1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 #include <linux/dma-mapping.h> 28 29 #include "xhci.h" 30 #include "xhci-trace.h" 31 32 /* 33 * Allocates a generic ring segment from the ring pool, sets the dma address, 34 * initializes the segment to zero, and sets the private next pointer to NULL. 35 * 36 * Section 4.11.1.1: 37 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 38 */ 39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 40 unsigned int cycle_state, 41 unsigned int max_packet, 42 gfp_t flags) 43 { 44 struct xhci_segment *seg; 45 dma_addr_t dma; 46 int i; 47 48 seg = kzalloc(sizeof *seg, flags); 49 if (!seg) 50 return NULL; 51 52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 53 if (!seg->trbs) { 54 kfree(seg); 55 return NULL; 56 } 57 58 if (max_packet) { 59 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA); 60 if (!seg->bounce_buf) { 61 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 62 kfree(seg); 63 return NULL; 64 } 65 } 66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 67 if (cycle_state == 0) { 68 for (i = 0; i < TRBS_PER_SEGMENT; i++) 69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 70 } 71 seg->dma = dma; 72 seg->next = NULL; 73 74 return seg; 75 } 76 77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 78 { 79 if (seg->trbs) { 80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 81 seg->trbs = NULL; 82 } 83 kfree(seg->bounce_buf); 84 kfree(seg); 85 } 86 87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 88 struct xhci_segment *first) 89 { 90 struct xhci_segment *seg; 91 92 seg = first->next; 93 while (seg != first) { 94 struct xhci_segment *next = seg->next; 95 xhci_segment_free(xhci, seg); 96 seg = next; 97 } 98 xhci_segment_free(xhci, first); 99 } 100 101 /* 102 * Make the prev segment point to the next segment. 103 * 104 * Change the last TRB in the prev segment to be a Link TRB which points to the 105 * DMA address of the next segment. The caller needs to set any Link TRB 106 * related flags, such as End TRB, Toggle Cycle, and no snoop. 107 */ 108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 109 struct xhci_segment *next, enum xhci_ring_type type) 110 { 111 u32 val; 112 113 if (!prev || !next) 114 return; 115 prev->next = next; 116 if (type != TYPE_EVENT) { 117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 118 cpu_to_le64(next->dma); 119 120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 122 val &= ~TRB_TYPE_BITMASK; 123 val |= TRB_TYPE(TRB_LINK); 124 /* Always set the chain bit with 0.95 hardware */ 125 /* Set chain bit for isoc rings on AMD 0.96 host */ 126 if (xhci_link_trb_quirk(xhci) || 127 (type == TYPE_ISOC && 128 (xhci->quirks & XHCI_AMD_0x96_HOST))) 129 val |= TRB_CHAIN; 130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 131 } 132 } 133 134 /* 135 * Link the ring to the new segments. 136 * Set Toggle Cycle for the new ring if needed. 137 */ 138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 139 struct xhci_segment *first, struct xhci_segment *last, 140 unsigned int num_segs) 141 { 142 struct xhci_segment *next; 143 144 if (!ring || !first || !last) 145 return; 146 147 next = ring->enq_seg->next; 148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 149 xhci_link_segments(xhci, last, next, ring->type); 150 ring->num_segs += num_segs; 151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 152 153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 155 &= ~cpu_to_le32(LINK_TOGGLE); 156 last->trbs[TRBS_PER_SEGMENT-1].link.control 157 |= cpu_to_le32(LINK_TOGGLE); 158 ring->last_seg = last; 159 } 160 } 161 162 /* 163 * We need a radix tree for mapping physical addresses of TRBs to which stream 164 * ID they belong to. We need to do this because the host controller won't tell 165 * us which stream ring the TRB came from. We could store the stream ID in an 166 * event data TRB, but that doesn't help us for the cancellation case, since the 167 * endpoint may stop before it reaches that event data TRB. 168 * 169 * The radix tree maps the upper portion of the TRB DMA address to a ring 170 * segment that has the same upper portion of DMA addresses. For example, say I 171 * have segments of size 1KB, that are always 1KB aligned. A segment may 172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 174 * pass the radix tree a key to get the right stream ID: 175 * 176 * 0x10c90fff >> 10 = 0x43243 177 * 0x10c912c0 >> 10 = 0x43244 178 * 0x10c91400 >> 10 = 0x43245 179 * 180 * Obviously, only those TRBs with DMA addresses that are within the segment 181 * will make the radix tree return the stream ID for that ring. 182 * 183 * Caveats for the radix tree: 184 * 185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 190 * extended systems (where the DMA address can be bigger than 32-bits), 191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 192 */ 193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 194 struct xhci_ring *ring, 195 struct xhci_segment *seg, 196 gfp_t mem_flags) 197 { 198 unsigned long key; 199 int ret; 200 201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 202 /* Skip any segments that were already added. */ 203 if (radix_tree_lookup(trb_address_map, key)) 204 return 0; 205 206 ret = radix_tree_maybe_preload(mem_flags); 207 if (ret) 208 return ret; 209 ret = radix_tree_insert(trb_address_map, 210 key, ring); 211 radix_tree_preload_end(); 212 return ret; 213 } 214 215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 216 struct xhci_segment *seg) 217 { 218 unsigned long key; 219 220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 221 if (radix_tree_lookup(trb_address_map, key)) 222 radix_tree_delete(trb_address_map, key); 223 } 224 225 static int xhci_update_stream_segment_mapping( 226 struct radix_tree_root *trb_address_map, 227 struct xhci_ring *ring, 228 struct xhci_segment *first_seg, 229 struct xhci_segment *last_seg, 230 gfp_t mem_flags) 231 { 232 struct xhci_segment *seg; 233 struct xhci_segment *failed_seg; 234 int ret; 235 236 if (WARN_ON_ONCE(trb_address_map == NULL)) 237 return 0; 238 239 seg = first_seg; 240 do { 241 ret = xhci_insert_segment_mapping(trb_address_map, 242 ring, seg, mem_flags); 243 if (ret) 244 goto remove_streams; 245 if (seg == last_seg) 246 return 0; 247 seg = seg->next; 248 } while (seg != first_seg); 249 250 return 0; 251 252 remove_streams: 253 failed_seg = seg; 254 seg = first_seg; 255 do { 256 xhci_remove_segment_mapping(trb_address_map, seg); 257 if (seg == failed_seg) 258 return ret; 259 seg = seg->next; 260 } while (seg != first_seg); 261 262 return ret; 263 } 264 265 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 266 { 267 struct xhci_segment *seg; 268 269 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 270 return; 271 272 seg = ring->first_seg; 273 do { 274 xhci_remove_segment_mapping(ring->trb_address_map, seg); 275 seg = seg->next; 276 } while (seg != ring->first_seg); 277 } 278 279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 280 { 281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 282 ring->first_seg, ring->last_seg, mem_flags); 283 } 284 285 /* XXX: Do we need the hcd structure in all these functions? */ 286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 287 { 288 if (!ring) 289 return; 290 291 if (ring->first_seg) { 292 if (ring->type == TYPE_STREAM) 293 xhci_remove_stream_mapping(ring); 294 xhci_free_segments_for_ring(xhci, ring->first_seg); 295 } 296 297 kfree(ring); 298 } 299 300 static void xhci_initialize_ring_info(struct xhci_ring *ring, 301 unsigned int cycle_state) 302 { 303 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 304 ring->enqueue = ring->first_seg->trbs; 305 ring->enq_seg = ring->first_seg; 306 ring->dequeue = ring->enqueue; 307 ring->deq_seg = ring->first_seg; 308 /* The ring is initialized to 0. The producer must write 1 to the cycle 309 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 310 * compare CCS to the cycle bit to check ownership, so CCS = 1. 311 * 312 * New rings are initialized with cycle state equal to 1; if we are 313 * handling ring expansion, set the cycle state equal to the old ring. 314 */ 315 ring->cycle_state = cycle_state; 316 /* Not necessary for new rings, but needed for re-initialized rings */ 317 ring->enq_updates = 0; 318 ring->deq_updates = 0; 319 320 /* 321 * Each segment has a link TRB, and leave an extra TRB for SW 322 * accounting purpose 323 */ 324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 325 } 326 327 /* Allocate segments and link them for a ring */ 328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 329 struct xhci_segment **first, struct xhci_segment **last, 330 unsigned int num_segs, unsigned int cycle_state, 331 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 332 { 333 struct xhci_segment *prev; 334 335 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 336 if (!prev) 337 return -ENOMEM; 338 num_segs--; 339 340 *first = prev; 341 while (num_segs > 0) { 342 struct xhci_segment *next; 343 344 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 345 if (!next) { 346 prev = *first; 347 while (prev) { 348 next = prev->next; 349 xhci_segment_free(xhci, prev); 350 prev = next; 351 } 352 return -ENOMEM; 353 } 354 xhci_link_segments(xhci, prev, next, type); 355 356 prev = next; 357 num_segs--; 358 } 359 xhci_link_segments(xhci, prev, *first, type); 360 *last = prev; 361 362 return 0; 363 } 364 365 /** 366 * Create a new ring with zero or more segments. 367 * 368 * Link each segment together into a ring. 369 * Set the end flag and the cycle toggle bit on the last segment. 370 * See section 4.9.1 and figures 15 and 16. 371 */ 372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 373 unsigned int num_segs, unsigned int cycle_state, 374 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 375 { 376 struct xhci_ring *ring; 377 int ret; 378 379 ring = kzalloc(sizeof *(ring), flags); 380 if (!ring) 381 return NULL; 382 383 ring->num_segs = num_segs; 384 ring->bounce_buf_len = max_packet; 385 INIT_LIST_HEAD(&ring->td_list); 386 ring->type = type; 387 if (num_segs == 0) 388 return ring; 389 390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 391 &ring->last_seg, num_segs, cycle_state, type, 392 max_packet, flags); 393 if (ret) 394 goto fail; 395 396 /* Only event ring does not use link TRB */ 397 if (type != TYPE_EVENT) { 398 /* See section 4.9.2.1 and 6.4.4.1 */ 399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 400 cpu_to_le32(LINK_TOGGLE); 401 } 402 xhci_initialize_ring_info(ring, cycle_state); 403 return ring; 404 405 fail: 406 kfree(ring); 407 return NULL; 408 } 409 410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 411 struct xhci_virt_device *virt_dev, 412 unsigned int ep_index) 413 { 414 int rings_cached; 415 416 rings_cached = virt_dev->num_rings_cached; 417 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 418 virt_dev->ring_cache[rings_cached] = 419 virt_dev->eps[ep_index].ring; 420 virt_dev->num_rings_cached++; 421 xhci_dbg(xhci, "Cached old ring, " 422 "%d ring%s cached\n", 423 virt_dev->num_rings_cached, 424 (virt_dev->num_rings_cached > 1) ? "s" : ""); 425 } else { 426 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 427 xhci_dbg(xhci, "Ring cache full (%d rings), " 428 "freeing ring\n", 429 virt_dev->num_rings_cached); 430 } 431 virt_dev->eps[ep_index].ring = NULL; 432 } 433 434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 435 * pointers to the beginning of the ring. 436 */ 437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 438 struct xhci_ring *ring, unsigned int cycle_state, 439 enum xhci_ring_type type) 440 { 441 struct xhci_segment *seg = ring->first_seg; 442 int i; 443 444 do { 445 memset(seg->trbs, 0, 446 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 447 if (cycle_state == 0) { 448 for (i = 0; i < TRBS_PER_SEGMENT; i++) 449 seg->trbs[i].link.control |= 450 cpu_to_le32(TRB_CYCLE); 451 } 452 /* All endpoint rings have link TRBs */ 453 xhci_link_segments(xhci, seg, seg->next, type); 454 seg = seg->next; 455 } while (seg != ring->first_seg); 456 ring->type = type; 457 xhci_initialize_ring_info(ring, cycle_state); 458 /* td list should be empty since all URBs have been cancelled, 459 * but just in case... 460 */ 461 INIT_LIST_HEAD(&ring->td_list); 462 } 463 464 /* 465 * Expand an existing ring. 466 * Look for a cached ring or allocate a new ring which has same segment numbers 467 * and link the two rings. 468 */ 469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 470 unsigned int num_trbs, gfp_t flags) 471 { 472 struct xhci_segment *first; 473 struct xhci_segment *last; 474 unsigned int num_segs; 475 unsigned int num_segs_needed; 476 int ret; 477 478 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 479 (TRBS_PER_SEGMENT - 1); 480 481 /* Allocate number of segments we needed, or double the ring size */ 482 num_segs = ring->num_segs > num_segs_needed ? 483 ring->num_segs : num_segs_needed; 484 485 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 486 num_segs, ring->cycle_state, ring->type, 487 ring->bounce_buf_len, flags); 488 if (ret) 489 return -ENOMEM; 490 491 if (ring->type == TYPE_STREAM) 492 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 493 ring, first, last, flags); 494 if (ret) { 495 struct xhci_segment *next; 496 do { 497 next = first->next; 498 xhci_segment_free(xhci, first); 499 if (first == last) 500 break; 501 first = next; 502 } while (true); 503 return ret; 504 } 505 506 xhci_link_rings(xhci, ring, first, last, num_segs); 507 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 508 "ring expansion succeed, now has %d segments", 509 ring->num_segs); 510 511 return 0; 512 } 513 514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 515 516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 517 int type, gfp_t flags) 518 { 519 struct xhci_container_ctx *ctx; 520 521 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 522 return NULL; 523 524 ctx = kzalloc(sizeof(*ctx), flags); 525 if (!ctx) 526 return NULL; 527 528 ctx->type = type; 529 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 530 if (type == XHCI_CTX_TYPE_INPUT) 531 ctx->size += CTX_SIZE(xhci->hcc_params); 532 533 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 534 if (!ctx->bytes) { 535 kfree(ctx); 536 return NULL; 537 } 538 return ctx; 539 } 540 541 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 542 struct xhci_container_ctx *ctx) 543 { 544 if (!ctx) 545 return; 546 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 547 kfree(ctx); 548 } 549 550 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 551 struct xhci_container_ctx *ctx) 552 { 553 if (ctx->type != XHCI_CTX_TYPE_INPUT) 554 return NULL; 555 556 return (struct xhci_input_control_ctx *)ctx->bytes; 557 } 558 559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 560 struct xhci_container_ctx *ctx) 561 { 562 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 563 return (struct xhci_slot_ctx *)ctx->bytes; 564 565 return (struct xhci_slot_ctx *) 566 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 567 } 568 569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 570 struct xhci_container_ctx *ctx, 571 unsigned int ep_index) 572 { 573 /* increment ep index by offset of start of ep ctx array */ 574 ep_index++; 575 if (ctx->type == XHCI_CTX_TYPE_INPUT) 576 ep_index++; 577 578 return (struct xhci_ep_ctx *) 579 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 580 } 581 582 583 /***************** Streams structures manipulation *************************/ 584 585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 586 unsigned int num_stream_ctxs, 587 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 588 { 589 struct device *dev = xhci_to_hcd(xhci)->self.controller; 590 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 591 592 if (size > MEDIUM_STREAM_ARRAY_SIZE) 593 dma_free_coherent(dev, size, 594 stream_ctx, dma); 595 else if (size <= SMALL_STREAM_ARRAY_SIZE) 596 return dma_pool_free(xhci->small_streams_pool, 597 stream_ctx, dma); 598 else 599 return dma_pool_free(xhci->medium_streams_pool, 600 stream_ctx, dma); 601 } 602 603 /* 604 * The stream context array for each endpoint with bulk streams enabled can 605 * vary in size, based on: 606 * - how many streams the endpoint supports, 607 * - the maximum primary stream array size the host controller supports, 608 * - and how many streams the device driver asks for. 609 * 610 * The stream context array must be a power of 2, and can be as small as 611 * 64 bytes or as large as 1MB. 612 */ 613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 614 unsigned int num_stream_ctxs, dma_addr_t *dma, 615 gfp_t mem_flags) 616 { 617 struct device *dev = xhci_to_hcd(xhci)->self.controller; 618 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 619 620 if (size > MEDIUM_STREAM_ARRAY_SIZE) 621 return dma_alloc_coherent(dev, size, 622 dma, mem_flags); 623 else if (size <= SMALL_STREAM_ARRAY_SIZE) 624 return dma_pool_alloc(xhci->small_streams_pool, 625 mem_flags, dma); 626 else 627 return dma_pool_alloc(xhci->medium_streams_pool, 628 mem_flags, dma); 629 } 630 631 struct xhci_ring *xhci_dma_to_transfer_ring( 632 struct xhci_virt_ep *ep, 633 u64 address) 634 { 635 if (ep->ep_state & EP_HAS_STREAMS) 636 return radix_tree_lookup(&ep->stream_info->trb_address_map, 637 address >> TRB_SEGMENT_SHIFT); 638 return ep->ring; 639 } 640 641 struct xhci_ring *xhci_stream_id_to_ring( 642 struct xhci_virt_device *dev, 643 unsigned int ep_index, 644 unsigned int stream_id) 645 { 646 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 647 648 if (stream_id == 0) 649 return ep->ring; 650 if (!ep->stream_info) 651 return NULL; 652 653 if (stream_id > ep->stream_info->num_streams) 654 return NULL; 655 return ep->stream_info->stream_rings[stream_id]; 656 } 657 658 /* 659 * Change an endpoint's internal structure so it supports stream IDs. The 660 * number of requested streams includes stream 0, which cannot be used by device 661 * drivers. 662 * 663 * The number of stream contexts in the stream context array may be bigger than 664 * the number of streams the driver wants to use. This is because the number of 665 * stream context array entries must be a power of two. 666 */ 667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 668 unsigned int num_stream_ctxs, 669 unsigned int num_streams, 670 unsigned int max_packet, gfp_t mem_flags) 671 { 672 struct xhci_stream_info *stream_info; 673 u32 cur_stream; 674 struct xhci_ring *cur_ring; 675 u64 addr; 676 int ret; 677 678 xhci_dbg(xhci, "Allocating %u streams and %u " 679 "stream context array entries.\n", 680 num_streams, num_stream_ctxs); 681 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 682 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 683 return NULL; 684 } 685 xhci->cmd_ring_reserved_trbs++; 686 687 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 688 if (!stream_info) 689 goto cleanup_trbs; 690 691 stream_info->num_streams = num_streams; 692 stream_info->num_stream_ctxs = num_stream_ctxs; 693 694 /* Initialize the array of virtual pointers to stream rings. */ 695 stream_info->stream_rings = kzalloc( 696 sizeof(struct xhci_ring *)*num_streams, 697 mem_flags); 698 if (!stream_info->stream_rings) 699 goto cleanup_info; 700 701 /* Initialize the array of DMA addresses for stream rings for the HW. */ 702 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 703 num_stream_ctxs, &stream_info->ctx_array_dma, 704 mem_flags); 705 if (!stream_info->stream_ctx_array) 706 goto cleanup_ctx; 707 memset(stream_info->stream_ctx_array, 0, 708 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 709 710 /* Allocate everything needed to free the stream rings later */ 711 stream_info->free_streams_command = 712 xhci_alloc_command(xhci, true, true, mem_flags); 713 if (!stream_info->free_streams_command) 714 goto cleanup_ctx; 715 716 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 717 718 /* Allocate rings for all the streams that the driver will use, 719 * and add their segment DMA addresses to the radix tree. 720 * Stream 0 is reserved. 721 */ 722 723 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 724 stream_info->stream_rings[cur_stream] = 725 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 726 mem_flags); 727 cur_ring = stream_info->stream_rings[cur_stream]; 728 if (!cur_ring) 729 goto cleanup_rings; 730 cur_ring->stream_id = cur_stream; 731 cur_ring->trb_address_map = &stream_info->trb_address_map; 732 /* Set deq ptr, cycle bit, and stream context type */ 733 addr = cur_ring->first_seg->dma | 734 SCT_FOR_CTX(SCT_PRI_TR) | 735 cur_ring->cycle_state; 736 stream_info->stream_ctx_array[cur_stream].stream_ring = 737 cpu_to_le64(addr); 738 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 739 cur_stream, (unsigned long long) addr); 740 741 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 742 if (ret) { 743 xhci_ring_free(xhci, cur_ring); 744 stream_info->stream_rings[cur_stream] = NULL; 745 goto cleanup_rings; 746 } 747 } 748 /* Leave the other unused stream ring pointers in the stream context 749 * array initialized to zero. This will cause the xHC to give us an 750 * error if the device asks for a stream ID we don't have setup (if it 751 * was any other way, the host controller would assume the ring is 752 * "empty" and wait forever for data to be queued to that stream ID). 753 */ 754 755 return stream_info; 756 757 cleanup_rings: 758 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 759 cur_ring = stream_info->stream_rings[cur_stream]; 760 if (cur_ring) { 761 xhci_ring_free(xhci, cur_ring); 762 stream_info->stream_rings[cur_stream] = NULL; 763 } 764 } 765 xhci_free_command(xhci, stream_info->free_streams_command); 766 cleanup_ctx: 767 kfree(stream_info->stream_rings); 768 cleanup_info: 769 kfree(stream_info); 770 cleanup_trbs: 771 xhci->cmd_ring_reserved_trbs--; 772 return NULL; 773 } 774 /* 775 * Sets the MaxPStreams field and the Linear Stream Array field. 776 * Sets the dequeue pointer to the stream context array. 777 */ 778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 779 struct xhci_ep_ctx *ep_ctx, 780 struct xhci_stream_info *stream_info) 781 { 782 u32 max_primary_streams; 783 /* MaxPStreams is the number of stream context array entries, not the 784 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 785 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 786 */ 787 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 788 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 789 "Setting number of stream ctx array entries to %u", 790 1 << (max_primary_streams + 1)); 791 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 792 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 793 | EP_HAS_LSA); 794 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 795 } 796 797 /* 798 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 799 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 800 * not at the beginning of the ring). 801 */ 802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 803 struct xhci_virt_ep *ep) 804 { 805 dma_addr_t addr; 806 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 807 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 808 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 809 } 810 811 /* Frees all stream contexts associated with the endpoint, 812 * 813 * Caller should fix the endpoint context streams fields. 814 */ 815 void xhci_free_stream_info(struct xhci_hcd *xhci, 816 struct xhci_stream_info *stream_info) 817 { 818 int cur_stream; 819 struct xhci_ring *cur_ring; 820 821 if (!stream_info) 822 return; 823 824 for (cur_stream = 1; cur_stream < stream_info->num_streams; 825 cur_stream++) { 826 cur_ring = stream_info->stream_rings[cur_stream]; 827 if (cur_ring) { 828 xhci_ring_free(xhci, cur_ring); 829 stream_info->stream_rings[cur_stream] = NULL; 830 } 831 } 832 xhci_free_command(xhci, stream_info->free_streams_command); 833 xhci->cmd_ring_reserved_trbs--; 834 if (stream_info->stream_ctx_array) 835 xhci_free_stream_ctx(xhci, 836 stream_info->num_stream_ctxs, 837 stream_info->stream_ctx_array, 838 stream_info->ctx_array_dma); 839 840 kfree(stream_info->stream_rings); 841 kfree(stream_info); 842 } 843 844 845 /***************** Device context manipulation *************************/ 846 847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 848 struct xhci_virt_ep *ep) 849 { 850 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 851 (unsigned long)ep); 852 ep->xhci = xhci; 853 } 854 855 static void xhci_free_tt_info(struct xhci_hcd *xhci, 856 struct xhci_virt_device *virt_dev, 857 int slot_id) 858 { 859 struct list_head *tt_list_head; 860 struct xhci_tt_bw_info *tt_info, *next; 861 bool slot_found = false; 862 863 /* If the device never made it past the Set Address stage, 864 * it may not have the real_port set correctly. 865 */ 866 if (virt_dev->real_port == 0 || 867 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 868 xhci_dbg(xhci, "Bad real port.\n"); 869 return; 870 } 871 872 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 873 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 874 /* Multi-TT hubs will have more than one entry */ 875 if (tt_info->slot_id == slot_id) { 876 slot_found = true; 877 list_del(&tt_info->tt_list); 878 kfree(tt_info); 879 } else if (slot_found) { 880 break; 881 } 882 } 883 } 884 885 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 886 struct xhci_virt_device *virt_dev, 887 struct usb_device *hdev, 888 struct usb_tt *tt, gfp_t mem_flags) 889 { 890 struct xhci_tt_bw_info *tt_info; 891 unsigned int num_ports; 892 int i, j; 893 894 if (!tt->multi) 895 num_ports = 1; 896 else 897 num_ports = hdev->maxchild; 898 899 for (i = 0; i < num_ports; i++, tt_info++) { 900 struct xhci_interval_bw_table *bw_table; 901 902 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 903 if (!tt_info) 904 goto free_tts; 905 INIT_LIST_HEAD(&tt_info->tt_list); 906 list_add(&tt_info->tt_list, 907 &xhci->rh_bw[virt_dev->real_port - 1].tts); 908 tt_info->slot_id = virt_dev->udev->slot_id; 909 if (tt->multi) 910 tt_info->ttport = i+1; 911 bw_table = &tt_info->bw_table; 912 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 913 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 914 } 915 return 0; 916 917 free_tts: 918 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 919 return -ENOMEM; 920 } 921 922 923 /* All the xhci_tds in the ring's TD list should be freed at this point. 924 * Should be called with xhci->lock held if there is any chance the TT lists 925 * will be manipulated by the configure endpoint, allocate device, or update 926 * hub functions while this function is removing the TT entries from the list. 927 */ 928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 929 { 930 struct xhci_virt_device *dev; 931 int i; 932 int old_active_eps = 0; 933 934 /* Slot ID 0 is reserved */ 935 if (slot_id == 0 || !xhci->devs[slot_id]) 936 return; 937 938 dev = xhci->devs[slot_id]; 939 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 940 if (!dev) 941 return; 942 943 if (dev->tt_info) 944 old_active_eps = dev->tt_info->active_eps; 945 946 for (i = 0; i < 31; ++i) { 947 if (dev->eps[i].ring) 948 xhci_ring_free(xhci, dev->eps[i].ring); 949 if (dev->eps[i].stream_info) 950 xhci_free_stream_info(xhci, 951 dev->eps[i].stream_info); 952 /* Endpoints on the TT/root port lists should have been removed 953 * when usb_disable_device() was called for the device. 954 * We can't drop them anyway, because the udev might have gone 955 * away by this point, and we can't tell what speed it was. 956 */ 957 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 958 xhci_warn(xhci, "Slot %u endpoint %u " 959 "not removed from BW list!\n", 960 slot_id, i); 961 } 962 /* If this is a hub, free the TT(s) from the TT list */ 963 xhci_free_tt_info(xhci, dev, slot_id); 964 /* If necessary, update the number of active TTs on this root port */ 965 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 966 967 if (dev->ring_cache) { 968 for (i = 0; i < dev->num_rings_cached; i++) 969 xhci_ring_free(xhci, dev->ring_cache[i]); 970 kfree(dev->ring_cache); 971 } 972 973 if (dev->in_ctx) 974 xhci_free_container_ctx(xhci, dev->in_ctx); 975 if (dev->out_ctx) 976 xhci_free_container_ctx(xhci, dev->out_ctx); 977 978 kfree(xhci->devs[slot_id]); 979 xhci->devs[slot_id] = NULL; 980 } 981 982 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 983 struct usb_device *udev, gfp_t flags) 984 { 985 struct xhci_virt_device *dev; 986 int i; 987 988 /* Slot ID 0 is reserved */ 989 if (slot_id == 0 || xhci->devs[slot_id]) { 990 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 991 return 0; 992 } 993 994 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 995 if (!xhci->devs[slot_id]) 996 return 0; 997 dev = xhci->devs[slot_id]; 998 999 /* Allocate the (output) device context that will be used in the HC. */ 1000 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 1001 if (!dev->out_ctx) 1002 goto fail; 1003 1004 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 1005 (unsigned long long)dev->out_ctx->dma); 1006 1007 /* Allocate the (input) device context for address device command */ 1008 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 1009 if (!dev->in_ctx) 1010 goto fail; 1011 1012 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 1013 (unsigned long long)dev->in_ctx->dma); 1014 1015 /* Initialize the cancellation list and watchdog timers for each ep */ 1016 for (i = 0; i < 31; i++) { 1017 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1018 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1019 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1020 } 1021 1022 /* Allocate endpoint 0 ring */ 1023 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1024 if (!dev->eps[0].ring) 1025 goto fail; 1026 1027 /* Allocate pointers to the ring cache */ 1028 dev->ring_cache = kzalloc( 1029 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 1030 flags); 1031 if (!dev->ring_cache) 1032 goto fail; 1033 dev->num_rings_cached = 0; 1034 1035 dev->udev = udev; 1036 1037 /* Point to output device context in dcbaa. */ 1038 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1039 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1040 slot_id, 1041 &xhci->dcbaa->dev_context_ptrs[slot_id], 1042 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1043 1044 return 1; 1045 fail: 1046 xhci_free_virt_device(xhci, slot_id); 1047 return 0; 1048 } 1049 1050 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1051 struct usb_device *udev) 1052 { 1053 struct xhci_virt_device *virt_dev; 1054 struct xhci_ep_ctx *ep0_ctx; 1055 struct xhci_ring *ep_ring; 1056 1057 virt_dev = xhci->devs[udev->slot_id]; 1058 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1059 ep_ring = virt_dev->eps[0].ring; 1060 /* 1061 * FIXME we don't keep track of the dequeue pointer very well after a 1062 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1063 * host to our enqueue pointer. This should only be called after a 1064 * configured device has reset, so all control transfers should have 1065 * been completed or cancelled before the reset. 1066 */ 1067 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1068 ep_ring->enqueue) 1069 | ep_ring->cycle_state); 1070 } 1071 1072 /* 1073 * The xHCI roothub may have ports of differing speeds in any order in the port 1074 * status registers. xhci->port_array provides an array of the port speed for 1075 * each offset into the port status registers. 1076 * 1077 * The xHCI hardware wants to know the roothub port number that the USB device 1078 * is attached to (or the roothub port its ancestor hub is attached to). All we 1079 * know is the index of that port under either the USB 2.0 or the USB 3.0 1080 * roothub, but that doesn't give us the real index into the HW port status 1081 * registers. Call xhci_find_raw_port_number() to get real index. 1082 */ 1083 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1084 struct usb_device *udev) 1085 { 1086 struct usb_device *top_dev; 1087 struct usb_hcd *hcd; 1088 1089 if (udev->speed >= USB_SPEED_SUPER) 1090 hcd = xhci->shared_hcd; 1091 else 1092 hcd = xhci->main_hcd; 1093 1094 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1095 top_dev = top_dev->parent) 1096 /* Found device below root hub */; 1097 1098 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1099 } 1100 1101 /* Setup an xHCI virtual device for a Set Address command */ 1102 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1103 { 1104 struct xhci_virt_device *dev; 1105 struct xhci_ep_ctx *ep0_ctx; 1106 struct xhci_slot_ctx *slot_ctx; 1107 u32 port_num; 1108 u32 max_packets; 1109 struct usb_device *top_dev; 1110 1111 dev = xhci->devs[udev->slot_id]; 1112 /* Slot ID 0 is reserved */ 1113 if (udev->slot_id == 0 || !dev) { 1114 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1115 udev->slot_id); 1116 return -EINVAL; 1117 } 1118 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1119 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1120 1121 /* 3) Only the control endpoint is valid - one endpoint context */ 1122 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1123 switch (udev->speed) { 1124 case USB_SPEED_SUPER_PLUS: 1125 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1126 max_packets = MAX_PACKET(512); 1127 break; 1128 case USB_SPEED_SUPER: 1129 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1130 max_packets = MAX_PACKET(512); 1131 break; 1132 case USB_SPEED_HIGH: 1133 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1134 max_packets = MAX_PACKET(64); 1135 break; 1136 /* USB core guesses at a 64-byte max packet first for FS devices */ 1137 case USB_SPEED_FULL: 1138 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1139 max_packets = MAX_PACKET(64); 1140 break; 1141 case USB_SPEED_LOW: 1142 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1143 max_packets = MAX_PACKET(8); 1144 break; 1145 case USB_SPEED_WIRELESS: 1146 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1147 return -EINVAL; 1148 break; 1149 default: 1150 /* Speed was set earlier, this shouldn't happen. */ 1151 return -EINVAL; 1152 } 1153 /* Find the root hub port this device is under */ 1154 port_num = xhci_find_real_port_number(xhci, udev); 1155 if (!port_num) 1156 return -EINVAL; 1157 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1158 /* Set the port number in the virtual_device to the faked port number */ 1159 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1160 top_dev = top_dev->parent) 1161 /* Found device below root hub */; 1162 dev->fake_port = top_dev->portnum; 1163 dev->real_port = port_num; 1164 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1165 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1166 1167 /* Find the right bandwidth table that this device will be a part of. 1168 * If this is a full speed device attached directly to a root port (or a 1169 * decendent of one), it counts as a primary bandwidth domain, not a 1170 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1171 * will never be created for the HS root hub. 1172 */ 1173 if (!udev->tt || !udev->tt->hub->parent) { 1174 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1175 } else { 1176 struct xhci_root_port_bw_info *rh_bw; 1177 struct xhci_tt_bw_info *tt_bw; 1178 1179 rh_bw = &xhci->rh_bw[port_num - 1]; 1180 /* Find the right TT. */ 1181 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1182 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1183 continue; 1184 1185 if (!dev->udev->tt->multi || 1186 (udev->tt->multi && 1187 tt_bw->ttport == dev->udev->ttport)) { 1188 dev->bw_table = &tt_bw->bw_table; 1189 dev->tt_info = tt_bw; 1190 break; 1191 } 1192 } 1193 if (!dev->tt_info) 1194 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1195 } 1196 1197 /* Is this a LS/FS device under an external HS hub? */ 1198 if (udev->tt && udev->tt->hub->parent) { 1199 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1200 (udev->ttport << 8)); 1201 if (udev->tt->multi) 1202 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1203 } 1204 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1205 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1206 1207 /* Step 4 - ring already allocated */ 1208 /* Step 5 */ 1209 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1210 1211 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1212 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1213 max_packets); 1214 1215 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1216 dev->eps[0].ring->cycle_state); 1217 1218 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1219 1220 return 0; 1221 } 1222 1223 /* 1224 * Convert interval expressed as 2^(bInterval - 1) == interval into 1225 * straight exponent value 2^n == interval. 1226 * 1227 */ 1228 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1229 struct usb_host_endpoint *ep) 1230 { 1231 unsigned int interval; 1232 1233 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1234 if (interval != ep->desc.bInterval - 1) 1235 dev_warn(&udev->dev, 1236 "ep %#x - rounding interval to %d %sframes\n", 1237 ep->desc.bEndpointAddress, 1238 1 << interval, 1239 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1240 1241 if (udev->speed == USB_SPEED_FULL) { 1242 /* 1243 * Full speed isoc endpoints specify interval in frames, 1244 * not microframes. We are using microframes everywhere, 1245 * so adjust accordingly. 1246 */ 1247 interval += 3; /* 1 frame = 2^3 uframes */ 1248 } 1249 1250 return interval; 1251 } 1252 1253 /* 1254 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1255 * microframes, rounded down to nearest power of 2. 1256 */ 1257 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1258 struct usb_host_endpoint *ep, unsigned int desc_interval, 1259 unsigned int min_exponent, unsigned int max_exponent) 1260 { 1261 unsigned int interval; 1262 1263 interval = fls(desc_interval) - 1; 1264 interval = clamp_val(interval, min_exponent, max_exponent); 1265 if ((1 << interval) != desc_interval) 1266 dev_dbg(&udev->dev, 1267 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1268 ep->desc.bEndpointAddress, 1269 1 << interval, 1270 desc_interval); 1271 1272 return interval; 1273 } 1274 1275 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1276 struct usb_host_endpoint *ep) 1277 { 1278 if (ep->desc.bInterval == 0) 1279 return 0; 1280 return xhci_microframes_to_exponent(udev, ep, 1281 ep->desc.bInterval, 0, 15); 1282 } 1283 1284 1285 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1286 struct usb_host_endpoint *ep) 1287 { 1288 return xhci_microframes_to_exponent(udev, ep, 1289 ep->desc.bInterval * 8, 3, 10); 1290 } 1291 1292 /* Return the polling or NAK interval. 1293 * 1294 * The polling interval is expressed in "microframes". If xHCI's Interval field 1295 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1296 * 1297 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1298 * is set to 0. 1299 */ 1300 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1301 struct usb_host_endpoint *ep) 1302 { 1303 unsigned int interval = 0; 1304 1305 switch (udev->speed) { 1306 case USB_SPEED_HIGH: 1307 /* Max NAK rate */ 1308 if (usb_endpoint_xfer_control(&ep->desc) || 1309 usb_endpoint_xfer_bulk(&ep->desc)) { 1310 interval = xhci_parse_microframe_interval(udev, ep); 1311 break; 1312 } 1313 /* Fall through - SS and HS isoc/int have same decoding */ 1314 1315 case USB_SPEED_SUPER_PLUS: 1316 case USB_SPEED_SUPER: 1317 if (usb_endpoint_xfer_int(&ep->desc) || 1318 usb_endpoint_xfer_isoc(&ep->desc)) { 1319 interval = xhci_parse_exponent_interval(udev, ep); 1320 } 1321 break; 1322 1323 case USB_SPEED_FULL: 1324 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1325 interval = xhci_parse_exponent_interval(udev, ep); 1326 break; 1327 } 1328 /* 1329 * Fall through for interrupt endpoint interval decoding 1330 * since it uses the same rules as low speed interrupt 1331 * endpoints. 1332 */ 1333 1334 case USB_SPEED_LOW: 1335 if (usb_endpoint_xfer_int(&ep->desc) || 1336 usb_endpoint_xfer_isoc(&ep->desc)) { 1337 1338 interval = xhci_parse_frame_interval(udev, ep); 1339 } 1340 break; 1341 1342 default: 1343 BUG(); 1344 } 1345 return interval; 1346 } 1347 1348 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1349 * High speed endpoint descriptors can define "the number of additional 1350 * transaction opportunities per microframe", but that goes in the Max Burst 1351 * endpoint context field. 1352 */ 1353 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1354 struct usb_host_endpoint *ep) 1355 { 1356 if (udev->speed < USB_SPEED_SUPER || 1357 !usb_endpoint_xfer_isoc(&ep->desc)) 1358 return 0; 1359 return ep->ss_ep_comp.bmAttributes; 1360 } 1361 1362 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1363 struct usb_host_endpoint *ep) 1364 { 1365 /* Super speed and Plus have max burst in ep companion desc */ 1366 if (udev->speed >= USB_SPEED_SUPER) 1367 return ep->ss_ep_comp.bMaxBurst; 1368 1369 if (udev->speed == USB_SPEED_HIGH && 1370 (usb_endpoint_xfer_isoc(&ep->desc) || 1371 usb_endpoint_xfer_int(&ep->desc))) 1372 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1373 1374 return 0; 1375 } 1376 1377 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1378 { 1379 int in; 1380 1381 in = usb_endpoint_dir_in(&ep->desc); 1382 1383 if (usb_endpoint_xfer_control(&ep->desc)) 1384 return CTRL_EP; 1385 if (usb_endpoint_xfer_bulk(&ep->desc)) 1386 return in ? BULK_IN_EP : BULK_OUT_EP; 1387 if (usb_endpoint_xfer_isoc(&ep->desc)) 1388 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1389 if (usb_endpoint_xfer_int(&ep->desc)) 1390 return in ? INT_IN_EP : INT_OUT_EP; 1391 return 0; 1392 } 1393 1394 /* Return the maximum endpoint service interval time (ESIT) payload. 1395 * Basically, this is the maxpacket size, multiplied by the burst size 1396 * and mult size. 1397 */ 1398 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1399 struct usb_host_endpoint *ep) 1400 { 1401 int max_burst; 1402 int max_packet; 1403 1404 /* Only applies for interrupt or isochronous endpoints */ 1405 if (usb_endpoint_xfer_control(&ep->desc) || 1406 usb_endpoint_xfer_bulk(&ep->desc)) 1407 return 0; 1408 1409 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1410 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1411 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1412 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1413 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1414 else if (udev->speed >= USB_SPEED_SUPER) 1415 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1416 1417 max_packet = usb_endpoint_maxp(&ep->desc); 1418 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1419 /* A 0 in max burst means 1 transfer per ESIT */ 1420 return max_packet * max_burst; 1421 } 1422 1423 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1424 * Drivers will have to call usb_alloc_streams() to do that. 1425 */ 1426 int xhci_endpoint_init(struct xhci_hcd *xhci, 1427 struct xhci_virt_device *virt_dev, 1428 struct usb_device *udev, 1429 struct usb_host_endpoint *ep, 1430 gfp_t mem_flags) 1431 { 1432 unsigned int ep_index; 1433 struct xhci_ep_ctx *ep_ctx; 1434 struct xhci_ring *ep_ring; 1435 unsigned int max_packet; 1436 enum xhci_ring_type ring_type; 1437 u32 max_esit_payload; 1438 u32 endpoint_type; 1439 unsigned int max_burst; 1440 unsigned int interval; 1441 unsigned int mult; 1442 unsigned int avg_trb_len; 1443 unsigned int err_count = 0; 1444 1445 ep_index = xhci_get_endpoint_index(&ep->desc); 1446 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1447 1448 endpoint_type = xhci_get_endpoint_type(ep); 1449 if (!endpoint_type) 1450 return -EINVAL; 1451 1452 ring_type = usb_endpoint_type(&ep->desc); 1453 1454 /* 1455 * Get values to fill the endpoint context, mostly from ep descriptor. 1456 * The average TRB buffer lengt for bulk endpoints is unclear as we 1457 * have no clue on scatter gather list entry size. For Isoc and Int, 1458 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1459 */ 1460 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1461 interval = xhci_get_endpoint_interval(udev, ep); 1462 mult = xhci_get_endpoint_mult(udev, ep); 1463 max_packet = usb_endpoint_maxp(&ep->desc); 1464 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1465 avg_trb_len = max_esit_payload; 1466 1467 /* FIXME dig Mult and streams info out of ep companion desc */ 1468 1469 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1470 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1471 err_count = 3; 1472 /* Some devices get this wrong */ 1473 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH) 1474 max_packet = 512; 1475 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1476 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1477 avg_trb_len = 8; 1478 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1479 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1480 mult = 0; 1481 1482 /* Set up the endpoint ring */ 1483 virt_dev->eps[ep_index].new_ring = 1484 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1485 if (!virt_dev->eps[ep_index].new_ring) { 1486 /* Attempt to use the ring cache */ 1487 if (virt_dev->num_rings_cached == 0) 1488 return -ENOMEM; 1489 virt_dev->num_rings_cached--; 1490 virt_dev->eps[ep_index].new_ring = 1491 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1492 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1493 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1494 1, ring_type); 1495 } 1496 virt_dev->eps[ep_index].skip = false; 1497 ep_ring = virt_dev->eps[ep_index].new_ring; 1498 1499 /* Fill the endpoint context */ 1500 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1501 EP_INTERVAL(interval) | 1502 EP_MULT(mult)); 1503 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1504 MAX_PACKET(max_packet) | 1505 MAX_BURST(max_burst) | 1506 ERROR_COUNT(err_count)); 1507 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1508 ep_ring->cycle_state); 1509 1510 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1511 EP_AVG_TRB_LENGTH(avg_trb_len)); 1512 1513 /* FIXME Debug endpoint context */ 1514 return 0; 1515 } 1516 1517 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1518 struct xhci_virt_device *virt_dev, 1519 struct usb_host_endpoint *ep) 1520 { 1521 unsigned int ep_index; 1522 struct xhci_ep_ctx *ep_ctx; 1523 1524 ep_index = xhci_get_endpoint_index(&ep->desc); 1525 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1526 1527 ep_ctx->ep_info = 0; 1528 ep_ctx->ep_info2 = 0; 1529 ep_ctx->deq = 0; 1530 ep_ctx->tx_info = 0; 1531 /* Don't free the endpoint ring until the set interface or configuration 1532 * request succeeds. 1533 */ 1534 } 1535 1536 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1537 { 1538 bw_info->ep_interval = 0; 1539 bw_info->mult = 0; 1540 bw_info->num_packets = 0; 1541 bw_info->max_packet_size = 0; 1542 bw_info->type = 0; 1543 bw_info->max_esit_payload = 0; 1544 } 1545 1546 void xhci_update_bw_info(struct xhci_hcd *xhci, 1547 struct xhci_container_ctx *in_ctx, 1548 struct xhci_input_control_ctx *ctrl_ctx, 1549 struct xhci_virt_device *virt_dev) 1550 { 1551 struct xhci_bw_info *bw_info; 1552 struct xhci_ep_ctx *ep_ctx; 1553 unsigned int ep_type; 1554 int i; 1555 1556 for (i = 1; i < 31; ++i) { 1557 bw_info = &virt_dev->eps[i].bw_info; 1558 1559 /* We can't tell what endpoint type is being dropped, but 1560 * unconditionally clearing the bandwidth info for non-periodic 1561 * endpoints should be harmless because the info will never be 1562 * set in the first place. 1563 */ 1564 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1565 /* Dropped endpoint */ 1566 xhci_clear_endpoint_bw_info(bw_info); 1567 continue; 1568 } 1569 1570 if (EP_IS_ADDED(ctrl_ctx, i)) { 1571 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1572 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1573 1574 /* Ignore non-periodic endpoints */ 1575 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1576 ep_type != ISOC_IN_EP && 1577 ep_type != INT_IN_EP) 1578 continue; 1579 1580 /* Added or changed endpoint */ 1581 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1582 le32_to_cpu(ep_ctx->ep_info)); 1583 /* Number of packets and mult are zero-based in the 1584 * input context, but we want one-based for the 1585 * interval table. 1586 */ 1587 bw_info->mult = CTX_TO_EP_MULT( 1588 le32_to_cpu(ep_ctx->ep_info)) + 1; 1589 bw_info->num_packets = CTX_TO_MAX_BURST( 1590 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1591 bw_info->max_packet_size = MAX_PACKET_DECODED( 1592 le32_to_cpu(ep_ctx->ep_info2)); 1593 bw_info->type = ep_type; 1594 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1595 le32_to_cpu(ep_ctx->tx_info)); 1596 } 1597 } 1598 } 1599 1600 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1601 * Useful when you want to change one particular aspect of the endpoint and then 1602 * issue a configure endpoint command. 1603 */ 1604 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1605 struct xhci_container_ctx *in_ctx, 1606 struct xhci_container_ctx *out_ctx, 1607 unsigned int ep_index) 1608 { 1609 struct xhci_ep_ctx *out_ep_ctx; 1610 struct xhci_ep_ctx *in_ep_ctx; 1611 1612 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1613 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1614 1615 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1616 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1617 in_ep_ctx->deq = out_ep_ctx->deq; 1618 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1619 } 1620 1621 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1622 * Useful when you want to change one particular aspect of the endpoint and then 1623 * issue a configure endpoint command. Only the context entries field matters, 1624 * but we'll copy the whole thing anyway. 1625 */ 1626 void xhci_slot_copy(struct xhci_hcd *xhci, 1627 struct xhci_container_ctx *in_ctx, 1628 struct xhci_container_ctx *out_ctx) 1629 { 1630 struct xhci_slot_ctx *in_slot_ctx; 1631 struct xhci_slot_ctx *out_slot_ctx; 1632 1633 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1634 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1635 1636 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1637 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1638 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1639 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1640 } 1641 1642 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1643 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1644 { 1645 int i; 1646 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1647 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1648 1649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1650 "Allocating %d scratchpad buffers", num_sp); 1651 1652 if (!num_sp) 1653 return 0; 1654 1655 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1656 if (!xhci->scratchpad) 1657 goto fail_sp; 1658 1659 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1660 num_sp * sizeof(u64), 1661 &xhci->scratchpad->sp_dma, flags); 1662 if (!xhci->scratchpad->sp_array) 1663 goto fail_sp2; 1664 1665 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1666 if (!xhci->scratchpad->sp_buffers) 1667 goto fail_sp3; 1668 1669 xhci->scratchpad->sp_dma_buffers = 1670 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1671 1672 if (!xhci->scratchpad->sp_dma_buffers) 1673 goto fail_sp4; 1674 1675 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1676 for (i = 0; i < num_sp; i++) { 1677 dma_addr_t dma; 1678 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1679 flags); 1680 if (!buf) 1681 goto fail_sp5; 1682 1683 xhci->scratchpad->sp_array[i] = dma; 1684 xhci->scratchpad->sp_buffers[i] = buf; 1685 xhci->scratchpad->sp_dma_buffers[i] = dma; 1686 } 1687 1688 return 0; 1689 1690 fail_sp5: 1691 for (i = i - 1; i >= 0; i--) { 1692 dma_free_coherent(dev, xhci->page_size, 1693 xhci->scratchpad->sp_buffers[i], 1694 xhci->scratchpad->sp_dma_buffers[i]); 1695 } 1696 kfree(xhci->scratchpad->sp_dma_buffers); 1697 1698 fail_sp4: 1699 kfree(xhci->scratchpad->sp_buffers); 1700 1701 fail_sp3: 1702 dma_free_coherent(dev, num_sp * sizeof(u64), 1703 xhci->scratchpad->sp_array, 1704 xhci->scratchpad->sp_dma); 1705 1706 fail_sp2: 1707 kfree(xhci->scratchpad); 1708 xhci->scratchpad = NULL; 1709 1710 fail_sp: 1711 return -ENOMEM; 1712 } 1713 1714 static void scratchpad_free(struct xhci_hcd *xhci) 1715 { 1716 int num_sp; 1717 int i; 1718 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1719 1720 if (!xhci->scratchpad) 1721 return; 1722 1723 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1724 1725 for (i = 0; i < num_sp; i++) { 1726 dma_free_coherent(dev, xhci->page_size, 1727 xhci->scratchpad->sp_buffers[i], 1728 xhci->scratchpad->sp_dma_buffers[i]); 1729 } 1730 kfree(xhci->scratchpad->sp_dma_buffers); 1731 kfree(xhci->scratchpad->sp_buffers); 1732 dma_free_coherent(dev, num_sp * sizeof(u64), 1733 xhci->scratchpad->sp_array, 1734 xhci->scratchpad->sp_dma); 1735 kfree(xhci->scratchpad); 1736 xhci->scratchpad = NULL; 1737 } 1738 1739 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1740 bool allocate_in_ctx, bool allocate_completion, 1741 gfp_t mem_flags) 1742 { 1743 struct xhci_command *command; 1744 1745 command = kzalloc(sizeof(*command), mem_flags); 1746 if (!command) 1747 return NULL; 1748 1749 if (allocate_in_ctx) { 1750 command->in_ctx = 1751 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1752 mem_flags); 1753 if (!command->in_ctx) { 1754 kfree(command); 1755 return NULL; 1756 } 1757 } 1758 1759 if (allocate_completion) { 1760 command->completion = 1761 kzalloc(sizeof(struct completion), mem_flags); 1762 if (!command->completion) { 1763 xhci_free_container_ctx(xhci, command->in_ctx); 1764 kfree(command); 1765 return NULL; 1766 } 1767 init_completion(command->completion); 1768 } 1769 1770 command->status = 0; 1771 INIT_LIST_HEAD(&command->cmd_list); 1772 return command; 1773 } 1774 1775 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1776 { 1777 if (urb_priv) { 1778 kfree(urb_priv->td[0]); 1779 kfree(urb_priv); 1780 } 1781 } 1782 1783 void xhci_free_command(struct xhci_hcd *xhci, 1784 struct xhci_command *command) 1785 { 1786 xhci_free_container_ctx(xhci, 1787 command->in_ctx); 1788 kfree(command->completion); 1789 kfree(command); 1790 } 1791 1792 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1793 { 1794 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1795 int size; 1796 int i, j, num_ports; 1797 1798 del_timer_sync(&xhci->cmd_timer); 1799 1800 /* Free the Event Ring Segment Table and the actual Event Ring */ 1801 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1802 if (xhci->erst.entries) 1803 dma_free_coherent(dev, size, 1804 xhci->erst.entries, xhci->erst.erst_dma_addr); 1805 xhci->erst.entries = NULL; 1806 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); 1807 if (xhci->event_ring) 1808 xhci_ring_free(xhci, xhci->event_ring); 1809 xhci->event_ring = NULL; 1810 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1811 1812 if (xhci->lpm_command) 1813 xhci_free_command(xhci, xhci->lpm_command); 1814 xhci->lpm_command = NULL; 1815 if (xhci->cmd_ring) 1816 xhci_ring_free(xhci, xhci->cmd_ring); 1817 xhci->cmd_ring = NULL; 1818 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1819 xhci_cleanup_command_queue(xhci); 1820 1821 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1822 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1823 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1824 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1825 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1826 while (!list_empty(ep)) 1827 list_del_init(ep->next); 1828 } 1829 } 1830 1831 for (i = 1; i < MAX_HC_SLOTS; ++i) 1832 xhci_free_virt_device(xhci, i); 1833 1834 dma_pool_destroy(xhci->segment_pool); 1835 xhci->segment_pool = NULL; 1836 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1837 1838 dma_pool_destroy(xhci->device_pool); 1839 xhci->device_pool = NULL; 1840 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1841 1842 dma_pool_destroy(xhci->small_streams_pool); 1843 xhci->small_streams_pool = NULL; 1844 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1845 "Freed small stream array pool"); 1846 1847 dma_pool_destroy(xhci->medium_streams_pool); 1848 xhci->medium_streams_pool = NULL; 1849 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1850 "Freed medium stream array pool"); 1851 1852 if (xhci->dcbaa) 1853 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1854 xhci->dcbaa, xhci->dcbaa->dma); 1855 xhci->dcbaa = NULL; 1856 1857 scratchpad_free(xhci); 1858 1859 if (!xhci->rh_bw) 1860 goto no_bw; 1861 1862 for (i = 0; i < num_ports; i++) { 1863 struct xhci_tt_bw_info *tt, *n; 1864 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1865 list_del(&tt->tt_list); 1866 kfree(tt); 1867 } 1868 } 1869 1870 no_bw: 1871 xhci->cmd_ring_reserved_trbs = 0; 1872 xhci->num_usb2_ports = 0; 1873 xhci->num_usb3_ports = 0; 1874 xhci->num_active_eps = 0; 1875 kfree(xhci->usb2_ports); 1876 kfree(xhci->usb3_ports); 1877 kfree(xhci->port_array); 1878 kfree(xhci->rh_bw); 1879 kfree(xhci->ext_caps); 1880 1881 xhci->usb2_ports = NULL; 1882 xhci->usb3_ports = NULL; 1883 xhci->port_array = NULL; 1884 xhci->rh_bw = NULL; 1885 xhci->ext_caps = NULL; 1886 1887 xhci->page_size = 0; 1888 xhci->page_shift = 0; 1889 xhci->bus_state[0].bus_suspended = 0; 1890 xhci->bus_state[1].bus_suspended = 0; 1891 } 1892 1893 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1894 struct xhci_segment *input_seg, 1895 union xhci_trb *start_trb, 1896 union xhci_trb *end_trb, 1897 dma_addr_t input_dma, 1898 struct xhci_segment *result_seg, 1899 char *test_name, int test_number) 1900 { 1901 unsigned long long start_dma; 1902 unsigned long long end_dma; 1903 struct xhci_segment *seg; 1904 1905 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1906 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1907 1908 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1909 if (seg != result_seg) { 1910 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1911 test_name, test_number); 1912 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1913 "input DMA 0x%llx\n", 1914 input_seg, 1915 (unsigned long long) input_dma); 1916 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1917 "ending TRB %p (0x%llx DMA)\n", 1918 start_trb, start_dma, 1919 end_trb, end_dma); 1920 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1921 result_seg, seg); 1922 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1923 true); 1924 return -1; 1925 } 1926 return 0; 1927 } 1928 1929 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1930 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1931 { 1932 struct { 1933 dma_addr_t input_dma; 1934 struct xhci_segment *result_seg; 1935 } simple_test_vector [] = { 1936 /* A zeroed DMA field should fail */ 1937 { 0, NULL }, 1938 /* One TRB before the ring start should fail */ 1939 { xhci->event_ring->first_seg->dma - 16, NULL }, 1940 /* One byte before the ring start should fail */ 1941 { xhci->event_ring->first_seg->dma - 1, NULL }, 1942 /* Starting TRB should succeed */ 1943 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1944 /* Ending TRB should succeed */ 1945 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1946 xhci->event_ring->first_seg }, 1947 /* One byte after the ring end should fail */ 1948 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1949 /* One TRB after the ring end should fail */ 1950 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1951 /* An address of all ones should fail */ 1952 { (dma_addr_t) (~0), NULL }, 1953 }; 1954 struct { 1955 struct xhci_segment *input_seg; 1956 union xhci_trb *start_trb; 1957 union xhci_trb *end_trb; 1958 dma_addr_t input_dma; 1959 struct xhci_segment *result_seg; 1960 } complex_test_vector [] = { 1961 /* Test feeding a valid DMA address from a different ring */ 1962 { .input_seg = xhci->event_ring->first_seg, 1963 .start_trb = xhci->event_ring->first_seg->trbs, 1964 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1965 .input_dma = xhci->cmd_ring->first_seg->dma, 1966 .result_seg = NULL, 1967 }, 1968 /* Test feeding a valid end TRB from a different ring */ 1969 { .input_seg = xhci->event_ring->first_seg, 1970 .start_trb = xhci->event_ring->first_seg->trbs, 1971 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1972 .input_dma = xhci->cmd_ring->first_seg->dma, 1973 .result_seg = NULL, 1974 }, 1975 /* Test feeding a valid start and end TRB from a different ring */ 1976 { .input_seg = xhci->event_ring->first_seg, 1977 .start_trb = xhci->cmd_ring->first_seg->trbs, 1978 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1979 .input_dma = xhci->cmd_ring->first_seg->dma, 1980 .result_seg = NULL, 1981 }, 1982 /* TRB in this ring, but after this TD */ 1983 { .input_seg = xhci->event_ring->first_seg, 1984 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1985 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1986 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1987 .result_seg = NULL, 1988 }, 1989 /* TRB in this ring, but before this TD */ 1990 { .input_seg = xhci->event_ring->first_seg, 1991 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1992 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1993 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1994 .result_seg = NULL, 1995 }, 1996 /* TRB in this ring, but after this wrapped TD */ 1997 { .input_seg = xhci->event_ring->first_seg, 1998 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1999 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2000 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2001 .result_seg = NULL, 2002 }, 2003 /* TRB in this ring, but before this wrapped TD */ 2004 { .input_seg = xhci->event_ring->first_seg, 2005 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2006 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2007 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2008 .result_seg = NULL, 2009 }, 2010 /* TRB not in this ring, and we have a wrapped TD */ 2011 { .input_seg = xhci->event_ring->first_seg, 2012 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2013 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2014 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2015 .result_seg = NULL, 2016 }, 2017 }; 2018 2019 unsigned int num_tests; 2020 int i, ret; 2021 2022 num_tests = ARRAY_SIZE(simple_test_vector); 2023 for (i = 0; i < num_tests; i++) { 2024 ret = xhci_test_trb_in_td(xhci, 2025 xhci->event_ring->first_seg, 2026 xhci->event_ring->first_seg->trbs, 2027 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2028 simple_test_vector[i].input_dma, 2029 simple_test_vector[i].result_seg, 2030 "Simple", i); 2031 if (ret < 0) 2032 return ret; 2033 } 2034 2035 num_tests = ARRAY_SIZE(complex_test_vector); 2036 for (i = 0; i < num_tests; i++) { 2037 ret = xhci_test_trb_in_td(xhci, 2038 complex_test_vector[i].input_seg, 2039 complex_test_vector[i].start_trb, 2040 complex_test_vector[i].end_trb, 2041 complex_test_vector[i].input_dma, 2042 complex_test_vector[i].result_seg, 2043 "Complex", i); 2044 if (ret < 0) 2045 return ret; 2046 } 2047 xhci_dbg(xhci, "TRB math tests passed.\n"); 2048 return 0; 2049 } 2050 2051 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2052 { 2053 u64 temp; 2054 dma_addr_t deq; 2055 2056 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2057 xhci->event_ring->dequeue); 2058 if (deq == 0 && !in_interrupt()) 2059 xhci_warn(xhci, "WARN something wrong with SW event ring " 2060 "dequeue ptr.\n"); 2061 /* Update HC event ring dequeue pointer */ 2062 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2063 temp &= ERST_PTR_MASK; 2064 /* Don't clear the EHB bit (which is RW1C) because 2065 * there might be more events to service. 2066 */ 2067 temp &= ~ERST_EHB; 2068 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2069 "// Write event ring dequeue pointer, " 2070 "preserving EHB bit"); 2071 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2072 &xhci->ir_set->erst_dequeue); 2073 } 2074 2075 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2076 __le32 __iomem *addr, int max_caps) 2077 { 2078 u32 temp, port_offset, port_count; 2079 int i; 2080 u8 major_revision; 2081 struct xhci_hub *rhub; 2082 2083 temp = readl(addr); 2084 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2085 2086 if (major_revision == 0x03) { 2087 rhub = &xhci->usb3_rhub; 2088 } else if (major_revision <= 0x02) { 2089 rhub = &xhci->usb2_rhub; 2090 } else { 2091 xhci_warn(xhci, "Ignoring unknown port speed, " 2092 "Ext Cap %p, revision = 0x%x\n", 2093 addr, major_revision); 2094 /* Ignoring port protocol we can't understand. FIXME */ 2095 return; 2096 } 2097 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2098 rhub->min_rev = XHCI_EXT_PORT_MINOR(temp); 2099 2100 /* Port offset and count in the third dword, see section 7.2 */ 2101 temp = readl(addr + 2); 2102 port_offset = XHCI_EXT_PORT_OFF(temp); 2103 port_count = XHCI_EXT_PORT_COUNT(temp); 2104 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2105 "Ext Cap %p, port offset = %u, " 2106 "count = %u, revision = 0x%x", 2107 addr, port_offset, port_count, major_revision); 2108 /* Port count includes the current port offset */ 2109 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2110 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2111 return; 2112 2113 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp); 2114 if (rhub->psi_count) { 2115 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi), 2116 GFP_KERNEL); 2117 if (!rhub->psi) 2118 rhub->psi_count = 0; 2119 2120 rhub->psi_uid_count++; 2121 for (i = 0; i < rhub->psi_count; i++) { 2122 rhub->psi[i] = readl(addr + 4 + i); 2123 2124 /* count unique ID values, two consecutive entries can 2125 * have the same ID if link is assymetric 2126 */ 2127 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) != 2128 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1]))) 2129 rhub->psi_uid_count++; 2130 2131 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2132 XHCI_EXT_PORT_PSIV(rhub->psi[i]), 2133 XHCI_EXT_PORT_PSIE(rhub->psi[i]), 2134 XHCI_EXT_PORT_PLT(rhub->psi[i]), 2135 XHCI_EXT_PORT_PFD(rhub->psi[i]), 2136 XHCI_EXT_PORT_LP(rhub->psi[i]), 2137 XHCI_EXT_PORT_PSIM(rhub->psi[i])); 2138 } 2139 } 2140 /* cache usb2 port capabilities */ 2141 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2142 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2143 2144 /* Check the host's USB2 LPM capability */ 2145 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2146 (temp & XHCI_L1C)) { 2147 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2148 "xHCI 0.96: support USB2 software lpm"); 2149 xhci->sw_lpm_support = 1; 2150 } 2151 2152 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2153 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2154 "xHCI 1.0: support USB2 software lpm"); 2155 xhci->sw_lpm_support = 1; 2156 if (temp & XHCI_HLC) { 2157 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2158 "xHCI 1.0: support USB2 hardware lpm"); 2159 xhci->hw_lpm_support = 1; 2160 } 2161 } 2162 2163 port_offset--; 2164 for (i = port_offset; i < (port_offset + port_count); i++) { 2165 /* Duplicate entry. Ignore the port if the revisions differ. */ 2166 if (xhci->port_array[i] != 0) { 2167 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2168 " port %u\n", addr, i); 2169 xhci_warn(xhci, "Port was marked as USB %u, " 2170 "duplicated as USB %u\n", 2171 xhci->port_array[i], major_revision); 2172 /* Only adjust the roothub port counts if we haven't 2173 * found a similar duplicate. 2174 */ 2175 if (xhci->port_array[i] != major_revision && 2176 xhci->port_array[i] != DUPLICATE_ENTRY) { 2177 if (xhci->port_array[i] == 0x03) 2178 xhci->num_usb3_ports--; 2179 else 2180 xhci->num_usb2_ports--; 2181 xhci->port_array[i] = DUPLICATE_ENTRY; 2182 } 2183 /* FIXME: Should we disable the port? */ 2184 continue; 2185 } 2186 xhci->port_array[i] = major_revision; 2187 if (major_revision == 0x03) 2188 xhci->num_usb3_ports++; 2189 else 2190 xhci->num_usb2_ports++; 2191 } 2192 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2193 } 2194 2195 /* 2196 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2197 * specify what speeds each port is supposed to be. We can't count on the port 2198 * speed bits in the PORTSC register being correct until a device is connected, 2199 * but we need to set up the two fake roothubs with the correct number of USB 2200 * 3.0 and USB 2.0 ports at host controller initialization time. 2201 */ 2202 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2203 { 2204 void __iomem *base; 2205 u32 offset; 2206 unsigned int num_ports; 2207 int i, j, port_index; 2208 int cap_count = 0; 2209 u32 cap_start; 2210 2211 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2212 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2213 if (!xhci->port_array) 2214 return -ENOMEM; 2215 2216 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2217 if (!xhci->rh_bw) 2218 return -ENOMEM; 2219 for (i = 0; i < num_ports; i++) { 2220 struct xhci_interval_bw_table *bw_table; 2221 2222 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2223 bw_table = &xhci->rh_bw[i].bw_table; 2224 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2225 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2226 } 2227 base = &xhci->cap_regs->hc_capbase; 2228 2229 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2230 if (!cap_start) { 2231 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2232 return -ENODEV; 2233 } 2234 2235 offset = cap_start; 2236 /* count extended protocol capability entries for later caching */ 2237 while (offset) { 2238 cap_count++; 2239 offset = xhci_find_next_ext_cap(base, offset, 2240 XHCI_EXT_CAPS_PROTOCOL); 2241 } 2242 2243 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2244 if (!xhci->ext_caps) 2245 return -ENOMEM; 2246 2247 offset = cap_start; 2248 2249 while (offset) { 2250 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2251 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports) 2252 break; 2253 offset = xhci_find_next_ext_cap(base, offset, 2254 XHCI_EXT_CAPS_PROTOCOL); 2255 } 2256 2257 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2258 xhci_warn(xhci, "No ports on the roothubs?\n"); 2259 return -ENODEV; 2260 } 2261 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2262 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2263 xhci->num_usb2_ports, xhci->num_usb3_ports); 2264 2265 /* Place limits on the number of roothub ports so that the hub 2266 * descriptors aren't longer than the USB core will allocate. 2267 */ 2268 if (xhci->num_usb3_ports > 15) { 2269 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2270 "Limiting USB 3.0 roothub ports to 15."); 2271 xhci->num_usb3_ports = 15; 2272 } 2273 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2274 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2275 "Limiting USB 2.0 roothub ports to %u.", 2276 USB_MAXCHILDREN); 2277 xhci->num_usb2_ports = USB_MAXCHILDREN; 2278 } 2279 2280 /* 2281 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2282 * Not sure how the USB core will handle a hub with no ports... 2283 */ 2284 if (xhci->num_usb2_ports) { 2285 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2286 xhci->num_usb2_ports, flags); 2287 if (!xhci->usb2_ports) 2288 return -ENOMEM; 2289 2290 port_index = 0; 2291 for (i = 0; i < num_ports; i++) { 2292 if (xhci->port_array[i] == 0x03 || 2293 xhci->port_array[i] == 0 || 2294 xhci->port_array[i] == DUPLICATE_ENTRY) 2295 continue; 2296 2297 xhci->usb2_ports[port_index] = 2298 &xhci->op_regs->port_status_base + 2299 NUM_PORT_REGS*i; 2300 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2301 "USB 2.0 port at index %u, " 2302 "addr = %p", i, 2303 xhci->usb2_ports[port_index]); 2304 port_index++; 2305 if (port_index == xhci->num_usb2_ports) 2306 break; 2307 } 2308 } 2309 if (xhci->num_usb3_ports) { 2310 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2311 xhci->num_usb3_ports, flags); 2312 if (!xhci->usb3_ports) 2313 return -ENOMEM; 2314 2315 port_index = 0; 2316 for (i = 0; i < num_ports; i++) 2317 if (xhci->port_array[i] == 0x03) { 2318 xhci->usb3_ports[port_index] = 2319 &xhci->op_regs->port_status_base + 2320 NUM_PORT_REGS*i; 2321 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2322 "USB 3.0 port at index %u, " 2323 "addr = %p", i, 2324 xhci->usb3_ports[port_index]); 2325 port_index++; 2326 if (port_index == xhci->num_usb3_ports) 2327 break; 2328 } 2329 } 2330 return 0; 2331 } 2332 2333 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2334 { 2335 dma_addr_t dma; 2336 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2337 unsigned int val, val2; 2338 u64 val_64; 2339 struct xhci_segment *seg; 2340 u32 page_size, temp; 2341 int i; 2342 2343 INIT_LIST_HEAD(&xhci->cmd_list); 2344 2345 /* init command timeout timer */ 2346 setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout, 2347 (unsigned long)xhci); 2348 2349 page_size = readl(&xhci->op_regs->page_size); 2350 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2351 "Supported page size register = 0x%x", page_size); 2352 for (i = 0; i < 16; i++) { 2353 if ((0x1 & page_size) != 0) 2354 break; 2355 page_size = page_size >> 1; 2356 } 2357 if (i < 16) 2358 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2359 "Supported page size of %iK", (1 << (i+12)) / 1024); 2360 else 2361 xhci_warn(xhci, "WARN: no supported page size\n"); 2362 /* Use 4K pages, since that's common and the minimum the HC supports */ 2363 xhci->page_shift = 12; 2364 xhci->page_size = 1 << xhci->page_shift; 2365 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2366 "HCD page size set to %iK", xhci->page_size / 1024); 2367 2368 /* 2369 * Program the Number of Device Slots Enabled field in the CONFIG 2370 * register with the max value of slots the HC can handle. 2371 */ 2372 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2373 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2374 "// xHC can handle at most %d device slots.", val); 2375 val2 = readl(&xhci->op_regs->config_reg); 2376 val |= (val2 & ~HCS_SLOTS_MASK); 2377 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2378 "// Setting Max device slots reg = 0x%x.", val); 2379 writel(val, &xhci->op_regs->config_reg); 2380 2381 /* 2382 * Section 5.4.8 - doorbell array must be 2383 * "physically contiguous and 64-byte (cache line) aligned". 2384 */ 2385 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2386 flags); 2387 if (!xhci->dcbaa) 2388 goto fail; 2389 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2390 xhci->dcbaa->dma = dma; 2391 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2392 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2393 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2394 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2395 2396 /* 2397 * Initialize the ring segment pool. The ring must be a contiguous 2398 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2399 * however, the command ring segment needs 64-byte aligned segments 2400 * and our use of dma addresses in the trb_address_map radix tree needs 2401 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2402 */ 2403 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2404 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2405 2406 /* See Table 46 and Note on Figure 55 */ 2407 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2408 2112, 64, xhci->page_size); 2409 if (!xhci->segment_pool || !xhci->device_pool) 2410 goto fail; 2411 2412 /* Linear stream context arrays don't have any boundary restrictions, 2413 * and only need to be 16-byte aligned. 2414 */ 2415 xhci->small_streams_pool = 2416 dma_pool_create("xHCI 256 byte stream ctx arrays", 2417 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2418 xhci->medium_streams_pool = 2419 dma_pool_create("xHCI 1KB stream ctx arrays", 2420 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2421 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2422 * will be allocated with dma_alloc_coherent() 2423 */ 2424 2425 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2426 goto fail; 2427 2428 /* Set up the command ring to have one segments for now. */ 2429 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2430 if (!xhci->cmd_ring) 2431 goto fail; 2432 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2433 "Allocated command ring at %p", xhci->cmd_ring); 2434 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2435 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2436 2437 /* Set the address in the Command Ring Control register */ 2438 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2439 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2440 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2441 xhci->cmd_ring->cycle_state; 2442 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2443 "// Setting command ring address to 0x%x", val); 2444 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2445 xhci_dbg_cmd_ptrs(xhci); 2446 2447 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2448 if (!xhci->lpm_command) 2449 goto fail; 2450 2451 /* Reserve one command ring TRB for disabling LPM. 2452 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2453 * disabling LPM, we only need to reserve one TRB for all devices. 2454 */ 2455 xhci->cmd_ring_reserved_trbs++; 2456 2457 val = readl(&xhci->cap_regs->db_off); 2458 val &= DBOFF_MASK; 2459 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2460 "// Doorbell array is located at offset 0x%x" 2461 " from cap regs base addr", val); 2462 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2463 xhci_dbg_regs(xhci); 2464 xhci_print_run_regs(xhci); 2465 /* Set ir_set to interrupt register set 0 */ 2466 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2467 2468 /* 2469 * Event ring setup: Allocate a normal ring, but also setup 2470 * the event ring segment table (ERST). Section 4.9.3. 2471 */ 2472 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2473 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2474 0, flags); 2475 if (!xhci->event_ring) 2476 goto fail; 2477 if (xhci_check_trb_in_td_math(xhci) < 0) 2478 goto fail; 2479 2480 xhci->erst.entries = dma_alloc_coherent(dev, 2481 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2482 flags); 2483 if (!xhci->erst.entries) 2484 goto fail; 2485 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2486 "// Allocated event ring segment table at 0x%llx", 2487 (unsigned long long)dma); 2488 2489 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2490 xhci->erst.num_entries = ERST_NUM_SEGS; 2491 xhci->erst.erst_dma_addr = dma; 2492 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2493 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", 2494 xhci->erst.num_entries, 2495 xhci->erst.entries, 2496 (unsigned long long)xhci->erst.erst_dma_addr); 2497 2498 /* set ring base address and size for each segment table entry */ 2499 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2500 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2501 entry->seg_addr = cpu_to_le64(seg->dma); 2502 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2503 entry->rsvd = 0; 2504 seg = seg->next; 2505 } 2506 2507 /* set ERST count with the number of entries in the segment table */ 2508 val = readl(&xhci->ir_set->erst_size); 2509 val &= ERST_SIZE_MASK; 2510 val |= ERST_NUM_SEGS; 2511 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2512 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2513 val); 2514 writel(val, &xhci->ir_set->erst_size); 2515 2516 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2517 "// Set ERST entries to point to event ring."); 2518 /* set the segment table base address */ 2519 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2520 "// Set ERST base address for ir_set 0 = 0x%llx", 2521 (unsigned long long)xhci->erst.erst_dma_addr); 2522 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2523 val_64 &= ERST_PTR_MASK; 2524 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2525 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2526 2527 /* Set the event ring dequeue address */ 2528 xhci_set_hc_event_deq(xhci); 2529 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2530 "Wrote ERST address to ir_set 0."); 2531 xhci_print_ir_set(xhci, 0); 2532 2533 /* 2534 * XXX: Might need to set the Interrupter Moderation Register to 2535 * something other than the default (~1ms minimum between interrupts). 2536 * See section 5.5.1.2. 2537 */ 2538 for (i = 0; i < MAX_HC_SLOTS; ++i) 2539 xhci->devs[i] = NULL; 2540 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2541 xhci->bus_state[0].resume_done[i] = 0; 2542 xhci->bus_state[1].resume_done[i] = 0; 2543 /* Only the USB 2.0 completions will ever be used. */ 2544 init_completion(&xhci->bus_state[1].rexit_done[i]); 2545 } 2546 2547 if (scratchpad_alloc(xhci, flags)) 2548 goto fail; 2549 if (xhci_setup_port_arrays(xhci, flags)) 2550 goto fail; 2551 2552 /* Enable USB 3.0 device notifications for function remote wake, which 2553 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2554 * U3 (device suspend). 2555 */ 2556 temp = readl(&xhci->op_regs->dev_notification); 2557 temp &= ~DEV_NOTE_MASK; 2558 temp |= DEV_NOTE_FWAKE; 2559 writel(temp, &xhci->op_regs->dev_notification); 2560 2561 return 0; 2562 2563 fail: 2564 xhci_warn(xhci, "Couldn't initialize memory\n"); 2565 xhci_halt(xhci); 2566 xhci_reset(xhci); 2567 xhci_mem_cleanup(xhci); 2568 return -ENOMEM; 2569 } 2570