xref: /openbmc/linux/drivers/usb/host/xhci-mtk-sch.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author:
5  *  Zhigang.Wei <zhigang.wei@mediatek.com>
6  *  Chunfeng.Yun <chunfeng.yun@mediatek.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 
13 #include "xhci.h"
14 #include "xhci-mtk.h"
15 
16 #define SSP_BW_BOUNDARY	130000
17 #define SS_BW_BOUNDARY	51000
18 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
19 #define HS_BW_BOUNDARY	6144
20 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
21 #define FS_PAYLOAD_MAX 188
22 /*
23  * max number of microframes for split transfer,
24  * for fs isoc in : 1 ss + 1 idle + 7 cs
25  */
26 #define TT_MICROFRAMES_MAX 9
27 
28 #define DBG_BUF_EN	64
29 
30 /* schedule error type */
31 #define ESCH_SS_Y6		1001
32 #define ESCH_SS_OVERLAP		1002
33 #define ESCH_CS_OVERFLOW	1003
34 #define ESCH_BW_OVERFLOW	1004
35 #define ESCH_FIXME		1005
36 
37 /* mtk scheduler bitmasks */
38 #define EP_BPKTS(p)	((p) & 0x7f)
39 #define EP_BCSCOUNT(p)	(((p) & 0x7) << 8)
40 #define EP_BBM(p)	((p) << 11)
41 #define EP_BOFFSET(p)	((p) & 0x3fff)
42 #define EP_BREPEAT(p)	(((p) & 0x7fff) << 16)
43 
44 static char *sch_error_string(int err_num)
45 {
46 	switch (err_num) {
47 	case ESCH_SS_Y6:
48 		return "Can't schedule Start-Split in Y6";
49 	case ESCH_SS_OVERLAP:
50 		return "Can't find a suitable Start-Split location";
51 	case ESCH_CS_OVERFLOW:
52 		return "The last Complete-Split is greater than 7";
53 	case ESCH_BW_OVERFLOW:
54 		return "Bandwidth exceeds the maximum limit";
55 	case ESCH_FIXME:
56 		return "FIXME, to be resolved";
57 	default:
58 		return "Unknown";
59 	}
60 }
61 
62 static int is_fs_or_ls(enum usb_device_speed speed)
63 {
64 	return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
65 }
66 
67 static const char *
68 decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed)
69 {
70 	static char buf[DBG_BUF_EN];
71 	struct usb_endpoint_descriptor *epd = &ep->desc;
72 	unsigned int interval;
73 	const char *unit;
74 
75 	interval = usb_decode_interval(epd, speed);
76 	if (interval % 1000) {
77 		unit = "us";
78 	} else {
79 		unit = "ms";
80 		interval /= 1000;
81 	}
82 
83 	snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s\n",
84 		 usb_speed_string(speed), usb_endpoint_num(epd),
85 		 usb_endpoint_dir_in(epd) ? "in" : "out",
86 		 usb_ep_type_string(usb_endpoint_type(epd)),
87 		 usb_endpoint_maxp(epd), epd->bInterval, interval, unit);
88 
89 	return buf;
90 }
91 
92 static u32 get_bw_boundary(enum usb_device_speed speed)
93 {
94 	u32 boundary;
95 
96 	switch (speed) {
97 	case USB_SPEED_SUPER_PLUS:
98 		boundary = SSP_BW_BOUNDARY;
99 		break;
100 	case USB_SPEED_SUPER:
101 		boundary = SS_BW_BOUNDARY;
102 		break;
103 	default:
104 		boundary = HS_BW_BOUNDARY;
105 		break;
106 	}
107 
108 	return boundary;
109 }
110 
111 /*
112 * get the bandwidth domain which @ep belongs to.
113 *
114 * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
115 * each HS root port is treated as a single bandwidth domain,
116 * but each SS root port is treated as two bandwidth domains, one for IN eps,
117 * one for OUT eps.
118 * @real_port value is defined as follow according to xHCI spec:
119 * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc
120 * so the bandwidth domain array is organized as follow for simplification:
121 * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY
122 */
123 static struct mu3h_sch_bw_info *
124 get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
125 	    struct usb_host_endpoint *ep)
126 {
127 	struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
128 	struct xhci_virt_device *virt_dev;
129 	int bw_index;
130 
131 	virt_dev = xhci->devs[udev->slot_id];
132 
133 	if (udev->speed >= USB_SPEED_SUPER) {
134 		if (usb_endpoint_dir_out(&ep->desc))
135 			bw_index = (virt_dev->real_port - 1) * 2;
136 		else
137 			bw_index = (virt_dev->real_port - 1) * 2 + 1;
138 	} else {
139 		/* add one more for each SS port */
140 		bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1;
141 	}
142 
143 	return &mtk->sch_array[bw_index];
144 }
145 
146 static u32 get_esit(struct xhci_ep_ctx *ep_ctx)
147 {
148 	u32 esit;
149 
150 	esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
151 	if (esit > XHCI_MTK_MAX_ESIT)
152 		esit = XHCI_MTK_MAX_ESIT;
153 
154 	return esit;
155 }
156 
157 static struct mu3h_sch_tt *find_tt(struct usb_device *udev)
158 {
159 	struct usb_tt *utt = udev->tt;
160 	struct mu3h_sch_tt *tt, **tt_index, **ptt;
161 	bool allocated_index = false;
162 
163 	if (!utt)
164 		return NULL;	/* Not below a TT */
165 
166 	/*
167 	 * Find/create our data structure.
168 	 * For hubs with a single TT, we get it directly.
169 	 * For hubs with multiple TTs, there's an extra level of pointers.
170 	 */
171 	tt_index = NULL;
172 	if (utt->multi) {
173 		tt_index = utt->hcpriv;
174 		if (!tt_index) {	/* Create the index array */
175 			tt_index = kcalloc(utt->hub->maxchild,
176 					sizeof(*tt_index), GFP_KERNEL);
177 			if (!tt_index)
178 				return ERR_PTR(-ENOMEM);
179 			utt->hcpriv = tt_index;
180 			allocated_index = true;
181 		}
182 		ptt = &tt_index[udev->ttport - 1];
183 	} else {
184 		ptt = (struct mu3h_sch_tt **) &utt->hcpriv;
185 	}
186 
187 	tt = *ptt;
188 	if (!tt) {	/* Create the mu3h_sch_tt */
189 		tt = kzalloc(sizeof(*tt), GFP_KERNEL);
190 		if (!tt) {
191 			if (allocated_index) {
192 				utt->hcpriv = NULL;
193 				kfree(tt_index);
194 			}
195 			return ERR_PTR(-ENOMEM);
196 		}
197 		INIT_LIST_HEAD(&tt->ep_list);
198 		*ptt = tt;
199 	}
200 
201 	return tt;
202 }
203 
204 /* Release the TT above udev, if it's not in use */
205 static void drop_tt(struct usb_device *udev)
206 {
207 	struct usb_tt *utt = udev->tt;
208 	struct mu3h_sch_tt *tt, **tt_index, **ptt;
209 	int i, cnt;
210 
211 	if (!utt || !utt->hcpriv)
212 		return;		/* Not below a TT, or never allocated */
213 
214 	cnt = 0;
215 	if (utt->multi) {
216 		tt_index = utt->hcpriv;
217 		ptt = &tt_index[udev->ttport - 1];
218 		/*  How many entries are left in tt_index? */
219 		for (i = 0; i < utt->hub->maxchild; ++i)
220 			cnt += !!tt_index[i];
221 	} else {
222 		tt_index = NULL;
223 		ptt = (struct mu3h_sch_tt **)&utt->hcpriv;
224 	}
225 
226 	tt = *ptt;
227 	if (!tt || !list_empty(&tt->ep_list))
228 		return;		/* never allocated , or still in use*/
229 
230 	*ptt = NULL;
231 	kfree(tt);
232 
233 	if (cnt == 1) {
234 		utt->hcpriv = NULL;
235 		kfree(tt_index);
236 	}
237 }
238 
239 static struct mu3h_sch_ep_info *create_sch_ep(struct usb_device *udev,
240 	struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx)
241 {
242 	struct mu3h_sch_ep_info *sch_ep;
243 	struct mu3h_sch_tt *tt = NULL;
244 	u32 len_bw_budget_table;
245 	size_t mem_size;
246 
247 	if (is_fs_or_ls(udev->speed))
248 		len_bw_budget_table = TT_MICROFRAMES_MAX;
249 	else if ((udev->speed >= USB_SPEED_SUPER)
250 			&& usb_endpoint_xfer_isoc(&ep->desc))
251 		len_bw_budget_table = get_esit(ep_ctx);
252 	else
253 		len_bw_budget_table = 1;
254 
255 	mem_size = sizeof(struct mu3h_sch_ep_info) +
256 			len_bw_budget_table * sizeof(u32);
257 	sch_ep = kzalloc(mem_size, GFP_KERNEL);
258 	if (!sch_ep)
259 		return ERR_PTR(-ENOMEM);
260 
261 	if (is_fs_or_ls(udev->speed)) {
262 		tt = find_tt(udev);
263 		if (IS_ERR(tt)) {
264 			kfree(sch_ep);
265 			return ERR_PTR(-ENOMEM);
266 		}
267 	}
268 
269 	sch_ep->sch_tt = tt;
270 	sch_ep->ep = ep;
271 	sch_ep->speed = udev->speed;
272 	INIT_LIST_HEAD(&sch_ep->endpoint);
273 	INIT_LIST_HEAD(&sch_ep->tt_endpoint);
274 
275 	return sch_ep;
276 }
277 
278 static void setup_sch_info(struct xhci_ep_ctx *ep_ctx,
279 			   struct mu3h_sch_ep_info *sch_ep)
280 {
281 	u32 ep_type;
282 	u32 maxpkt;
283 	u32 max_burst;
284 	u32 mult;
285 	u32 esit_pkts;
286 	u32 max_esit_payload;
287 	u32 *bwb_table = sch_ep->bw_budget_table;
288 	int i;
289 
290 	ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
291 	maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
292 	max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
293 	mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
294 	max_esit_payload =
295 		(CTX_TO_MAX_ESIT_PAYLOAD_HI(
296 			le32_to_cpu(ep_ctx->ep_info)) << 16) |
297 		 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info));
298 
299 	sch_ep->esit = get_esit(ep_ctx);
300 	sch_ep->ep_type = ep_type;
301 	sch_ep->maxpkt = maxpkt;
302 	sch_ep->offset = 0;
303 	sch_ep->burst_mode = 0;
304 	sch_ep->repeat = 0;
305 
306 	if (sch_ep->speed == USB_SPEED_HIGH) {
307 		sch_ep->cs_count = 0;
308 
309 		/*
310 		 * usb_20 spec section5.9
311 		 * a single microframe is enough for HS synchromous endpoints
312 		 * in a interval
313 		 */
314 		sch_ep->num_budget_microframes = 1;
315 
316 		/*
317 		 * xHCI spec section6.2.3.4
318 		 * @max_burst is the number of additional transactions
319 		 * opportunities per microframe
320 		 */
321 		sch_ep->pkts = max_burst + 1;
322 		sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
323 		bwb_table[0] = sch_ep->bw_cost_per_microframe;
324 	} else if (sch_ep->speed >= USB_SPEED_SUPER) {
325 		/* usb3_r1 spec section4.4.7 & 4.4.8 */
326 		sch_ep->cs_count = 0;
327 		sch_ep->burst_mode = 1;
328 		/*
329 		 * some device's (d)wBytesPerInterval is set as 0,
330 		 * then max_esit_payload is 0, so evaluate esit_pkts from
331 		 * mult and burst
332 		 */
333 		esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt);
334 		if (esit_pkts == 0)
335 			esit_pkts = (mult + 1) * (max_burst + 1);
336 
337 		if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
338 			sch_ep->pkts = esit_pkts;
339 			sch_ep->num_budget_microframes = 1;
340 			bwb_table[0] = maxpkt * sch_ep->pkts;
341 		}
342 
343 		if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
344 
345 			if (sch_ep->esit == 1)
346 				sch_ep->pkts = esit_pkts;
347 			else if (esit_pkts <= sch_ep->esit)
348 				sch_ep->pkts = 1;
349 			else
350 				sch_ep->pkts = roundup_pow_of_two(esit_pkts)
351 					/ sch_ep->esit;
352 
353 			sch_ep->num_budget_microframes =
354 				DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
355 
356 			sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1);
357 			sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
358 
359 			for (i = 0; i < sch_ep->num_budget_microframes - 1; i++)
360 				bwb_table[i] = sch_ep->bw_cost_per_microframe;
361 
362 			/* last one <= bw_cost_per_microframe */
363 			bwb_table[i] = maxpkt * esit_pkts
364 				       - i * sch_ep->bw_cost_per_microframe;
365 		}
366 	} else if (is_fs_or_ls(sch_ep->speed)) {
367 		sch_ep->pkts = 1; /* at most one packet for each microframe */
368 
369 		/*
370 		 * num_budget_microframes and cs_count will be updated when
371 		 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type
372 		 */
373 		sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX);
374 		sch_ep->num_budget_microframes = sch_ep->cs_count;
375 		sch_ep->bw_cost_per_microframe =
376 			(maxpkt < FS_PAYLOAD_MAX) ? maxpkt : FS_PAYLOAD_MAX;
377 
378 		/* init budget table */
379 		if (ep_type == ISOC_OUT_EP) {
380 			for (i = 0; i < sch_ep->num_budget_microframes; i++)
381 				bwb_table[i] =	sch_ep->bw_cost_per_microframe;
382 		} else if (ep_type == INT_OUT_EP) {
383 			/* only first one consumes bandwidth, others as zero */
384 			bwb_table[0] = sch_ep->bw_cost_per_microframe;
385 		} else { /* INT_IN_EP or ISOC_IN_EP */
386 			bwb_table[0] = 0; /* start split */
387 			bwb_table[1] = 0; /* idle */
388 			/*
389 			 * due to cs_count will be updated according to cs
390 			 * position, assign all remainder budget array
391 			 * elements as @bw_cost_per_microframe, but only first
392 			 * @num_budget_microframes elements will be used later
393 			 */
394 			for (i = 2; i < TT_MICROFRAMES_MAX; i++)
395 				bwb_table[i] =	sch_ep->bw_cost_per_microframe;
396 		}
397 	}
398 }
399 
400 /* Get maximum bandwidth when we schedule at offset slot. */
401 static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
402 	struct mu3h_sch_ep_info *sch_ep, u32 offset)
403 {
404 	u32 num_esit;
405 	u32 max_bw = 0;
406 	u32 bw;
407 	int i;
408 	int j;
409 
410 	num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
411 	for (i = 0; i < num_esit; i++) {
412 		u32 base = offset + i * sch_ep->esit;
413 
414 		for (j = 0; j < sch_ep->num_budget_microframes; j++) {
415 			bw = sch_bw->bus_bw[base + j] +
416 					sch_ep->bw_budget_table[j];
417 			if (bw > max_bw)
418 				max_bw = bw;
419 		}
420 	}
421 	return max_bw;
422 }
423 
424 static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
425 	struct mu3h_sch_ep_info *sch_ep, bool used)
426 {
427 	u32 num_esit;
428 	u32 base;
429 	int i;
430 	int j;
431 
432 	num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
433 	for (i = 0; i < num_esit; i++) {
434 		base = sch_ep->offset + i * sch_ep->esit;
435 		for (j = 0; j < sch_ep->num_budget_microframes; j++) {
436 			if (used)
437 				sch_bw->bus_bw[base + j] +=
438 					sch_ep->bw_budget_table[j];
439 			else
440 				sch_bw->bus_bw[base + j] -=
441 					sch_ep->bw_budget_table[j];
442 		}
443 	}
444 }
445 
446 static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
447 {
448 	struct mu3h_sch_tt *tt = sch_ep->sch_tt;
449 	u32 num_esit, tmp;
450 	int base;
451 	int i, j;
452 
453 	num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
454 	for (i = 0; i < num_esit; i++) {
455 		base = offset + i * sch_ep->esit;
456 
457 		/*
458 		 * Compared with hs bus, no matter what ep type,
459 		 * the hub will always delay one uframe to send data
460 		 */
461 		for (j = 0; j < sch_ep->cs_count; j++) {
462 			tmp = tt->fs_bus_bw[base + j] + sch_ep->bw_cost_per_microframe;
463 			if (tmp > FS_PAYLOAD_MAX)
464 				return -ESCH_BW_OVERFLOW;
465 		}
466 	}
467 
468 	return 0;
469 }
470 
471 static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset)
472 {
473 	struct mu3h_sch_tt *tt = sch_ep->sch_tt;
474 	u32 extra_cs_count;
475 	u32 start_ss, last_ss;
476 	u32 start_cs, last_cs;
477 	int i;
478 
479 	start_ss = offset % 8;
480 
481 	if (sch_ep->ep_type == ISOC_OUT_EP) {
482 		last_ss = start_ss + sch_ep->cs_count - 1;
483 
484 		/*
485 		 * usb_20 spec section11.18:
486 		 * must never schedule Start-Split in Y6
487 		 */
488 		if (!(start_ss == 7 || last_ss < 6))
489 			return -ESCH_SS_Y6;
490 
491 		for (i = 0; i < sch_ep->cs_count; i++)
492 			if (test_bit(offset + i, tt->ss_bit_map))
493 				return -ESCH_SS_OVERLAP;
494 
495 	} else {
496 		u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
497 
498 		/*
499 		 * usb_20 spec section11.18:
500 		 * must never schedule Start-Split in Y6
501 		 */
502 		if (start_ss == 6)
503 			return -ESCH_SS_Y6;
504 
505 		/* one uframe for ss + one uframe for idle */
506 		start_cs = (start_ss + 2) % 8;
507 		last_cs = start_cs + cs_count - 1;
508 
509 		if (last_cs > 7)
510 			return -ESCH_CS_OVERFLOW;
511 
512 		if (sch_ep->ep_type == ISOC_IN_EP)
513 			extra_cs_count = (last_cs == 7) ? 1 : 2;
514 		else /*  ep_type : INTR IN / INTR OUT */
515 			extra_cs_count = 1;
516 
517 		cs_count += extra_cs_count;
518 		if (cs_count > 7)
519 			cs_count = 7; /* HW limit */
520 
521 		if (test_bit(offset, tt->ss_bit_map))
522 			return -ESCH_SS_OVERLAP;
523 
524 		sch_ep->cs_count = cs_count;
525 		/* one for ss, the other for idle */
526 		sch_ep->num_budget_microframes = cs_count + 2;
527 
528 		/*
529 		 * if interval=1, maxp >752, num_budge_micoframe is larger
530 		 * than sch_ep->esit, will overstep boundary
531 		 */
532 		if (sch_ep->num_budget_microframes > sch_ep->esit)
533 			sch_ep->num_budget_microframes = sch_ep->esit;
534 	}
535 
536 	return check_fs_bus_bw(sch_ep, offset);
537 }
538 
539 static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used)
540 {
541 	struct mu3h_sch_tt *tt = sch_ep->sch_tt;
542 	u32 base, num_esit;
543 	int bw_updated;
544 	int bits;
545 	int i, j;
546 
547 	num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
548 	bits = (sch_ep->ep_type == ISOC_OUT_EP) ? sch_ep->cs_count : 1;
549 
550 	if (used)
551 		bw_updated = sch_ep->bw_cost_per_microframe;
552 	else
553 		bw_updated = -sch_ep->bw_cost_per_microframe;
554 
555 	for (i = 0; i < num_esit; i++) {
556 		base = sch_ep->offset + i * sch_ep->esit;
557 
558 		for (j = 0; j < bits; j++) {
559 			if (used)
560 				set_bit(base + j, tt->ss_bit_map);
561 			else
562 				clear_bit(base + j, tt->ss_bit_map);
563 		}
564 
565 		for (j = 0; j < sch_ep->cs_count; j++)
566 			tt->fs_bus_bw[base + j] += bw_updated;
567 	}
568 
569 	if (used)
570 		list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list);
571 	else
572 		list_del(&sch_ep->tt_endpoint);
573 }
574 
575 static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw,
576 		      struct mu3h_sch_ep_info *sch_ep, bool loaded)
577 {
578 	if (sch_ep->sch_tt)
579 		update_sch_tt(sch_ep, loaded);
580 
581 	/* update bus bandwidth info */
582 	update_bus_bw(sch_bw, sch_ep, loaded);
583 	sch_ep->allocated = loaded;
584 
585 	return 0;
586 }
587 
588 static u32 get_esit_boundary(struct mu3h_sch_ep_info *sch_ep)
589 {
590 	u32 boundary = sch_ep->esit;
591 
592 	if (sch_ep->sch_tt) { /* LS/FS with TT */
593 		/* tune for CS */
594 		if (sch_ep->ep_type != ISOC_OUT_EP)
595 			boundary++;
596 		else if (boundary > 1) /* normally esit >= 8 for FS/LS */
597 			boundary--;
598 	}
599 
600 	return boundary;
601 }
602 
603 static int check_sch_bw(struct mu3h_sch_bw_info *sch_bw,
604 			struct mu3h_sch_ep_info *sch_ep)
605 {
606 	u32 offset;
607 	u32 min_bw;
608 	u32 min_index;
609 	u32 worst_bw;
610 	u32 bw_boundary;
611 	u32 esit_boundary;
612 	u32 min_num_budget;
613 	u32 min_cs_count;
614 	int ret = 0;
615 
616 	/*
617 	 * Search through all possible schedule microframes.
618 	 * and find a microframe where its worst bandwidth is minimum.
619 	 */
620 	min_bw = ~0;
621 	min_index = 0;
622 	min_cs_count = sch_ep->cs_count;
623 	min_num_budget = sch_ep->num_budget_microframes;
624 	esit_boundary = get_esit_boundary(sch_ep);
625 	for (offset = 0; offset < sch_ep->esit; offset++) {
626 		if (sch_ep->sch_tt) {
627 			ret = check_sch_tt(sch_ep, offset);
628 			if (ret)
629 				continue;
630 		}
631 
632 		if ((offset + sch_ep->num_budget_microframes) > esit_boundary)
633 			break;
634 
635 		worst_bw = get_max_bw(sch_bw, sch_ep, offset);
636 		if (min_bw > worst_bw) {
637 			min_bw = worst_bw;
638 			min_index = offset;
639 			min_cs_count = sch_ep->cs_count;
640 			min_num_budget = sch_ep->num_budget_microframes;
641 		}
642 		if (min_bw == 0)
643 			break;
644 	}
645 
646 	bw_boundary = get_bw_boundary(sch_ep->speed);
647 	/* check bandwidth */
648 	if (min_bw > bw_boundary)
649 		return ret ? ret : -ESCH_BW_OVERFLOW;
650 
651 	sch_ep->offset = min_index;
652 	sch_ep->cs_count = min_cs_count;
653 	sch_ep->num_budget_microframes = min_num_budget;
654 
655 	return load_ep_bw(sch_bw, sch_ep, true);
656 }
657 
658 static void destroy_sch_ep(struct usb_device *udev,
659 	struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep)
660 {
661 	/* only release ep bw check passed by check_sch_bw() */
662 	if (sch_ep->allocated)
663 		load_ep_bw(sch_bw, sch_ep, false);
664 
665 	if (sch_ep->sch_tt)
666 		drop_tt(udev);
667 
668 	list_del(&sch_ep->endpoint);
669 	kfree(sch_ep);
670 }
671 
672 static bool need_bw_sch(struct usb_host_endpoint *ep,
673 	enum usb_device_speed speed, int has_tt)
674 {
675 	/* only for periodic endpoints */
676 	if (usb_endpoint_xfer_control(&ep->desc)
677 		|| usb_endpoint_xfer_bulk(&ep->desc))
678 		return false;
679 
680 	/*
681 	 * for LS & FS periodic endpoints which its device is not behind
682 	 * a TT are also ignored, root-hub will schedule them directly,
683 	 * but need set @bpkts field of endpoint context to 1.
684 	 */
685 	if (is_fs_or_ls(speed) && !has_tt)
686 		return false;
687 
688 	/* skip endpoint with zero maxpkt */
689 	if (usb_endpoint_maxp(&ep->desc) == 0)
690 		return false;
691 
692 	return true;
693 }
694 
695 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
696 {
697 	struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
698 	struct mu3h_sch_bw_info *sch_array;
699 	int num_usb_bus;
700 	int i;
701 
702 	/* ss IN and OUT are separated */
703 	num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports;
704 
705 	sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
706 	if (sch_array == NULL)
707 		return -ENOMEM;
708 
709 	for (i = 0; i < num_usb_bus; i++)
710 		INIT_LIST_HEAD(&sch_array[i].bw_ep_list);
711 
712 	mtk->sch_array = sch_array;
713 
714 	INIT_LIST_HEAD(&mtk->bw_ep_chk_list);
715 
716 	return 0;
717 }
718 
719 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
720 {
721 	kfree(mtk->sch_array);
722 }
723 
724 static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
725 			struct usb_host_endpoint *ep)
726 {
727 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
728 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
729 	struct xhci_ep_ctx *ep_ctx;
730 	struct xhci_virt_device *virt_dev;
731 	struct mu3h_sch_ep_info *sch_ep;
732 	unsigned int ep_index;
733 
734 	virt_dev = xhci->devs[udev->slot_id];
735 	ep_index = xhci_get_endpoint_index(&ep->desc);
736 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
737 
738 	xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
739 
740 	if (!need_bw_sch(ep, udev->speed, !!virt_dev->tt_info)) {
741 		/*
742 		 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its
743 		 * device does not connected through an external HS hub
744 		 */
745 		if (usb_endpoint_xfer_int(&ep->desc)
746 			|| usb_endpoint_xfer_isoc(&ep->desc))
747 			ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1));
748 
749 		return 0;
750 	}
751 
752 	sch_ep = create_sch_ep(udev, ep, ep_ctx);
753 	if (IS_ERR_OR_NULL(sch_ep))
754 		return -ENOMEM;
755 
756 	setup_sch_info(ep_ctx, sch_ep);
757 
758 	list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list);
759 
760 	return 0;
761 }
762 
763 static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
764 			  struct usb_host_endpoint *ep)
765 {
766 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
767 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
768 	struct xhci_virt_device *virt_dev;
769 	struct mu3h_sch_bw_info *sch_bw;
770 	struct mu3h_sch_ep_info *sch_ep, *tmp;
771 
772 	virt_dev = xhci->devs[udev->slot_id];
773 
774 	xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
775 
776 	if (!need_bw_sch(ep, udev->speed, !!virt_dev->tt_info))
777 		return;
778 
779 	sch_bw = get_bw_info(mtk, udev, ep);
780 
781 	list_for_each_entry_safe(sch_ep, tmp, &sch_bw->bw_ep_list, endpoint) {
782 		if (sch_ep->ep == ep) {
783 			destroy_sch_ep(udev, sch_bw, sch_ep);
784 			break;
785 		}
786 	}
787 }
788 
789 int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
790 {
791 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
792 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
793 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
794 	struct mu3h_sch_bw_info *sch_bw;
795 	struct mu3h_sch_ep_info *sch_ep, *tmp;
796 	int ret;
797 
798 	xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
799 
800 	list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) {
801 		sch_bw = get_bw_info(mtk, udev, sch_ep->ep);
802 
803 		ret = check_sch_bw(sch_bw, sch_ep);
804 		if (ret) {
805 			xhci_err(xhci, "Not enough bandwidth! (%s)\n",
806 				 sch_error_string(-ret));
807 			return -ENOSPC;
808 		}
809 	}
810 
811 	list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) {
812 		struct xhci_ep_ctx *ep_ctx;
813 		struct usb_host_endpoint *ep = sch_ep->ep;
814 		unsigned int ep_index = xhci_get_endpoint_index(&ep->desc);
815 
816 		sch_bw = get_bw_info(mtk, udev, ep);
817 		list_move_tail(&sch_ep->endpoint, &sch_bw->bw_ep_list);
818 
819 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
820 		ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts)
821 			| EP_BCSCOUNT(sch_ep->cs_count)
822 			| EP_BBM(sch_ep->burst_mode));
823 		ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset)
824 			| EP_BREPEAT(sch_ep->repeat));
825 
826 		xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
827 			sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
828 			sch_ep->offset, sch_ep->repeat);
829 	}
830 
831 	return xhci_check_bandwidth(hcd, udev);
832 }
833 
834 void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
835 {
836 	struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
837 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
838 	struct mu3h_sch_bw_info *sch_bw;
839 	struct mu3h_sch_ep_info *sch_ep, *tmp;
840 
841 	xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
842 
843 	list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) {
844 		sch_bw = get_bw_info(mtk, udev, sch_ep->ep);
845 		destroy_sch_ep(udev, sch_bw, sch_ep);
846 	}
847 
848 	xhci_reset_bandwidth(hcd, udev);
849 }
850 
851 int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
852 		    struct usb_host_endpoint *ep)
853 {
854 	int ret;
855 
856 	ret = xhci_add_endpoint(hcd, udev, ep);
857 	if (ret)
858 		return ret;
859 
860 	if (ep->hcpriv)
861 		ret = add_ep_quirk(hcd, udev, ep);
862 
863 	return ret;
864 }
865 
866 int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
867 		     struct usb_host_endpoint *ep)
868 {
869 	int ret;
870 
871 	ret = xhci_drop_endpoint(hcd, udev, ep);
872 	if (ret)
873 		return ret;
874 
875 	if (ep->hcpriv)
876 		drop_ep_quirk(hcd, udev, ep);
877 
878 	return 0;
879 }
880