xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision e290ed81)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39 	struct xhci_segment *seg;
40 	dma_addr_t	dma;
41 
42 	seg = kzalloc(sizeof *seg, flags);
43 	if (!seg)
44 		return NULL;
45 	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46 
47 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 	if (!seg->trbs) {
49 		kfree(seg);
50 		return NULL;
51 	}
52 	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 			seg->trbs, (unsigned long long)dma);
54 
55 	memset(seg->trbs, 0, SEGMENT_SIZE);
56 	seg->dma = dma;
57 	seg->next = NULL;
58 
59 	return seg;
60 }
61 
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64 	if (!seg)
65 		return;
66 	if (seg->trbs) {
67 		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 				seg->trbs, (unsigned long long)seg->dma);
69 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 		seg->trbs = NULL;
71 	}
72 	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 	kfree(seg);
74 }
75 
76 /*
77  * Make the prev segment point to the next segment.
78  *
79  * Change the last TRB in the prev segment to be a Link TRB which points to the
80  * DMA address of the next segment.  The caller needs to set any Link TRB
81  * related flags, such as End TRB, Toggle Cycle, and no snoop.
82  */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 		struct xhci_segment *next, bool link_trbs)
85 {
86 	u32 val;
87 
88 	if (!prev || !next)
89 		return;
90 	prev->next = next;
91 	if (link_trbs) {
92 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
93 			cpu_to_le64(next->dma);
94 
95 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
97 		val &= ~TRB_TYPE_BITMASK;
98 		val |= TRB_TYPE(TRB_LINK);
99 		/* Always set the chain bit with 0.95 hardware */
100 		if (xhci_link_trb_quirk(xhci))
101 			val |= TRB_CHAIN;
102 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
103 	}
104 	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 			(unsigned long long)prev->dma,
106 			(unsigned long long)next->dma);
107 }
108 
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
111 {
112 	struct xhci_segment *seg;
113 	struct xhci_segment *first_seg;
114 
115 	if (!ring || !ring->first_seg)
116 		return;
117 	first_seg = ring->first_seg;
118 	seg = first_seg->next;
119 	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
120 	while (seg != first_seg) {
121 		struct xhci_segment *next = seg->next;
122 		xhci_segment_free(xhci, seg);
123 		seg = next;
124 	}
125 	xhci_segment_free(xhci, first_seg);
126 	ring->first_seg = NULL;
127 	kfree(ring);
128 }
129 
130 static void xhci_initialize_ring_info(struct xhci_ring *ring)
131 {
132 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
133 	ring->enqueue = ring->first_seg->trbs;
134 	ring->enq_seg = ring->first_seg;
135 	ring->dequeue = ring->enqueue;
136 	ring->deq_seg = ring->first_seg;
137 	/* The ring is initialized to 0. The producer must write 1 to the cycle
138 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
139 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 	 */
141 	ring->cycle_state = 1;
142 	/* Not necessary for new rings, but needed for re-initialized rings */
143 	ring->enq_updates = 0;
144 	ring->deq_updates = 0;
145 }
146 
147 /**
148  * Create a new ring with zero or more segments.
149  *
150  * Link each segment together into a ring.
151  * Set the end flag and the cycle toggle bit on the last segment.
152  * See section 4.9.1 and figures 15 and 16.
153  */
154 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
155 		unsigned int num_segs, bool link_trbs, gfp_t flags)
156 {
157 	struct xhci_ring	*ring;
158 	struct xhci_segment	*prev;
159 
160 	ring = kzalloc(sizeof *(ring), flags);
161 	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
162 	if (!ring)
163 		return NULL;
164 
165 	INIT_LIST_HEAD(&ring->td_list);
166 	if (num_segs == 0)
167 		return ring;
168 
169 	ring->first_seg = xhci_segment_alloc(xhci, flags);
170 	if (!ring->first_seg)
171 		goto fail;
172 	num_segs--;
173 
174 	prev = ring->first_seg;
175 	while (num_segs > 0) {
176 		struct xhci_segment	*next;
177 
178 		next = xhci_segment_alloc(xhci, flags);
179 		if (!next)
180 			goto fail;
181 		xhci_link_segments(xhci, prev, next, link_trbs);
182 
183 		prev = next;
184 		num_segs--;
185 	}
186 	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187 
188 	if (link_trbs) {
189 		/* See section 4.9.2.1 and 6.4.4.1 */
190 		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
191 			cpu_to_le32(LINK_TOGGLE);
192 		xhci_dbg(xhci, "Wrote link toggle flag to"
193 				" segment %p (virtual), 0x%llx (DMA)\n",
194 				prev, (unsigned long long)prev->dma);
195 	}
196 	xhci_initialize_ring_info(ring);
197 	return ring;
198 
199 fail:
200 	xhci_ring_free(xhci, ring);
201 	return NULL;
202 }
203 
204 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
205 		struct xhci_virt_device *virt_dev,
206 		unsigned int ep_index)
207 {
208 	int rings_cached;
209 
210 	rings_cached = virt_dev->num_rings_cached;
211 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
212 		virt_dev->ring_cache[rings_cached] =
213 			virt_dev->eps[ep_index].ring;
214 		virt_dev->num_rings_cached++;
215 		xhci_dbg(xhci, "Cached old ring, "
216 				"%d ring%s cached\n",
217 				virt_dev->num_rings_cached,
218 				(virt_dev->num_rings_cached > 1) ? "s" : "");
219 	} else {
220 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
221 		xhci_dbg(xhci, "Ring cache full (%d rings), "
222 				"freeing ring\n",
223 				virt_dev->num_rings_cached);
224 	}
225 	virt_dev->eps[ep_index].ring = NULL;
226 }
227 
228 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229  * pointers to the beginning of the ring.
230  */
231 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
232 		struct xhci_ring *ring)
233 {
234 	struct xhci_segment	*seg = ring->first_seg;
235 	do {
236 		memset(seg->trbs, 0,
237 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
238 		/* All endpoint rings have link TRBs */
239 		xhci_link_segments(xhci, seg, seg->next, 1);
240 		seg = seg->next;
241 	} while (seg != ring->first_seg);
242 	xhci_initialize_ring_info(ring);
243 	/* td list should be empty since all URBs have been cancelled,
244 	 * but just in case...
245 	 */
246 	INIT_LIST_HEAD(&ring->td_list);
247 }
248 
249 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250 
251 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
252 						    int type, gfp_t flags)
253 {
254 	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
255 	if (!ctx)
256 		return NULL;
257 
258 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
259 	ctx->type = type;
260 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
261 	if (type == XHCI_CTX_TYPE_INPUT)
262 		ctx->size += CTX_SIZE(xhci->hcc_params);
263 
264 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
265 	memset(ctx->bytes, 0, ctx->size);
266 	return ctx;
267 }
268 
269 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
270 			     struct xhci_container_ctx *ctx)
271 {
272 	if (!ctx)
273 		return;
274 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
275 	kfree(ctx);
276 }
277 
278 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
279 					      struct xhci_container_ctx *ctx)
280 {
281 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
282 	return (struct xhci_input_control_ctx *)ctx->bytes;
283 }
284 
285 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
286 					struct xhci_container_ctx *ctx)
287 {
288 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
289 		return (struct xhci_slot_ctx *)ctx->bytes;
290 
291 	return (struct xhci_slot_ctx *)
292 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
293 }
294 
295 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
296 				    struct xhci_container_ctx *ctx,
297 				    unsigned int ep_index)
298 {
299 	/* increment ep index by offset of start of ep ctx array */
300 	ep_index++;
301 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
302 		ep_index++;
303 
304 	return (struct xhci_ep_ctx *)
305 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
306 }
307 
308 
309 /***************** Streams structures manipulation *************************/
310 
311 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
312 		unsigned int num_stream_ctxs,
313 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
314 {
315 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
316 
317 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
318 		pci_free_consistent(pdev,
319 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
320 				stream_ctx, dma);
321 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
322 		return dma_pool_free(xhci->small_streams_pool,
323 				stream_ctx, dma);
324 	else
325 		return dma_pool_free(xhci->medium_streams_pool,
326 				stream_ctx, dma);
327 }
328 
329 /*
330  * The stream context array for each endpoint with bulk streams enabled can
331  * vary in size, based on:
332  *  - how many streams the endpoint supports,
333  *  - the maximum primary stream array size the host controller supports,
334  *  - and how many streams the device driver asks for.
335  *
336  * The stream context array must be a power of 2, and can be as small as
337  * 64 bytes or as large as 1MB.
338  */
339 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
340 		unsigned int num_stream_ctxs, dma_addr_t *dma,
341 		gfp_t mem_flags)
342 {
343 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344 
345 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
346 		return pci_alloc_consistent(pdev,
347 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
348 				dma);
349 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
350 		return dma_pool_alloc(xhci->small_streams_pool,
351 				mem_flags, dma);
352 	else
353 		return dma_pool_alloc(xhci->medium_streams_pool,
354 				mem_flags, dma);
355 }
356 
357 struct xhci_ring *xhci_dma_to_transfer_ring(
358 		struct xhci_virt_ep *ep,
359 		u64 address)
360 {
361 	if (ep->ep_state & EP_HAS_STREAMS)
362 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
363 				address >> SEGMENT_SHIFT);
364 	return ep->ring;
365 }
366 
367 /* Only use this when you know stream_info is valid */
368 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369 static struct xhci_ring *dma_to_stream_ring(
370 		struct xhci_stream_info *stream_info,
371 		u64 address)
372 {
373 	return radix_tree_lookup(&stream_info->trb_address_map,
374 			address >> SEGMENT_SHIFT);
375 }
376 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
377 
378 struct xhci_ring *xhci_stream_id_to_ring(
379 		struct xhci_virt_device *dev,
380 		unsigned int ep_index,
381 		unsigned int stream_id)
382 {
383 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
384 
385 	if (stream_id == 0)
386 		return ep->ring;
387 	if (!ep->stream_info)
388 		return NULL;
389 
390 	if (stream_id > ep->stream_info->num_streams)
391 		return NULL;
392 	return ep->stream_info->stream_rings[stream_id];
393 }
394 
395 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
397 		unsigned int num_streams,
398 		struct xhci_stream_info *stream_info)
399 {
400 	u32 cur_stream;
401 	struct xhci_ring *cur_ring;
402 	u64 addr;
403 
404 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
405 		struct xhci_ring *mapped_ring;
406 		int trb_size = sizeof(union xhci_trb);
407 
408 		cur_ring = stream_info->stream_rings[cur_stream];
409 		for (addr = cur_ring->first_seg->dma;
410 				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
411 				addr += trb_size) {
412 			mapped_ring = dma_to_stream_ring(stream_info, addr);
413 			if (cur_ring != mapped_ring) {
414 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
415 						"didn't map to stream ID %u; "
416 						"mapped to ring %p\n",
417 						(unsigned long long) addr,
418 						cur_stream,
419 						mapped_ring);
420 				return -EINVAL;
421 			}
422 		}
423 		/* One TRB after the end of the ring segment shouldn't return a
424 		 * pointer to the current ring (although it may be a part of a
425 		 * different ring).
426 		 */
427 		mapped_ring = dma_to_stream_ring(stream_info, addr);
428 		if (mapped_ring != cur_ring) {
429 			/* One TRB before should also fail */
430 			addr = cur_ring->first_seg->dma - trb_size;
431 			mapped_ring = dma_to_stream_ring(stream_info, addr);
432 		}
433 		if (mapped_ring == cur_ring) {
434 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
435 					"mapped to valid stream ID %u; "
436 					"mapped ring = %p\n",
437 					(unsigned long long) addr,
438 					cur_stream,
439 					mapped_ring);
440 			return -EINVAL;
441 		}
442 	}
443 	return 0;
444 }
445 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
446 
447 /*
448  * Change an endpoint's internal structure so it supports stream IDs.  The
449  * number of requested streams includes stream 0, which cannot be used by device
450  * drivers.
451  *
452  * The number of stream contexts in the stream context array may be bigger than
453  * the number of streams the driver wants to use.  This is because the number of
454  * stream context array entries must be a power of two.
455  *
456  * We need a radix tree for mapping physical addresses of TRBs to which stream
457  * ID they belong to.  We need to do this because the host controller won't tell
458  * us which stream ring the TRB came from.  We could store the stream ID in an
459  * event data TRB, but that doesn't help us for the cancellation case, since the
460  * endpoint may stop before it reaches that event data TRB.
461  *
462  * The radix tree maps the upper portion of the TRB DMA address to a ring
463  * segment that has the same upper portion of DMA addresses.  For example, say I
464  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
465  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
466  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
467  * pass the radix tree a key to get the right stream ID:
468  *
469  * 	0x10c90fff >> 10 = 0x43243
470  * 	0x10c912c0 >> 10 = 0x43244
471  * 	0x10c91400 >> 10 = 0x43245
472  *
473  * Obviously, only those TRBs with DMA addresses that are within the segment
474  * will make the radix tree return the stream ID for that ring.
475  *
476  * Caveats for the radix tree:
477  *
478  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
479  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
481  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
483  * extended systems (where the DMA address can be bigger than 32-bits),
484  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
485  */
486 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
487 		unsigned int num_stream_ctxs,
488 		unsigned int num_streams, gfp_t mem_flags)
489 {
490 	struct xhci_stream_info *stream_info;
491 	u32 cur_stream;
492 	struct xhci_ring *cur_ring;
493 	unsigned long key;
494 	u64 addr;
495 	int ret;
496 
497 	xhci_dbg(xhci, "Allocating %u streams and %u "
498 			"stream context array entries.\n",
499 			num_streams, num_stream_ctxs);
500 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
501 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
502 		return NULL;
503 	}
504 	xhci->cmd_ring_reserved_trbs++;
505 
506 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
507 	if (!stream_info)
508 		goto cleanup_trbs;
509 
510 	stream_info->num_streams = num_streams;
511 	stream_info->num_stream_ctxs = num_stream_ctxs;
512 
513 	/* Initialize the array of virtual pointers to stream rings. */
514 	stream_info->stream_rings = kzalloc(
515 			sizeof(struct xhci_ring *)*num_streams,
516 			mem_flags);
517 	if (!stream_info->stream_rings)
518 		goto cleanup_info;
519 
520 	/* Initialize the array of DMA addresses for stream rings for the HW. */
521 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
522 			num_stream_ctxs, &stream_info->ctx_array_dma,
523 			mem_flags);
524 	if (!stream_info->stream_ctx_array)
525 		goto cleanup_ctx;
526 	memset(stream_info->stream_ctx_array, 0,
527 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
528 
529 	/* Allocate everything needed to free the stream rings later */
530 	stream_info->free_streams_command =
531 		xhci_alloc_command(xhci, true, true, mem_flags);
532 	if (!stream_info->free_streams_command)
533 		goto cleanup_ctx;
534 
535 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
536 
537 	/* Allocate rings for all the streams that the driver will use,
538 	 * and add their segment DMA addresses to the radix tree.
539 	 * Stream 0 is reserved.
540 	 */
541 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
542 		stream_info->stream_rings[cur_stream] =
543 			xhci_ring_alloc(xhci, 1, true, mem_flags);
544 		cur_ring = stream_info->stream_rings[cur_stream];
545 		if (!cur_ring)
546 			goto cleanup_rings;
547 		cur_ring->stream_id = cur_stream;
548 		/* Set deq ptr, cycle bit, and stream context type */
549 		addr = cur_ring->first_seg->dma |
550 			SCT_FOR_CTX(SCT_PRI_TR) |
551 			cur_ring->cycle_state;
552 		stream_info->stream_ctx_array[cur_stream].stream_ring =
553 			cpu_to_le64(addr);
554 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
555 				cur_stream, (unsigned long long) addr);
556 
557 		key = (unsigned long)
558 			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
559 		ret = radix_tree_insert(&stream_info->trb_address_map,
560 				key, cur_ring);
561 		if (ret) {
562 			xhci_ring_free(xhci, cur_ring);
563 			stream_info->stream_rings[cur_stream] = NULL;
564 			goto cleanup_rings;
565 		}
566 	}
567 	/* Leave the other unused stream ring pointers in the stream context
568 	 * array initialized to zero.  This will cause the xHC to give us an
569 	 * error if the device asks for a stream ID we don't have setup (if it
570 	 * was any other way, the host controller would assume the ring is
571 	 * "empty" and wait forever for data to be queued to that stream ID).
572 	 */
573 #if XHCI_DEBUG
574 	/* Do a little test on the radix tree to make sure it returns the
575 	 * correct values.
576 	 */
577 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
578 		goto cleanup_rings;
579 #endif
580 
581 	return stream_info;
582 
583 cleanup_rings:
584 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
585 		cur_ring = stream_info->stream_rings[cur_stream];
586 		if (cur_ring) {
587 			addr = cur_ring->first_seg->dma;
588 			radix_tree_delete(&stream_info->trb_address_map,
589 					addr >> SEGMENT_SHIFT);
590 			xhci_ring_free(xhci, cur_ring);
591 			stream_info->stream_rings[cur_stream] = NULL;
592 		}
593 	}
594 	xhci_free_command(xhci, stream_info->free_streams_command);
595 cleanup_ctx:
596 	kfree(stream_info->stream_rings);
597 cleanup_info:
598 	kfree(stream_info);
599 cleanup_trbs:
600 	xhci->cmd_ring_reserved_trbs--;
601 	return NULL;
602 }
603 /*
604  * Sets the MaxPStreams field and the Linear Stream Array field.
605  * Sets the dequeue pointer to the stream context array.
606  */
607 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
608 		struct xhci_ep_ctx *ep_ctx,
609 		struct xhci_stream_info *stream_info)
610 {
611 	u32 max_primary_streams;
612 	/* MaxPStreams is the number of stream context array entries, not the
613 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
614 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
615 	 */
616 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
617 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
618 			1 << (max_primary_streams + 1));
619 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
620 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
621 				       | EP_HAS_LSA);
622 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
623 }
624 
625 /*
626  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628  * not at the beginning of the ring).
629  */
630 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
631 		struct xhci_ep_ctx *ep_ctx,
632 		struct xhci_virt_ep *ep)
633 {
634 	dma_addr_t addr;
635 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
636 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
637 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
638 }
639 
640 /* Frees all stream contexts associated with the endpoint,
641  *
642  * Caller should fix the endpoint context streams fields.
643  */
644 void xhci_free_stream_info(struct xhci_hcd *xhci,
645 		struct xhci_stream_info *stream_info)
646 {
647 	int cur_stream;
648 	struct xhci_ring *cur_ring;
649 	dma_addr_t addr;
650 
651 	if (!stream_info)
652 		return;
653 
654 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
655 			cur_stream++) {
656 		cur_ring = stream_info->stream_rings[cur_stream];
657 		if (cur_ring) {
658 			addr = cur_ring->first_seg->dma;
659 			radix_tree_delete(&stream_info->trb_address_map,
660 					addr >> SEGMENT_SHIFT);
661 			xhci_ring_free(xhci, cur_ring);
662 			stream_info->stream_rings[cur_stream] = NULL;
663 		}
664 	}
665 	xhci_free_command(xhci, stream_info->free_streams_command);
666 	xhci->cmd_ring_reserved_trbs--;
667 	if (stream_info->stream_ctx_array)
668 		xhci_free_stream_ctx(xhci,
669 				stream_info->num_stream_ctxs,
670 				stream_info->stream_ctx_array,
671 				stream_info->ctx_array_dma);
672 
673 	if (stream_info)
674 		kfree(stream_info->stream_rings);
675 	kfree(stream_info);
676 }
677 
678 
679 /***************** Device context manipulation *************************/
680 
681 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
682 		struct xhci_virt_ep *ep)
683 {
684 	init_timer(&ep->stop_cmd_timer);
685 	ep->stop_cmd_timer.data = (unsigned long) ep;
686 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
687 	ep->xhci = xhci;
688 }
689 
690 /* All the xhci_tds in the ring's TD list should be freed at this point */
691 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
692 {
693 	struct xhci_virt_device *dev;
694 	int i;
695 
696 	/* Slot ID 0 is reserved */
697 	if (slot_id == 0 || !xhci->devs[slot_id])
698 		return;
699 
700 	dev = xhci->devs[slot_id];
701 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
702 	if (!dev)
703 		return;
704 
705 	for (i = 0; i < 31; ++i) {
706 		if (dev->eps[i].ring)
707 			xhci_ring_free(xhci, dev->eps[i].ring);
708 		if (dev->eps[i].stream_info)
709 			xhci_free_stream_info(xhci,
710 					dev->eps[i].stream_info);
711 	}
712 
713 	if (dev->ring_cache) {
714 		for (i = 0; i < dev->num_rings_cached; i++)
715 			xhci_ring_free(xhci, dev->ring_cache[i]);
716 		kfree(dev->ring_cache);
717 	}
718 
719 	if (dev->in_ctx)
720 		xhci_free_container_ctx(xhci, dev->in_ctx);
721 	if (dev->out_ctx)
722 		xhci_free_container_ctx(xhci, dev->out_ctx);
723 
724 	kfree(xhci->devs[slot_id]);
725 	xhci->devs[slot_id] = NULL;
726 }
727 
728 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
729 		struct usb_device *udev, gfp_t flags)
730 {
731 	struct xhci_virt_device *dev;
732 	int i;
733 
734 	/* Slot ID 0 is reserved */
735 	if (slot_id == 0 || xhci->devs[slot_id]) {
736 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
737 		return 0;
738 	}
739 
740 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
741 	if (!xhci->devs[slot_id])
742 		return 0;
743 	dev = xhci->devs[slot_id];
744 
745 	/* Allocate the (output) device context that will be used in the HC. */
746 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
747 	if (!dev->out_ctx)
748 		goto fail;
749 
750 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
751 			(unsigned long long)dev->out_ctx->dma);
752 
753 	/* Allocate the (input) device context for address device command */
754 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
755 	if (!dev->in_ctx)
756 		goto fail;
757 
758 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
759 			(unsigned long long)dev->in_ctx->dma);
760 
761 	/* Initialize the cancellation list and watchdog timers for each ep */
762 	for (i = 0; i < 31; i++) {
763 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
764 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
765 	}
766 
767 	/* Allocate endpoint 0 ring */
768 	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
769 	if (!dev->eps[0].ring)
770 		goto fail;
771 
772 	/* Allocate pointers to the ring cache */
773 	dev->ring_cache = kzalloc(
774 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
775 			flags);
776 	if (!dev->ring_cache)
777 		goto fail;
778 	dev->num_rings_cached = 0;
779 
780 	init_completion(&dev->cmd_completion);
781 	INIT_LIST_HEAD(&dev->cmd_list);
782 	dev->udev = udev;
783 
784 	/* Point to output device context in dcbaa. */
785 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
786 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
787 		 slot_id,
788 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
789 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
790 
791 	return 1;
792 fail:
793 	xhci_free_virt_device(xhci, slot_id);
794 	return 0;
795 }
796 
797 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
798 		struct usb_device *udev)
799 {
800 	struct xhci_virt_device *virt_dev;
801 	struct xhci_ep_ctx	*ep0_ctx;
802 	struct xhci_ring	*ep_ring;
803 
804 	virt_dev = xhci->devs[udev->slot_id];
805 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
806 	ep_ring = virt_dev->eps[0].ring;
807 	/*
808 	 * FIXME we don't keep track of the dequeue pointer very well after a
809 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
810 	 * host to our enqueue pointer.  This should only be called after a
811 	 * configured device has reset, so all control transfers should have
812 	 * been completed or cancelled before the reset.
813 	 */
814 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
815 							ep_ring->enqueue)
816 				   | ep_ring->cycle_state);
817 }
818 
819 /*
820  * The xHCI roothub may have ports of differing speeds in any order in the port
821  * status registers.  xhci->port_array provides an array of the port speed for
822  * each offset into the port status registers.
823  *
824  * The xHCI hardware wants to know the roothub port number that the USB device
825  * is attached to (or the roothub port its ancestor hub is attached to).  All we
826  * know is the index of that port under either the USB 2.0 or the USB 3.0
827  * roothub, but that doesn't give us the real index into the HW port status
828  * registers.  Scan through the xHCI roothub port array, looking for the Nth
829  * entry of the correct port speed.  Return the port number of that entry.
830  */
831 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
832 		struct usb_device *udev)
833 {
834 	struct usb_device *top_dev;
835 	unsigned int num_similar_speed_ports;
836 	unsigned int faked_port_num;
837 	int i;
838 
839 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
840 			top_dev = top_dev->parent)
841 		/* Found device below root hub */;
842 	faked_port_num = top_dev->portnum;
843 	for (i = 0, num_similar_speed_ports = 0;
844 			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
845 		u8 port_speed = xhci->port_array[i];
846 
847 		/*
848 		 * Skip ports that don't have known speeds, or have duplicate
849 		 * Extended Capabilities port speed entries.
850 		 */
851 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
852 			continue;
853 
854 		/*
855 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
856 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
857 		 * matches the device speed, it's a similar speed port.
858 		 */
859 		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
860 			num_similar_speed_ports++;
861 		if (num_similar_speed_ports == faked_port_num)
862 			/* Roothub ports are numbered from 1 to N */
863 			return i+1;
864 	}
865 	return 0;
866 }
867 
868 /* Setup an xHCI virtual device for a Set Address command */
869 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
870 {
871 	struct xhci_virt_device *dev;
872 	struct xhci_ep_ctx	*ep0_ctx;
873 	struct xhci_slot_ctx    *slot_ctx;
874 	struct xhci_input_control_ctx *ctrl_ctx;
875 	u32			port_num;
876 	struct usb_device *top_dev;
877 
878 	dev = xhci->devs[udev->slot_id];
879 	/* Slot ID 0 is reserved */
880 	if (udev->slot_id == 0 || !dev) {
881 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
882 				udev->slot_id);
883 		return -EINVAL;
884 	}
885 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
886 	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
887 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
888 
889 	/* 2) New slot context and endpoint 0 context are valid*/
890 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
891 
892 	/* 3) Only the control endpoint is valid - one endpoint context */
893 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
894 	switch (udev->speed) {
895 	case USB_SPEED_SUPER:
896 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
897 		break;
898 	case USB_SPEED_HIGH:
899 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
900 		break;
901 	case USB_SPEED_FULL:
902 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
903 		break;
904 	case USB_SPEED_LOW:
905 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
906 		break;
907 	case USB_SPEED_WIRELESS:
908 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909 		return -EINVAL;
910 		break;
911 	default:
912 		/* Speed was set earlier, this shouldn't happen. */
913 		BUG();
914 	}
915 	/* Find the root hub port this device is under */
916 	port_num = xhci_find_real_port_number(xhci, udev);
917 	if (!port_num)
918 		return -EINVAL;
919 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
920 	/* Set the port number in the virtual_device to the faked port number */
921 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922 			top_dev = top_dev->parent)
923 		/* Found device below root hub */;
924 	dev->port = top_dev->portnum;
925 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927 
928 	/* Is this a LS/FS device under an external HS hub? */
929 	if (udev->tt && udev->tt->hub->parent) {
930 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
931 						(udev->ttport << 8));
932 		if (udev->tt->multi)
933 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
934 	}
935 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937 
938 	/* Step 4 - ring already allocated */
939 	/* Step 5 */
940 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
941 	/*
942 	 * XXX: Not sure about wireless USB devices.
943 	 */
944 	switch (udev->speed) {
945 	case USB_SPEED_SUPER:
946 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
947 		break;
948 	case USB_SPEED_HIGH:
949 	/* USB core guesses at a 64-byte max packet first for FS devices */
950 	case USB_SPEED_FULL:
951 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
952 		break;
953 	case USB_SPEED_LOW:
954 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
955 		break;
956 	case USB_SPEED_WIRELESS:
957 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958 		return -EINVAL;
959 		break;
960 	default:
961 		/* New speed? */
962 		BUG();
963 	}
964 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
966 
967 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
968 				   dev->eps[0].ring->cycle_state);
969 
970 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
971 
972 	return 0;
973 }
974 
975 /*
976  * Convert interval expressed as 2^(bInterval - 1) == interval into
977  * straight exponent value 2^n == interval.
978  *
979  */
980 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
981 		struct usb_host_endpoint *ep)
982 {
983 	unsigned int interval;
984 
985 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
986 	if (interval != ep->desc.bInterval - 1)
987 		dev_warn(&udev->dev,
988 			 "ep %#x - rounding interval to %d %sframes\n",
989 			 ep->desc.bEndpointAddress,
990 			 1 << interval,
991 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
992 
993 	if (udev->speed == USB_SPEED_FULL) {
994 		/*
995 		 * Full speed isoc endpoints specify interval in frames,
996 		 * not microframes. We are using microframes everywhere,
997 		 * so adjust accordingly.
998 		 */
999 		interval += 3;	/* 1 frame = 2^3 uframes */
1000 	}
1001 
1002 	return interval;
1003 }
1004 
1005 /*
1006  * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007  * microframes, rounded down to nearest power of 2.
1008  */
1009 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1010 		struct usb_host_endpoint *ep)
1011 {
1012 	unsigned int interval;
1013 
1014 	interval = fls(8 * ep->desc.bInterval) - 1;
1015 	interval = clamp_val(interval, 3, 10);
1016 	if ((1 << interval) != 8 * ep->desc.bInterval)
1017 		dev_warn(&udev->dev,
1018 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019 			 ep->desc.bEndpointAddress,
1020 			 1 << interval,
1021 			 8 * ep->desc.bInterval);
1022 
1023 	return interval;
1024 }
1025 
1026 /* Return the polling or NAK interval.
1027  *
1028  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1029  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1030  *
1031  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1032  * is set to 0.
1033  */
1034 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1035 		struct usb_host_endpoint *ep)
1036 {
1037 	unsigned int interval = 0;
1038 
1039 	switch (udev->speed) {
1040 	case USB_SPEED_HIGH:
1041 		/* Max NAK rate */
1042 		if (usb_endpoint_xfer_control(&ep->desc) ||
1043 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1044 			interval = ep->desc.bInterval;
1045 			break;
1046 		}
1047 		/* Fall through - SS and HS isoc/int have same decoding */
1048 
1049 	case USB_SPEED_SUPER:
1050 		if (usb_endpoint_xfer_int(&ep->desc) ||
1051 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1052 			interval = xhci_parse_exponent_interval(udev, ep);
1053 		}
1054 		break;
1055 
1056 	case USB_SPEED_FULL:
1057 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1058 			interval = xhci_parse_exponent_interval(udev, ep);
1059 			break;
1060 		}
1061 		/*
1062 		 * Fall through for interrupt endpoint interval decoding
1063 		 * since it uses the same rules as low speed interrupt
1064 		 * endpoints.
1065 		 */
1066 
1067 	case USB_SPEED_LOW:
1068 		if (usb_endpoint_xfer_int(&ep->desc) ||
1069 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1070 
1071 			interval = xhci_parse_frame_interval(udev, ep);
1072 		}
1073 		break;
1074 
1075 	default:
1076 		BUG();
1077 	}
1078 	return EP_INTERVAL(interval);
1079 }
1080 
1081 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082  * High speed endpoint descriptors can define "the number of additional
1083  * transaction opportunities per microframe", but that goes in the Max Burst
1084  * endpoint context field.
1085  */
1086 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1087 		struct usb_host_endpoint *ep)
1088 {
1089 	if (udev->speed != USB_SPEED_SUPER ||
1090 			!usb_endpoint_xfer_isoc(&ep->desc))
1091 		return 0;
1092 	return ep->ss_ep_comp.bmAttributes;
1093 }
1094 
1095 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1096 		struct usb_host_endpoint *ep)
1097 {
1098 	int in;
1099 	u32 type;
1100 
1101 	in = usb_endpoint_dir_in(&ep->desc);
1102 	if (usb_endpoint_xfer_control(&ep->desc)) {
1103 		type = EP_TYPE(CTRL_EP);
1104 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1105 		if (in)
1106 			type = EP_TYPE(BULK_IN_EP);
1107 		else
1108 			type = EP_TYPE(BULK_OUT_EP);
1109 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1110 		if (in)
1111 			type = EP_TYPE(ISOC_IN_EP);
1112 		else
1113 			type = EP_TYPE(ISOC_OUT_EP);
1114 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1115 		if (in)
1116 			type = EP_TYPE(INT_IN_EP);
1117 		else
1118 			type = EP_TYPE(INT_OUT_EP);
1119 	} else {
1120 		BUG();
1121 	}
1122 	return type;
1123 }
1124 
1125 /* Return the maximum endpoint service interval time (ESIT) payload.
1126  * Basically, this is the maxpacket size, multiplied by the burst size
1127  * and mult size.
1128  */
1129 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1130 		struct usb_device *udev,
1131 		struct usb_host_endpoint *ep)
1132 {
1133 	int max_burst;
1134 	int max_packet;
1135 
1136 	/* Only applies for interrupt or isochronous endpoints */
1137 	if (usb_endpoint_xfer_control(&ep->desc) ||
1138 			usb_endpoint_xfer_bulk(&ep->desc))
1139 		return 0;
1140 
1141 	if (udev->speed == USB_SPEED_SUPER)
1142 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1143 
1144 	max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1145 	max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
1146 	/* A 0 in max burst means 1 transfer per ESIT */
1147 	return max_packet * (max_burst + 1);
1148 }
1149 
1150 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1151  * Drivers will have to call usb_alloc_streams() to do that.
1152  */
1153 int xhci_endpoint_init(struct xhci_hcd *xhci,
1154 		struct xhci_virt_device *virt_dev,
1155 		struct usb_device *udev,
1156 		struct usb_host_endpoint *ep,
1157 		gfp_t mem_flags)
1158 {
1159 	unsigned int ep_index;
1160 	struct xhci_ep_ctx *ep_ctx;
1161 	struct xhci_ring *ep_ring;
1162 	unsigned int max_packet;
1163 	unsigned int max_burst;
1164 	u32 max_esit_payload;
1165 
1166 	ep_index = xhci_get_endpoint_index(&ep->desc);
1167 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1168 
1169 	/* Set up the endpoint ring */
1170 	/*
1171 	 * Isochronous endpoint ring needs bigger size because one isoc URB
1172 	 * carries multiple packets and it will insert multiple tds to the
1173 	 * ring.
1174 	 * This should be replaced with dynamic ring resizing in the future.
1175 	 */
1176 	if (usb_endpoint_xfer_isoc(&ep->desc))
1177 		virt_dev->eps[ep_index].new_ring =
1178 			xhci_ring_alloc(xhci, 8, true, mem_flags);
1179 	else
1180 		virt_dev->eps[ep_index].new_ring =
1181 			xhci_ring_alloc(xhci, 1, true, mem_flags);
1182 	if (!virt_dev->eps[ep_index].new_ring) {
1183 		/* Attempt to use the ring cache */
1184 		if (virt_dev->num_rings_cached == 0)
1185 			return -ENOMEM;
1186 		virt_dev->eps[ep_index].new_ring =
1187 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1188 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1189 		virt_dev->num_rings_cached--;
1190 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1191 	}
1192 	virt_dev->eps[ep_index].skip = false;
1193 	ep_ring = virt_dev->eps[ep_index].new_ring;
1194 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1195 
1196 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1197 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1198 
1199 	/* FIXME dig Mult and streams info out of ep companion desc */
1200 
1201 	/* Allow 3 retries for everything but isoc;
1202 	 * CErr shall be set to 0 for Isoch endpoints.
1203 	 */
1204 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1205 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1206 	else
1207 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1208 
1209 	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1210 
1211 	/* Set the max packet size and max burst */
1212 	switch (udev->speed) {
1213 	case USB_SPEED_SUPER:
1214 		max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1215 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1216 		/* dig out max burst from ep companion desc */
1217 		max_packet = ep->ss_ep_comp.bMaxBurst;
1218 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1219 		break;
1220 	case USB_SPEED_HIGH:
1221 		/* bits 11:12 specify the number of additional transaction
1222 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1223 		 */
1224 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1225 				usb_endpoint_xfer_int(&ep->desc)) {
1226 			max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1227 				     & 0x1800) >> 11;
1228 			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1229 		}
1230 		/* Fall through */
1231 	case USB_SPEED_FULL:
1232 	case USB_SPEED_LOW:
1233 		max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1234 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1235 		break;
1236 	default:
1237 		BUG();
1238 	}
1239 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1240 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1241 
1242 	/*
1243 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1244 	 * endpoints, as the driver gives us no clue how big each scatter gather
1245 	 * list entry (or buffer) is going to be.
1246 	 *
1247 	 * For isochronous and interrupt endpoints, we set it to the max
1248 	 * available, until we have new API in the USB core to allow drivers to
1249 	 * declare how much bandwidth they actually need.
1250 	 *
1251 	 * Normally, it would be calculated by taking the total of the buffer
1252 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1254 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1255 	 * transfers, we're basically dividing by 1.
1256 	 *
1257 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1258 	 * be set to 8 for control endpoints.
1259 	 */
1260 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1261 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1262 	else
1263 		ep_ctx->tx_info |=
1264 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1265 
1266 	/* FIXME Debug endpoint context */
1267 	return 0;
1268 }
1269 
1270 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1271 		struct xhci_virt_device *virt_dev,
1272 		struct usb_host_endpoint *ep)
1273 {
1274 	unsigned int ep_index;
1275 	struct xhci_ep_ctx *ep_ctx;
1276 
1277 	ep_index = xhci_get_endpoint_index(&ep->desc);
1278 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1279 
1280 	ep_ctx->ep_info = 0;
1281 	ep_ctx->ep_info2 = 0;
1282 	ep_ctx->deq = 0;
1283 	ep_ctx->tx_info = 0;
1284 	/* Don't free the endpoint ring until the set interface or configuration
1285 	 * request succeeds.
1286 	 */
1287 }
1288 
1289 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290  * Useful when you want to change one particular aspect of the endpoint and then
1291  * issue a configure endpoint command.
1292  */
1293 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1294 		struct xhci_container_ctx *in_ctx,
1295 		struct xhci_container_ctx *out_ctx,
1296 		unsigned int ep_index)
1297 {
1298 	struct xhci_ep_ctx *out_ep_ctx;
1299 	struct xhci_ep_ctx *in_ep_ctx;
1300 
1301 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1302 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1303 
1304 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1305 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1306 	in_ep_ctx->deq = out_ep_ctx->deq;
1307 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1308 }
1309 
1310 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311  * Useful when you want to change one particular aspect of the endpoint and then
1312  * issue a configure endpoint command.  Only the context entries field matters,
1313  * but we'll copy the whole thing anyway.
1314  */
1315 void xhci_slot_copy(struct xhci_hcd *xhci,
1316 		struct xhci_container_ctx *in_ctx,
1317 		struct xhci_container_ctx *out_ctx)
1318 {
1319 	struct xhci_slot_ctx *in_slot_ctx;
1320 	struct xhci_slot_ctx *out_slot_ctx;
1321 
1322 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1323 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1324 
1325 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1326 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1327 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1328 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1329 }
1330 
1331 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1333 {
1334 	int i;
1335 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1336 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1337 
1338 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1339 
1340 	if (!num_sp)
1341 		return 0;
1342 
1343 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1344 	if (!xhci->scratchpad)
1345 		goto fail_sp;
1346 
1347 	xhci->scratchpad->sp_array =
1348 		pci_alloc_consistent(to_pci_dev(dev),
1349 				     num_sp * sizeof(u64),
1350 				     &xhci->scratchpad->sp_dma);
1351 	if (!xhci->scratchpad->sp_array)
1352 		goto fail_sp2;
1353 
1354 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1355 	if (!xhci->scratchpad->sp_buffers)
1356 		goto fail_sp3;
1357 
1358 	xhci->scratchpad->sp_dma_buffers =
1359 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1360 
1361 	if (!xhci->scratchpad->sp_dma_buffers)
1362 		goto fail_sp4;
1363 
1364 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1365 	for (i = 0; i < num_sp; i++) {
1366 		dma_addr_t dma;
1367 		void *buf = pci_alloc_consistent(to_pci_dev(dev),
1368 						 xhci->page_size, &dma);
1369 		if (!buf)
1370 			goto fail_sp5;
1371 
1372 		xhci->scratchpad->sp_array[i] = dma;
1373 		xhci->scratchpad->sp_buffers[i] = buf;
1374 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1375 	}
1376 
1377 	return 0;
1378 
1379  fail_sp5:
1380 	for (i = i - 1; i >= 0; i--) {
1381 		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1382 				    xhci->scratchpad->sp_buffers[i],
1383 				    xhci->scratchpad->sp_dma_buffers[i]);
1384 	}
1385 	kfree(xhci->scratchpad->sp_dma_buffers);
1386 
1387  fail_sp4:
1388 	kfree(xhci->scratchpad->sp_buffers);
1389 
1390  fail_sp3:
1391 	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1392 			    xhci->scratchpad->sp_array,
1393 			    xhci->scratchpad->sp_dma);
1394 
1395  fail_sp2:
1396 	kfree(xhci->scratchpad);
1397 	xhci->scratchpad = NULL;
1398 
1399  fail_sp:
1400 	return -ENOMEM;
1401 }
1402 
1403 static void scratchpad_free(struct xhci_hcd *xhci)
1404 {
1405 	int num_sp;
1406 	int i;
1407 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1408 
1409 	if (!xhci->scratchpad)
1410 		return;
1411 
1412 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1413 
1414 	for (i = 0; i < num_sp; i++) {
1415 		pci_free_consistent(pdev, xhci->page_size,
1416 				    xhci->scratchpad->sp_buffers[i],
1417 				    xhci->scratchpad->sp_dma_buffers[i]);
1418 	}
1419 	kfree(xhci->scratchpad->sp_dma_buffers);
1420 	kfree(xhci->scratchpad->sp_buffers);
1421 	pci_free_consistent(pdev, num_sp * sizeof(u64),
1422 			    xhci->scratchpad->sp_array,
1423 			    xhci->scratchpad->sp_dma);
1424 	kfree(xhci->scratchpad);
1425 	xhci->scratchpad = NULL;
1426 }
1427 
1428 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1429 		bool allocate_in_ctx, bool allocate_completion,
1430 		gfp_t mem_flags)
1431 {
1432 	struct xhci_command *command;
1433 
1434 	command = kzalloc(sizeof(*command), mem_flags);
1435 	if (!command)
1436 		return NULL;
1437 
1438 	if (allocate_in_ctx) {
1439 		command->in_ctx =
1440 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1441 					mem_flags);
1442 		if (!command->in_ctx) {
1443 			kfree(command);
1444 			return NULL;
1445 		}
1446 	}
1447 
1448 	if (allocate_completion) {
1449 		command->completion =
1450 			kzalloc(sizeof(struct completion), mem_flags);
1451 		if (!command->completion) {
1452 			xhci_free_container_ctx(xhci, command->in_ctx);
1453 			kfree(command);
1454 			return NULL;
1455 		}
1456 		init_completion(command->completion);
1457 	}
1458 
1459 	command->status = 0;
1460 	INIT_LIST_HEAD(&command->cmd_list);
1461 	return command;
1462 }
1463 
1464 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1465 {
1466 	int last;
1467 
1468 	if (!urb_priv)
1469 		return;
1470 
1471 	last = urb_priv->length - 1;
1472 	if (last >= 0) {
1473 		int	i;
1474 		for (i = 0; i <= last; i++)
1475 			kfree(urb_priv->td[i]);
1476 	}
1477 	kfree(urb_priv);
1478 }
1479 
1480 void xhci_free_command(struct xhci_hcd *xhci,
1481 		struct xhci_command *command)
1482 {
1483 	xhci_free_container_ctx(xhci,
1484 			command->in_ctx);
1485 	kfree(command->completion);
1486 	kfree(command);
1487 }
1488 
1489 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1490 {
1491 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1492 	int size;
1493 	int i;
1494 
1495 	/* Free the Event Ring Segment Table and the actual Event Ring */
1496 	if (xhci->ir_set) {
1497 		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1498 		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1499 		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1500 	}
1501 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1502 	if (xhci->erst.entries)
1503 		pci_free_consistent(pdev, size,
1504 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1505 	xhci->erst.entries = NULL;
1506 	xhci_dbg(xhci, "Freed ERST\n");
1507 	if (xhci->event_ring)
1508 		xhci_ring_free(xhci, xhci->event_ring);
1509 	xhci->event_ring = NULL;
1510 	xhci_dbg(xhci, "Freed event ring\n");
1511 
1512 	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1513 	if (xhci->cmd_ring)
1514 		xhci_ring_free(xhci, xhci->cmd_ring);
1515 	xhci->cmd_ring = NULL;
1516 	xhci_dbg(xhci, "Freed command ring\n");
1517 
1518 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1519 		xhci_free_virt_device(xhci, i);
1520 
1521 	if (xhci->segment_pool)
1522 		dma_pool_destroy(xhci->segment_pool);
1523 	xhci->segment_pool = NULL;
1524 	xhci_dbg(xhci, "Freed segment pool\n");
1525 
1526 	if (xhci->device_pool)
1527 		dma_pool_destroy(xhci->device_pool);
1528 	xhci->device_pool = NULL;
1529 	xhci_dbg(xhci, "Freed device context pool\n");
1530 
1531 	if (xhci->small_streams_pool)
1532 		dma_pool_destroy(xhci->small_streams_pool);
1533 	xhci->small_streams_pool = NULL;
1534 	xhci_dbg(xhci, "Freed small stream array pool\n");
1535 
1536 	if (xhci->medium_streams_pool)
1537 		dma_pool_destroy(xhci->medium_streams_pool);
1538 	xhci->medium_streams_pool = NULL;
1539 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1540 
1541 	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1542 	if (xhci->dcbaa)
1543 		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1544 				xhci->dcbaa, xhci->dcbaa->dma);
1545 	xhci->dcbaa = NULL;
1546 
1547 	scratchpad_free(xhci);
1548 
1549 	xhci->num_usb2_ports = 0;
1550 	xhci->num_usb3_ports = 0;
1551 	kfree(xhci->usb2_ports);
1552 	kfree(xhci->usb3_ports);
1553 	kfree(xhci->port_array);
1554 
1555 	xhci->page_size = 0;
1556 	xhci->page_shift = 0;
1557 	xhci->bus_state[0].bus_suspended = 0;
1558 	xhci->bus_state[1].bus_suspended = 0;
1559 }
1560 
1561 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1562 		struct xhci_segment *input_seg,
1563 		union xhci_trb *start_trb,
1564 		union xhci_trb *end_trb,
1565 		dma_addr_t input_dma,
1566 		struct xhci_segment *result_seg,
1567 		char *test_name, int test_number)
1568 {
1569 	unsigned long long start_dma;
1570 	unsigned long long end_dma;
1571 	struct xhci_segment *seg;
1572 
1573 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1574 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1575 
1576 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1577 	if (seg != result_seg) {
1578 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1579 				test_name, test_number);
1580 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1581 				"input DMA 0x%llx\n",
1582 				input_seg,
1583 				(unsigned long long) input_dma);
1584 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1585 				"ending TRB %p (0x%llx DMA)\n",
1586 				start_trb, start_dma,
1587 				end_trb, end_dma);
1588 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1589 				result_seg, seg);
1590 		return -1;
1591 	}
1592 	return 0;
1593 }
1594 
1595 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1597 {
1598 	struct {
1599 		dma_addr_t		input_dma;
1600 		struct xhci_segment	*result_seg;
1601 	} simple_test_vector [] = {
1602 		/* A zeroed DMA field should fail */
1603 		{ 0, NULL },
1604 		/* One TRB before the ring start should fail */
1605 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1606 		/* One byte before the ring start should fail */
1607 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1608 		/* Starting TRB should succeed */
1609 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1610 		/* Ending TRB should succeed */
1611 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1612 			xhci->event_ring->first_seg },
1613 		/* One byte after the ring end should fail */
1614 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1615 		/* One TRB after the ring end should fail */
1616 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1617 		/* An address of all ones should fail */
1618 		{ (dma_addr_t) (~0), NULL },
1619 	};
1620 	struct {
1621 		struct xhci_segment	*input_seg;
1622 		union xhci_trb		*start_trb;
1623 		union xhci_trb		*end_trb;
1624 		dma_addr_t		input_dma;
1625 		struct xhci_segment	*result_seg;
1626 	} complex_test_vector [] = {
1627 		/* Test feeding a valid DMA address from a different ring */
1628 		{	.input_seg = xhci->event_ring->first_seg,
1629 			.start_trb = xhci->event_ring->first_seg->trbs,
1630 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631 			.input_dma = xhci->cmd_ring->first_seg->dma,
1632 			.result_seg = NULL,
1633 		},
1634 		/* Test feeding a valid end TRB from a different ring */
1635 		{	.input_seg = xhci->event_ring->first_seg,
1636 			.start_trb = xhci->event_ring->first_seg->trbs,
1637 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1638 			.input_dma = xhci->cmd_ring->first_seg->dma,
1639 			.result_seg = NULL,
1640 		},
1641 		/* Test feeding a valid start and end TRB from a different ring */
1642 		{	.input_seg = xhci->event_ring->first_seg,
1643 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1644 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1645 			.input_dma = xhci->cmd_ring->first_seg->dma,
1646 			.result_seg = NULL,
1647 		},
1648 		/* TRB in this ring, but after this TD */
1649 		{	.input_seg = xhci->event_ring->first_seg,
1650 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1651 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1652 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1653 			.result_seg = NULL,
1654 		},
1655 		/* TRB in this ring, but before this TD */
1656 		{	.input_seg = xhci->event_ring->first_seg,
1657 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1658 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1659 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1660 			.result_seg = NULL,
1661 		},
1662 		/* TRB in this ring, but after this wrapped TD */
1663 		{	.input_seg = xhci->event_ring->first_seg,
1664 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1666 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1667 			.result_seg = NULL,
1668 		},
1669 		/* TRB in this ring, but before this wrapped TD */
1670 		{	.input_seg = xhci->event_ring->first_seg,
1671 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1672 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1673 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1674 			.result_seg = NULL,
1675 		},
1676 		/* TRB not in this ring, and we have a wrapped TD */
1677 		{	.input_seg = xhci->event_ring->first_seg,
1678 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1679 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1680 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1681 			.result_seg = NULL,
1682 		},
1683 	};
1684 
1685 	unsigned int num_tests;
1686 	int i, ret;
1687 
1688 	num_tests = ARRAY_SIZE(simple_test_vector);
1689 	for (i = 0; i < num_tests; i++) {
1690 		ret = xhci_test_trb_in_td(xhci,
1691 				xhci->event_ring->first_seg,
1692 				xhci->event_ring->first_seg->trbs,
1693 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1694 				simple_test_vector[i].input_dma,
1695 				simple_test_vector[i].result_seg,
1696 				"Simple", i);
1697 		if (ret < 0)
1698 			return ret;
1699 	}
1700 
1701 	num_tests = ARRAY_SIZE(complex_test_vector);
1702 	for (i = 0; i < num_tests; i++) {
1703 		ret = xhci_test_trb_in_td(xhci,
1704 				complex_test_vector[i].input_seg,
1705 				complex_test_vector[i].start_trb,
1706 				complex_test_vector[i].end_trb,
1707 				complex_test_vector[i].input_dma,
1708 				complex_test_vector[i].result_seg,
1709 				"Complex", i);
1710 		if (ret < 0)
1711 			return ret;
1712 	}
1713 	xhci_dbg(xhci, "TRB math tests passed.\n");
1714 	return 0;
1715 }
1716 
1717 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1718 {
1719 	u64 temp;
1720 	dma_addr_t deq;
1721 
1722 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1723 			xhci->event_ring->dequeue);
1724 	if (deq == 0 && !in_interrupt())
1725 		xhci_warn(xhci, "WARN something wrong with SW event ring "
1726 				"dequeue ptr.\n");
1727 	/* Update HC event ring dequeue pointer */
1728 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1729 	temp &= ERST_PTR_MASK;
1730 	/* Don't clear the EHB bit (which is RW1C) because
1731 	 * there might be more events to service.
1732 	 */
1733 	temp &= ~ERST_EHB;
1734 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1735 			"preserving EHB bit\n");
1736 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1737 			&xhci->ir_set->erst_dequeue);
1738 }
1739 
1740 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1741 		__le32 __iomem *addr, u8 major_revision)
1742 {
1743 	u32 temp, port_offset, port_count;
1744 	int i;
1745 
1746 	if (major_revision > 0x03) {
1747 		xhci_warn(xhci, "Ignoring unknown port speed, "
1748 				"Ext Cap %p, revision = 0x%x\n",
1749 				addr, major_revision);
1750 		/* Ignoring port protocol we can't understand. FIXME */
1751 		return;
1752 	}
1753 
1754 	/* Port offset and count in the third dword, see section 7.2 */
1755 	temp = xhci_readl(xhci, addr + 2);
1756 	port_offset = XHCI_EXT_PORT_OFF(temp);
1757 	port_count = XHCI_EXT_PORT_COUNT(temp);
1758 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1759 			"count = %u, revision = 0x%x\n",
1760 			addr, port_offset, port_count, major_revision);
1761 	/* Port count includes the current port offset */
1762 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1763 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1764 		return;
1765 	port_offset--;
1766 	for (i = port_offset; i < (port_offset + port_count); i++) {
1767 		/* Duplicate entry.  Ignore the port if the revisions differ. */
1768 		if (xhci->port_array[i] != 0) {
1769 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1770 					" port %u\n", addr, i);
1771 			xhci_warn(xhci, "Port was marked as USB %u, "
1772 					"duplicated as USB %u\n",
1773 					xhci->port_array[i], major_revision);
1774 			/* Only adjust the roothub port counts if we haven't
1775 			 * found a similar duplicate.
1776 			 */
1777 			if (xhci->port_array[i] != major_revision &&
1778 				xhci->port_array[i] != DUPLICATE_ENTRY) {
1779 				if (xhci->port_array[i] == 0x03)
1780 					xhci->num_usb3_ports--;
1781 				else
1782 					xhci->num_usb2_ports--;
1783 				xhci->port_array[i] = DUPLICATE_ENTRY;
1784 			}
1785 			/* FIXME: Should we disable the port? */
1786 			continue;
1787 		}
1788 		xhci->port_array[i] = major_revision;
1789 		if (major_revision == 0x03)
1790 			xhci->num_usb3_ports++;
1791 		else
1792 			xhci->num_usb2_ports++;
1793 	}
1794 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
1795 }
1796 
1797 /*
1798  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799  * specify what speeds each port is supposed to be.  We can't count on the port
1800  * speed bits in the PORTSC register being correct until a device is connected,
1801  * but we need to set up the two fake roothubs with the correct number of USB
1802  * 3.0 and USB 2.0 ports at host controller initialization time.
1803  */
1804 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1805 {
1806 	__le32 __iomem *addr;
1807 	u32 offset;
1808 	unsigned int num_ports;
1809 	int i, port_index;
1810 
1811 	addr = &xhci->cap_regs->hcc_params;
1812 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1813 	if (offset == 0) {
1814 		xhci_err(xhci, "No Extended Capability registers, "
1815 				"unable to set up roothub.\n");
1816 		return -ENODEV;
1817 	}
1818 
1819 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1820 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1821 	if (!xhci->port_array)
1822 		return -ENOMEM;
1823 
1824 	/*
1825 	 * For whatever reason, the first capability offset is from the
1826 	 * capability register base, not from the HCCPARAMS register.
1827 	 * See section 5.3.6 for offset calculation.
1828 	 */
1829 	addr = &xhci->cap_regs->hc_capbase + offset;
1830 	while (1) {
1831 		u32 cap_id;
1832 
1833 		cap_id = xhci_readl(xhci, addr);
1834 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1835 			xhci_add_in_port(xhci, num_ports, addr,
1836 					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
1837 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
1838 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1839 				== num_ports)
1840 			break;
1841 		/*
1842 		 * Once you're into the Extended Capabilities, the offset is
1843 		 * always relative to the register holding the offset.
1844 		 */
1845 		addr += offset;
1846 	}
1847 
1848 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1849 		xhci_warn(xhci, "No ports on the roothubs?\n");
1850 		return -ENODEV;
1851 	}
1852 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1853 			xhci->num_usb2_ports, xhci->num_usb3_ports);
1854 
1855 	/* Place limits on the number of roothub ports so that the hub
1856 	 * descriptors aren't longer than the USB core will allocate.
1857 	 */
1858 	if (xhci->num_usb3_ports > 15) {
1859 		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1860 		xhci->num_usb3_ports = 15;
1861 	}
1862 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1863 		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1864 				USB_MAXCHILDREN);
1865 		xhci->num_usb2_ports = USB_MAXCHILDREN;
1866 	}
1867 
1868 	/*
1869 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870 	 * Not sure how the USB core will handle a hub with no ports...
1871 	 */
1872 	if (xhci->num_usb2_ports) {
1873 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1874 				xhci->num_usb2_ports, flags);
1875 		if (!xhci->usb2_ports)
1876 			return -ENOMEM;
1877 
1878 		port_index = 0;
1879 		for (i = 0; i < num_ports; i++) {
1880 			if (xhci->port_array[i] == 0x03 ||
1881 					xhci->port_array[i] == 0 ||
1882 					xhci->port_array[i] == DUPLICATE_ENTRY)
1883 				continue;
1884 
1885 			xhci->usb2_ports[port_index] =
1886 				&xhci->op_regs->port_status_base +
1887 				NUM_PORT_REGS*i;
1888 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
1889 					"addr = %p\n", i,
1890 					xhci->usb2_ports[port_index]);
1891 			port_index++;
1892 			if (port_index == xhci->num_usb2_ports)
1893 				break;
1894 		}
1895 	}
1896 	if (xhci->num_usb3_ports) {
1897 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1898 				xhci->num_usb3_ports, flags);
1899 		if (!xhci->usb3_ports)
1900 			return -ENOMEM;
1901 
1902 		port_index = 0;
1903 		for (i = 0; i < num_ports; i++)
1904 			if (xhci->port_array[i] == 0x03) {
1905 				xhci->usb3_ports[port_index] =
1906 					&xhci->op_regs->port_status_base +
1907 					NUM_PORT_REGS*i;
1908 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
1909 						"addr = %p\n", i,
1910 						xhci->usb3_ports[port_index]);
1911 				port_index++;
1912 				if (port_index == xhci->num_usb3_ports)
1913 					break;
1914 			}
1915 	}
1916 	return 0;
1917 }
1918 
1919 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1920 {
1921 	dma_addr_t	dma;
1922 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1923 	unsigned int	val, val2;
1924 	u64		val_64;
1925 	struct xhci_segment	*seg;
1926 	u32 page_size;
1927 	int i;
1928 
1929 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1930 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1931 	for (i = 0; i < 16; i++) {
1932 		if ((0x1 & page_size) != 0)
1933 			break;
1934 		page_size = page_size >> 1;
1935 	}
1936 	if (i < 16)
1937 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1938 	else
1939 		xhci_warn(xhci, "WARN: no supported page size\n");
1940 	/* Use 4K pages, since that's common and the minimum the HC supports */
1941 	xhci->page_shift = 12;
1942 	xhci->page_size = 1 << xhci->page_shift;
1943 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1944 
1945 	/*
1946 	 * Program the Number of Device Slots Enabled field in the CONFIG
1947 	 * register with the max value of slots the HC can handle.
1948 	 */
1949 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1950 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1951 			(unsigned int) val);
1952 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1953 	val |= (val2 & ~HCS_SLOTS_MASK);
1954 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1955 			(unsigned int) val);
1956 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1957 
1958 	/*
1959 	 * Section 5.4.8 - doorbell array must be
1960 	 * "physically contiguous and 64-byte (cache line) aligned".
1961 	 */
1962 	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1963 			sizeof(*xhci->dcbaa), &dma);
1964 	if (!xhci->dcbaa)
1965 		goto fail;
1966 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1967 	xhci->dcbaa->dma = dma;
1968 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1969 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1970 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1971 
1972 	/*
1973 	 * Initialize the ring segment pool.  The ring must be a contiguous
1974 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1975 	 * however, the command ring segment needs 64-byte aligned segments,
1976 	 * so we pick the greater alignment need.
1977 	 */
1978 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1979 			SEGMENT_SIZE, 64, xhci->page_size);
1980 
1981 	/* See Table 46 and Note on Figure 55 */
1982 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1983 			2112, 64, xhci->page_size);
1984 	if (!xhci->segment_pool || !xhci->device_pool)
1985 		goto fail;
1986 
1987 	/* Linear stream context arrays don't have any boundary restrictions,
1988 	 * and only need to be 16-byte aligned.
1989 	 */
1990 	xhci->small_streams_pool =
1991 		dma_pool_create("xHCI 256 byte stream ctx arrays",
1992 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1993 	xhci->medium_streams_pool =
1994 		dma_pool_create("xHCI 1KB stream ctx arrays",
1995 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1996 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997 	 * will be allocated with pci_alloc_consistent()
1998 	 */
1999 
2000 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2001 		goto fail;
2002 
2003 	/* Set up the command ring to have one segments for now. */
2004 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2005 	if (!xhci->cmd_ring)
2006 		goto fail;
2007 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2008 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2009 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2010 
2011 	/* Set the address in the Command Ring Control register */
2012 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2013 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2014 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2015 		xhci->cmd_ring->cycle_state;
2016 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2017 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2018 	xhci_dbg_cmd_ptrs(xhci);
2019 
2020 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2021 	val &= DBOFF_MASK;
2022 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2023 			" from cap regs base addr\n", val);
2024 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2025 	xhci_dbg_regs(xhci);
2026 	xhci_print_run_regs(xhci);
2027 	/* Set ir_set to interrupt register set 0 */
2028 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2029 
2030 	/*
2031 	 * Event ring setup: Allocate a normal ring, but also setup
2032 	 * the event ring segment table (ERST).  Section 4.9.3.
2033 	 */
2034 	xhci_dbg(xhci, "// Allocating event ring\n");
2035 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2036 	if (!xhci->event_ring)
2037 		goto fail;
2038 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2039 		goto fail;
2040 
2041 	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2042 			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2043 	if (!xhci->erst.entries)
2044 		goto fail;
2045 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2046 			(unsigned long long)dma);
2047 
2048 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2049 	xhci->erst.num_entries = ERST_NUM_SEGS;
2050 	xhci->erst.erst_dma_addr = dma;
2051 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2052 			xhci->erst.num_entries,
2053 			xhci->erst.entries,
2054 			(unsigned long long)xhci->erst.erst_dma_addr);
2055 
2056 	/* set ring base address and size for each segment table entry */
2057 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2058 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2059 		entry->seg_addr = cpu_to_le64(seg->dma);
2060 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2061 		entry->rsvd = 0;
2062 		seg = seg->next;
2063 	}
2064 
2065 	/* set ERST count with the number of entries in the segment table */
2066 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2067 	val &= ERST_SIZE_MASK;
2068 	val |= ERST_NUM_SEGS;
2069 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2070 			val);
2071 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2072 
2073 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2074 	/* set the segment table base address */
2075 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2076 			(unsigned long long)xhci->erst.erst_dma_addr);
2077 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2078 	val_64 &= ERST_PTR_MASK;
2079 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2080 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2081 
2082 	/* Set the event ring dequeue address */
2083 	xhci_set_hc_event_deq(xhci);
2084 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2085 	xhci_print_ir_set(xhci, 0);
2086 
2087 	/*
2088 	 * XXX: Might need to set the Interrupter Moderation Register to
2089 	 * something other than the default (~1ms minimum between interrupts).
2090 	 * See section 5.5.1.2.
2091 	 */
2092 	init_completion(&xhci->addr_dev);
2093 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2094 		xhci->devs[i] = NULL;
2095 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2096 		xhci->bus_state[0].resume_done[i] = 0;
2097 		xhci->bus_state[1].resume_done[i] = 0;
2098 	}
2099 
2100 	if (scratchpad_alloc(xhci, flags))
2101 		goto fail;
2102 	if (xhci_setup_port_arrays(xhci, flags))
2103 		goto fail;
2104 
2105 	return 0;
2106 
2107 fail:
2108 	xhci_warn(xhci, "Couldn't initialize memory\n");
2109 	xhci_mem_cleanup(xhci);
2110 	return -ENOMEM;
2111 }
2112