max_ports;
1480 	int slot_id;
1481 	unsigned int faked_port_index;
1482 	u8 major_revision;
1483 	struct xhci_bus_state *bus_state;
1484 	__le32 __iomem **port_array;
1485 	bool bogus_port_status = false;
1486 
1487 	/* Port status change events always have a successful completion code */
1488 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1489 		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1490 		xhci->error_bitmask |= 1 << 8;
1491 	}
1492 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1493 	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1494 
1495 	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1496 	if ((port_id <= 0) || (port_id > max_ports)) {
1497 		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1498 		inc_deq(xhci, xhci->event_ring);
1499 		return;
1500 	}
1501 
1502 	/* Figure out which usb_hcd this port is attached to:
1503 	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1504 	 */
1505 	major_revision = xhci->port_array[port_id - 1];
1506 
1507 	/* Find the right roothub. */
1508 	hcd = xhci_to_hcd(xhci);
1509 	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1510 		hcd = xhci->shared_hcd;
1511 
1512 	if (major_revision == 0) {
1513 		xhci_warn(xhci, "Event for port %u not in "
1514 				"Extended Capabilities, ignoring.\n",
1515 				port_id);
1516 		bogus_port_status = true;
1517 		goto cleanup;
1518 	}
1519 	if (major_revision == DUPLICATE_ENTRY) {
1520 		xhci_warn(xhci, "Event for port %u duplicated in"
1521 				"Extended Capabilities, ignoring.\n",
1522 				port_id);
1523 		bogus_port_status = true;
1524 		goto cleanup;
1525 	}
1526 
1527 	/*
1528 	 * Hardware port IDs reported by a Port Status Change Event include USB
1529 	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1530 	 * resume event, but we first need to translate the hardware port ID
1531 	 * into the index into the ports on the correct split roothub, and the
1532 	 * correct bus_state structure.
1533 	 */
1534 	bus_state = &xhci->bus_state[hcd_index(hcd)];
1535 	if (hcd->speed == HCD_USB3)
1536 		port_array = xhci->usb3_ports;
1537 	else
1538 		port_array = xhci->usb2_ports;
1539 	/* Find the faked port hub number */
1540 	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1541 			port_id);
1542 
1543 	temp = readl(port_array[faked_port_index]);
1544 	if (hcd->state == HC_STATE_SUSPENDED) {
1545 		xhci_dbg(xhci, "resume root hub\n");
1546 		usb_hcd_resume_root_hub(hcd);
1547 	}
1548 
1549 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1550 		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1551 
1552 		temp1 = readl(&xhci->op_regs->command);
1553 		if (!(temp1 & CMD_RUN)) {
1554 			xhci_warn(xhci, "xHC is not running.\n");
1555 			goto cleanup;
1556 		}
1557 
1558 		if (DEV_SUPERSPEED(temp)) {
1559 			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1560 			/* Set a flag to say the port signaled remote wakeup,
1561 			 * so we can tell the difference between the end of
1562 			 * device and host initiated resume.
1563 			 */
1564 			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1565 			xhci_test_and_clear_bit(xhci, port_array,
1566 					faked_port_index, PORT_PLC);
1567 			xhci_set_link_state(xhci, port_array, faked_port_index,
1568 						XDEV_U0);
1569 			/* Need to wait until the next link state change
1570 			 * indicates the device is actually in U0.
1571 			 */
1572 			bogus_port_status = true;
1573 			goto cleanup;
1574 		} else {
1575 			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1576 			bus_state->resume_done[faked_port_index] = jiffies +
1577 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1578 			set_bit(faked_port_index, &bus_state->resuming_ports);
1579 			mod_timer(&hcd->rh_timer,
1580 				  bus_state->resume_done[faked_port_index]);
1581 			/* Do the rest in GetPortStatus */
1582 		}
1583 	}
1584 
1585 	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1586 			DEV_SUPERSPEED(temp)) {
1587 		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1588 		/* We've just brought the device into U0 through either the
1589 		 * Resume state after a device remote wakeup, or through the
1590 		 * U3Exit state after a host-initiated resume.  If it's a device
1591 		 * initiated remote wake, don't pass up the link state change,
1592 		 * so the roothub behavior is consistent with external
1593 		 * USB 3.0 hub behavior.
1594 		 */
1595 		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1596 				faked_port_index + 1);
1597 		if (slot_id && xhci->devs[slot_id])
1598 			xhci_ring_device(xhci, slot_id);
1599 		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1600 			bus_state->port_remote_wakeup &=
1601 				~(1 << faked_port_index);
1602 			xhci_test_and_clear_bit(xhci, port_array,
1603 					faked_port_index, PORT_PLC);
1604 			usb_wakeup_notification(hcd->self.root_hub,
1605 					faked_port_index + 1);
1606 			bogus_port_status = true;
1607 			goto cleanup;
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1613 	 * RExit to a disconnect state).  If so, let the the driver know it's
1614 	 * out of the RExit state.
1615 	 */
1616 	if (!DEV_SUPERSPEED(temp) &&
1617 			test_and_clear_bit(faked_port_index,
1618 				&bus_state->rexit_ports)) {
1619 		complete(&bus_state->rexit_done[faked_port_index]);
1620 		bogus_port_status = true;
1621 		goto cleanup;
1622 	}
1623 
1624 	if (hcd->speed != HCD_USB3)
1625 		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1626 					PORT_PLC);
1627 
1628 cleanup:
1629 	/* Update event ring dequeue pointer before dropping the lock */
1630 	inc_deq(xhci, xhci->event_ring);
1631 
1632 	/* Don't make the USB core poll the roothub if we got a bad port status
1633 	 * change event.  Besides, at that point we can't tell which roothub
1634 	 * (USB 2.0 or USB 3.0) to kick.
1635 	 */
1636 	if (bogus_port_status)
1637 		return;
1638 
1639 	/*
1640 	 * xHCI port-status-change events occur when the "or" of all the
1641 	 * status-change bits in the portsc register changes from 0 to 1.
1642 	 * New status changes won't cause an event if any other change
1643 	 * bits are still set.  When an event occurs, switch over to
1644 	 * polling to avoid losing status changes.
1645 	 */
1646 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1647 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1648 	spin_unlock(&xhci->lock);
1649 	/* Pass this up to the core */
1650 	usb_hcd_poll_rh_status(hcd);
1651 	spin_lock(&xhci->lock);
1652 }
1653 
1654 /*
1655  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1656  * at end_trb, which may be in another segment.  If the suspect DMA address is a
1657  * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1658  * returns 0.
1659  */
1660 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1661 		struct xhci_segment *start_seg,
1662 		union xhci_trb	*start_trb,
1663 		union xhci_trb	*end_trb,
1664 		dma_addr_t	suspect_dma,
1665 		bool		debug)
1666 {
1667 	dma_addr_t start_dma;
1668 	dma_addr_t end_seg_dma;
1669 	dma_addr_t end_trb_dma;
1670 	struct xhci_segment *cur_seg;
1671 
1672 	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1673 	cur_seg = start_seg;
1674 
1675 	do {
1676 		if (start_dma == 0)
1677 			return NULL;
1678 		/* We may get an event for a Link TRB in the middle of a TD */
1679 		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1680 				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1681 		/* If the end TRB isn't in this segment, this is set to 0 */
1682 		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1683 
1684 		if (debug)
1685 			xhci_warn(xhci,
1686 				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1687 				(unsigned long long)suspect_dma,
1688 				(unsigned long long)start_dma,
1689 				(unsigned long long)end_trb_dma,
1690 				(unsigned long long)cur_seg->dma,
1691 				(unsigned long long)end_seg_dma);
1692 
1693 		if (end_trb_dma > 0) {
1694 			/* The end TRB is in this segment, so suspect should be here */
1695 			if (start_dma <= end_trb_dma) {
1696 				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1697 					return cur_seg;
1698 			} else {
1699 				/* Case for one segment with
1700 				 * a TD wrapped around to the top
1701 				 */
1702 				if ((suspect_dma >= start_dma &&
1703 							suspect_dma <= end_seg_dma) ||
1704 						(suspect_dma >= cur_seg->dma &&
1705 						 suspect_dma <= end_trb_dma))
1706 					return cur_seg;
1707 			}
1708 			return NULL;
1709 		} else {
1710 			/* Might still be somewhere in this segment */
1711 			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1712 				return cur_seg;
1713 		}
1714 		cur_seg = cur_seg->next;
1715 		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1716 	} while (cur_seg != start_seg);
1717 
1718 	return NULL;
1719 }
1720 
1721 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1722 		unsigned int slot_id, unsigned int ep_index,
1723 		unsigned int stream_id,
1724 		struct xhci_td *td, union xhci_trb *event_trb)
1725 {
1726 	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1727 	struct xhci_command *command;
1728 	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1729 	if (!command)
1730 		return;
1731 
1732 	ep->ep_state |= EP_HALTED;
1733 	ep->stopped_stream = stream_id;
1734 
1735 	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1736 	xhci_cleanup_stalled_ring(xhci, ep_index, td);
1737 
1738 	ep->stopped_stream = 0;
1739 
1740 	xhci_ring_cmd_db(xhci);
1741 }
1742 
1743 /* Check if an error has halted the endpoint ring.  The class driver will
1744  * cleanup the halt for a non-default control endpoint if we indicate a stall.
1745  * However, a babble and other errors also halt the endpoint ring, and the class
1746  * driver won't clear the halt in that case, so we need to issue a Set Transfer
1747  * Ring Dequeue Pointer command manually.
1748  */
1749 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1750 		struct xhci_ep_ctx *ep_ctx,
1751 		unsigned int trb_comp_code)
1752 {
1753 	/* TRB completion codes that may require a manual halt cleanup */
1754 	if (trb_comp_code == COMP_TX_ERR ||
1755 			trb_comp_code == COMP_BABBLE ||
1756 			trb_comp_code == COMP_SPLIT_ERR)
1757 		/* The 0.96 spec says a babbling control endpoint
1758 		 * is not halted. The 0.96 spec says it is.  Some HW
1759 		 * claims to be 0.95 compliant, but it halts the control
1760 		 * endpoint anyway.  Check if a babble halted the
1761 		 * endpoint.
1762 		 */
1763 		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1764 		    cpu_to_le32(EP_STATE_HALTED))
1765 			return 1;
1766 
1767 	return 0;
1768 }
1769 
1770 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1771 {
1772 	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1773 		/* Vendor defined "informational" completion code,
1774 		 * treat as not-an-error.
1775 		 */
1776 		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1777 				trb_comp_code);
1778 		xhci_dbg(xhci, "Treating code as success.\n");
1779 		return 1;
1780 	}
1781 	return 0;
1782 }
1783 
1784 /*
1785  * Finish the td processing, remove the td from td list;
1786  * Return 1 if the urb can be given back.
1787  */
1788 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1789 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1790 	struct xhci_virt_ep *ep, int *status, bool skip)
1791 {
1792 	struct xhci_virt_device *xdev;
1793 	struct xhci_ring *ep_ring;
1794 	unsigned int slot_id;
1795 	int ep_index;
1796 	struct urb *urb = NULL;
1797 	struct xhci_ep_ctx *ep_ctx;
1798 	int ret = 0;
1799 	struct urb_priv	*urb_priv;
1800 	u32 trb_comp_code;
1801 
1802 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1803 	xdev = xhci->devs[slot_id];
1804 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1805 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1806 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1807 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1808 
1809 	if (skip)
1810 		goto td_cleanup;
1811 
1812 	if (trb_comp_code == COMP_STOP_INVAL || trb_comp_code == COMP_STOP) {
1813 		/* The Endpoint Stop Command completion will take care of any
1814 		 * stopped TDs.  A stopped TD may be restarted, so don't update
1815 		 * the ring dequeue pointer or take this TD off any lists yet.
1816 		 */
1817 		ep->stopped_td = td;
1818 		return 0;
1819 	}
1820 	if (trb_comp_code == COMP_STALL ||
1821 		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1822 						trb_comp_code)) {
1823 		/* Issue a reset endpoint command to clear the host side
1824 		 * halt, followed by a set dequeue command to move the
1825 		 * dequeue pointer past the TD.
1826 		 * The class driver clears the device side halt later.
1827 		 */
1828 		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1829 					ep_ring->stream_id, td, event_trb);
1830 	} else {
1831 		/* Update ring dequeue pointer */
1832 		while (ep_ring->dequeue != td->last_trb)
1833 			inc_deq(xhci, ep_ring);
1834 		inc_deq(xhci, ep_ring);
1835 	}
1836 
1837 td_cleanup:
1838 	/* Clean up the endpoint's TD list */
1839 	urb = td->urb;
1840 	urb_priv = urb->hcpriv;
1841 
1842 	/* Do one last check of the actual transfer length.
1843 	 * If the host controller said we transferred more data than the buffer
1844 	 * length, urb->actual_length will be a very big number (since it's
1845 	 * unsigned).  Play it safe and say we didn't transfer anything.
1846 	 */
1847 	if (urb->actual_length > urb->transfer_buffer_length) {
1848 		xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1849 			urb->transfer_buffer_length,
1850 			urb->actual_length);
1851 		urb->actual_length = 0;
1852 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1853 			*status = -EREMOTEIO;
1854 		else
1855 			*status = 0;
1856 	}
1857 	list_del_init(&td->td_list);
1858 	/* Was this TD slated to be cancelled but completed anyway? */
1859 	if (!list_empty(&td->cancelled_td_list))
1860 		list_del_init(&td->cancelled_td_list);
1861 
1862 	urb_priv->td_cnt++;
1863 	/* Giveback the urb when all the tds are completed */
1864 	if (urb_priv->td_cnt == urb_priv->length) {
1865 		ret = 1;
1866 		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1867 			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1868 			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1869 				if (xhci->quirks & XHCI_AMD_PLL_FIX)
1870 					usb_amd_quirk_pll_enable();
1871 			}
1872 		}
1873 	}
1874 
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Process control tds, update urb status and actual_length.
1880  */
1881 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1882 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1883 	struct xhci_virt_ep *ep, int *status)
1884 {
1885 	struct xhci_virt_device *xdev;
1886 	struct xhci_ring *ep_ring;
1887 	unsigned int slot_id;
1888 	int ep_index;
1889 	struct xhci_ep_ctx *ep_ctx;
1890 	u32 trb_comp_code;
1891 
1892 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1893 	xdev = xhci->devs[slot_id];
1894 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1895 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1896 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1897 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1898 
1899 	switch (trb_comp_code) {
1900 	case COMP_SUCCESS:
1901 		if (event_trb == ep_ring->dequeue) {
1902 			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1903 					"without IOC set??\n");
1904 			*status = -ESHUTDOWN;
1905 		} else if (event_trb != td->last_trb) {
1906 			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1907 					"without IOC set??\n");
1908 			*status = -ESHUTDOWN;
1909 		} else {
1910 			*status = 0;
1911 		}
1912 		break;
1913 	case COMP_SHORT_TX:
1914 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1915 			*status = -EREMOTEIO;
1916 		else
1917 			*status = 0;
1918 		break;
1919 	case COMP_STOP_INVAL:
1920 	case COMP_STOP:
1921 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1922 	default:
1923 		if (!xhci_requires_manual_halt_cleanup(xhci,
1924 					ep_ctx, trb_comp_code))
1925 			break;
1926 		xhci_dbg(xhci, "TRB error code %u, "
1927 				"halted endpoint index = %u\n",
1928 				trb_comp_code, ep_index);
1929 		/* else fall through */
1930 	case COMP_STALL:
1931 		/* Did we transfer part of the data (middle) phase? */
1932 		if (event_trb != ep_ring->dequeue &&
1933 				event_trb != td->last_trb)
1934 			td->urb->actual_length =
1935 				td->urb->transfer_buffer_length -
1936 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1937 		else if (!td->urb_length_set)
1938 			td->urb->actual_length = 0;
1939 
1940 		return finish_td(xhci, td, event_trb, event, ep, status, false);
1941 	}
1942 	/*
1943 	 * Did we transfer any data, despite the errors that might have
1944 	 * happened?  I.e. did we get past the setup stage?
1945 	 */
1946 	if (event_trb != ep_ring->dequeue) {
1947 		/* The event was for the status stage */
1948 		if (event_trb == td->last_trb) {
1949 			if (td->urb_length_set) {
1950 				/* Don't overwrite a previously set error code
1951 				 */
1952 				if ((*status == -EINPROGRESS || *status == 0) &&
1953 						(td->urb->transfer_flags
1954 						 & URB_SHORT_NOT_OK))
1955 					/* Did we already see a short data
1956 					 * stage? */
1957 					*status = -EREMOTEIO;
1958 			} else {
1959 				td->urb->actual_length =
1960 					td->urb->transfer_buffer_length;
1961 			}
1962 		} else {
1963 			/*
1964 			 * Maybe the event was for the data stage? If so, update
1965 			 * already the actual_length of the URB and flag it as
1966 			 * set, so that it is not overwritten in the event for
1967 			 * the last TRB.
1968 			 */
1969 			td->urb_length_set = true;
1970 			td->urb->actual_length =
1971 				td->urb->transfer_buffer_length -
1972 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1973 			xhci_dbg(xhci, "Waiting for status "
1974 					"stage event\n");
1975 			return 0;
1976 		}
1977 	}
1978 
1979 	return finish_td(xhci, td, event_trb, event, ep, status, false);
1980 }
1981 
1982 /*
1983  * Process isochronous tds, update urb packet status and actual_length.
1984  */
1985 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1986 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1987 	struct xhci_virt_ep *ep, int *status)
1988 {
1989 	struct xhci_ring *ep_ring;
1990 	struct urb_priv *urb_priv;
1991 	int idx;
1992 	int len = 0;
1993 	union xhci_trb *cur_trb;
1994 	struct xhci_segment *cur_seg;
1995 	struct usb_iso_packet_descriptor *frame;
1996 	u32 trb_comp_code;
1997 	bool skip_td = false;
1998 
1999 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2000 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2001 	urb_priv = td->urb->hcpriv;
2002 	idx = urb_priv->td_cnt;
2003 	frame = &td->urb->iso_frame_desc[idx];
2004 
2005 	/* handle completion code */
2006 	switch (trb_comp_code) {
2007 	case COMP_SUCCESS:
2008 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2009 			frame->status = 0;
2010 			break;
2011 		}
2012 		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2013 			trb_comp_code = COMP_SHORT_TX;
2014 	case COMP_SHORT_TX:
2015 		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2016 				-EREMOTEIO : 0;
2017 		break;
2018 	case COMP_BW_OVER:
2019 		frame->status = -ECOMM;
2020 		skip_td = true;
2021 		break;
2022 	case COMP_BUFF_OVER:
2023 	case COMP_BABBLE:
2024 		frame->status = -EOVERFLOW;
2025 		skip_td = true;
2026 		break;
2027 	case COMP_DEV_ERR:
2028 	case COMP_STALL:
2029 		frame->status = -EPROTO;
2030 		skip_td = true;
2031 		break;
2032 	case COMP_TX_ERR:
2033 		frame->status = -EPROTO;
2034 		if (event_trb != td->last_trb)
2035 			return 0;
2036 		skip_td = true;
2037 		break;
2038 	case COMP_STOP:
2039 	case COMP_STOP_INVAL:
2040 		break;
2041 	default:
2042 		frame->status = -1;
2043 		break;
2044 	}
2045 
2046 	if (trb_comp_code == COMP_SUCCESS || skip_td) {
2047 		frame->actual_length = frame->length;
2048 		td->urb->actual_length += frame->length;
2049 	} else {
2050 		for (cur_trb = ep_ring->dequeue,
2051 		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2052 		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2053 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2054 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2055 				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2056 		}
2057 		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2058 			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2059 
2060 		if (trb_comp_code != COMP_STOP_INVAL) {
2061 			frame->actual_length = len;
2062 			td->urb->actual_length += len;
2063 		}
2064 	}
2065 
2066 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2067 }
2068 
2069 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2070 			struct xhci_transfer_event *event,
2071 			struct xhci_virt_ep *ep, int *status)
2072 {
2073 	struct xhci_ring *ep_ring;
2074 	struct urb_priv *urb_priv;
2075 	struct usb_iso_packet_descriptor *frame;
2076 	int idx;
2077 
2078 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2079 	urb_priv = td->urb->hcpriv;
2080 	idx = urb_priv->td_cnt;
2081 	frame = &td->urb->iso_frame_desc[idx];
2082 
2083 	/* The transfer is partly done. */
2084 	frame->status = -EXDEV;
2085 
2086 	/* calc actual length */
2087 	frame->actual_length = 0;
2088 
2089 	/* Update ring dequeue pointer */
2090 	while (ep_ring->dequeue != td->last_trb)
2091 		inc_deq(xhci, ep_ring);
2092 	inc_deq(xhci, ep_ring);
2093 
2094 	return finish_td(xhci, td, NULL, event, ep, status, true);
2095 }
2096 
2097 /*
2098  * Process bulk and interrupt tds, update urb status and actual_length.
2099  */
2100 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2101 	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2102 	struct xhci_virt_ep *ep, int *status)
2103 {
2104 	struct xhci_ring *ep_ring;
2105 	union xhci_trb *cur_trb;
2106 	struct xhci_segment *cur_seg;
2107 	u32 trb_comp_code;
2108 
2109 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2110 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2111 
2112 	switch (trb_comp_code) {
2113 	case COMP_SUCCESS:
2114 		/* Double check that the HW transferred everything. */
2115 		if (event_trb != td->last_trb ||
2116 		    EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2117 			xhci_warn(xhci, "WARN Successful completion "
2118 					"on short TX\n");
2119 			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2120 				*status = -EREMOTEIO;
2121 			else
2122 				*status = 0;
2123 			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2124 				trb_comp_code = COMP_SHORT_TX;
2125 		} else {
2126 			*status = 0;
2127 		}
2128 		break;
2129 	case COMP_SHORT_TX:
2130 		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2131 			*status = -EREMOTEIO;
2132 		else
2133 			*status = 0;
2134 		break;
2135 	default:
2136 		/* Others already handled above */
2137 		break;
2138 	}
2139 	if (trb_comp_code == COMP_SHORT_TX)
2140 		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2141 				"%d bytes untransferred\n",
2142 				td->urb->ep->desc.bEndpointAddress,
2143 				td->urb->transfer_buffer_length,
2144 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2145 	/* Fast path - was this the last TRB in the TD for this URB? */
2146 	if (event_trb == td->last_trb) {
2147 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2148 			td->urb->actual_length =
2149 				td->urb->transfer_buffer_length -
2150 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2151 			if (td->urb->transfer_buffer_length <
2152 					td->urb->actual_length) {
2153 				xhci_warn(xhci, "HC gave bad length "
2154 						"of %d bytes left\n",
2155 					  EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2156 				td->urb->actual_length = 0;
2157 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2158 					*status = -EREMOTEIO;
2159 				else
2160 					*status = 0;
2161 			}
2162 			/* Don't overwrite a previously set error code */
2163 			if (*status == -EINPROGRESS) {
2164 				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2165 					*status = -EREMOTEIO;
2166 				else
2167 					*status = 0;
2168 			}
2169 		} else {
2170 			td->urb->actual_length =
2171 				td->urb->transfer_buffer_length;
2172 			/* Ignore a short packet completion if the
2173 			 * untransferred length was zero.
2174 			 */
2175 			if (*status == -EREMOTEIO)
2176 				*status = 0;
2177 		}
2178 	} else {
2179 		/* Slow path - walk the list, starting from the dequeue
2180 		 * pointer, to get the actual length transferred.
2181 		 */
2182 		td->urb->actual_length = 0;
2183 		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2184 				cur_trb != event_trb;
2185 				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2186 			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2187 			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2188 				td->urb->actual_length +=
2189 					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2190 		}
2191 		/* If the ring didn't stop on a Link or No-op TRB, add
2192 		 * in the actual bytes transferred from the Normal TRB
2193 		 */
2194 		if (trb_comp_code != COMP_STOP_INVAL)
2195 			td->urb->actual_length +=
2196 				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2197 				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2198 	}
2199 
2200 	return finish_td(xhci, td, event_trb, event, ep, status, false);
2201 }
2202 
2203 /*
2204  * If this function returns an error condition, it means it got a Transfer
2205  * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2206  * At this point, the host controller is probably hosed and should be reset.
2207  */
2208 static int handle_tx_event(struct xhci_hcd *xhci,
2209 		struct xhci_transfer_event *event)
2210 	__releases(&xhci->lock)
2211 	__acquires(&xhci->lock)
2212 {
2213 	struct xhci_virt_device *xdev;
2214 	struct xhci_virt_ep *ep;
2215 	struct xhci_ring *ep_ring;
2216 	unsigned int slot_id;
2217 	int ep_index;
2218 	struct xhci_td *td = NULL;
2219 	dma_addr_t event_dma;
2220 	struct xhci_segment *event_seg;
2221 	union xhci_trb *event_trb;
2222 	struct urb *urb = NULL;
2223 	int status = -EINPROGRESS;
2224 	struct urb_priv *urb_priv;
2225 	struct xhci_ep_ctx *ep_ctx;
2226 	struct list_head *tmp;
2227 	u32 trb_comp_code;
2228 	int ret = 0;
2229 	int td_num = 0;
2230 
2231 	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2232 	xdev = xhci->devs[slot_id];
2233 	if (!xdev) {
2234 		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2235 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2236 			 (unsigned long long) xhci_trb_virt_to_dma(
2237 				 xhci->event_ring->deq_seg,
2238 				 xhci->event_ring->dequeue),
2239 			 lower_32_bits(le64_to_cpu(event->buffer)),
2240 			 upper_32_bits(le64_to_cpu(event->buffer)),
2241 			 le32_to_cpu(event->transfer_len),
2242 			 le32_to_cpu(event->flags));
2243 		xhci_dbg(xhci, "Event ring:\n");
2244 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2245 		return -ENODEV;
2246 	}
2247 
2248 	/* Endpoint ID is 1 based, our index is zero based */
2249 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2250 	ep = &xdev->eps[ep_index];
2251 	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2252 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2253 	if (!ep_ring ||
2254 	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2255 	    EP_STATE_DISABLED) {
2256 		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2257 				"or incorrect stream ring\n");
2258 		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2259 			 (unsigned long long) xhci_trb_virt_to_dma(
2260 				 xhci->event_ring->deq_seg,
2261 				 xhci->event_ring->dequeue),
2262 			 lower_32_bits(le64_to_cpu(event->buffer)),
2263 			 upper_32_bits(le64_to_cpu(event->buffer)),
2264 			 le32_to_cpu(event->transfer_len),
2265 			 le32_to_cpu(event->flags));
2266 		xhci_dbg(xhci, "Event ring:\n");
2267 		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2268 		return -ENODEV;
2269 	}
2270 
2271 	/* Count current td numbers if ep->skip is set */
2272 	if (ep->skip) {
2273 		list_for_each(tmp, &ep_ring->td_list)
2274 			td_num++;
2275 	}
2276 
2277 	event_dma = le64_to_cpu(event->buffer);
2278 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2279 	/* Look for common error cases */
2280 	switch (trb_comp_code) {
2281 	/* Skip codes that require special handling depending on
2282 	 * transfer type
2283 	 */
2284 	case COMP_SUCCESS:
2285 		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2286 			break;
2287 		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2288 			trb_comp_code = COMP_SHORT_TX;
2289 		else
2290 			xhci_warn_ratelimited(xhci,
2291 					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2292 	case COMP_SHORT_TX:
2293 		break;
2294 	case COMP_STOP:
2295 		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2296 		break;
2297 	case COMP_STOP_INVAL:
2298 		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2299 		break;
2300 	case COMP_STALL:
2301 		xhci_dbg(xhci, "Stalled endpoint\n");
2302 		ep->ep_state |= EP_HALTED;
2303 		status = -EPIPE;
2304 		break;
2305 	case COMP_TRB_ERR:
2306 		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2307 		status = -EILSEQ;
2308 		break;
2309 	case COMP_SPLIT_ERR:
2310 	case COMP_TX_ERR:
2311 		xhci_dbg(xhci, "Transfer error on endpoint\n");
2312 		status = -EPROTO;
2313 		break;
2314 	case COMP_BABBLE:
2315 		xhci_dbg(xhci, "Babble error on endpoint\n");
2316 		status = -EOVERFLOW;
2317 		break;
2318 	case COMP_DB_ERR:
2319 		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2320 		status = -ENOSR;
2321 		break;
2322 	case COMP_BW_OVER:
2323 		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2324 		break;
2325 	case COMP_BUFF_OVER:
2326 		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2327 		break;
2328 	case COMP_UNDERRUN:
2329 		/*
2330 		 * When the Isoch ring is empty, the xHC will generate
2331 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2332 		 * Underrun Event for OUT Isoch endpoint.
2333 		 */
2334 		xhci_dbg(xhci, "underrun event on endpoint\n");
2335 		if (!list_empty(&ep_ring->td_list))
2336 			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2337 					"still with TDs queued?\n",
2338 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2339 				 ep_index);
2340 		goto cleanup;
2341 	case COMP_OVERRUN:
2342 		xhci_dbg(xhci, "overrun event on endpoint\n");
2343 		if (!list_empty(&ep_ring->td_list))
2344 			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2345 					"still with TDs queued?\n",
2346 				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2347 				 ep_index);
2348 		goto cleanup;
2349 	case COMP_DEV_ERR:
2350 		xhci_warn(xhci, "WARN: detect an incompatible device");
2351 		status = -EPROTO;
2352 		break;
2353 	case COMP_MISSED_INT:
2354 		/*
2355 		 * When encounter missed service error, one or more isoc tds
2356 		 * may be missed by xHC.
2357 		 * Set skip flag of the ep_ring; Complete the missed tds as
2358 		 * short transfer when process the ep_ring next time.
2359 		 */
2360 		ep->skip = true;
2361 		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2362 		goto cleanup;
2363 	default:
2364 		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2365 			status = 0;
2366 			break;
2367 		}
2368 		xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2369 			  trb_comp_code);
2370 		goto cleanup;
2371 	}
2372 
2373 	do {
2374 		/* This TRB should be in the TD at the head of this ring's
2375 		 * TD list.
2376 		 */
2377 		if (list_empty(&ep_ring->td_list)) {
2378 			/*
2379 			 * A stopped endpoint may generate an extra completion
2380 			 * event if the device was suspended.  Don't print
2381 			 * warnings.
2382 			 */
2383 			if (!(trb_comp_code == COMP_STOP ||
2384 						trb_comp_code == COMP_STOP_INVAL)) {
2385 				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2386 						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2387 						ep_index);
2388 				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2389 						(le32_to_cpu(event->flags) &
2390 						 TRB_TYPE_BITMASK)>>10);
2391 				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2392 			}
2393 			if (ep->skip) {
2394 				ep->skip = false;
2395 				xhci_dbg(xhci, "td_list is empty while skip "
2396 						"flag set. Clear skip flag.\n");
2397 			}
2398 			ret = 0;
2399 			goto cleanup;
2400 		}
2401 
2402 		/* We've skipped all the TDs on the ep ring when ep->skip set */
2403 		if (ep->skip && td_num == 0) {
2404 			ep->skip = false;
2405 			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2406 						"Clear skip flag.\n");
2407 			ret = 0;
2408 			goto cleanup;
2409 		}
2410 
2411 		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2412 		if (ep->skip)
2413 			td_num--;
2414 
2415 		/* Is this a TRB in the currently executing TD? */
2416 		event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2417 				td->last_trb, event_dma, false);
2418 
2419 		/*
2420 		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2421 		 * is not in the current TD pointed by ep_ring->dequeue because
2422 		 * that the hardware dequeue pointer still at the previous TRB
2423 		 * of the current TD. The previous TRB maybe a Link TD or the
2424 		 * last TRB of the previous TD. The command completion handle
2425 		 * will take care the rest.
2426 		 */
2427 		if (!event_seg && (trb_comp_code == COMP_STOP ||
2428 				   trb_comp_code == COMP_STOP_INVAL)) {
2429 			ret = 0;
2430 			goto cleanup;
2431 		}
2432 
2433 		if (!event_seg) {
2434 			if (!ep->skip ||
2435 			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2436 				/* Some host controllers give a spurious
2437 				 * successful event after a short transfer.
2438 				 * Ignore it.
2439 				 */
2440 				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2441 						ep_ring->last_td_was_short) {
2442 					ep_ring->last_td_was_short = false;
2443 					ret = 0;
2444 					goto cleanup;
2445 				}
2446 				/* HC is busted, give up! */
2447 				xhci_err(xhci,
2448 					"ERROR Transfer event TRB DMA ptr not "
2449 					"part of current TD ep_index %d "
2450 					"comp_code %u\n", ep_index,
2451 					trb_comp_code);
2452 				trb_in_td(xhci, ep_ring->deq_seg,
2453 					  ep_ring->dequeue, td->last_trb,
2454 					  event_dma, true);
2455 				return -ESHUTDOWN;
2456 			}
2457 
2458 			ret = skip_isoc_td(xhci, td, event, ep, &status);
2459 			goto cleanup;
2460 		}
2461 		if (trb_comp_code == COMP_SHORT_TX)
2462 			ep_ring->last_td_was_short = true;
2463 		else
2464 			ep_ring->last_td_was_short = false;
2465 
2466 		if (ep->skip) {
2467 			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2468 			ep->skip = false;
2469 		}
2470 
2471 		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2472 						sizeof(*event_trb)];
2473 		/*
2474 		 * No-op TRB should not trigger interrupts.
2475 		 * If event_trb is a no-op TRB, it means the
2476 		 * corresponding TD has been cancelled. Just ignore
2477 		 * the TD.
2478 		 */
2479 		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2480 			xhci_dbg(xhci,
2481 				 "event_trb is a no-op TRB. Skip it\n");
2482 			goto cleanup;
2483 		}
2484 
2485 		/* Now update the urb's actual_length and give back to
2486 		 * the core
2487 		 */
2488 		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2489 			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2490 						 &status);
2491 		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2492 			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2493 						 &status);
2494 		else
2495 			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2496 						 ep, &status);
2497 
2498 cleanup:
2499 		/*
2500 		 * Do not update event ring dequeue pointer if ep->skip is set.
2501 		 * Will roll back to continue process missed tds.
2502 		 */
2503 		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2504 			inc_deq(xhci, xhci->event_ring);
2505 		}
2506 
2507 		if (ret) {
2508 			urb = td->urb;
2509 			urb_priv = urb->hcpriv;
2510 
2511 			xhci_urb_free_priv(urb_priv);
2512 
2513 			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2514 			if ((urb->actual_length != urb->transfer_buffer_length &&
2515 						(urb->transfer_flags &
2516 						 URB_SHORT_NOT_OK)) ||
2517 					(status != 0 &&
2518 					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2519 				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2520 						"expected = %d, status = %d\n",
2521 						urb, urb->actual_length,
2522 						urb->transfer_buffer_length,
2523 						status);
2524 			spin_unlock(&xhci->lock);
2525 			/* EHCI, UHCI, and OHCI always unconditionally set the
2526 			 * urb->status of an isochronous endpoint to 0.
2527 			 */
2528 			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2529 				status = 0;
2530 			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2531 			spin_lock(&xhci->lock);
2532 		}
2533 
2534 	/*
2535 	 * If ep->skip is set, it means there are missed tds on the
2536 	 * endpoint ring need to take care of.
2537 	 * Process them as short transfer until reach the td pointed by
2538 	 * the event.
2539 	 */
2540 	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2541 
2542 	return 0;
2543 }
2544 
2545 /*
2546  * This function handles all OS-owned events on the event ring.  It may drop
2547  * xhci->lock between event processing (e.g. to pass up port status changes).
2548  * Returns >0 for "possibly more events to process" (caller should call again),
2549  * otherwise 0 if done.  In future, <0 returns should indicate error code.
2550  */
2551 static int xhci_handle_event(struct xhci_hcd *xhci)
2552 {
2553 	union xhci_trb *event;
2554 	int update_ptrs = 1;
2555 	int ret;
2556 
2557 	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2558 		xhci->error_bitmask |= 1 << 1;
2559 		return 0;
2560 	}
2561 
2562 	event = xhci->event_ring->dequeue;
2563 	/* Does the HC or OS own the TRB? */
2564 	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2565 	    xhci->event_ring->cycle_state) {
2566 		xhci->error_bitmask |= 1 << 2;
2567 		return 0;
2568 	}
2569 
2570 	/*
2571 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2572 	 * speculative reads of the event's flags/data below.
2573 	 */
2574 	rmb();
2575 	/* FIXME: Handle more event types. */
2576 	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2577 	case TRB_TYPE(TRB_COMPLETION):
2578 		handle_cmd_completion(xhci, &event->event_cmd);
2579 		break;
2580 	case TRB_TYPE(TRB_PORT_STATUS):
2581 		handle_port_status(xhci, event);
2582 		update_ptrs = 0;
2583 		break;
2584 	case TRB_TYPE(TRB_TRANSFER):
2585 		ret = handle_tx_event(xhci, &event->trans_event);
2586 		if (ret < 0)
2587 			xhci->error_bitmask |= 1 << 9;
2588 		else
2589 			update_ptrs = 0;
2590 		break;
2591 	case TRB_TYPE(TRB_DEV_NOTE):
2592 		handle_device_notification(xhci, event);
2593 		break;
2594 	default:
2595 		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2596 		    TRB_TYPE(48))
2597 			handle_vendor_event(xhci, event);
2598 		else
2599 			xhci->error_bitmask |= 1 << 3;
2600 	}
2601 	/* Any of the above functions may drop and re-acquire the lock, so check
2602 	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2603 	 */
2604 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2605 		xhci_dbg(xhci, "xHCI host dying, returning from "
2606 				"event handler.\n");
2607 		return 0;
2608 	}
2609 
2610 	if (update_ptrs)
2611 		/* Update SW event ring dequeue pointer */
2612 		inc_deq(xhci, xhci->event_ring);
2613 
2614 	/* Are there more items on the event ring?  Caller will call us again to
2615 	 * check.
2616 	 */
2617 	return 1;
2618 }
2619 
2620 /*
2621  * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2622  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2623  * indicators of an event TRB error, but we check the status *first* to be safe.
2624  */
2625 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2626 {
2627 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2628 	u32 status;
2629 	u64 temp_64;
2630 	union xhci_trb *event_ring_deq;
2631 	dma_addr_t deq;
2632 
2633 	spin_lock(&xhci->lock);
2634 	/* Check if the xHC generated the interrupt, or the irq is shared */
2635 	status = readl(&xhci->op_regs->status);
2636 	if (status == 0xffffffff)
2637 		goto hw_died;
2638 
2639 	if (!(status & STS_EINT)) {
2640 		spin_unlock(&xhci->lock);
2641 		return IRQ_NONE;
2642 	}
2643 	if (status & STS_FATAL) {
2644 		xhci_warn(xhci, "WARNING: Host System Error\n");
2645 		xhci_halt(xhci);
2646 hw_died:
2647 		spin_unlock(&xhci->lock);
2648 		return IRQ_HANDLED;
2649 	}
2650 
2651 	/*
2652 	 * Clear the op reg interrupt status first,
2653 	 * so we can receive interrupts from other MSI-X interrupters.
2654 	 * Write 1 to clear the interrupt status.
2655 	 */
2656 	status |= STS_EINT;
2657 	writel(status, &xhci->op_regs->status);
2658 	/* FIXME when MSI-X is supported and there are multiple vectors */
2659 	/* Clear the MSI-X event interrupt status */
2660 
2661 	if (hcd->irq) {
2662 		u32 irq_pending;
2663 		/* Acknowledge the PCI interrupt */
2664 		irq_pending = readl(&xhci->ir_set->irq_pending);
2665 		irq_pending |= IMAN_IP;
2666 		writel(irq_pending, &xhci->ir_set->irq_pending);
2667 	}
2668 
2669 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2670 		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2671 				"Shouldn't IRQs be disabled?\n");
2672 		/* Clear the event handler busy flag (RW1C);
2673 		 * the event ring should be empty.
2674 		 */
2675 		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2676 		xhci_write_64(xhci, temp_64 | ERST_EHB,
2677 				&xhci->ir_set->erst_dequeue);
2678 		spin_unlock(&xhci->lock);
2679 
2680 		return IRQ_HANDLED;
2681 	}
2682 
2683 	event_ring_deq = xhci->event_ring->dequeue;
2684 	/* FIXME this should be a delayed service routine
2685 	 * that clears the EHB.
2686 	 */
2687 	while (xhci_handle_event(xhci) > 0) {}
2688 
2689 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2690 	/* If necessary, update the HW's version of the event ring deq ptr. */
2691 	if (event_ring_deq != xhci->event_ring->dequeue) {
2692 		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2693 				xhci->event_ring->dequeue);
2694 		if (deq == 0)
2695 			xhci_warn(xhci, "WARN something wrong with SW event "
2696 					"ring dequeue ptr.\n");
2697 		/* Update HC event ring dequeue pointer */
2698 		temp_64 &= ERST_PTR_MASK;
2699 		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2700 	}
2701 
2702 	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2703 	temp_64 |= ERST_EHB;
2704 	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2705 
2706 	spin_unlock(&xhci->lock);
2707 
2708 	return IRQ_HANDLED;
2709 }
2710 
2711 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2712 {
2713 	return xhci_irq(hcd);
2714 }
2715 
2716 /****		Endpoint Ring Operations	****/
2717 
2718 /*
2719  * Generic function for queueing a TRB on a ring.
2720  * The caller must have checked to make sure there's room on the ring.
2721  *
2722  * @more_trbs_coming:	Will you enqueue more TRBs before calling
2723  *			prepare_transfer()?
2724  */
2725 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2726 		bool more_trbs_coming,
2727 		u32 field1, u32 field2, u32 field3, u32 field4)
2728 {
2729 	struct xhci_generic_trb *trb;
2730 
2731 	trb = &ring->enqueue->generic;
2732 	trb->field[0] = cpu_to_le32(field1);
2733 	trb->field[1] = cpu_to_le32(field2);
2734 	trb->field[2] = cpu_to_le32(field3);
2735 	trb->field[3] = cpu_to_le32(field4);
2736 	inc_enq(xhci, ring, more_trbs_coming);
2737 }
2738 
2739 /*
2740  * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2741  * FIXME allocate segments if the ring is full.
2742  */
2743 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2744 		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2745 {
2746 	unsigned int num_trbs_needed;
2747 
2748 	/* Make sure the endpoint has been added to xHC schedule */
2749 	switch (ep_state) {
2750 	case EP_STATE_DISABLED:
2751 		/*
2752 		 * USB core changed config/interfaces without notifying us,
2753 		 * or hardware is reporting the wrong state.
2754 		 */
2755 		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2756 		return -ENOENT;
2757 	case EP_STATE_ERROR:
2758 		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2759 		/* FIXME event handling code for error needs to clear it */
2760 		/* XXX not sure if this should be -ENOENT or not */
2761 		return -EINVAL;
2762 	case EP_STATE_HALTED:
2763 		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2764 	case EP_STATE_STOPPED:
2765 	case EP_STATE_RUNNING:
2766 		break;
2767 	default:
2768 		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2769 		/*
2770 		 * FIXME issue Configure Endpoint command to try to get the HC
2771 		 * back into a known state.
2772 		 */
2773 		return -EINVAL;
2774 	}
2775 
2776 	while (1) {
2777 		if (room_on_ring(xhci, ep_ring, num_trbs))
2778 			break;
2779 
2780 		if (ep_ring == xhci->cmd_ring) {
2781 			xhci_err(xhci, "Do not support expand command ring\n");
2782 			return -ENOMEM;
2783 		}
2784 
2785 		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2786 				"ERROR no room on ep ring, try ring expansion");
2787 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2788 		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2789 					mem_flags)) {
2790 			xhci_err(xhci, "Ring expansion failed\n");
2791 			return -ENOMEM;
2792 		}
2793 	}
2794 
2795 	if (enqueue_is_link_trb(ep_ring)) {
2796 		struct xhci_ring *ring = ep_ring;
2797 		union xhci_trb *next;
2798 
2799 		next = ring->enqueue;
2800 
2801 		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2802 			/* If we're not dealing with 0.95 hardware or isoc rings
2803 			 * on AMD 0.96 host, clear the chain bit.
2804 			 */
2805 			if (!xhci_link_trb_quirk(xhci) &&
2806 					!(ring->type == TYPE_ISOC &&
2807 					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2808 				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2809 			else
2810 				next->link.control |= cpu_to_le32(TRB_CHAIN);
2811 
2812 			wmb();
2813 			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2814 
2815 			/* Toggle the cycle bit after the last ring segment. */
2816 			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2817 				ring->cycle_state ^= 1;
2818 			}
2819 			ring->enq_seg = ring->enq_seg->next;
2820 			ring->enqueue = ring->enq_seg->trbs;
2821 			next = ring->enqueue;
2822 		}
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 static int prepare_transfer(struct xhci_hcd *xhci,
2829 		struct xhci_virt_device *xdev,
2830 		unsigned int ep_index,
2831 		unsigned int stream_id,
2832 		unsigned int num_trbs,
2833 		struct urb *urb,
2834 		unsigned int td_index,
2835 		gfp_t mem_flags)
2836 {
2837 	int ret;
2838 	struct urb_priv *urb_priv;
2839 	struct xhci_td	*td;
2840 	struct xhci_ring *ep_ring;
2841 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2842 
2843 	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2844 	if (!ep_ring) {
2845 		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2846 				stream_id);
2847 		return -EINVAL;
2848 	}
2849 
2850 	ret = prepare_ring(xhci, ep_ring,
2851 			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2852 			   num_trbs, mem_flags);
2853 	if (ret)
2854 		return ret;
2855 
2856 	urb_priv = urb->hcpriv;
2857 	td = urb_priv->td[td_index];
2858 
2859 	INIT_LIST_HEAD(&td->td_list);
2860 	INIT_LIST_HEAD(&td->cancelled_td_list);
2861 
2862 	if (td_index == 0) {
2863 		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2864 		if (unlikely(ret))
2865 			return ret;
2866 	}
2867 
2868 	td->urb = urb;
2869 	/* Add this TD to the tail of the endpoint ring's TD list */
2870 	list_add_tail(&td->td_list, &ep_ring->td_list);
2871 	td->start_seg = ep_ring->enq_seg;
2872 	td->first_trb = ep_ring->enqueue;
2873 
2874 	urb_priv->td[td_index] = td;
2875 
2876 	return 0;
2877 }
2878 
2879 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2880 {
2881 	int num_sgs, num_trbs, running_total, temp, i;
2882 	struct scatterlist *sg;
2883 
2884 	sg = NULL;
2885 	num_sgs = urb->num_mapped_sgs;
2886 	temp = urb->transfer_buffer_length;
2887 
2888 	num_trbs = 0;
2889 	for_each_sg(urb->sg, sg, num_sgs, i) {
2890 		unsigned int len = sg_dma_len(sg);
2891 
2892 		/* Scatter gather list entries may cross 64KB boundaries */
2893 		running_total = TRB_MAX_BUFF_SIZE -
2894 			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2895 		running_total &= TRB_MAX_BUFF_SIZE - 1;
2896 		if (running_total != 0)
2897 			num_trbs++;
2898 
2899 		/* How many more 64KB chunks to transfer, how many more TRBs? */
2900 		while (running_total < sg_dma_len(sg) && running_total < temp) {
2901 			num_trbs++;
2902 			running_total += TRB_MAX_BUFF_SIZE;
2903 		}
2904 		len = min_t(int, len, temp);
2905 		temp -= len;
2906 		if (temp == 0)
2907 			break;
2908 	}
2909 	return num_trbs;
2910 }
2911 
2912 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2913 {
2914 	if (num_trbs != 0)
2915 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2916 				"TRBs, %d left\n", __func__,
2917 				urb->ep->desc.bEndpointAddress, num_trbs);
2918 	if (running_total != urb->transfer_buffer_length)
2919 		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2920 				"queued %#x (%d), asked for %#x (%d)\n",
2921 				__func__,
2922 				urb->ep->desc.bEndpointAddress,
2923 				running_total, running_total,
2924 				urb->transfer_buffer_length,
2925 				urb->transfer_buffer_length);
2926 }
2927 
2928 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2929 		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2930 		struct xhci_generic_trb *start_trb)
2931 {
2932 	/*
2933 	 * Pass all the TRBs to the hardware at once and make sure this write
2934 	 * isn't reordered.
2935 	 */
2936 	wmb();
2937 	if (start_cycle)
2938 		start_trb->field[3] |= cpu_to_le32(start_cycle);
2939 	else
2940 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2941 	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2942 }
2943 
2944 /*
2945  * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2946  * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2947  * (comprised of sg list entries) can take several service intervals to
2948  * transmit.
2949  */
2950 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2951 		struct urb *urb, int slot_id, unsigned int ep_index)
2952 {
2953 	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2954 			xhci->devs[slot_id]->out_ctx, ep_index);
2955 	int xhci_interval;
2956 	int ep_interval;
2957 
2958 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2959 	ep_interval = urb->interval;
2960 	/* Convert to microframes */
2961 	if (urb->dev->speed == USB_SPEED_LOW ||
2962 			urb->dev->speed == USB_SPEED_FULL)
2963 		ep_interval *= 8;
2964 	/* FIXME change this to a warning and a suggestion to use the new API
2965 	 * to set the polling interval (once the API is added).
2966 	 */
2967 	if (xhci_interval != ep_interval) {
2968 		dev_dbg_ratelimited(&urb->dev->dev,
2969 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
2970 				ep_interval, ep_interval == 1 ? "" : "s",
2971 				xhci_interval, xhci_interval == 1 ? "" : "s");
2972 		urb->interval = xhci_interval;
2973 		/* Convert back to frames for LS/FS devices */
2974 		if (urb->dev->speed == USB_SPEED_LOW ||
2975 				urb->dev->speed == USB_SPEED_FULL)
2976 			urb->interval /= 8;
2977 	}
2978 	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
2979 }
2980 
2981 /*
2982  * The TD size is the number of bytes remaining in the TD (including this TRB),
2983  * right shifted by 10.
2984  * It must fit in bits 21:17, so it can't be bigger than 31.
2985  */
2986 static u32 xhci_td_remainder(unsigned int remainder)
2987 {
2988 	u32 max = (1 << (21 - 17 + 1)) - 1;
2989 
2990 	if ((remainder >> 10) >= max)
2991 		return max << 17;
2992 	else
2993 		return (remainder >> 10) << 17;
2994 }
2995 
2996 /*
2997  * For xHCI 1.0 host controllers, TD size is the number of max packet sized
2998  * packets remaining in the TD (*not* including this TRB).
2999  *
3000  * Total TD packet count = total_packet_count =
3001  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3002  *
3003  * Packets transferred up to and including this TRB = packets_transferred =
3004  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3005  *
3006  * TD size = total_packet_count - packets_transferred
3007  *
3008  * It must fit in bits 21:17, so it can't be bigger than 31.
3009  * The last TRB in a TD must have the TD size set to zero.
3010  */
3011 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3012 		unsigned int total_packet_count, struct urb *urb,
3013 		unsigned int num_trbs_left)
3014 {
3015 	int packets_transferred;
3016 
3017 	/* One TRB with a zero-length data packet. */
3018 	if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3019 		return 0;
3020 
3021 	/* All the TRB queueing functions don't count the current TRB in
3022 	 * running_total.
3023 	 */
3024 	packets_transferred = (running_total + trb_buff_len) /
3025 		GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3026 
3027 	if ((total_packet_count - packets_transferred) > 31)
3028 		return 31 << 17;
3029 	return (total_packet_count - packets_transferred) << 17;
3030 }
3031 
3032 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3033 		struct urb *urb, int slot_id, unsigned int ep_index)
3034 {
3035 	struct xhci_ring *ep_ring;
3036 	unsigned int num_trbs;
3037 	struct urb_priv *urb_priv;
3038 	struct xhci_td *td;
3039 	struct scatterlist *sg;
3040 	int num_sgs;
3041 	int trb_buff_len, this_sg_len, running_total;
3042 	unsigned int total_packet_count;
3043 	bool first_trb;
3044 	u64 addr;
3045 	bool more_trbs_coming;
3046 
3047 	struct xhci_generic_trb *start_trb;
3048 	int start_cycle;
3049 
3050 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3051 	if (!ep_ring)
3052 		return -EINVAL;
3053 
3054 	num_trbs = count_sg_trbs_needed(xhci, urb);
3055 	num_sgs = urb->num_mapped_sgs;
3056 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3057 			usb_endpoint_maxp(&urb->ep->desc));
3058 
3059 	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3060 			ep_index, urb->stream_id,
3061 			num_trbs, urb, 0, mem_flags);
3062 	if (trb_buff_len < 0)
3063 		return trb_buff_len;
3064 
3065 	urb_priv = urb->hcpriv;
3066 	td = urb_priv->td[0];
3067 
3068 	/*
3069 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3070 	 * until we've finished creating all the other TRBs.  The ring's cycle
3071 	 * state may change as we enqueue the other TRBs, so save it too.
3072 	 */
3073 	start_trb = &ep_ring->enqueue->generic;
3074 	start_cycle = ep_ring->cycle_state;
3075 
3076 	running_total = 0;
3077 	/*
3078 	 * How much data is in the first TRB?
3079 	 *
3080 	 * There are three forces at work for TRB buffer pointers and lengths:
3081 	 * 1. We don't want to walk off the end of this sg-list entry buffer.
3082 	 * 2. The transfer length that the driver requested may be smaller than
3083 	 *    the amount of memory allocated for this scatter-gather list.
3084 	 * 3. TRBs buffers can't cross 64KB boundaries.
3085 	 */
3086 	sg = urb->sg;
3087 	addr = (u64) sg_dma_address(sg);
3088 	this_sg_len = sg_dma_len(sg);
3089 	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3090 	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3091 	if (trb_buff_len > urb->transfer_buffer_length)
3092 		trb_buff_len = urb->transfer_buffer_length;
3093 
3094 	first_trb = true;
3095 	/* Queue the first TRB, even if it's zero-length */
3096 	do {
3097 		u32 field = 0;
3098 		u32 length_field = 0;
3099 		u32 remainder = 0;
3100 
3101 		/* Don't change the cycle bit of the first TRB until later */
3102 		if (first_trb) {
3103 			first_trb = false;
3104 			if (start_cycle == 0)
3105 				field |= 0x1;
3106 		} else
3107 			field |= ep_ring->cycle_state;
3108 
3109 		/* Chain all the TRBs together; clear the chain bit in the last
3110 		 * TRB to indicate it's the last TRB in the chain.
3111 		 */
3112 		if (num_trbs > 1) {
3113 			field |= TRB_CHAIN;
3114 		} else {
3115 			/* FIXME - add check for ZERO_PACKET flag before this */
3116 			td->last_trb = ep_ring->enqueue;
3117 			field |= TRB_IOC;
3118 		}
3119 
3120 		/* Only set interrupt on short packet for IN endpoints */
3121 		if (usb_urb_dir_in(urb))
3122 			field |= TRB_ISP;
3123 
3124 		if (TRB_MAX_BUFF_SIZE -
3125 				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3126 			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3127 			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3128 					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3129 					(unsigned int) addr + trb_buff_len);
3130 		}
3131 
3132 		/* Set the TRB length, TD size, and interrupter fields. */
3133 		if (xhci->hci_version < 0x100) {
3134 			remainder = xhci_td_remainder(
3135 					urb->transfer_buffer_length -
3136 					running_total);
3137 		} else {
3138 			remainder = xhci_v1_0_td_remainder(running_total,
3139 					trb_buff_len, total_packet_count, urb,
3140 					num_trbs - 1);
3141 		}
3142 		length_field = TRB_LEN(trb_buff_len) |
3143 			remainder |
3144 			TRB_INTR_TARGET(0);
3145 
3146 		if (num_trbs > 1)
3147 			more_trbs_coming = true;
3148 		else
3149 			more_trbs_coming = false;
3150 		queue_trb(xhci, ep_ring, more_trbs_coming,
3151 				lower_32_bits(addr),
3152 				upper_32_bits(addr),
3153 				length_field,
3154 				field | TRB_TYPE(TRB_NORMAL));
3155 		--num_trbs;
3156 		running_total += trb_buff_len;
3157 
3158 		/* Calculate length for next transfer --
3159 		 * Are we done queueing all the TRBs for this sg entry?
3160 		 */
3161 		this_sg_len -= trb_buff_len;
3162 		if (this_sg_len == 0) {
3163 			--num_sgs;
3164 			if (num_sgs == 0)
3165 				break;
3166 			sg = sg_next(sg);
3167 			addr = (u64) sg_dma_address(sg);
3168 			this_sg_len = sg_dma_len(sg);
3169 		} else {
3170 			addr += trb_buff_len;
3171 		}
3172 
3173 		trb_buff_len = TRB_MAX_BUFF_SIZE -
3174 			(addr & (TRB_MAX_BUFF_SIZE - 1));
3175 		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3176 		if (running_total + trb_buff_len > urb->transfer_buffer_length)
3177 			trb_buff_len =
3178 				urb->transfer_buffer_length - running_total;
3179 	} while (running_total < urb->transfer_buffer_length);
3180 
3181 	check_trb_math(urb, num_trbs, running_total);
3182 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3183 			start_cycle, start_trb);
3184 	return 0;
3185 }
3186 
3187 /* This is very similar to what ehci-q.c qtd_fill() does */
3188 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3189 		struct urb *urb, int slot_id, unsigned int ep_index)
3190 {
3191 	struct xhci_ring *ep_ring;
3192 	struct urb_priv *urb_priv;
3193 	struct xhci_td *td;
3194 	int num_trbs;
3195 	struct xhci_generic_trb *start_trb;
3196 	bool first_trb;
3197 	bool more_trbs_coming;
3198 	int start_cycle;
3199 	u32 field, length_field;
3200 
3201 	int running_total, trb_buff_len, ret;
3202 	unsigned int total_packet_count;
3203 	u64 addr;
3204 
3205 	if (urb->num_sgs)
3206 		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3207 
3208 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3209 	if (!ep_ring)
3210 		return -EINVAL;
3211 
3212 	num_trbs = 0;
3213 	/* How much data is (potentially) left before the 64KB boundary? */
3214 	running_total = TRB_MAX_BUFF_SIZE -
3215 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3216 	running_total &= TRB_MAX_BUFF_SIZE - 1;
3217 
3218 	/* If there's some data on this 64KB chunk, or we have to send a
3219 	 * zero-length transfer, we need at least one TRB
3220 	 */
3221 	if (running_total != 0 || urb->transfer_buffer_length == 0)
3222 		num_trbs++;
3223 	/* How many more 64KB chunks to transfer, how many more TRBs? */
3224 	while (running_total < urb->transfer_buffer_length) {
3225 		num_trbs++;
3226 		running_total += TRB_MAX_BUFF_SIZE;
3227 	}
3228 	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3229 
3230 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3231 			ep_index, urb->stream_id,
3232 			num_trbs, urb, 0, mem_flags);
3233 	if (ret < 0)
3234 		return ret;
3235 
3236 	urb_priv = urb->hcpriv;
3237 	td = urb_priv->td[0];
3238 
3239 	/*
3240 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3241 	 * until we've finished creating all the other TRBs.  The ring's cycle
3242 	 * state may change as we enqueue the other TRBs, so save it too.
3243 	 */
3244 	start_trb = &ep_ring->enqueue->generic;
3245 	start_cycle = ep_ring->cycle_state;
3246 
3247 	running_total = 0;
3248 	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3249 			usb_endpoint_maxp(&urb->ep->desc));
3250 	/* How much data is in the first TRB? */
3251 	addr = (u64) urb->transfer_dma;
3252 	trb_buff_len = TRB_MAX_BUFF_SIZE -
3253 		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3254 	if (trb_buff_len > urb->transfer_buffer_length)
3255 		trb_buff_len = urb->transfer_buffer_length;
3256 
3257 	first_trb = true;
3258 
3259 	/* Queue the first TRB, even if it's zero-length */
3260 	do {
3261 		u32 remainder = 0;
3262 		field = 0;
3263 
3264 		/* Don't change the cycle bit of the first TRB until later */
3265 		if (first_trb) {
3266 			first_trb = false;
3267 			if (start_cycle == 0)
3268 				field |= 0x1;
3269 		} else
3270 			field |= ep_ring->cycle_state;
3271 
3272 		/* Chain all the TRBs together; clear the chain bit in the last
3273 		 * TRB to indicate it's the last TRB in the chain.
3274 		 */
3275 		if (num_trbs > 1) {
3276 			field |= TRB_CHAIN;
3277 		} else {
3278 			/* FIXME - add check for ZERO_PACKET flag before this */
3279 			td->last_trb = ep_ring->enqueue;
3280 			field |= TRB_IOC;
3281 		}
3282 
3283 		/* Only set interrupt on short packet for IN endpoints */
3284 		if (usb_urb_dir_in(urb))
3285 			field |= TRB_ISP;
3286 
3287 		/* Set the TRB length, TD size, and interrupter fields. */
3288 		if (xhci->hci_version < 0x100) {
3289 			remainder = xhci_td_remainder(
3290 					urb->transfer_buffer_length -
3291 					running_total);
3292 		} else {
3293 			remainder = xhci_v1_0_td_remainder(running_total,
3294 					trb_buff_len, total_packet_count, urb,
3295 					num_trbs - 1);
3296 		}
3297 		length_field = TRB_LEN(trb_buff_len) |
3298 			remainder |
3299 			TRB_INTR_TARGET(0);
3300 
3301 		if (num_trbs > 1)
3302 			more_trbs_coming = true;
3303 		else
3304 			more_trbs_coming = false;
3305 		queue_trb(xhci, ep_ring, more_trbs_coming,
3306 				lower_32_bits(addr),
3307 				upper_32_bits(addr),
3308 				length_field,
3309 				field | TRB_TYPE(TRB_NORMAL));
3310 		--num_trbs;
3311 		running_total += trb_buff_len;
3312 
3313 		/* Calculate length for next transfer */
3314 		addr += trb_buff_len;
3315 		trb_buff_len = urb->transfer_buffer_length - running_total;
3316 		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3317 			trb_buff_len = TRB_MAX_BUFF_SIZE;
3318 	} while (running_total < urb->transfer_buffer_length);
3319 
3320 	check_trb_math(urb, num_trbs, running_total);
3321 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3322 			start_cycle, start_trb);
3323 	return 0;
3324 }
3325 
3326 /* Caller must have locked xhci->lock */
3327 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3328 		struct urb *urb, int slot_id, unsigned int ep_index)
3329 {
3330 	struct xhci_ring *ep_ring;
3331 	int num_trbs;
3332 	int ret;
3333 	struct usb_ctrlrequest *setup;
3334 	struct xhci_generic_trb *start_trb;
3335 	int start_cycle;
3336 	u32 field, length_field;
3337 	struct urb_priv *urb_priv;
3338 	struct xhci_td *td;
3339 
3340 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3341 	if (!ep_ring)
3342 		return -EINVAL;
3343 
3344 	/*
3345 	 * Need to copy setup packet into setup TRB, so we can't use the setup
3346 	 * DMA address.
3347 	 */
3348 	if (!urb->setup_packet)
3349 		return -EINVAL;
3350 
3351 	/* 1 TRB for setup, 1 for status */
3352 	num_trbs = 2;
3353 	/*
3354 	 * Don't need to check if we need additional event data and normal TRBs,
3355 	 * since data in control transfers will never get bigger than 16MB
3356 	 * XXX: can we get a buffer that crosses 64KB boundaries?
3357 	 */
3358 	if (urb->transfer_buffer_length > 0)
3359 		num_trbs++;
3360 	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3361 			ep_index, urb->stream_id,
3362 			num_trbs, urb, 0, mem_flags);
3363 	if (ret < 0)
3364 		return ret;
3365 
3366 	urb_priv = urb->hcpriv;
3367 	td = urb_priv->td[0];
3368 
3369 	/*
3370 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3371 	 * until we've finished creating all the other TRBs.  The ring's cycle
3372 	 * state may change as we enqueue the other TRBs, so save it too.
3373 	 */
3374 	start_trb = &ep_ring->enqueue->generic;
3375 	start_cycle = ep_ring->cycle_state;
3376 
3377 	/* Queue setup TRB - see section 6.4.1.2.1 */
3378 	/* FIXME better way to translate setup_packet into two u32 fields? */
3379 	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3380 	field = 0;
3381 	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3382 	if (start_cycle == 0)
3383 		field |= 0x1;
3384 
3385 	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3386 	if (xhci->hci_version == 0x100) {
3387 		if (urb->transfer_buffer_length > 0) {
3388 			if (setup->bRequestType & USB_DIR_IN)
3389 				field |= TRB_TX_TYPE(TRB_DATA_IN);
3390 			else
3391 				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3392 		}
3393 	}
3394 
3395 	queue_trb(xhci, ep_ring, true,
3396 		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3397 		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3398 		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3399 		  /* Immediate data in pointer */
3400 		  field);
3401 
3402 	/* If there's data, queue data TRBs */
3403 	/* Only set interrupt on short packet for IN endpoints */
3404 	if (usb_urb_dir_in(urb))
3405 		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3406 	else
3407 		field = TRB_TYPE(TRB_DATA);
3408 
3409 	length_field = TRB_LEN(urb->transfer_buffer_length) |
3410 		xhci_td_remainder(urb->transfer_buffer_length) |
3411 		TRB_INTR_TARGET(0);
3412 	if (urb->transfer_buffer_length > 0) {
3413 		if (setup->bRequestType & USB_DIR_IN)
3414 			field |= TRB_DIR_IN;
3415 		queue_trb(xhci, ep_ring, true,
3416 				lower_32_bits(urb->transfer_dma),
3417 				upper_32_bits(urb->transfer_dma),
3418 				length_field,
3419 				field | ep_ring->cycle_state);
3420 	}
3421 
3422 	/* Save the DMA address of the last TRB in the TD */
3423 	td->last_trb = ep_ring->enqueue;
3424 
3425 	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3426 	/* If the device sent data, the status stage is an OUT transfer */
3427 	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3428 		field = 0;
3429 	else
3430 		field = TRB_DIR_IN;
3431 	queue_trb(xhci, ep_ring, false,
3432 			0,
3433 			0,
3434 			TRB_INTR_TARGET(0),
3435 			/* Event on completion */
3436 			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3437 
3438 	giveback_first_trb(xhci, slot_id, ep_index, 0,
3439 			start_cycle, start_trb);
3440 	return 0;
3441 }
3442 
3443 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3444 		struct urb *urb, int i)
3445 {
3446 	int num_trbs = 0;
3447 	u64 addr, td_len;
3448 
3449 	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3450 	td_len = urb->iso_frame_desc[i].length;
3451 
3452 	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3453 			TRB_MAX_BUFF_SIZE);
3454 	if (num_trbs == 0)
3455 		num_trbs++;
3456 
3457 	return num_trbs;
3458 }
3459 
3460 /*
3461  * The transfer burst count field of the isochronous TRB defines the number of
3462  * bursts that are required to move all packets in this TD.  Only SuperSpeed
3463  * devices can burst up to bMaxBurst number of packets per service interval.
3464  * This field is zero based, meaning a value of zero in the field means one
3465  * burst.  Basically, for everything but SuperSpeed devices, this field will be
3466  * zero.  Only xHCI 1.0 host controllers support this field.
3467  */
3468 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3469 		struct usb_device *udev,
3470 		struct urb *urb, unsigned int total_packet_count)
3471 {
3472 	unsigned int max_burst;
3473 
3474 	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3475 		return 0;
3476 
3477 	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3478 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3479 }
3480 
3481 /*
3482  * Returns the number of packets in the last "burst" of packets.  This field is
3483  * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3484  * the last burst packet count is equal to the total number of packets in the
3485  * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3486  * must contain (bMaxBurst + 1) number of packets, but the last burst can
3487  * contain 1 to (bMaxBurst + 1) packets.
3488  */
3489 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3490 		struct usb_device *udev,
3491 		struct urb *urb, unsigned int total_packet_count)
3492 {
3493 	unsigned int max_burst;
3494 	unsigned int residue;
3495 
3496 	if (xhci->hci_version < 0x100)
3497 		return 0;
3498 
3499 	switch (udev->speed) {
3500 	case USB_SPEED_SUPER:
3501 		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3502 		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3503 		residue = total_packet_count % (max_burst + 1);
3504 		/* If residue is zero, the last burst contains (max_burst + 1)
3505 		 * number of packets, but the TLBPC field is zero-based.
3506 		 */
3507 		if (residue == 0)
3508 			return max_burst;
3509 		return residue - 1;
3510 	default:
3511 		if (total_packet_count == 0)
3512 			return 0;
3513 		return total_packet_count - 1;
3514 	}
3515 }
3516 
3517 /* This is for isoc transfer */
3518 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3519 		struct urb *urb, int slot_id, unsigned int ep_index)
3520 {
3521 	struct xhci_ring *ep_ring;
3522 	struct urb_priv *urb_priv;
3523 	struct xhci_td *td;
3524 	int num_tds, trbs_per_td;
3525 	struct xhci_generic_trb *start_trb;
3526 	bool first_trb;
3527 	int start_cycle;
3528 	u32 field, length_field;
3529 	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3530 	u64 start_addr, addr;
3531 	int i, j;
3532 	bool more_trbs_coming;
3533 
3534 	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3535 
3536 	num_tds = urb->number_of_packets;
3537 	if (num_tds < 1) {
3538 		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3539 		return -EINVAL;
3540 	}
3541 
3542 	start_addr = (u64) urb->transfer_dma;
3543 	start_trb = &ep_ring->enqueue->generic;
3544 	start_cycle = ep_ring->cycle_state;
3545 
3546 	urb_priv = urb->hcpriv;
3547 	/* Queue the first TRB, even if it's zero-length */
3548 	for (i = 0; i < num_tds; i++) {
3549 		unsigned int total_packet_count;
3550 		unsigned int burst_count;
3551 		unsigned int residue;
3552 
3553 		first_trb = true;
3554 		running_total = 0;
3555 		addr = start_addr + urb->iso_frame_desc[i].offset;
3556 		td_len = urb->iso_frame_desc[i].length;
3557 		td_remain_len = td_len;
3558 		total_packet_count = DIV_ROUND_UP(td_len,
3559 				GET_MAX_PACKET(
3560 					usb_endpoint_maxp(&urb->ep->desc)));
3561 		/* A zero-length transfer still involves at least one packet. */
3562 		if (total_packet_count == 0)
3563 			total_packet_count++;
3564 		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3565 				total_packet_count);
3566 		residue = xhci_get_last_burst_packet_count(xhci,
3567 				urb->dev, urb, total_packet_count);
3568 
3569 		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3570 
3571 		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3572 				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3573 		if (ret < 0) {
3574 			if (i == 0)
3575 				return ret;
3576 			goto cleanup;
3577 		}
3578 
3579 		td = urb_priv->td[i];
3580 		for (j = 0; j < trbs_per_td; j++) {
3581 			u32 remainder = 0;
3582 			field = 0;
3583 
3584 			if (first_trb) {
3585 				field = TRB_TBC(burst_count) |
3586 					TRB_TLBPC(residue);
3587 				/* Queue the isoc TRB */
3588 				field |= TRB_TYPE(TRB_ISOC);
3589 				/* Assume URB_ISO_ASAP is set */
3590 				field |= TRB_SIA;
3591 				if (i == 0) {
3592 					if (start_cycle == 0)
3593 						field |= 0x1;
3594 				} else
3595 					field |= ep_ring->cycle_state;
3596 				first_trb = false;
3597 			} else {
3598 				/* Queue other normal TRBs */
3599 				field |= TRB_TYPE(TRB_NORMAL);
3600 				field |= ep_ring->cycle_state;
3601 			}
3602 
3603 			/* Only set interrupt on short packet for IN EPs */
3604 			if (usb_urb_dir_in(urb))
3605 				field |= TRB_ISP;
3606 
3607 			/* Chain all the TRBs together; clear the chain bit in
3608 			 * the last TRB to indicate it's the last TRB in the
3609 			 * chain.
3610 			 */
3611 			if (j < trbs_per_td - 1) {
3612 				field |= TRB_CHAIN;
3613 				more_trbs_coming = true;
3614 			} else {
3615 				td->last_trb = ep_ring->enqueue;
3616 				field |= TRB_IOC;
3617 				if (xhci->hci_version == 0x100 &&
3618 						!(xhci->quirks &
3619 							XHCI_AVOID_BEI)) {
3620 					/* Set BEI bit except for the last td */
3621 					if (i < num_tds - 1)
3622 						field |= TRB_BEI;
3623 				}
3624 				more_trbs_coming = false;
3625 			}
3626 
3627 			/* Calculate TRB length */
3628 			trb_buff_len = TRB_MAX_BUFF_SIZE -
3629 				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3630 			if (trb_buff_len > td_remain_len)
3631 				trb_buff_len = td_remain_len;
3632 
3633 			/* Set the TRB length, TD size, & interrupter fields. */
3634 			if (xhci->hci_version < 0x100) {
3635 				remainder = xhci_td_remainder(
3636 						td_len - running_total);
3637 			} else {
3638 				remainder = xhci_v1_0_td_remainder(
3639 						running_total, trb_buff_len,
3640 						total_packet_count, urb,
3641 						(trbs_per_td - j - 1));
3642 			}
3643 			length_field = TRB_LEN(trb_buff_len) |
3644 				remainder |
3645 				TRB_INTR_TARGET(0);
3646 
3647 			queue_trb(xhci, ep_ring, more_trbs_coming,
3648 				lower_32_bits(addr),
3649 				upper_32_bits(addr),
3650 				length_field,
3651 				field);
3652 			running_total += trb_buff_len;
3653 
3654 			addr += trb_buff_len;
3655 			td_remain_len -= trb_buff_len;
3656 		}
3657 
3658 		/* Check TD length */
3659 		if (running_total != td_len) {
3660 			xhci_err(xhci, "ISOC TD length unmatch\n");
3661 			ret = -EINVAL;
3662 			goto cleanup;
3663 		}
3664 	}
3665 
3666 	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3667 		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3668 			usb_amd_quirk_pll_disable();
3669 	}
3670 	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3671 
3672 	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3673 			start_cycle, start_trb);
3674 	return 0;
3675 cleanup:
3676 	/* Clean up a partially enqueued isoc transfer. */
3677 
3678 	for (i--; i >= 0; i--)
3679 		list_del_init(&urb_priv->td[i]->td_list);
3680 
3681 	/* Use the first TD as a temporary variable to turn the TDs we've queued
3682 	 * into No-ops with a software-owned cycle bit. That way the hardware
3683 	 * won't accidentally start executing bogus TDs when we partially
3684 	 * overwrite them.  td->first_trb and td->start_seg are already set.
3685 	 */
3686 	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3687 	/* Every TRB except the first & last will have its cycle bit flipped. */
3688 	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3689 
3690 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3691 	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3692 	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3693 	ep_ring->cycle_state = start_cycle;
3694 	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3695 	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3696 	return ret;
3697 }
3698 
3699 /*
3700  * Check transfer ring to guarantee there is enough room for the urb.
3701  * Update ISO URB start_frame and interval.
3702  * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3703  * update the urb->start_frame by now.
3704  * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3705  */
3706 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3707 		struct urb *urb, int slot_id, unsigned int ep_index)
3708 {
3709 	struct xhci_virt_device *xdev;
3710 	struct xhci_ring *ep_ring;
3711 	struct xhci_ep_ctx *ep_ctx;
3712 	int start_frame;
3713 	int xhci_interval;
3714 	int ep_interval;
3715 	int num_tds, num_trbs, i;
3716 	int ret;
3717 
3718 	xdev = xhci->devs[slot_id];
3719 	ep_ring = xdev->eps[ep_index].ring;
3720 	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3721 
3722 	num_trbs = 0;
3723 	num_tds = urb->number_of_packets;
3724 	for (i = 0; i < num_tds; i++)
3725 		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3726 
3727 	/* Check the ring to guarantee there is enough room for the whole urb.
3728 	 * Do not insert any td of the urb to the ring if the check failed.
3729 	 */
3730 	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3731 			   num_trbs, mem_flags);
3732 	if (ret)
3733 		return ret;
3734 
3735 	start_frame = readl(&xhci->run_regs->microframe_index);
3736 	start_frame &= 0x3fff;
3737 
3738 	urb->start_frame = start_frame;
3739 	if (urb->dev->speed == USB_SPEED_LOW ||
3740 			urb->dev->speed == USB_SPEED_FULL)
3741 		urb->start_frame >>= 3;
3742 
3743 	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3744 	ep_interval = urb->interval;
3745 	/* Convert to microframes */
3746 	if (urb->dev->speed == USB_SPEED_LOW ||
3747 			urb->dev->speed == USB_SPEED_FULL)
3748 		ep_interval *= 8;
3749 	/* FIXME change this to a warning and a suggestion to use the new API
3750 	 * to set the polling interval (once the API is added).
3751 	 */
3752 	if (xhci_interval != ep_interval) {
3753 		dev_dbg_ratelimited(&urb->dev->dev,
3754 				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3755 				ep_interval, ep_interval == 1 ? "" : "s",
3756 				xhci_interval, xhci_interval == 1 ? "" : "s");
3757 		urb->interval = xhci_interval;
3758 		/* Convert back to frames for LS/FS devices */
3759 		if (urb->dev->speed == USB_SPEED_LOW ||
3760 				urb->dev->speed == USB_SPEED_FULL)
3761 			urb->interval /= 8;
3762 	}
3763 	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3764 
3765 	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3766 }
3767 
3768 /****		Command Ring Operations		****/
3769 
3770 /* Generic function for queueing a command TRB on the command ring.
3771  * Check to make sure there's room on the command ring for one command TRB.
3772  * Also check that there's room reserved for commands that must not fail.
3773  * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3774  * then only check for the number of reserved spots.
3775  * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3776  * because the command event handler may want to resubmit a failed command.
3777  */
3778 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3779 			 u32 field1, u32 field2,
3780 			 u32 field3, u32 field4, bool command_must_succeed)
3781 {
3782 	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3783 	int ret;
3784 
3785 	if (xhci->xhc_state) {
3786 		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3787 		return -ESHUTDOWN;
3788 	}
3789 
3790 	if (!command_must_succeed)
3791 		reserved_trbs++;
3792 
3793 	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3794 			reserved_trbs, GFP_ATOMIC);
3795 	if (ret < 0) {
3796 		xhci_err(xhci, "ERR: No room for command on command ring\n");
3797 		if (command_must_succeed)
3798 			xhci_err(xhci, "ERR: Reserved TRB counting for "
3799 					"unfailable commands failed.\n");
3800 		return ret;
3801 	}
3802 
3803 	cmd->command_trb = xhci->cmd_ring->enqueue;
3804 	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3805 
3806 	/* if there are no other commands queued we start the timeout timer */
3807 	if (xhci->cmd_list.next == &cmd->cmd_list &&
3808 	    !timer_pending(&xhci->cmd_timer)) {
3809 		xhci->current_cmd = cmd;
3810 		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
3811 	}
3812 
3813 	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3814 			field4 | xhci->cmd_ring->cycle_state);
3815 	return 0;
3816 }
3817 
3818 /* Queue a slot enable or disable request on the command ring */
3819 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3820 		u32 trb_type, u32 slot_id)
3821 {
3822 	return queue_command(xhci, cmd, 0, 0, 0,
3823 			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3824 }
3825 
3826 /* Queue an address device command TRB */
3827 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3828 		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3829 {
3830 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3831 			upper_32_bits(in_ctx_ptr), 0,
3832 			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3833 			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3834 }
3835 
3836 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3837 		u32 field1, u32 field2, u32 field3, u32 field4)
3838 {
3839 	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3840 }
3841 
3842 /* Queue a reset device command TRB */
3843 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3844 		u32 slot_id)
3845 {
3846 	return queue_command(xhci, cmd, 0, 0, 0,
3847 			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3848 			false);
3849 }
3850 
3851 /* Queue a configure endpoint command TRB */
3852 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3853 		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3854 		u32 slot_id, bool command_must_succeed)
3855 {
3856 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3857 			upper_32_bits(in_ctx_ptr), 0,
3858 			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3859 			command_must_succeed);
3860 }
3861 
3862 /* Queue an evaluate context command TRB */
3863 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3864 		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3865 {
3866 	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3867 			upper_32_bits(in_ctx_ptr), 0,
3868 			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3869 			command_must_succeed);
3870 }
3871 
3872 /*
3873  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3874  * activity on an endpoint that is about to be suspended.
3875  */
3876 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3877 			     int slot_id, unsigned int ep_index, int suspend)
3878 {
3879 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3880 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3881 	u32 type = TRB_TYPE(TRB_STOP_RING);
3882 	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3883 
3884 	return queue_command(xhci, cmd, 0, 0, 0,
3885 			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3886 }
3887 
3888 /* Set Transfer Ring Dequeue Pointer command */
3889 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3890 		unsigned int slot_id, unsigned int ep_index,
3891 		unsigned int stream_id,
3892 		struct xhci_dequeue_state *deq_state)
3893 {
3894 	dma_addr_t addr;
3895 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3896 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3897 	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3898 	u32 trb_sct = 0;
3899 	u32 type = TRB_TYPE(TRB_SET_DEQ);
3900 	struct xhci_virt_ep *ep;
3901 	struct xhci_command *cmd;
3902 	int ret;
3903 
3904 	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3905 		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3906 		deq_state->new_deq_seg,
3907 		(unsigned long long)deq_state->new_deq_seg->dma,
3908 		deq_state->new_deq_ptr,
3909 		(unsigned long long)xhci_trb_virt_to_dma(
3910 			deq_state->new_deq_seg, deq_state->new_deq_ptr),
3911 		deq_state->new_cycle_state);
3912 
3913 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3914 				    deq_state->new_deq_ptr);
3915 	if (addr == 0) {
3916 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3917 		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3918 			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
3919 		return;
3920 	}
3921 	ep = &xhci->devs[slot_id]->eps[ep_index];
3922 	if ((ep->ep_state & SET_DEQ_PENDING)) {
3923 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3924 		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3925 		return;
3926 	}
3927 
3928 	/* This function gets called from contexts where it cannot sleep */
3929 	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
3930 	if (!cmd) {
3931 		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
3932 		return;
3933 	}
3934 
3935 	ep->queued_deq_seg = deq_state->new_deq_seg;
3936 	ep->queued_deq_ptr = deq_state->new_deq_ptr;
3937 	if (stream_id)
3938 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3939 	ret = queue_command(xhci, cmd,
3940 		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3941 		upper_32_bits(addr), trb_stream_id,
3942 		trb_slot_id | trb_ep_index | type, false);
3943 	if (ret < 0) {
3944 		xhci_free_command(xhci, cmd);
3945 		return;
3946 	}
3947 
3948 	/* Stop the TD queueing code from ringing the doorbell until
3949 	 * this command completes.  The HC won't set the dequeue pointer
3950 	 * if the ring is running, and ringing the doorbell starts the
3951 	 * ring running.
3952 	 */
3953 	ep->ep_state |= SET_DEQ_PENDING;
3954 }
3955 
3956 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
3957 			int slot_id, unsigned int ep_index)
3958 {
3959 	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3960 	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3961 	u32 type = TRB_TYPE(TRB_RESET_EP);
3962 
3963 	return queue_command(xhci, cmd, 0, 0, 0,
3964 			trb_slot_id | trb_ep_index | type, false);
3965 }
3966