1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/pci.h> 13 #include <linux/slab.h> 14 #include <linux/dmapool.h> 15 #include <linux/dma-mapping.h> 16 17 #include "xhci.h" 18 #include "xhci-trace.h" 19 #include "xhci-debugfs.h" 20 21 /* 22 * Allocates a generic ring segment from the ring pool, sets the dma address, 23 * initializes the segment to zero, and sets the private next pointer to NULL. 24 * 25 * Section 4.11.1.1: 26 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 27 */ 28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 29 unsigned int cycle_state, 30 unsigned int max_packet, 31 gfp_t flags) 32 { 33 struct xhci_segment *seg; 34 dma_addr_t dma; 35 int i; 36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 37 38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 39 if (!seg) 40 return NULL; 41 42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 43 if (!seg->trbs) { 44 kfree(seg); 45 return NULL; 46 } 47 48 if (max_packet) { 49 seg->bounce_buf = kzalloc_node(max_packet, flags, 50 dev_to_node(dev)); 51 if (!seg->bounce_buf) { 52 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 53 kfree(seg); 54 return NULL; 55 } 56 } 57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 58 if (cycle_state == 0) { 59 for (i = 0; i < TRBS_PER_SEGMENT; i++) 60 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); 61 } 62 seg->dma = dma; 63 seg->next = NULL; 64 65 return seg; 66 } 67 68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 69 { 70 if (seg->trbs) { 71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 72 seg->trbs = NULL; 73 } 74 kfree(seg->bounce_buf); 75 kfree(seg); 76 } 77 78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 79 struct xhci_segment *first) 80 { 81 struct xhci_segment *seg; 82 83 seg = first->next; 84 while (seg != first) { 85 struct xhci_segment *next = seg->next; 86 xhci_segment_free(xhci, seg); 87 seg = next; 88 } 89 xhci_segment_free(xhci, first); 90 } 91 92 /* 93 * Make the prev segment point to the next segment. 94 * 95 * Change the last TRB in the prev segment to be a Link TRB which points to the 96 * DMA address of the next segment. The caller needs to set any Link TRB 97 * related flags, such as End TRB, Toggle Cycle, and no snoop. 98 */ 99 static void xhci_link_segments(struct xhci_segment *prev, 100 struct xhci_segment *next, 101 enum xhci_ring_type type, bool chain_links) 102 { 103 u32 val; 104 105 if (!prev || !next) 106 return; 107 prev->next = next; 108 if (type != TYPE_EVENT) { 109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 110 cpu_to_le64(next->dma); 111 112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 114 val &= ~TRB_TYPE_BITMASK; 115 val |= TRB_TYPE(TRB_LINK); 116 if (chain_links) 117 val |= TRB_CHAIN; 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 119 } 120 } 121 122 /* 123 * Link the ring to the new segments. 124 * Set Toggle Cycle for the new ring if needed. 125 */ 126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 127 struct xhci_segment *first, struct xhci_segment *last, 128 unsigned int num_segs) 129 { 130 struct xhci_segment *next; 131 bool chain_links; 132 133 if (!ring || !first || !last) 134 return; 135 136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 137 chain_links = !!(xhci_link_trb_quirk(xhci) || 138 (ring->type == TYPE_ISOC && 139 (xhci->quirks & XHCI_AMD_0x96_HOST))); 140 141 next = ring->enq_seg->next; 142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 143 xhci_link_segments(last, next, ring->type, chain_links); 144 ring->num_segs += num_segs; 145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 146 147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 149 &= ~cpu_to_le32(LINK_TOGGLE); 150 last->trbs[TRBS_PER_SEGMENT-1].link.control 151 |= cpu_to_le32(LINK_TOGGLE); 152 ring->last_seg = last; 153 } 154 } 155 156 /* 157 * We need a radix tree for mapping physical addresses of TRBs to which stream 158 * ID they belong to. We need to do this because the host controller won't tell 159 * us which stream ring the TRB came from. We could store the stream ID in an 160 * event data TRB, but that doesn't help us for the cancellation case, since the 161 * endpoint may stop before it reaches that event data TRB. 162 * 163 * The radix tree maps the upper portion of the TRB DMA address to a ring 164 * segment that has the same upper portion of DMA addresses. For example, say I 165 * have segments of size 1KB, that are always 1KB aligned. A segment may 166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 168 * pass the radix tree a key to get the right stream ID: 169 * 170 * 0x10c90fff >> 10 = 0x43243 171 * 0x10c912c0 >> 10 = 0x43244 172 * 0x10c91400 >> 10 = 0x43245 173 * 174 * Obviously, only those TRBs with DMA addresses that are within the segment 175 * will make the radix tree return the stream ID for that ring. 176 * 177 * Caveats for the radix tree: 178 * 179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 184 * extended systems (where the DMA address can be bigger than 32-bits), 185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 186 */ 187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 188 struct xhci_ring *ring, 189 struct xhci_segment *seg, 190 gfp_t mem_flags) 191 { 192 unsigned long key; 193 int ret; 194 195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 196 /* Skip any segments that were already added. */ 197 if (radix_tree_lookup(trb_address_map, key)) 198 return 0; 199 200 ret = radix_tree_maybe_preload(mem_flags); 201 if (ret) 202 return ret; 203 ret = radix_tree_insert(trb_address_map, 204 key, ring); 205 radix_tree_preload_end(); 206 return ret; 207 } 208 209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 210 struct xhci_segment *seg) 211 { 212 unsigned long key; 213 214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 215 if (radix_tree_lookup(trb_address_map, key)) 216 radix_tree_delete(trb_address_map, key); 217 } 218 219 static int xhci_update_stream_segment_mapping( 220 struct radix_tree_root *trb_address_map, 221 struct xhci_ring *ring, 222 struct xhci_segment *first_seg, 223 struct xhci_segment *last_seg, 224 gfp_t mem_flags) 225 { 226 struct xhci_segment *seg; 227 struct xhci_segment *failed_seg; 228 int ret; 229 230 if (WARN_ON_ONCE(trb_address_map == NULL)) 231 return 0; 232 233 seg = first_seg; 234 do { 235 ret = xhci_insert_segment_mapping(trb_address_map, 236 ring, seg, mem_flags); 237 if (ret) 238 goto remove_streams; 239 if (seg == last_seg) 240 return 0; 241 seg = seg->next; 242 } while (seg != first_seg); 243 244 return 0; 245 246 remove_streams: 247 failed_seg = seg; 248 seg = first_seg; 249 do { 250 xhci_remove_segment_mapping(trb_address_map, seg); 251 if (seg == failed_seg) 252 return ret; 253 seg = seg->next; 254 } while (seg != first_seg); 255 256 return ret; 257 } 258 259 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 260 { 261 struct xhci_segment *seg; 262 263 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 264 return; 265 266 seg = ring->first_seg; 267 do { 268 xhci_remove_segment_mapping(ring->trb_address_map, seg); 269 seg = seg->next; 270 } while (seg != ring->first_seg); 271 } 272 273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 274 { 275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 276 ring->first_seg, ring->last_seg, mem_flags); 277 } 278 279 /* XXX: Do we need the hcd structure in all these functions? */ 280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 if (!ring) 283 return; 284 285 trace_xhci_ring_free(ring); 286 287 if (ring->first_seg) { 288 if (ring->type == TYPE_STREAM) 289 xhci_remove_stream_mapping(ring); 290 xhci_free_segments_for_ring(xhci, ring->first_seg); 291 } 292 293 kfree(ring); 294 } 295 296 void xhci_initialize_ring_info(struct xhci_ring *ring, 297 unsigned int cycle_state) 298 { 299 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 300 ring->enqueue = ring->first_seg->trbs; 301 ring->enq_seg = ring->first_seg; 302 ring->dequeue = ring->enqueue; 303 ring->deq_seg = ring->first_seg; 304 /* The ring is initialized to 0. The producer must write 1 to the cycle 305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 306 * compare CCS to the cycle bit to check ownership, so CCS = 1. 307 * 308 * New rings are initialized with cycle state equal to 1; if we are 309 * handling ring expansion, set the cycle state equal to the old ring. 310 */ 311 ring->cycle_state = cycle_state; 312 313 /* 314 * Each segment has a link TRB, and leave an extra TRB for SW 315 * accounting purpose 316 */ 317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 318 } 319 320 /* Allocate segments and link them for a ring */ 321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 322 struct xhci_segment **first, struct xhci_segment **last, 323 unsigned int num_segs, unsigned int cycle_state, 324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 325 { 326 struct xhci_segment *prev; 327 bool chain_links; 328 329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 330 chain_links = !!(xhci_link_trb_quirk(xhci) || 331 (type == TYPE_ISOC && 332 (xhci->quirks & XHCI_AMD_0x96_HOST))); 333 334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 335 if (!prev) 336 return -ENOMEM; 337 num_segs--; 338 339 *first = prev; 340 while (num_segs > 0) { 341 struct xhci_segment *next; 342 343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 344 if (!next) { 345 prev = *first; 346 while (prev) { 347 next = prev->next; 348 xhci_segment_free(xhci, prev); 349 prev = next; 350 } 351 return -ENOMEM; 352 } 353 xhci_link_segments(prev, next, type, chain_links); 354 355 prev = next; 356 num_segs--; 357 } 358 xhci_link_segments(prev, *first, type, chain_links); 359 *last = prev; 360 361 return 0; 362 } 363 364 /* 365 * Create a new ring with zero or more segments. 366 * 367 * Link each segment together into a ring. 368 * Set the end flag and the cycle toggle bit on the last segment. 369 * See section 4.9.1 and figures 15 and 16. 370 */ 371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 372 unsigned int num_segs, unsigned int cycle_state, 373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 374 { 375 struct xhci_ring *ring; 376 int ret; 377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 378 379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 380 if (!ring) 381 return NULL; 382 383 ring->num_segs = num_segs; 384 ring->bounce_buf_len = max_packet; 385 INIT_LIST_HEAD(&ring->td_list); 386 ring->type = type; 387 if (num_segs == 0) 388 return ring; 389 390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 391 &ring->last_seg, num_segs, cycle_state, type, 392 max_packet, flags); 393 if (ret) 394 goto fail; 395 396 /* Only event ring does not use link TRB */ 397 if (type != TYPE_EVENT) { 398 /* See section 4.9.2.1 and 6.4.4.1 */ 399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 400 cpu_to_le32(LINK_TOGGLE); 401 } 402 xhci_initialize_ring_info(ring, cycle_state); 403 trace_xhci_ring_alloc(ring); 404 return ring; 405 406 fail: 407 kfree(ring); 408 return NULL; 409 } 410 411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 412 struct xhci_virt_device *virt_dev, 413 unsigned int ep_index) 414 { 415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 416 virt_dev->eps[ep_index].ring = NULL; 417 } 418 419 /* 420 * Expand an existing ring. 421 * Allocate a new ring which has same segment numbers and link the two rings. 422 */ 423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 424 unsigned int num_trbs, gfp_t flags) 425 { 426 struct xhci_segment *first; 427 struct xhci_segment *last; 428 unsigned int num_segs; 429 unsigned int num_segs_needed; 430 int ret; 431 432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 433 (TRBS_PER_SEGMENT - 1); 434 435 /* Allocate number of segments we needed, or double the ring size */ 436 num_segs = max(ring->num_segs, num_segs_needed); 437 438 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 439 num_segs, ring->cycle_state, ring->type, 440 ring->bounce_buf_len, flags); 441 if (ret) 442 return -ENOMEM; 443 444 if (ring->type == TYPE_STREAM) 445 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 446 ring, first, last, flags); 447 if (ret) { 448 struct xhci_segment *next; 449 do { 450 next = first->next; 451 xhci_segment_free(xhci, first); 452 if (first == last) 453 break; 454 first = next; 455 } while (true); 456 return ret; 457 } 458 459 xhci_link_rings(xhci, ring, first, last, num_segs); 460 trace_xhci_ring_expansion(ring); 461 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 462 "ring expansion succeed, now has %d segments", 463 ring->num_segs); 464 465 return 0; 466 } 467 468 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 469 int type, gfp_t flags) 470 { 471 struct xhci_container_ctx *ctx; 472 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 473 474 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 475 return NULL; 476 477 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 478 if (!ctx) 479 return NULL; 480 481 ctx->type = type; 482 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 483 if (type == XHCI_CTX_TYPE_INPUT) 484 ctx->size += CTX_SIZE(xhci->hcc_params); 485 486 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 487 if (!ctx->bytes) { 488 kfree(ctx); 489 return NULL; 490 } 491 return ctx; 492 } 493 494 void xhci_free_container_ctx(struct xhci_hcd *xhci, 495 struct xhci_container_ctx *ctx) 496 { 497 if (!ctx) 498 return; 499 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 500 kfree(ctx); 501 } 502 503 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 504 struct xhci_container_ctx *ctx) 505 { 506 if (ctx->type != XHCI_CTX_TYPE_INPUT) 507 return NULL; 508 509 return (struct xhci_input_control_ctx *)ctx->bytes; 510 } 511 512 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 513 struct xhci_container_ctx *ctx) 514 { 515 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 516 return (struct xhci_slot_ctx *)ctx->bytes; 517 518 return (struct xhci_slot_ctx *) 519 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 520 } 521 522 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 523 struct xhci_container_ctx *ctx, 524 unsigned int ep_index) 525 { 526 /* increment ep index by offset of start of ep ctx array */ 527 ep_index++; 528 if (ctx->type == XHCI_CTX_TYPE_INPUT) 529 ep_index++; 530 531 return (struct xhci_ep_ctx *) 532 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 533 } 534 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 535 536 /***************** Streams structures manipulation *************************/ 537 538 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 539 unsigned int num_stream_ctxs, 540 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 541 { 542 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 543 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 544 545 if (size > MEDIUM_STREAM_ARRAY_SIZE) 546 dma_free_coherent(dev, size, 547 stream_ctx, dma); 548 else if (size <= SMALL_STREAM_ARRAY_SIZE) 549 return dma_pool_free(xhci->small_streams_pool, 550 stream_ctx, dma); 551 else 552 return dma_pool_free(xhci->medium_streams_pool, 553 stream_ctx, dma); 554 } 555 556 /* 557 * The stream context array for each endpoint with bulk streams enabled can 558 * vary in size, based on: 559 * - how many streams the endpoint supports, 560 * - the maximum primary stream array size the host controller supports, 561 * - and how many streams the device driver asks for. 562 * 563 * The stream context array must be a power of 2, and can be as small as 564 * 64 bytes or as large as 1MB. 565 */ 566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 567 unsigned int num_stream_ctxs, dma_addr_t *dma, 568 gfp_t mem_flags) 569 { 570 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 571 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 572 573 if (size > MEDIUM_STREAM_ARRAY_SIZE) 574 return dma_alloc_coherent(dev, size, 575 dma, mem_flags); 576 else if (size <= SMALL_STREAM_ARRAY_SIZE) 577 return dma_pool_alloc(xhci->small_streams_pool, 578 mem_flags, dma); 579 else 580 return dma_pool_alloc(xhci->medium_streams_pool, 581 mem_flags, dma); 582 } 583 584 struct xhci_ring *xhci_dma_to_transfer_ring( 585 struct xhci_virt_ep *ep, 586 u64 address) 587 { 588 if (ep->ep_state & EP_HAS_STREAMS) 589 return radix_tree_lookup(&ep->stream_info->trb_address_map, 590 address >> TRB_SEGMENT_SHIFT); 591 return ep->ring; 592 } 593 594 /* 595 * Change an endpoint's internal structure so it supports stream IDs. The 596 * number of requested streams includes stream 0, which cannot be used by device 597 * drivers. 598 * 599 * The number of stream contexts in the stream context array may be bigger than 600 * the number of streams the driver wants to use. This is because the number of 601 * stream context array entries must be a power of two. 602 */ 603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 604 unsigned int num_stream_ctxs, 605 unsigned int num_streams, 606 unsigned int max_packet, gfp_t mem_flags) 607 { 608 struct xhci_stream_info *stream_info; 609 u32 cur_stream; 610 struct xhci_ring *cur_ring; 611 u64 addr; 612 int ret; 613 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 614 615 xhci_dbg(xhci, "Allocating %u streams and %u " 616 "stream context array entries.\n", 617 num_streams, num_stream_ctxs); 618 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 619 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 620 return NULL; 621 } 622 xhci->cmd_ring_reserved_trbs++; 623 624 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 625 dev_to_node(dev)); 626 if (!stream_info) 627 goto cleanup_trbs; 628 629 stream_info->num_streams = num_streams; 630 stream_info->num_stream_ctxs = num_stream_ctxs; 631 632 /* Initialize the array of virtual pointers to stream rings. */ 633 stream_info->stream_rings = kcalloc_node( 634 num_streams, sizeof(struct xhci_ring *), mem_flags, 635 dev_to_node(dev)); 636 if (!stream_info->stream_rings) 637 goto cleanup_info; 638 639 /* Initialize the array of DMA addresses for stream rings for the HW. */ 640 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 641 num_stream_ctxs, &stream_info->ctx_array_dma, 642 mem_flags); 643 if (!stream_info->stream_ctx_array) 644 goto cleanup_ctx; 645 memset(stream_info->stream_ctx_array, 0, 646 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 647 648 /* Allocate everything needed to free the stream rings later */ 649 stream_info->free_streams_command = 650 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 651 if (!stream_info->free_streams_command) 652 goto cleanup_ctx; 653 654 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 655 656 /* Allocate rings for all the streams that the driver will use, 657 * and add their segment DMA addresses to the radix tree. 658 * Stream 0 is reserved. 659 */ 660 661 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 662 stream_info->stream_rings[cur_stream] = 663 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 664 mem_flags); 665 cur_ring = stream_info->stream_rings[cur_stream]; 666 if (!cur_ring) 667 goto cleanup_rings; 668 cur_ring->stream_id = cur_stream; 669 cur_ring->trb_address_map = &stream_info->trb_address_map; 670 /* Set deq ptr, cycle bit, and stream context type */ 671 addr = cur_ring->first_seg->dma | 672 SCT_FOR_CTX(SCT_PRI_TR) | 673 cur_ring->cycle_state; 674 stream_info->stream_ctx_array[cur_stream].stream_ring = 675 cpu_to_le64(addr); 676 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 677 cur_stream, (unsigned long long) addr); 678 679 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 680 if (ret) { 681 xhci_ring_free(xhci, cur_ring); 682 stream_info->stream_rings[cur_stream] = NULL; 683 goto cleanup_rings; 684 } 685 } 686 /* Leave the other unused stream ring pointers in the stream context 687 * array initialized to zero. This will cause the xHC to give us an 688 * error if the device asks for a stream ID we don't have setup (if it 689 * was any other way, the host controller would assume the ring is 690 * "empty" and wait forever for data to be queued to that stream ID). 691 */ 692 693 return stream_info; 694 695 cleanup_rings: 696 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 697 cur_ring = stream_info->stream_rings[cur_stream]; 698 if (cur_ring) { 699 xhci_ring_free(xhci, cur_ring); 700 stream_info->stream_rings[cur_stream] = NULL; 701 } 702 } 703 xhci_free_command(xhci, stream_info->free_streams_command); 704 cleanup_ctx: 705 kfree(stream_info->stream_rings); 706 cleanup_info: 707 kfree(stream_info); 708 cleanup_trbs: 709 xhci->cmd_ring_reserved_trbs--; 710 return NULL; 711 } 712 /* 713 * Sets the MaxPStreams field and the Linear Stream Array field. 714 * Sets the dequeue pointer to the stream context array. 715 */ 716 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 717 struct xhci_ep_ctx *ep_ctx, 718 struct xhci_stream_info *stream_info) 719 { 720 u32 max_primary_streams; 721 /* MaxPStreams is the number of stream context array entries, not the 722 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 723 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 724 */ 725 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 726 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 727 "Setting number of stream ctx array entries to %u", 728 1 << (max_primary_streams + 1)); 729 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 730 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 731 | EP_HAS_LSA); 732 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 733 } 734 735 /* 736 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 737 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 738 * not at the beginning of the ring). 739 */ 740 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 741 struct xhci_virt_ep *ep) 742 { 743 dma_addr_t addr; 744 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 745 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 746 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 747 } 748 749 /* Frees all stream contexts associated with the endpoint, 750 * 751 * Caller should fix the endpoint context streams fields. 752 */ 753 void xhci_free_stream_info(struct xhci_hcd *xhci, 754 struct xhci_stream_info *stream_info) 755 { 756 int cur_stream; 757 struct xhci_ring *cur_ring; 758 759 if (!stream_info) 760 return; 761 762 for (cur_stream = 1; cur_stream < stream_info->num_streams; 763 cur_stream++) { 764 cur_ring = stream_info->stream_rings[cur_stream]; 765 if (cur_ring) { 766 xhci_ring_free(xhci, cur_ring); 767 stream_info->stream_rings[cur_stream] = NULL; 768 } 769 } 770 xhci_free_command(xhci, stream_info->free_streams_command); 771 xhci->cmd_ring_reserved_trbs--; 772 if (stream_info->stream_ctx_array) 773 xhci_free_stream_ctx(xhci, 774 stream_info->num_stream_ctxs, 775 stream_info->stream_ctx_array, 776 stream_info->ctx_array_dma); 777 778 kfree(stream_info->stream_rings); 779 kfree(stream_info); 780 } 781 782 783 /***************** Device context manipulation *************************/ 784 785 static void xhci_free_tt_info(struct xhci_hcd *xhci, 786 struct xhci_virt_device *virt_dev, 787 int slot_id) 788 { 789 struct list_head *tt_list_head; 790 struct xhci_tt_bw_info *tt_info, *next; 791 bool slot_found = false; 792 793 /* If the device never made it past the Set Address stage, 794 * it may not have the real_port set correctly. 795 */ 796 if (virt_dev->real_port == 0 || 797 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 798 xhci_dbg(xhci, "Bad real port.\n"); 799 return; 800 } 801 802 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 803 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 804 /* Multi-TT hubs will have more than one entry */ 805 if (tt_info->slot_id == slot_id) { 806 slot_found = true; 807 list_del(&tt_info->tt_list); 808 kfree(tt_info); 809 } else if (slot_found) { 810 break; 811 } 812 } 813 } 814 815 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 816 struct xhci_virt_device *virt_dev, 817 struct usb_device *hdev, 818 struct usb_tt *tt, gfp_t mem_flags) 819 { 820 struct xhci_tt_bw_info *tt_info; 821 unsigned int num_ports; 822 int i, j; 823 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 824 825 if (!tt->multi) 826 num_ports = 1; 827 else 828 num_ports = hdev->maxchild; 829 830 for (i = 0; i < num_ports; i++, tt_info++) { 831 struct xhci_interval_bw_table *bw_table; 832 833 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 834 dev_to_node(dev)); 835 if (!tt_info) 836 goto free_tts; 837 INIT_LIST_HEAD(&tt_info->tt_list); 838 list_add(&tt_info->tt_list, 839 &xhci->rh_bw[virt_dev->real_port - 1].tts); 840 tt_info->slot_id = virt_dev->udev->slot_id; 841 if (tt->multi) 842 tt_info->ttport = i+1; 843 bw_table = &tt_info->bw_table; 844 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 845 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 846 } 847 return 0; 848 849 free_tts: 850 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 851 return -ENOMEM; 852 } 853 854 855 /* All the xhci_tds in the ring's TD list should be freed at this point. 856 * Should be called with xhci->lock held if there is any chance the TT lists 857 * will be manipulated by the configure endpoint, allocate device, or update 858 * hub functions while this function is removing the TT entries from the list. 859 */ 860 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 861 { 862 struct xhci_virt_device *dev; 863 int i; 864 int old_active_eps = 0; 865 866 /* Slot ID 0 is reserved */ 867 if (slot_id == 0 || !xhci->devs[slot_id]) 868 return; 869 870 dev = xhci->devs[slot_id]; 871 872 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 873 if (!dev) 874 return; 875 876 trace_xhci_free_virt_device(dev); 877 878 if (dev->tt_info) 879 old_active_eps = dev->tt_info->active_eps; 880 881 for (i = 0; i < 31; i++) { 882 if (dev->eps[i].ring) 883 xhci_ring_free(xhci, dev->eps[i].ring); 884 if (dev->eps[i].stream_info) 885 xhci_free_stream_info(xhci, 886 dev->eps[i].stream_info); 887 /* Endpoints on the TT/root port lists should have been removed 888 * when usb_disable_device() was called for the device. 889 * We can't drop them anyway, because the udev might have gone 890 * away by this point, and we can't tell what speed it was. 891 */ 892 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 893 xhci_warn(xhci, "Slot %u endpoint %u " 894 "not removed from BW list!\n", 895 slot_id, i); 896 } 897 /* If this is a hub, free the TT(s) from the TT list */ 898 xhci_free_tt_info(xhci, dev, slot_id); 899 /* If necessary, update the number of active TTs on this root port */ 900 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 901 902 if (dev->in_ctx) 903 xhci_free_container_ctx(xhci, dev->in_ctx); 904 if (dev->out_ctx) 905 xhci_free_container_ctx(xhci, dev->out_ctx); 906 907 if (dev->udev && dev->udev->slot_id) 908 dev->udev->slot_id = 0; 909 kfree(xhci->devs[slot_id]); 910 xhci->devs[slot_id] = NULL; 911 } 912 913 /* 914 * Free a virt_device structure. 915 * If the virt_device added a tt_info (a hub) and has children pointing to 916 * that tt_info, then free the child first. Recursive. 917 * We can't rely on udev at this point to find child-parent relationships. 918 */ 919 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 920 { 921 struct xhci_virt_device *vdev; 922 struct list_head *tt_list_head; 923 struct xhci_tt_bw_info *tt_info, *next; 924 int i; 925 926 vdev = xhci->devs[slot_id]; 927 if (!vdev) 928 return; 929 930 if (vdev->real_port == 0 || 931 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 932 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 933 goto out; 934 } 935 936 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 937 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 938 /* is this a hub device that added a tt_info to the tts list */ 939 if (tt_info->slot_id == slot_id) { 940 /* are any devices using this tt_info? */ 941 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 942 vdev = xhci->devs[i]; 943 if (vdev && (vdev->tt_info == tt_info)) 944 xhci_free_virt_devices_depth_first( 945 xhci, i); 946 } 947 } 948 } 949 out: 950 /* we are now at a leaf device */ 951 xhci_debugfs_remove_slot(xhci, slot_id); 952 xhci_free_virt_device(xhci, slot_id); 953 } 954 955 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 956 struct usb_device *udev, gfp_t flags) 957 { 958 struct xhci_virt_device *dev; 959 int i; 960 961 /* Slot ID 0 is reserved */ 962 if (slot_id == 0 || xhci->devs[slot_id]) { 963 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 964 return 0; 965 } 966 967 dev = kzalloc(sizeof(*dev), flags); 968 if (!dev) 969 return 0; 970 971 dev->slot_id = slot_id; 972 973 /* Allocate the (output) device context that will be used in the HC. */ 974 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 975 if (!dev->out_ctx) 976 goto fail; 977 978 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 979 (unsigned long long)dev->out_ctx->dma); 980 981 /* Allocate the (input) device context for address device command */ 982 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 983 if (!dev->in_ctx) 984 goto fail; 985 986 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 987 (unsigned long long)dev->in_ctx->dma); 988 989 /* Initialize the cancellation and bandwidth list for each ep */ 990 for (i = 0; i < 31; i++) { 991 dev->eps[i].ep_index = i; 992 dev->eps[i].vdev = dev; 993 dev->eps[i].xhci = xhci; 994 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 995 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 996 } 997 998 /* Allocate endpoint 0 ring */ 999 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1000 if (!dev->eps[0].ring) 1001 goto fail; 1002 1003 dev->udev = udev; 1004 1005 /* Point to output device context in dcbaa. */ 1006 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1007 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1008 slot_id, 1009 &xhci->dcbaa->dev_context_ptrs[slot_id], 1010 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1011 1012 trace_xhci_alloc_virt_device(dev); 1013 1014 xhci->devs[slot_id] = dev; 1015 1016 return 1; 1017 fail: 1018 1019 if (dev->in_ctx) 1020 xhci_free_container_ctx(xhci, dev->in_ctx); 1021 if (dev->out_ctx) 1022 xhci_free_container_ctx(xhci, dev->out_ctx); 1023 kfree(dev); 1024 1025 return 0; 1026 } 1027 1028 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1029 struct usb_device *udev) 1030 { 1031 struct xhci_virt_device *virt_dev; 1032 struct xhci_ep_ctx *ep0_ctx; 1033 struct xhci_ring *ep_ring; 1034 1035 virt_dev = xhci->devs[udev->slot_id]; 1036 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1037 ep_ring = virt_dev->eps[0].ring; 1038 /* 1039 * FIXME we don't keep track of the dequeue pointer very well after a 1040 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1041 * host to our enqueue pointer. This should only be called after a 1042 * configured device has reset, so all control transfers should have 1043 * been completed or cancelled before the reset. 1044 */ 1045 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1046 ep_ring->enqueue) 1047 | ep_ring->cycle_state); 1048 } 1049 1050 /* 1051 * The xHCI roothub may have ports of differing speeds in any order in the port 1052 * status registers. 1053 * 1054 * The xHCI hardware wants to know the roothub port number that the USB device 1055 * is attached to (or the roothub port its ancestor hub is attached to). All we 1056 * know is the index of that port under either the USB 2.0 or the USB 3.0 1057 * roothub, but that doesn't give us the real index into the HW port status 1058 * registers. Call xhci_find_raw_port_number() to get real index. 1059 */ 1060 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1061 struct usb_device *udev) 1062 { 1063 struct usb_device *top_dev; 1064 struct usb_hcd *hcd; 1065 1066 if (udev->speed >= USB_SPEED_SUPER) 1067 hcd = xhci_get_usb3_hcd(xhci); 1068 else 1069 hcd = xhci->main_hcd; 1070 1071 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1072 top_dev = top_dev->parent) 1073 /* Found device below root hub */; 1074 1075 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1076 } 1077 1078 /* Setup an xHCI virtual device for a Set Address command */ 1079 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1080 { 1081 struct xhci_virt_device *dev; 1082 struct xhci_ep_ctx *ep0_ctx; 1083 struct xhci_slot_ctx *slot_ctx; 1084 u32 port_num; 1085 u32 max_packets; 1086 struct usb_device *top_dev; 1087 1088 dev = xhci->devs[udev->slot_id]; 1089 /* Slot ID 0 is reserved */ 1090 if (udev->slot_id == 0 || !dev) { 1091 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1092 udev->slot_id); 1093 return -EINVAL; 1094 } 1095 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1096 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1097 1098 /* 3) Only the control endpoint is valid - one endpoint context */ 1099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1100 switch (udev->speed) { 1101 case USB_SPEED_SUPER_PLUS: 1102 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1103 max_packets = MAX_PACKET(512); 1104 break; 1105 case USB_SPEED_SUPER: 1106 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1107 max_packets = MAX_PACKET(512); 1108 break; 1109 case USB_SPEED_HIGH: 1110 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1111 max_packets = MAX_PACKET(64); 1112 break; 1113 /* USB core guesses at a 64-byte max packet first for FS devices */ 1114 case USB_SPEED_FULL: 1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1116 max_packets = MAX_PACKET(64); 1117 break; 1118 case USB_SPEED_LOW: 1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1120 max_packets = MAX_PACKET(8); 1121 break; 1122 case USB_SPEED_WIRELESS: 1123 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1124 return -EINVAL; 1125 default: 1126 /* Speed was set earlier, this shouldn't happen. */ 1127 return -EINVAL; 1128 } 1129 /* Find the root hub port this device is under */ 1130 port_num = xhci_find_real_port_number(xhci, udev); 1131 if (!port_num) 1132 return -EINVAL; 1133 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1134 /* Set the port number in the virtual_device to the faked port number */ 1135 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1136 top_dev = top_dev->parent) 1137 /* Found device below root hub */; 1138 dev->fake_port = top_dev->portnum; 1139 dev->real_port = port_num; 1140 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1141 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1142 1143 /* Find the right bandwidth table that this device will be a part of. 1144 * If this is a full speed device attached directly to a root port (or a 1145 * decendent of one), it counts as a primary bandwidth domain, not a 1146 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1147 * will never be created for the HS root hub. 1148 */ 1149 if (!udev->tt || !udev->tt->hub->parent) { 1150 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1151 } else { 1152 struct xhci_root_port_bw_info *rh_bw; 1153 struct xhci_tt_bw_info *tt_bw; 1154 1155 rh_bw = &xhci->rh_bw[port_num - 1]; 1156 /* Find the right TT. */ 1157 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1158 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1159 continue; 1160 1161 if (!dev->udev->tt->multi || 1162 (udev->tt->multi && 1163 tt_bw->ttport == dev->udev->ttport)) { 1164 dev->bw_table = &tt_bw->bw_table; 1165 dev->tt_info = tt_bw; 1166 break; 1167 } 1168 } 1169 if (!dev->tt_info) 1170 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1171 } 1172 1173 /* Is this a LS/FS device under an external HS hub? */ 1174 if (udev->tt && udev->tt->hub->parent) { 1175 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1176 (udev->ttport << 8)); 1177 if (udev->tt->multi) 1178 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1179 } 1180 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1181 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1182 1183 /* Step 4 - ring already allocated */ 1184 /* Step 5 */ 1185 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1186 1187 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1188 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1189 max_packets); 1190 1191 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1192 dev->eps[0].ring->cycle_state); 1193 1194 trace_xhci_setup_addressable_virt_device(dev); 1195 1196 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1197 1198 return 0; 1199 } 1200 1201 /* 1202 * Convert interval expressed as 2^(bInterval - 1) == interval into 1203 * straight exponent value 2^n == interval. 1204 * 1205 */ 1206 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1207 struct usb_host_endpoint *ep) 1208 { 1209 unsigned int interval; 1210 1211 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1212 if (interval != ep->desc.bInterval - 1) 1213 dev_warn(&udev->dev, 1214 "ep %#x - rounding interval to %d %sframes\n", 1215 ep->desc.bEndpointAddress, 1216 1 << interval, 1217 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1218 1219 if (udev->speed == USB_SPEED_FULL) { 1220 /* 1221 * Full speed isoc endpoints specify interval in frames, 1222 * not microframes. We are using microframes everywhere, 1223 * so adjust accordingly. 1224 */ 1225 interval += 3; /* 1 frame = 2^3 uframes */ 1226 } 1227 1228 return interval; 1229 } 1230 1231 /* 1232 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1233 * microframes, rounded down to nearest power of 2. 1234 */ 1235 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1236 struct usb_host_endpoint *ep, unsigned int desc_interval, 1237 unsigned int min_exponent, unsigned int max_exponent) 1238 { 1239 unsigned int interval; 1240 1241 interval = fls(desc_interval) - 1; 1242 interval = clamp_val(interval, min_exponent, max_exponent); 1243 if ((1 << interval) != desc_interval) 1244 dev_dbg(&udev->dev, 1245 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1246 ep->desc.bEndpointAddress, 1247 1 << interval, 1248 desc_interval); 1249 1250 return interval; 1251 } 1252 1253 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1254 struct usb_host_endpoint *ep) 1255 { 1256 if (ep->desc.bInterval == 0) 1257 return 0; 1258 return xhci_microframes_to_exponent(udev, ep, 1259 ep->desc.bInterval, 0, 15); 1260 } 1261 1262 1263 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1264 struct usb_host_endpoint *ep) 1265 { 1266 return xhci_microframes_to_exponent(udev, ep, 1267 ep->desc.bInterval * 8, 3, 10); 1268 } 1269 1270 /* Return the polling or NAK interval. 1271 * 1272 * The polling interval is expressed in "microframes". If xHCI's Interval field 1273 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1274 * 1275 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1276 * is set to 0. 1277 */ 1278 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1279 struct usb_host_endpoint *ep) 1280 { 1281 unsigned int interval = 0; 1282 1283 switch (udev->speed) { 1284 case USB_SPEED_HIGH: 1285 /* Max NAK rate */ 1286 if (usb_endpoint_xfer_control(&ep->desc) || 1287 usb_endpoint_xfer_bulk(&ep->desc)) { 1288 interval = xhci_parse_microframe_interval(udev, ep); 1289 break; 1290 } 1291 fallthrough; /* SS and HS isoc/int have same decoding */ 1292 1293 case USB_SPEED_SUPER_PLUS: 1294 case USB_SPEED_SUPER: 1295 if (usb_endpoint_xfer_int(&ep->desc) || 1296 usb_endpoint_xfer_isoc(&ep->desc)) { 1297 interval = xhci_parse_exponent_interval(udev, ep); 1298 } 1299 break; 1300 1301 case USB_SPEED_FULL: 1302 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1303 interval = xhci_parse_exponent_interval(udev, ep); 1304 break; 1305 } 1306 /* 1307 * Fall through for interrupt endpoint interval decoding 1308 * since it uses the same rules as low speed interrupt 1309 * endpoints. 1310 */ 1311 fallthrough; 1312 1313 case USB_SPEED_LOW: 1314 if (usb_endpoint_xfer_int(&ep->desc) || 1315 usb_endpoint_xfer_isoc(&ep->desc)) { 1316 1317 interval = xhci_parse_frame_interval(udev, ep); 1318 } 1319 break; 1320 1321 default: 1322 BUG(); 1323 } 1324 return interval; 1325 } 1326 1327 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1328 * High speed endpoint descriptors can define "the number of additional 1329 * transaction opportunities per microframe", but that goes in the Max Burst 1330 * endpoint context field. 1331 */ 1332 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1333 struct usb_host_endpoint *ep) 1334 { 1335 if (udev->speed < USB_SPEED_SUPER || 1336 !usb_endpoint_xfer_isoc(&ep->desc)) 1337 return 0; 1338 return ep->ss_ep_comp.bmAttributes; 1339 } 1340 1341 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1342 struct usb_host_endpoint *ep) 1343 { 1344 /* Super speed and Plus have max burst in ep companion desc */ 1345 if (udev->speed >= USB_SPEED_SUPER) 1346 return ep->ss_ep_comp.bMaxBurst; 1347 1348 if (udev->speed == USB_SPEED_HIGH && 1349 (usb_endpoint_xfer_isoc(&ep->desc) || 1350 usb_endpoint_xfer_int(&ep->desc))) 1351 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1352 1353 return 0; 1354 } 1355 1356 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1357 { 1358 int in; 1359 1360 in = usb_endpoint_dir_in(&ep->desc); 1361 1362 switch (usb_endpoint_type(&ep->desc)) { 1363 case USB_ENDPOINT_XFER_CONTROL: 1364 return CTRL_EP; 1365 case USB_ENDPOINT_XFER_BULK: 1366 return in ? BULK_IN_EP : BULK_OUT_EP; 1367 case USB_ENDPOINT_XFER_ISOC: 1368 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1369 case USB_ENDPOINT_XFER_INT: 1370 return in ? INT_IN_EP : INT_OUT_EP; 1371 } 1372 return 0; 1373 } 1374 1375 /* Return the maximum endpoint service interval time (ESIT) payload. 1376 * Basically, this is the maxpacket size, multiplied by the burst size 1377 * and mult size. 1378 */ 1379 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1380 struct usb_host_endpoint *ep) 1381 { 1382 int max_burst; 1383 int max_packet; 1384 1385 /* Only applies for interrupt or isochronous endpoints */ 1386 if (usb_endpoint_xfer_control(&ep->desc) || 1387 usb_endpoint_xfer_bulk(&ep->desc)) 1388 return 0; 1389 1390 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1391 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1392 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1393 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1394 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1395 else if (udev->speed >= USB_SPEED_SUPER) 1396 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1397 1398 max_packet = usb_endpoint_maxp(&ep->desc); 1399 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1400 /* A 0 in max burst means 1 transfer per ESIT */ 1401 return max_packet * max_burst; 1402 } 1403 1404 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1405 * Drivers will have to call usb_alloc_streams() to do that. 1406 */ 1407 int xhci_endpoint_init(struct xhci_hcd *xhci, 1408 struct xhci_virt_device *virt_dev, 1409 struct usb_device *udev, 1410 struct usb_host_endpoint *ep, 1411 gfp_t mem_flags) 1412 { 1413 unsigned int ep_index; 1414 struct xhci_ep_ctx *ep_ctx; 1415 struct xhci_ring *ep_ring; 1416 unsigned int max_packet; 1417 enum xhci_ring_type ring_type; 1418 u32 max_esit_payload; 1419 u32 endpoint_type; 1420 unsigned int max_burst; 1421 unsigned int interval; 1422 unsigned int mult; 1423 unsigned int avg_trb_len; 1424 unsigned int err_count = 0; 1425 1426 ep_index = xhci_get_endpoint_index(&ep->desc); 1427 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1428 1429 endpoint_type = xhci_get_endpoint_type(ep); 1430 if (!endpoint_type) 1431 return -EINVAL; 1432 1433 ring_type = usb_endpoint_type(&ep->desc); 1434 1435 /* 1436 * Get values to fill the endpoint context, mostly from ep descriptor. 1437 * The average TRB buffer lengt for bulk endpoints is unclear as we 1438 * have no clue on scatter gather list entry size. For Isoc and Int, 1439 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1440 */ 1441 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1442 interval = xhci_get_endpoint_interval(udev, ep); 1443 1444 /* Periodic endpoint bInterval limit quirk */ 1445 if (usb_endpoint_xfer_int(&ep->desc) || 1446 usb_endpoint_xfer_isoc(&ep->desc)) { 1447 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1448 udev->speed >= USB_SPEED_HIGH && 1449 interval >= 7) { 1450 interval = 6; 1451 } 1452 } 1453 1454 mult = xhci_get_endpoint_mult(udev, ep); 1455 max_packet = usb_endpoint_maxp(&ep->desc); 1456 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1457 avg_trb_len = max_esit_payload; 1458 1459 /* FIXME dig Mult and streams info out of ep companion desc */ 1460 1461 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1462 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1463 err_count = 3; 1464 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1465 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1466 if (udev->speed == USB_SPEED_HIGH) 1467 max_packet = 512; 1468 if (udev->speed == USB_SPEED_FULL) { 1469 max_packet = rounddown_pow_of_two(max_packet); 1470 max_packet = clamp_val(max_packet, 8, 64); 1471 } 1472 } 1473 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1474 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1475 avg_trb_len = 8; 1476 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1477 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1478 mult = 0; 1479 1480 /* Set up the endpoint ring */ 1481 virt_dev->eps[ep_index].new_ring = 1482 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1483 if (!virt_dev->eps[ep_index].new_ring) 1484 return -ENOMEM; 1485 1486 virt_dev->eps[ep_index].skip = false; 1487 ep_ring = virt_dev->eps[ep_index].new_ring; 1488 1489 /* Fill the endpoint context */ 1490 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1491 EP_INTERVAL(interval) | 1492 EP_MULT(mult)); 1493 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1494 MAX_PACKET(max_packet) | 1495 MAX_BURST(max_burst) | 1496 ERROR_COUNT(err_count)); 1497 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1498 ep_ring->cycle_state); 1499 1500 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1501 EP_AVG_TRB_LENGTH(avg_trb_len)); 1502 1503 return 0; 1504 } 1505 1506 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1507 struct xhci_virt_device *virt_dev, 1508 struct usb_host_endpoint *ep) 1509 { 1510 unsigned int ep_index; 1511 struct xhci_ep_ctx *ep_ctx; 1512 1513 ep_index = xhci_get_endpoint_index(&ep->desc); 1514 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1515 1516 ep_ctx->ep_info = 0; 1517 ep_ctx->ep_info2 = 0; 1518 ep_ctx->deq = 0; 1519 ep_ctx->tx_info = 0; 1520 /* Don't free the endpoint ring until the set interface or configuration 1521 * request succeeds. 1522 */ 1523 } 1524 1525 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1526 { 1527 bw_info->ep_interval = 0; 1528 bw_info->mult = 0; 1529 bw_info->num_packets = 0; 1530 bw_info->max_packet_size = 0; 1531 bw_info->type = 0; 1532 bw_info->max_esit_payload = 0; 1533 } 1534 1535 void xhci_update_bw_info(struct xhci_hcd *xhci, 1536 struct xhci_container_ctx *in_ctx, 1537 struct xhci_input_control_ctx *ctrl_ctx, 1538 struct xhci_virt_device *virt_dev) 1539 { 1540 struct xhci_bw_info *bw_info; 1541 struct xhci_ep_ctx *ep_ctx; 1542 unsigned int ep_type; 1543 int i; 1544 1545 for (i = 1; i < 31; i++) { 1546 bw_info = &virt_dev->eps[i].bw_info; 1547 1548 /* We can't tell what endpoint type is being dropped, but 1549 * unconditionally clearing the bandwidth info for non-periodic 1550 * endpoints should be harmless because the info will never be 1551 * set in the first place. 1552 */ 1553 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1554 /* Dropped endpoint */ 1555 xhci_clear_endpoint_bw_info(bw_info); 1556 continue; 1557 } 1558 1559 if (EP_IS_ADDED(ctrl_ctx, i)) { 1560 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1561 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1562 1563 /* Ignore non-periodic endpoints */ 1564 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1565 ep_type != ISOC_IN_EP && 1566 ep_type != INT_IN_EP) 1567 continue; 1568 1569 /* Added or changed endpoint */ 1570 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1571 le32_to_cpu(ep_ctx->ep_info)); 1572 /* Number of packets and mult are zero-based in the 1573 * input context, but we want one-based for the 1574 * interval table. 1575 */ 1576 bw_info->mult = CTX_TO_EP_MULT( 1577 le32_to_cpu(ep_ctx->ep_info)) + 1; 1578 bw_info->num_packets = CTX_TO_MAX_BURST( 1579 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1580 bw_info->max_packet_size = MAX_PACKET_DECODED( 1581 le32_to_cpu(ep_ctx->ep_info2)); 1582 bw_info->type = ep_type; 1583 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1584 le32_to_cpu(ep_ctx->tx_info)); 1585 } 1586 } 1587 } 1588 1589 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1590 * Useful when you want to change one particular aspect of the endpoint and then 1591 * issue a configure endpoint command. 1592 */ 1593 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1594 struct xhci_container_ctx *in_ctx, 1595 struct xhci_container_ctx *out_ctx, 1596 unsigned int ep_index) 1597 { 1598 struct xhci_ep_ctx *out_ep_ctx; 1599 struct xhci_ep_ctx *in_ep_ctx; 1600 1601 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1602 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1603 1604 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1605 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1606 in_ep_ctx->deq = out_ep_ctx->deq; 1607 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1608 if (xhci->quirks & XHCI_MTK_HOST) { 1609 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1610 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1611 } 1612 } 1613 1614 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1615 * Useful when you want to change one particular aspect of the endpoint and then 1616 * issue a configure endpoint command. Only the context entries field matters, 1617 * but we'll copy the whole thing anyway. 1618 */ 1619 void xhci_slot_copy(struct xhci_hcd *xhci, 1620 struct xhci_container_ctx *in_ctx, 1621 struct xhci_container_ctx *out_ctx) 1622 { 1623 struct xhci_slot_ctx *in_slot_ctx; 1624 struct xhci_slot_ctx *out_slot_ctx; 1625 1626 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1627 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1628 1629 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1630 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1631 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1632 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1633 } 1634 1635 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1636 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1637 { 1638 int i; 1639 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1640 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1641 1642 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1643 "Allocating %d scratchpad buffers", num_sp); 1644 1645 if (!num_sp) 1646 return 0; 1647 1648 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1649 dev_to_node(dev)); 1650 if (!xhci->scratchpad) 1651 goto fail_sp; 1652 1653 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1654 num_sp * sizeof(u64), 1655 &xhci->scratchpad->sp_dma, flags); 1656 if (!xhci->scratchpad->sp_array) 1657 goto fail_sp2; 1658 1659 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1660 flags, dev_to_node(dev)); 1661 if (!xhci->scratchpad->sp_buffers) 1662 goto fail_sp3; 1663 1664 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1665 for (i = 0; i < num_sp; i++) { 1666 dma_addr_t dma; 1667 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1668 flags); 1669 if (!buf) 1670 goto fail_sp4; 1671 1672 xhci->scratchpad->sp_array[i] = dma; 1673 xhci->scratchpad->sp_buffers[i] = buf; 1674 } 1675 1676 return 0; 1677 1678 fail_sp4: 1679 for (i = i - 1; i >= 0; i--) { 1680 dma_free_coherent(dev, xhci->page_size, 1681 xhci->scratchpad->sp_buffers[i], 1682 xhci->scratchpad->sp_array[i]); 1683 } 1684 1685 kfree(xhci->scratchpad->sp_buffers); 1686 1687 fail_sp3: 1688 dma_free_coherent(dev, num_sp * sizeof(u64), 1689 xhci->scratchpad->sp_array, 1690 xhci->scratchpad->sp_dma); 1691 1692 fail_sp2: 1693 kfree(xhci->scratchpad); 1694 xhci->scratchpad = NULL; 1695 1696 fail_sp: 1697 return -ENOMEM; 1698 } 1699 1700 static void scratchpad_free(struct xhci_hcd *xhci) 1701 { 1702 int num_sp; 1703 int i; 1704 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1705 1706 if (!xhci->scratchpad) 1707 return; 1708 1709 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1710 1711 for (i = 0; i < num_sp; i++) { 1712 dma_free_coherent(dev, xhci->page_size, 1713 xhci->scratchpad->sp_buffers[i], 1714 xhci->scratchpad->sp_array[i]); 1715 } 1716 kfree(xhci->scratchpad->sp_buffers); 1717 dma_free_coherent(dev, num_sp * sizeof(u64), 1718 xhci->scratchpad->sp_array, 1719 xhci->scratchpad->sp_dma); 1720 kfree(xhci->scratchpad); 1721 xhci->scratchpad = NULL; 1722 } 1723 1724 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1725 bool allocate_completion, gfp_t mem_flags) 1726 { 1727 struct xhci_command *command; 1728 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1729 1730 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1731 if (!command) 1732 return NULL; 1733 1734 if (allocate_completion) { 1735 command->completion = 1736 kzalloc_node(sizeof(struct completion), mem_flags, 1737 dev_to_node(dev)); 1738 if (!command->completion) { 1739 kfree(command); 1740 return NULL; 1741 } 1742 init_completion(command->completion); 1743 } 1744 1745 command->status = 0; 1746 INIT_LIST_HEAD(&command->cmd_list); 1747 return command; 1748 } 1749 1750 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1751 bool allocate_completion, gfp_t mem_flags) 1752 { 1753 struct xhci_command *command; 1754 1755 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1756 if (!command) 1757 return NULL; 1758 1759 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1760 mem_flags); 1761 if (!command->in_ctx) { 1762 kfree(command->completion); 1763 kfree(command); 1764 return NULL; 1765 } 1766 return command; 1767 } 1768 1769 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1770 { 1771 kfree(urb_priv); 1772 } 1773 1774 void xhci_free_command(struct xhci_hcd *xhci, 1775 struct xhci_command *command) 1776 { 1777 xhci_free_container_ctx(xhci, 1778 command->in_ctx); 1779 kfree(command->completion); 1780 kfree(command); 1781 } 1782 1783 int xhci_alloc_erst(struct xhci_hcd *xhci, 1784 struct xhci_ring *evt_ring, 1785 struct xhci_erst *erst, 1786 gfp_t flags) 1787 { 1788 size_t size; 1789 unsigned int val; 1790 struct xhci_segment *seg; 1791 struct xhci_erst_entry *entry; 1792 1793 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs; 1794 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1795 size, &erst->erst_dma_addr, flags); 1796 if (!erst->entries) 1797 return -ENOMEM; 1798 1799 erst->num_entries = evt_ring->num_segs; 1800 1801 seg = evt_ring->first_seg; 1802 for (val = 0; val < evt_ring->num_segs; val++) { 1803 entry = &erst->entries[val]; 1804 entry->seg_addr = cpu_to_le64(seg->dma); 1805 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1806 entry->rsvd = 0; 1807 seg = seg->next; 1808 } 1809 1810 return 0; 1811 } 1812 1813 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst) 1814 { 1815 size_t size; 1816 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1817 1818 size = sizeof(struct xhci_erst_entry) * (erst->num_entries); 1819 if (erst->entries) 1820 dma_free_coherent(dev, size, 1821 erst->entries, 1822 erst->erst_dma_addr); 1823 erst->entries = NULL; 1824 } 1825 1826 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1827 { 1828 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1829 int i, j, num_ports; 1830 1831 cancel_delayed_work_sync(&xhci->cmd_timer); 1832 1833 xhci_free_erst(xhci, &xhci->erst); 1834 1835 if (xhci->event_ring) 1836 xhci_ring_free(xhci, xhci->event_ring); 1837 xhci->event_ring = NULL; 1838 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1839 1840 if (xhci->cmd_ring) 1841 xhci_ring_free(xhci, xhci->cmd_ring); 1842 xhci->cmd_ring = NULL; 1843 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1844 xhci_cleanup_command_queue(xhci); 1845 1846 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1847 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1848 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1849 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1850 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1851 while (!list_empty(ep)) 1852 list_del_init(ep->next); 1853 } 1854 } 1855 1856 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1857 xhci_free_virt_devices_depth_first(xhci, i); 1858 1859 dma_pool_destroy(xhci->segment_pool); 1860 xhci->segment_pool = NULL; 1861 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1862 1863 dma_pool_destroy(xhci->device_pool); 1864 xhci->device_pool = NULL; 1865 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1866 1867 dma_pool_destroy(xhci->small_streams_pool); 1868 xhci->small_streams_pool = NULL; 1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1870 "Freed small stream array pool"); 1871 1872 dma_pool_destroy(xhci->medium_streams_pool); 1873 xhci->medium_streams_pool = NULL; 1874 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1875 "Freed medium stream array pool"); 1876 1877 if (xhci->dcbaa) 1878 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1879 xhci->dcbaa, xhci->dcbaa->dma); 1880 xhci->dcbaa = NULL; 1881 1882 scratchpad_free(xhci); 1883 1884 if (!xhci->rh_bw) 1885 goto no_bw; 1886 1887 for (i = 0; i < num_ports; i++) { 1888 struct xhci_tt_bw_info *tt, *n; 1889 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1890 list_del(&tt->tt_list); 1891 kfree(tt); 1892 } 1893 } 1894 1895 no_bw: 1896 xhci->cmd_ring_reserved_trbs = 0; 1897 xhci->usb2_rhub.num_ports = 0; 1898 xhci->usb3_rhub.num_ports = 0; 1899 xhci->num_active_eps = 0; 1900 kfree(xhci->usb2_rhub.ports); 1901 kfree(xhci->usb3_rhub.ports); 1902 kfree(xhci->hw_ports); 1903 kfree(xhci->rh_bw); 1904 kfree(xhci->ext_caps); 1905 for (i = 0; i < xhci->num_port_caps; i++) 1906 kfree(xhci->port_caps[i].psi); 1907 kfree(xhci->port_caps); 1908 xhci->num_port_caps = 0; 1909 1910 xhci->usb2_rhub.ports = NULL; 1911 xhci->usb3_rhub.ports = NULL; 1912 xhci->hw_ports = NULL; 1913 xhci->rh_bw = NULL; 1914 xhci->ext_caps = NULL; 1915 xhci->port_caps = NULL; 1916 1917 xhci->page_size = 0; 1918 xhci->page_shift = 0; 1919 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1920 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1921 } 1922 1923 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1924 struct xhci_segment *input_seg, 1925 union xhci_trb *start_trb, 1926 union xhci_trb *end_trb, 1927 dma_addr_t input_dma, 1928 struct xhci_segment *result_seg, 1929 char *test_name, int test_number) 1930 { 1931 unsigned long long start_dma; 1932 unsigned long long end_dma; 1933 struct xhci_segment *seg; 1934 1935 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1936 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1937 1938 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1939 if (seg != result_seg) { 1940 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1941 test_name, test_number); 1942 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1943 "input DMA 0x%llx\n", 1944 input_seg, 1945 (unsigned long long) input_dma); 1946 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1947 "ending TRB %p (0x%llx DMA)\n", 1948 start_trb, start_dma, 1949 end_trb, end_dma); 1950 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1951 result_seg, seg); 1952 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1953 true); 1954 return -1; 1955 } 1956 return 0; 1957 } 1958 1959 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1960 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1961 { 1962 struct { 1963 dma_addr_t input_dma; 1964 struct xhci_segment *result_seg; 1965 } simple_test_vector [] = { 1966 /* A zeroed DMA field should fail */ 1967 { 0, NULL }, 1968 /* One TRB before the ring start should fail */ 1969 { xhci->event_ring->first_seg->dma - 16, NULL }, 1970 /* One byte before the ring start should fail */ 1971 { xhci->event_ring->first_seg->dma - 1, NULL }, 1972 /* Starting TRB should succeed */ 1973 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1974 /* Ending TRB should succeed */ 1975 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1976 xhci->event_ring->first_seg }, 1977 /* One byte after the ring end should fail */ 1978 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1979 /* One TRB after the ring end should fail */ 1980 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1981 /* An address of all ones should fail */ 1982 { (dma_addr_t) (~0), NULL }, 1983 }; 1984 struct { 1985 struct xhci_segment *input_seg; 1986 union xhci_trb *start_trb; 1987 union xhci_trb *end_trb; 1988 dma_addr_t input_dma; 1989 struct xhci_segment *result_seg; 1990 } complex_test_vector [] = { 1991 /* Test feeding a valid DMA address from a different ring */ 1992 { .input_seg = xhci->event_ring->first_seg, 1993 .start_trb = xhci->event_ring->first_seg->trbs, 1994 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1995 .input_dma = xhci->cmd_ring->first_seg->dma, 1996 .result_seg = NULL, 1997 }, 1998 /* Test feeding a valid end TRB from a different ring */ 1999 { .input_seg = xhci->event_ring->first_seg, 2000 .start_trb = xhci->event_ring->first_seg->trbs, 2001 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2002 .input_dma = xhci->cmd_ring->first_seg->dma, 2003 .result_seg = NULL, 2004 }, 2005 /* Test feeding a valid start and end TRB from a different ring */ 2006 { .input_seg = xhci->event_ring->first_seg, 2007 .start_trb = xhci->cmd_ring->first_seg->trbs, 2008 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2009 .input_dma = xhci->cmd_ring->first_seg->dma, 2010 .result_seg = NULL, 2011 }, 2012 /* TRB in this ring, but after this TD */ 2013 { .input_seg = xhci->event_ring->first_seg, 2014 .start_trb = &xhci->event_ring->first_seg->trbs[0], 2015 .end_trb = &xhci->event_ring->first_seg->trbs[3], 2016 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 2017 .result_seg = NULL, 2018 }, 2019 /* TRB in this ring, but before this TD */ 2020 { .input_seg = xhci->event_ring->first_seg, 2021 .start_trb = &xhci->event_ring->first_seg->trbs[3], 2022 .end_trb = &xhci->event_ring->first_seg->trbs[6], 2023 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2024 .result_seg = NULL, 2025 }, 2026 /* TRB in this ring, but after this wrapped TD */ 2027 { .input_seg = xhci->event_ring->first_seg, 2028 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2029 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2030 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2031 .result_seg = NULL, 2032 }, 2033 /* TRB in this ring, but before this wrapped TD */ 2034 { .input_seg = xhci->event_ring->first_seg, 2035 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2036 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2037 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2038 .result_seg = NULL, 2039 }, 2040 /* TRB not in this ring, and we have a wrapped TD */ 2041 { .input_seg = xhci->event_ring->first_seg, 2042 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2043 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2044 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2045 .result_seg = NULL, 2046 }, 2047 }; 2048 2049 unsigned int num_tests; 2050 int i, ret; 2051 2052 num_tests = ARRAY_SIZE(simple_test_vector); 2053 for (i = 0; i < num_tests; i++) { 2054 ret = xhci_test_trb_in_td(xhci, 2055 xhci->event_ring->first_seg, 2056 xhci->event_ring->first_seg->trbs, 2057 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2058 simple_test_vector[i].input_dma, 2059 simple_test_vector[i].result_seg, 2060 "Simple", i); 2061 if (ret < 0) 2062 return ret; 2063 } 2064 2065 num_tests = ARRAY_SIZE(complex_test_vector); 2066 for (i = 0; i < num_tests; i++) { 2067 ret = xhci_test_trb_in_td(xhci, 2068 complex_test_vector[i].input_seg, 2069 complex_test_vector[i].start_trb, 2070 complex_test_vector[i].end_trb, 2071 complex_test_vector[i].input_dma, 2072 complex_test_vector[i].result_seg, 2073 "Complex", i); 2074 if (ret < 0) 2075 return ret; 2076 } 2077 xhci_dbg(xhci, "TRB math tests passed.\n"); 2078 return 0; 2079 } 2080 2081 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2082 { 2083 u64 temp; 2084 dma_addr_t deq; 2085 2086 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2087 xhci->event_ring->dequeue); 2088 if (!deq) 2089 xhci_warn(xhci, "WARN something wrong with SW event ring " 2090 "dequeue ptr.\n"); 2091 /* Update HC event ring dequeue pointer */ 2092 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2093 temp &= ERST_PTR_MASK; 2094 /* Don't clear the EHB bit (which is RW1C) because 2095 * there might be more events to service. 2096 */ 2097 temp &= ~ERST_EHB; 2098 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2099 "// Write event ring dequeue pointer, " 2100 "preserving EHB bit"); 2101 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2102 &xhci->ir_set->erst_dequeue); 2103 } 2104 2105 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2106 __le32 __iomem *addr, int max_caps) 2107 { 2108 u32 temp, port_offset, port_count; 2109 int i; 2110 u8 major_revision, minor_revision; 2111 struct xhci_hub *rhub; 2112 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2113 struct xhci_port_cap *port_cap; 2114 2115 temp = readl(addr); 2116 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2117 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2118 2119 if (major_revision == 0x03) { 2120 rhub = &xhci->usb3_rhub; 2121 /* 2122 * Some hosts incorrectly use sub-minor version for minor 2123 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 2124 * for bcdUSB 0x310). Since there is no USB release with sub 2125 * minor version 0x301 to 0x309, we can assume that they are 2126 * incorrect and fix it here. 2127 */ 2128 if (minor_revision > 0x00 && minor_revision < 0x10) 2129 minor_revision <<= 4; 2130 } else if (major_revision <= 0x02) { 2131 rhub = &xhci->usb2_rhub; 2132 } else { 2133 xhci_warn(xhci, "Ignoring unknown port speed, " 2134 "Ext Cap %p, revision = 0x%x\n", 2135 addr, major_revision); 2136 /* Ignoring port protocol we can't understand. FIXME */ 2137 return; 2138 } 2139 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2140 2141 if (rhub->min_rev < minor_revision) 2142 rhub->min_rev = minor_revision; 2143 2144 /* Port offset and count in the third dword, see section 7.2 */ 2145 temp = readl(addr + 2); 2146 port_offset = XHCI_EXT_PORT_OFF(temp); 2147 port_count = XHCI_EXT_PORT_COUNT(temp); 2148 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2149 "Ext Cap %p, port offset = %u, " 2150 "count = %u, revision = 0x%x", 2151 addr, port_offset, port_count, major_revision); 2152 /* Port count includes the current port offset */ 2153 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2154 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2155 return; 2156 2157 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2158 if (xhci->num_port_caps > max_caps) 2159 return; 2160 2161 port_cap->maj_rev = major_revision; 2162 port_cap->min_rev = minor_revision; 2163 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2164 2165 if (port_cap->psi_count) { 2166 port_cap->psi = kcalloc_node(port_cap->psi_count, 2167 sizeof(*port_cap->psi), 2168 GFP_KERNEL, dev_to_node(dev)); 2169 if (!port_cap->psi) 2170 port_cap->psi_count = 0; 2171 2172 port_cap->psi_uid_count++; 2173 for (i = 0; i < port_cap->psi_count; i++) { 2174 port_cap->psi[i] = readl(addr + 4 + i); 2175 2176 /* count unique ID values, two consecutive entries can 2177 * have the same ID if link is assymetric 2178 */ 2179 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2180 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2181 port_cap->psi_uid_count++; 2182 2183 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2184 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2185 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2186 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2187 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2188 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2189 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2190 } 2191 } 2192 /* cache usb2 port capabilities */ 2193 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2194 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2195 2196 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2197 (temp & XHCI_HLC)) { 2198 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2199 "xHCI 1.0: support USB2 hardware lpm"); 2200 xhci->hw_lpm_support = 1; 2201 } 2202 2203 port_offset--; 2204 for (i = port_offset; i < (port_offset + port_count); i++) { 2205 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2206 /* Duplicate entry. Ignore the port if the revisions differ. */ 2207 if (hw_port->rhub) { 2208 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2209 " port %u\n", addr, i); 2210 xhci_warn(xhci, "Port was marked as USB %u, " 2211 "duplicated as USB %u\n", 2212 hw_port->rhub->maj_rev, major_revision); 2213 /* Only adjust the roothub port counts if we haven't 2214 * found a similar duplicate. 2215 */ 2216 if (hw_port->rhub != rhub && 2217 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2218 hw_port->rhub->num_ports--; 2219 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2220 } 2221 continue; 2222 } 2223 hw_port->rhub = rhub; 2224 hw_port->port_cap = port_cap; 2225 rhub->num_ports++; 2226 } 2227 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2228 } 2229 2230 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2231 struct xhci_hub *rhub, gfp_t flags) 2232 { 2233 int port_index = 0; 2234 int i; 2235 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2236 2237 if (!rhub->num_ports) 2238 return; 2239 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2240 flags, dev_to_node(dev)); 2241 if (!rhub->ports) 2242 return; 2243 2244 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2245 if (xhci->hw_ports[i].rhub != rhub || 2246 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2247 continue; 2248 xhci->hw_ports[i].hcd_portnum = port_index; 2249 rhub->ports[port_index] = &xhci->hw_ports[i]; 2250 port_index++; 2251 if (port_index == rhub->num_ports) 2252 break; 2253 } 2254 } 2255 2256 /* 2257 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2258 * specify what speeds each port is supposed to be. We can't count on the port 2259 * speed bits in the PORTSC register being correct until a device is connected, 2260 * but we need to set up the two fake roothubs with the correct number of USB 2261 * 3.0 and USB 2.0 ports at host controller initialization time. 2262 */ 2263 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2264 { 2265 void __iomem *base; 2266 u32 offset; 2267 unsigned int num_ports; 2268 int i, j; 2269 int cap_count = 0; 2270 u32 cap_start; 2271 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2272 2273 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2274 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2275 flags, dev_to_node(dev)); 2276 if (!xhci->hw_ports) 2277 return -ENOMEM; 2278 2279 for (i = 0; i < num_ports; i++) { 2280 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2281 NUM_PORT_REGS * i; 2282 xhci->hw_ports[i].hw_portnum = i; 2283 } 2284 2285 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2286 dev_to_node(dev)); 2287 if (!xhci->rh_bw) 2288 return -ENOMEM; 2289 for (i = 0; i < num_ports; i++) { 2290 struct xhci_interval_bw_table *bw_table; 2291 2292 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2293 bw_table = &xhci->rh_bw[i].bw_table; 2294 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2295 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2296 } 2297 base = &xhci->cap_regs->hc_capbase; 2298 2299 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2300 if (!cap_start) { 2301 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2302 return -ENODEV; 2303 } 2304 2305 offset = cap_start; 2306 /* count extended protocol capability entries for later caching */ 2307 while (offset) { 2308 cap_count++; 2309 offset = xhci_find_next_ext_cap(base, offset, 2310 XHCI_EXT_CAPS_PROTOCOL); 2311 } 2312 2313 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2314 flags, dev_to_node(dev)); 2315 if (!xhci->ext_caps) 2316 return -ENOMEM; 2317 2318 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2319 flags, dev_to_node(dev)); 2320 if (!xhci->port_caps) 2321 return -ENOMEM; 2322 2323 offset = cap_start; 2324 2325 while (offset) { 2326 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2327 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2328 num_ports) 2329 break; 2330 offset = xhci_find_next_ext_cap(base, offset, 2331 XHCI_EXT_CAPS_PROTOCOL); 2332 } 2333 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2334 xhci_warn(xhci, "No ports on the roothubs?\n"); 2335 return -ENODEV; 2336 } 2337 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2338 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2339 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2340 2341 /* Place limits on the number of roothub ports so that the hub 2342 * descriptors aren't longer than the USB core will allocate. 2343 */ 2344 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2345 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2346 "Limiting USB 3.0 roothub ports to %u.", 2347 USB_SS_MAXPORTS); 2348 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2349 } 2350 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2351 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2352 "Limiting USB 2.0 roothub ports to %u.", 2353 USB_MAXCHILDREN); 2354 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2355 } 2356 2357 if (!xhci->usb2_rhub.num_ports) 2358 xhci_info(xhci, "USB2 root hub has no ports\n"); 2359 2360 if (!xhci->usb3_rhub.num_ports) 2361 xhci_info(xhci, "USB3 root hub has no ports\n"); 2362 2363 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2364 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2365 2366 return 0; 2367 } 2368 2369 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2370 { 2371 dma_addr_t dma; 2372 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2373 unsigned int val, val2; 2374 u64 val_64; 2375 u32 page_size, temp; 2376 int i, ret; 2377 2378 INIT_LIST_HEAD(&xhci->cmd_list); 2379 2380 /* init command timeout work */ 2381 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2382 init_completion(&xhci->cmd_ring_stop_completion); 2383 2384 page_size = readl(&xhci->op_regs->page_size); 2385 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2386 "Supported page size register = 0x%x", page_size); 2387 i = ffs(page_size); 2388 if (i < 16) 2389 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2390 "Supported page size of %iK", (1 << (i+12)) / 1024); 2391 else 2392 xhci_warn(xhci, "WARN: no supported page size\n"); 2393 /* Use 4K pages, since that's common and the minimum the HC supports */ 2394 xhci->page_shift = 12; 2395 xhci->page_size = 1 << xhci->page_shift; 2396 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2397 "HCD page size set to %iK", xhci->page_size / 1024); 2398 2399 /* 2400 * Program the Number of Device Slots Enabled field in the CONFIG 2401 * register with the max value of slots the HC can handle. 2402 */ 2403 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2404 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2405 "// xHC can handle at most %d device slots.", val); 2406 val2 = readl(&xhci->op_regs->config_reg); 2407 val |= (val2 & ~HCS_SLOTS_MASK); 2408 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2409 "// Setting Max device slots reg = 0x%x.", val); 2410 writel(val, &xhci->op_regs->config_reg); 2411 2412 /* 2413 * xHCI section 5.4.6 - Device Context array must be 2414 * "physically contiguous and 64-byte (cache line) aligned". 2415 */ 2416 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2417 flags); 2418 if (!xhci->dcbaa) 2419 goto fail; 2420 xhci->dcbaa->dma = dma; 2421 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2422 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2423 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2424 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2425 2426 /* 2427 * Initialize the ring segment pool. The ring must be a contiguous 2428 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2429 * however, the command ring segment needs 64-byte aligned segments 2430 * and our use of dma addresses in the trb_address_map radix tree needs 2431 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2432 */ 2433 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2434 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2435 2436 /* See Table 46 and Note on Figure 55 */ 2437 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2438 2112, 64, xhci->page_size); 2439 if (!xhci->segment_pool || !xhci->device_pool) 2440 goto fail; 2441 2442 /* Linear stream context arrays don't have any boundary restrictions, 2443 * and only need to be 16-byte aligned. 2444 */ 2445 xhci->small_streams_pool = 2446 dma_pool_create("xHCI 256 byte stream ctx arrays", 2447 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2448 xhci->medium_streams_pool = 2449 dma_pool_create("xHCI 1KB stream ctx arrays", 2450 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2451 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2452 * will be allocated with dma_alloc_coherent() 2453 */ 2454 2455 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2456 goto fail; 2457 2458 /* Set up the command ring to have one segments for now. */ 2459 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2460 if (!xhci->cmd_ring) 2461 goto fail; 2462 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2463 "Allocated command ring at %p", xhci->cmd_ring); 2464 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2465 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2466 2467 /* Set the address in the Command Ring Control register */ 2468 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2469 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2470 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2471 xhci->cmd_ring->cycle_state; 2472 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2473 "// Setting command ring address to 0x%016llx", val_64); 2474 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2475 2476 /* Reserve one command ring TRB for disabling LPM. 2477 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2478 * disabling LPM, we only need to reserve one TRB for all devices. 2479 */ 2480 xhci->cmd_ring_reserved_trbs++; 2481 2482 val = readl(&xhci->cap_regs->db_off); 2483 val &= DBOFF_MASK; 2484 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2485 "// Doorbell array is located at offset 0x%x" 2486 " from cap regs base addr", val); 2487 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2488 /* Set ir_set to interrupt register set 0 */ 2489 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2490 2491 /* 2492 * Event ring setup: Allocate a normal ring, but also setup 2493 * the event ring segment table (ERST). Section 4.9.3. 2494 */ 2495 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2496 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2497 0, flags); 2498 if (!xhci->event_ring) 2499 goto fail; 2500 if (xhci_check_trb_in_td_math(xhci) < 0) 2501 goto fail; 2502 2503 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags); 2504 if (ret) 2505 goto fail; 2506 2507 /* set ERST count with the number of entries in the segment table */ 2508 val = readl(&xhci->ir_set->erst_size); 2509 val &= ERST_SIZE_MASK; 2510 val |= ERST_NUM_SEGS; 2511 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2512 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2513 val); 2514 writel(val, &xhci->ir_set->erst_size); 2515 2516 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2517 "// Set ERST entries to point to event ring."); 2518 /* set the segment table base address */ 2519 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2520 "// Set ERST base address for ir_set 0 = 0x%llx", 2521 (unsigned long long)xhci->erst.erst_dma_addr); 2522 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2523 val_64 &= ERST_PTR_MASK; 2524 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2525 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2526 2527 /* Set the event ring dequeue address */ 2528 xhci_set_hc_event_deq(xhci); 2529 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2530 "Wrote ERST address to ir_set 0."); 2531 2532 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 2533 2534 /* 2535 * XXX: Might need to set the Interrupter Moderation Register to 2536 * something other than the default (~1ms minimum between interrupts). 2537 * See section 5.5.1.2. 2538 */ 2539 for (i = 0; i < MAX_HC_SLOTS; i++) 2540 xhci->devs[i] = NULL; 2541 for (i = 0; i < USB_MAXCHILDREN; i++) { 2542 xhci->usb2_rhub.bus_state.resume_done[i] = 0; 2543 xhci->usb3_rhub.bus_state.resume_done[i] = 0; 2544 /* Only the USB 2.0 completions will ever be used. */ 2545 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]); 2546 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]); 2547 } 2548 2549 if (scratchpad_alloc(xhci, flags)) 2550 goto fail; 2551 if (xhci_setup_port_arrays(xhci, flags)) 2552 goto fail; 2553 2554 /* Enable USB 3.0 device notifications for function remote wake, which 2555 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2556 * U3 (device suspend). 2557 */ 2558 temp = readl(&xhci->op_regs->dev_notification); 2559 temp &= ~DEV_NOTE_MASK; 2560 temp |= DEV_NOTE_FWAKE; 2561 writel(temp, &xhci->op_regs->dev_notification); 2562 2563 return 0; 2564 2565 fail: 2566 xhci_halt(xhci); 2567 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2568 xhci_mem_cleanup(xhci); 2569 return -ENOMEM; 2570 } 2571