xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision f35e839a)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 					unsigned int cycle_state, gfp_t flags)
39 {
40 	struct xhci_segment *seg;
41 	dma_addr_t	dma;
42 	int		i;
43 
44 	seg = kzalloc(sizeof *seg, flags);
45 	if (!seg)
46 		return NULL;
47 
48 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 	if (!seg->trbs) {
50 		kfree(seg);
51 		return NULL;
52 	}
53 
54 	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
55 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 	if (cycle_state == 0) {
57 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 			seg->trbs[i].link.control |= TRB_CYCLE;
59 	}
60 	seg->dma = dma;
61 	seg->next = NULL;
62 
63 	return seg;
64 }
65 
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 	if (seg->trbs) {
69 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 		seg->trbs = NULL;
71 	}
72 	kfree(seg);
73 }
74 
75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 				struct xhci_segment *first)
77 {
78 	struct xhci_segment *seg;
79 
80 	seg = first->next;
81 	while (seg != first) {
82 		struct xhci_segment *next = seg->next;
83 		xhci_segment_free(xhci, seg);
84 		seg = next;
85 	}
86 	xhci_segment_free(xhci, first);
87 }
88 
89 /*
90  * Make the prev segment point to the next segment.
91  *
92  * Change the last TRB in the prev segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97 		struct xhci_segment *next, enum xhci_ring_type type)
98 {
99 	u32 val;
100 
101 	if (!prev || !next)
102 		return;
103 	prev->next = next;
104 	if (type != TYPE_EVENT) {
105 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 			cpu_to_le64(next->dma);
107 
108 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 		val &= ~TRB_TYPE_BITMASK;
111 		val |= TRB_TYPE(TRB_LINK);
112 		/* Always set the chain bit with 0.95 hardware */
113 		/* Set chain bit for isoc rings on AMD 0.96 host */
114 		if (xhci_link_trb_quirk(xhci) ||
115 				(type == TYPE_ISOC &&
116 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 
132 	if (!ring || !first || !last)
133 		return;
134 
135 	next = ring->enq_seg->next;
136 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 	xhci_link_segments(xhci, last, next, ring->type);
138 	ring->num_segs += num_segs;
139 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140 
141 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 			&= ~cpu_to_le32(LINK_TOGGLE);
144 		last->trbs[TRBS_PER_SEGMENT-1].link.control
145 			|= cpu_to_le32(LINK_TOGGLE);
146 		ring->last_seg = last;
147 	}
148 }
149 
150 /* XXX: Do we need the hcd structure in all these functions? */
151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153 	if (!ring)
154 		return;
155 
156 	if (ring->first_seg)
157 		xhci_free_segments_for_ring(xhci, ring->first_seg);
158 
159 	kfree(ring);
160 }
161 
162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 					unsigned int cycle_state)
164 {
165 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
166 	ring->enqueue = ring->first_seg->trbs;
167 	ring->enq_seg = ring->first_seg;
168 	ring->dequeue = ring->enqueue;
169 	ring->deq_seg = ring->first_seg;
170 	/* The ring is initialized to 0. The producer must write 1 to the cycle
171 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
172 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 	 *
174 	 * New rings are initialized with cycle state equal to 1; if we are
175 	 * handling ring expansion, set the cycle state equal to the old ring.
176 	 */
177 	ring->cycle_state = cycle_state;
178 	/* Not necessary for new rings, but needed for re-initialized rings */
179 	ring->enq_updates = 0;
180 	ring->deq_updates = 0;
181 
182 	/*
183 	 * Each segment has a link TRB, and leave an extra TRB for SW
184 	 * accounting purpose
185 	 */
186 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188 
189 /* Allocate segments and link them for a ring */
190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 		struct xhci_segment **first, struct xhci_segment **last,
192 		unsigned int num_segs, unsigned int cycle_state,
193 		enum xhci_ring_type type, gfp_t flags)
194 {
195 	struct xhci_segment *prev;
196 
197 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 	if (!prev)
199 		return -ENOMEM;
200 	num_segs--;
201 
202 	*first = prev;
203 	while (num_segs > 0) {
204 		struct xhci_segment	*next;
205 
206 		next = xhci_segment_alloc(xhci, cycle_state, flags);
207 		if (!next) {
208 			prev = *first;
209 			while (prev) {
210 				next = prev->next;
211 				xhci_segment_free(xhci, prev);
212 				prev = next;
213 			}
214 			return -ENOMEM;
215 		}
216 		xhci_link_segments(xhci, prev, next, type);
217 
218 		prev = next;
219 		num_segs--;
220 	}
221 	xhci_link_segments(xhci, prev, *first, type);
222 	*last = prev;
223 
224 	return 0;
225 }
226 
227 /**
228  * Create a new ring with zero or more segments.
229  *
230  * Link each segment together into a ring.
231  * Set the end flag and the cycle toggle bit on the last segment.
232  * See section 4.9.1 and figures 15 and 16.
233  */
234 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235 		unsigned int num_segs, unsigned int cycle_state,
236 		enum xhci_ring_type type, gfp_t flags)
237 {
238 	struct xhci_ring	*ring;
239 	int ret;
240 
241 	ring = kzalloc(sizeof *(ring), flags);
242 	if (!ring)
243 		return NULL;
244 
245 	ring->num_segs = num_segs;
246 	INIT_LIST_HEAD(&ring->td_list);
247 	ring->type = type;
248 	if (num_segs == 0)
249 		return ring;
250 
251 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252 			&ring->last_seg, num_segs, cycle_state, type, flags);
253 	if (ret)
254 		goto fail;
255 
256 	/* Only event ring does not use link TRB */
257 	if (type != TYPE_EVENT) {
258 		/* See section 4.9.2.1 and 6.4.4.1 */
259 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260 			cpu_to_le32(LINK_TOGGLE);
261 	}
262 	xhci_initialize_ring_info(ring, cycle_state);
263 	return ring;
264 
265 fail:
266 	kfree(ring);
267 	return NULL;
268 }
269 
270 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271 		struct xhci_virt_device *virt_dev,
272 		unsigned int ep_index)
273 {
274 	int rings_cached;
275 
276 	rings_cached = virt_dev->num_rings_cached;
277 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
278 		virt_dev->ring_cache[rings_cached] =
279 			virt_dev->eps[ep_index].ring;
280 		virt_dev->num_rings_cached++;
281 		xhci_dbg(xhci, "Cached old ring, "
282 				"%d ring%s cached\n",
283 				virt_dev->num_rings_cached,
284 				(virt_dev->num_rings_cached > 1) ? "s" : "");
285 	} else {
286 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287 		xhci_dbg(xhci, "Ring cache full (%d rings), "
288 				"freeing ring\n",
289 				virt_dev->num_rings_cached);
290 	}
291 	virt_dev->eps[ep_index].ring = NULL;
292 }
293 
294 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295  * pointers to the beginning of the ring.
296  */
297 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298 			struct xhci_ring *ring, unsigned int cycle_state,
299 			enum xhci_ring_type type)
300 {
301 	struct xhci_segment	*seg = ring->first_seg;
302 	int i;
303 
304 	do {
305 		memset(seg->trbs, 0,
306 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307 		if (cycle_state == 0) {
308 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
309 				seg->trbs[i].link.control |= TRB_CYCLE;
310 		}
311 		/* All endpoint rings have link TRBs */
312 		xhci_link_segments(xhci, seg, seg->next, type);
313 		seg = seg->next;
314 	} while (seg != ring->first_seg);
315 	ring->type = type;
316 	xhci_initialize_ring_info(ring, cycle_state);
317 	/* td list should be empty since all URBs have been cancelled,
318 	 * but just in case...
319 	 */
320 	INIT_LIST_HEAD(&ring->td_list);
321 }
322 
323 /*
324  * Expand an existing ring.
325  * Look for a cached ring or allocate a new ring which has same segment numbers
326  * and link the two rings.
327  */
328 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329 				unsigned int num_trbs, gfp_t flags)
330 {
331 	struct xhci_segment	*first;
332 	struct xhci_segment	*last;
333 	unsigned int		num_segs;
334 	unsigned int		num_segs_needed;
335 	int			ret;
336 
337 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338 				(TRBS_PER_SEGMENT - 1);
339 
340 	/* Allocate number of segments we needed, or double the ring size */
341 	num_segs = ring->num_segs > num_segs_needed ?
342 			ring->num_segs : num_segs_needed;
343 
344 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345 			num_segs, ring->cycle_state, ring->type, flags);
346 	if (ret)
347 		return -ENOMEM;
348 
349 	xhci_link_rings(xhci, ring, first, last, num_segs);
350 	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351 			ring->num_segs);
352 
353 	return 0;
354 }
355 
356 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357 
358 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359 						    int type, gfp_t flags)
360 {
361 	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
362 	if (!ctx)
363 		return NULL;
364 
365 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
366 	ctx->type = type;
367 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
368 	if (type == XHCI_CTX_TYPE_INPUT)
369 		ctx->size += CTX_SIZE(xhci->hcc_params);
370 
371 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
372 	memset(ctx->bytes, 0, ctx->size);
373 	return ctx;
374 }
375 
376 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
377 			     struct xhci_container_ctx *ctx)
378 {
379 	if (!ctx)
380 		return;
381 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
382 	kfree(ctx);
383 }
384 
385 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
386 					      struct xhci_container_ctx *ctx)
387 {
388 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
389 	return (struct xhci_input_control_ctx *)ctx->bytes;
390 }
391 
392 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
393 					struct xhci_container_ctx *ctx)
394 {
395 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
396 		return (struct xhci_slot_ctx *)ctx->bytes;
397 
398 	return (struct xhci_slot_ctx *)
399 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
400 }
401 
402 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
403 				    struct xhci_container_ctx *ctx,
404 				    unsigned int ep_index)
405 {
406 	/* increment ep index by offset of start of ep ctx array */
407 	ep_index++;
408 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
409 		ep_index++;
410 
411 	return (struct xhci_ep_ctx *)
412 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
413 }
414 
415 
416 /***************** Streams structures manipulation *************************/
417 
418 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
419 		unsigned int num_stream_ctxs,
420 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
421 {
422 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
423 
424 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
425 		dma_free_coherent(&pdev->dev,
426 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
427 				stream_ctx, dma);
428 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
429 		return dma_pool_free(xhci->small_streams_pool,
430 				stream_ctx, dma);
431 	else
432 		return dma_pool_free(xhci->medium_streams_pool,
433 				stream_ctx, dma);
434 }
435 
436 /*
437  * The stream context array for each endpoint with bulk streams enabled can
438  * vary in size, based on:
439  *  - how many streams the endpoint supports,
440  *  - the maximum primary stream array size the host controller supports,
441  *  - and how many streams the device driver asks for.
442  *
443  * The stream context array must be a power of 2, and can be as small as
444  * 64 bytes or as large as 1MB.
445  */
446 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
447 		unsigned int num_stream_ctxs, dma_addr_t *dma,
448 		gfp_t mem_flags)
449 {
450 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
451 
452 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
453 		return dma_alloc_coherent(&pdev->dev,
454 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
455 				dma, mem_flags);
456 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
457 		return dma_pool_alloc(xhci->small_streams_pool,
458 				mem_flags, dma);
459 	else
460 		return dma_pool_alloc(xhci->medium_streams_pool,
461 				mem_flags, dma);
462 }
463 
464 struct xhci_ring *xhci_dma_to_transfer_ring(
465 		struct xhci_virt_ep *ep,
466 		u64 address)
467 {
468 	if (ep->ep_state & EP_HAS_STREAMS)
469 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
470 				address >> TRB_SEGMENT_SHIFT);
471 	return ep->ring;
472 }
473 
474 /* Only use this when you know stream_info is valid */
475 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
476 static struct xhci_ring *dma_to_stream_ring(
477 		struct xhci_stream_info *stream_info,
478 		u64 address)
479 {
480 	return radix_tree_lookup(&stream_info->trb_address_map,
481 			address >> TRB_SEGMENT_SHIFT);
482 }
483 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
484 
485 struct xhci_ring *xhci_stream_id_to_ring(
486 		struct xhci_virt_device *dev,
487 		unsigned int ep_index,
488 		unsigned int stream_id)
489 {
490 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
491 
492 	if (stream_id == 0)
493 		return ep->ring;
494 	if (!ep->stream_info)
495 		return NULL;
496 
497 	if (stream_id > ep->stream_info->num_streams)
498 		return NULL;
499 	return ep->stream_info->stream_rings[stream_id];
500 }
501 
502 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
503 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
504 		unsigned int num_streams,
505 		struct xhci_stream_info *stream_info)
506 {
507 	u32 cur_stream;
508 	struct xhci_ring *cur_ring;
509 	u64 addr;
510 
511 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
512 		struct xhci_ring *mapped_ring;
513 		int trb_size = sizeof(union xhci_trb);
514 
515 		cur_ring = stream_info->stream_rings[cur_stream];
516 		for (addr = cur_ring->first_seg->dma;
517 				addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
518 				addr += trb_size) {
519 			mapped_ring = dma_to_stream_ring(stream_info, addr);
520 			if (cur_ring != mapped_ring) {
521 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
522 						"didn't map to stream ID %u; "
523 						"mapped to ring %p\n",
524 						(unsigned long long) addr,
525 						cur_stream,
526 						mapped_ring);
527 				return -EINVAL;
528 			}
529 		}
530 		/* One TRB after the end of the ring segment shouldn't return a
531 		 * pointer to the current ring (although it may be a part of a
532 		 * different ring).
533 		 */
534 		mapped_ring = dma_to_stream_ring(stream_info, addr);
535 		if (mapped_ring != cur_ring) {
536 			/* One TRB before should also fail */
537 			addr = cur_ring->first_seg->dma - trb_size;
538 			mapped_ring = dma_to_stream_ring(stream_info, addr);
539 		}
540 		if (mapped_ring == cur_ring) {
541 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
542 					"mapped to valid stream ID %u; "
543 					"mapped ring = %p\n",
544 					(unsigned long long) addr,
545 					cur_stream,
546 					mapped_ring);
547 			return -EINVAL;
548 		}
549 	}
550 	return 0;
551 }
552 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
553 
554 /*
555  * Change an endpoint's internal structure so it supports stream IDs.  The
556  * number of requested streams includes stream 0, which cannot be used by device
557  * drivers.
558  *
559  * The number of stream contexts in the stream context array may be bigger than
560  * the number of streams the driver wants to use.  This is because the number of
561  * stream context array entries must be a power of two.
562  *
563  * We need a radix tree for mapping physical addresses of TRBs to which stream
564  * ID they belong to.  We need to do this because the host controller won't tell
565  * us which stream ring the TRB came from.  We could store the stream ID in an
566  * event data TRB, but that doesn't help us for the cancellation case, since the
567  * endpoint may stop before it reaches that event data TRB.
568  *
569  * The radix tree maps the upper portion of the TRB DMA address to a ring
570  * segment that has the same upper portion of DMA addresses.  For example, say I
571  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
572  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
573  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
574  * pass the radix tree a key to get the right stream ID:
575  *
576  * 	0x10c90fff >> 10 = 0x43243
577  * 	0x10c912c0 >> 10 = 0x43244
578  * 	0x10c91400 >> 10 = 0x43245
579  *
580  * Obviously, only those TRBs with DMA addresses that are within the segment
581  * will make the radix tree return the stream ID for that ring.
582  *
583  * Caveats for the radix tree:
584  *
585  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
586  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
587  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
588  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
589  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
590  * extended systems (where the DMA address can be bigger than 32-bits),
591  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
592  */
593 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
594 		unsigned int num_stream_ctxs,
595 		unsigned int num_streams, gfp_t mem_flags)
596 {
597 	struct xhci_stream_info *stream_info;
598 	u32 cur_stream;
599 	struct xhci_ring *cur_ring;
600 	unsigned long key;
601 	u64 addr;
602 	int ret;
603 
604 	xhci_dbg(xhci, "Allocating %u streams and %u "
605 			"stream context array entries.\n",
606 			num_streams, num_stream_ctxs);
607 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
608 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
609 		return NULL;
610 	}
611 	xhci->cmd_ring_reserved_trbs++;
612 
613 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
614 	if (!stream_info)
615 		goto cleanup_trbs;
616 
617 	stream_info->num_streams = num_streams;
618 	stream_info->num_stream_ctxs = num_stream_ctxs;
619 
620 	/* Initialize the array of virtual pointers to stream rings. */
621 	stream_info->stream_rings = kzalloc(
622 			sizeof(struct xhci_ring *)*num_streams,
623 			mem_flags);
624 	if (!stream_info->stream_rings)
625 		goto cleanup_info;
626 
627 	/* Initialize the array of DMA addresses for stream rings for the HW. */
628 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
629 			num_stream_ctxs, &stream_info->ctx_array_dma,
630 			mem_flags);
631 	if (!stream_info->stream_ctx_array)
632 		goto cleanup_ctx;
633 	memset(stream_info->stream_ctx_array, 0,
634 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
635 
636 	/* Allocate everything needed to free the stream rings later */
637 	stream_info->free_streams_command =
638 		xhci_alloc_command(xhci, true, true, mem_flags);
639 	if (!stream_info->free_streams_command)
640 		goto cleanup_ctx;
641 
642 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
643 
644 	/* Allocate rings for all the streams that the driver will use,
645 	 * and add their segment DMA addresses to the radix tree.
646 	 * Stream 0 is reserved.
647 	 */
648 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
649 		stream_info->stream_rings[cur_stream] =
650 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
651 		cur_ring = stream_info->stream_rings[cur_stream];
652 		if (!cur_ring)
653 			goto cleanup_rings;
654 		cur_ring->stream_id = cur_stream;
655 		/* Set deq ptr, cycle bit, and stream context type */
656 		addr = cur_ring->first_seg->dma |
657 			SCT_FOR_CTX(SCT_PRI_TR) |
658 			cur_ring->cycle_state;
659 		stream_info->stream_ctx_array[cur_stream].stream_ring =
660 			cpu_to_le64(addr);
661 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
662 				cur_stream, (unsigned long long) addr);
663 
664 		key = (unsigned long)
665 			(cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
666 		ret = radix_tree_insert(&stream_info->trb_address_map,
667 				key, cur_ring);
668 		if (ret) {
669 			xhci_ring_free(xhci, cur_ring);
670 			stream_info->stream_rings[cur_stream] = NULL;
671 			goto cleanup_rings;
672 		}
673 	}
674 	/* Leave the other unused stream ring pointers in the stream context
675 	 * array initialized to zero.  This will cause the xHC to give us an
676 	 * error if the device asks for a stream ID we don't have setup (if it
677 	 * was any other way, the host controller would assume the ring is
678 	 * "empty" and wait forever for data to be queued to that stream ID).
679 	 */
680 #if XHCI_DEBUG
681 	/* Do a little test on the radix tree to make sure it returns the
682 	 * correct values.
683 	 */
684 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
685 		goto cleanup_rings;
686 #endif
687 
688 	return stream_info;
689 
690 cleanup_rings:
691 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
692 		cur_ring = stream_info->stream_rings[cur_stream];
693 		if (cur_ring) {
694 			addr = cur_ring->first_seg->dma;
695 			radix_tree_delete(&stream_info->trb_address_map,
696 					addr >> TRB_SEGMENT_SHIFT);
697 			xhci_ring_free(xhci, cur_ring);
698 			stream_info->stream_rings[cur_stream] = NULL;
699 		}
700 	}
701 	xhci_free_command(xhci, stream_info->free_streams_command);
702 cleanup_ctx:
703 	kfree(stream_info->stream_rings);
704 cleanup_info:
705 	kfree(stream_info);
706 cleanup_trbs:
707 	xhci->cmd_ring_reserved_trbs--;
708 	return NULL;
709 }
710 /*
711  * Sets the MaxPStreams field and the Linear Stream Array field.
712  * Sets the dequeue pointer to the stream context array.
713  */
714 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
715 		struct xhci_ep_ctx *ep_ctx,
716 		struct xhci_stream_info *stream_info)
717 {
718 	u32 max_primary_streams;
719 	/* MaxPStreams is the number of stream context array entries, not the
720 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
721 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
722 	 */
723 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
724 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
725 			1 << (max_primary_streams + 1));
726 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
727 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
728 				       | EP_HAS_LSA);
729 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
730 }
731 
732 /*
733  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
734  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
735  * not at the beginning of the ring).
736  */
737 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
738 		struct xhci_ep_ctx *ep_ctx,
739 		struct xhci_virt_ep *ep)
740 {
741 	dma_addr_t addr;
742 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
743 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
744 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
745 }
746 
747 /* Frees all stream contexts associated with the endpoint,
748  *
749  * Caller should fix the endpoint context streams fields.
750  */
751 void xhci_free_stream_info(struct xhci_hcd *xhci,
752 		struct xhci_stream_info *stream_info)
753 {
754 	int cur_stream;
755 	struct xhci_ring *cur_ring;
756 	dma_addr_t addr;
757 
758 	if (!stream_info)
759 		return;
760 
761 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
762 			cur_stream++) {
763 		cur_ring = stream_info->stream_rings[cur_stream];
764 		if (cur_ring) {
765 			addr = cur_ring->first_seg->dma;
766 			radix_tree_delete(&stream_info->trb_address_map,
767 					addr >> TRB_SEGMENT_SHIFT);
768 			xhci_ring_free(xhci, cur_ring);
769 			stream_info->stream_rings[cur_stream] = NULL;
770 		}
771 	}
772 	xhci_free_command(xhci, stream_info->free_streams_command);
773 	xhci->cmd_ring_reserved_trbs--;
774 	if (stream_info->stream_ctx_array)
775 		xhci_free_stream_ctx(xhci,
776 				stream_info->num_stream_ctxs,
777 				stream_info->stream_ctx_array,
778 				stream_info->ctx_array_dma);
779 
780 	if (stream_info)
781 		kfree(stream_info->stream_rings);
782 	kfree(stream_info);
783 }
784 
785 
786 /***************** Device context manipulation *************************/
787 
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 		struct xhci_virt_ep *ep)
790 {
791 	init_timer(&ep->stop_cmd_timer);
792 	ep->stop_cmd_timer.data = (unsigned long) ep;
793 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
794 	ep->xhci = xhci;
795 }
796 
797 static void xhci_free_tt_info(struct xhci_hcd *xhci,
798 		struct xhci_virt_device *virt_dev,
799 		int slot_id)
800 {
801 	struct list_head *tt_list_head;
802 	struct xhci_tt_bw_info *tt_info, *next;
803 	bool slot_found = false;
804 
805 	/* If the device never made it past the Set Address stage,
806 	 * it may not have the real_port set correctly.
807 	 */
808 	if (virt_dev->real_port == 0 ||
809 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
810 		xhci_dbg(xhci, "Bad real port.\n");
811 		return;
812 	}
813 
814 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
815 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
816 		/* Multi-TT hubs will have more than one entry */
817 		if (tt_info->slot_id == slot_id) {
818 			slot_found = true;
819 			list_del(&tt_info->tt_list);
820 			kfree(tt_info);
821 		} else if (slot_found) {
822 			break;
823 		}
824 	}
825 }
826 
827 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
828 		struct xhci_virt_device *virt_dev,
829 		struct usb_device *hdev,
830 		struct usb_tt *tt, gfp_t mem_flags)
831 {
832 	struct xhci_tt_bw_info		*tt_info;
833 	unsigned int			num_ports;
834 	int				i, j;
835 
836 	if (!tt->multi)
837 		num_ports = 1;
838 	else
839 		num_ports = hdev->maxchild;
840 
841 	for (i = 0; i < num_ports; i++, tt_info++) {
842 		struct xhci_interval_bw_table *bw_table;
843 
844 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
845 		if (!tt_info)
846 			goto free_tts;
847 		INIT_LIST_HEAD(&tt_info->tt_list);
848 		list_add(&tt_info->tt_list,
849 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
850 		tt_info->slot_id = virt_dev->udev->slot_id;
851 		if (tt->multi)
852 			tt_info->ttport = i+1;
853 		bw_table = &tt_info->bw_table;
854 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
855 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
856 	}
857 	return 0;
858 
859 free_tts:
860 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
861 	return -ENOMEM;
862 }
863 
864 
865 /* All the xhci_tds in the ring's TD list should be freed at this point.
866  * Should be called with xhci->lock held if there is any chance the TT lists
867  * will be manipulated by the configure endpoint, allocate device, or update
868  * hub functions while this function is removing the TT entries from the list.
869  */
870 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
871 {
872 	struct xhci_virt_device *dev;
873 	int i;
874 	int old_active_eps = 0;
875 
876 	/* Slot ID 0 is reserved */
877 	if (slot_id == 0 || !xhci->devs[slot_id])
878 		return;
879 
880 	dev = xhci->devs[slot_id];
881 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
882 	if (!dev)
883 		return;
884 
885 	if (dev->tt_info)
886 		old_active_eps = dev->tt_info->active_eps;
887 
888 	for (i = 0; i < 31; ++i) {
889 		if (dev->eps[i].ring)
890 			xhci_ring_free(xhci, dev->eps[i].ring);
891 		if (dev->eps[i].stream_info)
892 			xhci_free_stream_info(xhci,
893 					dev->eps[i].stream_info);
894 		/* Endpoints on the TT/root port lists should have been removed
895 		 * when usb_disable_device() was called for the device.
896 		 * We can't drop them anyway, because the udev might have gone
897 		 * away by this point, and we can't tell what speed it was.
898 		 */
899 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
900 			xhci_warn(xhci, "Slot %u endpoint %u "
901 					"not removed from BW list!\n",
902 					slot_id, i);
903 	}
904 	/* If this is a hub, free the TT(s) from the TT list */
905 	xhci_free_tt_info(xhci, dev, slot_id);
906 	/* If necessary, update the number of active TTs on this root port */
907 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
908 
909 	if (dev->ring_cache) {
910 		for (i = 0; i < dev->num_rings_cached; i++)
911 			xhci_ring_free(xhci, dev->ring_cache[i]);
912 		kfree(dev->ring_cache);
913 	}
914 
915 	if (dev->in_ctx)
916 		xhci_free_container_ctx(xhci, dev->in_ctx);
917 	if (dev->out_ctx)
918 		xhci_free_container_ctx(xhci, dev->out_ctx);
919 
920 	kfree(xhci->devs[slot_id]);
921 	xhci->devs[slot_id] = NULL;
922 }
923 
924 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
925 		struct usb_device *udev, gfp_t flags)
926 {
927 	struct xhci_virt_device *dev;
928 	int i;
929 
930 	/* Slot ID 0 is reserved */
931 	if (slot_id == 0 || xhci->devs[slot_id]) {
932 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
933 		return 0;
934 	}
935 
936 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
937 	if (!xhci->devs[slot_id])
938 		return 0;
939 	dev = xhci->devs[slot_id];
940 
941 	/* Allocate the (output) device context that will be used in the HC. */
942 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
943 	if (!dev->out_ctx)
944 		goto fail;
945 
946 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
947 			(unsigned long long)dev->out_ctx->dma);
948 
949 	/* Allocate the (input) device context for address device command */
950 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
951 	if (!dev->in_ctx)
952 		goto fail;
953 
954 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
955 			(unsigned long long)dev->in_ctx->dma);
956 
957 	/* Initialize the cancellation list and watchdog timers for each ep */
958 	for (i = 0; i < 31; i++) {
959 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
960 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
961 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
962 	}
963 
964 	/* Allocate endpoint 0 ring */
965 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
966 	if (!dev->eps[0].ring)
967 		goto fail;
968 
969 	/* Allocate pointers to the ring cache */
970 	dev->ring_cache = kzalloc(
971 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
972 			flags);
973 	if (!dev->ring_cache)
974 		goto fail;
975 	dev->num_rings_cached = 0;
976 
977 	init_completion(&dev->cmd_completion);
978 	INIT_LIST_HEAD(&dev->cmd_list);
979 	dev->udev = udev;
980 
981 	/* Point to output device context in dcbaa. */
982 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
983 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
984 		 slot_id,
985 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
986 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
987 
988 	return 1;
989 fail:
990 	xhci_free_virt_device(xhci, slot_id);
991 	return 0;
992 }
993 
994 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
995 		struct usb_device *udev)
996 {
997 	struct xhci_virt_device *virt_dev;
998 	struct xhci_ep_ctx	*ep0_ctx;
999 	struct xhci_ring	*ep_ring;
1000 
1001 	virt_dev = xhci->devs[udev->slot_id];
1002 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1003 	ep_ring = virt_dev->eps[0].ring;
1004 	/*
1005 	 * FIXME we don't keep track of the dequeue pointer very well after a
1006 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1007 	 * host to our enqueue pointer.  This should only be called after a
1008 	 * configured device has reset, so all control transfers should have
1009 	 * been completed or cancelled before the reset.
1010 	 */
1011 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1012 							ep_ring->enqueue)
1013 				   | ep_ring->cycle_state);
1014 }
1015 
1016 /*
1017  * The xHCI roothub may have ports of differing speeds in any order in the port
1018  * status registers.  xhci->port_array provides an array of the port speed for
1019  * each offset into the port status registers.
1020  *
1021  * The xHCI hardware wants to know the roothub port number that the USB device
1022  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1023  * know is the index of that port under either the USB 2.0 or the USB 3.0
1024  * roothub, but that doesn't give us the real index into the HW port status
1025  * registers. Call xhci_find_raw_port_number() to get real index.
1026  */
1027 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1028 		struct usb_device *udev)
1029 {
1030 	struct usb_device *top_dev;
1031 	struct usb_hcd *hcd;
1032 
1033 	if (udev->speed == USB_SPEED_SUPER)
1034 		hcd = xhci->shared_hcd;
1035 	else
1036 		hcd = xhci->main_hcd;
1037 
1038 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1039 			top_dev = top_dev->parent)
1040 		/* Found device below root hub */;
1041 
1042 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1043 }
1044 
1045 /* Setup an xHCI virtual device for a Set Address command */
1046 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1047 {
1048 	struct xhci_virt_device *dev;
1049 	struct xhci_ep_ctx	*ep0_ctx;
1050 	struct xhci_slot_ctx    *slot_ctx;
1051 	u32			port_num;
1052 	struct usb_device *top_dev;
1053 
1054 	dev = xhci->devs[udev->slot_id];
1055 	/* Slot ID 0 is reserved */
1056 	if (udev->slot_id == 0 || !dev) {
1057 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1058 				udev->slot_id);
1059 		return -EINVAL;
1060 	}
1061 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1062 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1063 
1064 	/* 3) Only the control endpoint is valid - one endpoint context */
1065 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1066 	switch (udev->speed) {
1067 	case USB_SPEED_SUPER:
1068 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1069 		break;
1070 	case USB_SPEED_HIGH:
1071 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1072 		break;
1073 	case USB_SPEED_FULL:
1074 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1075 		break;
1076 	case USB_SPEED_LOW:
1077 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1078 		break;
1079 	case USB_SPEED_WIRELESS:
1080 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1081 		return -EINVAL;
1082 		break;
1083 	default:
1084 		/* Speed was set earlier, this shouldn't happen. */
1085 		BUG();
1086 	}
1087 	/* Find the root hub port this device is under */
1088 	port_num = xhci_find_real_port_number(xhci, udev);
1089 	if (!port_num)
1090 		return -EINVAL;
1091 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1092 	/* Set the port number in the virtual_device to the faked port number */
1093 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094 			top_dev = top_dev->parent)
1095 		/* Found device below root hub */;
1096 	dev->fake_port = top_dev->portnum;
1097 	dev->real_port = port_num;
1098 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1099 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1100 
1101 	/* Find the right bandwidth table that this device will be a part of.
1102 	 * If this is a full speed device attached directly to a root port (or a
1103 	 * decendent of one), it counts as a primary bandwidth domain, not a
1104 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1105 	 * will never be created for the HS root hub.
1106 	 */
1107 	if (!udev->tt || !udev->tt->hub->parent) {
1108 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1109 	} else {
1110 		struct xhci_root_port_bw_info *rh_bw;
1111 		struct xhci_tt_bw_info *tt_bw;
1112 
1113 		rh_bw = &xhci->rh_bw[port_num - 1];
1114 		/* Find the right TT. */
1115 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1116 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1117 				continue;
1118 
1119 			if (!dev->udev->tt->multi ||
1120 					(udev->tt->multi &&
1121 					 tt_bw->ttport == dev->udev->ttport)) {
1122 				dev->bw_table = &tt_bw->bw_table;
1123 				dev->tt_info = tt_bw;
1124 				break;
1125 			}
1126 		}
1127 		if (!dev->tt_info)
1128 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1129 	}
1130 
1131 	/* Is this a LS/FS device under an external HS hub? */
1132 	if (udev->tt && udev->tt->hub->parent) {
1133 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1134 						(udev->ttport << 8));
1135 		if (udev->tt->multi)
1136 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1137 	}
1138 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1139 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1140 
1141 	/* Step 4 - ring already allocated */
1142 	/* Step 5 */
1143 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1144 	/*
1145 	 * XXX: Not sure about wireless USB devices.
1146 	 */
1147 	switch (udev->speed) {
1148 	case USB_SPEED_SUPER:
1149 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1150 		break;
1151 	case USB_SPEED_HIGH:
1152 	/* USB core guesses at a 64-byte max packet first for FS devices */
1153 	case USB_SPEED_FULL:
1154 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1155 		break;
1156 	case USB_SPEED_LOW:
1157 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1158 		break;
1159 	case USB_SPEED_WIRELESS:
1160 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1161 		return -EINVAL;
1162 		break;
1163 	default:
1164 		/* New speed? */
1165 		BUG();
1166 	}
1167 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1168 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1169 
1170 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1171 				   dev->eps[0].ring->cycle_state);
1172 
1173 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1174 
1175 	return 0;
1176 }
1177 
1178 /*
1179  * Convert interval expressed as 2^(bInterval - 1) == interval into
1180  * straight exponent value 2^n == interval.
1181  *
1182  */
1183 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1184 		struct usb_host_endpoint *ep)
1185 {
1186 	unsigned int interval;
1187 
1188 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1189 	if (interval != ep->desc.bInterval - 1)
1190 		dev_warn(&udev->dev,
1191 			 "ep %#x - rounding interval to %d %sframes\n",
1192 			 ep->desc.bEndpointAddress,
1193 			 1 << interval,
1194 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1195 
1196 	if (udev->speed == USB_SPEED_FULL) {
1197 		/*
1198 		 * Full speed isoc endpoints specify interval in frames,
1199 		 * not microframes. We are using microframes everywhere,
1200 		 * so adjust accordingly.
1201 		 */
1202 		interval += 3;	/* 1 frame = 2^3 uframes */
1203 	}
1204 
1205 	return interval;
1206 }
1207 
1208 /*
1209  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1210  * microframes, rounded down to nearest power of 2.
1211  */
1212 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1213 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1214 		unsigned int min_exponent, unsigned int max_exponent)
1215 {
1216 	unsigned int interval;
1217 
1218 	interval = fls(desc_interval) - 1;
1219 	interval = clamp_val(interval, min_exponent, max_exponent);
1220 	if ((1 << interval) != desc_interval)
1221 		dev_warn(&udev->dev,
1222 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1223 			 ep->desc.bEndpointAddress,
1224 			 1 << interval,
1225 			 desc_interval);
1226 
1227 	return interval;
1228 }
1229 
1230 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1231 		struct usb_host_endpoint *ep)
1232 {
1233 	if (ep->desc.bInterval == 0)
1234 		return 0;
1235 	return xhci_microframes_to_exponent(udev, ep,
1236 			ep->desc.bInterval, 0, 15);
1237 }
1238 
1239 
1240 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1241 		struct usb_host_endpoint *ep)
1242 {
1243 	return xhci_microframes_to_exponent(udev, ep,
1244 			ep->desc.bInterval * 8, 3, 10);
1245 }
1246 
1247 /* Return the polling or NAK interval.
1248  *
1249  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1250  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1251  *
1252  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1253  * is set to 0.
1254  */
1255 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1256 		struct usb_host_endpoint *ep)
1257 {
1258 	unsigned int interval = 0;
1259 
1260 	switch (udev->speed) {
1261 	case USB_SPEED_HIGH:
1262 		/* Max NAK rate */
1263 		if (usb_endpoint_xfer_control(&ep->desc) ||
1264 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1265 			interval = xhci_parse_microframe_interval(udev, ep);
1266 			break;
1267 		}
1268 		/* Fall through - SS and HS isoc/int have same decoding */
1269 
1270 	case USB_SPEED_SUPER:
1271 		if (usb_endpoint_xfer_int(&ep->desc) ||
1272 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1273 			interval = xhci_parse_exponent_interval(udev, ep);
1274 		}
1275 		break;
1276 
1277 	case USB_SPEED_FULL:
1278 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1279 			interval = xhci_parse_exponent_interval(udev, ep);
1280 			break;
1281 		}
1282 		/*
1283 		 * Fall through for interrupt endpoint interval decoding
1284 		 * since it uses the same rules as low speed interrupt
1285 		 * endpoints.
1286 		 */
1287 
1288 	case USB_SPEED_LOW:
1289 		if (usb_endpoint_xfer_int(&ep->desc) ||
1290 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1291 
1292 			interval = xhci_parse_frame_interval(udev, ep);
1293 		}
1294 		break;
1295 
1296 	default:
1297 		BUG();
1298 	}
1299 	return EP_INTERVAL(interval);
1300 }
1301 
1302 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1303  * High speed endpoint descriptors can define "the number of additional
1304  * transaction opportunities per microframe", but that goes in the Max Burst
1305  * endpoint context field.
1306  */
1307 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1308 		struct usb_host_endpoint *ep)
1309 {
1310 	if (udev->speed != USB_SPEED_SUPER ||
1311 			!usb_endpoint_xfer_isoc(&ep->desc))
1312 		return 0;
1313 	return ep->ss_ep_comp.bmAttributes;
1314 }
1315 
1316 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1317 		struct usb_host_endpoint *ep)
1318 {
1319 	int in;
1320 	u32 type;
1321 
1322 	in = usb_endpoint_dir_in(&ep->desc);
1323 	if (usb_endpoint_xfer_control(&ep->desc)) {
1324 		type = EP_TYPE(CTRL_EP);
1325 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1326 		if (in)
1327 			type = EP_TYPE(BULK_IN_EP);
1328 		else
1329 			type = EP_TYPE(BULK_OUT_EP);
1330 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1331 		if (in)
1332 			type = EP_TYPE(ISOC_IN_EP);
1333 		else
1334 			type = EP_TYPE(ISOC_OUT_EP);
1335 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1336 		if (in)
1337 			type = EP_TYPE(INT_IN_EP);
1338 		else
1339 			type = EP_TYPE(INT_OUT_EP);
1340 	} else {
1341 		BUG();
1342 	}
1343 	return type;
1344 }
1345 
1346 /* Return the maximum endpoint service interval time (ESIT) payload.
1347  * Basically, this is the maxpacket size, multiplied by the burst size
1348  * and mult size.
1349  */
1350 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1351 		struct usb_device *udev,
1352 		struct usb_host_endpoint *ep)
1353 {
1354 	int max_burst;
1355 	int max_packet;
1356 
1357 	/* Only applies for interrupt or isochronous endpoints */
1358 	if (usb_endpoint_xfer_control(&ep->desc) ||
1359 			usb_endpoint_xfer_bulk(&ep->desc))
1360 		return 0;
1361 
1362 	if (udev->speed == USB_SPEED_SUPER)
1363 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1364 
1365 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1366 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1367 	/* A 0 in max burst means 1 transfer per ESIT */
1368 	return max_packet * (max_burst + 1);
1369 }
1370 
1371 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1372  * Drivers will have to call usb_alloc_streams() to do that.
1373  */
1374 int xhci_endpoint_init(struct xhci_hcd *xhci,
1375 		struct xhci_virt_device *virt_dev,
1376 		struct usb_device *udev,
1377 		struct usb_host_endpoint *ep,
1378 		gfp_t mem_flags)
1379 {
1380 	unsigned int ep_index;
1381 	struct xhci_ep_ctx *ep_ctx;
1382 	struct xhci_ring *ep_ring;
1383 	unsigned int max_packet;
1384 	unsigned int max_burst;
1385 	enum xhci_ring_type type;
1386 	u32 max_esit_payload;
1387 
1388 	ep_index = xhci_get_endpoint_index(&ep->desc);
1389 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1390 
1391 	type = usb_endpoint_type(&ep->desc);
1392 	/* Set up the endpoint ring */
1393 	virt_dev->eps[ep_index].new_ring =
1394 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1395 	if (!virt_dev->eps[ep_index].new_ring) {
1396 		/* Attempt to use the ring cache */
1397 		if (virt_dev->num_rings_cached == 0)
1398 			return -ENOMEM;
1399 		virt_dev->eps[ep_index].new_ring =
1400 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1401 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1402 		virt_dev->num_rings_cached--;
1403 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1404 					1, type);
1405 	}
1406 	virt_dev->eps[ep_index].skip = false;
1407 	ep_ring = virt_dev->eps[ep_index].new_ring;
1408 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1409 
1410 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1411 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1412 
1413 	/* FIXME dig Mult and streams info out of ep companion desc */
1414 
1415 	/* Allow 3 retries for everything but isoc;
1416 	 * CErr shall be set to 0 for Isoch endpoints.
1417 	 */
1418 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1419 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1420 	else
1421 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1422 
1423 	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1424 
1425 	/* Set the max packet size and max burst */
1426 	switch (udev->speed) {
1427 	case USB_SPEED_SUPER:
1428 		max_packet = usb_endpoint_maxp(&ep->desc);
1429 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1430 		/* dig out max burst from ep companion desc */
1431 		max_packet = ep->ss_ep_comp.bMaxBurst;
1432 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1433 		break;
1434 	case USB_SPEED_HIGH:
1435 		/* bits 11:12 specify the number of additional transaction
1436 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1437 		 */
1438 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1439 				usb_endpoint_xfer_int(&ep->desc)) {
1440 			max_burst = (usb_endpoint_maxp(&ep->desc)
1441 				     & 0x1800) >> 11;
1442 			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1443 		}
1444 		/* Fall through */
1445 	case USB_SPEED_FULL:
1446 	case USB_SPEED_LOW:
1447 		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1448 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1449 		break;
1450 	default:
1451 		BUG();
1452 	}
1453 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1454 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1455 
1456 	/*
1457 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1458 	 * endpoints, as the driver gives us no clue how big each scatter gather
1459 	 * list entry (or buffer) is going to be.
1460 	 *
1461 	 * For isochronous and interrupt endpoints, we set it to the max
1462 	 * available, until we have new API in the USB core to allow drivers to
1463 	 * declare how much bandwidth they actually need.
1464 	 *
1465 	 * Normally, it would be calculated by taking the total of the buffer
1466 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1467 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1468 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1469 	 * transfers, we're basically dividing by 1.
1470 	 *
1471 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1472 	 * be set to 8 for control endpoints.
1473 	 */
1474 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1475 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1476 	else
1477 		ep_ctx->tx_info |=
1478 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1479 
1480 	/* FIXME Debug endpoint context */
1481 	return 0;
1482 }
1483 
1484 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1485 		struct xhci_virt_device *virt_dev,
1486 		struct usb_host_endpoint *ep)
1487 {
1488 	unsigned int ep_index;
1489 	struct xhci_ep_ctx *ep_ctx;
1490 
1491 	ep_index = xhci_get_endpoint_index(&ep->desc);
1492 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1493 
1494 	ep_ctx->ep_info = 0;
1495 	ep_ctx->ep_info2 = 0;
1496 	ep_ctx->deq = 0;
1497 	ep_ctx->tx_info = 0;
1498 	/* Don't free the endpoint ring until the set interface or configuration
1499 	 * request succeeds.
1500 	 */
1501 }
1502 
1503 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1504 {
1505 	bw_info->ep_interval = 0;
1506 	bw_info->mult = 0;
1507 	bw_info->num_packets = 0;
1508 	bw_info->max_packet_size = 0;
1509 	bw_info->type = 0;
1510 	bw_info->max_esit_payload = 0;
1511 }
1512 
1513 void xhci_update_bw_info(struct xhci_hcd *xhci,
1514 		struct xhci_container_ctx *in_ctx,
1515 		struct xhci_input_control_ctx *ctrl_ctx,
1516 		struct xhci_virt_device *virt_dev)
1517 {
1518 	struct xhci_bw_info *bw_info;
1519 	struct xhci_ep_ctx *ep_ctx;
1520 	unsigned int ep_type;
1521 	int i;
1522 
1523 	for (i = 1; i < 31; ++i) {
1524 		bw_info = &virt_dev->eps[i].bw_info;
1525 
1526 		/* We can't tell what endpoint type is being dropped, but
1527 		 * unconditionally clearing the bandwidth info for non-periodic
1528 		 * endpoints should be harmless because the info will never be
1529 		 * set in the first place.
1530 		 */
1531 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1532 			/* Dropped endpoint */
1533 			xhci_clear_endpoint_bw_info(bw_info);
1534 			continue;
1535 		}
1536 
1537 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1538 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1539 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1540 
1541 			/* Ignore non-periodic endpoints */
1542 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1543 					ep_type != ISOC_IN_EP &&
1544 					ep_type != INT_IN_EP)
1545 				continue;
1546 
1547 			/* Added or changed endpoint */
1548 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1549 					le32_to_cpu(ep_ctx->ep_info));
1550 			/* Number of packets and mult are zero-based in the
1551 			 * input context, but we want one-based for the
1552 			 * interval table.
1553 			 */
1554 			bw_info->mult = CTX_TO_EP_MULT(
1555 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1556 			bw_info->num_packets = CTX_TO_MAX_BURST(
1557 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1558 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1559 					le32_to_cpu(ep_ctx->ep_info2));
1560 			bw_info->type = ep_type;
1561 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1562 					le32_to_cpu(ep_ctx->tx_info));
1563 		}
1564 	}
1565 }
1566 
1567 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1568  * Useful when you want to change one particular aspect of the endpoint and then
1569  * issue a configure endpoint command.
1570  */
1571 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1572 		struct xhci_container_ctx *in_ctx,
1573 		struct xhci_container_ctx *out_ctx,
1574 		unsigned int ep_index)
1575 {
1576 	struct xhci_ep_ctx *out_ep_ctx;
1577 	struct xhci_ep_ctx *in_ep_ctx;
1578 
1579 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1580 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1581 
1582 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1583 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1584 	in_ep_ctx->deq = out_ep_ctx->deq;
1585 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1586 }
1587 
1588 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1589  * Useful when you want to change one particular aspect of the endpoint and then
1590  * issue a configure endpoint command.  Only the context entries field matters,
1591  * but we'll copy the whole thing anyway.
1592  */
1593 void xhci_slot_copy(struct xhci_hcd *xhci,
1594 		struct xhci_container_ctx *in_ctx,
1595 		struct xhci_container_ctx *out_ctx)
1596 {
1597 	struct xhci_slot_ctx *in_slot_ctx;
1598 	struct xhci_slot_ctx *out_slot_ctx;
1599 
1600 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1601 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1602 
1603 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1604 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1605 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1606 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1607 }
1608 
1609 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1610 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1611 {
1612 	int i;
1613 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1614 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1615 
1616 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1617 
1618 	if (!num_sp)
1619 		return 0;
1620 
1621 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1622 	if (!xhci->scratchpad)
1623 		goto fail_sp;
1624 
1625 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1626 				     num_sp * sizeof(u64),
1627 				     &xhci->scratchpad->sp_dma, flags);
1628 	if (!xhci->scratchpad->sp_array)
1629 		goto fail_sp2;
1630 
1631 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1632 	if (!xhci->scratchpad->sp_buffers)
1633 		goto fail_sp3;
1634 
1635 	xhci->scratchpad->sp_dma_buffers =
1636 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1637 
1638 	if (!xhci->scratchpad->sp_dma_buffers)
1639 		goto fail_sp4;
1640 
1641 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1642 	for (i = 0; i < num_sp; i++) {
1643 		dma_addr_t dma;
1644 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1645 				flags);
1646 		if (!buf)
1647 			goto fail_sp5;
1648 
1649 		xhci->scratchpad->sp_array[i] = dma;
1650 		xhci->scratchpad->sp_buffers[i] = buf;
1651 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1652 	}
1653 
1654 	return 0;
1655 
1656  fail_sp5:
1657 	for (i = i - 1; i >= 0; i--) {
1658 		dma_free_coherent(dev, xhci->page_size,
1659 				    xhci->scratchpad->sp_buffers[i],
1660 				    xhci->scratchpad->sp_dma_buffers[i]);
1661 	}
1662 	kfree(xhci->scratchpad->sp_dma_buffers);
1663 
1664  fail_sp4:
1665 	kfree(xhci->scratchpad->sp_buffers);
1666 
1667  fail_sp3:
1668 	dma_free_coherent(dev, num_sp * sizeof(u64),
1669 			    xhci->scratchpad->sp_array,
1670 			    xhci->scratchpad->sp_dma);
1671 
1672  fail_sp2:
1673 	kfree(xhci->scratchpad);
1674 	xhci->scratchpad = NULL;
1675 
1676  fail_sp:
1677 	return -ENOMEM;
1678 }
1679 
1680 static void scratchpad_free(struct xhci_hcd *xhci)
1681 {
1682 	int num_sp;
1683 	int i;
1684 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1685 
1686 	if (!xhci->scratchpad)
1687 		return;
1688 
1689 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1690 
1691 	for (i = 0; i < num_sp; i++) {
1692 		dma_free_coherent(&pdev->dev, xhci->page_size,
1693 				    xhci->scratchpad->sp_buffers[i],
1694 				    xhci->scratchpad->sp_dma_buffers[i]);
1695 	}
1696 	kfree(xhci->scratchpad->sp_dma_buffers);
1697 	kfree(xhci->scratchpad->sp_buffers);
1698 	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1699 			    xhci->scratchpad->sp_array,
1700 			    xhci->scratchpad->sp_dma);
1701 	kfree(xhci->scratchpad);
1702 	xhci->scratchpad = NULL;
1703 }
1704 
1705 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1706 		bool allocate_in_ctx, bool allocate_completion,
1707 		gfp_t mem_flags)
1708 {
1709 	struct xhci_command *command;
1710 
1711 	command = kzalloc(sizeof(*command), mem_flags);
1712 	if (!command)
1713 		return NULL;
1714 
1715 	if (allocate_in_ctx) {
1716 		command->in_ctx =
1717 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1718 					mem_flags);
1719 		if (!command->in_ctx) {
1720 			kfree(command);
1721 			return NULL;
1722 		}
1723 	}
1724 
1725 	if (allocate_completion) {
1726 		command->completion =
1727 			kzalloc(sizeof(struct completion), mem_flags);
1728 		if (!command->completion) {
1729 			xhci_free_container_ctx(xhci, command->in_ctx);
1730 			kfree(command);
1731 			return NULL;
1732 		}
1733 		init_completion(command->completion);
1734 	}
1735 
1736 	command->status = 0;
1737 	INIT_LIST_HEAD(&command->cmd_list);
1738 	return command;
1739 }
1740 
1741 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1742 {
1743 	if (urb_priv) {
1744 		kfree(urb_priv->td[0]);
1745 		kfree(urb_priv);
1746 	}
1747 }
1748 
1749 void xhci_free_command(struct xhci_hcd *xhci,
1750 		struct xhci_command *command)
1751 {
1752 	xhci_free_container_ctx(xhci,
1753 			command->in_ctx);
1754 	kfree(command->completion);
1755 	kfree(command);
1756 }
1757 
1758 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1759 {
1760 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1761 	struct dev_info	*dev_info, *next;
1762 	struct xhci_cd  *cur_cd, *next_cd;
1763 	unsigned long	flags;
1764 	int size;
1765 	int i, j, num_ports;
1766 
1767 	/* Free the Event Ring Segment Table and the actual Event Ring */
1768 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1769 	if (xhci->erst.entries)
1770 		dma_free_coherent(&pdev->dev, size,
1771 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1772 	xhci->erst.entries = NULL;
1773 	xhci_dbg(xhci, "Freed ERST\n");
1774 	if (xhci->event_ring)
1775 		xhci_ring_free(xhci, xhci->event_ring);
1776 	xhci->event_ring = NULL;
1777 	xhci_dbg(xhci, "Freed event ring\n");
1778 
1779 	if (xhci->lpm_command)
1780 		xhci_free_command(xhci, xhci->lpm_command);
1781 	xhci->cmd_ring_reserved_trbs = 0;
1782 	if (xhci->cmd_ring)
1783 		xhci_ring_free(xhci, xhci->cmd_ring);
1784 	xhci->cmd_ring = NULL;
1785 	xhci_dbg(xhci, "Freed command ring\n");
1786 	list_for_each_entry_safe(cur_cd, next_cd,
1787 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1788 		list_del(&cur_cd->cancel_cmd_list);
1789 		kfree(cur_cd);
1790 	}
1791 
1792 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1793 		xhci_free_virt_device(xhci, i);
1794 
1795 	if (xhci->segment_pool)
1796 		dma_pool_destroy(xhci->segment_pool);
1797 	xhci->segment_pool = NULL;
1798 	xhci_dbg(xhci, "Freed segment pool\n");
1799 
1800 	if (xhci->device_pool)
1801 		dma_pool_destroy(xhci->device_pool);
1802 	xhci->device_pool = NULL;
1803 	xhci_dbg(xhci, "Freed device context pool\n");
1804 
1805 	if (xhci->small_streams_pool)
1806 		dma_pool_destroy(xhci->small_streams_pool);
1807 	xhci->small_streams_pool = NULL;
1808 	xhci_dbg(xhci, "Freed small stream array pool\n");
1809 
1810 	if (xhci->medium_streams_pool)
1811 		dma_pool_destroy(xhci->medium_streams_pool);
1812 	xhci->medium_streams_pool = NULL;
1813 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1814 
1815 	if (xhci->dcbaa)
1816 		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1817 				xhci->dcbaa, xhci->dcbaa->dma);
1818 	xhci->dcbaa = NULL;
1819 
1820 	scratchpad_free(xhci);
1821 
1822 	spin_lock_irqsave(&xhci->lock, flags);
1823 	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1824 		list_del(&dev_info->list);
1825 		kfree(dev_info);
1826 	}
1827 	spin_unlock_irqrestore(&xhci->lock, flags);
1828 
1829 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1830 	for (i = 0; i < num_ports; i++) {
1831 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1832 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1833 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1834 			while (!list_empty(ep))
1835 				list_del_init(ep->next);
1836 		}
1837 	}
1838 
1839 	for (i = 0; i < num_ports; i++) {
1840 		struct xhci_tt_bw_info *tt, *n;
1841 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1842 			list_del(&tt->tt_list);
1843 			kfree(tt);
1844 		}
1845 	}
1846 
1847 	xhci->num_usb2_ports = 0;
1848 	xhci->num_usb3_ports = 0;
1849 	xhci->num_active_eps = 0;
1850 	kfree(xhci->usb2_ports);
1851 	kfree(xhci->usb3_ports);
1852 	kfree(xhci->port_array);
1853 	kfree(xhci->rh_bw);
1854 
1855 	xhci->page_size = 0;
1856 	xhci->page_shift = 0;
1857 	xhci->bus_state[0].bus_suspended = 0;
1858 	xhci->bus_state[1].bus_suspended = 0;
1859 }
1860 
1861 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1862 		struct xhci_segment *input_seg,
1863 		union xhci_trb *start_trb,
1864 		union xhci_trb *end_trb,
1865 		dma_addr_t input_dma,
1866 		struct xhci_segment *result_seg,
1867 		char *test_name, int test_number)
1868 {
1869 	unsigned long long start_dma;
1870 	unsigned long long end_dma;
1871 	struct xhci_segment *seg;
1872 
1873 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1874 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1875 
1876 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1877 	if (seg != result_seg) {
1878 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1879 				test_name, test_number);
1880 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1881 				"input DMA 0x%llx\n",
1882 				input_seg,
1883 				(unsigned long long) input_dma);
1884 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1885 				"ending TRB %p (0x%llx DMA)\n",
1886 				start_trb, start_dma,
1887 				end_trb, end_dma);
1888 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1889 				result_seg, seg);
1890 		return -1;
1891 	}
1892 	return 0;
1893 }
1894 
1895 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1896 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1897 {
1898 	struct {
1899 		dma_addr_t		input_dma;
1900 		struct xhci_segment	*result_seg;
1901 	} simple_test_vector [] = {
1902 		/* A zeroed DMA field should fail */
1903 		{ 0, NULL },
1904 		/* One TRB before the ring start should fail */
1905 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1906 		/* One byte before the ring start should fail */
1907 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1908 		/* Starting TRB should succeed */
1909 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1910 		/* Ending TRB should succeed */
1911 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1912 			xhci->event_ring->first_seg },
1913 		/* One byte after the ring end should fail */
1914 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1915 		/* One TRB after the ring end should fail */
1916 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1917 		/* An address of all ones should fail */
1918 		{ (dma_addr_t) (~0), NULL },
1919 	};
1920 	struct {
1921 		struct xhci_segment	*input_seg;
1922 		union xhci_trb		*start_trb;
1923 		union xhci_trb		*end_trb;
1924 		dma_addr_t		input_dma;
1925 		struct xhci_segment	*result_seg;
1926 	} complex_test_vector [] = {
1927 		/* Test feeding a valid DMA address from a different ring */
1928 		{	.input_seg = xhci->event_ring->first_seg,
1929 			.start_trb = xhci->event_ring->first_seg->trbs,
1930 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1931 			.input_dma = xhci->cmd_ring->first_seg->dma,
1932 			.result_seg = NULL,
1933 		},
1934 		/* Test feeding a valid end TRB from a different ring */
1935 		{	.input_seg = xhci->event_ring->first_seg,
1936 			.start_trb = xhci->event_ring->first_seg->trbs,
1937 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1938 			.input_dma = xhci->cmd_ring->first_seg->dma,
1939 			.result_seg = NULL,
1940 		},
1941 		/* Test feeding a valid start and end TRB from a different ring */
1942 		{	.input_seg = xhci->event_ring->first_seg,
1943 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1944 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1945 			.input_dma = xhci->cmd_ring->first_seg->dma,
1946 			.result_seg = NULL,
1947 		},
1948 		/* TRB in this ring, but after this TD */
1949 		{	.input_seg = xhci->event_ring->first_seg,
1950 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1951 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1952 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1953 			.result_seg = NULL,
1954 		},
1955 		/* TRB in this ring, but before this TD */
1956 		{	.input_seg = xhci->event_ring->first_seg,
1957 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1958 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1959 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1960 			.result_seg = NULL,
1961 		},
1962 		/* TRB in this ring, but after this wrapped TD */
1963 		{	.input_seg = xhci->event_ring->first_seg,
1964 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1965 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1966 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1967 			.result_seg = NULL,
1968 		},
1969 		/* TRB in this ring, but before this wrapped TD */
1970 		{	.input_seg = xhci->event_ring->first_seg,
1971 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1972 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1973 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1974 			.result_seg = NULL,
1975 		},
1976 		/* TRB not in this ring, and we have a wrapped TD */
1977 		{	.input_seg = xhci->event_ring->first_seg,
1978 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1979 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1980 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1981 			.result_seg = NULL,
1982 		},
1983 	};
1984 
1985 	unsigned int num_tests;
1986 	int i, ret;
1987 
1988 	num_tests = ARRAY_SIZE(simple_test_vector);
1989 	for (i = 0; i < num_tests; i++) {
1990 		ret = xhci_test_trb_in_td(xhci,
1991 				xhci->event_ring->first_seg,
1992 				xhci->event_ring->first_seg->trbs,
1993 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1994 				simple_test_vector[i].input_dma,
1995 				simple_test_vector[i].result_seg,
1996 				"Simple", i);
1997 		if (ret < 0)
1998 			return ret;
1999 	}
2000 
2001 	num_tests = ARRAY_SIZE(complex_test_vector);
2002 	for (i = 0; i < num_tests; i++) {
2003 		ret = xhci_test_trb_in_td(xhci,
2004 				complex_test_vector[i].input_seg,
2005 				complex_test_vector[i].start_trb,
2006 				complex_test_vector[i].end_trb,
2007 				complex_test_vector[i].input_dma,
2008 				complex_test_vector[i].result_seg,
2009 				"Complex", i);
2010 		if (ret < 0)
2011 			return ret;
2012 	}
2013 	xhci_dbg(xhci, "TRB math tests passed.\n");
2014 	return 0;
2015 }
2016 
2017 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2018 {
2019 	u64 temp;
2020 	dma_addr_t deq;
2021 
2022 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2023 			xhci->event_ring->dequeue);
2024 	if (deq == 0 && !in_interrupt())
2025 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2026 				"dequeue ptr.\n");
2027 	/* Update HC event ring dequeue pointer */
2028 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2029 	temp &= ERST_PTR_MASK;
2030 	/* Don't clear the EHB bit (which is RW1C) because
2031 	 * there might be more events to service.
2032 	 */
2033 	temp &= ~ERST_EHB;
2034 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2035 			"preserving EHB bit\n");
2036 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2037 			&xhci->ir_set->erst_dequeue);
2038 }
2039 
2040 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2041 		__le32 __iomem *addr, u8 major_revision)
2042 {
2043 	u32 temp, port_offset, port_count;
2044 	int i;
2045 
2046 	if (major_revision > 0x03) {
2047 		xhci_warn(xhci, "Ignoring unknown port speed, "
2048 				"Ext Cap %p, revision = 0x%x\n",
2049 				addr, major_revision);
2050 		/* Ignoring port protocol we can't understand. FIXME */
2051 		return;
2052 	}
2053 
2054 	/* Port offset and count in the third dword, see section 7.2 */
2055 	temp = xhci_readl(xhci, addr + 2);
2056 	port_offset = XHCI_EXT_PORT_OFF(temp);
2057 	port_count = XHCI_EXT_PORT_COUNT(temp);
2058 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2059 			"count = %u, revision = 0x%x\n",
2060 			addr, port_offset, port_count, major_revision);
2061 	/* Port count includes the current port offset */
2062 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2063 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2064 		return;
2065 
2066 	/* Check the host's USB2 LPM capability */
2067 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2068 			(temp & XHCI_L1C)) {
2069 		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2070 		xhci->sw_lpm_support = 1;
2071 	}
2072 
2073 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2074 		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2075 		xhci->sw_lpm_support = 1;
2076 		if (temp & XHCI_HLC) {
2077 			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2078 			xhci->hw_lpm_support = 1;
2079 		}
2080 	}
2081 
2082 	port_offset--;
2083 	for (i = port_offset; i < (port_offset + port_count); i++) {
2084 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2085 		if (xhci->port_array[i] != 0) {
2086 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2087 					" port %u\n", addr, i);
2088 			xhci_warn(xhci, "Port was marked as USB %u, "
2089 					"duplicated as USB %u\n",
2090 					xhci->port_array[i], major_revision);
2091 			/* Only adjust the roothub port counts if we haven't
2092 			 * found a similar duplicate.
2093 			 */
2094 			if (xhci->port_array[i] != major_revision &&
2095 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2096 				if (xhci->port_array[i] == 0x03)
2097 					xhci->num_usb3_ports--;
2098 				else
2099 					xhci->num_usb2_ports--;
2100 				xhci->port_array[i] = DUPLICATE_ENTRY;
2101 			}
2102 			/* FIXME: Should we disable the port? */
2103 			continue;
2104 		}
2105 		xhci->port_array[i] = major_revision;
2106 		if (major_revision == 0x03)
2107 			xhci->num_usb3_ports++;
2108 		else
2109 			xhci->num_usb2_ports++;
2110 	}
2111 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2112 }
2113 
2114 /*
2115  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2116  * specify what speeds each port is supposed to be.  We can't count on the port
2117  * speed bits in the PORTSC register being correct until a device is connected,
2118  * but we need to set up the two fake roothubs with the correct number of USB
2119  * 3.0 and USB 2.0 ports at host controller initialization time.
2120  */
2121 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2122 {
2123 	__le32 __iomem *addr;
2124 	u32 offset;
2125 	unsigned int num_ports;
2126 	int i, j, port_index;
2127 
2128 	addr = &xhci->cap_regs->hcc_params;
2129 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2130 	if (offset == 0) {
2131 		xhci_err(xhci, "No Extended Capability registers, "
2132 				"unable to set up roothub.\n");
2133 		return -ENODEV;
2134 	}
2135 
2136 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2137 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2138 	if (!xhci->port_array)
2139 		return -ENOMEM;
2140 
2141 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2142 	if (!xhci->rh_bw)
2143 		return -ENOMEM;
2144 	for (i = 0; i < num_ports; i++) {
2145 		struct xhci_interval_bw_table *bw_table;
2146 
2147 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2148 		bw_table = &xhci->rh_bw[i].bw_table;
2149 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2150 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2151 	}
2152 
2153 	/*
2154 	 * For whatever reason, the first capability offset is from the
2155 	 * capability register base, not from the HCCPARAMS register.
2156 	 * See section 5.3.6 for offset calculation.
2157 	 */
2158 	addr = &xhci->cap_regs->hc_capbase + offset;
2159 	while (1) {
2160 		u32 cap_id;
2161 
2162 		cap_id = xhci_readl(xhci, addr);
2163 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2164 			xhci_add_in_port(xhci, num_ports, addr,
2165 					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
2166 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2167 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2168 				== num_ports)
2169 			break;
2170 		/*
2171 		 * Once you're into the Extended Capabilities, the offset is
2172 		 * always relative to the register holding the offset.
2173 		 */
2174 		addr += offset;
2175 	}
2176 
2177 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2178 		xhci_warn(xhci, "No ports on the roothubs?\n");
2179 		return -ENODEV;
2180 	}
2181 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2182 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2183 
2184 	/* Place limits on the number of roothub ports so that the hub
2185 	 * descriptors aren't longer than the USB core will allocate.
2186 	 */
2187 	if (xhci->num_usb3_ports > 15) {
2188 		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2189 		xhci->num_usb3_ports = 15;
2190 	}
2191 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2192 		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2193 				USB_MAXCHILDREN);
2194 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2195 	}
2196 
2197 	/*
2198 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2199 	 * Not sure how the USB core will handle a hub with no ports...
2200 	 */
2201 	if (xhci->num_usb2_ports) {
2202 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2203 				xhci->num_usb2_ports, flags);
2204 		if (!xhci->usb2_ports)
2205 			return -ENOMEM;
2206 
2207 		port_index = 0;
2208 		for (i = 0; i < num_ports; i++) {
2209 			if (xhci->port_array[i] == 0x03 ||
2210 					xhci->port_array[i] == 0 ||
2211 					xhci->port_array[i] == DUPLICATE_ENTRY)
2212 				continue;
2213 
2214 			xhci->usb2_ports[port_index] =
2215 				&xhci->op_regs->port_status_base +
2216 				NUM_PORT_REGS*i;
2217 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2218 					"addr = %p\n", i,
2219 					xhci->usb2_ports[port_index]);
2220 			port_index++;
2221 			if (port_index == xhci->num_usb2_ports)
2222 				break;
2223 		}
2224 	}
2225 	if (xhci->num_usb3_ports) {
2226 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2227 				xhci->num_usb3_ports, flags);
2228 		if (!xhci->usb3_ports)
2229 			return -ENOMEM;
2230 
2231 		port_index = 0;
2232 		for (i = 0; i < num_ports; i++)
2233 			if (xhci->port_array[i] == 0x03) {
2234 				xhci->usb3_ports[port_index] =
2235 					&xhci->op_regs->port_status_base +
2236 					NUM_PORT_REGS*i;
2237 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2238 						"addr = %p\n", i,
2239 						xhci->usb3_ports[port_index]);
2240 				port_index++;
2241 				if (port_index == xhci->num_usb3_ports)
2242 					break;
2243 			}
2244 	}
2245 	return 0;
2246 }
2247 
2248 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2249 {
2250 	dma_addr_t	dma;
2251 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2252 	unsigned int	val, val2;
2253 	u64		val_64;
2254 	struct xhci_segment	*seg;
2255 	u32 page_size, temp;
2256 	int i;
2257 
2258 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2259 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2260 	for (i = 0; i < 16; i++) {
2261 		if ((0x1 & page_size) != 0)
2262 			break;
2263 		page_size = page_size >> 1;
2264 	}
2265 	if (i < 16)
2266 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2267 	else
2268 		xhci_warn(xhci, "WARN: no supported page size\n");
2269 	/* Use 4K pages, since that's common and the minimum the HC supports */
2270 	xhci->page_shift = 12;
2271 	xhci->page_size = 1 << xhci->page_shift;
2272 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2273 
2274 	/*
2275 	 * Program the Number of Device Slots Enabled field in the CONFIG
2276 	 * register with the max value of slots the HC can handle.
2277 	 */
2278 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2279 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2280 			(unsigned int) val);
2281 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2282 	val |= (val2 & ~HCS_SLOTS_MASK);
2283 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2284 			(unsigned int) val);
2285 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2286 
2287 	/*
2288 	 * Section 5.4.8 - doorbell array must be
2289 	 * "physically contiguous and 64-byte (cache line) aligned".
2290 	 */
2291 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2292 			GFP_KERNEL);
2293 	if (!xhci->dcbaa)
2294 		goto fail;
2295 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2296 	xhci->dcbaa->dma = dma;
2297 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2298 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2299 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2300 
2301 	/*
2302 	 * Initialize the ring segment pool.  The ring must be a contiguous
2303 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2304 	 * however, the command ring segment needs 64-byte aligned segments,
2305 	 * so we pick the greater alignment need.
2306 	 */
2307 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2308 			TRB_SEGMENT_SIZE, 64, xhci->page_size);
2309 
2310 	/* See Table 46 and Note on Figure 55 */
2311 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2312 			2112, 64, xhci->page_size);
2313 	if (!xhci->segment_pool || !xhci->device_pool)
2314 		goto fail;
2315 
2316 	/* Linear stream context arrays don't have any boundary restrictions,
2317 	 * and only need to be 16-byte aligned.
2318 	 */
2319 	xhci->small_streams_pool =
2320 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2321 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2322 	xhci->medium_streams_pool =
2323 		dma_pool_create("xHCI 1KB stream ctx arrays",
2324 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2325 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2326 	 * will be allocated with dma_alloc_coherent()
2327 	 */
2328 
2329 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2330 		goto fail;
2331 
2332 	/* Set up the command ring to have one segments for now. */
2333 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2334 	if (!xhci->cmd_ring)
2335 		goto fail;
2336 	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2337 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2338 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2339 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2340 
2341 	/* Set the address in the Command Ring Control register */
2342 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2343 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2344 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2345 		xhci->cmd_ring->cycle_state;
2346 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2347 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2348 	xhci_dbg_cmd_ptrs(xhci);
2349 
2350 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2351 	if (!xhci->lpm_command)
2352 		goto fail;
2353 
2354 	/* Reserve one command ring TRB for disabling LPM.
2355 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2356 	 * disabling LPM, we only need to reserve one TRB for all devices.
2357 	 */
2358 	xhci->cmd_ring_reserved_trbs++;
2359 
2360 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2361 	val &= DBOFF_MASK;
2362 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2363 			" from cap regs base addr\n", val);
2364 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2365 	xhci_dbg_regs(xhci);
2366 	xhci_print_run_regs(xhci);
2367 	/* Set ir_set to interrupt register set 0 */
2368 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2369 
2370 	/*
2371 	 * Event ring setup: Allocate a normal ring, but also setup
2372 	 * the event ring segment table (ERST).  Section 4.9.3.
2373 	 */
2374 	xhci_dbg(xhci, "// Allocating event ring\n");
2375 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2376 						flags);
2377 	if (!xhci->event_ring)
2378 		goto fail;
2379 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2380 		goto fail;
2381 
2382 	xhci->erst.entries = dma_alloc_coherent(dev,
2383 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2384 			GFP_KERNEL);
2385 	if (!xhci->erst.entries)
2386 		goto fail;
2387 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2388 			(unsigned long long)dma);
2389 
2390 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2391 	xhci->erst.num_entries = ERST_NUM_SEGS;
2392 	xhci->erst.erst_dma_addr = dma;
2393 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2394 			xhci->erst.num_entries,
2395 			xhci->erst.entries,
2396 			(unsigned long long)xhci->erst.erst_dma_addr);
2397 
2398 	/* set ring base address and size for each segment table entry */
2399 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2400 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2401 		entry->seg_addr = cpu_to_le64(seg->dma);
2402 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2403 		entry->rsvd = 0;
2404 		seg = seg->next;
2405 	}
2406 
2407 	/* set ERST count with the number of entries in the segment table */
2408 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2409 	val &= ERST_SIZE_MASK;
2410 	val |= ERST_NUM_SEGS;
2411 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2412 			val);
2413 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2414 
2415 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2416 	/* set the segment table base address */
2417 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2418 			(unsigned long long)xhci->erst.erst_dma_addr);
2419 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2420 	val_64 &= ERST_PTR_MASK;
2421 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2422 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2423 
2424 	/* Set the event ring dequeue address */
2425 	xhci_set_hc_event_deq(xhci);
2426 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2427 	xhci_print_ir_set(xhci, 0);
2428 
2429 	/*
2430 	 * XXX: Might need to set the Interrupter Moderation Register to
2431 	 * something other than the default (~1ms minimum between interrupts).
2432 	 * See section 5.5.1.2.
2433 	 */
2434 	init_completion(&xhci->addr_dev);
2435 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2436 		xhci->devs[i] = NULL;
2437 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2438 		xhci->bus_state[0].resume_done[i] = 0;
2439 		xhci->bus_state[1].resume_done[i] = 0;
2440 	}
2441 
2442 	if (scratchpad_alloc(xhci, flags))
2443 		goto fail;
2444 	if (xhci_setup_port_arrays(xhci, flags))
2445 		goto fail;
2446 
2447 	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2448 
2449 	/* Enable USB 3.0 device notifications for function remote wake, which
2450 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2451 	 * U3 (device suspend).
2452 	 */
2453 	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2454 	temp &= ~DEV_NOTE_MASK;
2455 	temp |= DEV_NOTE_FWAKE;
2456 	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2457 
2458 	return 0;
2459 
2460 fail:
2461 	xhci_warn(xhci, "Couldn't initialize memory\n");
2462 	xhci_halt(xhci);
2463 	xhci_reset(xhci);
2464 	xhci_mem_cleanup(xhci);
2465 	return -ENOMEM;
2466 }
2467