1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: 5 * Zhigang.Wei <zhigang.wei@mediatek.com> 6 * Chunfeng.Yun <chunfeng.yun@mediatek.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 13 #include "xhci.h" 14 #include "xhci-mtk.h" 15 16 #define SSP_BW_BOUNDARY 130000 17 #define SS_BW_BOUNDARY 51000 18 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */ 19 #define HS_BW_BOUNDARY 6144 20 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */ 21 #define FS_PAYLOAD_MAX 188 22 /* 23 * max number of microframes for split transfer, 24 * for fs isoc in : 1 ss + 1 idle + 7 cs 25 */ 26 #define TT_MICROFRAMES_MAX 9 27 28 /* mtk scheduler bitmasks */ 29 #define EP_BPKTS(p) ((p) & 0x7f) 30 #define EP_BCSCOUNT(p) (((p) & 0x7) << 8) 31 #define EP_BBM(p) ((p) << 11) 32 #define EP_BOFFSET(p) ((p) & 0x3fff) 33 #define EP_BREPEAT(p) (((p) & 0x7fff) << 16) 34 35 static int is_fs_or_ls(enum usb_device_speed speed) 36 { 37 return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW; 38 } 39 40 /* 41 * get the index of bandwidth domains array which @ep belongs to. 42 * 43 * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk, 44 * each HS root port is treated as a single bandwidth domain, 45 * but each SS root port is treated as two bandwidth domains, one for IN eps, 46 * one for OUT eps. 47 * @real_port value is defined as follow according to xHCI spec: 48 * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc 49 * so the bandwidth domain array is organized as follow for simplification: 50 * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY 51 */ 52 static int get_bw_index(struct xhci_hcd *xhci, struct usb_device *udev, 53 struct usb_host_endpoint *ep) 54 { 55 struct xhci_virt_device *virt_dev; 56 int bw_index; 57 58 virt_dev = xhci->devs[udev->slot_id]; 59 60 if (udev->speed >= USB_SPEED_SUPER) { 61 if (usb_endpoint_dir_out(&ep->desc)) 62 bw_index = (virt_dev->real_port - 1) * 2; 63 else 64 bw_index = (virt_dev->real_port - 1) * 2 + 1; 65 } else { 66 /* add one more for each SS port */ 67 bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1; 68 } 69 70 return bw_index; 71 } 72 73 static u32 get_esit(struct xhci_ep_ctx *ep_ctx) 74 { 75 u32 esit; 76 77 esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info)); 78 if (esit > XHCI_MTK_MAX_ESIT) 79 esit = XHCI_MTK_MAX_ESIT; 80 81 return esit; 82 } 83 84 static struct mu3h_sch_tt *find_tt(struct usb_device *udev) 85 { 86 struct usb_tt *utt = udev->tt; 87 struct mu3h_sch_tt *tt, **tt_index, **ptt; 88 unsigned int port; 89 bool allocated_index = false; 90 91 if (!utt) 92 return NULL; /* Not below a TT */ 93 94 /* 95 * Find/create our data structure. 96 * For hubs with a single TT, we get it directly. 97 * For hubs with multiple TTs, there's an extra level of pointers. 98 */ 99 tt_index = NULL; 100 if (utt->multi) { 101 tt_index = utt->hcpriv; 102 if (!tt_index) { /* Create the index array */ 103 tt_index = kcalloc(utt->hub->maxchild, 104 sizeof(*tt_index), GFP_KERNEL); 105 if (!tt_index) 106 return ERR_PTR(-ENOMEM); 107 utt->hcpriv = tt_index; 108 allocated_index = true; 109 } 110 port = udev->ttport - 1; 111 ptt = &tt_index[port]; 112 } else { 113 port = 0; 114 ptt = (struct mu3h_sch_tt **) &utt->hcpriv; 115 } 116 117 tt = *ptt; 118 if (!tt) { /* Create the mu3h_sch_tt */ 119 tt = kzalloc(sizeof(*tt), GFP_KERNEL); 120 if (!tt) { 121 if (allocated_index) { 122 utt->hcpriv = NULL; 123 kfree(tt_index); 124 } 125 return ERR_PTR(-ENOMEM); 126 } 127 INIT_LIST_HEAD(&tt->ep_list); 128 tt->usb_tt = utt; 129 tt->tt_port = port; 130 *ptt = tt; 131 } 132 133 return tt; 134 } 135 136 /* Release the TT above udev, if it's not in use */ 137 static void drop_tt(struct usb_device *udev) 138 { 139 struct usb_tt *utt = udev->tt; 140 struct mu3h_sch_tt *tt, **tt_index, **ptt; 141 int i, cnt; 142 143 if (!utt || !utt->hcpriv) 144 return; /* Not below a TT, or never allocated */ 145 146 cnt = 0; 147 if (utt->multi) { 148 tt_index = utt->hcpriv; 149 ptt = &tt_index[udev->ttport - 1]; 150 /* How many entries are left in tt_index? */ 151 for (i = 0; i < utt->hub->maxchild; ++i) 152 cnt += !!tt_index[i]; 153 } else { 154 tt_index = NULL; 155 ptt = (struct mu3h_sch_tt **)&utt->hcpriv; 156 } 157 158 tt = *ptt; 159 if (!tt || !list_empty(&tt->ep_list)) 160 return; /* never allocated , or still in use*/ 161 162 *ptt = NULL; 163 kfree(tt); 164 165 if (cnt == 1) { 166 utt->hcpriv = NULL; 167 kfree(tt_index); 168 } 169 } 170 171 static struct mu3h_sch_ep_info *create_sch_ep(struct usb_device *udev, 172 struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx) 173 { 174 struct mu3h_sch_ep_info *sch_ep; 175 struct mu3h_sch_tt *tt = NULL; 176 u32 len_bw_budget_table; 177 size_t mem_size; 178 179 if (is_fs_or_ls(udev->speed)) 180 len_bw_budget_table = TT_MICROFRAMES_MAX; 181 else if ((udev->speed >= USB_SPEED_SUPER) 182 && usb_endpoint_xfer_isoc(&ep->desc)) 183 len_bw_budget_table = get_esit(ep_ctx); 184 else 185 len_bw_budget_table = 1; 186 187 mem_size = sizeof(struct mu3h_sch_ep_info) + 188 len_bw_budget_table * sizeof(u32); 189 sch_ep = kzalloc(mem_size, GFP_KERNEL); 190 if (!sch_ep) 191 return ERR_PTR(-ENOMEM); 192 193 if (is_fs_or_ls(udev->speed)) { 194 tt = find_tt(udev); 195 if (IS_ERR(tt)) { 196 kfree(sch_ep); 197 return ERR_PTR(-ENOMEM); 198 } 199 } 200 201 sch_ep->sch_tt = tt; 202 sch_ep->ep = ep; 203 INIT_LIST_HEAD(&sch_ep->endpoint); 204 INIT_LIST_HEAD(&sch_ep->tt_endpoint); 205 206 return sch_ep; 207 } 208 209 static void setup_sch_info(struct usb_device *udev, 210 struct xhci_ep_ctx *ep_ctx, struct mu3h_sch_ep_info *sch_ep) 211 { 212 u32 ep_type; 213 u32 maxpkt; 214 u32 max_burst; 215 u32 mult; 216 u32 esit_pkts; 217 u32 max_esit_payload; 218 u32 *bwb_table = sch_ep->bw_budget_table; 219 int i; 220 221 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 222 maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 223 max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2)); 224 mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info)); 225 max_esit_payload = 226 (CTX_TO_MAX_ESIT_PAYLOAD_HI( 227 le32_to_cpu(ep_ctx->ep_info)) << 16) | 228 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info)); 229 230 sch_ep->esit = get_esit(ep_ctx); 231 sch_ep->ep_type = ep_type; 232 sch_ep->maxpkt = maxpkt; 233 sch_ep->offset = 0; 234 sch_ep->burst_mode = 0; 235 sch_ep->repeat = 0; 236 237 if (udev->speed == USB_SPEED_HIGH) { 238 sch_ep->cs_count = 0; 239 240 /* 241 * usb_20 spec section5.9 242 * a single microframe is enough for HS synchromous endpoints 243 * in a interval 244 */ 245 sch_ep->num_budget_microframes = 1; 246 247 /* 248 * xHCI spec section6.2.3.4 249 * @max_burst is the number of additional transactions 250 * opportunities per microframe 251 */ 252 sch_ep->pkts = max_burst + 1; 253 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 254 bwb_table[0] = sch_ep->bw_cost_per_microframe; 255 } else if (udev->speed >= USB_SPEED_SUPER) { 256 /* usb3_r1 spec section4.4.7 & 4.4.8 */ 257 sch_ep->cs_count = 0; 258 sch_ep->burst_mode = 1; 259 /* 260 * some device's (d)wBytesPerInterval is set as 0, 261 * then max_esit_payload is 0, so evaluate esit_pkts from 262 * mult and burst 263 */ 264 esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt); 265 if (esit_pkts == 0) 266 esit_pkts = (mult + 1) * (max_burst + 1); 267 268 if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) { 269 sch_ep->pkts = esit_pkts; 270 sch_ep->num_budget_microframes = 1; 271 bwb_table[0] = maxpkt * sch_ep->pkts; 272 } 273 274 if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) { 275 u32 remainder; 276 277 if (sch_ep->esit == 1) 278 sch_ep->pkts = esit_pkts; 279 else if (esit_pkts <= sch_ep->esit) 280 sch_ep->pkts = 1; 281 else 282 sch_ep->pkts = roundup_pow_of_two(esit_pkts) 283 / sch_ep->esit; 284 285 sch_ep->num_budget_microframes = 286 DIV_ROUND_UP(esit_pkts, sch_ep->pkts); 287 288 sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1); 289 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts; 290 291 remainder = sch_ep->bw_cost_per_microframe; 292 remainder *= sch_ep->num_budget_microframes; 293 remainder -= (maxpkt * esit_pkts); 294 for (i = 0; i < sch_ep->num_budget_microframes - 1; i++) 295 bwb_table[i] = sch_ep->bw_cost_per_microframe; 296 297 /* last one <= bw_cost_per_microframe */ 298 bwb_table[i] = remainder; 299 } 300 } else if (is_fs_or_ls(udev->speed)) { 301 sch_ep->pkts = 1; /* at most one packet for each microframe */ 302 303 /* 304 * num_budget_microframes and cs_count will be updated when 305 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type 306 */ 307 sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX); 308 sch_ep->num_budget_microframes = sch_ep->cs_count; 309 sch_ep->bw_cost_per_microframe = 310 (maxpkt < FS_PAYLOAD_MAX) ? maxpkt : FS_PAYLOAD_MAX; 311 312 /* init budget table */ 313 if (ep_type == ISOC_OUT_EP) { 314 for (i = 0; i < sch_ep->num_budget_microframes; i++) 315 bwb_table[i] = sch_ep->bw_cost_per_microframe; 316 } else if (ep_type == INT_OUT_EP) { 317 /* only first one consumes bandwidth, others as zero */ 318 bwb_table[0] = sch_ep->bw_cost_per_microframe; 319 } else { /* INT_IN_EP or ISOC_IN_EP */ 320 bwb_table[0] = 0; /* start split */ 321 bwb_table[1] = 0; /* idle */ 322 /* 323 * due to cs_count will be updated according to cs 324 * position, assign all remainder budget array 325 * elements as @bw_cost_per_microframe, but only first 326 * @num_budget_microframes elements will be used later 327 */ 328 for (i = 2; i < TT_MICROFRAMES_MAX; i++) 329 bwb_table[i] = sch_ep->bw_cost_per_microframe; 330 } 331 } 332 } 333 334 /* Get maximum bandwidth when we schedule at offset slot. */ 335 static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw, 336 struct mu3h_sch_ep_info *sch_ep, u32 offset) 337 { 338 u32 num_esit; 339 u32 max_bw = 0; 340 u32 bw; 341 int i; 342 int j; 343 344 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 345 for (i = 0; i < num_esit; i++) { 346 u32 base = offset + i * sch_ep->esit; 347 348 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 349 bw = sch_bw->bus_bw[base + j] + 350 sch_ep->bw_budget_table[j]; 351 if (bw > max_bw) 352 max_bw = bw; 353 } 354 } 355 return max_bw; 356 } 357 358 static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw, 359 struct mu3h_sch_ep_info *sch_ep, bool used) 360 { 361 u32 num_esit; 362 u32 base; 363 int i; 364 int j; 365 366 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 367 for (i = 0; i < num_esit; i++) { 368 base = sch_ep->offset + i * sch_ep->esit; 369 for (j = 0; j < sch_ep->num_budget_microframes; j++) { 370 if (used) 371 sch_bw->bus_bw[base + j] += 372 sch_ep->bw_budget_table[j]; 373 else 374 sch_bw->bus_bw[base + j] -= 375 sch_ep->bw_budget_table[j]; 376 } 377 } 378 sch_ep->allocated = used; 379 } 380 381 static int check_sch_tt(struct usb_device *udev, 382 struct mu3h_sch_ep_info *sch_ep, u32 offset) 383 { 384 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 385 u32 extra_cs_count; 386 u32 fs_budget_start; 387 u32 start_ss, last_ss; 388 u32 start_cs, last_cs; 389 int i; 390 391 start_ss = offset % 8; 392 fs_budget_start = (start_ss + 1) % 8; 393 394 if (sch_ep->ep_type == ISOC_OUT_EP) { 395 last_ss = start_ss + sch_ep->cs_count - 1; 396 397 /* 398 * usb_20 spec section11.18: 399 * must never schedule Start-Split in Y6 400 */ 401 if (!(start_ss == 7 || last_ss < 6)) 402 return -ERANGE; 403 404 for (i = 0; i < sch_ep->cs_count; i++) 405 if (test_bit(offset + i, tt->split_bit_map)) 406 return -ERANGE; 407 408 } else { 409 u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX); 410 411 /* 412 * usb_20 spec section11.18: 413 * must never schedule Start-Split in Y6 414 */ 415 if (start_ss == 6) 416 return -ERANGE; 417 418 /* one uframe for ss + one uframe for idle */ 419 start_cs = (start_ss + 2) % 8; 420 last_cs = start_cs + cs_count - 1; 421 422 if (last_cs > 7) 423 return -ERANGE; 424 425 if (sch_ep->ep_type == ISOC_IN_EP) 426 extra_cs_count = (last_cs == 7) ? 1 : 2; 427 else /* ep_type : INTR IN / INTR OUT */ 428 extra_cs_count = (fs_budget_start == 6) ? 1 : 2; 429 430 cs_count += extra_cs_count; 431 if (cs_count > 7) 432 cs_count = 7; /* HW limit */ 433 434 for (i = 0; i < cs_count + 2; i++) { 435 if (test_bit(offset + i, tt->split_bit_map)) 436 return -ERANGE; 437 } 438 439 sch_ep->cs_count = cs_count; 440 /* one for ss, the other for idle */ 441 sch_ep->num_budget_microframes = cs_count + 2; 442 443 /* 444 * if interval=1, maxp >752, num_budge_micoframe is larger 445 * than sch_ep->esit, will overstep boundary 446 */ 447 if (sch_ep->num_budget_microframes > sch_ep->esit) 448 sch_ep->num_budget_microframes = sch_ep->esit; 449 } 450 451 return 0; 452 } 453 454 static void update_sch_tt(struct usb_device *udev, 455 struct mu3h_sch_ep_info *sch_ep) 456 { 457 struct mu3h_sch_tt *tt = sch_ep->sch_tt; 458 u32 base, num_esit; 459 int i, j; 460 461 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit; 462 for (i = 0; i < num_esit; i++) { 463 base = sch_ep->offset + i * sch_ep->esit; 464 for (j = 0; j < sch_ep->num_budget_microframes; j++) 465 set_bit(base + j, tt->split_bit_map); 466 } 467 468 list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list); 469 } 470 471 static int check_sch_bw(struct usb_device *udev, 472 struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep) 473 { 474 u32 offset; 475 u32 esit; 476 u32 min_bw; 477 u32 min_index; 478 u32 worst_bw; 479 u32 bw_boundary; 480 u32 min_num_budget; 481 u32 min_cs_count; 482 bool tt_offset_ok = false; 483 int ret; 484 485 esit = sch_ep->esit; 486 487 /* 488 * Search through all possible schedule microframes. 489 * and find a microframe where its worst bandwidth is minimum. 490 */ 491 min_bw = ~0; 492 min_index = 0; 493 min_cs_count = sch_ep->cs_count; 494 min_num_budget = sch_ep->num_budget_microframes; 495 for (offset = 0; offset < esit; offset++) { 496 if (is_fs_or_ls(udev->speed)) { 497 ret = check_sch_tt(udev, sch_ep, offset); 498 if (ret) 499 continue; 500 else 501 tt_offset_ok = true; 502 } 503 504 if ((offset + sch_ep->num_budget_microframes) > sch_ep->esit) 505 break; 506 507 worst_bw = get_max_bw(sch_bw, sch_ep, offset); 508 if (min_bw > worst_bw) { 509 min_bw = worst_bw; 510 min_index = offset; 511 min_cs_count = sch_ep->cs_count; 512 min_num_budget = sch_ep->num_budget_microframes; 513 } 514 if (min_bw == 0) 515 break; 516 } 517 518 if (udev->speed == USB_SPEED_SUPER_PLUS) 519 bw_boundary = SSP_BW_BOUNDARY; 520 else if (udev->speed == USB_SPEED_SUPER) 521 bw_boundary = SS_BW_BOUNDARY; 522 else 523 bw_boundary = HS_BW_BOUNDARY; 524 525 /* check bandwidth */ 526 if (min_bw > bw_boundary) 527 return -ERANGE; 528 529 sch_ep->offset = min_index; 530 sch_ep->cs_count = min_cs_count; 531 sch_ep->num_budget_microframes = min_num_budget; 532 533 if (is_fs_or_ls(udev->speed)) { 534 /* all offset for tt is not ok*/ 535 if (!tt_offset_ok) 536 return -ERANGE; 537 538 update_sch_tt(udev, sch_ep); 539 } 540 541 /* update bus bandwidth info */ 542 update_bus_bw(sch_bw, sch_ep, 1); 543 544 return 0; 545 } 546 547 static void destroy_sch_ep(struct usb_device *udev, 548 struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep) 549 { 550 /* only release ep bw check passed by check_sch_bw() */ 551 if (sch_ep->allocated) 552 update_bus_bw(sch_bw, sch_ep, 0); 553 554 list_del(&sch_ep->endpoint); 555 556 if (sch_ep->sch_tt) { 557 list_del(&sch_ep->tt_endpoint); 558 drop_tt(udev); 559 } 560 kfree(sch_ep); 561 } 562 563 static bool need_bw_sch(struct usb_host_endpoint *ep, 564 enum usb_device_speed speed, int has_tt) 565 { 566 /* only for periodic endpoints */ 567 if (usb_endpoint_xfer_control(&ep->desc) 568 || usb_endpoint_xfer_bulk(&ep->desc)) 569 return false; 570 571 /* 572 * for LS & FS periodic endpoints which its device is not behind 573 * a TT are also ignored, root-hub will schedule them directly, 574 * but need set @bpkts field of endpoint context to 1. 575 */ 576 if (is_fs_or_ls(speed) && !has_tt) 577 return false; 578 579 /* skip endpoint with zero maxpkt */ 580 if (usb_endpoint_maxp(&ep->desc) == 0) 581 return false; 582 583 return true; 584 } 585 586 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk) 587 { 588 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd); 589 struct mu3h_sch_bw_info *sch_array; 590 int num_usb_bus; 591 int i; 592 593 /* ss IN and OUT are separated */ 594 num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports; 595 596 sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL); 597 if (sch_array == NULL) 598 return -ENOMEM; 599 600 for (i = 0; i < num_usb_bus; i++) 601 INIT_LIST_HEAD(&sch_array[i].bw_ep_list); 602 603 mtk->sch_array = sch_array; 604 605 INIT_LIST_HEAD(&mtk->bw_ep_chk_list); 606 607 return 0; 608 } 609 EXPORT_SYMBOL_GPL(xhci_mtk_sch_init); 610 611 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk) 612 { 613 kfree(mtk->sch_array); 614 } 615 EXPORT_SYMBOL_GPL(xhci_mtk_sch_exit); 616 617 int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 618 struct usb_host_endpoint *ep) 619 { 620 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 621 struct xhci_hcd *xhci; 622 struct xhci_ep_ctx *ep_ctx; 623 struct xhci_slot_ctx *slot_ctx; 624 struct xhci_virt_device *virt_dev; 625 struct mu3h_sch_ep_info *sch_ep; 626 unsigned int ep_index; 627 628 xhci = hcd_to_xhci(hcd); 629 virt_dev = xhci->devs[udev->slot_id]; 630 ep_index = xhci_get_endpoint_index(&ep->desc); 631 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 632 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 633 634 xhci_dbg(xhci, "%s() type:%d, speed:%d, mpkt:%d, dir:%d, ep:%p\n", 635 __func__, usb_endpoint_type(&ep->desc), udev->speed, 636 usb_endpoint_maxp(&ep->desc), 637 usb_endpoint_dir_in(&ep->desc), ep); 638 639 if (!need_bw_sch(ep, udev->speed, slot_ctx->tt_info & TT_SLOT)) { 640 /* 641 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its 642 * device does not connected through an external HS hub 643 */ 644 if (usb_endpoint_xfer_int(&ep->desc) 645 || usb_endpoint_xfer_isoc(&ep->desc)) 646 ep_ctx->reserved[0] |= cpu_to_le32(EP_BPKTS(1)); 647 648 return 0; 649 } 650 651 sch_ep = create_sch_ep(udev, ep, ep_ctx); 652 if (IS_ERR_OR_NULL(sch_ep)) 653 return -ENOMEM; 654 655 setup_sch_info(udev, ep_ctx, sch_ep); 656 657 list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list); 658 659 return 0; 660 } 661 EXPORT_SYMBOL_GPL(xhci_mtk_add_ep_quirk); 662 663 void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev, 664 struct usb_host_endpoint *ep) 665 { 666 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 667 struct xhci_hcd *xhci; 668 struct xhci_slot_ctx *slot_ctx; 669 struct xhci_virt_device *virt_dev; 670 struct mu3h_sch_bw_info *sch_array; 671 struct mu3h_sch_bw_info *sch_bw; 672 struct mu3h_sch_ep_info *sch_ep, *tmp; 673 int bw_index; 674 675 xhci = hcd_to_xhci(hcd); 676 virt_dev = xhci->devs[udev->slot_id]; 677 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 678 sch_array = mtk->sch_array; 679 680 xhci_dbg(xhci, "%s() type:%d, speed:%d, mpks:%d, dir:%d, ep:%p\n", 681 __func__, usb_endpoint_type(&ep->desc), udev->speed, 682 usb_endpoint_maxp(&ep->desc), 683 usb_endpoint_dir_in(&ep->desc), ep); 684 685 if (!need_bw_sch(ep, udev->speed, slot_ctx->tt_info & TT_SLOT)) 686 return; 687 688 bw_index = get_bw_index(xhci, udev, ep); 689 sch_bw = &sch_array[bw_index]; 690 691 list_for_each_entry_safe(sch_ep, tmp, &sch_bw->bw_ep_list, endpoint) { 692 if (sch_ep->ep == ep) { 693 destroy_sch_ep(udev, sch_bw, sch_ep); 694 break; 695 } 696 } 697 } 698 EXPORT_SYMBOL_GPL(xhci_mtk_drop_ep_quirk); 699 700 int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 701 { 702 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 703 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 704 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 705 struct mu3h_sch_bw_info *sch_bw; 706 struct mu3h_sch_ep_info *sch_ep, *tmp; 707 int bw_index, ret; 708 709 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); 710 711 list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) { 712 bw_index = get_bw_index(xhci, udev, sch_ep->ep); 713 sch_bw = &mtk->sch_array[bw_index]; 714 715 ret = check_sch_bw(udev, sch_bw, sch_ep); 716 if (ret) { 717 xhci_err(xhci, "Not enough bandwidth!\n"); 718 return -ENOSPC; 719 } 720 } 721 722 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) { 723 struct xhci_ep_ctx *ep_ctx; 724 struct usb_host_endpoint *ep = sch_ep->ep; 725 unsigned int ep_index = xhci_get_endpoint_index(&ep->desc); 726 727 bw_index = get_bw_index(xhci, udev, ep); 728 sch_bw = &mtk->sch_array[bw_index]; 729 730 list_move_tail(&sch_ep->endpoint, &sch_bw->bw_ep_list); 731 732 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 733 ep_ctx->reserved[0] |= cpu_to_le32(EP_BPKTS(sch_ep->pkts) 734 | EP_BCSCOUNT(sch_ep->cs_count) 735 | EP_BBM(sch_ep->burst_mode)); 736 ep_ctx->reserved[1] |= cpu_to_le32(EP_BOFFSET(sch_ep->offset) 737 | EP_BREPEAT(sch_ep->repeat)); 738 739 xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n", 740 sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode, 741 sch_ep->offset, sch_ep->repeat); 742 } 743 744 return xhci_check_bandwidth(hcd, udev); 745 } 746 EXPORT_SYMBOL_GPL(xhci_mtk_check_bandwidth); 747 748 void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 749 { 750 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd); 751 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 752 struct mu3h_sch_bw_info *sch_bw; 753 struct mu3h_sch_ep_info *sch_ep, *tmp; 754 int bw_index; 755 756 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev)); 757 758 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) { 759 bw_index = get_bw_index(xhci, udev, sch_ep->ep); 760 sch_bw = &mtk->sch_array[bw_index]; 761 destroy_sch_ep(udev, sch_bw, sch_ep); 762 } 763 764 xhci_reset_bandwidth(hcd, udev); 765 } 766 EXPORT_SYMBOL_GPL(xhci_mtk_reset_bandwidth); 767