xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg->bounce_buf);
75 	kfree(seg);
76 }
77 
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 				struct xhci_segment *first)
80 {
81 	struct xhci_segment *seg;
82 
83 	seg = first->next;
84 	while (seg != first) {
85 		struct xhci_segment *next = seg->next;
86 		xhci_segment_free(xhci, seg);
87 		seg = next;
88 	}
89 	xhci_segment_free(xhci, first);
90 }
91 
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100 			       struct xhci_segment *next,
101 			       enum xhci_ring_type type, bool chain_links)
102 {
103 	u32 val;
104 
105 	if (!prev || !next)
106 		return;
107 	prev->next = next;
108 	if (type != TYPE_EVENT) {
109 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 			cpu_to_le64(next->dma);
111 
112 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 		val &= ~TRB_TYPE_BITMASK;
115 		val |= TRB_TYPE(TRB_LINK);
116 		if (chain_links)
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 	bool chain_links;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 			 (ring->type == TYPE_ISOC &&
139 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
140 
141 	next = ring->enq_seg->next;
142 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 	xhci_link_segments(last, next, ring->type, chain_links);
144 	ring->num_segs += num_segs;
145 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146 
147 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 			&= ~cpu_to_le32(LINK_TOGGLE);
150 		last->trbs[TRBS_PER_SEGMENT-1].link.control
151 			|= cpu_to_le32(LINK_TOGGLE);
152 		ring->last_seg = last;
153 	}
154 }
155 
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *	0x10c90fff >> 10 = 0x43243
171  *	0x10c912c0 >> 10 = 0x43244
172  *	0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 		struct xhci_ring *ring,
189 		struct xhci_segment *seg,
190 		gfp_t mem_flags)
191 {
192 	unsigned long key;
193 	int ret;
194 
195 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 	/* Skip any segments that were already added. */
197 	if (radix_tree_lookup(trb_address_map, key))
198 		return 0;
199 
200 	ret = radix_tree_maybe_preload(mem_flags);
201 	if (ret)
202 		return ret;
203 	ret = radix_tree_insert(trb_address_map,
204 			key, ring);
205 	radix_tree_preload_end();
206 	return ret;
207 }
208 
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 		struct xhci_segment *seg)
211 {
212 	unsigned long key;
213 
214 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 	if (radix_tree_lookup(trb_address_map, key))
216 		radix_tree_delete(trb_address_map, key);
217 }
218 
219 static int xhci_update_stream_segment_mapping(
220 		struct radix_tree_root *trb_address_map,
221 		struct xhci_ring *ring,
222 		struct xhci_segment *first_seg,
223 		struct xhci_segment *last_seg,
224 		gfp_t mem_flags)
225 {
226 	struct xhci_segment *seg;
227 	struct xhci_segment *failed_seg;
228 	int ret;
229 
230 	if (WARN_ON_ONCE(trb_address_map == NULL))
231 		return 0;
232 
233 	seg = first_seg;
234 	do {
235 		ret = xhci_insert_segment_mapping(trb_address_map,
236 				ring, seg, mem_flags);
237 		if (ret)
238 			goto remove_streams;
239 		if (seg == last_seg)
240 			return 0;
241 		seg = seg->next;
242 	} while (seg != first_seg);
243 
244 	return 0;
245 
246 remove_streams:
247 	failed_seg = seg;
248 	seg = first_seg;
249 	do {
250 		xhci_remove_segment_mapping(trb_address_map, seg);
251 		if (seg == failed_seg)
252 			return ret;
253 		seg = seg->next;
254 	} while (seg != first_seg);
255 
256 	return ret;
257 }
258 
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261 	struct xhci_segment *seg;
262 
263 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 		return;
265 
266 	seg = ring->first_seg;
267 	do {
268 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 		seg = seg->next;
270 	} while (seg != ring->first_seg);
271 }
272 
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 			ring->first_seg, ring->last_seg, mem_flags);
277 }
278 
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 	if (!ring)
283 		return;
284 
285 	trace_xhci_ring_free(ring);
286 
287 	if (ring->first_seg) {
288 		if (ring->type == TYPE_STREAM)
289 			xhci_remove_stream_mapping(ring);
290 		xhci_free_segments_for_ring(xhci, ring->first_seg);
291 	}
292 
293 	kfree(ring);
294 }
295 
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 			       unsigned int cycle_state)
298 {
299 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
300 	ring->enqueue = ring->first_seg->trbs;
301 	ring->enq_seg = ring->first_seg;
302 	ring->dequeue = ring->enqueue;
303 	ring->deq_seg = ring->first_seg;
304 	/* The ring is initialized to 0. The producer must write 1 to the cycle
305 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 	 *
308 	 * New rings are initialized with cycle state equal to 1; if we are
309 	 * handling ring expansion, set the cycle state equal to the old ring.
310 	 */
311 	ring->cycle_state = cycle_state;
312 
313 	/*
314 	 * Each segment has a link TRB, and leave an extra TRB for SW
315 	 * accounting purpose
316 	 */
317 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319 
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 		struct xhci_segment **first, struct xhci_segment **last,
323 		unsigned int num_segs, unsigned int cycle_state,
324 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326 	struct xhci_segment *prev;
327 	bool chain_links;
328 
329 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 			 (type == TYPE_ISOC &&
332 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
333 
334 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 	if (!prev)
336 		return -ENOMEM;
337 	num_segs--;
338 
339 	*first = prev;
340 	while (num_segs > 0) {
341 		struct xhci_segment	*next;
342 
343 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 		if (!next) {
345 			prev = *first;
346 			while (prev) {
347 				next = prev->next;
348 				xhci_segment_free(xhci, prev);
349 				prev = next;
350 			}
351 			return -ENOMEM;
352 		}
353 		xhci_link_segments(prev, next, type, chain_links);
354 
355 		prev = next;
356 		num_segs--;
357 	}
358 	xhci_link_segments(prev, *first, type, chain_links);
359 	*last = prev;
360 
361 	return 0;
362 }
363 
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 		unsigned int num_segs, unsigned int cycle_state,
373 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375 	struct xhci_ring	*ring;
376 	int ret;
377 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378 
379 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 	if (!ring)
381 		return NULL;
382 
383 	ring->num_segs = num_segs;
384 	ring->bounce_buf_len = max_packet;
385 	INIT_LIST_HEAD(&ring->td_list);
386 	ring->type = type;
387 	if (num_segs == 0)
388 		return ring;
389 
390 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 			&ring->last_seg, num_segs, cycle_state, type,
392 			max_packet, flags);
393 	if (ret)
394 		goto fail;
395 
396 	/* Only event ring does not use link TRB */
397 	if (type != TYPE_EVENT) {
398 		/* See section 4.9.2.1 and 6.4.4.1 */
399 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 			cpu_to_le32(LINK_TOGGLE);
401 	}
402 	xhci_initialize_ring_info(ring, cycle_state);
403 	trace_xhci_ring_alloc(ring);
404 	return ring;
405 
406 fail:
407 	kfree(ring);
408 	return NULL;
409 }
410 
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 		struct xhci_virt_device *virt_dev,
413 		unsigned int ep_index)
414 {
415 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 	virt_dev->eps[ep_index].ring = NULL;
417 }
418 
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 				unsigned int num_trbs, gfp_t flags)
425 {
426 	struct xhci_segment	*first;
427 	struct xhci_segment	*last;
428 	unsigned int		num_segs;
429 	unsigned int		num_segs_needed;
430 	int			ret;
431 
432 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 				(TRBS_PER_SEGMENT - 1);
434 
435 	/* Allocate number of segments we needed, or double the ring size */
436 	num_segs = max(ring->num_segs, num_segs_needed);
437 
438 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439 			num_segs, ring->cycle_state, ring->type,
440 			ring->bounce_buf_len, flags);
441 	if (ret)
442 		return -ENOMEM;
443 
444 	if (ring->type == TYPE_STREAM)
445 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446 						ring, first, last, flags);
447 	if (ret) {
448 		struct xhci_segment *next;
449 		do {
450 			next = first->next;
451 			xhci_segment_free(xhci, first);
452 			if (first == last)
453 				break;
454 			first = next;
455 		} while (true);
456 		return ret;
457 	}
458 
459 	xhci_link_rings(xhci, ring, first, last, num_segs);
460 	trace_xhci_ring_expansion(ring);
461 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462 			"ring expansion succeed, now has %d segments",
463 			ring->num_segs);
464 
465 	return 0;
466 }
467 
468 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
469 						    int type, gfp_t flags)
470 {
471 	struct xhci_container_ctx *ctx;
472 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
473 
474 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
475 		return NULL;
476 
477 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
478 	if (!ctx)
479 		return NULL;
480 
481 	ctx->type = type;
482 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
483 	if (type == XHCI_CTX_TYPE_INPUT)
484 		ctx->size += CTX_SIZE(xhci->hcc_params);
485 
486 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
487 	if (!ctx->bytes) {
488 		kfree(ctx);
489 		return NULL;
490 	}
491 	return ctx;
492 }
493 
494 void xhci_free_container_ctx(struct xhci_hcd *xhci,
495 			     struct xhci_container_ctx *ctx)
496 {
497 	if (!ctx)
498 		return;
499 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
500 	kfree(ctx);
501 }
502 
503 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
504 					      struct xhci_container_ctx *ctx)
505 {
506 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
507 		return NULL;
508 
509 	return (struct xhci_input_control_ctx *)ctx->bytes;
510 }
511 
512 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
513 					struct xhci_container_ctx *ctx)
514 {
515 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
516 		return (struct xhci_slot_ctx *)ctx->bytes;
517 
518 	return (struct xhci_slot_ctx *)
519 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
520 }
521 
522 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
523 				    struct xhci_container_ctx *ctx,
524 				    unsigned int ep_index)
525 {
526 	/* increment ep index by offset of start of ep ctx array */
527 	ep_index++;
528 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
529 		ep_index++;
530 
531 	return (struct xhci_ep_ctx *)
532 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
533 }
534 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
535 
536 /***************** Streams structures manipulation *************************/
537 
538 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
539 		unsigned int num_stream_ctxs,
540 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
541 {
542 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
543 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
544 
545 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
546 		dma_free_coherent(dev, size,
547 				stream_ctx, dma);
548 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
549 		return dma_pool_free(xhci->small_streams_pool,
550 				stream_ctx, dma);
551 	else
552 		return dma_pool_free(xhci->medium_streams_pool,
553 				stream_ctx, dma);
554 }
555 
556 /*
557  * The stream context array for each endpoint with bulk streams enabled can
558  * vary in size, based on:
559  *  - how many streams the endpoint supports,
560  *  - the maximum primary stream array size the host controller supports,
561  *  - and how many streams the device driver asks for.
562  *
563  * The stream context array must be a power of 2, and can be as small as
564  * 64 bytes or as large as 1MB.
565  */
566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 		unsigned int num_stream_ctxs, dma_addr_t *dma,
568 		gfp_t mem_flags)
569 {
570 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
572 
573 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
574 		return dma_alloc_coherent(dev, size,
575 				dma, mem_flags);
576 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
577 		return dma_pool_alloc(xhci->small_streams_pool,
578 				mem_flags, dma);
579 	else
580 		return dma_pool_alloc(xhci->medium_streams_pool,
581 				mem_flags, dma);
582 }
583 
584 struct xhci_ring *xhci_dma_to_transfer_ring(
585 		struct xhci_virt_ep *ep,
586 		u64 address)
587 {
588 	if (ep->ep_state & EP_HAS_STREAMS)
589 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
590 				address >> TRB_SEGMENT_SHIFT);
591 	return ep->ring;
592 }
593 
594 /*
595  * Change an endpoint's internal structure so it supports stream IDs.  The
596  * number of requested streams includes stream 0, which cannot be used by device
597  * drivers.
598  *
599  * The number of stream contexts in the stream context array may be bigger than
600  * the number of streams the driver wants to use.  This is because the number of
601  * stream context array entries must be a power of two.
602  */
603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
604 		unsigned int num_stream_ctxs,
605 		unsigned int num_streams,
606 		unsigned int max_packet, gfp_t mem_flags)
607 {
608 	struct xhci_stream_info *stream_info;
609 	u32 cur_stream;
610 	struct xhci_ring *cur_ring;
611 	u64 addr;
612 	int ret;
613 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
614 
615 	xhci_dbg(xhci, "Allocating %u streams and %u "
616 			"stream context array entries.\n",
617 			num_streams, num_stream_ctxs);
618 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
619 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
620 		return NULL;
621 	}
622 	xhci->cmd_ring_reserved_trbs++;
623 
624 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
625 			dev_to_node(dev));
626 	if (!stream_info)
627 		goto cleanup_trbs;
628 
629 	stream_info->num_streams = num_streams;
630 	stream_info->num_stream_ctxs = num_stream_ctxs;
631 
632 	/* Initialize the array of virtual pointers to stream rings. */
633 	stream_info->stream_rings = kcalloc_node(
634 			num_streams, sizeof(struct xhci_ring *), mem_flags,
635 			dev_to_node(dev));
636 	if (!stream_info->stream_rings)
637 		goto cleanup_info;
638 
639 	/* Initialize the array of DMA addresses for stream rings for the HW. */
640 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
641 			num_stream_ctxs, &stream_info->ctx_array_dma,
642 			mem_flags);
643 	if (!stream_info->stream_ctx_array)
644 		goto cleanup_ctx;
645 	memset(stream_info->stream_ctx_array, 0,
646 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
647 
648 	/* Allocate everything needed to free the stream rings later */
649 	stream_info->free_streams_command =
650 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
651 	if (!stream_info->free_streams_command)
652 		goto cleanup_ctx;
653 
654 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
655 
656 	/* Allocate rings for all the streams that the driver will use,
657 	 * and add their segment DMA addresses to the radix tree.
658 	 * Stream 0 is reserved.
659 	 */
660 
661 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
662 		stream_info->stream_rings[cur_stream] =
663 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
664 					mem_flags);
665 		cur_ring = stream_info->stream_rings[cur_stream];
666 		if (!cur_ring)
667 			goto cleanup_rings;
668 		cur_ring->stream_id = cur_stream;
669 		cur_ring->trb_address_map = &stream_info->trb_address_map;
670 		/* Set deq ptr, cycle bit, and stream context type */
671 		addr = cur_ring->first_seg->dma |
672 			SCT_FOR_CTX(SCT_PRI_TR) |
673 			cur_ring->cycle_state;
674 		stream_info->stream_ctx_array[cur_stream].stream_ring =
675 			cpu_to_le64(addr);
676 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
677 				cur_stream, (unsigned long long) addr);
678 
679 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
680 		if (ret) {
681 			xhci_ring_free(xhci, cur_ring);
682 			stream_info->stream_rings[cur_stream] = NULL;
683 			goto cleanup_rings;
684 		}
685 	}
686 	/* Leave the other unused stream ring pointers in the stream context
687 	 * array initialized to zero.  This will cause the xHC to give us an
688 	 * error if the device asks for a stream ID we don't have setup (if it
689 	 * was any other way, the host controller would assume the ring is
690 	 * "empty" and wait forever for data to be queued to that stream ID).
691 	 */
692 
693 	return stream_info;
694 
695 cleanup_rings:
696 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
697 		cur_ring = stream_info->stream_rings[cur_stream];
698 		if (cur_ring) {
699 			xhci_ring_free(xhci, cur_ring);
700 			stream_info->stream_rings[cur_stream] = NULL;
701 		}
702 	}
703 	xhci_free_command(xhci, stream_info->free_streams_command);
704 cleanup_ctx:
705 	kfree(stream_info->stream_rings);
706 cleanup_info:
707 	kfree(stream_info);
708 cleanup_trbs:
709 	xhci->cmd_ring_reserved_trbs--;
710 	return NULL;
711 }
712 /*
713  * Sets the MaxPStreams field and the Linear Stream Array field.
714  * Sets the dequeue pointer to the stream context array.
715  */
716 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
717 		struct xhci_ep_ctx *ep_ctx,
718 		struct xhci_stream_info *stream_info)
719 {
720 	u32 max_primary_streams;
721 	/* MaxPStreams is the number of stream context array entries, not the
722 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
723 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
724 	 */
725 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
726 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
727 			"Setting number of stream ctx array entries to %u",
728 			1 << (max_primary_streams + 1));
729 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
730 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
731 				       | EP_HAS_LSA);
732 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
733 }
734 
735 /*
736  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
737  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
738  * not at the beginning of the ring).
739  */
740 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
741 		struct xhci_virt_ep *ep)
742 {
743 	dma_addr_t addr;
744 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
745 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
746 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
747 }
748 
749 /* Frees all stream contexts associated with the endpoint,
750  *
751  * Caller should fix the endpoint context streams fields.
752  */
753 void xhci_free_stream_info(struct xhci_hcd *xhci,
754 		struct xhci_stream_info *stream_info)
755 {
756 	int cur_stream;
757 	struct xhci_ring *cur_ring;
758 
759 	if (!stream_info)
760 		return;
761 
762 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
763 			cur_stream++) {
764 		cur_ring = stream_info->stream_rings[cur_stream];
765 		if (cur_ring) {
766 			xhci_ring_free(xhci, cur_ring);
767 			stream_info->stream_rings[cur_stream] = NULL;
768 		}
769 	}
770 	xhci_free_command(xhci, stream_info->free_streams_command);
771 	xhci->cmd_ring_reserved_trbs--;
772 	if (stream_info->stream_ctx_array)
773 		xhci_free_stream_ctx(xhci,
774 				stream_info->num_stream_ctxs,
775 				stream_info->stream_ctx_array,
776 				stream_info->ctx_array_dma);
777 
778 	kfree(stream_info->stream_rings);
779 	kfree(stream_info);
780 }
781 
782 
783 /***************** Device context manipulation *************************/
784 
785 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
786 		struct xhci_virt_ep *ep)
787 {
788 	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
789 		    0);
790 	ep->xhci = xhci;
791 }
792 
793 static void xhci_free_tt_info(struct xhci_hcd *xhci,
794 		struct xhci_virt_device *virt_dev,
795 		int slot_id)
796 {
797 	struct list_head *tt_list_head;
798 	struct xhci_tt_bw_info *tt_info, *next;
799 	bool slot_found = false;
800 
801 	/* If the device never made it past the Set Address stage,
802 	 * it may not have the real_port set correctly.
803 	 */
804 	if (virt_dev->real_port == 0 ||
805 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
806 		xhci_dbg(xhci, "Bad real port.\n");
807 		return;
808 	}
809 
810 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
811 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
812 		/* Multi-TT hubs will have more than one entry */
813 		if (tt_info->slot_id == slot_id) {
814 			slot_found = true;
815 			list_del(&tt_info->tt_list);
816 			kfree(tt_info);
817 		} else if (slot_found) {
818 			break;
819 		}
820 	}
821 }
822 
823 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
824 		struct xhci_virt_device *virt_dev,
825 		struct usb_device *hdev,
826 		struct usb_tt *tt, gfp_t mem_flags)
827 {
828 	struct xhci_tt_bw_info		*tt_info;
829 	unsigned int			num_ports;
830 	int				i, j;
831 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
832 
833 	if (!tt->multi)
834 		num_ports = 1;
835 	else
836 		num_ports = hdev->maxchild;
837 
838 	for (i = 0; i < num_ports; i++, tt_info++) {
839 		struct xhci_interval_bw_table *bw_table;
840 
841 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
842 				dev_to_node(dev));
843 		if (!tt_info)
844 			goto free_tts;
845 		INIT_LIST_HEAD(&tt_info->tt_list);
846 		list_add(&tt_info->tt_list,
847 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
848 		tt_info->slot_id = virt_dev->udev->slot_id;
849 		if (tt->multi)
850 			tt_info->ttport = i+1;
851 		bw_table = &tt_info->bw_table;
852 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
853 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
854 	}
855 	return 0;
856 
857 free_tts:
858 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
859 	return -ENOMEM;
860 }
861 
862 
863 /* All the xhci_tds in the ring's TD list should be freed at this point.
864  * Should be called with xhci->lock held if there is any chance the TT lists
865  * will be manipulated by the configure endpoint, allocate device, or update
866  * hub functions while this function is removing the TT entries from the list.
867  */
868 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
869 {
870 	struct xhci_virt_device *dev;
871 	int i;
872 	int old_active_eps = 0;
873 
874 	/* Slot ID 0 is reserved */
875 	if (slot_id == 0 || !xhci->devs[slot_id])
876 		return;
877 
878 	dev = xhci->devs[slot_id];
879 
880 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
881 	if (!dev)
882 		return;
883 
884 	trace_xhci_free_virt_device(dev);
885 
886 	if (dev->tt_info)
887 		old_active_eps = dev->tt_info->active_eps;
888 
889 	for (i = 0; i < 31; i++) {
890 		if (dev->eps[i].ring)
891 			xhci_ring_free(xhci, dev->eps[i].ring);
892 		if (dev->eps[i].stream_info)
893 			xhci_free_stream_info(xhci,
894 					dev->eps[i].stream_info);
895 		/* Endpoints on the TT/root port lists should have been removed
896 		 * when usb_disable_device() was called for the device.
897 		 * We can't drop them anyway, because the udev might have gone
898 		 * away by this point, and we can't tell what speed it was.
899 		 */
900 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
901 			xhci_warn(xhci, "Slot %u endpoint %u "
902 					"not removed from BW list!\n",
903 					slot_id, i);
904 	}
905 	/* If this is a hub, free the TT(s) from the TT list */
906 	xhci_free_tt_info(xhci, dev, slot_id);
907 	/* If necessary, update the number of active TTs on this root port */
908 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
909 
910 	if (dev->in_ctx)
911 		xhci_free_container_ctx(xhci, dev->in_ctx);
912 	if (dev->out_ctx)
913 		xhci_free_container_ctx(xhci, dev->out_ctx);
914 
915 	if (dev->udev && dev->udev->slot_id)
916 		dev->udev->slot_id = 0;
917 	kfree(xhci->devs[slot_id]);
918 	xhci->devs[slot_id] = NULL;
919 }
920 
921 /*
922  * Free a virt_device structure.
923  * If the virt_device added a tt_info (a hub) and has children pointing to
924  * that tt_info, then free the child first. Recursive.
925  * We can't rely on udev at this point to find child-parent relationships.
926  */
927 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
928 {
929 	struct xhci_virt_device *vdev;
930 	struct list_head *tt_list_head;
931 	struct xhci_tt_bw_info *tt_info, *next;
932 	int i;
933 
934 	vdev = xhci->devs[slot_id];
935 	if (!vdev)
936 		return;
937 
938 	if (vdev->real_port == 0 ||
939 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
940 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
941 		goto out;
942 	}
943 
944 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
945 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
946 		/* is this a hub device that added a tt_info to the tts list */
947 		if (tt_info->slot_id == slot_id) {
948 			/* are any devices using this tt_info? */
949 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
950 				vdev = xhci->devs[i];
951 				if (vdev && (vdev->tt_info == tt_info))
952 					xhci_free_virt_devices_depth_first(
953 						xhci, i);
954 			}
955 		}
956 	}
957 out:
958 	/* we are now at a leaf device */
959 	xhci_debugfs_remove_slot(xhci, slot_id);
960 	xhci_free_virt_device(xhci, slot_id);
961 }
962 
963 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
964 		struct usb_device *udev, gfp_t flags)
965 {
966 	struct xhci_virt_device *dev;
967 	int i;
968 
969 	/* Slot ID 0 is reserved */
970 	if (slot_id == 0 || xhci->devs[slot_id]) {
971 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
972 		return 0;
973 	}
974 
975 	dev = kzalloc(sizeof(*dev), flags);
976 	if (!dev)
977 		return 0;
978 
979 	dev->slot_id = slot_id;
980 
981 	/* Allocate the (output) device context that will be used in the HC. */
982 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
983 	if (!dev->out_ctx)
984 		goto fail;
985 
986 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
987 			(unsigned long long)dev->out_ctx->dma);
988 
989 	/* Allocate the (input) device context for address device command */
990 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
991 	if (!dev->in_ctx)
992 		goto fail;
993 
994 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
995 			(unsigned long long)dev->in_ctx->dma);
996 
997 	/* Initialize the cancellation list and watchdog timers for each ep */
998 	for (i = 0; i < 31; i++) {
999 		dev->eps[i].ep_index = i;
1000 		dev->eps[i].vdev = dev;
1001 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1002 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1003 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1004 	}
1005 
1006 	/* Allocate endpoint 0 ring */
1007 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1008 	if (!dev->eps[0].ring)
1009 		goto fail;
1010 
1011 	dev->udev = udev;
1012 
1013 	/* Point to output device context in dcbaa. */
1014 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1015 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1016 		 slot_id,
1017 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1018 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1019 
1020 	trace_xhci_alloc_virt_device(dev);
1021 
1022 	xhci->devs[slot_id] = dev;
1023 
1024 	return 1;
1025 fail:
1026 
1027 	if (dev->in_ctx)
1028 		xhci_free_container_ctx(xhci, dev->in_ctx);
1029 	if (dev->out_ctx)
1030 		xhci_free_container_ctx(xhci, dev->out_ctx);
1031 	kfree(dev);
1032 
1033 	return 0;
1034 }
1035 
1036 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1037 		struct usb_device *udev)
1038 {
1039 	struct xhci_virt_device *virt_dev;
1040 	struct xhci_ep_ctx	*ep0_ctx;
1041 	struct xhci_ring	*ep_ring;
1042 
1043 	virt_dev = xhci->devs[udev->slot_id];
1044 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1045 	ep_ring = virt_dev->eps[0].ring;
1046 	/*
1047 	 * FIXME we don't keep track of the dequeue pointer very well after a
1048 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1049 	 * host to our enqueue pointer.  This should only be called after a
1050 	 * configured device has reset, so all control transfers should have
1051 	 * been completed or cancelled before the reset.
1052 	 */
1053 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1054 							ep_ring->enqueue)
1055 				   | ep_ring->cycle_state);
1056 }
1057 
1058 /*
1059  * The xHCI roothub may have ports of differing speeds in any order in the port
1060  * status registers.
1061  *
1062  * The xHCI hardware wants to know the roothub port number that the USB device
1063  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1064  * know is the index of that port under either the USB 2.0 or the USB 3.0
1065  * roothub, but that doesn't give us the real index into the HW port status
1066  * registers. Call xhci_find_raw_port_number() to get real index.
1067  */
1068 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1069 		struct usb_device *udev)
1070 {
1071 	struct usb_device *top_dev;
1072 	struct usb_hcd *hcd;
1073 
1074 	if (udev->speed >= USB_SPEED_SUPER)
1075 		hcd = xhci->shared_hcd;
1076 	else
1077 		hcd = xhci->main_hcd;
1078 
1079 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1080 			top_dev = top_dev->parent)
1081 		/* Found device below root hub */;
1082 
1083 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1084 }
1085 
1086 /* Setup an xHCI virtual device for a Set Address command */
1087 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1088 {
1089 	struct xhci_virt_device *dev;
1090 	struct xhci_ep_ctx	*ep0_ctx;
1091 	struct xhci_slot_ctx    *slot_ctx;
1092 	u32			port_num;
1093 	u32			max_packets;
1094 	struct usb_device *top_dev;
1095 
1096 	dev = xhci->devs[udev->slot_id];
1097 	/* Slot ID 0 is reserved */
1098 	if (udev->slot_id == 0 || !dev) {
1099 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1100 				udev->slot_id);
1101 		return -EINVAL;
1102 	}
1103 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1104 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1105 
1106 	/* 3) Only the control endpoint is valid - one endpoint context */
1107 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1108 	switch (udev->speed) {
1109 	case USB_SPEED_SUPER_PLUS:
1110 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1111 		max_packets = MAX_PACKET(512);
1112 		break;
1113 	case USB_SPEED_SUPER:
1114 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1115 		max_packets = MAX_PACKET(512);
1116 		break;
1117 	case USB_SPEED_HIGH:
1118 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1119 		max_packets = MAX_PACKET(64);
1120 		break;
1121 	/* USB core guesses at a 64-byte max packet first for FS devices */
1122 	case USB_SPEED_FULL:
1123 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1124 		max_packets = MAX_PACKET(64);
1125 		break;
1126 	case USB_SPEED_LOW:
1127 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1128 		max_packets = MAX_PACKET(8);
1129 		break;
1130 	case USB_SPEED_WIRELESS:
1131 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1132 		return -EINVAL;
1133 	default:
1134 		/* Speed was set earlier, this shouldn't happen. */
1135 		return -EINVAL;
1136 	}
1137 	/* Find the root hub port this device is under */
1138 	port_num = xhci_find_real_port_number(xhci, udev);
1139 	if (!port_num)
1140 		return -EINVAL;
1141 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1142 	/* Set the port number in the virtual_device to the faked port number */
1143 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1144 			top_dev = top_dev->parent)
1145 		/* Found device below root hub */;
1146 	dev->fake_port = top_dev->portnum;
1147 	dev->real_port = port_num;
1148 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1149 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1150 
1151 	/* Find the right bandwidth table that this device will be a part of.
1152 	 * If this is a full speed device attached directly to a root port (or a
1153 	 * decendent of one), it counts as a primary bandwidth domain, not a
1154 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1155 	 * will never be created for the HS root hub.
1156 	 */
1157 	if (!udev->tt || !udev->tt->hub->parent) {
1158 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1159 	} else {
1160 		struct xhci_root_port_bw_info *rh_bw;
1161 		struct xhci_tt_bw_info *tt_bw;
1162 
1163 		rh_bw = &xhci->rh_bw[port_num - 1];
1164 		/* Find the right TT. */
1165 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1166 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1167 				continue;
1168 
1169 			if (!dev->udev->tt->multi ||
1170 					(udev->tt->multi &&
1171 					 tt_bw->ttport == dev->udev->ttport)) {
1172 				dev->bw_table = &tt_bw->bw_table;
1173 				dev->tt_info = tt_bw;
1174 				break;
1175 			}
1176 		}
1177 		if (!dev->tt_info)
1178 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1179 	}
1180 
1181 	/* Is this a LS/FS device under an external HS hub? */
1182 	if (udev->tt && udev->tt->hub->parent) {
1183 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1184 						(udev->ttport << 8));
1185 		if (udev->tt->multi)
1186 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1187 	}
1188 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1189 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1190 
1191 	/* Step 4 - ring already allocated */
1192 	/* Step 5 */
1193 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1194 
1195 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1197 					 max_packets);
1198 
1199 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1200 				   dev->eps[0].ring->cycle_state);
1201 
1202 	trace_xhci_setup_addressable_virt_device(dev);
1203 
1204 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Convert interval expressed as 2^(bInterval - 1) == interval into
1211  * straight exponent value 2^n == interval.
1212  *
1213  */
1214 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1215 		struct usb_host_endpoint *ep)
1216 {
1217 	unsigned int interval;
1218 
1219 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1220 	if (interval != ep->desc.bInterval - 1)
1221 		dev_warn(&udev->dev,
1222 			 "ep %#x - rounding interval to %d %sframes\n",
1223 			 ep->desc.bEndpointAddress,
1224 			 1 << interval,
1225 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1226 
1227 	if (udev->speed == USB_SPEED_FULL) {
1228 		/*
1229 		 * Full speed isoc endpoints specify interval in frames,
1230 		 * not microframes. We are using microframes everywhere,
1231 		 * so adjust accordingly.
1232 		 */
1233 		interval += 3;	/* 1 frame = 2^3 uframes */
1234 	}
1235 
1236 	return interval;
1237 }
1238 
1239 /*
1240  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1241  * microframes, rounded down to nearest power of 2.
1242  */
1243 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1244 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1245 		unsigned int min_exponent, unsigned int max_exponent)
1246 {
1247 	unsigned int interval;
1248 
1249 	interval = fls(desc_interval) - 1;
1250 	interval = clamp_val(interval, min_exponent, max_exponent);
1251 	if ((1 << interval) != desc_interval)
1252 		dev_dbg(&udev->dev,
1253 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1254 			 ep->desc.bEndpointAddress,
1255 			 1 << interval,
1256 			 desc_interval);
1257 
1258 	return interval;
1259 }
1260 
1261 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1262 		struct usb_host_endpoint *ep)
1263 {
1264 	if (ep->desc.bInterval == 0)
1265 		return 0;
1266 	return xhci_microframes_to_exponent(udev, ep,
1267 			ep->desc.bInterval, 0, 15);
1268 }
1269 
1270 
1271 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1272 		struct usb_host_endpoint *ep)
1273 {
1274 	return xhci_microframes_to_exponent(udev, ep,
1275 			ep->desc.bInterval * 8, 3, 10);
1276 }
1277 
1278 /* Return the polling or NAK interval.
1279  *
1280  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1281  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1282  *
1283  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1284  * is set to 0.
1285  */
1286 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1287 		struct usb_host_endpoint *ep)
1288 {
1289 	unsigned int interval = 0;
1290 
1291 	switch (udev->speed) {
1292 	case USB_SPEED_HIGH:
1293 		/* Max NAK rate */
1294 		if (usb_endpoint_xfer_control(&ep->desc) ||
1295 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1296 			interval = xhci_parse_microframe_interval(udev, ep);
1297 			break;
1298 		}
1299 		fallthrough;	/* SS and HS isoc/int have same decoding */
1300 
1301 	case USB_SPEED_SUPER_PLUS:
1302 	case USB_SPEED_SUPER:
1303 		if (usb_endpoint_xfer_int(&ep->desc) ||
1304 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1305 			interval = xhci_parse_exponent_interval(udev, ep);
1306 		}
1307 		break;
1308 
1309 	case USB_SPEED_FULL:
1310 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1311 			interval = xhci_parse_exponent_interval(udev, ep);
1312 			break;
1313 		}
1314 		/*
1315 		 * Fall through for interrupt endpoint interval decoding
1316 		 * since it uses the same rules as low speed interrupt
1317 		 * endpoints.
1318 		 */
1319 		fallthrough;
1320 
1321 	case USB_SPEED_LOW:
1322 		if (usb_endpoint_xfer_int(&ep->desc) ||
1323 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1324 
1325 			interval = xhci_parse_frame_interval(udev, ep);
1326 		}
1327 		break;
1328 
1329 	default:
1330 		BUG();
1331 	}
1332 	return interval;
1333 }
1334 
1335 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1336  * High speed endpoint descriptors can define "the number of additional
1337  * transaction opportunities per microframe", but that goes in the Max Burst
1338  * endpoint context field.
1339  */
1340 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1341 		struct usb_host_endpoint *ep)
1342 {
1343 	if (udev->speed < USB_SPEED_SUPER ||
1344 			!usb_endpoint_xfer_isoc(&ep->desc))
1345 		return 0;
1346 	return ep->ss_ep_comp.bmAttributes;
1347 }
1348 
1349 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1350 				       struct usb_host_endpoint *ep)
1351 {
1352 	/* Super speed and Plus have max burst in ep companion desc */
1353 	if (udev->speed >= USB_SPEED_SUPER)
1354 		return ep->ss_ep_comp.bMaxBurst;
1355 
1356 	if (udev->speed == USB_SPEED_HIGH &&
1357 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1358 	     usb_endpoint_xfer_int(&ep->desc)))
1359 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1360 
1361 	return 0;
1362 }
1363 
1364 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1365 {
1366 	int in;
1367 
1368 	in = usb_endpoint_dir_in(&ep->desc);
1369 
1370 	switch (usb_endpoint_type(&ep->desc)) {
1371 	case USB_ENDPOINT_XFER_CONTROL:
1372 		return CTRL_EP;
1373 	case USB_ENDPOINT_XFER_BULK:
1374 		return in ? BULK_IN_EP : BULK_OUT_EP;
1375 	case USB_ENDPOINT_XFER_ISOC:
1376 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1377 	case USB_ENDPOINT_XFER_INT:
1378 		return in ? INT_IN_EP : INT_OUT_EP;
1379 	}
1380 	return 0;
1381 }
1382 
1383 /* Return the maximum endpoint service interval time (ESIT) payload.
1384  * Basically, this is the maxpacket size, multiplied by the burst size
1385  * and mult size.
1386  */
1387 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1388 		struct usb_host_endpoint *ep)
1389 {
1390 	int max_burst;
1391 	int max_packet;
1392 
1393 	/* Only applies for interrupt or isochronous endpoints */
1394 	if (usb_endpoint_xfer_control(&ep->desc) ||
1395 			usb_endpoint_xfer_bulk(&ep->desc))
1396 		return 0;
1397 
1398 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1399 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1400 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1401 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1402 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1403 	else if (udev->speed >= USB_SPEED_SUPER)
1404 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1405 
1406 	max_packet = usb_endpoint_maxp(&ep->desc);
1407 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1408 	/* A 0 in max burst means 1 transfer per ESIT */
1409 	return max_packet * max_burst;
1410 }
1411 
1412 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1413  * Drivers will have to call usb_alloc_streams() to do that.
1414  */
1415 int xhci_endpoint_init(struct xhci_hcd *xhci,
1416 		struct xhci_virt_device *virt_dev,
1417 		struct usb_device *udev,
1418 		struct usb_host_endpoint *ep,
1419 		gfp_t mem_flags)
1420 {
1421 	unsigned int ep_index;
1422 	struct xhci_ep_ctx *ep_ctx;
1423 	struct xhci_ring *ep_ring;
1424 	unsigned int max_packet;
1425 	enum xhci_ring_type ring_type;
1426 	u32 max_esit_payload;
1427 	u32 endpoint_type;
1428 	unsigned int max_burst;
1429 	unsigned int interval;
1430 	unsigned int mult;
1431 	unsigned int avg_trb_len;
1432 	unsigned int err_count = 0;
1433 
1434 	ep_index = xhci_get_endpoint_index(&ep->desc);
1435 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1436 
1437 	endpoint_type = xhci_get_endpoint_type(ep);
1438 	if (!endpoint_type)
1439 		return -EINVAL;
1440 
1441 	ring_type = usb_endpoint_type(&ep->desc);
1442 
1443 	/*
1444 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1445 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1446 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1447 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1448 	 */
1449 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1450 	interval = xhci_get_endpoint_interval(udev, ep);
1451 
1452 	/* Periodic endpoint bInterval limit quirk */
1453 	if (usb_endpoint_xfer_int(&ep->desc) ||
1454 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1455 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1456 		    udev->speed >= USB_SPEED_HIGH &&
1457 		    interval >= 7) {
1458 			interval = 6;
1459 		}
1460 	}
1461 
1462 	mult = xhci_get_endpoint_mult(udev, ep);
1463 	max_packet = usb_endpoint_maxp(&ep->desc);
1464 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1465 	avg_trb_len = max_esit_payload;
1466 
1467 	/* FIXME dig Mult and streams info out of ep companion desc */
1468 
1469 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1470 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1471 		err_count = 3;
1472 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1473 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1474 		if (udev->speed == USB_SPEED_HIGH)
1475 			max_packet = 512;
1476 		if (udev->speed == USB_SPEED_FULL) {
1477 			max_packet = rounddown_pow_of_two(max_packet);
1478 			max_packet = clamp_val(max_packet, 8, 64);
1479 		}
1480 	}
1481 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1482 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1483 		avg_trb_len = 8;
1484 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1485 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1486 		mult = 0;
1487 
1488 	/* Set up the endpoint ring */
1489 	virt_dev->eps[ep_index].new_ring =
1490 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1491 	if (!virt_dev->eps[ep_index].new_ring)
1492 		return -ENOMEM;
1493 
1494 	virt_dev->eps[ep_index].skip = false;
1495 	ep_ring = virt_dev->eps[ep_index].new_ring;
1496 
1497 	/* Fill the endpoint context */
1498 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1499 				      EP_INTERVAL(interval) |
1500 				      EP_MULT(mult));
1501 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1502 				       MAX_PACKET(max_packet) |
1503 				       MAX_BURST(max_burst) |
1504 				       ERROR_COUNT(err_count));
1505 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1506 				  ep_ring->cycle_state);
1507 
1508 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1509 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1510 
1511 	return 0;
1512 }
1513 
1514 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1515 		struct xhci_virt_device *virt_dev,
1516 		struct usb_host_endpoint *ep)
1517 {
1518 	unsigned int ep_index;
1519 	struct xhci_ep_ctx *ep_ctx;
1520 
1521 	ep_index = xhci_get_endpoint_index(&ep->desc);
1522 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1523 
1524 	ep_ctx->ep_info = 0;
1525 	ep_ctx->ep_info2 = 0;
1526 	ep_ctx->deq = 0;
1527 	ep_ctx->tx_info = 0;
1528 	/* Don't free the endpoint ring until the set interface or configuration
1529 	 * request succeeds.
1530 	 */
1531 }
1532 
1533 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1534 {
1535 	bw_info->ep_interval = 0;
1536 	bw_info->mult = 0;
1537 	bw_info->num_packets = 0;
1538 	bw_info->max_packet_size = 0;
1539 	bw_info->type = 0;
1540 	bw_info->max_esit_payload = 0;
1541 }
1542 
1543 void xhci_update_bw_info(struct xhci_hcd *xhci,
1544 		struct xhci_container_ctx *in_ctx,
1545 		struct xhci_input_control_ctx *ctrl_ctx,
1546 		struct xhci_virt_device *virt_dev)
1547 {
1548 	struct xhci_bw_info *bw_info;
1549 	struct xhci_ep_ctx *ep_ctx;
1550 	unsigned int ep_type;
1551 	int i;
1552 
1553 	for (i = 1; i < 31; i++) {
1554 		bw_info = &virt_dev->eps[i].bw_info;
1555 
1556 		/* We can't tell what endpoint type is being dropped, but
1557 		 * unconditionally clearing the bandwidth info for non-periodic
1558 		 * endpoints should be harmless because the info will never be
1559 		 * set in the first place.
1560 		 */
1561 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1562 			/* Dropped endpoint */
1563 			xhci_clear_endpoint_bw_info(bw_info);
1564 			continue;
1565 		}
1566 
1567 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1568 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1569 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1570 
1571 			/* Ignore non-periodic endpoints */
1572 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1573 					ep_type != ISOC_IN_EP &&
1574 					ep_type != INT_IN_EP)
1575 				continue;
1576 
1577 			/* Added or changed endpoint */
1578 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1579 					le32_to_cpu(ep_ctx->ep_info));
1580 			/* Number of packets and mult are zero-based in the
1581 			 * input context, but we want one-based for the
1582 			 * interval table.
1583 			 */
1584 			bw_info->mult = CTX_TO_EP_MULT(
1585 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1586 			bw_info->num_packets = CTX_TO_MAX_BURST(
1587 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1588 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1589 					le32_to_cpu(ep_ctx->ep_info2));
1590 			bw_info->type = ep_type;
1591 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1592 					le32_to_cpu(ep_ctx->tx_info));
1593 		}
1594 	}
1595 }
1596 
1597 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1598  * Useful when you want to change one particular aspect of the endpoint and then
1599  * issue a configure endpoint command.
1600  */
1601 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1602 		struct xhci_container_ctx *in_ctx,
1603 		struct xhci_container_ctx *out_ctx,
1604 		unsigned int ep_index)
1605 {
1606 	struct xhci_ep_ctx *out_ep_ctx;
1607 	struct xhci_ep_ctx *in_ep_ctx;
1608 
1609 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1610 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1611 
1612 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1613 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1614 	in_ep_ctx->deq = out_ep_ctx->deq;
1615 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1616 	if (xhci->quirks & XHCI_MTK_HOST) {
1617 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1618 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1619 	}
1620 }
1621 
1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623  * Useful when you want to change one particular aspect of the endpoint and then
1624  * issue a configure endpoint command.  Only the context entries field matters,
1625  * but we'll copy the whole thing anyway.
1626  */
1627 void xhci_slot_copy(struct xhci_hcd *xhci,
1628 		struct xhci_container_ctx *in_ctx,
1629 		struct xhci_container_ctx *out_ctx)
1630 {
1631 	struct xhci_slot_ctx *in_slot_ctx;
1632 	struct xhci_slot_ctx *out_slot_ctx;
1633 
1634 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1635 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1636 
1637 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1638 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1639 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1640 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1641 }
1642 
1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1645 {
1646 	int i;
1647 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1648 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1649 
1650 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1651 			"Allocating %d scratchpad buffers", num_sp);
1652 
1653 	if (!num_sp)
1654 		return 0;
1655 
1656 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1657 				dev_to_node(dev));
1658 	if (!xhci->scratchpad)
1659 		goto fail_sp;
1660 
1661 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1662 				     num_sp * sizeof(u64),
1663 				     &xhci->scratchpad->sp_dma, flags);
1664 	if (!xhci->scratchpad->sp_array)
1665 		goto fail_sp2;
1666 
1667 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1668 					flags, dev_to_node(dev));
1669 	if (!xhci->scratchpad->sp_buffers)
1670 		goto fail_sp3;
1671 
1672 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1673 	for (i = 0; i < num_sp; i++) {
1674 		dma_addr_t dma;
1675 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1676 					       flags);
1677 		if (!buf)
1678 			goto fail_sp4;
1679 
1680 		xhci->scratchpad->sp_array[i] = dma;
1681 		xhci->scratchpad->sp_buffers[i] = buf;
1682 	}
1683 
1684 	return 0;
1685 
1686  fail_sp4:
1687 	for (i = i - 1; i >= 0; i--) {
1688 		dma_free_coherent(dev, xhci->page_size,
1689 				    xhci->scratchpad->sp_buffers[i],
1690 				    xhci->scratchpad->sp_array[i]);
1691 	}
1692 
1693 	kfree(xhci->scratchpad->sp_buffers);
1694 
1695  fail_sp3:
1696 	dma_free_coherent(dev, num_sp * sizeof(u64),
1697 			    xhci->scratchpad->sp_array,
1698 			    xhci->scratchpad->sp_dma);
1699 
1700  fail_sp2:
1701 	kfree(xhci->scratchpad);
1702 	xhci->scratchpad = NULL;
1703 
1704  fail_sp:
1705 	return -ENOMEM;
1706 }
1707 
1708 static void scratchpad_free(struct xhci_hcd *xhci)
1709 {
1710 	int num_sp;
1711 	int i;
1712 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1713 
1714 	if (!xhci->scratchpad)
1715 		return;
1716 
1717 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1718 
1719 	for (i = 0; i < num_sp; i++) {
1720 		dma_free_coherent(dev, xhci->page_size,
1721 				    xhci->scratchpad->sp_buffers[i],
1722 				    xhci->scratchpad->sp_array[i]);
1723 	}
1724 	kfree(xhci->scratchpad->sp_buffers);
1725 	dma_free_coherent(dev, num_sp * sizeof(u64),
1726 			    xhci->scratchpad->sp_array,
1727 			    xhci->scratchpad->sp_dma);
1728 	kfree(xhci->scratchpad);
1729 	xhci->scratchpad = NULL;
1730 }
1731 
1732 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1733 		bool allocate_completion, gfp_t mem_flags)
1734 {
1735 	struct xhci_command *command;
1736 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1737 
1738 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1739 	if (!command)
1740 		return NULL;
1741 
1742 	if (allocate_completion) {
1743 		command->completion =
1744 			kzalloc_node(sizeof(struct completion), mem_flags,
1745 				dev_to_node(dev));
1746 		if (!command->completion) {
1747 			kfree(command);
1748 			return NULL;
1749 		}
1750 		init_completion(command->completion);
1751 	}
1752 
1753 	command->status = 0;
1754 	INIT_LIST_HEAD(&command->cmd_list);
1755 	return command;
1756 }
1757 
1758 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1759 		bool allocate_completion, gfp_t mem_flags)
1760 {
1761 	struct xhci_command *command;
1762 
1763 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1764 	if (!command)
1765 		return NULL;
1766 
1767 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1768 						   mem_flags);
1769 	if (!command->in_ctx) {
1770 		kfree(command->completion);
1771 		kfree(command);
1772 		return NULL;
1773 	}
1774 	return command;
1775 }
1776 
1777 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1778 {
1779 	kfree(urb_priv);
1780 }
1781 
1782 void xhci_free_command(struct xhci_hcd *xhci,
1783 		struct xhci_command *command)
1784 {
1785 	xhci_free_container_ctx(xhci,
1786 			command->in_ctx);
1787 	kfree(command->completion);
1788 	kfree(command);
1789 }
1790 
1791 int xhci_alloc_erst(struct xhci_hcd *xhci,
1792 		    struct xhci_ring *evt_ring,
1793 		    struct xhci_erst *erst,
1794 		    gfp_t flags)
1795 {
1796 	size_t size;
1797 	unsigned int val;
1798 	struct xhci_segment *seg;
1799 	struct xhci_erst_entry *entry;
1800 
1801 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1802 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1803 					   size, &erst->erst_dma_addr, flags);
1804 	if (!erst->entries)
1805 		return -ENOMEM;
1806 
1807 	erst->num_entries = evt_ring->num_segs;
1808 
1809 	seg = evt_ring->first_seg;
1810 	for (val = 0; val < evt_ring->num_segs; val++) {
1811 		entry = &erst->entries[val];
1812 		entry->seg_addr = cpu_to_le64(seg->dma);
1813 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1814 		entry->rsvd = 0;
1815 		seg = seg->next;
1816 	}
1817 
1818 	return 0;
1819 }
1820 
1821 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1822 {
1823 	size_t size;
1824 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1825 
1826 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1827 	if (erst->entries)
1828 		dma_free_coherent(dev, size,
1829 				erst->entries,
1830 				erst->erst_dma_addr);
1831 	erst->entries = NULL;
1832 }
1833 
1834 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1835 {
1836 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1837 	int i, j, num_ports;
1838 
1839 	cancel_delayed_work_sync(&xhci->cmd_timer);
1840 
1841 	xhci_free_erst(xhci, &xhci->erst);
1842 
1843 	if (xhci->event_ring)
1844 		xhci_ring_free(xhci, xhci->event_ring);
1845 	xhci->event_ring = NULL;
1846 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1847 
1848 	if (xhci->cmd_ring)
1849 		xhci_ring_free(xhci, xhci->cmd_ring);
1850 	xhci->cmd_ring = NULL;
1851 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1852 	xhci_cleanup_command_queue(xhci);
1853 
1854 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1855 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1856 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1857 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1858 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1859 			while (!list_empty(ep))
1860 				list_del_init(ep->next);
1861 		}
1862 	}
1863 
1864 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1865 		xhci_free_virt_devices_depth_first(xhci, i);
1866 
1867 	dma_pool_destroy(xhci->segment_pool);
1868 	xhci->segment_pool = NULL;
1869 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1870 
1871 	dma_pool_destroy(xhci->device_pool);
1872 	xhci->device_pool = NULL;
1873 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1874 
1875 	dma_pool_destroy(xhci->small_streams_pool);
1876 	xhci->small_streams_pool = NULL;
1877 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1878 			"Freed small stream array pool");
1879 
1880 	dma_pool_destroy(xhci->medium_streams_pool);
1881 	xhci->medium_streams_pool = NULL;
1882 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1883 			"Freed medium stream array pool");
1884 
1885 	if (xhci->dcbaa)
1886 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1887 				xhci->dcbaa, xhci->dcbaa->dma);
1888 	xhci->dcbaa = NULL;
1889 
1890 	scratchpad_free(xhci);
1891 
1892 	if (!xhci->rh_bw)
1893 		goto no_bw;
1894 
1895 	for (i = 0; i < num_ports; i++) {
1896 		struct xhci_tt_bw_info *tt, *n;
1897 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1898 			list_del(&tt->tt_list);
1899 			kfree(tt);
1900 		}
1901 	}
1902 
1903 no_bw:
1904 	xhci->cmd_ring_reserved_trbs = 0;
1905 	xhci->usb2_rhub.num_ports = 0;
1906 	xhci->usb3_rhub.num_ports = 0;
1907 	xhci->num_active_eps = 0;
1908 	kfree(xhci->usb2_rhub.ports);
1909 	kfree(xhci->usb3_rhub.ports);
1910 	kfree(xhci->hw_ports);
1911 	kfree(xhci->rh_bw);
1912 	kfree(xhci->ext_caps);
1913 	for (i = 0; i < xhci->num_port_caps; i++)
1914 		kfree(xhci->port_caps[i].psi);
1915 	kfree(xhci->port_caps);
1916 	xhci->num_port_caps = 0;
1917 
1918 	xhci->usb2_rhub.ports = NULL;
1919 	xhci->usb3_rhub.ports = NULL;
1920 	xhci->hw_ports = NULL;
1921 	xhci->rh_bw = NULL;
1922 	xhci->ext_caps = NULL;
1923 	xhci->port_caps = NULL;
1924 
1925 	xhci->page_size = 0;
1926 	xhci->page_shift = 0;
1927 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1928 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1929 }
1930 
1931 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1932 		struct xhci_segment *input_seg,
1933 		union xhci_trb *start_trb,
1934 		union xhci_trb *end_trb,
1935 		dma_addr_t input_dma,
1936 		struct xhci_segment *result_seg,
1937 		char *test_name, int test_number)
1938 {
1939 	unsigned long long start_dma;
1940 	unsigned long long end_dma;
1941 	struct xhci_segment *seg;
1942 
1943 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1944 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1945 
1946 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1947 	if (seg != result_seg) {
1948 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1949 				test_name, test_number);
1950 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1951 				"input DMA 0x%llx\n",
1952 				input_seg,
1953 				(unsigned long long) input_dma);
1954 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1955 				"ending TRB %p (0x%llx DMA)\n",
1956 				start_trb, start_dma,
1957 				end_trb, end_dma);
1958 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1959 				result_seg, seg);
1960 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1961 			  true);
1962 		return -1;
1963 	}
1964 	return 0;
1965 }
1966 
1967 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1968 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1969 {
1970 	struct {
1971 		dma_addr_t		input_dma;
1972 		struct xhci_segment	*result_seg;
1973 	} simple_test_vector [] = {
1974 		/* A zeroed DMA field should fail */
1975 		{ 0, NULL },
1976 		/* One TRB before the ring start should fail */
1977 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1978 		/* One byte before the ring start should fail */
1979 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1980 		/* Starting TRB should succeed */
1981 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1982 		/* Ending TRB should succeed */
1983 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1984 			xhci->event_ring->first_seg },
1985 		/* One byte after the ring end should fail */
1986 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1987 		/* One TRB after the ring end should fail */
1988 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1989 		/* An address of all ones should fail */
1990 		{ (dma_addr_t) (~0), NULL },
1991 	};
1992 	struct {
1993 		struct xhci_segment	*input_seg;
1994 		union xhci_trb		*start_trb;
1995 		union xhci_trb		*end_trb;
1996 		dma_addr_t		input_dma;
1997 		struct xhci_segment	*result_seg;
1998 	} complex_test_vector [] = {
1999 		/* Test feeding a valid DMA address from a different ring */
2000 		{	.input_seg = xhci->event_ring->first_seg,
2001 			.start_trb = xhci->event_ring->first_seg->trbs,
2002 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2003 			.input_dma = xhci->cmd_ring->first_seg->dma,
2004 			.result_seg = NULL,
2005 		},
2006 		/* Test feeding a valid end TRB from a different ring */
2007 		{	.input_seg = xhci->event_ring->first_seg,
2008 			.start_trb = xhci->event_ring->first_seg->trbs,
2009 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2010 			.input_dma = xhci->cmd_ring->first_seg->dma,
2011 			.result_seg = NULL,
2012 		},
2013 		/* Test feeding a valid start and end TRB from a different ring */
2014 		{	.input_seg = xhci->event_ring->first_seg,
2015 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2016 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2017 			.input_dma = xhci->cmd_ring->first_seg->dma,
2018 			.result_seg = NULL,
2019 		},
2020 		/* TRB in this ring, but after this TD */
2021 		{	.input_seg = xhci->event_ring->first_seg,
2022 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2023 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2024 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2025 			.result_seg = NULL,
2026 		},
2027 		/* TRB in this ring, but before this TD */
2028 		{	.input_seg = xhci->event_ring->first_seg,
2029 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2030 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2031 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2032 			.result_seg = NULL,
2033 		},
2034 		/* TRB in this ring, but after this wrapped TD */
2035 		{	.input_seg = xhci->event_ring->first_seg,
2036 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2037 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2038 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2039 			.result_seg = NULL,
2040 		},
2041 		/* TRB in this ring, but before this wrapped TD */
2042 		{	.input_seg = xhci->event_ring->first_seg,
2043 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2044 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2045 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2046 			.result_seg = NULL,
2047 		},
2048 		/* TRB not in this ring, and we have a wrapped TD */
2049 		{	.input_seg = xhci->event_ring->first_seg,
2050 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2051 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2052 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2053 			.result_seg = NULL,
2054 		},
2055 	};
2056 
2057 	unsigned int num_tests;
2058 	int i, ret;
2059 
2060 	num_tests = ARRAY_SIZE(simple_test_vector);
2061 	for (i = 0; i < num_tests; i++) {
2062 		ret = xhci_test_trb_in_td(xhci,
2063 				xhci->event_ring->first_seg,
2064 				xhci->event_ring->first_seg->trbs,
2065 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2066 				simple_test_vector[i].input_dma,
2067 				simple_test_vector[i].result_seg,
2068 				"Simple", i);
2069 		if (ret < 0)
2070 			return ret;
2071 	}
2072 
2073 	num_tests = ARRAY_SIZE(complex_test_vector);
2074 	for (i = 0; i < num_tests; i++) {
2075 		ret = xhci_test_trb_in_td(xhci,
2076 				complex_test_vector[i].input_seg,
2077 				complex_test_vector[i].start_trb,
2078 				complex_test_vector[i].end_trb,
2079 				complex_test_vector[i].input_dma,
2080 				complex_test_vector[i].result_seg,
2081 				"Complex", i);
2082 		if (ret < 0)
2083 			return ret;
2084 	}
2085 	xhci_dbg(xhci, "TRB math tests passed.\n");
2086 	return 0;
2087 }
2088 
2089 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2090 {
2091 	u64 temp;
2092 	dma_addr_t deq;
2093 
2094 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2095 			xhci->event_ring->dequeue);
2096 	if (!deq)
2097 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2098 				"dequeue ptr.\n");
2099 	/* Update HC event ring dequeue pointer */
2100 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2101 	temp &= ERST_PTR_MASK;
2102 	/* Don't clear the EHB bit (which is RW1C) because
2103 	 * there might be more events to service.
2104 	 */
2105 	temp &= ~ERST_EHB;
2106 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2107 			"// Write event ring dequeue pointer, "
2108 			"preserving EHB bit");
2109 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2110 			&xhci->ir_set->erst_dequeue);
2111 }
2112 
2113 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2114 		__le32 __iomem *addr, int max_caps)
2115 {
2116 	u32 temp, port_offset, port_count;
2117 	int i;
2118 	u8 major_revision, minor_revision;
2119 	struct xhci_hub *rhub;
2120 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2121 	struct xhci_port_cap *port_cap;
2122 
2123 	temp = readl(addr);
2124 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2125 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2126 
2127 	if (major_revision == 0x03) {
2128 		rhub = &xhci->usb3_rhub;
2129 		/*
2130 		 * Some hosts incorrectly use sub-minor version for minor
2131 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2132 		 * for bcdUSB 0x310). Since there is no USB release with sub
2133 		 * minor version 0x301 to 0x309, we can assume that they are
2134 		 * incorrect and fix it here.
2135 		 */
2136 		if (minor_revision > 0x00 && minor_revision < 0x10)
2137 			minor_revision <<= 4;
2138 	} else if (major_revision <= 0x02) {
2139 		rhub = &xhci->usb2_rhub;
2140 	} else {
2141 		xhci_warn(xhci, "Ignoring unknown port speed, "
2142 				"Ext Cap %p, revision = 0x%x\n",
2143 				addr, major_revision);
2144 		/* Ignoring port protocol we can't understand. FIXME */
2145 		return;
2146 	}
2147 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2148 
2149 	if (rhub->min_rev < minor_revision)
2150 		rhub->min_rev = minor_revision;
2151 
2152 	/* Port offset and count in the third dword, see section 7.2 */
2153 	temp = readl(addr + 2);
2154 	port_offset = XHCI_EXT_PORT_OFF(temp);
2155 	port_count = XHCI_EXT_PORT_COUNT(temp);
2156 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2157 			"Ext Cap %p, port offset = %u, "
2158 			"count = %u, revision = 0x%x",
2159 			addr, port_offset, port_count, major_revision);
2160 	/* Port count includes the current port offset */
2161 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2162 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2163 		return;
2164 
2165 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2166 	if (xhci->num_port_caps > max_caps)
2167 		return;
2168 
2169 	port_cap->maj_rev = major_revision;
2170 	port_cap->min_rev = minor_revision;
2171 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2172 
2173 	if (port_cap->psi_count) {
2174 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2175 					     sizeof(*port_cap->psi),
2176 					     GFP_KERNEL, dev_to_node(dev));
2177 		if (!port_cap->psi)
2178 			port_cap->psi_count = 0;
2179 
2180 		port_cap->psi_uid_count++;
2181 		for (i = 0; i < port_cap->psi_count; i++) {
2182 			port_cap->psi[i] = readl(addr + 4 + i);
2183 
2184 			/* count unique ID values, two consecutive entries can
2185 			 * have the same ID if link is assymetric
2186 			 */
2187 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2188 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2189 				port_cap->psi_uid_count++;
2190 
2191 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2192 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2193 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2194 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2195 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2196 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2197 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2198 		}
2199 	}
2200 	/* cache usb2 port capabilities */
2201 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2202 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2203 
2204 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2205 		 (temp & XHCI_HLC)) {
2206 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2207 			       "xHCI 1.0: support USB2 hardware lpm");
2208 		xhci->hw_lpm_support = 1;
2209 	}
2210 
2211 	port_offset--;
2212 	for (i = port_offset; i < (port_offset + port_count); i++) {
2213 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2214 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2215 		if (hw_port->rhub) {
2216 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2217 					" port %u\n", addr, i);
2218 			xhci_warn(xhci, "Port was marked as USB %u, "
2219 					"duplicated as USB %u\n",
2220 					hw_port->rhub->maj_rev, major_revision);
2221 			/* Only adjust the roothub port counts if we haven't
2222 			 * found a similar duplicate.
2223 			 */
2224 			if (hw_port->rhub != rhub &&
2225 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2226 				hw_port->rhub->num_ports--;
2227 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2228 			}
2229 			continue;
2230 		}
2231 		hw_port->rhub = rhub;
2232 		hw_port->port_cap = port_cap;
2233 		rhub->num_ports++;
2234 	}
2235 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2236 }
2237 
2238 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2239 					struct xhci_hub *rhub, gfp_t flags)
2240 {
2241 	int port_index = 0;
2242 	int i;
2243 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2244 
2245 	if (!rhub->num_ports)
2246 		return;
2247 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2248 			flags, dev_to_node(dev));
2249 	if (!rhub->ports)
2250 		return;
2251 
2252 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2253 		if (xhci->hw_ports[i].rhub != rhub ||
2254 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2255 			continue;
2256 		xhci->hw_ports[i].hcd_portnum = port_index;
2257 		rhub->ports[port_index] = &xhci->hw_ports[i];
2258 		port_index++;
2259 		if (port_index == rhub->num_ports)
2260 			break;
2261 	}
2262 }
2263 
2264 /*
2265  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2266  * specify what speeds each port is supposed to be.  We can't count on the port
2267  * speed bits in the PORTSC register being correct until a device is connected,
2268  * but we need to set up the two fake roothubs with the correct number of USB
2269  * 3.0 and USB 2.0 ports at host controller initialization time.
2270  */
2271 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2272 {
2273 	void __iomem *base;
2274 	u32 offset;
2275 	unsigned int num_ports;
2276 	int i, j;
2277 	int cap_count = 0;
2278 	u32 cap_start;
2279 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2280 
2281 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2282 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2283 				flags, dev_to_node(dev));
2284 	if (!xhci->hw_ports)
2285 		return -ENOMEM;
2286 
2287 	for (i = 0; i < num_ports; i++) {
2288 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2289 			NUM_PORT_REGS * i;
2290 		xhci->hw_ports[i].hw_portnum = i;
2291 	}
2292 
2293 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2294 				   dev_to_node(dev));
2295 	if (!xhci->rh_bw)
2296 		return -ENOMEM;
2297 	for (i = 0; i < num_ports; i++) {
2298 		struct xhci_interval_bw_table *bw_table;
2299 
2300 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2301 		bw_table = &xhci->rh_bw[i].bw_table;
2302 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2303 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2304 	}
2305 	base = &xhci->cap_regs->hc_capbase;
2306 
2307 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2308 	if (!cap_start) {
2309 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2310 		return -ENODEV;
2311 	}
2312 
2313 	offset = cap_start;
2314 	/* count extended protocol capability entries for later caching */
2315 	while (offset) {
2316 		cap_count++;
2317 		offset = xhci_find_next_ext_cap(base, offset,
2318 						      XHCI_EXT_CAPS_PROTOCOL);
2319 	}
2320 
2321 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2322 				flags, dev_to_node(dev));
2323 	if (!xhci->ext_caps)
2324 		return -ENOMEM;
2325 
2326 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2327 				flags, dev_to_node(dev));
2328 	if (!xhci->port_caps)
2329 		return -ENOMEM;
2330 
2331 	offset = cap_start;
2332 
2333 	while (offset) {
2334 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2335 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2336 		    num_ports)
2337 			break;
2338 		offset = xhci_find_next_ext_cap(base, offset,
2339 						XHCI_EXT_CAPS_PROTOCOL);
2340 	}
2341 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2342 		xhci_warn(xhci, "No ports on the roothubs?\n");
2343 		return -ENODEV;
2344 	}
2345 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2346 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2347 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2348 
2349 	/* Place limits on the number of roothub ports so that the hub
2350 	 * descriptors aren't longer than the USB core will allocate.
2351 	 */
2352 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2353 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2354 				"Limiting USB 3.0 roothub ports to %u.",
2355 				USB_SS_MAXPORTS);
2356 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2357 	}
2358 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2359 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2360 				"Limiting USB 2.0 roothub ports to %u.",
2361 				USB_MAXCHILDREN);
2362 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2363 	}
2364 
2365 	/*
2366 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2367 	 * Not sure how the USB core will handle a hub with no ports...
2368 	 */
2369 
2370 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2371 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2372 
2373 	return 0;
2374 }
2375 
2376 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2377 {
2378 	dma_addr_t	dma;
2379 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2380 	unsigned int	val, val2;
2381 	u64		val_64;
2382 	u32		page_size, temp;
2383 	int		i, ret;
2384 
2385 	INIT_LIST_HEAD(&xhci->cmd_list);
2386 
2387 	/* init command timeout work */
2388 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2389 	init_completion(&xhci->cmd_ring_stop_completion);
2390 
2391 	page_size = readl(&xhci->op_regs->page_size);
2392 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393 			"Supported page size register = 0x%x", page_size);
2394 	i = ffs(page_size);
2395 	if (i < 16)
2396 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2398 	else
2399 		xhci_warn(xhci, "WARN: no supported page size\n");
2400 	/* Use 4K pages, since that's common and the minimum the HC supports */
2401 	xhci->page_shift = 12;
2402 	xhci->page_size = 1 << xhci->page_shift;
2403 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404 			"HCD page size set to %iK", xhci->page_size / 1024);
2405 
2406 	/*
2407 	 * Program the Number of Device Slots Enabled field in the CONFIG
2408 	 * register with the max value of slots the HC can handle.
2409 	 */
2410 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2411 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 			"// xHC can handle at most %d device slots.", val);
2413 	val2 = readl(&xhci->op_regs->config_reg);
2414 	val |= (val2 & ~HCS_SLOTS_MASK);
2415 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 			"// Setting Max device slots reg = 0x%x.", val);
2417 	writel(val, &xhci->op_regs->config_reg);
2418 
2419 	/*
2420 	 * xHCI section 5.4.6 - Device Context array must be
2421 	 * "physically contiguous and 64-byte (cache line) aligned".
2422 	 */
2423 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2424 			flags);
2425 	if (!xhci->dcbaa)
2426 		goto fail;
2427 	xhci->dcbaa->dma = dma;
2428 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2429 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2430 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2431 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2432 
2433 	/*
2434 	 * Initialize the ring segment pool.  The ring must be a contiguous
2435 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2436 	 * however, the command ring segment needs 64-byte aligned segments
2437 	 * and our use of dma addresses in the trb_address_map radix tree needs
2438 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2439 	 */
2440 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2441 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2442 
2443 	/* See Table 46 and Note on Figure 55 */
2444 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2445 			2112, 64, xhci->page_size);
2446 	if (!xhci->segment_pool || !xhci->device_pool)
2447 		goto fail;
2448 
2449 	/* Linear stream context arrays don't have any boundary restrictions,
2450 	 * and only need to be 16-byte aligned.
2451 	 */
2452 	xhci->small_streams_pool =
2453 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2454 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2455 	xhci->medium_streams_pool =
2456 		dma_pool_create("xHCI 1KB stream ctx arrays",
2457 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2458 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2459 	 * will be allocated with dma_alloc_coherent()
2460 	 */
2461 
2462 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2463 		goto fail;
2464 
2465 	/* Set up the command ring to have one segments for now. */
2466 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2467 	if (!xhci->cmd_ring)
2468 		goto fail;
2469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2470 			"Allocated command ring at %p", xhci->cmd_ring);
2471 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2472 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2473 
2474 	/* Set the address in the Command Ring Control register */
2475 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2476 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2477 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2478 		xhci->cmd_ring->cycle_state;
2479 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2480 			"// Setting command ring address to 0x%016llx", val_64);
2481 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2482 
2483 	/* Reserve one command ring TRB for disabling LPM.
2484 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2485 	 * disabling LPM, we only need to reserve one TRB for all devices.
2486 	 */
2487 	xhci->cmd_ring_reserved_trbs++;
2488 
2489 	val = readl(&xhci->cap_regs->db_off);
2490 	val &= DBOFF_MASK;
2491 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2492 			"// Doorbell array is located at offset 0x%x"
2493 			" from cap regs base addr", val);
2494 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2495 	/* Set ir_set to interrupt register set 0 */
2496 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2497 
2498 	/*
2499 	 * Event ring setup: Allocate a normal ring, but also setup
2500 	 * the event ring segment table (ERST).  Section 4.9.3.
2501 	 */
2502 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2503 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2504 					0, flags);
2505 	if (!xhci->event_ring)
2506 		goto fail;
2507 	if (xhci_check_trb_in_td_math(xhci) < 0)
2508 		goto fail;
2509 
2510 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2511 	if (ret)
2512 		goto fail;
2513 
2514 	/* set ERST count with the number of entries in the segment table */
2515 	val = readl(&xhci->ir_set->erst_size);
2516 	val &= ERST_SIZE_MASK;
2517 	val |= ERST_NUM_SEGS;
2518 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2520 			val);
2521 	writel(val, &xhci->ir_set->erst_size);
2522 
2523 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2524 			"// Set ERST entries to point to event ring.");
2525 	/* set the segment table base address */
2526 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2527 			"// Set ERST base address for ir_set 0 = 0x%llx",
2528 			(unsigned long long)xhci->erst.erst_dma_addr);
2529 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2530 	val_64 &= ERST_PTR_MASK;
2531 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2532 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2533 
2534 	/* Set the event ring dequeue address */
2535 	xhci_set_hc_event_deq(xhci);
2536 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2537 			"Wrote ERST address to ir_set 0.");
2538 
2539 	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2540 
2541 	/*
2542 	 * XXX: Might need to set the Interrupter Moderation Register to
2543 	 * something other than the default (~1ms minimum between interrupts).
2544 	 * See section 5.5.1.2.
2545 	 */
2546 	for (i = 0; i < MAX_HC_SLOTS; i++)
2547 		xhci->devs[i] = NULL;
2548 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2549 		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2550 		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2551 		/* Only the USB 2.0 completions will ever be used. */
2552 		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2553 		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2554 	}
2555 
2556 	if (scratchpad_alloc(xhci, flags))
2557 		goto fail;
2558 	if (xhci_setup_port_arrays(xhci, flags))
2559 		goto fail;
2560 
2561 	/* Enable USB 3.0 device notifications for function remote wake, which
2562 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2563 	 * U3 (device suspend).
2564 	 */
2565 	temp = readl(&xhci->op_regs->dev_notification);
2566 	temp &= ~DEV_NOTE_MASK;
2567 	temp |= DEV_NOTE_FWAKE;
2568 	writel(temp, &xhci->op_regs->dev_notification);
2569 
2570 	return 0;
2571 
2572 fail:
2573 	xhci_halt(xhci);
2574 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2575 	xhci_mem_cleanup(xhci);
2576 	return -ENOMEM;
2577 }
2578