1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: 5 * Zhigang.Wei <zhigang.wei@mediatek.com> 6 * Chunfeng.Yun <chunfeng.yun@mediatek.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 13 #include "xhci.h" 14 #include "xhci-mtk.h" 15 16 #define SSP_BW_BOUNDARY 130000 17 #define SS_BW_BOUNDARY 51000 18 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ 19 #define HS_BW_BOUNDARY 6144 20 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ 21 #define FS_PAYLOAD_MAX 188 22 23 #define DBG_BUF_EN 64 24 25 /* schedule error type */ 26 #define ESCH_SS_Y6 1001 27 #define ESCH_SS_OVERLAP 1002 28 #define ESCH_CS_OVERFLOW 1003 29 #define ESCH_BW_OVERFLOW 1004 30 #define ESCH_FIXME 1005 31 32 /* mtk scheduler bitmasks */ 33 #define EP_BPKTS(p) ((p) & 0x7f) 34 #define EP_BCSCOUNT(p) (((p) & 0x7) << 8) 35 #define EP_BBM(p) ((p) << 11) 36 #define EP_BOFFSET(p) ((p) & 0x3fff) 37 #define EP_BREPEAT(p) (((p) & 0x7fff) << 16) 38 39 static char *sch_error_string(int err_num) 40 { 41 switch (err_num) { 42 case ESCH_SS_Y6: 43 return "Can't schedule Start-Split in Y6"; 44 case ESCH_SS_OVERLAP: 45 return "Can't find a suitable Start-Split location"; 46 case ESCH_CS_OVERFLOW: 47 return "The last Complete-Split is greater than 7"; 48 case ESCH_BW_OVERFLOW: 49 return "Bandwidth exceeds the maximum limit"; 50 case ESCH_FIXME: 51 return "FIXME, to be resolved"; 52 default: 53 return "Unknown"; 54 } 55 } 56 57 static int is_fs_or_ls(enum usb_device_speed speed) 58 { 59 return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; 60 } 61 62 static const char * 63 decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed) 64 { 65 static char buf[DBG_BUF_EN]; 66 struct usb_endpoint_descriptor *epd = &ep->desc; 67 unsigned int interval; 68 const char *unit; 69 70 interval = usb_decode_interval(epd, speed); 71 if (interval % 1000) { 72 unit = "us"; 73 } else { 74 unit = "ms"; 75 interval /= 1000; 76 } 77 78 snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s", 79 usb_speed_string(speed), usb_endpoint_num(epd), 80 usb_endpoint_dir_in(epd) ? "in" : "out", 81 usb_ep_type_string(usb_endpoint_type(epd)), 82 usb_endpoint_maxp(epd), epd->bInterval, interval, unit); 83 84 return buf; 85 } 86 87 static u32 get_bw_boundary(enum usb_device_speed speed) 88 { 89 u32 boundary; 90 91 switch (speed) { 92 case USB_SPEED_SUPER_PLUS: 93 boundary = SSP_BW_BOUNDARY; 94 break; 95 case USB_SPEED_SUPER: 96 boundary = SS_BW_BOUNDARY; 97 break; 98 default: 99 boundary = HS_BW_BOUNDARY; 100 break; 101 } 102 103 return boundary; 104 } 105 106 /* 107 * get the bandwidth domain which @ep belongs to. 108 * 109 * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, 110 * each HS root port is treated as a single bandwidth domain, 111 * but each SS root port is treated as two bandwidth domains, one for IN eps, 112 * one for OUT eps. 113 * @real_port value is defined as follow according to xHCI spec: 114 * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc 115 * so the bandwidth domain array is organized as follow for simplification: 116 * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY 117 */ 118 static struct mu3h_sch_bw_info * 119 get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 120 struct usb_host_endpoint *ep) 121 { 122 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); 123 struct xhci_virt_device *virt_dev; 124 int bw_index; 125 126 virt_dev = xhci->devs[udev->slot_id]; 127 if (!virt_dev->real_port) { 128 WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev)); 129 return NULL; 130 } 131 132 if (udev->speed >= USB_SPEED_SUPER) { 133 if (usb_endpoint_dir_out(&ep->desc)) 134 bw_index = (virt_dev->real_port - 1) * 2; 135 else 136 bw_index = (virt_dev->real_port - 1) * 2 + 1; 137 } else { 138 /* add one more for each SS port */ 139 bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1; 140 } 141 142 return &mtk->sch_array[bw_index]; 143 } 144 145 static u32 get_esit(struct xhci_ep_ctx *ep_ctx) 146 { 147 u32 esit; 148 149 esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); 150 if (esit > XHCI_MTK_MAX_ESIT) 151 esit = XHCI_MTK_MAX_ESIT; 152 153 return esit; 154 } 155 156 static struct mu3h_sch_tt *find_tt(struct usb_device *udev) 157 { 158 struct usb_tt *utt = udev->tt; 159 struct mu3h_sch_tt *tt, **tt_index, **ptt; 160 bool allocated_index = false; 161 162 if (!utt) 163 return NULL; /* Not below a TT */ 164 165 /* 166 * Find/create our data structure. 167 * For hubs with a single TT, we get it directly. 168 * For hubs with multiple TTs, there's an extra level of pointers. 169 */ 170 tt_index = NULL; 171 if (utt->multi) { 172 tt_index = utt->hcpriv; 173 if (!tt_index) { /* Create the index array */ 174 tt_index = kcalloc(utt->hub->maxchild, 175 sizeof(*tt_index), GFP_KERNEL); 176 if (!tt_index) 177 return ERR_PTR(-ENOMEM); 178 utt->hcpriv = tt_index; 179 allocated_index = true; 180 } 181 ptt = &tt_index[udev->ttport - 1]; 182 } else { 183 ptt = (struct mu3h_sch_tt **) &utt->hcpriv; 184 } 185 186 tt = *ptt; 187 if (!tt) { /* Create the mu3h_sch_tt */ 188 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 189 if (!tt) { 190 if (allocated_index) { 191 utt->hcpriv = NULL; 192 kfree(tt_index); 193 } 194 return ERR_PTR(-ENOMEM); 195 } 196 INIT_LIST_HEAD(&tt->ep_list); 197 *ptt = tt; 198 } 199 200 return tt; 201 } 202 203 /* Release the TT above udev, if it's not in use */ 204 static void drop_tt(struct usb_device *udev) 205 { 206 struct usb_tt *utt = udev->tt; 207 struct mu3h_sch_tt *tt, **tt_index, **ptt; 208 int i, cnt; 209 210 if (!utt || !utt->hcpriv) 211 return; /* Not below a TT, or never allocated */ 212 213 cnt = 0; 214 if (utt->multi) { 215 tt_index = utt->hcpriv; 216 ptt = &tt_index[udev->ttport - 1]; 217 /* How many entries are left in tt_index? */ 218 for (i = 0; i < utt->hub->maxchild; ++i) 219 cnt += !!tt_index[i]; 220 } else { 221 tt_index = NULL; 222 ptt = (struct mu3h_sch_tt **)&utt->hcpriv; 223 } 224 225 tt = *ptt; 226 if (!tt || !list_empty(&tt->ep_list)) 227 return; /* never allocated , or still in use*/ 228 229 *ptt = NULL; 230 kfree(tt); 231 232 if (cnt == 1) { 233 utt->hcpriv = NULL; 234 kfree(tt_index); 235 } 236 } 237 238 static struct mu3h_sch_ep_info * 239 create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 240 struct usb_host_endpoint *ep) 241 { 242 struct mu3h_sch_ep_info *sch_ep; 243 struct mu3h_sch_bw_info *bw_info; 244 struct mu3h_sch_tt *tt = NULL; 245 246 bw_info = get_bw_info(mtk, udev, ep); 247 if (!bw_info) 248 return ERR_PTR(-ENODEV); 249 250 sch_ep = kzalloc(sizeof(*sch_ep), GFP_KERNEL); 251 if (!sch_ep) 252 return ERR_PTR(-ENOMEM); 253 254 if (is_fs_or_ls(udev->speed)) { 255 tt = find_tt(udev); 256 if (IS_ERR(tt)) { 257 kfree(sch_ep); 258 return ERR_PTR(-ENOMEM); 259 } 260 } 261 262 sch_ep->bw_info = bw_info; 263 sch_ep->sch_tt = tt; 264 sch_ep->ep = ep; 265 sch_ep->speed = udev->speed; 266 INIT_LIST_HEAD(&sch_ep->endpoint); 267 INIT_LIST_HEAD(&sch_ep->tt_endpoint); 268 INIT_HLIST_NODE(&sch_ep->hentry); 269 270 return sch_ep; 271 } 272 273 static void setup_sch_info(struct xhci_ep_ctx *ep_ctx, 274 struct mu3h_sch_ep_info *sch_ep) 275 { 276 u32 ep_type; 277 u32 maxpkt; 278 u32 max_burst; 279 u32 mult; 280 u32 esit_pkts; 281 u32 max_esit_payload; 282 283 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 284 maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 285 max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); 286 mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); 287 max_esit_payload = 288 (CTX_TO_MAX_ESIT_PAYLOAD_HI( 289 le32_to_cpu(ep_ctx->ep_info)) << 16) | 290 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info)); 291 292 sch_ep->esit = get_esit(ep_ctx); 293 sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 294 sch_ep->ep_type = ep_type; 295 sch_ep->maxpkt = maxpkt; 296 sch_ep->offset = 0; 297 sch_ep->burst_mode = 0; 298 sch_ep->repeat = 0; 299 300 if (sch_ep->speed == USB_SPEED_HIGH) { 301 sch_ep->cs_count = 0; 302 303 /* 304 * usb_20 spec section5.9 305 * a single microframe is enough for HS synchromous endpoints 306 * in a interval 307 */ 308 sch_ep->num_budget_microframes = 1; 309 310 /* 311 * xHCI spec section6.2.3.4 312 * @max_burst is the number of additional transactions 313 * opportunities per microframe 314 */ 315 sch_ep->pkts = max_burst + 1; 316 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 317 } else if (sch_ep->speed >= USB_SPEED_SUPER) { 318 /* usb3_r1 spec section4.4.7 & 4.4.8 */ 319 sch_ep->cs_count = 0; 320 sch_ep->burst_mode = 1; 321 /* 322 * some device's (d)wBytesPerInterval is set as 0, 323 * then max_esit_payload is 0, so evaluate esit_pkts from 324 * mult and burst 325 */ 326 esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt); 327 if (esit_pkts == 0) 328 esit_pkts = (mult + 1) * (max_burst + 1); 329 330 if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { 331 sch_ep->pkts = esit_pkts; 332 sch_ep->num_budget_microframes = 1; 333 } 334 335 if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { 336 337 if (sch_ep->esit == 1) 338 sch_ep->pkts = esit_pkts; 339 else if (esit_pkts <= sch_ep->esit) 340 sch_ep->pkts = 1; 341 else 342 sch_ep->pkts = roundup_pow_of_two(esit_pkts) 343 / sch_ep->esit; 344 345 sch_ep->num_budget_microframes = 346 DIV_ROUND_UP(esit_pkts, sch_ep->pkts); 347 348 sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1); 349 } 350 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 351 } else if (is_fs_or_ls(sch_ep->speed)) { 352 sch_ep->pkts = 1; /* at most one packet for each microframe */ 353 354 /* 355 * num_budget_microframes and cs_count will be updated when 356 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type 357 */ 358 sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX); 359 sch_ep->num_budget_microframes = sch_ep->cs_count; 360 sch_ep->bw_cost_per_microframe = min_t(u32, maxpkt, FS_PAYLOAD_MAX); 361 } 362 } 363 364 /* Get maximum bandwidth when we schedule at offset slot. */ 365 static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, 366 struct mu3h_sch_ep_info *sch_ep, u32 offset) 367 { 368 u32 max_bw = 0; 369 u32 bw; 370 int i, j, k; 371 372 for (i = 0; i < sch_ep->num_esit; i++) { 373 u32 base = offset + i * sch_ep->esit; 374 375 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 376 k = XHCI_MTK_BW_INDEX(base + j); 377 bw = sch_bw->bus_bw[k] + sch_ep->bw_cost_per_microframe; 378 if (bw > max_bw) 379 max_bw = bw; 380 } 381 } 382 return max_bw; 383 } 384 385 static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, 386 struct mu3h_sch_ep_info *sch_ep, bool used) 387 { 388 int bw_updated; 389 u32 base; 390 int i, j; 391 392 bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1); 393 394 for (i = 0; i < sch_ep->num_esit; i++) { 395 base = sch_ep->offset + i * sch_ep->esit; 396 for (j = 0; j < sch_ep->num_budget_microframes; j++) 397 sch_bw->bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated; 398 } 399 } 400 401 static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset) 402 { 403 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 404 u32 tmp; 405 int base; 406 int i, j, k; 407 408 for (i = 0; i < sch_ep->num_esit; i++) { 409 base = offset + i * sch_ep->esit; 410 411 /* 412 * Compared with hs bus, no matter what ep type, 413 * the hub will always delay one uframe to send data 414 */ 415 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 416 k = XHCI_MTK_BW_INDEX(base + j); 417 tmp = tt->fs_bus_bw[k] + sch_ep->bw_cost_per_microframe; 418 if (tmp > FS_PAYLOAD_MAX) 419 return -ESCH_BW_OVERFLOW; 420 } 421 } 422 423 return 0; 424 } 425 426 static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset) 427 { 428 u32 extra_cs_count; 429 u32 start_ss, last_ss; 430 u32 start_cs, last_cs; 431 432 if (!sch_ep->sch_tt) 433 return 0; 434 435 start_ss = offset % 8; 436 437 if (sch_ep->ep_type == ISOC_OUT_EP) { 438 last_ss = start_ss + sch_ep->cs_count - 1; 439 440 /* 441 * usb_20 spec section11.18: 442 * must never schedule Start-Split in Y6 443 */ 444 if (!(start_ss == 7 || last_ss < 6)) 445 return -ESCH_SS_Y6; 446 447 } else { 448 u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX); 449 450 /* 451 * usb_20 spec section11.18: 452 * must never schedule Start-Split in Y6 453 */ 454 if (start_ss == 6) 455 return -ESCH_SS_Y6; 456 457 /* one uframe for ss + one uframe for idle */ 458 start_cs = (start_ss + 2) % 8; 459 last_cs = start_cs + cs_count - 1; 460 461 if (last_cs > 7) 462 return -ESCH_CS_OVERFLOW; 463 464 if (sch_ep->ep_type == ISOC_IN_EP) 465 extra_cs_count = (last_cs == 7) ? 1 : 2; 466 else /* ep_type : INTR IN / INTR OUT */ 467 extra_cs_count = 1; 468 469 cs_count += extra_cs_count; 470 if (cs_count > 7) 471 cs_count = 7; /* HW limit */ 472 473 sch_ep->cs_count = cs_count; 474 /* one for ss, the other for idle */ 475 sch_ep->num_budget_microframes = cs_count + 2; 476 477 /* 478 * if interval=1, maxp >752, num_budge_micoframe is larger 479 * than sch_ep->esit, will overstep boundary 480 */ 481 if (sch_ep->num_budget_microframes > sch_ep->esit) 482 sch_ep->num_budget_microframes = sch_ep->esit; 483 } 484 485 return check_fs_bus_bw(sch_ep, offset); 486 } 487 488 static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used) 489 { 490 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 491 int bw_updated; 492 u32 base; 493 int i, j; 494 495 bw_updated = sch_ep->bw_cost_per_microframe * (used ? 1 : -1); 496 497 for (i = 0; i < sch_ep->num_esit; i++) { 498 base = sch_ep->offset + i * sch_ep->esit; 499 500 for (j = 0; j < sch_ep->num_budget_microframes; j++) 501 tt->fs_bus_bw[XHCI_MTK_BW_INDEX(base + j)] += bw_updated; 502 } 503 504 if (used) 505 list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list); 506 else 507 list_del(&sch_ep->tt_endpoint); 508 } 509 510 static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw, 511 struct mu3h_sch_ep_info *sch_ep, bool loaded) 512 { 513 if (sch_ep->sch_tt) 514 update_sch_tt(sch_ep, loaded); 515 516 /* update bus bandwidth info */ 517 update_bus_bw(sch_bw, sch_ep, loaded); 518 sch_ep->allocated = loaded; 519 520 return 0; 521 } 522 523 static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep) 524 { 525 struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info; 526 const u32 bw_boundary = get_bw_boundary(sch_ep->speed); 527 u32 offset; 528 u32 worst_bw; 529 u32 min_bw = ~0; 530 int min_index = -1; 531 int ret = 0; 532 533 /* 534 * Search through all possible schedule microframes. 535 * and find a microframe where its worst bandwidth is minimum. 536 */ 537 for (offset = 0; offset < sch_ep->esit; offset++) { 538 ret = check_sch_tt(sch_ep, offset); 539 if (ret) 540 continue; 541 542 worst_bw = get_max_bw(sch_bw, sch_ep, offset); 543 if (worst_bw > bw_boundary) 544 continue; 545 546 if (min_bw > worst_bw) { 547 min_bw = worst_bw; 548 min_index = offset; 549 } 550 551 /* use first-fit for LS/FS */ 552 if (sch_ep->sch_tt && min_index >= 0) 553 break; 554 555 if (min_bw == 0) 556 break; 557 } 558 559 if (min_index < 0) 560 return ret ? ret : -ESCH_BW_OVERFLOW; 561 562 sch_ep->offset = min_index; 563 564 return load_ep_bw(sch_bw, sch_ep, true); 565 } 566 567 static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev, 568 struct mu3h_sch_ep_info *sch_ep) 569 { 570 /* only release ep bw check passed by check_sch_bw() */ 571 if (sch_ep->allocated) 572 load_ep_bw(sch_ep->bw_info, sch_ep, false); 573 574 if (sch_ep->sch_tt) 575 drop_tt(udev); 576 577 list_del(&sch_ep->endpoint); 578 hlist_del(&sch_ep->hentry); 579 kfree(sch_ep); 580 } 581 582 static bool need_bw_sch(struct usb_device *udev, 583 struct usb_host_endpoint *ep) 584 { 585 bool has_tt = udev->tt && udev->tt->hub->parent; 586 587 /* only for periodic endpoints */ 588 if (usb_endpoint_xfer_control(&ep->desc) 589 || usb_endpoint_xfer_bulk(&ep->desc)) 590 return false; 591 592 /* 593 * for LS & FS periodic endpoints which its device is not behind 594 * a TT are also ignored, root-hub will schedule them directly, 595 * but need set @bpkts field of endpoint context to 1. 596 */ 597 if (is_fs_or_ls(udev->speed) && !has_tt) 598 return false; 599 600 /* skip endpoint with zero maxpkt */ 601 if (usb_endpoint_maxp(&ep->desc) == 0) 602 return false; 603 604 return true; 605 } 606 607 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) 608 { 609 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); 610 struct mu3h_sch_bw_info *sch_array; 611 int num_usb_bus; 612 613 /* ss IN and OUT are separated */ 614 num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; 615 616 sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); 617 if (sch_array == NULL) 618 return -ENOMEM; 619 620 mtk->sch_array = sch_array; 621 622 INIT_LIST_HEAD(&mtk->bw_ep_chk_list); 623 hash_init(mtk->sch_ep_hash); 624 625 return 0; 626 } 627 628 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) 629 { 630 kfree(mtk->sch_array); 631 } 632 633 static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 634 struct usb_host_endpoint *ep) 635 { 636 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 637 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 638 struct xhci_ep_ctx *ep_ctx; 639 struct xhci_virt_device *virt_dev; 640 struct mu3h_sch_ep_info *sch_ep; 641 unsigned int ep_index; 642 643 virt_dev = xhci->devs[udev->slot_id]; 644 ep_index = xhci_get_endpoint_index(&ep->desc); 645 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 646 647 if (!need_bw_sch(udev, ep)) { 648 /* 649 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its 650 * device does not connected through an external HS hub 651 */ 652 if (usb_endpoint_xfer_int(&ep->desc) 653 || usb_endpoint_xfer_isoc(&ep->desc)) 654 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1)); 655 656 return 0; 657 } 658 659 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); 660 661 sch_ep = create_sch_ep(mtk, udev, ep); 662 if (IS_ERR_OR_NULL(sch_ep)) 663 return -ENOMEM; 664 665 setup_sch_info(ep_ctx, sch_ep); 666 667 list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list); 668 hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep); 669 670 return 0; 671 } 672 673 static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 674 struct usb_host_endpoint *ep) 675 { 676 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 677 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 678 struct mu3h_sch_ep_info *sch_ep; 679 struct hlist_node *hn; 680 681 if (!need_bw_sch(udev, ep)) 682 return; 683 684 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed)); 685 686 hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep, 687 hn, hentry, (unsigned long)ep) { 688 if (sch_ep->ep == ep) { 689 destroy_sch_ep(mtk, udev, sch_ep); 690 break; 691 } 692 } 693 } 694 695 int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 696 { 697 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 698 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 699 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 700 struct mu3h_sch_ep_info *sch_ep; 701 int ret; 702 703 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); 704 705 list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) { 706 struct xhci_ep_ctx *ep_ctx; 707 struct usb_host_endpoint *ep = sch_ep->ep; 708 unsigned int ep_index = xhci_get_endpoint_index(&ep->desc); 709 710 ret = check_sch_bw(sch_ep); 711 if (ret) { 712 xhci_err(xhci, "Not enough bandwidth! (%s)\n", 713 sch_error_string(-ret)); 714 return -ENOSPC; 715 } 716 717 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 718 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts) 719 | EP_BCSCOUNT(sch_ep->cs_count) 720 | EP_BBM(sch_ep->burst_mode)); 721 ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset) 722 | EP_BREPEAT(sch_ep->repeat)); 723 724 xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", 725 sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, 726 sch_ep->offset, sch_ep->repeat); 727 } 728 729 ret = xhci_check_bandwidth(hcd, udev); 730 if (!ret) 731 list_del_init(&mtk->bw_ep_chk_list); 732 733 return ret; 734 } 735 736 void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 737 { 738 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 739 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 740 struct mu3h_sch_ep_info *sch_ep, *tmp; 741 742 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); 743 744 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) 745 destroy_sch_ep(mtk, udev, sch_ep); 746 747 xhci_reset_bandwidth(hcd, udev); 748 } 749 750 int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev, 751 struct usb_host_endpoint *ep) 752 { 753 int ret; 754 755 ret = xhci_add_endpoint(hcd, udev, ep); 756 if (ret) 757 return ret; 758 759 if (ep->hcpriv) 760 ret = add_ep_quirk(hcd, udev, ep); 761 762 return ret; 763 } 764 765 int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev, 766 struct usb_host_endpoint *ep) 767 { 768 int ret; 769 770 ret = xhci_drop_endpoint(hcd, udev, ep); 771 if (ret) 772 return ret; 773 774 if (ep->hcpriv) 775 drop_ep_quirk(hcd, udev, ep); 776 777 return 0; 778 } 779