1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 #include <linux/dma-mapping.h> 28 29 #include "xhci.h" 30 #include "xhci-trace.h" 31 32 /* 33 * Allocates a generic ring segment from the ring pool, sets the dma address, 34 * initializes the segment to zero, and sets the private next pointer to NULL. 35 * 36 * Section 4.11.1.1: 37 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 38 */ 39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 40 unsigned int cycle_state, 41 unsigned int max_packet, 42 gfp_t flags) 43 { 44 struct xhci_segment *seg; 45 dma_addr_t dma; 46 int i; 47 48 seg = kzalloc(sizeof *seg, flags); 49 if (!seg) 50 return NULL; 51 52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 53 if (!seg->trbs) { 54 kfree(seg); 55 return NULL; 56 } 57 58 if (max_packet) { 59 seg->bounce_buf = kzalloc(max_packet, flags); 60 if (!seg->bounce_buf) { 61 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 62 kfree(seg); 63 return NULL; 64 } 65 } 66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 67 if (cycle_state == 0) { 68 for (i = 0; i < TRBS_PER_SEGMENT; i++) 69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 70 } 71 seg->dma = dma; 72 seg->next = NULL; 73 74 return seg; 75 } 76 77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 78 { 79 if (seg->trbs) { 80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 81 seg->trbs = NULL; 82 } 83 kfree(seg->bounce_buf); 84 kfree(seg); 85 } 86 87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 88 struct xhci_segment *first) 89 { 90 struct xhci_segment *seg; 91 92 seg = first->next; 93 while (seg != first) { 94 struct xhci_segment *next = seg->next; 95 xhci_segment_free(xhci, seg); 96 seg = next; 97 } 98 xhci_segment_free(xhci, first); 99 } 100 101 /* 102 * Make the prev segment point to the next segment. 103 * 104 * Change the last TRB in the prev segment to be a Link TRB which points to the 105 * DMA address of the next segment. The caller needs to set any Link TRB 106 * related flags, such as End TRB, Toggle Cycle, and no snoop. 107 */ 108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 109 struct xhci_segment *next, enum xhci_ring_type type) 110 { 111 u32 val; 112 113 if (!prev || !next) 114 return; 115 prev->next = next; 116 if (type != TYPE_EVENT) { 117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 118 cpu_to_le64(next->dma); 119 120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 122 val &= ~TRB_TYPE_BITMASK; 123 val |= TRB_TYPE(TRB_LINK); 124 /* Always set the chain bit with 0.95 hardware */ 125 /* Set chain bit for isoc rings on AMD 0.96 host */ 126 if (xhci_link_trb_quirk(xhci) || 127 (type == TYPE_ISOC && 128 (xhci->quirks & XHCI_AMD_0x96_HOST))) 129 val |= TRB_CHAIN; 130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 131 } 132 } 133 134 /* 135 * Link the ring to the new segments. 136 * Set Toggle Cycle for the new ring if needed. 137 */ 138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 139 struct xhci_segment *first, struct xhci_segment *last, 140 unsigned int num_segs) 141 { 142 struct xhci_segment *next; 143 144 if (!ring || !first || !last) 145 return; 146 147 next = ring->enq_seg->next; 148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 149 xhci_link_segments(xhci, last, next, ring->type); 150 ring->num_segs += num_segs; 151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 152 153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 155 &= ~cpu_to_le32(LINK_TOGGLE); 156 last->trbs[TRBS_PER_SEGMENT-1].link.control 157 |= cpu_to_le32(LINK_TOGGLE); 158 ring->last_seg = last; 159 } 160 } 161 162 /* 163 * We need a radix tree for mapping physical addresses of TRBs to which stream 164 * ID they belong to. We need to do this because the host controller won't tell 165 * us which stream ring the TRB came from. We could store the stream ID in an 166 * event data TRB, but that doesn't help us for the cancellation case, since the 167 * endpoint may stop before it reaches that event data TRB. 168 * 169 * The radix tree maps the upper portion of the TRB DMA address to a ring 170 * segment that has the same upper portion of DMA addresses. For example, say I 171 * have segments of size 1KB, that are always 1KB aligned. A segment may 172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 174 * pass the radix tree a key to get the right stream ID: 175 * 176 * 0x10c90fff >> 10 = 0x43243 177 * 0x10c912c0 >> 10 = 0x43244 178 * 0x10c91400 >> 10 = 0x43245 179 * 180 * Obviously, only those TRBs with DMA addresses that are within the segment 181 * will make the radix tree return the stream ID for that ring. 182 * 183 * Caveats for the radix tree: 184 * 185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 190 * extended systems (where the DMA address can be bigger than 32-bits), 191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 192 */ 193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 194 struct xhci_ring *ring, 195 struct xhci_segment *seg, 196 gfp_t mem_flags) 197 { 198 unsigned long key; 199 int ret; 200 201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 202 /* Skip any segments that were already added. */ 203 if (radix_tree_lookup(trb_address_map, key)) 204 return 0; 205 206 ret = radix_tree_maybe_preload(mem_flags); 207 if (ret) 208 return ret; 209 ret = radix_tree_insert(trb_address_map, 210 key, ring); 211 radix_tree_preload_end(); 212 return ret; 213 } 214 215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 216 struct xhci_segment *seg) 217 { 218 unsigned long key; 219 220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 221 if (radix_tree_lookup(trb_address_map, key)) 222 radix_tree_delete(trb_address_map, key); 223 } 224 225 static int xhci_update_stream_segment_mapping( 226 struct radix_tree_root *trb_address_map, 227 struct xhci_ring *ring, 228 struct xhci_segment *first_seg, 229 struct xhci_segment *last_seg, 230 gfp_t mem_flags) 231 { 232 struct xhci_segment *seg; 233 struct xhci_segment *failed_seg; 234 int ret; 235 236 if (WARN_ON_ONCE(trb_address_map == NULL)) 237 return 0; 238 239 seg = first_seg; 240 do { 241 ret = xhci_insert_segment_mapping(trb_address_map, 242 ring, seg, mem_flags); 243 if (ret) 244 goto remove_streams; 245 if (seg == last_seg) 246 return 0; 247 seg = seg->next; 248 } while (seg != first_seg); 249 250 return 0; 251 252 remove_streams: 253 failed_seg = seg; 254 seg = first_seg; 255 do { 256 xhci_remove_segment_mapping(trb_address_map, seg); 257 if (seg == failed_seg) 258 return ret; 259 seg = seg->next; 260 } while (seg != first_seg); 261 262 return ret; 263 } 264 265 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 266 { 267 struct xhci_segment *seg; 268 269 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 270 return; 271 272 seg = ring->first_seg; 273 do { 274 xhci_remove_segment_mapping(ring->trb_address_map, seg); 275 seg = seg->next; 276 } while (seg != ring->first_seg); 277 } 278 279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 280 { 281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 282 ring->first_seg, ring->last_seg, mem_flags); 283 } 284 285 /* XXX: Do we need the hcd structure in all these functions? */ 286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 287 { 288 if (!ring) 289 return; 290 291 trace_xhci_ring_free(ring); 292 293 if (ring->first_seg) { 294 if (ring->type == TYPE_STREAM) 295 xhci_remove_stream_mapping(ring); 296 xhci_free_segments_for_ring(xhci, ring->first_seg); 297 } 298 299 kfree(ring); 300 } 301 302 static void xhci_initialize_ring_info(struct xhci_ring *ring, 303 unsigned int cycle_state) 304 { 305 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 306 ring->enqueue = ring->first_seg->trbs; 307 ring->enq_seg = ring->first_seg; 308 ring->dequeue = ring->enqueue; 309 ring->deq_seg = ring->first_seg; 310 /* The ring is initialized to 0. The producer must write 1 to the cycle 311 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 312 * compare CCS to the cycle bit to check ownership, so CCS = 1. 313 * 314 * New rings are initialized with cycle state equal to 1; if we are 315 * handling ring expansion, set the cycle state equal to the old ring. 316 */ 317 ring->cycle_state = cycle_state; 318 319 /* 320 * Each segment has a link TRB, and leave an extra TRB for SW 321 * accounting purpose 322 */ 323 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 324 } 325 326 /* Allocate segments and link them for a ring */ 327 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 328 struct xhci_segment **first, struct xhci_segment **last, 329 unsigned int num_segs, unsigned int cycle_state, 330 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 331 { 332 struct xhci_segment *prev; 333 334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 335 if (!prev) 336 return -ENOMEM; 337 num_segs--; 338 339 *first = prev; 340 while (num_segs > 0) { 341 struct xhci_segment *next; 342 343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 344 if (!next) { 345 prev = *first; 346 while (prev) { 347 next = prev->next; 348 xhci_segment_free(xhci, prev); 349 prev = next; 350 } 351 return -ENOMEM; 352 } 353 xhci_link_segments(xhci, prev, next, type); 354 355 prev = next; 356 num_segs--; 357 } 358 xhci_link_segments(xhci, prev, *first, type); 359 *last = prev; 360 361 return 0; 362 } 363 364 /** 365 * Create a new ring with zero or more segments. 366 * 367 * Link each segment together into a ring. 368 * Set the end flag and the cycle toggle bit on the last segment. 369 * See section 4.9.1 and figures 15 and 16. 370 */ 371 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 372 unsigned int num_segs, unsigned int cycle_state, 373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 374 { 375 struct xhci_ring *ring; 376 int ret; 377 378 ring = kzalloc(sizeof *(ring), flags); 379 if (!ring) 380 return NULL; 381 382 ring->num_segs = num_segs; 383 ring->bounce_buf_len = max_packet; 384 INIT_LIST_HEAD(&ring->td_list); 385 ring->type = type; 386 if (num_segs == 0) 387 return ring; 388 389 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 390 &ring->last_seg, num_segs, cycle_state, type, 391 max_packet, flags); 392 if (ret) 393 goto fail; 394 395 /* Only event ring does not use link TRB */ 396 if (type != TYPE_EVENT) { 397 /* See section 4.9.2.1 and 6.4.4.1 */ 398 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 399 cpu_to_le32(LINK_TOGGLE); 400 } 401 xhci_initialize_ring_info(ring, cycle_state); 402 trace_xhci_ring_alloc(ring); 403 return ring; 404 405 fail: 406 kfree(ring); 407 return NULL; 408 } 409 410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 411 struct xhci_virt_device *virt_dev, 412 unsigned int ep_index) 413 { 414 int rings_cached; 415 416 rings_cached = virt_dev->num_rings_cached; 417 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 418 virt_dev->ring_cache[rings_cached] = 419 virt_dev->eps[ep_index].ring; 420 virt_dev->num_rings_cached++; 421 xhci_dbg(xhci, "Cached old ring, " 422 "%d ring%s cached\n", 423 virt_dev->num_rings_cached, 424 (virt_dev->num_rings_cached > 1) ? "s" : ""); 425 } else { 426 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 427 xhci_dbg(xhci, "Ring cache full (%d rings), " 428 "freeing ring\n", 429 virt_dev->num_rings_cached); 430 } 431 virt_dev->eps[ep_index].ring = NULL; 432 } 433 434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 435 * pointers to the beginning of the ring. 436 */ 437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 438 struct xhci_ring *ring, unsigned int cycle_state, 439 enum xhci_ring_type type) 440 { 441 struct xhci_segment *seg = ring->first_seg; 442 int i; 443 444 do { 445 memset(seg->trbs, 0, 446 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 447 if (cycle_state == 0) { 448 for (i = 0; i < TRBS_PER_SEGMENT; i++) 449 seg->trbs[i].link.control |= 450 cpu_to_le32(TRB_CYCLE); 451 } 452 /* All endpoint rings have link TRBs */ 453 xhci_link_segments(xhci, seg, seg->next, type); 454 seg = seg->next; 455 } while (seg != ring->first_seg); 456 ring->type = type; 457 xhci_initialize_ring_info(ring, cycle_state); 458 /* td list should be empty since all URBs have been cancelled, 459 * but just in case... 460 */ 461 INIT_LIST_HEAD(&ring->td_list); 462 } 463 464 /* 465 * Expand an existing ring. 466 * Look for a cached ring or allocate a new ring which has same segment numbers 467 * and link the two rings. 468 */ 469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 470 unsigned int num_trbs, gfp_t flags) 471 { 472 struct xhci_segment *first; 473 struct xhci_segment *last; 474 unsigned int num_segs; 475 unsigned int num_segs_needed; 476 int ret; 477 478 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 479 (TRBS_PER_SEGMENT - 1); 480 481 /* Allocate number of segments we needed, or double the ring size */ 482 num_segs = ring->num_segs > num_segs_needed ? 483 ring->num_segs : num_segs_needed; 484 485 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 486 num_segs, ring->cycle_state, ring->type, 487 ring->bounce_buf_len, flags); 488 if (ret) 489 return -ENOMEM; 490 491 if (ring->type == TYPE_STREAM) 492 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 493 ring, first, last, flags); 494 if (ret) { 495 struct xhci_segment *next; 496 do { 497 next = first->next; 498 xhci_segment_free(xhci, first); 499 if (first == last) 500 break; 501 first = next; 502 } while (true); 503 return ret; 504 } 505 506 xhci_link_rings(xhci, ring, first, last, num_segs); 507 trace_xhci_ring_expansion(ring); 508 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 509 "ring expansion succeed, now has %d segments", 510 ring->num_segs); 511 512 return 0; 513 } 514 515 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 516 517 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 518 int type, gfp_t flags) 519 { 520 struct xhci_container_ctx *ctx; 521 522 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 523 return NULL; 524 525 ctx = kzalloc(sizeof(*ctx), flags); 526 if (!ctx) 527 return NULL; 528 529 ctx->type = type; 530 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 531 if (type == XHCI_CTX_TYPE_INPUT) 532 ctx->size += CTX_SIZE(xhci->hcc_params); 533 534 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 535 if (!ctx->bytes) { 536 kfree(ctx); 537 return NULL; 538 } 539 return ctx; 540 } 541 542 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 543 struct xhci_container_ctx *ctx) 544 { 545 if (!ctx) 546 return; 547 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 548 kfree(ctx); 549 } 550 551 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 552 struct xhci_container_ctx *ctx) 553 { 554 if (ctx->type != XHCI_CTX_TYPE_INPUT) 555 return NULL; 556 557 return (struct xhci_input_control_ctx *)ctx->bytes; 558 } 559 560 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 561 struct xhci_container_ctx *ctx) 562 { 563 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 564 return (struct xhci_slot_ctx *)ctx->bytes; 565 566 return (struct xhci_slot_ctx *) 567 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 568 } 569 570 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 571 struct xhci_container_ctx *ctx, 572 unsigned int ep_index) 573 { 574 /* increment ep index by offset of start of ep ctx array */ 575 ep_index++; 576 if (ctx->type == XHCI_CTX_TYPE_INPUT) 577 ep_index++; 578 579 return (struct xhci_ep_ctx *) 580 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 581 } 582 583 584 /***************** Streams structures manipulation *************************/ 585 586 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 587 unsigned int num_stream_ctxs, 588 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 589 { 590 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 591 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 592 593 if (size > MEDIUM_STREAM_ARRAY_SIZE) 594 dma_free_coherent(dev, size, 595 stream_ctx, dma); 596 else if (size <= SMALL_STREAM_ARRAY_SIZE) 597 return dma_pool_free(xhci->small_streams_pool, 598 stream_ctx, dma); 599 else 600 return dma_pool_free(xhci->medium_streams_pool, 601 stream_ctx, dma); 602 } 603 604 /* 605 * The stream context array for each endpoint with bulk streams enabled can 606 * vary in size, based on: 607 * - how many streams the endpoint supports, 608 * - the maximum primary stream array size the host controller supports, 609 * - and how many streams the device driver asks for. 610 * 611 * The stream context array must be a power of 2, and can be as small as 612 * 64 bytes or as large as 1MB. 613 */ 614 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 615 unsigned int num_stream_ctxs, dma_addr_t *dma, 616 gfp_t mem_flags) 617 { 618 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 619 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 620 621 if (size > MEDIUM_STREAM_ARRAY_SIZE) 622 return dma_alloc_coherent(dev, size, 623 dma, mem_flags); 624 else if (size <= SMALL_STREAM_ARRAY_SIZE) 625 return dma_pool_alloc(xhci->small_streams_pool, 626 mem_flags, dma); 627 else 628 return dma_pool_alloc(xhci->medium_streams_pool, 629 mem_flags, dma); 630 } 631 632 struct xhci_ring *xhci_dma_to_transfer_ring( 633 struct xhci_virt_ep *ep, 634 u64 address) 635 { 636 if (ep->ep_state & EP_HAS_STREAMS) 637 return radix_tree_lookup(&ep->stream_info->trb_address_map, 638 address >> TRB_SEGMENT_SHIFT); 639 return ep->ring; 640 } 641 642 struct xhci_ring *xhci_stream_id_to_ring( 643 struct xhci_virt_device *dev, 644 unsigned int ep_index, 645 unsigned int stream_id) 646 { 647 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 648 649 if (stream_id == 0) 650 return ep->ring; 651 if (!ep->stream_info) 652 return NULL; 653 654 if (stream_id > ep->stream_info->num_streams) 655 return NULL; 656 return ep->stream_info->stream_rings[stream_id]; 657 } 658 659 /* 660 * Change an endpoint's internal structure so it supports stream IDs. The 661 * number of requested streams includes stream 0, which cannot be used by device 662 * drivers. 663 * 664 * The number of stream contexts in the stream context array may be bigger than 665 * the number of streams the driver wants to use. This is because the number of 666 * stream context array entries must be a power of two. 667 */ 668 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 669 unsigned int num_stream_ctxs, 670 unsigned int num_streams, 671 unsigned int max_packet, gfp_t mem_flags) 672 { 673 struct xhci_stream_info *stream_info; 674 u32 cur_stream; 675 struct xhci_ring *cur_ring; 676 u64 addr; 677 int ret; 678 679 xhci_dbg(xhci, "Allocating %u streams and %u " 680 "stream context array entries.\n", 681 num_streams, num_stream_ctxs); 682 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 683 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 684 return NULL; 685 } 686 xhci->cmd_ring_reserved_trbs++; 687 688 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 689 if (!stream_info) 690 goto cleanup_trbs; 691 692 stream_info->num_streams = num_streams; 693 stream_info->num_stream_ctxs = num_stream_ctxs; 694 695 /* Initialize the array of virtual pointers to stream rings. */ 696 stream_info->stream_rings = kzalloc( 697 sizeof(struct xhci_ring *)*num_streams, 698 mem_flags); 699 if (!stream_info->stream_rings) 700 goto cleanup_info; 701 702 /* Initialize the array of DMA addresses for stream rings for the HW. */ 703 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 704 num_stream_ctxs, &stream_info->ctx_array_dma, 705 mem_flags); 706 if (!stream_info->stream_ctx_array) 707 goto cleanup_ctx; 708 memset(stream_info->stream_ctx_array, 0, 709 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 710 711 /* Allocate everything needed to free the stream rings later */ 712 stream_info->free_streams_command = 713 xhci_alloc_command(xhci, true, true, mem_flags); 714 if (!stream_info->free_streams_command) 715 goto cleanup_ctx; 716 717 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 718 719 /* Allocate rings for all the streams that the driver will use, 720 * and add their segment DMA addresses to the radix tree. 721 * Stream 0 is reserved. 722 */ 723 724 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 725 stream_info->stream_rings[cur_stream] = 726 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 727 mem_flags); 728 cur_ring = stream_info->stream_rings[cur_stream]; 729 if (!cur_ring) 730 goto cleanup_rings; 731 cur_ring->stream_id = cur_stream; 732 cur_ring->trb_address_map = &stream_info->trb_address_map; 733 /* Set deq ptr, cycle bit, and stream context type */ 734 addr = cur_ring->first_seg->dma | 735 SCT_FOR_CTX(SCT_PRI_TR) | 736 cur_ring->cycle_state; 737 stream_info->stream_ctx_array[cur_stream].stream_ring = 738 cpu_to_le64(addr); 739 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 740 cur_stream, (unsigned long long) addr); 741 742 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 743 if (ret) { 744 xhci_ring_free(xhci, cur_ring); 745 stream_info->stream_rings[cur_stream] = NULL; 746 goto cleanup_rings; 747 } 748 } 749 /* Leave the other unused stream ring pointers in the stream context 750 * array initialized to zero. This will cause the xHC to give us an 751 * error if the device asks for a stream ID we don't have setup (if it 752 * was any other way, the host controller would assume the ring is 753 * "empty" and wait forever for data to be queued to that stream ID). 754 */ 755 756 return stream_info; 757 758 cleanup_rings: 759 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 760 cur_ring = stream_info->stream_rings[cur_stream]; 761 if (cur_ring) { 762 xhci_ring_free(xhci, cur_ring); 763 stream_info->stream_rings[cur_stream] = NULL; 764 } 765 } 766 xhci_free_command(xhci, stream_info->free_streams_command); 767 cleanup_ctx: 768 kfree(stream_info->stream_rings); 769 cleanup_info: 770 kfree(stream_info); 771 cleanup_trbs: 772 xhci->cmd_ring_reserved_trbs--; 773 return NULL; 774 } 775 /* 776 * Sets the MaxPStreams field and the Linear Stream Array field. 777 * Sets the dequeue pointer to the stream context array. 778 */ 779 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 780 struct xhci_ep_ctx *ep_ctx, 781 struct xhci_stream_info *stream_info) 782 { 783 u32 max_primary_streams; 784 /* MaxPStreams is the number of stream context array entries, not the 785 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 786 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 787 */ 788 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 789 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 790 "Setting number of stream ctx array entries to %u", 791 1 << (max_primary_streams + 1)); 792 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 793 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 794 | EP_HAS_LSA); 795 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 796 } 797 798 /* 799 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 800 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 801 * not at the beginning of the ring). 802 */ 803 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 804 struct xhci_virt_ep *ep) 805 { 806 dma_addr_t addr; 807 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 808 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 809 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 810 } 811 812 /* Frees all stream contexts associated with the endpoint, 813 * 814 * Caller should fix the endpoint context streams fields. 815 */ 816 void xhci_free_stream_info(struct xhci_hcd *xhci, 817 struct xhci_stream_info *stream_info) 818 { 819 int cur_stream; 820 struct xhci_ring *cur_ring; 821 822 if (!stream_info) 823 return; 824 825 for (cur_stream = 1; cur_stream < stream_info->num_streams; 826 cur_stream++) { 827 cur_ring = stream_info->stream_rings[cur_stream]; 828 if (cur_ring) { 829 xhci_ring_free(xhci, cur_ring); 830 stream_info->stream_rings[cur_stream] = NULL; 831 } 832 } 833 xhci_free_command(xhci, stream_info->free_streams_command); 834 xhci->cmd_ring_reserved_trbs--; 835 if (stream_info->stream_ctx_array) 836 xhci_free_stream_ctx(xhci, 837 stream_info->num_stream_ctxs, 838 stream_info->stream_ctx_array, 839 stream_info->ctx_array_dma); 840 841 kfree(stream_info->stream_rings); 842 kfree(stream_info); 843 } 844 845 846 /***************** Device context manipulation *************************/ 847 848 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 849 struct xhci_virt_ep *ep) 850 { 851 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 852 (unsigned long)ep); 853 ep->xhci = xhci; 854 } 855 856 static void xhci_free_tt_info(struct xhci_hcd *xhci, 857 struct xhci_virt_device *virt_dev, 858 int slot_id) 859 { 860 struct list_head *tt_list_head; 861 struct xhci_tt_bw_info *tt_info, *next; 862 bool slot_found = false; 863 864 /* If the device never made it past the Set Address stage, 865 * it may not have the real_port set correctly. 866 */ 867 if (virt_dev->real_port == 0 || 868 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 869 xhci_dbg(xhci, "Bad real port.\n"); 870 return; 871 } 872 873 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 874 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 875 /* Multi-TT hubs will have more than one entry */ 876 if (tt_info->slot_id == slot_id) { 877 slot_found = true; 878 list_del(&tt_info->tt_list); 879 kfree(tt_info); 880 } else if (slot_found) { 881 break; 882 } 883 } 884 } 885 886 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 887 struct xhci_virt_device *virt_dev, 888 struct usb_device *hdev, 889 struct usb_tt *tt, gfp_t mem_flags) 890 { 891 struct xhci_tt_bw_info *tt_info; 892 unsigned int num_ports; 893 int i, j; 894 895 if (!tt->multi) 896 num_ports = 1; 897 else 898 num_ports = hdev->maxchild; 899 900 for (i = 0; i < num_ports; i++, tt_info++) { 901 struct xhci_interval_bw_table *bw_table; 902 903 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 904 if (!tt_info) 905 goto free_tts; 906 INIT_LIST_HEAD(&tt_info->tt_list); 907 list_add(&tt_info->tt_list, 908 &xhci->rh_bw[virt_dev->real_port - 1].tts); 909 tt_info->slot_id = virt_dev->udev->slot_id; 910 if (tt->multi) 911 tt_info->ttport = i+1; 912 bw_table = &tt_info->bw_table; 913 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 914 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 915 } 916 return 0; 917 918 free_tts: 919 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 920 return -ENOMEM; 921 } 922 923 924 /* All the xhci_tds in the ring's TD list should be freed at this point. 925 * Should be called with xhci->lock held if there is any chance the TT lists 926 * will be manipulated by the configure endpoint, allocate device, or update 927 * hub functions while this function is removing the TT entries from the list. 928 */ 929 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 930 { 931 struct xhci_virt_device *dev; 932 int i; 933 int old_active_eps = 0; 934 935 /* Slot ID 0 is reserved */ 936 if (slot_id == 0 || !xhci->devs[slot_id]) 937 return; 938 939 dev = xhci->devs[slot_id]; 940 941 trace_xhci_free_virt_device(dev); 942 943 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 944 if (!dev) 945 return; 946 947 if (dev->tt_info) 948 old_active_eps = dev->tt_info->active_eps; 949 950 for (i = 0; i < 31; i++) { 951 if (dev->eps[i].ring) 952 xhci_ring_free(xhci, dev->eps[i].ring); 953 if (dev->eps[i].stream_info) 954 xhci_free_stream_info(xhci, 955 dev->eps[i].stream_info); 956 /* Endpoints on the TT/root port lists should have been removed 957 * when usb_disable_device() was called for the device. 958 * We can't drop them anyway, because the udev might have gone 959 * away by this point, and we can't tell what speed it was. 960 */ 961 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 962 xhci_warn(xhci, "Slot %u endpoint %u " 963 "not removed from BW list!\n", 964 slot_id, i); 965 } 966 /* If this is a hub, free the TT(s) from the TT list */ 967 xhci_free_tt_info(xhci, dev, slot_id); 968 /* If necessary, update the number of active TTs on this root port */ 969 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 970 971 if (dev->ring_cache) { 972 for (i = 0; i < dev->num_rings_cached; i++) 973 xhci_ring_free(xhci, dev->ring_cache[i]); 974 kfree(dev->ring_cache); 975 } 976 977 if (dev->in_ctx) 978 xhci_free_container_ctx(xhci, dev->in_ctx); 979 if (dev->out_ctx) 980 xhci_free_container_ctx(xhci, dev->out_ctx); 981 982 kfree(xhci->devs[slot_id]); 983 xhci->devs[slot_id] = NULL; 984 } 985 986 /* 987 * Free a virt_device structure. 988 * If the virt_device added a tt_info (a hub) and has children pointing to 989 * that tt_info, then free the child first. Recursive. 990 * We can't rely on udev at this point to find child-parent relationships. 991 */ 992 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 993 { 994 struct xhci_virt_device *vdev; 995 struct list_head *tt_list_head; 996 struct xhci_tt_bw_info *tt_info, *next; 997 int i; 998 999 vdev = xhci->devs[slot_id]; 1000 if (!vdev) 1001 return; 1002 1003 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 1004 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 1005 /* is this a hub device that added a tt_info to the tts list */ 1006 if (tt_info->slot_id == slot_id) { 1007 /* are any devices using this tt_info? */ 1008 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1009 vdev = xhci->devs[i]; 1010 if (vdev && (vdev->tt_info == tt_info)) 1011 xhci_free_virt_devices_depth_first( 1012 xhci, i); 1013 } 1014 } 1015 } 1016 /* we are now at a leaf device */ 1017 xhci_free_virt_device(xhci, slot_id); 1018 } 1019 1020 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 1021 struct usb_device *udev, gfp_t flags) 1022 { 1023 struct xhci_virt_device *dev; 1024 int i; 1025 1026 /* Slot ID 0 is reserved */ 1027 if (slot_id == 0 || xhci->devs[slot_id]) { 1028 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 1029 return 0; 1030 } 1031 1032 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 1033 if (!xhci->devs[slot_id]) 1034 return 0; 1035 dev = xhci->devs[slot_id]; 1036 1037 /* Allocate the (output) device context that will be used in the HC. */ 1038 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 1039 if (!dev->out_ctx) 1040 goto fail; 1041 1042 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 1043 (unsigned long long)dev->out_ctx->dma); 1044 1045 /* Allocate the (input) device context for address device command */ 1046 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 1047 if (!dev->in_ctx) 1048 goto fail; 1049 1050 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 1051 (unsigned long long)dev->in_ctx->dma); 1052 1053 /* Initialize the cancellation list and watchdog timers for each ep */ 1054 for (i = 0; i < 31; i++) { 1055 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1056 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1057 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1058 } 1059 1060 /* Allocate endpoint 0 ring */ 1061 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1062 if (!dev->eps[0].ring) 1063 goto fail; 1064 1065 /* Allocate pointers to the ring cache */ 1066 dev->ring_cache = kzalloc( 1067 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 1068 flags); 1069 if (!dev->ring_cache) 1070 goto fail; 1071 dev->num_rings_cached = 0; 1072 1073 dev->udev = udev; 1074 1075 /* Point to output device context in dcbaa. */ 1076 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1077 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1078 slot_id, 1079 &xhci->dcbaa->dev_context_ptrs[slot_id], 1080 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1081 1082 trace_xhci_alloc_virt_device(dev); 1083 1084 return 1; 1085 fail: 1086 xhci_free_virt_device(xhci, slot_id); 1087 return 0; 1088 } 1089 1090 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1091 struct usb_device *udev) 1092 { 1093 struct xhci_virt_device *virt_dev; 1094 struct xhci_ep_ctx *ep0_ctx; 1095 struct xhci_ring *ep_ring; 1096 1097 virt_dev = xhci->devs[udev->slot_id]; 1098 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1099 ep_ring = virt_dev->eps[0].ring; 1100 /* 1101 * FIXME we don't keep track of the dequeue pointer very well after a 1102 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1103 * host to our enqueue pointer. This should only be called after a 1104 * configured device has reset, so all control transfers should have 1105 * been completed or cancelled before the reset. 1106 */ 1107 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1108 ep_ring->enqueue) 1109 | ep_ring->cycle_state); 1110 } 1111 1112 /* 1113 * The xHCI roothub may have ports of differing speeds in any order in the port 1114 * status registers. xhci->port_array provides an array of the port speed for 1115 * each offset into the port status registers. 1116 * 1117 * The xHCI hardware wants to know the roothub port number that the USB device 1118 * is attached to (or the roothub port its ancestor hub is attached to). All we 1119 * know is the index of that port under either the USB 2.0 or the USB 3.0 1120 * roothub, but that doesn't give us the real index into the HW port status 1121 * registers. Call xhci_find_raw_port_number() to get real index. 1122 */ 1123 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1124 struct usb_device *udev) 1125 { 1126 struct usb_device *top_dev; 1127 struct usb_hcd *hcd; 1128 1129 if (udev->speed >= USB_SPEED_SUPER) 1130 hcd = xhci->shared_hcd; 1131 else 1132 hcd = xhci->main_hcd; 1133 1134 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1135 top_dev = top_dev->parent) 1136 /* Found device below root hub */; 1137 1138 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1139 } 1140 1141 /* Setup an xHCI virtual device for a Set Address command */ 1142 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1143 { 1144 struct xhci_virt_device *dev; 1145 struct xhci_ep_ctx *ep0_ctx; 1146 struct xhci_slot_ctx *slot_ctx; 1147 u32 port_num; 1148 u32 max_packets; 1149 struct usb_device *top_dev; 1150 1151 dev = xhci->devs[udev->slot_id]; 1152 /* Slot ID 0 is reserved */ 1153 if (udev->slot_id == 0 || !dev) { 1154 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1155 udev->slot_id); 1156 return -EINVAL; 1157 } 1158 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1159 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1160 1161 /* 3) Only the control endpoint is valid - one endpoint context */ 1162 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1163 switch (udev->speed) { 1164 case USB_SPEED_SUPER_PLUS: 1165 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1166 max_packets = MAX_PACKET(512); 1167 break; 1168 case USB_SPEED_SUPER: 1169 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1170 max_packets = MAX_PACKET(512); 1171 break; 1172 case USB_SPEED_HIGH: 1173 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1174 max_packets = MAX_PACKET(64); 1175 break; 1176 /* USB core guesses at a 64-byte max packet first for FS devices */ 1177 case USB_SPEED_FULL: 1178 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1179 max_packets = MAX_PACKET(64); 1180 break; 1181 case USB_SPEED_LOW: 1182 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1183 max_packets = MAX_PACKET(8); 1184 break; 1185 case USB_SPEED_WIRELESS: 1186 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1187 return -EINVAL; 1188 break; 1189 default: 1190 /* Speed was set earlier, this shouldn't happen. */ 1191 return -EINVAL; 1192 } 1193 /* Find the root hub port this device is under */ 1194 port_num = xhci_find_real_port_number(xhci, udev); 1195 if (!port_num) 1196 return -EINVAL; 1197 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1198 /* Set the port number in the virtual_device to the faked port number */ 1199 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1200 top_dev = top_dev->parent) 1201 /* Found device below root hub */; 1202 dev->fake_port = top_dev->portnum; 1203 dev->real_port = port_num; 1204 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1205 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1206 1207 /* Find the right bandwidth table that this device will be a part of. 1208 * If this is a full speed device attached directly to a root port (or a 1209 * decendent of one), it counts as a primary bandwidth domain, not a 1210 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1211 * will never be created for the HS root hub. 1212 */ 1213 if (!udev->tt || !udev->tt->hub->parent) { 1214 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1215 } else { 1216 struct xhci_root_port_bw_info *rh_bw; 1217 struct xhci_tt_bw_info *tt_bw; 1218 1219 rh_bw = &xhci->rh_bw[port_num - 1]; 1220 /* Find the right TT. */ 1221 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1222 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1223 continue; 1224 1225 if (!dev->udev->tt->multi || 1226 (udev->tt->multi && 1227 tt_bw->ttport == dev->udev->ttport)) { 1228 dev->bw_table = &tt_bw->bw_table; 1229 dev->tt_info = tt_bw; 1230 break; 1231 } 1232 } 1233 if (!dev->tt_info) 1234 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1235 } 1236 1237 /* Is this a LS/FS device under an external HS hub? */ 1238 if (udev->tt && udev->tt->hub->parent) { 1239 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1240 (udev->ttport << 8)); 1241 if (udev->tt->multi) 1242 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1243 } 1244 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1245 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1246 1247 /* Step 4 - ring already allocated */ 1248 /* Step 5 */ 1249 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1250 1251 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1252 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1253 max_packets); 1254 1255 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1256 dev->eps[0].ring->cycle_state); 1257 1258 trace_xhci_setup_addressable_virt_device(dev); 1259 1260 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1261 1262 return 0; 1263 } 1264 1265 /* 1266 * Convert interval expressed as 2^(bInterval - 1) == interval into 1267 * straight exponent value 2^n == interval. 1268 * 1269 */ 1270 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1271 struct usb_host_endpoint *ep) 1272 { 1273 unsigned int interval; 1274 1275 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1276 if (interval != ep->desc.bInterval - 1) 1277 dev_warn(&udev->dev, 1278 "ep %#x - rounding interval to %d %sframes\n", 1279 ep->desc.bEndpointAddress, 1280 1 << interval, 1281 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1282 1283 if (udev->speed == USB_SPEED_FULL) { 1284 /* 1285 * Full speed isoc endpoints specify interval in frames, 1286 * not microframes. We are using microframes everywhere, 1287 * so adjust accordingly. 1288 */ 1289 interval += 3; /* 1 frame = 2^3 uframes */ 1290 } 1291 1292 return interval; 1293 } 1294 1295 /* 1296 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1297 * microframes, rounded down to nearest power of 2. 1298 */ 1299 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1300 struct usb_host_endpoint *ep, unsigned int desc_interval, 1301 unsigned int min_exponent, unsigned int max_exponent) 1302 { 1303 unsigned int interval; 1304 1305 interval = fls(desc_interval) - 1; 1306 interval = clamp_val(interval, min_exponent, max_exponent); 1307 if ((1 << interval) != desc_interval) 1308 dev_dbg(&udev->dev, 1309 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1310 ep->desc.bEndpointAddress, 1311 1 << interval, 1312 desc_interval); 1313 1314 return interval; 1315 } 1316 1317 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1318 struct usb_host_endpoint *ep) 1319 { 1320 if (ep->desc.bInterval == 0) 1321 return 0; 1322 return xhci_microframes_to_exponent(udev, ep, 1323 ep->desc.bInterval, 0, 15); 1324 } 1325 1326 1327 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1328 struct usb_host_endpoint *ep) 1329 { 1330 return xhci_microframes_to_exponent(udev, ep, 1331 ep->desc.bInterval * 8, 3, 10); 1332 } 1333 1334 /* Return the polling or NAK interval. 1335 * 1336 * The polling interval is expressed in "microframes". If xHCI's Interval field 1337 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1338 * 1339 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1340 * is set to 0. 1341 */ 1342 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1343 struct usb_host_endpoint *ep) 1344 { 1345 unsigned int interval = 0; 1346 1347 switch (udev->speed) { 1348 case USB_SPEED_HIGH: 1349 /* Max NAK rate */ 1350 if (usb_endpoint_xfer_control(&ep->desc) || 1351 usb_endpoint_xfer_bulk(&ep->desc)) { 1352 interval = xhci_parse_microframe_interval(udev, ep); 1353 break; 1354 } 1355 /* Fall through - SS and HS isoc/int have same decoding */ 1356 1357 case USB_SPEED_SUPER_PLUS: 1358 case USB_SPEED_SUPER: 1359 if (usb_endpoint_xfer_int(&ep->desc) || 1360 usb_endpoint_xfer_isoc(&ep->desc)) { 1361 interval = xhci_parse_exponent_interval(udev, ep); 1362 } 1363 break; 1364 1365 case USB_SPEED_FULL: 1366 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1367 interval = xhci_parse_exponent_interval(udev, ep); 1368 break; 1369 } 1370 /* 1371 * Fall through for interrupt endpoint interval decoding 1372 * since it uses the same rules as low speed interrupt 1373 * endpoints. 1374 */ 1375 1376 case USB_SPEED_LOW: 1377 if (usb_endpoint_xfer_int(&ep->desc) || 1378 usb_endpoint_xfer_isoc(&ep->desc)) { 1379 1380 interval = xhci_parse_frame_interval(udev, ep); 1381 } 1382 break; 1383 1384 default: 1385 BUG(); 1386 } 1387 return interval; 1388 } 1389 1390 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1391 * High speed endpoint descriptors can define "the number of additional 1392 * transaction opportunities per microframe", but that goes in the Max Burst 1393 * endpoint context field. 1394 */ 1395 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1396 struct usb_host_endpoint *ep) 1397 { 1398 if (udev->speed < USB_SPEED_SUPER || 1399 !usb_endpoint_xfer_isoc(&ep->desc)) 1400 return 0; 1401 return ep->ss_ep_comp.bmAttributes; 1402 } 1403 1404 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1405 struct usb_host_endpoint *ep) 1406 { 1407 /* Super speed and Plus have max burst in ep companion desc */ 1408 if (udev->speed >= USB_SPEED_SUPER) 1409 return ep->ss_ep_comp.bMaxBurst; 1410 1411 if (udev->speed == USB_SPEED_HIGH && 1412 (usb_endpoint_xfer_isoc(&ep->desc) || 1413 usb_endpoint_xfer_int(&ep->desc))) 1414 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1415 1416 return 0; 1417 } 1418 1419 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1420 { 1421 int in; 1422 1423 in = usb_endpoint_dir_in(&ep->desc); 1424 1425 switch (usb_endpoint_type(&ep->desc)) { 1426 case USB_ENDPOINT_XFER_CONTROL: 1427 return CTRL_EP; 1428 case USB_ENDPOINT_XFER_BULK: 1429 return in ? BULK_IN_EP : BULK_OUT_EP; 1430 case USB_ENDPOINT_XFER_ISOC: 1431 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1432 case USB_ENDPOINT_XFER_INT: 1433 return in ? INT_IN_EP : INT_OUT_EP; 1434 } 1435 return 0; 1436 } 1437 1438 /* Return the maximum endpoint service interval time (ESIT) payload. 1439 * Basically, this is the maxpacket size, multiplied by the burst size 1440 * and mult size. 1441 */ 1442 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1443 struct usb_host_endpoint *ep) 1444 { 1445 int max_burst; 1446 int max_packet; 1447 1448 /* Only applies for interrupt or isochronous endpoints */ 1449 if (usb_endpoint_xfer_control(&ep->desc) || 1450 usb_endpoint_xfer_bulk(&ep->desc)) 1451 return 0; 1452 1453 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1454 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1455 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1456 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1457 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1458 else if (udev->speed >= USB_SPEED_SUPER) 1459 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1460 1461 max_packet = usb_endpoint_maxp(&ep->desc); 1462 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1463 /* A 0 in max burst means 1 transfer per ESIT */ 1464 return max_packet * max_burst; 1465 } 1466 1467 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1468 * Drivers will have to call usb_alloc_streams() to do that. 1469 */ 1470 int xhci_endpoint_init(struct xhci_hcd *xhci, 1471 struct xhci_virt_device *virt_dev, 1472 struct usb_device *udev, 1473 struct usb_host_endpoint *ep, 1474 gfp_t mem_flags) 1475 { 1476 unsigned int ep_index; 1477 struct xhci_ep_ctx *ep_ctx; 1478 struct xhci_ring *ep_ring; 1479 unsigned int max_packet; 1480 enum xhci_ring_type ring_type; 1481 u32 max_esit_payload; 1482 u32 endpoint_type; 1483 unsigned int max_burst; 1484 unsigned int interval; 1485 unsigned int mult; 1486 unsigned int avg_trb_len; 1487 unsigned int err_count = 0; 1488 1489 ep_index = xhci_get_endpoint_index(&ep->desc); 1490 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1491 1492 endpoint_type = xhci_get_endpoint_type(ep); 1493 if (!endpoint_type) 1494 return -EINVAL; 1495 1496 ring_type = usb_endpoint_type(&ep->desc); 1497 1498 /* 1499 * Get values to fill the endpoint context, mostly from ep descriptor. 1500 * The average TRB buffer lengt for bulk endpoints is unclear as we 1501 * have no clue on scatter gather list entry size. For Isoc and Int, 1502 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1503 */ 1504 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1505 interval = xhci_get_endpoint_interval(udev, ep); 1506 1507 /* Periodic endpoint bInterval limit quirk */ 1508 if (usb_endpoint_xfer_int(&ep->desc) || 1509 usb_endpoint_xfer_isoc(&ep->desc)) { 1510 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1511 udev->speed >= USB_SPEED_HIGH && 1512 interval >= 7) { 1513 interval = 6; 1514 } 1515 } 1516 1517 mult = xhci_get_endpoint_mult(udev, ep); 1518 max_packet = usb_endpoint_maxp(&ep->desc); 1519 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1520 avg_trb_len = max_esit_payload; 1521 1522 /* FIXME dig Mult and streams info out of ep companion desc */ 1523 1524 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1525 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1526 err_count = 3; 1527 /* Some devices get this wrong */ 1528 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH) 1529 max_packet = 512; 1530 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1531 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1532 avg_trb_len = 8; 1533 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1534 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1535 mult = 0; 1536 1537 /* Set up the endpoint ring */ 1538 virt_dev->eps[ep_index].new_ring = 1539 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1540 if (!virt_dev->eps[ep_index].new_ring) { 1541 /* Attempt to use the ring cache */ 1542 if (virt_dev->num_rings_cached == 0) 1543 return -ENOMEM; 1544 virt_dev->num_rings_cached--; 1545 virt_dev->eps[ep_index].new_ring = 1546 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1547 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1548 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1549 1, ring_type); 1550 } 1551 virt_dev->eps[ep_index].skip = false; 1552 ep_ring = virt_dev->eps[ep_index].new_ring; 1553 1554 /* Fill the endpoint context */ 1555 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1556 EP_INTERVAL(interval) | 1557 EP_MULT(mult)); 1558 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1559 MAX_PACKET(max_packet) | 1560 MAX_BURST(max_burst) | 1561 ERROR_COUNT(err_count)); 1562 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1563 ep_ring->cycle_state); 1564 1565 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1566 EP_AVG_TRB_LENGTH(avg_trb_len)); 1567 1568 /* FIXME Debug endpoint context */ 1569 return 0; 1570 } 1571 1572 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1573 struct xhci_virt_device *virt_dev, 1574 struct usb_host_endpoint *ep) 1575 { 1576 unsigned int ep_index; 1577 struct xhci_ep_ctx *ep_ctx; 1578 1579 ep_index = xhci_get_endpoint_index(&ep->desc); 1580 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1581 1582 ep_ctx->ep_info = 0; 1583 ep_ctx->ep_info2 = 0; 1584 ep_ctx->deq = 0; 1585 ep_ctx->tx_info = 0; 1586 /* Don't free the endpoint ring until the set interface or configuration 1587 * request succeeds. 1588 */ 1589 } 1590 1591 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1592 { 1593 bw_info->ep_interval = 0; 1594 bw_info->mult = 0; 1595 bw_info->num_packets = 0; 1596 bw_info->max_packet_size = 0; 1597 bw_info->type = 0; 1598 bw_info->max_esit_payload = 0; 1599 } 1600 1601 void xhci_update_bw_info(struct xhci_hcd *xhci, 1602 struct xhci_container_ctx *in_ctx, 1603 struct xhci_input_control_ctx *ctrl_ctx, 1604 struct xhci_virt_device *virt_dev) 1605 { 1606 struct xhci_bw_info *bw_info; 1607 struct xhci_ep_ctx *ep_ctx; 1608 unsigned int ep_type; 1609 int i; 1610 1611 for (i = 1; i < 31; i++) { 1612 bw_info = &virt_dev->eps[i].bw_info; 1613 1614 /* We can't tell what endpoint type is being dropped, but 1615 * unconditionally clearing the bandwidth info for non-periodic 1616 * endpoints should be harmless because the info will never be 1617 * set in the first place. 1618 */ 1619 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1620 /* Dropped endpoint */ 1621 xhci_clear_endpoint_bw_info(bw_info); 1622 continue; 1623 } 1624 1625 if (EP_IS_ADDED(ctrl_ctx, i)) { 1626 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1627 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1628 1629 /* Ignore non-periodic endpoints */ 1630 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1631 ep_type != ISOC_IN_EP && 1632 ep_type != INT_IN_EP) 1633 continue; 1634 1635 /* Added or changed endpoint */ 1636 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1637 le32_to_cpu(ep_ctx->ep_info)); 1638 /* Number of packets and mult are zero-based in the 1639 * input context, but we want one-based for the 1640 * interval table. 1641 */ 1642 bw_info->mult = CTX_TO_EP_MULT( 1643 le32_to_cpu(ep_ctx->ep_info)) + 1; 1644 bw_info->num_packets = CTX_TO_MAX_BURST( 1645 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1646 bw_info->max_packet_size = MAX_PACKET_DECODED( 1647 le32_to_cpu(ep_ctx->ep_info2)); 1648 bw_info->type = ep_type; 1649 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1650 le32_to_cpu(ep_ctx->tx_info)); 1651 } 1652 } 1653 } 1654 1655 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1656 * Useful when you want to change one particular aspect of the endpoint and then 1657 * issue a configure endpoint command. 1658 */ 1659 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1660 struct xhci_container_ctx *in_ctx, 1661 struct xhci_container_ctx *out_ctx, 1662 unsigned int ep_index) 1663 { 1664 struct xhci_ep_ctx *out_ep_ctx; 1665 struct xhci_ep_ctx *in_ep_ctx; 1666 1667 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1668 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1669 1670 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1671 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1672 in_ep_ctx->deq = out_ep_ctx->deq; 1673 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1674 } 1675 1676 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1677 * Useful when you want to change one particular aspect of the endpoint and then 1678 * issue a configure endpoint command. Only the context entries field matters, 1679 * but we'll copy the whole thing anyway. 1680 */ 1681 void xhci_slot_copy(struct xhci_hcd *xhci, 1682 struct xhci_container_ctx *in_ctx, 1683 struct xhci_container_ctx *out_ctx) 1684 { 1685 struct xhci_slot_ctx *in_slot_ctx; 1686 struct xhci_slot_ctx *out_slot_ctx; 1687 1688 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1689 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1690 1691 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1692 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1693 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1694 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1695 } 1696 1697 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1698 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1699 { 1700 int i; 1701 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1702 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1703 1704 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1705 "Allocating %d scratchpad buffers", num_sp); 1706 1707 if (!num_sp) 1708 return 0; 1709 1710 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1711 if (!xhci->scratchpad) 1712 goto fail_sp; 1713 1714 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1715 num_sp * sizeof(u64), 1716 &xhci->scratchpad->sp_dma, flags); 1717 if (!xhci->scratchpad->sp_array) 1718 goto fail_sp2; 1719 1720 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1721 if (!xhci->scratchpad->sp_buffers) 1722 goto fail_sp3; 1723 1724 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1725 for (i = 0; i < num_sp; i++) { 1726 dma_addr_t dma; 1727 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma, 1728 flags); 1729 if (!buf) 1730 goto fail_sp4; 1731 1732 xhci->scratchpad->sp_array[i] = dma; 1733 xhci->scratchpad->sp_buffers[i] = buf; 1734 } 1735 1736 return 0; 1737 1738 fail_sp4: 1739 for (i = i - 1; i >= 0; i--) { 1740 dma_free_coherent(dev, xhci->page_size, 1741 xhci->scratchpad->sp_buffers[i], 1742 xhci->scratchpad->sp_array[i]); 1743 } 1744 1745 kfree(xhci->scratchpad->sp_buffers); 1746 1747 fail_sp3: 1748 dma_free_coherent(dev, num_sp * sizeof(u64), 1749 xhci->scratchpad->sp_array, 1750 xhci->scratchpad->sp_dma); 1751 1752 fail_sp2: 1753 kfree(xhci->scratchpad); 1754 xhci->scratchpad = NULL; 1755 1756 fail_sp: 1757 return -ENOMEM; 1758 } 1759 1760 static void scratchpad_free(struct xhci_hcd *xhci) 1761 { 1762 int num_sp; 1763 int i; 1764 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1765 1766 if (!xhci->scratchpad) 1767 return; 1768 1769 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1770 1771 for (i = 0; i < num_sp; i++) { 1772 dma_free_coherent(dev, xhci->page_size, 1773 xhci->scratchpad->sp_buffers[i], 1774 xhci->scratchpad->sp_array[i]); 1775 } 1776 kfree(xhci->scratchpad->sp_buffers); 1777 dma_free_coherent(dev, num_sp * sizeof(u64), 1778 xhci->scratchpad->sp_array, 1779 xhci->scratchpad->sp_dma); 1780 kfree(xhci->scratchpad); 1781 xhci->scratchpad = NULL; 1782 } 1783 1784 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1785 bool allocate_in_ctx, bool allocate_completion, 1786 gfp_t mem_flags) 1787 { 1788 struct xhci_command *command; 1789 1790 command = kzalloc(sizeof(*command), mem_flags); 1791 if (!command) 1792 return NULL; 1793 1794 if (allocate_in_ctx) { 1795 command->in_ctx = 1796 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1797 mem_flags); 1798 if (!command->in_ctx) { 1799 kfree(command); 1800 return NULL; 1801 } 1802 } 1803 1804 if (allocate_completion) { 1805 command->completion = 1806 kzalloc(sizeof(struct completion), mem_flags); 1807 if (!command->completion) { 1808 xhci_free_container_ctx(xhci, command->in_ctx); 1809 kfree(command); 1810 return NULL; 1811 } 1812 init_completion(command->completion); 1813 } 1814 1815 command->status = 0; 1816 INIT_LIST_HEAD(&command->cmd_list); 1817 return command; 1818 } 1819 1820 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1821 { 1822 kfree(urb_priv); 1823 } 1824 1825 void xhci_free_command(struct xhci_hcd *xhci, 1826 struct xhci_command *command) 1827 { 1828 xhci_free_container_ctx(xhci, 1829 command->in_ctx); 1830 kfree(command->completion); 1831 kfree(command); 1832 } 1833 1834 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1835 { 1836 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1837 int size; 1838 int i, j, num_ports; 1839 1840 cancel_delayed_work_sync(&xhci->cmd_timer); 1841 1842 /* Free the Event Ring Segment Table and the actual Event Ring */ 1843 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1844 if (xhci->erst.entries) 1845 dma_free_coherent(dev, size, 1846 xhci->erst.entries, xhci->erst.erst_dma_addr); 1847 xhci->erst.entries = NULL; 1848 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); 1849 if (xhci->event_ring) 1850 xhci_ring_free(xhci, xhci->event_ring); 1851 xhci->event_ring = NULL; 1852 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1853 1854 if (xhci->lpm_command) 1855 xhci_free_command(xhci, xhci->lpm_command); 1856 xhci->lpm_command = NULL; 1857 if (xhci->cmd_ring) 1858 xhci_ring_free(xhci, xhci->cmd_ring); 1859 xhci->cmd_ring = NULL; 1860 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1861 xhci_cleanup_command_queue(xhci); 1862 1863 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1864 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1865 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1866 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1867 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1868 while (!list_empty(ep)) 1869 list_del_init(ep->next); 1870 } 1871 } 1872 1873 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1874 xhci_free_virt_devices_depth_first(xhci, i); 1875 1876 dma_pool_destroy(xhci->segment_pool); 1877 xhci->segment_pool = NULL; 1878 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1879 1880 dma_pool_destroy(xhci->device_pool); 1881 xhci->device_pool = NULL; 1882 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1883 1884 dma_pool_destroy(xhci->small_streams_pool); 1885 xhci->small_streams_pool = NULL; 1886 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1887 "Freed small stream array pool"); 1888 1889 dma_pool_destroy(xhci->medium_streams_pool); 1890 xhci->medium_streams_pool = NULL; 1891 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1892 "Freed medium stream array pool"); 1893 1894 if (xhci->dcbaa) 1895 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1896 xhci->dcbaa, xhci->dcbaa->dma); 1897 xhci->dcbaa = NULL; 1898 1899 scratchpad_free(xhci); 1900 1901 if (!xhci->rh_bw) 1902 goto no_bw; 1903 1904 for (i = 0; i < num_ports; i++) { 1905 struct xhci_tt_bw_info *tt, *n; 1906 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1907 list_del(&tt->tt_list); 1908 kfree(tt); 1909 } 1910 } 1911 1912 no_bw: 1913 xhci->cmd_ring_reserved_trbs = 0; 1914 xhci->num_usb2_ports = 0; 1915 xhci->num_usb3_ports = 0; 1916 xhci->num_active_eps = 0; 1917 kfree(xhci->usb2_ports); 1918 kfree(xhci->usb3_ports); 1919 kfree(xhci->port_array); 1920 kfree(xhci->rh_bw); 1921 kfree(xhci->ext_caps); 1922 1923 xhci->usb2_ports = NULL; 1924 xhci->usb3_ports = NULL; 1925 xhci->port_array = NULL; 1926 xhci->rh_bw = NULL; 1927 xhci->ext_caps = NULL; 1928 1929 xhci->page_size = 0; 1930 xhci->page_shift = 0; 1931 xhci->bus_state[0].bus_suspended = 0; 1932 xhci->bus_state[1].bus_suspended = 0; 1933 } 1934 1935 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1936 struct xhci_segment *input_seg, 1937 union xhci_trb *start_trb, 1938 union xhci_trb *end_trb, 1939 dma_addr_t input_dma, 1940 struct xhci_segment *result_seg, 1941 char *test_name, int test_number) 1942 { 1943 unsigned long long start_dma; 1944 unsigned long long end_dma; 1945 struct xhci_segment *seg; 1946 1947 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1948 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1949 1950 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1951 if (seg != result_seg) { 1952 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1953 test_name, test_number); 1954 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1955 "input DMA 0x%llx\n", 1956 input_seg, 1957 (unsigned long long) input_dma); 1958 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1959 "ending TRB %p (0x%llx DMA)\n", 1960 start_trb, start_dma, 1961 end_trb, end_dma); 1962 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1963 result_seg, seg); 1964 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1965 true); 1966 return -1; 1967 } 1968 return 0; 1969 } 1970 1971 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1972 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1973 { 1974 struct { 1975 dma_addr_t input_dma; 1976 struct xhci_segment *result_seg; 1977 } simple_test_vector [] = { 1978 /* A zeroed DMA field should fail */ 1979 { 0, NULL }, 1980 /* One TRB before the ring start should fail */ 1981 { xhci->event_ring->first_seg->dma - 16, NULL }, 1982 /* One byte before the ring start should fail */ 1983 { xhci->event_ring->first_seg->dma - 1, NULL }, 1984 /* Starting TRB should succeed */ 1985 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1986 /* Ending TRB should succeed */ 1987 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1988 xhci->event_ring->first_seg }, 1989 /* One byte after the ring end should fail */ 1990 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1991 /* One TRB after the ring end should fail */ 1992 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1993 /* An address of all ones should fail */ 1994 { (dma_addr_t) (~0), NULL }, 1995 }; 1996 struct { 1997 struct xhci_segment *input_seg; 1998 union xhci_trb *start_trb; 1999 union xhci_trb *end_trb; 2000 dma_addr_t input_dma; 2001 struct xhci_segment *result_seg; 2002 } complex_test_vector [] = { 2003 /* Test feeding a valid DMA address from a different ring */ 2004 { .input_seg = xhci->event_ring->first_seg, 2005 .start_trb = xhci->event_ring->first_seg->trbs, 2006 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2007 .input_dma = xhci->cmd_ring->first_seg->dma, 2008 .result_seg = NULL, 2009 }, 2010 /* Test feeding a valid end TRB from a different ring */ 2011 { .input_seg = xhci->event_ring->first_seg, 2012 .start_trb = xhci->event_ring->first_seg->trbs, 2013 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2014 .input_dma = xhci->cmd_ring->first_seg->dma, 2015 .result_seg = NULL, 2016 }, 2017 /* Test feeding a valid start and end TRB from a different ring */ 2018 { .input_seg = xhci->event_ring->first_seg, 2019 .start_trb = xhci->cmd_ring->first_seg->trbs, 2020 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2021 .input_dma = xhci->cmd_ring->first_seg->dma, 2022 .result_seg = NULL, 2023 }, 2024 /* TRB in this ring, but after this TD */ 2025 { .input_seg = xhci->event_ring->first_seg, 2026 .start_trb = &xhci->event_ring->first_seg->trbs[0], 2027 .end_trb = &xhci->event_ring->first_seg->trbs[3], 2028 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 2029 .result_seg = NULL, 2030 }, 2031 /* TRB in this ring, but before this TD */ 2032 { .input_seg = xhci->event_ring->first_seg, 2033 .start_trb = &xhci->event_ring->first_seg->trbs[3], 2034 .end_trb = &xhci->event_ring->first_seg->trbs[6], 2035 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2036 .result_seg = NULL, 2037 }, 2038 /* TRB in this ring, but after this wrapped TD */ 2039 { .input_seg = xhci->event_ring->first_seg, 2040 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2041 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2042 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2043 .result_seg = NULL, 2044 }, 2045 /* TRB in this ring, but before this wrapped TD */ 2046 { .input_seg = xhci->event_ring->first_seg, 2047 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2048 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2049 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2050 .result_seg = NULL, 2051 }, 2052 /* TRB not in this ring, and we have a wrapped TD */ 2053 { .input_seg = xhci->event_ring->first_seg, 2054 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2055 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2056 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2057 .result_seg = NULL, 2058 }, 2059 }; 2060 2061 unsigned int num_tests; 2062 int i, ret; 2063 2064 num_tests = ARRAY_SIZE(simple_test_vector); 2065 for (i = 0; i < num_tests; i++) { 2066 ret = xhci_test_trb_in_td(xhci, 2067 xhci->event_ring->first_seg, 2068 xhci->event_ring->first_seg->trbs, 2069 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2070 simple_test_vector[i].input_dma, 2071 simple_test_vector[i].result_seg, 2072 "Simple", i); 2073 if (ret < 0) 2074 return ret; 2075 } 2076 2077 num_tests = ARRAY_SIZE(complex_test_vector); 2078 for (i = 0; i < num_tests; i++) { 2079 ret = xhci_test_trb_in_td(xhci, 2080 complex_test_vector[i].input_seg, 2081 complex_test_vector[i].start_trb, 2082 complex_test_vector[i].end_trb, 2083 complex_test_vector[i].input_dma, 2084 complex_test_vector[i].result_seg, 2085 "Complex", i); 2086 if (ret < 0) 2087 return ret; 2088 } 2089 xhci_dbg(xhci, "TRB math tests passed.\n"); 2090 return 0; 2091 } 2092 2093 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2094 { 2095 u64 temp; 2096 dma_addr_t deq; 2097 2098 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2099 xhci->event_ring->dequeue); 2100 if (deq == 0 && !in_interrupt()) 2101 xhci_warn(xhci, "WARN something wrong with SW event ring " 2102 "dequeue ptr.\n"); 2103 /* Update HC event ring dequeue pointer */ 2104 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2105 temp &= ERST_PTR_MASK; 2106 /* Don't clear the EHB bit (which is RW1C) because 2107 * there might be more events to service. 2108 */ 2109 temp &= ~ERST_EHB; 2110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2111 "// Write event ring dequeue pointer, " 2112 "preserving EHB bit"); 2113 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2114 &xhci->ir_set->erst_dequeue); 2115 } 2116 2117 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2118 __le32 __iomem *addr, int max_caps) 2119 { 2120 u32 temp, port_offset, port_count; 2121 int i; 2122 u8 major_revision, minor_revision; 2123 struct xhci_hub *rhub; 2124 2125 temp = readl(addr); 2126 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2127 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2128 2129 if (major_revision == 0x03) { 2130 rhub = &xhci->usb3_rhub; 2131 } else if (major_revision <= 0x02) { 2132 rhub = &xhci->usb2_rhub; 2133 } else { 2134 xhci_warn(xhci, "Ignoring unknown port speed, " 2135 "Ext Cap %p, revision = 0x%x\n", 2136 addr, major_revision); 2137 /* Ignoring port protocol we can't understand. FIXME */ 2138 return; 2139 } 2140 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2141 2142 if (rhub->min_rev < minor_revision) 2143 rhub->min_rev = minor_revision; 2144 2145 /* Port offset and count in the third dword, see section 7.2 */ 2146 temp = readl(addr + 2); 2147 port_offset = XHCI_EXT_PORT_OFF(temp); 2148 port_count = XHCI_EXT_PORT_COUNT(temp); 2149 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2150 "Ext Cap %p, port offset = %u, " 2151 "count = %u, revision = 0x%x", 2152 addr, port_offset, port_count, major_revision); 2153 /* Port count includes the current port offset */ 2154 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2155 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2156 return; 2157 2158 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp); 2159 if (rhub->psi_count) { 2160 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi), 2161 GFP_KERNEL); 2162 if (!rhub->psi) 2163 rhub->psi_count = 0; 2164 2165 rhub->psi_uid_count++; 2166 for (i = 0; i < rhub->psi_count; i++) { 2167 rhub->psi[i] = readl(addr + 4 + i); 2168 2169 /* count unique ID values, two consecutive entries can 2170 * have the same ID if link is assymetric 2171 */ 2172 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) != 2173 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1]))) 2174 rhub->psi_uid_count++; 2175 2176 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2177 XHCI_EXT_PORT_PSIV(rhub->psi[i]), 2178 XHCI_EXT_PORT_PSIE(rhub->psi[i]), 2179 XHCI_EXT_PORT_PLT(rhub->psi[i]), 2180 XHCI_EXT_PORT_PFD(rhub->psi[i]), 2181 XHCI_EXT_PORT_LP(rhub->psi[i]), 2182 XHCI_EXT_PORT_PSIM(rhub->psi[i])); 2183 } 2184 } 2185 /* cache usb2 port capabilities */ 2186 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2187 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2188 2189 /* Check the host's USB2 LPM capability */ 2190 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2191 (temp & XHCI_L1C)) { 2192 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2193 "xHCI 0.96: support USB2 software lpm"); 2194 xhci->sw_lpm_support = 1; 2195 } 2196 2197 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2198 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2199 "xHCI 1.0: support USB2 software lpm"); 2200 xhci->sw_lpm_support = 1; 2201 if (temp & XHCI_HLC) { 2202 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2203 "xHCI 1.0: support USB2 hardware lpm"); 2204 xhci->hw_lpm_support = 1; 2205 } 2206 } 2207 2208 port_offset--; 2209 for (i = port_offset; i < (port_offset + port_count); i++) { 2210 /* Duplicate entry. Ignore the port if the revisions differ. */ 2211 if (xhci->port_array[i] != 0) { 2212 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2213 " port %u\n", addr, i); 2214 xhci_warn(xhci, "Port was marked as USB %u, " 2215 "duplicated as USB %u\n", 2216 xhci->port_array[i], major_revision); 2217 /* Only adjust the roothub port counts if we haven't 2218 * found a similar duplicate. 2219 */ 2220 if (xhci->port_array[i] != major_revision && 2221 xhci->port_array[i] != DUPLICATE_ENTRY) { 2222 if (xhci->port_array[i] == 0x03) 2223 xhci->num_usb3_ports--; 2224 else 2225 xhci->num_usb2_ports--; 2226 xhci->port_array[i] = DUPLICATE_ENTRY; 2227 } 2228 /* FIXME: Should we disable the port? */ 2229 continue; 2230 } 2231 xhci->port_array[i] = major_revision; 2232 if (major_revision == 0x03) 2233 xhci->num_usb3_ports++; 2234 else 2235 xhci->num_usb2_ports++; 2236 } 2237 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2238 } 2239 2240 /* 2241 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2242 * specify what speeds each port is supposed to be. We can't count on the port 2243 * speed bits in the PORTSC register being correct until a device is connected, 2244 * but we need to set up the two fake roothubs with the correct number of USB 2245 * 3.0 and USB 2.0 ports at host controller initialization time. 2246 */ 2247 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2248 { 2249 void __iomem *base; 2250 u32 offset; 2251 unsigned int num_ports; 2252 int i, j, port_index; 2253 int cap_count = 0; 2254 u32 cap_start; 2255 2256 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2257 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2258 if (!xhci->port_array) 2259 return -ENOMEM; 2260 2261 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2262 if (!xhci->rh_bw) 2263 return -ENOMEM; 2264 for (i = 0; i < num_ports; i++) { 2265 struct xhci_interval_bw_table *bw_table; 2266 2267 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2268 bw_table = &xhci->rh_bw[i].bw_table; 2269 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2270 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2271 } 2272 base = &xhci->cap_regs->hc_capbase; 2273 2274 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2275 if (!cap_start) { 2276 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2277 return -ENODEV; 2278 } 2279 2280 offset = cap_start; 2281 /* count extended protocol capability entries for later caching */ 2282 while (offset) { 2283 cap_count++; 2284 offset = xhci_find_next_ext_cap(base, offset, 2285 XHCI_EXT_CAPS_PROTOCOL); 2286 } 2287 2288 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2289 if (!xhci->ext_caps) 2290 return -ENOMEM; 2291 2292 offset = cap_start; 2293 2294 while (offset) { 2295 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2296 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports) 2297 break; 2298 offset = xhci_find_next_ext_cap(base, offset, 2299 XHCI_EXT_CAPS_PROTOCOL); 2300 } 2301 2302 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2303 xhci_warn(xhci, "No ports on the roothubs?\n"); 2304 return -ENODEV; 2305 } 2306 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2307 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2308 xhci->num_usb2_ports, xhci->num_usb3_ports); 2309 2310 /* Place limits on the number of roothub ports so that the hub 2311 * descriptors aren't longer than the USB core will allocate. 2312 */ 2313 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) { 2314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2315 "Limiting USB 3.0 roothub ports to %u.", 2316 USB_SS_MAXPORTS); 2317 xhci->num_usb3_ports = USB_SS_MAXPORTS; 2318 } 2319 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2320 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2321 "Limiting USB 2.0 roothub ports to %u.", 2322 USB_MAXCHILDREN); 2323 xhci->num_usb2_ports = USB_MAXCHILDREN; 2324 } 2325 2326 /* 2327 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2328 * Not sure how the USB core will handle a hub with no ports... 2329 */ 2330 if (xhci->num_usb2_ports) { 2331 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2332 xhci->num_usb2_ports, flags); 2333 if (!xhci->usb2_ports) 2334 return -ENOMEM; 2335 2336 port_index = 0; 2337 for (i = 0; i < num_ports; i++) { 2338 if (xhci->port_array[i] == 0x03 || 2339 xhci->port_array[i] == 0 || 2340 xhci->port_array[i] == DUPLICATE_ENTRY) 2341 continue; 2342 2343 xhci->usb2_ports[port_index] = 2344 &xhci->op_regs->port_status_base + 2345 NUM_PORT_REGS*i; 2346 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2347 "USB 2.0 port at index %u, " 2348 "addr = %p", i, 2349 xhci->usb2_ports[port_index]); 2350 port_index++; 2351 if (port_index == xhci->num_usb2_ports) 2352 break; 2353 } 2354 } 2355 if (xhci->num_usb3_ports) { 2356 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2357 xhci->num_usb3_ports, flags); 2358 if (!xhci->usb3_ports) 2359 return -ENOMEM; 2360 2361 port_index = 0; 2362 for (i = 0; i < num_ports; i++) 2363 if (xhci->port_array[i] == 0x03) { 2364 xhci->usb3_ports[port_index] = 2365 &xhci->op_regs->port_status_base + 2366 NUM_PORT_REGS*i; 2367 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2368 "USB 3.0 port at index %u, " 2369 "addr = %p", i, 2370 xhci->usb3_ports[port_index]); 2371 port_index++; 2372 if (port_index == xhci->num_usb3_ports) 2373 break; 2374 } 2375 } 2376 return 0; 2377 } 2378 2379 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2380 { 2381 dma_addr_t dma; 2382 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2383 unsigned int val, val2; 2384 u64 val_64; 2385 struct xhci_segment *seg; 2386 u32 page_size, temp; 2387 int i; 2388 2389 INIT_LIST_HEAD(&xhci->cmd_list); 2390 2391 /* init command timeout work */ 2392 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2393 init_completion(&xhci->cmd_ring_stop_completion); 2394 2395 page_size = readl(&xhci->op_regs->page_size); 2396 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2397 "Supported page size register = 0x%x", page_size); 2398 for (i = 0; i < 16; i++) { 2399 if ((0x1 & page_size) != 0) 2400 break; 2401 page_size = page_size >> 1; 2402 } 2403 if (i < 16) 2404 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2405 "Supported page size of %iK", (1 << (i+12)) / 1024); 2406 else 2407 xhci_warn(xhci, "WARN: no supported page size\n"); 2408 /* Use 4K pages, since that's common and the minimum the HC supports */ 2409 xhci->page_shift = 12; 2410 xhci->page_size = 1 << xhci->page_shift; 2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2412 "HCD page size set to %iK", xhci->page_size / 1024); 2413 2414 /* 2415 * Program the Number of Device Slots Enabled field in the CONFIG 2416 * register with the max value of slots the HC can handle. 2417 */ 2418 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2420 "// xHC can handle at most %d device slots.", val); 2421 val2 = readl(&xhci->op_regs->config_reg); 2422 val |= (val2 & ~HCS_SLOTS_MASK); 2423 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2424 "// Setting Max device slots reg = 0x%x.", val); 2425 writel(val, &xhci->op_regs->config_reg); 2426 2427 /* 2428 * xHCI section 5.4.6 - doorbell array must be 2429 * "physically contiguous and 64-byte (cache line) aligned". 2430 */ 2431 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2432 flags); 2433 if (!xhci->dcbaa) 2434 goto fail; 2435 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2436 xhci->dcbaa->dma = dma; 2437 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2438 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2439 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2440 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2441 2442 /* 2443 * Initialize the ring segment pool. The ring must be a contiguous 2444 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2445 * however, the command ring segment needs 64-byte aligned segments 2446 * and our use of dma addresses in the trb_address_map radix tree needs 2447 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2448 */ 2449 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2450 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2451 2452 /* See Table 46 and Note on Figure 55 */ 2453 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2454 2112, 64, xhci->page_size); 2455 if (!xhci->segment_pool || !xhci->device_pool) 2456 goto fail; 2457 2458 /* Linear stream context arrays don't have any boundary restrictions, 2459 * and only need to be 16-byte aligned. 2460 */ 2461 xhci->small_streams_pool = 2462 dma_pool_create("xHCI 256 byte stream ctx arrays", 2463 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2464 xhci->medium_streams_pool = 2465 dma_pool_create("xHCI 1KB stream ctx arrays", 2466 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2467 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2468 * will be allocated with dma_alloc_coherent() 2469 */ 2470 2471 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2472 goto fail; 2473 2474 /* Set up the command ring to have one segments for now. */ 2475 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2476 if (!xhci->cmd_ring) 2477 goto fail; 2478 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2479 "Allocated command ring at %p", xhci->cmd_ring); 2480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2481 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2482 2483 /* Set the address in the Command Ring Control register */ 2484 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2485 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2486 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2487 xhci->cmd_ring->cycle_state; 2488 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2489 "// Setting command ring address to 0x%016llx", val_64); 2490 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2491 xhci_dbg_cmd_ptrs(xhci); 2492 2493 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2494 if (!xhci->lpm_command) 2495 goto fail; 2496 2497 /* Reserve one command ring TRB for disabling LPM. 2498 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2499 * disabling LPM, we only need to reserve one TRB for all devices. 2500 */ 2501 xhci->cmd_ring_reserved_trbs++; 2502 2503 val = readl(&xhci->cap_regs->db_off); 2504 val &= DBOFF_MASK; 2505 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2506 "// Doorbell array is located at offset 0x%x" 2507 " from cap regs base addr", val); 2508 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2509 xhci_dbg_regs(xhci); 2510 xhci_print_run_regs(xhci); 2511 /* Set ir_set to interrupt register set 0 */ 2512 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2513 2514 /* 2515 * Event ring setup: Allocate a normal ring, but also setup 2516 * the event ring segment table (ERST). Section 4.9.3. 2517 */ 2518 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2519 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2520 0, flags); 2521 if (!xhci->event_ring) 2522 goto fail; 2523 if (xhci_check_trb_in_td_math(xhci) < 0) 2524 goto fail; 2525 2526 xhci->erst.entries = dma_alloc_coherent(dev, 2527 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2528 flags); 2529 if (!xhci->erst.entries) 2530 goto fail; 2531 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2532 "// Allocated event ring segment table at 0x%llx", 2533 (unsigned long long)dma); 2534 2535 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2536 xhci->erst.num_entries = ERST_NUM_SEGS; 2537 xhci->erst.erst_dma_addr = dma; 2538 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2539 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", 2540 xhci->erst.num_entries, 2541 xhci->erst.entries, 2542 (unsigned long long)xhci->erst.erst_dma_addr); 2543 2544 /* set ring base address and size for each segment table entry */ 2545 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2546 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2547 entry->seg_addr = cpu_to_le64(seg->dma); 2548 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2549 entry->rsvd = 0; 2550 seg = seg->next; 2551 } 2552 2553 /* set ERST count with the number of entries in the segment table */ 2554 val = readl(&xhci->ir_set->erst_size); 2555 val &= ERST_SIZE_MASK; 2556 val |= ERST_NUM_SEGS; 2557 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2558 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2559 val); 2560 writel(val, &xhci->ir_set->erst_size); 2561 2562 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2563 "// Set ERST entries to point to event ring."); 2564 /* set the segment table base address */ 2565 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2566 "// Set ERST base address for ir_set 0 = 0x%llx", 2567 (unsigned long long)xhci->erst.erst_dma_addr); 2568 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2569 val_64 &= ERST_PTR_MASK; 2570 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2571 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2572 2573 /* Set the event ring dequeue address */ 2574 xhci_set_hc_event_deq(xhci); 2575 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2576 "Wrote ERST address to ir_set 0."); 2577 xhci_print_ir_set(xhci, 0); 2578 2579 /* 2580 * XXX: Might need to set the Interrupter Moderation Register to 2581 * something other than the default (~1ms minimum between interrupts). 2582 * See section 5.5.1.2. 2583 */ 2584 for (i = 0; i < MAX_HC_SLOTS; i++) 2585 xhci->devs[i] = NULL; 2586 for (i = 0; i < USB_MAXCHILDREN; i++) { 2587 xhci->bus_state[0].resume_done[i] = 0; 2588 xhci->bus_state[1].resume_done[i] = 0; 2589 /* Only the USB 2.0 completions will ever be used. */ 2590 init_completion(&xhci->bus_state[1].rexit_done[i]); 2591 } 2592 2593 if (scratchpad_alloc(xhci, flags)) 2594 goto fail; 2595 if (xhci_setup_port_arrays(xhci, flags)) 2596 goto fail; 2597 2598 /* Enable USB 3.0 device notifications for function remote wake, which 2599 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2600 * U3 (device suspend). 2601 */ 2602 temp = readl(&xhci->op_regs->dev_notification); 2603 temp &= ~DEV_NOTE_MASK; 2604 temp |= DEV_NOTE_FWAKE; 2605 writel(temp, &xhci->op_regs->dev_notification); 2606 2607 return 0; 2608 2609 fail: 2610 xhci_halt(xhci); 2611 xhci_reset(xhci); 2612 xhci_mem_cleanup(xhci); 2613 return -ENOMEM; 2614 } 2615