xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision e9246c87)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					unsigned int cycle_state, gfp_t flags)
41 {
42 	struct xhci_segment *seg;
43 	dma_addr_t	dma;
44 	int		i;
45 
46 	seg = kzalloc(sizeof *seg, flags);
47 	if (!seg)
48 		return NULL;
49 
50 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 	if (!seg->trbs) {
52 		kfree(seg);
53 		return NULL;
54 	}
55 
56 	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg);
75 }
76 
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 				struct xhci_segment *first)
79 {
80 	struct xhci_segment *seg;
81 
82 	seg = first->next;
83 	while (seg != first) {
84 		struct xhci_segment *next = seg->next;
85 		xhci_segment_free(xhci, seg);
86 		seg = next;
87 	}
88 	xhci_segment_free(xhci, first);
89 }
90 
91 /*
92  * Make the prev segment point to the next segment.
93  *
94  * Change the last TRB in the prev segment to be a Link TRB which points to the
95  * DMA address of the next segment.  The caller needs to set any Link TRB
96  * related flags, such as End TRB, Toggle Cycle, and no snoop.
97  */
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99 		struct xhci_segment *next, enum xhci_ring_type type)
100 {
101 	u32 val;
102 
103 	if (!prev || !next)
104 		return;
105 	prev->next = next;
106 	if (type != TYPE_EVENT) {
107 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 			cpu_to_le64(next->dma);
109 
110 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112 		val &= ~TRB_TYPE_BITMASK;
113 		val |= TRB_TYPE(TRB_LINK);
114 		/* Always set the chain bit with 0.95 hardware */
115 		/* Set chain bit for isoc rings on AMD 0.96 host */
116 		if (xhci_link_trb_quirk(xhci) ||
117 				(type == TYPE_ISOC &&
118 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119 			val |= TRB_CHAIN;
120 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121 	}
122 }
123 
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 		struct xhci_segment *first, struct xhci_segment *last,
130 		unsigned int num_segs)
131 {
132 	struct xhci_segment *next;
133 
134 	if (!ring || !first || !last)
135 		return;
136 
137 	next = ring->enq_seg->next;
138 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139 	xhci_link_segments(xhci, last, next, ring->type);
140 	ring->num_segs += num_segs;
141 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142 
143 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145 			&= ~cpu_to_le32(LINK_TOGGLE);
146 		last->trbs[TRBS_PER_SEGMENT-1].link.control
147 			|= cpu_to_le32(LINK_TOGGLE);
148 		ring->last_seg = last;
149 	}
150 }
151 
152 /*
153  * We need a radix tree for mapping physical addresses of TRBs to which stream
154  * ID they belong to.  We need to do this because the host controller won't tell
155  * us which stream ring the TRB came from.  We could store the stream ID in an
156  * event data TRB, but that doesn't help us for the cancellation case, since the
157  * endpoint may stop before it reaches that event data TRB.
158  *
159  * The radix tree maps the upper portion of the TRB DMA address to a ring
160  * segment that has the same upper portion of DMA addresses.  For example, say I
161  * have segments of size 1KB, that are always 1KB aligned.  A segment may
162  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
163  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
164  * pass the radix tree a key to get the right stream ID:
165  *
166  *	0x10c90fff >> 10 = 0x43243
167  *	0x10c912c0 >> 10 = 0x43244
168  *	0x10c91400 >> 10 = 0x43245
169  *
170  * Obviously, only those TRBs with DMA addresses that are within the segment
171  * will make the radix tree return the stream ID for that ring.
172  *
173  * Caveats for the radix tree:
174  *
175  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
176  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
178  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
180  * extended systems (where the DMA address can be bigger than 32-bits),
181  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
182  */
183 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
184 		struct xhci_ring *ring,
185 		struct xhci_segment *seg,
186 		gfp_t mem_flags)
187 {
188 	unsigned long key;
189 	int ret;
190 
191 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
192 	/* Skip any segments that were already added. */
193 	if (radix_tree_lookup(trb_address_map, key))
194 		return 0;
195 
196 	ret = radix_tree_maybe_preload(mem_flags);
197 	if (ret)
198 		return ret;
199 	ret = radix_tree_insert(trb_address_map,
200 			key, ring);
201 	radix_tree_preload_end();
202 	return ret;
203 }
204 
205 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
206 		struct xhci_segment *seg)
207 {
208 	unsigned long key;
209 
210 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
211 	if (radix_tree_lookup(trb_address_map, key))
212 		radix_tree_delete(trb_address_map, key);
213 }
214 
215 static int xhci_update_stream_segment_mapping(
216 		struct radix_tree_root *trb_address_map,
217 		struct xhci_ring *ring,
218 		struct xhci_segment *first_seg,
219 		struct xhci_segment *last_seg,
220 		gfp_t mem_flags)
221 {
222 	struct xhci_segment *seg;
223 	struct xhci_segment *failed_seg;
224 	int ret;
225 
226 	if (WARN_ON_ONCE(trb_address_map == NULL))
227 		return 0;
228 
229 	seg = first_seg;
230 	do {
231 		ret = xhci_insert_segment_mapping(trb_address_map,
232 				ring, seg, mem_flags);
233 		if (ret)
234 			goto remove_streams;
235 		if (seg == last_seg)
236 			return 0;
237 		seg = seg->next;
238 	} while (seg != first_seg);
239 
240 	return 0;
241 
242 remove_streams:
243 	failed_seg = seg;
244 	seg = first_seg;
245 	do {
246 		xhci_remove_segment_mapping(trb_address_map, seg);
247 		if (seg == failed_seg)
248 			return ret;
249 		seg = seg->next;
250 	} while (seg != first_seg);
251 
252 	return ret;
253 }
254 
255 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256 {
257 	struct xhci_segment *seg;
258 
259 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
260 		return;
261 
262 	seg = ring->first_seg;
263 	do {
264 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
265 		seg = seg->next;
266 	} while (seg != ring->first_seg);
267 }
268 
269 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270 {
271 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
272 			ring->first_seg, ring->last_seg, mem_flags);
273 }
274 
275 /* XXX: Do we need the hcd structure in all these functions? */
276 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
277 {
278 	if (!ring)
279 		return;
280 
281 	if (ring->first_seg) {
282 		if (ring->type == TYPE_STREAM)
283 			xhci_remove_stream_mapping(ring);
284 		xhci_free_segments_for_ring(xhci, ring->first_seg);
285 	}
286 
287 	kfree(ring);
288 }
289 
290 static void xhci_initialize_ring_info(struct xhci_ring *ring,
291 					unsigned int cycle_state)
292 {
293 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
294 	ring->enqueue = ring->first_seg->trbs;
295 	ring->enq_seg = ring->first_seg;
296 	ring->dequeue = ring->enqueue;
297 	ring->deq_seg = ring->first_seg;
298 	/* The ring is initialized to 0. The producer must write 1 to the cycle
299 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
300 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
301 	 *
302 	 * New rings are initialized with cycle state equal to 1; if we are
303 	 * handling ring expansion, set the cycle state equal to the old ring.
304 	 */
305 	ring->cycle_state = cycle_state;
306 	/* Not necessary for new rings, but needed for re-initialized rings */
307 	ring->enq_updates = 0;
308 	ring->deq_updates = 0;
309 
310 	/*
311 	 * Each segment has a link TRB, and leave an extra TRB for SW
312 	 * accounting purpose
313 	 */
314 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 }
316 
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319 		struct xhci_segment **first, struct xhci_segment **last,
320 		unsigned int num_segs, unsigned int cycle_state,
321 		enum xhci_ring_type type, gfp_t flags)
322 {
323 	struct xhci_segment *prev;
324 
325 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
326 	if (!prev)
327 		return -ENOMEM;
328 	num_segs--;
329 
330 	*first = prev;
331 	while (num_segs > 0) {
332 		struct xhci_segment	*next;
333 
334 		next = xhci_segment_alloc(xhci, cycle_state, flags);
335 		if (!next) {
336 			prev = *first;
337 			while (prev) {
338 				next = prev->next;
339 				xhci_segment_free(xhci, prev);
340 				prev = next;
341 			}
342 			return -ENOMEM;
343 		}
344 		xhci_link_segments(xhci, prev, next, type);
345 
346 		prev = next;
347 		num_segs--;
348 	}
349 	xhci_link_segments(xhci, prev, *first, type);
350 	*last = prev;
351 
352 	return 0;
353 }
354 
355 /**
356  * Create a new ring with zero or more segments.
357  *
358  * Link each segment together into a ring.
359  * Set the end flag and the cycle toggle bit on the last segment.
360  * See section 4.9.1 and figures 15 and 16.
361  */
362 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363 		unsigned int num_segs, unsigned int cycle_state,
364 		enum xhci_ring_type type, gfp_t flags)
365 {
366 	struct xhci_ring	*ring;
367 	int ret;
368 
369 	ring = kzalloc(sizeof *(ring), flags);
370 	if (!ring)
371 		return NULL;
372 
373 	ring->num_segs = num_segs;
374 	INIT_LIST_HEAD(&ring->td_list);
375 	ring->type = type;
376 	if (num_segs == 0)
377 		return ring;
378 
379 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
380 			&ring->last_seg, num_segs, cycle_state, type, flags);
381 	if (ret)
382 		goto fail;
383 
384 	/* Only event ring does not use link TRB */
385 	if (type != TYPE_EVENT) {
386 		/* See section 4.9.2.1 and 6.4.4.1 */
387 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 			cpu_to_le32(LINK_TOGGLE);
389 	}
390 	xhci_initialize_ring_info(ring, cycle_state);
391 	return ring;
392 
393 fail:
394 	kfree(ring);
395 	return NULL;
396 }
397 
398 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
399 		struct xhci_virt_device *virt_dev,
400 		unsigned int ep_index)
401 {
402 	int rings_cached;
403 
404 	rings_cached = virt_dev->num_rings_cached;
405 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
406 		virt_dev->ring_cache[rings_cached] =
407 			virt_dev->eps[ep_index].ring;
408 		virt_dev->num_rings_cached++;
409 		xhci_dbg(xhci, "Cached old ring, "
410 				"%d ring%s cached\n",
411 				virt_dev->num_rings_cached,
412 				(virt_dev->num_rings_cached > 1) ? "s" : "");
413 	} else {
414 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415 		xhci_dbg(xhci, "Ring cache full (%d rings), "
416 				"freeing ring\n",
417 				virt_dev->num_rings_cached);
418 	}
419 	virt_dev->eps[ep_index].ring = NULL;
420 }
421 
422 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423  * pointers to the beginning of the ring.
424  */
425 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
426 			struct xhci_ring *ring, unsigned int cycle_state,
427 			enum xhci_ring_type type)
428 {
429 	struct xhci_segment	*seg = ring->first_seg;
430 	int i;
431 
432 	do {
433 		memset(seg->trbs, 0,
434 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
435 		if (cycle_state == 0) {
436 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
437 				seg->trbs[i].link.control |=
438 					cpu_to_le32(TRB_CYCLE);
439 		}
440 		/* All endpoint rings have link TRBs */
441 		xhci_link_segments(xhci, seg, seg->next, type);
442 		seg = seg->next;
443 	} while (seg != ring->first_seg);
444 	ring->type = type;
445 	xhci_initialize_ring_info(ring, cycle_state);
446 	/* td list should be empty since all URBs have been cancelled,
447 	 * but just in case...
448 	 */
449 	INIT_LIST_HEAD(&ring->td_list);
450 }
451 
452 /*
453  * Expand an existing ring.
454  * Look for a cached ring or allocate a new ring which has same segment numbers
455  * and link the two rings.
456  */
457 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
458 				unsigned int num_trbs, gfp_t flags)
459 {
460 	struct xhci_segment	*first;
461 	struct xhci_segment	*last;
462 	unsigned int		num_segs;
463 	unsigned int		num_segs_needed;
464 	int			ret;
465 
466 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
467 				(TRBS_PER_SEGMENT - 1);
468 
469 	/* Allocate number of segments we needed, or double the ring size */
470 	num_segs = ring->num_segs > num_segs_needed ?
471 			ring->num_segs : num_segs_needed;
472 
473 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
474 			num_segs, ring->cycle_state, ring->type, flags);
475 	if (ret)
476 		return -ENOMEM;
477 
478 	if (ring->type == TYPE_STREAM)
479 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
480 						ring, first, last, flags);
481 	if (ret) {
482 		struct xhci_segment *next;
483 		do {
484 			next = first->next;
485 			xhci_segment_free(xhci, first);
486 			if (first == last)
487 				break;
488 			first = next;
489 		} while (true);
490 		return ret;
491 	}
492 
493 	xhci_link_rings(xhci, ring, first, last, num_segs);
494 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
495 			"ring expansion succeed, now has %d segments",
496 			ring->num_segs);
497 
498 	return 0;
499 }
500 
501 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
502 
503 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
504 						    int type, gfp_t flags)
505 {
506 	struct xhci_container_ctx *ctx;
507 
508 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
509 		return NULL;
510 
511 	ctx = kzalloc(sizeof(*ctx), flags);
512 	if (!ctx)
513 		return NULL;
514 
515 	ctx->type = type;
516 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
517 	if (type == XHCI_CTX_TYPE_INPUT)
518 		ctx->size += CTX_SIZE(xhci->hcc_params);
519 
520 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
521 	if (!ctx->bytes) {
522 		kfree(ctx);
523 		return NULL;
524 	}
525 	memset(ctx->bytes, 0, ctx->size);
526 	return ctx;
527 }
528 
529 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
530 			     struct xhci_container_ctx *ctx)
531 {
532 	if (!ctx)
533 		return;
534 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
535 	kfree(ctx);
536 }
537 
538 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
539 					      struct xhci_container_ctx *ctx)
540 {
541 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
542 		return NULL;
543 
544 	return (struct xhci_input_control_ctx *)ctx->bytes;
545 }
546 
547 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
548 					struct xhci_container_ctx *ctx)
549 {
550 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
551 		return (struct xhci_slot_ctx *)ctx->bytes;
552 
553 	return (struct xhci_slot_ctx *)
554 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
555 }
556 
557 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
558 				    struct xhci_container_ctx *ctx,
559 				    unsigned int ep_index)
560 {
561 	/* increment ep index by offset of start of ep ctx array */
562 	ep_index++;
563 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
564 		ep_index++;
565 
566 	return (struct xhci_ep_ctx *)
567 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
568 }
569 
570 
571 /***************** Streams structures manipulation *************************/
572 
573 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
574 		unsigned int num_stream_ctxs,
575 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
576 {
577 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
578 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
579 
580 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
581 		dma_free_coherent(dev, size,
582 				stream_ctx, dma);
583 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
584 		return dma_pool_free(xhci->small_streams_pool,
585 				stream_ctx, dma);
586 	else
587 		return dma_pool_free(xhci->medium_streams_pool,
588 				stream_ctx, dma);
589 }
590 
591 /*
592  * The stream context array for each endpoint with bulk streams enabled can
593  * vary in size, based on:
594  *  - how many streams the endpoint supports,
595  *  - the maximum primary stream array size the host controller supports,
596  *  - and how many streams the device driver asks for.
597  *
598  * The stream context array must be a power of 2, and can be as small as
599  * 64 bytes or as large as 1MB.
600  */
601 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
602 		unsigned int num_stream_ctxs, dma_addr_t *dma,
603 		gfp_t mem_flags)
604 {
605 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
606 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
607 
608 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
609 		return dma_alloc_coherent(dev, size,
610 				dma, mem_flags);
611 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
612 		return dma_pool_alloc(xhci->small_streams_pool,
613 				mem_flags, dma);
614 	else
615 		return dma_pool_alloc(xhci->medium_streams_pool,
616 				mem_flags, dma);
617 }
618 
619 struct xhci_ring *xhci_dma_to_transfer_ring(
620 		struct xhci_virt_ep *ep,
621 		u64 address)
622 {
623 	if (ep->ep_state & EP_HAS_STREAMS)
624 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
625 				address >> TRB_SEGMENT_SHIFT);
626 	return ep->ring;
627 }
628 
629 struct xhci_ring *xhci_stream_id_to_ring(
630 		struct xhci_virt_device *dev,
631 		unsigned int ep_index,
632 		unsigned int stream_id)
633 {
634 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
635 
636 	if (stream_id == 0)
637 		return ep->ring;
638 	if (!ep->stream_info)
639 		return NULL;
640 
641 	if (stream_id > ep->stream_info->num_streams)
642 		return NULL;
643 	return ep->stream_info->stream_rings[stream_id];
644 }
645 
646 /*
647  * Change an endpoint's internal structure so it supports stream IDs.  The
648  * number of requested streams includes stream 0, which cannot be used by device
649  * drivers.
650  *
651  * The number of stream contexts in the stream context array may be bigger than
652  * the number of streams the driver wants to use.  This is because the number of
653  * stream context array entries must be a power of two.
654  */
655 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
656 		unsigned int num_stream_ctxs,
657 		unsigned int num_streams, gfp_t mem_flags)
658 {
659 	struct xhci_stream_info *stream_info;
660 	u32 cur_stream;
661 	struct xhci_ring *cur_ring;
662 	u64 addr;
663 	int ret;
664 
665 	xhci_dbg(xhci, "Allocating %u streams and %u "
666 			"stream context array entries.\n",
667 			num_streams, num_stream_ctxs);
668 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
669 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
670 		return NULL;
671 	}
672 	xhci->cmd_ring_reserved_trbs++;
673 
674 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
675 	if (!stream_info)
676 		goto cleanup_trbs;
677 
678 	stream_info->num_streams = num_streams;
679 	stream_info->num_stream_ctxs = num_stream_ctxs;
680 
681 	/* Initialize the array of virtual pointers to stream rings. */
682 	stream_info->stream_rings = kzalloc(
683 			sizeof(struct xhci_ring *)*num_streams,
684 			mem_flags);
685 	if (!stream_info->stream_rings)
686 		goto cleanup_info;
687 
688 	/* Initialize the array of DMA addresses for stream rings for the HW. */
689 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
690 			num_stream_ctxs, &stream_info->ctx_array_dma,
691 			mem_flags);
692 	if (!stream_info->stream_ctx_array)
693 		goto cleanup_ctx;
694 	memset(stream_info->stream_ctx_array, 0,
695 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
696 
697 	/* Allocate everything needed to free the stream rings later */
698 	stream_info->free_streams_command =
699 		xhci_alloc_command(xhci, true, true, mem_flags);
700 	if (!stream_info->free_streams_command)
701 		goto cleanup_ctx;
702 
703 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
704 
705 	/* Allocate rings for all the streams that the driver will use,
706 	 * and add their segment DMA addresses to the radix tree.
707 	 * Stream 0 is reserved.
708 	 */
709 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
710 		stream_info->stream_rings[cur_stream] =
711 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
712 		cur_ring = stream_info->stream_rings[cur_stream];
713 		if (!cur_ring)
714 			goto cleanup_rings;
715 		cur_ring->stream_id = cur_stream;
716 		cur_ring->trb_address_map = &stream_info->trb_address_map;
717 		/* Set deq ptr, cycle bit, and stream context type */
718 		addr = cur_ring->first_seg->dma |
719 			SCT_FOR_CTX(SCT_PRI_TR) |
720 			cur_ring->cycle_state;
721 		stream_info->stream_ctx_array[cur_stream].stream_ring =
722 			cpu_to_le64(addr);
723 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
724 				cur_stream, (unsigned long long) addr);
725 
726 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
727 		if (ret) {
728 			xhci_ring_free(xhci, cur_ring);
729 			stream_info->stream_rings[cur_stream] = NULL;
730 			goto cleanup_rings;
731 		}
732 	}
733 	/* Leave the other unused stream ring pointers in the stream context
734 	 * array initialized to zero.  This will cause the xHC to give us an
735 	 * error if the device asks for a stream ID we don't have setup (if it
736 	 * was any other way, the host controller would assume the ring is
737 	 * "empty" and wait forever for data to be queued to that stream ID).
738 	 */
739 
740 	return stream_info;
741 
742 cleanup_rings:
743 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
744 		cur_ring = stream_info->stream_rings[cur_stream];
745 		if (cur_ring) {
746 			xhci_ring_free(xhci, cur_ring);
747 			stream_info->stream_rings[cur_stream] = NULL;
748 		}
749 	}
750 	xhci_free_command(xhci, stream_info->free_streams_command);
751 cleanup_ctx:
752 	kfree(stream_info->stream_rings);
753 cleanup_info:
754 	kfree(stream_info);
755 cleanup_trbs:
756 	xhci->cmd_ring_reserved_trbs--;
757 	return NULL;
758 }
759 /*
760  * Sets the MaxPStreams field and the Linear Stream Array field.
761  * Sets the dequeue pointer to the stream context array.
762  */
763 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
764 		struct xhci_ep_ctx *ep_ctx,
765 		struct xhci_stream_info *stream_info)
766 {
767 	u32 max_primary_streams;
768 	/* MaxPStreams is the number of stream context array entries, not the
769 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
770 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
771 	 */
772 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
773 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
774 			"Setting number of stream ctx array entries to %u",
775 			1 << (max_primary_streams + 1));
776 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
777 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
778 				       | EP_HAS_LSA);
779 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
780 }
781 
782 /*
783  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785  * not at the beginning of the ring).
786  */
787 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
788 		struct xhci_ep_ctx *ep_ctx,
789 		struct xhci_virt_ep *ep)
790 {
791 	dma_addr_t addr;
792 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
793 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
794 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
795 }
796 
797 /* Frees all stream contexts associated with the endpoint,
798  *
799  * Caller should fix the endpoint context streams fields.
800  */
801 void xhci_free_stream_info(struct xhci_hcd *xhci,
802 		struct xhci_stream_info *stream_info)
803 {
804 	int cur_stream;
805 	struct xhci_ring *cur_ring;
806 
807 	if (!stream_info)
808 		return;
809 
810 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
811 			cur_stream++) {
812 		cur_ring = stream_info->stream_rings[cur_stream];
813 		if (cur_ring) {
814 			xhci_ring_free(xhci, cur_ring);
815 			stream_info->stream_rings[cur_stream] = NULL;
816 		}
817 	}
818 	xhci_free_command(xhci, stream_info->free_streams_command);
819 	xhci->cmd_ring_reserved_trbs--;
820 	if (stream_info->stream_ctx_array)
821 		xhci_free_stream_ctx(xhci,
822 				stream_info->num_stream_ctxs,
823 				stream_info->stream_ctx_array,
824 				stream_info->ctx_array_dma);
825 
826 	kfree(stream_info->stream_rings);
827 	kfree(stream_info);
828 }
829 
830 
831 /***************** Device context manipulation *************************/
832 
833 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
834 		struct xhci_virt_ep *ep)
835 {
836 	init_timer(&ep->stop_cmd_timer);
837 	ep->stop_cmd_timer.data = (unsigned long) ep;
838 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
839 	ep->xhci = xhci;
840 }
841 
842 static void xhci_free_tt_info(struct xhci_hcd *xhci,
843 		struct xhci_virt_device *virt_dev,
844 		int slot_id)
845 {
846 	struct list_head *tt_list_head;
847 	struct xhci_tt_bw_info *tt_info, *next;
848 	bool slot_found = false;
849 
850 	/* If the device never made it past the Set Address stage,
851 	 * it may not have the real_port set correctly.
852 	 */
853 	if (virt_dev->real_port == 0 ||
854 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
855 		xhci_dbg(xhci, "Bad real port.\n");
856 		return;
857 	}
858 
859 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
860 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
861 		/* Multi-TT hubs will have more than one entry */
862 		if (tt_info->slot_id == slot_id) {
863 			slot_found = true;
864 			list_del(&tt_info->tt_list);
865 			kfree(tt_info);
866 		} else if (slot_found) {
867 			break;
868 		}
869 	}
870 }
871 
872 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
873 		struct xhci_virt_device *virt_dev,
874 		struct usb_device *hdev,
875 		struct usb_tt *tt, gfp_t mem_flags)
876 {
877 	struct xhci_tt_bw_info		*tt_info;
878 	unsigned int			num_ports;
879 	int				i, j;
880 
881 	if (!tt->multi)
882 		num_ports = 1;
883 	else
884 		num_ports = hdev->maxchild;
885 
886 	for (i = 0; i < num_ports; i++, tt_info++) {
887 		struct xhci_interval_bw_table *bw_table;
888 
889 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
890 		if (!tt_info)
891 			goto free_tts;
892 		INIT_LIST_HEAD(&tt_info->tt_list);
893 		list_add(&tt_info->tt_list,
894 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
895 		tt_info->slot_id = virt_dev->udev->slot_id;
896 		if (tt->multi)
897 			tt_info->ttport = i+1;
898 		bw_table = &tt_info->bw_table;
899 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
900 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
901 	}
902 	return 0;
903 
904 free_tts:
905 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
906 	return -ENOMEM;
907 }
908 
909 
910 /* All the xhci_tds in the ring's TD list should be freed at this point.
911  * Should be called with xhci->lock held if there is any chance the TT lists
912  * will be manipulated by the configure endpoint, allocate device, or update
913  * hub functions while this function is removing the TT entries from the list.
914  */
915 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
916 {
917 	struct xhci_virt_device *dev;
918 	int i;
919 	int old_active_eps = 0;
920 
921 	/* Slot ID 0 is reserved */
922 	if (slot_id == 0 || !xhci->devs[slot_id])
923 		return;
924 
925 	dev = xhci->devs[slot_id];
926 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
927 	if (!dev)
928 		return;
929 
930 	if (dev->tt_info)
931 		old_active_eps = dev->tt_info->active_eps;
932 
933 	for (i = 0; i < 31; ++i) {
934 		if (dev->eps[i].ring)
935 			xhci_ring_free(xhci, dev->eps[i].ring);
936 		if (dev->eps[i].stream_info)
937 			xhci_free_stream_info(xhci,
938 					dev->eps[i].stream_info);
939 		/* Endpoints on the TT/root port lists should have been removed
940 		 * when usb_disable_device() was called for the device.
941 		 * We can't drop them anyway, because the udev might have gone
942 		 * away by this point, and we can't tell what speed it was.
943 		 */
944 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
945 			xhci_warn(xhci, "Slot %u endpoint %u "
946 					"not removed from BW list!\n",
947 					slot_id, i);
948 	}
949 	/* If this is a hub, free the TT(s) from the TT list */
950 	xhci_free_tt_info(xhci, dev, slot_id);
951 	/* If necessary, update the number of active TTs on this root port */
952 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
953 
954 	if (dev->ring_cache) {
955 		for (i = 0; i < dev->num_rings_cached; i++)
956 			xhci_ring_free(xhci, dev->ring_cache[i]);
957 		kfree(dev->ring_cache);
958 	}
959 
960 	if (dev->in_ctx)
961 		xhci_free_container_ctx(xhci, dev->in_ctx);
962 	if (dev->out_ctx)
963 		xhci_free_container_ctx(xhci, dev->out_ctx);
964 
965 	kfree(xhci->devs[slot_id]);
966 	xhci->devs[slot_id] = NULL;
967 }
968 
969 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
970 		struct usb_device *udev, gfp_t flags)
971 {
972 	struct xhci_virt_device *dev;
973 	int i;
974 
975 	/* Slot ID 0 is reserved */
976 	if (slot_id == 0 || xhci->devs[slot_id]) {
977 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
978 		return 0;
979 	}
980 
981 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
982 	if (!xhci->devs[slot_id])
983 		return 0;
984 	dev = xhci->devs[slot_id];
985 
986 	/* Allocate the (output) device context that will be used in the HC. */
987 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
988 	if (!dev->out_ctx)
989 		goto fail;
990 
991 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
992 			(unsigned long long)dev->out_ctx->dma);
993 
994 	/* Allocate the (input) device context for address device command */
995 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
996 	if (!dev->in_ctx)
997 		goto fail;
998 
999 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1000 			(unsigned long long)dev->in_ctx->dma);
1001 
1002 	/* Initialize the cancellation list and watchdog timers for each ep */
1003 	for (i = 0; i < 31; i++) {
1004 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1005 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007 	}
1008 
1009 	/* Allocate endpoint 0 ring */
1010 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1011 	if (!dev->eps[0].ring)
1012 		goto fail;
1013 
1014 	/* Allocate pointers to the ring cache */
1015 	dev->ring_cache = kzalloc(
1016 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1017 			flags);
1018 	if (!dev->ring_cache)
1019 		goto fail;
1020 	dev->num_rings_cached = 0;
1021 
1022 	init_completion(&dev->cmd_completion);
1023 	dev->udev = udev;
1024 
1025 	/* Point to output device context in dcbaa. */
1026 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1027 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1028 		 slot_id,
1029 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1030 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1031 
1032 	return 1;
1033 fail:
1034 	xhci_free_virt_device(xhci, slot_id);
1035 	return 0;
1036 }
1037 
1038 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1039 		struct usb_device *udev)
1040 {
1041 	struct xhci_virt_device *virt_dev;
1042 	struct xhci_ep_ctx	*ep0_ctx;
1043 	struct xhci_ring	*ep_ring;
1044 
1045 	virt_dev = xhci->devs[udev->slot_id];
1046 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1047 	ep_ring = virt_dev->eps[0].ring;
1048 	/*
1049 	 * FIXME we don't keep track of the dequeue pointer very well after a
1050 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1051 	 * host to our enqueue pointer.  This should only be called after a
1052 	 * configured device has reset, so all control transfers should have
1053 	 * been completed or cancelled before the reset.
1054 	 */
1055 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1056 							ep_ring->enqueue)
1057 				   | ep_ring->cycle_state);
1058 }
1059 
1060 /*
1061  * The xHCI roothub may have ports of differing speeds in any order in the port
1062  * status registers.  xhci->port_array provides an array of the port speed for
1063  * each offset into the port status registers.
1064  *
1065  * The xHCI hardware wants to know the roothub port number that the USB device
1066  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1067  * know is the index of that port under either the USB 2.0 or the USB 3.0
1068  * roothub, but that doesn't give us the real index into the HW port status
1069  * registers. Call xhci_find_raw_port_number() to get real index.
1070  */
1071 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1072 		struct usb_device *udev)
1073 {
1074 	struct usb_device *top_dev;
1075 	struct usb_hcd *hcd;
1076 
1077 	if (udev->speed == USB_SPEED_SUPER)
1078 		hcd = xhci->shared_hcd;
1079 	else
1080 		hcd = xhci->main_hcd;
1081 
1082 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1083 			top_dev = top_dev->parent)
1084 		/* Found device below root hub */;
1085 
1086 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1087 }
1088 
1089 /* Setup an xHCI virtual device for a Set Address command */
1090 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1091 {
1092 	struct xhci_virt_device *dev;
1093 	struct xhci_ep_ctx	*ep0_ctx;
1094 	struct xhci_slot_ctx    *slot_ctx;
1095 	u32			port_num;
1096 	u32			max_packets;
1097 	struct usb_device *top_dev;
1098 
1099 	dev = xhci->devs[udev->slot_id];
1100 	/* Slot ID 0 is reserved */
1101 	if (udev->slot_id == 0 || !dev) {
1102 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1103 				udev->slot_id);
1104 		return -EINVAL;
1105 	}
1106 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1107 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1108 
1109 	/* 3) Only the control endpoint is valid - one endpoint context */
1110 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1111 	switch (udev->speed) {
1112 	case USB_SPEED_SUPER:
1113 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1114 		max_packets = MAX_PACKET(512);
1115 		break;
1116 	case USB_SPEED_HIGH:
1117 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1118 		max_packets = MAX_PACKET(64);
1119 		break;
1120 	/* USB core guesses at a 64-byte max packet first for FS devices */
1121 	case USB_SPEED_FULL:
1122 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1123 		max_packets = MAX_PACKET(64);
1124 		break;
1125 	case USB_SPEED_LOW:
1126 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1127 		max_packets = MAX_PACKET(8);
1128 		break;
1129 	case USB_SPEED_WIRELESS:
1130 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1131 		return -EINVAL;
1132 		break;
1133 	default:
1134 		/* Speed was set earlier, this shouldn't happen. */
1135 		return -EINVAL;
1136 	}
1137 	/* Find the root hub port this device is under */
1138 	port_num = xhci_find_real_port_number(xhci, udev);
1139 	if (!port_num)
1140 		return -EINVAL;
1141 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1142 	/* Set the port number in the virtual_device to the faked port number */
1143 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1144 			top_dev = top_dev->parent)
1145 		/* Found device below root hub */;
1146 	dev->fake_port = top_dev->portnum;
1147 	dev->real_port = port_num;
1148 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1149 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1150 
1151 	/* Find the right bandwidth table that this device will be a part of.
1152 	 * If this is a full speed device attached directly to a root port (or a
1153 	 * decendent of one), it counts as a primary bandwidth domain, not a
1154 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1155 	 * will never be created for the HS root hub.
1156 	 */
1157 	if (!udev->tt || !udev->tt->hub->parent) {
1158 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1159 	} else {
1160 		struct xhci_root_port_bw_info *rh_bw;
1161 		struct xhci_tt_bw_info *tt_bw;
1162 
1163 		rh_bw = &xhci->rh_bw[port_num - 1];
1164 		/* Find the right TT. */
1165 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1166 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1167 				continue;
1168 
1169 			if (!dev->udev->tt->multi ||
1170 					(udev->tt->multi &&
1171 					 tt_bw->ttport == dev->udev->ttport)) {
1172 				dev->bw_table = &tt_bw->bw_table;
1173 				dev->tt_info = tt_bw;
1174 				break;
1175 			}
1176 		}
1177 		if (!dev->tt_info)
1178 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1179 	}
1180 
1181 	/* Is this a LS/FS device under an external HS hub? */
1182 	if (udev->tt && udev->tt->hub->parent) {
1183 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1184 						(udev->ttport << 8));
1185 		if (udev->tt->multi)
1186 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1187 	}
1188 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1189 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1190 
1191 	/* Step 4 - ring already allocated */
1192 	/* Step 5 */
1193 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1194 
1195 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1197 					 max_packets);
1198 
1199 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1200 				   dev->eps[0].ring->cycle_state);
1201 
1202 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203 
1204 	return 0;
1205 }
1206 
1207 /*
1208  * Convert interval expressed as 2^(bInterval - 1) == interval into
1209  * straight exponent value 2^n == interval.
1210  *
1211  */
1212 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213 		struct usb_host_endpoint *ep)
1214 {
1215 	unsigned int interval;
1216 
1217 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218 	if (interval != ep->desc.bInterval - 1)
1219 		dev_warn(&udev->dev,
1220 			 "ep %#x - rounding interval to %d %sframes\n",
1221 			 ep->desc.bEndpointAddress,
1222 			 1 << interval,
1223 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1224 
1225 	if (udev->speed == USB_SPEED_FULL) {
1226 		/*
1227 		 * Full speed isoc endpoints specify interval in frames,
1228 		 * not microframes. We are using microframes everywhere,
1229 		 * so adjust accordingly.
1230 		 */
1231 		interval += 3;	/* 1 frame = 2^3 uframes */
1232 	}
1233 
1234 	return interval;
1235 }
1236 
1237 /*
1238  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239  * microframes, rounded down to nearest power of 2.
1240  */
1241 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1243 		unsigned int min_exponent, unsigned int max_exponent)
1244 {
1245 	unsigned int interval;
1246 
1247 	interval = fls(desc_interval) - 1;
1248 	interval = clamp_val(interval, min_exponent, max_exponent);
1249 	if ((1 << interval) != desc_interval)
1250 		dev_warn(&udev->dev,
1251 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252 			 ep->desc.bEndpointAddress,
1253 			 1 << interval,
1254 			 desc_interval);
1255 
1256 	return interval;
1257 }
1258 
1259 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260 		struct usb_host_endpoint *ep)
1261 {
1262 	if (ep->desc.bInterval == 0)
1263 		return 0;
1264 	return xhci_microframes_to_exponent(udev, ep,
1265 			ep->desc.bInterval, 0, 15);
1266 }
1267 
1268 
1269 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270 		struct usb_host_endpoint *ep)
1271 {
1272 	return xhci_microframes_to_exponent(udev, ep,
1273 			ep->desc.bInterval * 8, 3, 10);
1274 }
1275 
1276 /* Return the polling or NAK interval.
1277  *
1278  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1279  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280  *
1281  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282  * is set to 0.
1283  */
1284 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285 		struct usb_host_endpoint *ep)
1286 {
1287 	unsigned int interval = 0;
1288 
1289 	switch (udev->speed) {
1290 	case USB_SPEED_HIGH:
1291 		/* Max NAK rate */
1292 		if (usb_endpoint_xfer_control(&ep->desc) ||
1293 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1294 			interval = xhci_parse_microframe_interval(udev, ep);
1295 			break;
1296 		}
1297 		/* Fall through - SS and HS isoc/int have same decoding */
1298 
1299 	case USB_SPEED_SUPER:
1300 		if (usb_endpoint_xfer_int(&ep->desc) ||
1301 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1302 			interval = xhci_parse_exponent_interval(udev, ep);
1303 		}
1304 		break;
1305 
1306 	case USB_SPEED_FULL:
1307 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1308 			interval = xhci_parse_exponent_interval(udev, ep);
1309 			break;
1310 		}
1311 		/*
1312 		 * Fall through for interrupt endpoint interval decoding
1313 		 * since it uses the same rules as low speed interrupt
1314 		 * endpoints.
1315 		 */
1316 
1317 	case USB_SPEED_LOW:
1318 		if (usb_endpoint_xfer_int(&ep->desc) ||
1319 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1320 
1321 			interval = xhci_parse_frame_interval(udev, ep);
1322 		}
1323 		break;
1324 
1325 	default:
1326 		BUG();
1327 	}
1328 	return EP_INTERVAL(interval);
1329 }
1330 
1331 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1332  * High speed endpoint descriptors can define "the number of additional
1333  * transaction opportunities per microframe", but that goes in the Max Burst
1334  * endpoint context field.
1335  */
1336 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1337 		struct usb_host_endpoint *ep)
1338 {
1339 	if (udev->speed != USB_SPEED_SUPER ||
1340 			!usb_endpoint_xfer_isoc(&ep->desc))
1341 		return 0;
1342 	return ep->ss_ep_comp.bmAttributes;
1343 }
1344 
1345 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1346 		struct usb_host_endpoint *ep)
1347 {
1348 	int in;
1349 	u32 type;
1350 
1351 	in = usb_endpoint_dir_in(&ep->desc);
1352 	if (usb_endpoint_xfer_control(&ep->desc)) {
1353 		type = EP_TYPE(CTRL_EP);
1354 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1355 		if (in)
1356 			type = EP_TYPE(BULK_IN_EP);
1357 		else
1358 			type = EP_TYPE(BULK_OUT_EP);
1359 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1360 		if (in)
1361 			type = EP_TYPE(ISOC_IN_EP);
1362 		else
1363 			type = EP_TYPE(ISOC_OUT_EP);
1364 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1365 		if (in)
1366 			type = EP_TYPE(INT_IN_EP);
1367 		else
1368 			type = EP_TYPE(INT_OUT_EP);
1369 	} else {
1370 		type = 0;
1371 	}
1372 	return type;
1373 }
1374 
1375 /* Return the maximum endpoint service interval time (ESIT) payload.
1376  * Basically, this is the maxpacket size, multiplied by the burst size
1377  * and mult size.
1378  */
1379 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1380 		struct usb_device *udev,
1381 		struct usb_host_endpoint *ep)
1382 {
1383 	int max_burst;
1384 	int max_packet;
1385 
1386 	/* Only applies for interrupt or isochronous endpoints */
1387 	if (usb_endpoint_xfer_control(&ep->desc) ||
1388 			usb_endpoint_xfer_bulk(&ep->desc))
1389 		return 0;
1390 
1391 	if (udev->speed == USB_SPEED_SUPER)
1392 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1393 
1394 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1395 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1396 	/* A 0 in max burst means 1 transfer per ESIT */
1397 	return max_packet * (max_burst + 1);
1398 }
1399 
1400 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1401  * Drivers will have to call usb_alloc_streams() to do that.
1402  */
1403 int xhci_endpoint_init(struct xhci_hcd *xhci,
1404 		struct xhci_virt_device *virt_dev,
1405 		struct usb_device *udev,
1406 		struct usb_host_endpoint *ep,
1407 		gfp_t mem_flags)
1408 {
1409 	unsigned int ep_index;
1410 	struct xhci_ep_ctx *ep_ctx;
1411 	struct xhci_ring *ep_ring;
1412 	unsigned int max_packet;
1413 	unsigned int max_burst;
1414 	enum xhci_ring_type type;
1415 	u32 max_esit_payload;
1416 	u32 endpoint_type;
1417 
1418 	ep_index = xhci_get_endpoint_index(&ep->desc);
1419 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1420 
1421 	endpoint_type = xhci_get_endpoint_type(udev, ep);
1422 	if (!endpoint_type)
1423 		return -EINVAL;
1424 	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1425 
1426 	type = usb_endpoint_type(&ep->desc);
1427 	/* Set up the endpoint ring */
1428 	virt_dev->eps[ep_index].new_ring =
1429 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1430 	if (!virt_dev->eps[ep_index].new_ring) {
1431 		/* Attempt to use the ring cache */
1432 		if (virt_dev->num_rings_cached == 0)
1433 			return -ENOMEM;
1434 		virt_dev->eps[ep_index].new_ring =
1435 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1436 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1437 		virt_dev->num_rings_cached--;
1438 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1439 					1, type);
1440 	}
1441 	virt_dev->eps[ep_index].skip = false;
1442 	ep_ring = virt_dev->eps[ep_index].new_ring;
1443 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1444 
1445 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1446 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1447 
1448 	/* FIXME dig Mult and streams info out of ep companion desc */
1449 
1450 	/* Allow 3 retries for everything but isoc;
1451 	 * CErr shall be set to 0 for Isoch endpoints.
1452 	 */
1453 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1454 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1455 	else
1456 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1457 
1458 	/* Set the max packet size and max burst */
1459 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1460 	max_burst = 0;
1461 	switch (udev->speed) {
1462 	case USB_SPEED_SUPER:
1463 		/* dig out max burst from ep companion desc */
1464 		max_burst = ep->ss_ep_comp.bMaxBurst;
1465 		break;
1466 	case USB_SPEED_HIGH:
1467 		/* Some devices get this wrong */
1468 		if (usb_endpoint_xfer_bulk(&ep->desc))
1469 			max_packet = 512;
1470 		/* bits 11:12 specify the number of additional transaction
1471 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1472 		 */
1473 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1474 				usb_endpoint_xfer_int(&ep->desc)) {
1475 			max_burst = (usb_endpoint_maxp(&ep->desc)
1476 				     & 0x1800) >> 11;
1477 		}
1478 		break;
1479 	case USB_SPEED_FULL:
1480 	case USB_SPEED_LOW:
1481 		break;
1482 	default:
1483 		BUG();
1484 	}
1485 	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1486 			MAX_BURST(max_burst));
1487 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1488 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1489 
1490 	/*
1491 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1492 	 * endpoints, as the driver gives us no clue how big each scatter gather
1493 	 * list entry (or buffer) is going to be.
1494 	 *
1495 	 * For isochronous and interrupt endpoints, we set it to the max
1496 	 * available, until we have new API in the USB core to allow drivers to
1497 	 * declare how much bandwidth they actually need.
1498 	 *
1499 	 * Normally, it would be calculated by taking the total of the buffer
1500 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1501 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1502 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1503 	 * transfers, we're basically dividing by 1.
1504 	 *
1505 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1506 	 * be set to 8 for control endpoints.
1507 	 */
1508 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1509 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1510 	else
1511 		ep_ctx->tx_info |=
1512 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1513 
1514 	/* FIXME Debug endpoint context */
1515 	return 0;
1516 }
1517 
1518 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1519 		struct xhci_virt_device *virt_dev,
1520 		struct usb_host_endpoint *ep)
1521 {
1522 	unsigned int ep_index;
1523 	struct xhci_ep_ctx *ep_ctx;
1524 
1525 	ep_index = xhci_get_endpoint_index(&ep->desc);
1526 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1527 
1528 	ep_ctx->ep_info = 0;
1529 	ep_ctx->ep_info2 = 0;
1530 	ep_ctx->deq = 0;
1531 	ep_ctx->tx_info = 0;
1532 	/* Don't free the endpoint ring until the set interface or configuration
1533 	 * request succeeds.
1534 	 */
1535 }
1536 
1537 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1538 {
1539 	bw_info->ep_interval = 0;
1540 	bw_info->mult = 0;
1541 	bw_info->num_packets = 0;
1542 	bw_info->max_packet_size = 0;
1543 	bw_info->type = 0;
1544 	bw_info->max_esit_payload = 0;
1545 }
1546 
1547 void xhci_update_bw_info(struct xhci_hcd *xhci,
1548 		struct xhci_container_ctx *in_ctx,
1549 		struct xhci_input_control_ctx *ctrl_ctx,
1550 		struct xhci_virt_device *virt_dev)
1551 {
1552 	struct xhci_bw_info *bw_info;
1553 	struct xhci_ep_ctx *ep_ctx;
1554 	unsigned int ep_type;
1555 	int i;
1556 
1557 	for (i = 1; i < 31; ++i) {
1558 		bw_info = &virt_dev->eps[i].bw_info;
1559 
1560 		/* We can't tell what endpoint type is being dropped, but
1561 		 * unconditionally clearing the bandwidth info for non-periodic
1562 		 * endpoints should be harmless because the info will never be
1563 		 * set in the first place.
1564 		 */
1565 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1566 			/* Dropped endpoint */
1567 			xhci_clear_endpoint_bw_info(bw_info);
1568 			continue;
1569 		}
1570 
1571 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1572 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1573 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1574 
1575 			/* Ignore non-periodic endpoints */
1576 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1577 					ep_type != ISOC_IN_EP &&
1578 					ep_type != INT_IN_EP)
1579 				continue;
1580 
1581 			/* Added or changed endpoint */
1582 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1583 					le32_to_cpu(ep_ctx->ep_info));
1584 			/* Number of packets and mult are zero-based in the
1585 			 * input context, but we want one-based for the
1586 			 * interval table.
1587 			 */
1588 			bw_info->mult = CTX_TO_EP_MULT(
1589 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1590 			bw_info->num_packets = CTX_TO_MAX_BURST(
1591 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1592 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1593 					le32_to_cpu(ep_ctx->ep_info2));
1594 			bw_info->type = ep_type;
1595 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1596 					le32_to_cpu(ep_ctx->tx_info));
1597 		}
1598 	}
1599 }
1600 
1601 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1602  * Useful when you want to change one particular aspect of the endpoint and then
1603  * issue a configure endpoint command.
1604  */
1605 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1606 		struct xhci_container_ctx *in_ctx,
1607 		struct xhci_container_ctx *out_ctx,
1608 		unsigned int ep_index)
1609 {
1610 	struct xhci_ep_ctx *out_ep_ctx;
1611 	struct xhci_ep_ctx *in_ep_ctx;
1612 
1613 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1614 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1615 
1616 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1617 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1618 	in_ep_ctx->deq = out_ep_ctx->deq;
1619 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1620 }
1621 
1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623  * Useful when you want to change one particular aspect of the endpoint and then
1624  * issue a configure endpoint command.  Only the context entries field matters,
1625  * but we'll copy the whole thing anyway.
1626  */
1627 void xhci_slot_copy(struct xhci_hcd *xhci,
1628 		struct xhci_container_ctx *in_ctx,
1629 		struct xhci_container_ctx *out_ctx)
1630 {
1631 	struct xhci_slot_ctx *in_slot_ctx;
1632 	struct xhci_slot_ctx *out_slot_ctx;
1633 
1634 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1635 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1636 
1637 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1638 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1639 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1640 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1641 }
1642 
1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1645 {
1646 	int i;
1647 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1648 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1649 
1650 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1651 			"Allocating %d scratchpad buffers", num_sp);
1652 
1653 	if (!num_sp)
1654 		return 0;
1655 
1656 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1657 	if (!xhci->scratchpad)
1658 		goto fail_sp;
1659 
1660 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1661 				     num_sp * sizeof(u64),
1662 				     &xhci->scratchpad->sp_dma, flags);
1663 	if (!xhci->scratchpad->sp_array)
1664 		goto fail_sp2;
1665 
1666 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1667 	if (!xhci->scratchpad->sp_buffers)
1668 		goto fail_sp3;
1669 
1670 	xhci->scratchpad->sp_dma_buffers =
1671 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1672 
1673 	if (!xhci->scratchpad->sp_dma_buffers)
1674 		goto fail_sp4;
1675 
1676 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1677 	for (i = 0; i < num_sp; i++) {
1678 		dma_addr_t dma;
1679 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1680 				flags);
1681 		if (!buf)
1682 			goto fail_sp5;
1683 
1684 		xhci->scratchpad->sp_array[i] = dma;
1685 		xhci->scratchpad->sp_buffers[i] = buf;
1686 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1687 	}
1688 
1689 	return 0;
1690 
1691  fail_sp5:
1692 	for (i = i - 1; i >= 0; i--) {
1693 		dma_free_coherent(dev, xhci->page_size,
1694 				    xhci->scratchpad->sp_buffers[i],
1695 				    xhci->scratchpad->sp_dma_buffers[i]);
1696 	}
1697 	kfree(xhci->scratchpad->sp_dma_buffers);
1698 
1699  fail_sp4:
1700 	kfree(xhci->scratchpad->sp_buffers);
1701 
1702  fail_sp3:
1703 	dma_free_coherent(dev, num_sp * sizeof(u64),
1704 			    xhci->scratchpad->sp_array,
1705 			    xhci->scratchpad->sp_dma);
1706 
1707  fail_sp2:
1708 	kfree(xhci->scratchpad);
1709 	xhci->scratchpad = NULL;
1710 
1711  fail_sp:
1712 	return -ENOMEM;
1713 }
1714 
1715 static void scratchpad_free(struct xhci_hcd *xhci)
1716 {
1717 	int num_sp;
1718 	int i;
1719 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1720 
1721 	if (!xhci->scratchpad)
1722 		return;
1723 
1724 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1725 
1726 	for (i = 0; i < num_sp; i++) {
1727 		dma_free_coherent(dev, xhci->page_size,
1728 				    xhci->scratchpad->sp_buffers[i],
1729 				    xhci->scratchpad->sp_dma_buffers[i]);
1730 	}
1731 	kfree(xhci->scratchpad->sp_dma_buffers);
1732 	kfree(xhci->scratchpad->sp_buffers);
1733 	dma_free_coherent(dev, num_sp * sizeof(u64),
1734 			    xhci->scratchpad->sp_array,
1735 			    xhci->scratchpad->sp_dma);
1736 	kfree(xhci->scratchpad);
1737 	xhci->scratchpad = NULL;
1738 }
1739 
1740 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1741 		bool allocate_in_ctx, bool allocate_completion,
1742 		gfp_t mem_flags)
1743 {
1744 	struct xhci_command *command;
1745 
1746 	command = kzalloc(sizeof(*command), mem_flags);
1747 	if (!command)
1748 		return NULL;
1749 
1750 	if (allocate_in_ctx) {
1751 		command->in_ctx =
1752 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753 					mem_flags);
1754 		if (!command->in_ctx) {
1755 			kfree(command);
1756 			return NULL;
1757 		}
1758 	}
1759 
1760 	if (allocate_completion) {
1761 		command->completion =
1762 			kzalloc(sizeof(struct completion), mem_flags);
1763 		if (!command->completion) {
1764 			xhci_free_container_ctx(xhci, command->in_ctx);
1765 			kfree(command);
1766 			return NULL;
1767 		}
1768 		init_completion(command->completion);
1769 	}
1770 
1771 	command->status = 0;
1772 	INIT_LIST_HEAD(&command->cmd_list);
1773 	return command;
1774 }
1775 
1776 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1777 {
1778 	if (urb_priv) {
1779 		kfree(urb_priv->td[0]);
1780 		kfree(urb_priv);
1781 	}
1782 }
1783 
1784 void xhci_free_command(struct xhci_hcd *xhci,
1785 		struct xhci_command *command)
1786 {
1787 	xhci_free_container_ctx(xhci,
1788 			command->in_ctx);
1789 	kfree(command->completion);
1790 	kfree(command);
1791 }
1792 
1793 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1794 {
1795 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1796 	int size;
1797 	int i, j, num_ports;
1798 
1799 	del_timer_sync(&xhci->cmd_timer);
1800 
1801 	/* Free the Event Ring Segment Table and the actual Event Ring */
1802 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803 	if (xhci->erst.entries)
1804 		dma_free_coherent(dev, size,
1805 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1806 	xhci->erst.entries = NULL;
1807 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808 	if (xhci->event_ring)
1809 		xhci_ring_free(xhci, xhci->event_ring);
1810 	xhci->event_ring = NULL;
1811 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812 
1813 	if (xhci->lpm_command)
1814 		xhci_free_command(xhci, xhci->lpm_command);
1815 	xhci->lpm_command = NULL;
1816 	if (xhci->cmd_ring)
1817 		xhci_ring_free(xhci, xhci->cmd_ring);
1818 	xhci->cmd_ring = NULL;
1819 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1820 	xhci_cleanup_command_queue(xhci);
1821 
1822 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1823 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1824 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1825 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1826 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1827 			while (!list_empty(ep))
1828 				list_del_init(ep->next);
1829 		}
1830 	}
1831 
1832 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1833 		xhci_free_virt_device(xhci, i);
1834 
1835 	if (xhci->segment_pool)
1836 		dma_pool_destroy(xhci->segment_pool);
1837 	xhci->segment_pool = NULL;
1838 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1839 
1840 	if (xhci->device_pool)
1841 		dma_pool_destroy(xhci->device_pool);
1842 	xhci->device_pool = NULL;
1843 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1844 
1845 	if (xhci->small_streams_pool)
1846 		dma_pool_destroy(xhci->small_streams_pool);
1847 	xhci->small_streams_pool = NULL;
1848 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1849 			"Freed small stream array pool");
1850 
1851 	if (xhci->medium_streams_pool)
1852 		dma_pool_destroy(xhci->medium_streams_pool);
1853 	xhci->medium_streams_pool = NULL;
1854 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1855 			"Freed medium stream array pool");
1856 
1857 	if (xhci->dcbaa)
1858 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1859 				xhci->dcbaa, xhci->dcbaa->dma);
1860 	xhci->dcbaa = NULL;
1861 
1862 	scratchpad_free(xhci);
1863 
1864 	if (!xhci->rh_bw)
1865 		goto no_bw;
1866 
1867 	for (i = 0; i < num_ports; i++) {
1868 		struct xhci_tt_bw_info *tt, *n;
1869 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1870 			list_del(&tt->tt_list);
1871 			kfree(tt);
1872 		}
1873 	}
1874 
1875 no_bw:
1876 	xhci->cmd_ring_reserved_trbs = 0;
1877 	xhci->num_usb2_ports = 0;
1878 	xhci->num_usb3_ports = 0;
1879 	xhci->num_active_eps = 0;
1880 	kfree(xhci->usb2_ports);
1881 	kfree(xhci->usb3_ports);
1882 	kfree(xhci->port_array);
1883 	kfree(xhci->rh_bw);
1884 	kfree(xhci->ext_caps);
1885 
1886 	xhci->page_size = 0;
1887 	xhci->page_shift = 0;
1888 	xhci->bus_state[0].bus_suspended = 0;
1889 	xhci->bus_state[1].bus_suspended = 0;
1890 }
1891 
1892 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1893 		struct xhci_segment *input_seg,
1894 		union xhci_trb *start_trb,
1895 		union xhci_trb *end_trb,
1896 		dma_addr_t input_dma,
1897 		struct xhci_segment *result_seg,
1898 		char *test_name, int test_number)
1899 {
1900 	unsigned long long start_dma;
1901 	unsigned long long end_dma;
1902 	struct xhci_segment *seg;
1903 
1904 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1905 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1906 
1907 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1908 	if (seg != result_seg) {
1909 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1910 				test_name, test_number);
1911 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1912 				"input DMA 0x%llx\n",
1913 				input_seg,
1914 				(unsigned long long) input_dma);
1915 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1916 				"ending TRB %p (0x%llx DMA)\n",
1917 				start_trb, start_dma,
1918 				end_trb, end_dma);
1919 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1920 				result_seg, seg);
1921 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1922 			  true);
1923 		return -1;
1924 	}
1925 	return 0;
1926 }
1927 
1928 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1929 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1930 {
1931 	struct {
1932 		dma_addr_t		input_dma;
1933 		struct xhci_segment	*result_seg;
1934 	} simple_test_vector [] = {
1935 		/* A zeroed DMA field should fail */
1936 		{ 0, NULL },
1937 		/* One TRB before the ring start should fail */
1938 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1939 		/* One byte before the ring start should fail */
1940 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1941 		/* Starting TRB should succeed */
1942 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1943 		/* Ending TRB should succeed */
1944 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1945 			xhci->event_ring->first_seg },
1946 		/* One byte after the ring end should fail */
1947 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1948 		/* One TRB after the ring end should fail */
1949 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1950 		/* An address of all ones should fail */
1951 		{ (dma_addr_t) (~0), NULL },
1952 	};
1953 	struct {
1954 		struct xhci_segment	*input_seg;
1955 		union xhci_trb		*start_trb;
1956 		union xhci_trb		*end_trb;
1957 		dma_addr_t		input_dma;
1958 		struct xhci_segment	*result_seg;
1959 	} complex_test_vector [] = {
1960 		/* Test feeding a valid DMA address from a different ring */
1961 		{	.input_seg = xhci->event_ring->first_seg,
1962 			.start_trb = xhci->event_ring->first_seg->trbs,
1963 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1964 			.input_dma = xhci->cmd_ring->first_seg->dma,
1965 			.result_seg = NULL,
1966 		},
1967 		/* Test feeding a valid end TRB from a different ring */
1968 		{	.input_seg = xhci->event_ring->first_seg,
1969 			.start_trb = xhci->event_ring->first_seg->trbs,
1970 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1971 			.input_dma = xhci->cmd_ring->first_seg->dma,
1972 			.result_seg = NULL,
1973 		},
1974 		/* Test feeding a valid start and end TRB from a different ring */
1975 		{	.input_seg = xhci->event_ring->first_seg,
1976 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1977 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1978 			.input_dma = xhci->cmd_ring->first_seg->dma,
1979 			.result_seg = NULL,
1980 		},
1981 		/* TRB in this ring, but after this TD */
1982 		{	.input_seg = xhci->event_ring->first_seg,
1983 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1984 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1985 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1986 			.result_seg = NULL,
1987 		},
1988 		/* TRB in this ring, but before this TD */
1989 		{	.input_seg = xhci->event_ring->first_seg,
1990 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1991 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1992 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1993 			.result_seg = NULL,
1994 		},
1995 		/* TRB in this ring, but after this wrapped TD */
1996 		{	.input_seg = xhci->event_ring->first_seg,
1997 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1998 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1999 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2000 			.result_seg = NULL,
2001 		},
2002 		/* TRB in this ring, but before this wrapped TD */
2003 		{	.input_seg = xhci->event_ring->first_seg,
2004 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2005 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2006 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2007 			.result_seg = NULL,
2008 		},
2009 		/* TRB not in this ring, and we have a wrapped TD */
2010 		{	.input_seg = xhci->event_ring->first_seg,
2011 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2012 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2013 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2014 			.result_seg = NULL,
2015 		},
2016 	};
2017 
2018 	unsigned int num_tests;
2019 	int i, ret;
2020 
2021 	num_tests = ARRAY_SIZE(simple_test_vector);
2022 	for (i = 0; i < num_tests; i++) {
2023 		ret = xhci_test_trb_in_td(xhci,
2024 				xhci->event_ring->first_seg,
2025 				xhci->event_ring->first_seg->trbs,
2026 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027 				simple_test_vector[i].input_dma,
2028 				simple_test_vector[i].result_seg,
2029 				"Simple", i);
2030 		if (ret < 0)
2031 			return ret;
2032 	}
2033 
2034 	num_tests = ARRAY_SIZE(complex_test_vector);
2035 	for (i = 0; i < num_tests; i++) {
2036 		ret = xhci_test_trb_in_td(xhci,
2037 				complex_test_vector[i].input_seg,
2038 				complex_test_vector[i].start_trb,
2039 				complex_test_vector[i].end_trb,
2040 				complex_test_vector[i].input_dma,
2041 				complex_test_vector[i].result_seg,
2042 				"Complex", i);
2043 		if (ret < 0)
2044 			return ret;
2045 	}
2046 	xhci_dbg(xhci, "TRB math tests passed.\n");
2047 	return 0;
2048 }
2049 
2050 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2051 {
2052 	u64 temp;
2053 	dma_addr_t deq;
2054 
2055 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2056 			xhci->event_ring->dequeue);
2057 	if (deq == 0 && !in_interrupt())
2058 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2059 				"dequeue ptr.\n");
2060 	/* Update HC event ring dequeue pointer */
2061 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2062 	temp &= ERST_PTR_MASK;
2063 	/* Don't clear the EHB bit (which is RW1C) because
2064 	 * there might be more events to service.
2065 	 */
2066 	temp &= ~ERST_EHB;
2067 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2068 			"// Write event ring dequeue pointer, "
2069 			"preserving EHB bit");
2070 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2071 			&xhci->ir_set->erst_dequeue);
2072 }
2073 
2074 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2075 		__le32 __iomem *addr, u8 major_revision, int max_caps)
2076 {
2077 	u32 temp, port_offset, port_count;
2078 	int i;
2079 
2080 	if (major_revision > 0x03) {
2081 		xhci_warn(xhci, "Ignoring unknown port speed, "
2082 				"Ext Cap %p, revision = 0x%x\n",
2083 				addr, major_revision);
2084 		/* Ignoring port protocol we can't understand. FIXME */
2085 		return;
2086 	}
2087 
2088 	/* Port offset and count in the third dword, see section 7.2 */
2089 	temp = readl(addr + 2);
2090 	port_offset = XHCI_EXT_PORT_OFF(temp);
2091 	port_count = XHCI_EXT_PORT_COUNT(temp);
2092 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2093 			"Ext Cap %p, port offset = %u, "
2094 			"count = %u, revision = 0x%x",
2095 			addr, port_offset, port_count, major_revision);
2096 	/* Port count includes the current port offset */
2097 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2098 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2099 		return;
2100 
2101 	/* cache usb2 port capabilities */
2102 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2103 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2104 
2105 	/* Check the host's USB2 LPM capability */
2106 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2107 			(temp & XHCI_L1C)) {
2108 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2109 				"xHCI 0.96: support USB2 software lpm");
2110 		xhci->sw_lpm_support = 1;
2111 	}
2112 
2113 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2114 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2115 				"xHCI 1.0: support USB2 software lpm");
2116 		xhci->sw_lpm_support = 1;
2117 		if (temp & XHCI_HLC) {
2118 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2119 					"xHCI 1.0: support USB2 hardware lpm");
2120 			xhci->hw_lpm_support = 1;
2121 		}
2122 	}
2123 
2124 	port_offset--;
2125 	for (i = port_offset; i < (port_offset + port_count); i++) {
2126 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2127 		if (xhci->port_array[i] != 0) {
2128 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2129 					" port %u\n", addr, i);
2130 			xhci_warn(xhci, "Port was marked as USB %u, "
2131 					"duplicated as USB %u\n",
2132 					xhci->port_array[i], major_revision);
2133 			/* Only adjust the roothub port counts if we haven't
2134 			 * found a similar duplicate.
2135 			 */
2136 			if (xhci->port_array[i] != major_revision &&
2137 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2138 				if (xhci->port_array[i] == 0x03)
2139 					xhci->num_usb3_ports--;
2140 				else
2141 					xhci->num_usb2_ports--;
2142 				xhci->port_array[i] = DUPLICATE_ENTRY;
2143 			}
2144 			/* FIXME: Should we disable the port? */
2145 			continue;
2146 		}
2147 		xhci->port_array[i] = major_revision;
2148 		if (major_revision == 0x03)
2149 			xhci->num_usb3_ports++;
2150 		else
2151 			xhci->num_usb2_ports++;
2152 	}
2153 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2154 }
2155 
2156 /*
2157  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2158  * specify what speeds each port is supposed to be.  We can't count on the port
2159  * speed bits in the PORTSC register being correct until a device is connected,
2160  * but we need to set up the two fake roothubs with the correct number of USB
2161  * 3.0 and USB 2.0 ports at host controller initialization time.
2162  */
2163 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2164 {
2165 	__le32 __iomem *addr, *tmp_addr;
2166 	u32 offset, tmp_offset;
2167 	unsigned int num_ports;
2168 	int i, j, port_index;
2169 	int cap_count = 0;
2170 
2171 	addr = &xhci->cap_regs->hcc_params;
2172 	offset = XHCI_HCC_EXT_CAPS(readl(addr));
2173 	if (offset == 0) {
2174 		xhci_err(xhci, "No Extended Capability registers, "
2175 				"unable to set up roothub.\n");
2176 		return -ENODEV;
2177 	}
2178 
2179 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2180 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2181 	if (!xhci->port_array)
2182 		return -ENOMEM;
2183 
2184 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2185 	if (!xhci->rh_bw)
2186 		return -ENOMEM;
2187 	for (i = 0; i < num_ports; i++) {
2188 		struct xhci_interval_bw_table *bw_table;
2189 
2190 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2191 		bw_table = &xhci->rh_bw[i].bw_table;
2192 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2193 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2194 	}
2195 
2196 	/*
2197 	 * For whatever reason, the first capability offset is from the
2198 	 * capability register base, not from the HCCPARAMS register.
2199 	 * See section 5.3.6 for offset calculation.
2200 	 */
2201 	addr = &xhci->cap_regs->hc_capbase + offset;
2202 
2203 	tmp_addr = addr;
2204 	tmp_offset = offset;
2205 
2206 	/* count extended protocol capability entries for later caching */
2207 	do {
2208 		u32 cap_id;
2209 		cap_id = readl(tmp_addr);
2210 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2211 			cap_count++;
2212 		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2213 		tmp_addr += tmp_offset;
2214 	} while (tmp_offset);
2215 
2216 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2217 	if (!xhci->ext_caps)
2218 		return -ENOMEM;
2219 
2220 	while (1) {
2221 		u32 cap_id;
2222 
2223 		cap_id = readl(addr);
2224 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2225 			xhci_add_in_port(xhci, num_ports, addr,
2226 					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2227 					cap_count);
2228 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2229 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2230 				== num_ports)
2231 			break;
2232 		/*
2233 		 * Once you're into the Extended Capabilities, the offset is
2234 		 * always relative to the register holding the offset.
2235 		 */
2236 		addr += offset;
2237 	}
2238 
2239 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2240 		xhci_warn(xhci, "No ports on the roothubs?\n");
2241 		return -ENODEV;
2242 	}
2243 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2244 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2245 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2246 
2247 	/* Place limits on the number of roothub ports so that the hub
2248 	 * descriptors aren't longer than the USB core will allocate.
2249 	 */
2250 	if (xhci->num_usb3_ports > 15) {
2251 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2252 				"Limiting USB 3.0 roothub ports to 15.");
2253 		xhci->num_usb3_ports = 15;
2254 	}
2255 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2256 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2257 				"Limiting USB 2.0 roothub ports to %u.",
2258 				USB_MAXCHILDREN);
2259 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2260 	}
2261 
2262 	/*
2263 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2264 	 * Not sure how the USB core will handle a hub with no ports...
2265 	 */
2266 	if (xhci->num_usb2_ports) {
2267 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2268 				xhci->num_usb2_ports, flags);
2269 		if (!xhci->usb2_ports)
2270 			return -ENOMEM;
2271 
2272 		port_index = 0;
2273 		for (i = 0; i < num_ports; i++) {
2274 			if (xhci->port_array[i] == 0x03 ||
2275 					xhci->port_array[i] == 0 ||
2276 					xhci->port_array[i] == DUPLICATE_ENTRY)
2277 				continue;
2278 
2279 			xhci->usb2_ports[port_index] =
2280 				&xhci->op_regs->port_status_base +
2281 				NUM_PORT_REGS*i;
2282 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2283 					"USB 2.0 port at index %u, "
2284 					"addr = %p", i,
2285 					xhci->usb2_ports[port_index]);
2286 			port_index++;
2287 			if (port_index == xhci->num_usb2_ports)
2288 				break;
2289 		}
2290 	}
2291 	if (xhci->num_usb3_ports) {
2292 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2293 				xhci->num_usb3_ports, flags);
2294 		if (!xhci->usb3_ports)
2295 			return -ENOMEM;
2296 
2297 		port_index = 0;
2298 		for (i = 0; i < num_ports; i++)
2299 			if (xhci->port_array[i] == 0x03) {
2300 				xhci->usb3_ports[port_index] =
2301 					&xhci->op_regs->port_status_base +
2302 					NUM_PORT_REGS*i;
2303 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2304 						"USB 3.0 port at index %u, "
2305 						"addr = %p", i,
2306 						xhci->usb3_ports[port_index]);
2307 				port_index++;
2308 				if (port_index == xhci->num_usb3_ports)
2309 					break;
2310 			}
2311 	}
2312 	return 0;
2313 }
2314 
2315 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2316 {
2317 	dma_addr_t	dma;
2318 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2319 	unsigned int	val, val2;
2320 	u64		val_64;
2321 	struct xhci_segment	*seg;
2322 	u32 page_size, temp;
2323 	int i;
2324 
2325 	INIT_LIST_HEAD(&xhci->cmd_list);
2326 
2327 	page_size = readl(&xhci->op_regs->page_size);
2328 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2329 			"Supported page size register = 0x%x", page_size);
2330 	for (i = 0; i < 16; i++) {
2331 		if ((0x1 & page_size) != 0)
2332 			break;
2333 		page_size = page_size >> 1;
2334 	}
2335 	if (i < 16)
2336 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2337 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2338 	else
2339 		xhci_warn(xhci, "WARN: no supported page size\n");
2340 	/* Use 4K pages, since that's common and the minimum the HC supports */
2341 	xhci->page_shift = 12;
2342 	xhci->page_size = 1 << xhci->page_shift;
2343 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2344 			"HCD page size set to %iK", xhci->page_size / 1024);
2345 
2346 	/*
2347 	 * Program the Number of Device Slots Enabled field in the CONFIG
2348 	 * register with the max value of slots the HC can handle.
2349 	 */
2350 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2351 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2352 			"// xHC can handle at most %d device slots.", val);
2353 	val2 = readl(&xhci->op_regs->config_reg);
2354 	val |= (val2 & ~HCS_SLOTS_MASK);
2355 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2356 			"// Setting Max device slots reg = 0x%x.", val);
2357 	writel(val, &xhci->op_regs->config_reg);
2358 
2359 	/*
2360 	 * Section 5.4.8 - doorbell array must be
2361 	 * "physically contiguous and 64-byte (cache line) aligned".
2362 	 */
2363 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2364 			GFP_KERNEL);
2365 	if (!xhci->dcbaa)
2366 		goto fail;
2367 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2368 	xhci->dcbaa->dma = dma;
2369 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2370 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2371 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2372 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2373 
2374 	/*
2375 	 * Initialize the ring segment pool.  The ring must be a contiguous
2376 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2377 	 * however, the command ring segment needs 64-byte aligned segments
2378 	 * and our use of dma addresses in the trb_address_map radix tree needs
2379 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2380 	 */
2381 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2382 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2383 
2384 	/* See Table 46 and Note on Figure 55 */
2385 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2386 			2112, 64, xhci->page_size);
2387 	if (!xhci->segment_pool || !xhci->device_pool)
2388 		goto fail;
2389 
2390 	/* Linear stream context arrays don't have any boundary restrictions,
2391 	 * and only need to be 16-byte aligned.
2392 	 */
2393 	xhci->small_streams_pool =
2394 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2395 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2396 	xhci->medium_streams_pool =
2397 		dma_pool_create("xHCI 1KB stream ctx arrays",
2398 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2399 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2400 	 * will be allocated with dma_alloc_coherent()
2401 	 */
2402 
2403 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2404 		goto fail;
2405 
2406 	/* Set up the command ring to have one segments for now. */
2407 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2408 	if (!xhci->cmd_ring)
2409 		goto fail;
2410 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2411 			"Allocated command ring at %p", xhci->cmd_ring);
2412 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2413 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2414 
2415 	/* Set the address in the Command Ring Control register */
2416 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2417 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2418 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2419 		xhci->cmd_ring->cycle_state;
2420 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421 			"// Setting command ring address to 0x%x", val);
2422 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2423 	xhci_dbg_cmd_ptrs(xhci);
2424 
2425 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2426 	if (!xhci->lpm_command)
2427 		goto fail;
2428 
2429 	/* Reserve one command ring TRB for disabling LPM.
2430 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2431 	 * disabling LPM, we only need to reserve one TRB for all devices.
2432 	 */
2433 	xhci->cmd_ring_reserved_trbs++;
2434 
2435 	val = readl(&xhci->cap_regs->db_off);
2436 	val &= DBOFF_MASK;
2437 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2438 			"// Doorbell array is located at offset 0x%x"
2439 			" from cap regs base addr", val);
2440 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2441 	xhci_dbg_regs(xhci);
2442 	xhci_print_run_regs(xhci);
2443 	/* Set ir_set to interrupt register set 0 */
2444 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2445 
2446 	/*
2447 	 * Event ring setup: Allocate a normal ring, but also setup
2448 	 * the event ring segment table (ERST).  Section 4.9.3.
2449 	 */
2450 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2451 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2452 						flags);
2453 	if (!xhci->event_ring)
2454 		goto fail;
2455 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2456 		goto fail;
2457 
2458 	xhci->erst.entries = dma_alloc_coherent(dev,
2459 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2460 			GFP_KERNEL);
2461 	if (!xhci->erst.entries)
2462 		goto fail;
2463 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2464 			"// Allocated event ring segment table at 0x%llx",
2465 			(unsigned long long)dma);
2466 
2467 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2468 	xhci->erst.num_entries = ERST_NUM_SEGS;
2469 	xhci->erst.erst_dma_addr = dma;
2470 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2471 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2472 			xhci->erst.num_entries,
2473 			xhci->erst.entries,
2474 			(unsigned long long)xhci->erst.erst_dma_addr);
2475 
2476 	/* set ring base address and size for each segment table entry */
2477 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2478 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2479 		entry->seg_addr = cpu_to_le64(seg->dma);
2480 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2481 		entry->rsvd = 0;
2482 		seg = seg->next;
2483 	}
2484 
2485 	/* set ERST count with the number of entries in the segment table */
2486 	val = readl(&xhci->ir_set->erst_size);
2487 	val &= ERST_SIZE_MASK;
2488 	val |= ERST_NUM_SEGS;
2489 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2490 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2491 			val);
2492 	writel(val, &xhci->ir_set->erst_size);
2493 
2494 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2495 			"// Set ERST entries to point to event ring.");
2496 	/* set the segment table base address */
2497 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2498 			"// Set ERST base address for ir_set 0 = 0x%llx",
2499 			(unsigned long long)xhci->erst.erst_dma_addr);
2500 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2501 	val_64 &= ERST_PTR_MASK;
2502 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2503 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2504 
2505 	/* Set the event ring dequeue address */
2506 	xhci_set_hc_event_deq(xhci);
2507 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2508 			"Wrote ERST address to ir_set 0.");
2509 	xhci_print_ir_set(xhci, 0);
2510 
2511 	/* init command timeout timer */
2512 	init_timer(&xhci->cmd_timer);
2513 	xhci->cmd_timer.data = (unsigned long) xhci;
2514 	xhci->cmd_timer.function = xhci_handle_command_timeout;
2515 
2516 	/*
2517 	 * XXX: Might need to set the Interrupter Moderation Register to
2518 	 * something other than the default (~1ms minimum between interrupts).
2519 	 * See section 5.5.1.2.
2520 	 */
2521 	init_completion(&xhci->addr_dev);
2522 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2523 		xhci->devs[i] = NULL;
2524 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2525 		xhci->bus_state[0].resume_done[i] = 0;
2526 		xhci->bus_state[1].resume_done[i] = 0;
2527 		/* Only the USB 2.0 completions will ever be used. */
2528 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2529 	}
2530 
2531 	if (scratchpad_alloc(xhci, flags))
2532 		goto fail;
2533 	if (xhci_setup_port_arrays(xhci, flags))
2534 		goto fail;
2535 
2536 	/* Enable USB 3.0 device notifications for function remote wake, which
2537 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2538 	 * U3 (device suspend).
2539 	 */
2540 	temp = readl(&xhci->op_regs->dev_notification);
2541 	temp &= ~DEV_NOTE_MASK;
2542 	temp |= DEV_NOTE_FWAKE;
2543 	writel(temp, &xhci->op_regs->dev_notification);
2544 
2545 	return 0;
2546 
2547 fail:
2548 	xhci_warn(xhci, "Couldn't initialize memory\n");
2549 	xhci_halt(xhci);
2550 	xhci_reset(xhci);
2551 	xhci_mem_cleanup(xhci);
2552 	return -ENOMEM;
2553 }
2554