1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: 5 * Zhigang.Wei <zhigang.wei@mediatek.com> 6 * Chunfeng.Yun <chunfeng.yun@mediatek.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 13 #include "xhci.h" 14 #include "xhci-mtk.h" 15 16 #define SSP_BW_BOUNDARY 130000 17 #define SS_BW_BOUNDARY 51000 18 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ 19 #define HS_BW_BOUNDARY 6144 20 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ 21 #define FS_PAYLOAD_MAX 188 22 /* 23 * max number of microframes for split transfer, 24 * for fs isoc in : 1 ss + 1 idle + 7 cs 25 */ 26 #define TT_MICROFRAMES_MAX 9 27 28 /* mtk scheduler bitmasks */ 29 #define EP_BPKTS(p) ((p) & 0x7f) 30 #define EP_BCSCOUNT(p) (((p) & 0x7) << 8) 31 #define EP_BBM(p) ((p) << 11) 32 #define EP_BOFFSET(p) ((p) & 0x3fff) 33 #define EP_BREPEAT(p) (((p) & 0x7fff) << 16) 34 35 static int is_fs_or_ls(enum usb_device_speed speed) 36 { 37 return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; 38 } 39 40 /* 41 * get the index of bandwidth domains array which @ep belongs to. 42 * 43 * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, 44 * each HS root port is treated as a single bandwidth domain, 45 * but each SS root port is treated as two bandwidth domains, one for IN eps, 46 * one for OUT eps. 47 * @real_port value is defined as follow according to xHCI spec: 48 * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc 49 * so the bandwidth domain array is organized as follow for simplification: 50 * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY 51 */ 52 static int get_bw_index(struct xhci_hcd *xhci, struct usb_device *udev, 53 struct usb_host_endpoint *ep) 54 { 55 struct xhci_virt_device *virt_dev; 56 int bw_index; 57 58 virt_dev = xhci->devs[udev->slot_id]; 59 60 if (udev->speed >= USB_SPEED_SUPER) { 61 if (usb_endpoint_dir_out(&ep->desc)) 62 bw_index = (virt_dev->real_port - 1) * 2; 63 else 64 bw_index = (virt_dev->real_port - 1) * 2 + 1; 65 } else { 66 /* add one more for each SS port */ 67 bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1; 68 } 69 70 return bw_index; 71 } 72 73 static u32 get_esit(struct xhci_ep_ctx *ep_ctx) 74 { 75 u32 esit; 76 77 esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); 78 if (esit > XHCI_MTK_MAX_ESIT) 79 esit = XHCI_MTK_MAX_ESIT; 80 81 return esit; 82 } 83 84 static struct mu3h_sch_tt *find_tt(struct usb_device *udev) 85 { 86 struct usb_tt *utt = udev->tt; 87 struct mu3h_sch_tt *tt, **tt_index, **ptt; 88 unsigned int port; 89 bool allocated_index = false; 90 91 if (!utt) 92 return NULL; /* Not below a TT */ 93 94 /* 95 * Find/create our data structure. 96 * For hubs with a single TT, we get it directly. 97 * For hubs with multiple TTs, there's an extra level of pointers. 98 */ 99 tt_index = NULL; 100 if (utt->multi) { 101 tt_index = utt->hcpriv; 102 if (!tt_index) { /* Create the index array */ 103 tt_index = kcalloc(utt->hub->maxchild, 104 sizeof(*tt_index), GFP_KERNEL); 105 if (!tt_index) 106 return ERR_PTR(-ENOMEM); 107 utt->hcpriv = tt_index; 108 allocated_index = true; 109 } 110 port = udev->ttport - 1; 111 ptt = &tt_index[port]; 112 } else { 113 port = 0; 114 ptt = (struct mu3h_sch_tt **) &utt->hcpriv; 115 } 116 117 tt = *ptt; 118 if (!tt) { /* Create the mu3h_sch_tt */ 119 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 120 if (!tt) { 121 if (allocated_index) { 122 utt->hcpriv = NULL; 123 kfree(tt_index); 124 } 125 return ERR_PTR(-ENOMEM); 126 } 127 INIT_LIST_HEAD(&tt->ep_list); 128 tt->usb_tt = utt; 129 tt->tt_port = port; 130 *ptt = tt; 131 } 132 133 return tt; 134 } 135 136 /* Release the TT above udev, if it's not in use */ 137 static void drop_tt(struct usb_device *udev) 138 { 139 struct usb_tt *utt = udev->tt; 140 struct mu3h_sch_tt *tt, **tt_index, **ptt; 141 int i, cnt; 142 143 if (!utt || !utt->hcpriv) 144 return; /* Not below a TT, or never allocated */ 145 146 cnt = 0; 147 if (utt->multi) { 148 tt_index = utt->hcpriv; 149 ptt = &tt_index[udev->ttport - 1]; 150 /* How many entries are left in tt_index? */ 151 for (i = 0; i < utt->hub->maxchild; ++i) 152 cnt += !!tt_index[i]; 153 } else { 154 tt_index = NULL; 155 ptt = (struct mu3h_sch_tt **)&utt->hcpriv; 156 } 157 158 tt = *ptt; 159 if (!tt || !list_empty(&tt->ep_list)) 160 return; /* never allocated , or still in use*/ 161 162 *ptt = NULL; 163 kfree(tt); 164 165 if (cnt == 1) { 166 utt->hcpriv = NULL; 167 kfree(tt_index); 168 } 169 } 170 171 static struct mu3h_sch_ep_info *create_sch_ep(struct usb_device *udev, 172 struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx) 173 { 174 struct mu3h_sch_ep_info *sch_ep; 175 struct mu3h_sch_tt *tt = NULL; 176 u32 len_bw_budget_table; 177 size_t mem_size; 178 179 if (is_fs_or_ls(udev->speed)) 180 len_bw_budget_table = TT_MICROFRAMES_MAX; 181 else if ((udev->speed >= USB_SPEED_SUPER) 182 && usb_endpoint_xfer_isoc(&ep->desc)) 183 len_bw_budget_table = get_esit(ep_ctx); 184 else 185 len_bw_budget_table = 1; 186 187 mem_size = sizeof(struct mu3h_sch_ep_info) + 188 len_bw_budget_table * sizeof(u32); 189 sch_ep = kzalloc(mem_size, GFP_KERNEL); 190 if (!sch_ep) 191 return ERR_PTR(-ENOMEM); 192 193 if (is_fs_or_ls(udev->speed)) { 194 tt = find_tt(udev); 195 if (IS_ERR(tt)) { 196 kfree(sch_ep); 197 return ERR_PTR(-ENOMEM); 198 } 199 } 200 201 sch_ep->sch_tt = tt; 202 sch_ep->ep = ep; 203 204 return sch_ep; 205 } 206 207 static void setup_sch_info(struct usb_device *udev, 208 struct xhci_ep_ctx *ep_ctx, struct mu3h_sch_ep_info *sch_ep) 209 { 210 u32 ep_type; 211 u32 maxpkt; 212 u32 max_burst; 213 u32 mult; 214 u32 esit_pkts; 215 u32 max_esit_payload; 216 u32 *bwb_table = sch_ep->bw_budget_table; 217 int i; 218 219 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 220 maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 221 max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); 222 mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); 223 max_esit_payload = 224 (CTX_TO_MAX_ESIT_PAYLOAD_HI( 225 le32_to_cpu(ep_ctx->ep_info)) << 16) | 226 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info)); 227 228 sch_ep->esit = get_esit(ep_ctx); 229 sch_ep->ep_type = ep_type; 230 sch_ep->maxpkt = maxpkt; 231 sch_ep->offset = 0; 232 sch_ep->burst_mode = 0; 233 sch_ep->repeat = 0; 234 235 if (udev->speed == USB_SPEED_HIGH) { 236 sch_ep->cs_count = 0; 237 238 /* 239 * usb_20 spec section5.9 240 * a single microframe is enough for HS synchromous endpoints 241 * in a interval 242 */ 243 sch_ep->num_budget_microframes = 1; 244 245 /* 246 * xHCI spec section6.2.3.4 247 * @max_burst is the number of additional transactions 248 * opportunities per microframe 249 */ 250 sch_ep->pkts = max_burst + 1; 251 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 252 bwb_table[0] = sch_ep->bw_cost_per_microframe; 253 } else if (udev->speed >= USB_SPEED_SUPER) { 254 /* usb3_r1 spec section4.4.7 & 4.4.8 */ 255 sch_ep->cs_count = 0; 256 sch_ep->burst_mode = 1; 257 /* 258 * some device's (d)wBytesPerInterval is set as 0, 259 * then max_esit_payload is 0, so evaluate esit_pkts from 260 * mult and burst 261 */ 262 esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt); 263 if (esit_pkts == 0) 264 esit_pkts = (mult + 1) * (max_burst + 1); 265 266 if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { 267 sch_ep->pkts = esit_pkts; 268 sch_ep->num_budget_microframes = 1; 269 bwb_table[0] = maxpkt * sch_ep->pkts; 270 } 271 272 if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { 273 u32 remainder; 274 275 if (sch_ep->esit == 1) 276 sch_ep->pkts = esit_pkts; 277 else if (esit_pkts <= sch_ep->esit) 278 sch_ep->pkts = 1; 279 else 280 sch_ep->pkts = roundup_pow_of_two(esit_pkts) 281 / sch_ep->esit; 282 283 sch_ep->num_budget_microframes = 284 DIV_ROUND_UP(esit_pkts, sch_ep->pkts); 285 286 sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1); 287 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 288 289 remainder = sch_ep->bw_cost_per_microframe; 290 remainder *= sch_ep->num_budget_microframes; 291 remainder -= (maxpkt * esit_pkts); 292 for (i = 0; i < sch_ep->num_budget_microframes - 1; i++) 293 bwb_table[i] = sch_ep->bw_cost_per_microframe; 294 295 /* last one <= bw_cost_per_microframe */ 296 bwb_table[i] = remainder; 297 } 298 } else if (is_fs_or_ls(udev->speed)) { 299 sch_ep->pkts = 1; /* at most one packet for each microframe */ 300 301 /* 302 * num_budget_microframes and cs_count will be updated when 303 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type 304 */ 305 sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX); 306 sch_ep->num_budget_microframes = sch_ep->cs_count; 307 sch_ep->bw_cost_per_microframe = 308 (maxpkt < FS_PAYLOAD_MAX) ? maxpkt : FS_PAYLOAD_MAX; 309 310 /* init budget table */ 311 if (ep_type == ISOC_OUT_EP) { 312 for (i = 0; i < sch_ep->num_budget_microframes; i++) 313 bwb_table[i] = sch_ep->bw_cost_per_microframe; 314 } else if (ep_type == INT_OUT_EP) { 315 /* only first one consumes bandwidth, others as zero */ 316 bwb_table[0] = sch_ep->bw_cost_per_microframe; 317 } else { /* INT_IN_EP or ISOC_IN_EP */ 318 bwb_table[0] = 0; /* start split */ 319 bwb_table[1] = 0; /* idle */ 320 /* 321 * due to cs_count will be updated according to cs 322 * position, assign all remainder budget array 323 * elements as @bw_cost_per_microframe, but only first 324 * @num_budget_microframes elements will be used later 325 */ 326 for (i = 2; i < TT_MICROFRAMES_MAX; i++) 327 bwb_table[i] = sch_ep->bw_cost_per_microframe; 328 } 329 } 330 } 331 332 /* Get maximum bandwidth when we schedule at offset slot. */ 333 static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, 334 struct mu3h_sch_ep_info *sch_ep, u32 offset) 335 { 336 u32 num_esit; 337 u32 max_bw = 0; 338 u32 bw; 339 int i; 340 int j; 341 342 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 343 for (i = 0; i < num_esit; i++) { 344 u32 base = offset + i * sch_ep->esit; 345 346 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 347 bw = sch_bw->bus_bw[base + j] + 348 sch_ep->bw_budget_table[j]; 349 if (bw > max_bw) 350 max_bw = bw; 351 } 352 } 353 return max_bw; 354 } 355 356 static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, 357 struct mu3h_sch_ep_info *sch_ep, bool used) 358 { 359 u32 num_esit; 360 u32 base; 361 int i; 362 int j; 363 364 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 365 for (i = 0; i < num_esit; i++) { 366 base = sch_ep->offset + i * sch_ep->esit; 367 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 368 if (used) 369 sch_bw->bus_bw[base + j] += 370 sch_ep->bw_budget_table[j]; 371 else 372 sch_bw->bus_bw[base + j] -= 373 sch_ep->bw_budget_table[j]; 374 } 375 } 376 } 377 378 static int check_sch_tt(struct usb_device *udev, 379 struct mu3h_sch_ep_info *sch_ep, u32 offset) 380 { 381 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 382 u32 extra_cs_count; 383 u32 fs_budget_start; 384 u32 start_ss, last_ss; 385 u32 start_cs, last_cs; 386 int i; 387 388 start_ss = offset % 8; 389 fs_budget_start = (start_ss + 1) % 8; 390 391 if (sch_ep->ep_type == ISOC_OUT_EP) { 392 last_ss = start_ss + sch_ep->cs_count - 1; 393 394 /* 395 * usb_20 spec section11.18: 396 * must never schedule Start-Split in Y6 397 */ 398 if (!(start_ss == 7 || last_ss < 6)) 399 return -ERANGE; 400 401 for (i = 0; i < sch_ep->cs_count; i++) 402 if (test_bit(offset + i, tt->split_bit_map)) 403 return -ERANGE; 404 405 } else { 406 u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX); 407 408 /* 409 * usb_20 spec section11.18: 410 * must never schedule Start-Split in Y6 411 */ 412 if (start_ss == 6) 413 return -ERANGE; 414 415 /* one uframe for ss + one uframe for idle */ 416 start_cs = (start_ss + 2) % 8; 417 last_cs = start_cs + cs_count - 1; 418 419 if (last_cs > 7) 420 return -ERANGE; 421 422 if (sch_ep->ep_type == ISOC_IN_EP) 423 extra_cs_count = (last_cs == 7) ? 1 : 2; 424 else /* ep_type : INTR IN / INTR OUT */ 425 extra_cs_count = (fs_budget_start == 6) ? 1 : 2; 426 427 cs_count += extra_cs_count; 428 if (cs_count > 7) 429 cs_count = 7; /* HW limit */ 430 431 for (i = 0; i < cs_count + 2; i++) { 432 if (test_bit(offset + i, tt->split_bit_map)) 433 return -ERANGE; 434 } 435 436 sch_ep->cs_count = cs_count; 437 /* one for ss, the other for idle */ 438 sch_ep->num_budget_microframes = cs_count + 2; 439 440 /* 441 * if interval=1, maxp >752, num_budge_micoframe is larger 442 * than sch_ep->esit, will overstep boundary 443 */ 444 if (sch_ep->num_budget_microframes > sch_ep->esit) 445 sch_ep->num_budget_microframes = sch_ep->esit; 446 } 447 448 return 0; 449 } 450 451 static void update_sch_tt(struct usb_device *udev, 452 struct mu3h_sch_ep_info *sch_ep) 453 { 454 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 455 u32 base, num_esit; 456 int i, j; 457 458 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 459 for (i = 0; i < num_esit; i++) { 460 base = sch_ep->offset + i * sch_ep->esit; 461 for (j = 0; j < sch_ep->num_budget_microframes; j++) 462 set_bit(base + j, tt->split_bit_map); 463 } 464 465 list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list); 466 } 467 468 static int check_sch_bw(struct usb_device *udev, 469 struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep) 470 { 471 u32 offset; 472 u32 esit; 473 u32 min_bw; 474 u32 min_index; 475 u32 worst_bw; 476 u32 bw_boundary; 477 u32 min_num_budget; 478 u32 min_cs_count; 479 bool tt_offset_ok = false; 480 int ret; 481 482 esit = sch_ep->esit; 483 484 /* 485 * Search through all possible schedule microframes. 486 * and find a microframe where its worst bandwidth is minimum. 487 */ 488 min_bw = ~0; 489 min_index = 0; 490 min_cs_count = sch_ep->cs_count; 491 min_num_budget = sch_ep->num_budget_microframes; 492 for (offset = 0; offset < esit; offset++) { 493 if (is_fs_or_ls(udev->speed)) { 494 ret = check_sch_tt(udev, sch_ep, offset); 495 if (ret) 496 continue; 497 else 498 tt_offset_ok = true; 499 } 500 501 if ((offset + sch_ep->num_budget_microframes) > sch_ep->esit) 502 break; 503 504 worst_bw = get_max_bw(sch_bw, sch_ep, offset); 505 if (min_bw > worst_bw) { 506 min_bw = worst_bw; 507 min_index = offset; 508 min_cs_count = sch_ep->cs_count; 509 min_num_budget = sch_ep->num_budget_microframes; 510 } 511 if (min_bw == 0) 512 break; 513 } 514 515 if (udev->speed == USB_SPEED_SUPER_PLUS) 516 bw_boundary = SSP_BW_BOUNDARY; 517 else if (udev->speed == USB_SPEED_SUPER) 518 bw_boundary = SS_BW_BOUNDARY; 519 else 520 bw_boundary = HS_BW_BOUNDARY; 521 522 /* check bandwidth */ 523 if (min_bw > bw_boundary) 524 return -ERANGE; 525 526 sch_ep->offset = min_index; 527 sch_ep->cs_count = min_cs_count; 528 sch_ep->num_budget_microframes = min_num_budget; 529 530 if (is_fs_or_ls(udev->speed)) { 531 /* all offset for tt is not ok*/ 532 if (!tt_offset_ok) 533 return -ERANGE; 534 535 update_sch_tt(udev, sch_ep); 536 } 537 538 /* update bus bandwidth info */ 539 update_bus_bw(sch_bw, sch_ep, 1); 540 541 return 0; 542 } 543 544 static bool need_bw_sch(struct usb_host_endpoint *ep, 545 enum usb_device_speed speed, int has_tt) 546 { 547 /* only for periodic endpoints */ 548 if (usb_endpoint_xfer_control(&ep->desc) 549 || usb_endpoint_xfer_bulk(&ep->desc)) 550 return false; 551 552 /* 553 * for LS & FS periodic endpoints which its device is not behind 554 * a TT are also ignored, root-hub will schedule them directly, 555 * but need set @bpkts field of endpoint context to 1. 556 */ 557 if (is_fs_or_ls(speed) && !has_tt) 558 return false; 559 560 /* skip endpoint with zero maxpkt */ 561 if (usb_endpoint_maxp(&ep->desc) == 0) 562 return false; 563 564 return true; 565 } 566 567 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) 568 { 569 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); 570 struct mu3h_sch_bw_info *sch_array; 571 int num_usb_bus; 572 int i; 573 574 /* ss IN and OUT are separated */ 575 num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; 576 577 sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); 578 if (sch_array == NULL) 579 return -ENOMEM; 580 581 for (i = 0; i < num_usb_bus; i++) 582 INIT_LIST_HEAD(&sch_array[i].bw_ep_list); 583 584 mtk->sch_array = sch_array; 585 586 return 0; 587 } 588 EXPORT_SYMBOL_GPL(xhci_mtk_sch_init); 589 590 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) 591 { 592 kfree(mtk->sch_array); 593 } 594 EXPORT_SYMBOL_GPL(xhci_mtk_sch_exit); 595 596 int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 597 struct usb_host_endpoint *ep) 598 { 599 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 600 struct xhci_hcd *xhci; 601 struct xhci_ep_ctx *ep_ctx; 602 struct xhci_slot_ctx *slot_ctx; 603 struct xhci_virt_device *virt_dev; 604 struct mu3h_sch_bw_info *sch_bw; 605 struct mu3h_sch_ep_info *sch_ep; 606 struct mu3h_sch_bw_info *sch_array; 607 unsigned int ep_index; 608 int bw_index; 609 int ret = 0; 610 611 xhci = hcd_to_xhci(hcd); 612 virt_dev = xhci->devs[udev->slot_id]; 613 ep_index = xhci_get_endpoint_index(&ep->desc); 614 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 615 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 616 sch_array = mtk->sch_array; 617 618 xhci_dbg(xhci, "%s() type:%d, speed:%d, mpkt:%d, dir:%d, ep:%p\n", 619 __func__, usb_endpoint_type(&ep->desc), udev->speed, 620 usb_endpoint_maxp(&ep->desc), 621 usb_endpoint_dir_in(&ep->desc), ep); 622 623 if (!need_bw_sch(ep, udev->speed, slot_ctx->tt_info & TT_SLOT)) { 624 /* 625 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its 626 * device does not connected through an external HS hub 627 */ 628 if (usb_endpoint_xfer_int(&ep->desc) 629 || usb_endpoint_xfer_isoc(&ep->desc)) 630 ep_ctx->reserved[0] |= cpu_to_le32(EP_BPKTS(1)); 631 632 return 0; 633 } 634 635 bw_index = get_bw_index(xhci, udev, ep); 636 sch_bw = &sch_array[bw_index]; 637 638 sch_ep = create_sch_ep(udev, ep, ep_ctx); 639 if (IS_ERR_OR_NULL(sch_ep)) 640 return -ENOMEM; 641 642 setup_sch_info(udev, ep_ctx, sch_ep); 643 644 ret = check_sch_bw(udev, sch_bw, sch_ep); 645 if (ret) { 646 xhci_err(xhci, "Not enough bandwidth!\n"); 647 if (is_fs_or_ls(udev->speed)) 648 drop_tt(udev); 649 650 kfree(sch_ep); 651 return -ENOSPC; 652 } 653 654 list_add_tail(&sch_ep->endpoint, &sch_bw->bw_ep_list); 655 656 ep_ctx->reserved[0] |= cpu_to_le32(EP_BPKTS(sch_ep->pkts) 657 | EP_BCSCOUNT(sch_ep->cs_count) | EP_BBM(sch_ep->burst_mode)); 658 ep_ctx->reserved[1] |= cpu_to_le32(EP_BOFFSET(sch_ep->offset) 659 | EP_BREPEAT(sch_ep->repeat)); 660 661 xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", 662 sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, 663 sch_ep->offset, sch_ep->repeat); 664 665 return 0; 666 } 667 EXPORT_SYMBOL_GPL(xhci_mtk_add_ep_quirk); 668 669 void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 670 struct usb_host_endpoint *ep) 671 { 672 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 673 struct xhci_hcd *xhci; 674 struct xhci_slot_ctx *slot_ctx; 675 struct xhci_virt_device *virt_dev; 676 struct mu3h_sch_bw_info *sch_array; 677 struct mu3h_sch_bw_info *sch_bw; 678 struct mu3h_sch_ep_info *sch_ep; 679 int bw_index; 680 681 xhci = hcd_to_xhci(hcd); 682 virt_dev = xhci->devs[udev->slot_id]; 683 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 684 sch_array = mtk->sch_array; 685 686 xhci_dbg(xhci, "%s() type:%d, speed:%d, mpks:%d, dir:%d, ep:%p\n", 687 __func__, usb_endpoint_type(&ep->desc), udev->speed, 688 usb_endpoint_maxp(&ep->desc), 689 usb_endpoint_dir_in(&ep->desc), ep); 690 691 if (!need_bw_sch(ep, udev->speed, slot_ctx->tt_info & TT_SLOT)) 692 return; 693 694 bw_index = get_bw_index(xhci, udev, ep); 695 sch_bw = &sch_array[bw_index]; 696 697 list_for_each_entry(sch_ep, &sch_bw->bw_ep_list, endpoint) { 698 if (sch_ep->ep == ep) { 699 update_bus_bw(sch_bw, sch_ep, 0); 700 list_del(&sch_ep->endpoint); 701 if (is_fs_or_ls(udev->speed)) { 702 list_del(&sch_ep->tt_endpoint); 703 drop_tt(udev); 704 } 705 kfree(sch_ep); 706 break; 707 } 708 } 709 } 710 EXPORT_SYMBOL_GPL(xhci_mtk_drop_ep_quirk); 711