xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision bbecb07f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 
37 	seg = kzalloc(sizeof *seg, flags);
38 	if (!seg)
39 		return NULL;
40 
41 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
42 	if (!seg->trbs) {
43 		kfree(seg);
44 		return NULL;
45 	}
46 
47 	if (max_packet) {
48 		seg->bounce_buf = kzalloc(max_packet, flags);
49 		if (!seg->bounce_buf) {
50 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
51 			kfree(seg);
52 			return NULL;
53 		}
54 	}
55 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 	if (cycle_state == 0) {
57 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
59 	}
60 	seg->dma = dma;
61 	seg->next = NULL;
62 
63 	return seg;
64 }
65 
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 	if (seg->trbs) {
69 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 		seg->trbs = NULL;
71 	}
72 	kfree(seg->bounce_buf);
73 	kfree(seg);
74 }
75 
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 				struct xhci_segment *first)
78 {
79 	struct xhci_segment *seg;
80 
81 	seg = first->next;
82 	while (seg != first) {
83 		struct xhci_segment *next = seg->next;
84 		xhci_segment_free(xhci, seg);
85 		seg = next;
86 	}
87 	xhci_segment_free(xhci, first);
88 }
89 
90 /*
91  * Make the prev segment point to the next segment.
92  *
93  * Change the last TRB in the prev segment to be a Link TRB which points to the
94  * DMA address of the next segment.  The caller needs to set any Link TRB
95  * related flags, such as End TRB, Toggle Cycle, and no snoop.
96  */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 		struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 	u32 val;
101 
102 	if (!prev || !next)
103 		return;
104 	prev->next = next;
105 	if (type != TYPE_EVENT) {
106 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 			cpu_to_le64(next->dma);
108 
109 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 		val &= ~TRB_TYPE_BITMASK;
112 		val |= TRB_TYPE(TRB_LINK);
113 		/* Always set the chain bit with 0.95 hardware */
114 		/* Set chain bit for isoc rings on AMD 0.96 host */
115 		if (xhci_link_trb_quirk(xhci) ||
116 				(type == TYPE_ISOC &&
117 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 			val |= TRB_CHAIN;
119 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 	}
121 }
122 
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 		struct xhci_segment *first, struct xhci_segment *last,
129 		unsigned int num_segs)
130 {
131 	struct xhci_segment *next;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	next = ring->enq_seg->next;
137 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 	xhci_link_segments(xhci, last, next, ring->type);
139 	ring->num_segs += num_segs;
140 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141 
142 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 			&= ~cpu_to_le32(LINK_TOGGLE);
145 		last->trbs[TRBS_PER_SEGMENT-1].link.control
146 			|= cpu_to_le32(LINK_TOGGLE);
147 		ring->last_seg = last;
148 	}
149 }
150 
151 /*
152  * We need a radix tree for mapping physical addresses of TRBs to which stream
153  * ID they belong to.  We need to do this because the host controller won't tell
154  * us which stream ring the TRB came from.  We could store the stream ID in an
155  * event data TRB, but that doesn't help us for the cancellation case, since the
156  * endpoint may stop before it reaches that event data TRB.
157  *
158  * The radix tree maps the upper portion of the TRB DMA address to a ring
159  * segment that has the same upper portion of DMA addresses.  For example, say I
160  * have segments of size 1KB, that are always 1KB aligned.  A segment may
161  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
162  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
163  * pass the radix tree a key to get the right stream ID:
164  *
165  *	0x10c90fff >> 10 = 0x43243
166  *	0x10c912c0 >> 10 = 0x43244
167  *	0x10c91400 >> 10 = 0x43245
168  *
169  * Obviously, only those TRBs with DMA addresses that are within the segment
170  * will make the radix tree return the stream ID for that ring.
171  *
172  * Caveats for the radix tree:
173  *
174  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
175  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
177  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
179  * extended systems (where the DMA address can be bigger than 32-bits),
180  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
181  */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 		struct xhci_ring *ring,
184 		struct xhci_segment *seg,
185 		gfp_t mem_flags)
186 {
187 	unsigned long key;
188 	int ret;
189 
190 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 	/* Skip any segments that were already added. */
192 	if (radix_tree_lookup(trb_address_map, key))
193 		return 0;
194 
195 	ret = radix_tree_maybe_preload(mem_flags);
196 	if (ret)
197 		return ret;
198 	ret = radix_tree_insert(trb_address_map,
199 			key, ring);
200 	radix_tree_preload_end();
201 	return ret;
202 }
203 
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 		struct xhci_segment *seg)
206 {
207 	unsigned long key;
208 
209 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 	if (radix_tree_lookup(trb_address_map, key))
211 		radix_tree_delete(trb_address_map, key);
212 }
213 
214 static int xhci_update_stream_segment_mapping(
215 		struct radix_tree_root *trb_address_map,
216 		struct xhci_ring *ring,
217 		struct xhci_segment *first_seg,
218 		struct xhci_segment *last_seg,
219 		gfp_t mem_flags)
220 {
221 	struct xhci_segment *seg;
222 	struct xhci_segment *failed_seg;
223 	int ret;
224 
225 	if (WARN_ON_ONCE(trb_address_map == NULL))
226 		return 0;
227 
228 	seg = first_seg;
229 	do {
230 		ret = xhci_insert_segment_mapping(trb_address_map,
231 				ring, seg, mem_flags);
232 		if (ret)
233 			goto remove_streams;
234 		if (seg == last_seg)
235 			return 0;
236 		seg = seg->next;
237 	} while (seg != first_seg);
238 
239 	return 0;
240 
241 remove_streams:
242 	failed_seg = seg;
243 	seg = first_seg;
244 	do {
245 		xhci_remove_segment_mapping(trb_address_map, seg);
246 		if (seg == failed_seg)
247 			return ret;
248 		seg = seg->next;
249 	} while (seg != first_seg);
250 
251 	return ret;
252 }
253 
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256 	struct xhci_segment *seg;
257 
258 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 		return;
260 
261 	seg = ring->first_seg;
262 	do {
263 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 		seg = seg->next;
265 	} while (seg != ring->first_seg);
266 }
267 
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 			ring->first_seg, ring->last_seg, mem_flags);
272 }
273 
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 	if (!ring)
278 		return;
279 
280 	trace_xhci_ring_free(ring);
281 
282 	if (ring->first_seg) {
283 		if (ring->type == TYPE_STREAM)
284 			xhci_remove_stream_mapping(ring);
285 		xhci_free_segments_for_ring(xhci, ring->first_seg);
286 	}
287 
288 	kfree(ring);
289 }
290 
291 static void xhci_initialize_ring_info(struct xhci_ring *ring,
292 					unsigned int cycle_state)
293 {
294 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
295 	ring->enqueue = ring->first_seg->trbs;
296 	ring->enq_seg = ring->first_seg;
297 	ring->dequeue = ring->enqueue;
298 	ring->deq_seg = ring->first_seg;
299 	/* The ring is initialized to 0. The producer must write 1 to the cycle
300 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
301 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
302 	 *
303 	 * New rings are initialized with cycle state equal to 1; if we are
304 	 * handling ring expansion, set the cycle state equal to the old ring.
305 	 */
306 	ring->cycle_state = cycle_state;
307 
308 	/*
309 	 * Each segment has a link TRB, and leave an extra TRB for SW
310 	 * accounting purpose
311 	 */
312 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
313 }
314 
315 /* Allocate segments and link them for a ring */
316 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 		struct xhci_segment **first, struct xhci_segment **last,
318 		unsigned int num_segs, unsigned int cycle_state,
319 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
320 {
321 	struct xhci_segment *prev;
322 
323 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
324 	if (!prev)
325 		return -ENOMEM;
326 	num_segs--;
327 
328 	*first = prev;
329 	while (num_segs > 0) {
330 		struct xhci_segment	*next;
331 
332 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
333 		if (!next) {
334 			prev = *first;
335 			while (prev) {
336 				next = prev->next;
337 				xhci_segment_free(xhci, prev);
338 				prev = next;
339 			}
340 			return -ENOMEM;
341 		}
342 		xhci_link_segments(xhci, prev, next, type);
343 
344 		prev = next;
345 		num_segs--;
346 	}
347 	xhci_link_segments(xhci, prev, *first, type);
348 	*last = prev;
349 
350 	return 0;
351 }
352 
353 /**
354  * Create a new ring with zero or more segments.
355  *
356  * Link each segment together into a ring.
357  * Set the end flag and the cycle toggle bit on the last segment.
358  * See section 4.9.1 and figures 15 and 16.
359  */
360 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
361 		unsigned int num_segs, unsigned int cycle_state,
362 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
363 {
364 	struct xhci_ring	*ring;
365 	int ret;
366 
367 	ring = kzalloc(sizeof *(ring), flags);
368 	if (!ring)
369 		return NULL;
370 
371 	ring->num_segs = num_segs;
372 	ring->bounce_buf_len = max_packet;
373 	INIT_LIST_HEAD(&ring->td_list);
374 	ring->type = type;
375 	if (num_segs == 0)
376 		return ring;
377 
378 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 			&ring->last_seg, num_segs, cycle_state, type,
380 			max_packet, flags);
381 	if (ret)
382 		goto fail;
383 
384 	/* Only event ring does not use link TRB */
385 	if (type != TYPE_EVENT) {
386 		/* See section 4.9.2.1 and 6.4.4.1 */
387 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 			cpu_to_le32(LINK_TOGGLE);
389 	}
390 	xhci_initialize_ring_info(ring, cycle_state);
391 	trace_xhci_ring_alloc(ring);
392 	return ring;
393 
394 fail:
395 	kfree(ring);
396 	return NULL;
397 }
398 
399 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
400 		struct xhci_virt_device *virt_dev,
401 		unsigned int ep_index)
402 {
403 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
404 	virt_dev->eps[ep_index].ring = NULL;
405 }
406 
407 /*
408  * Expand an existing ring.
409  * Allocate a new ring which has same segment numbers and link the two rings.
410  */
411 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412 				unsigned int num_trbs, gfp_t flags)
413 {
414 	struct xhci_segment	*first;
415 	struct xhci_segment	*last;
416 	unsigned int		num_segs;
417 	unsigned int		num_segs_needed;
418 	int			ret;
419 
420 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421 				(TRBS_PER_SEGMENT - 1);
422 
423 	/* Allocate number of segments we needed, or double the ring size */
424 	num_segs = ring->num_segs > num_segs_needed ?
425 			ring->num_segs : num_segs_needed;
426 
427 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
428 			num_segs, ring->cycle_state, ring->type,
429 			ring->bounce_buf_len, flags);
430 	if (ret)
431 		return -ENOMEM;
432 
433 	if (ring->type == TYPE_STREAM)
434 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435 						ring, first, last, flags);
436 	if (ret) {
437 		struct xhci_segment *next;
438 		do {
439 			next = first->next;
440 			xhci_segment_free(xhci, first);
441 			if (first == last)
442 				break;
443 			first = next;
444 		} while (true);
445 		return ret;
446 	}
447 
448 	xhci_link_rings(xhci, ring, first, last, num_segs);
449 	trace_xhci_ring_expansion(ring);
450 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451 			"ring expansion succeed, now has %d segments",
452 			ring->num_segs);
453 
454 	return 0;
455 }
456 
457 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
458 						    int type, gfp_t flags)
459 {
460 	struct xhci_container_ctx *ctx;
461 
462 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
463 		return NULL;
464 
465 	ctx = kzalloc(sizeof(*ctx), flags);
466 	if (!ctx)
467 		return NULL;
468 
469 	ctx->type = type;
470 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471 	if (type == XHCI_CTX_TYPE_INPUT)
472 		ctx->size += CTX_SIZE(xhci->hcc_params);
473 
474 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
475 	if (!ctx->bytes) {
476 		kfree(ctx);
477 		return NULL;
478 	}
479 	return ctx;
480 }
481 
482 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
483 			     struct xhci_container_ctx *ctx)
484 {
485 	if (!ctx)
486 		return;
487 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
488 	kfree(ctx);
489 }
490 
491 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
492 					      struct xhci_container_ctx *ctx)
493 {
494 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
495 		return NULL;
496 
497 	return (struct xhci_input_control_ctx *)ctx->bytes;
498 }
499 
500 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501 					struct xhci_container_ctx *ctx)
502 {
503 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504 		return (struct xhci_slot_ctx *)ctx->bytes;
505 
506 	return (struct xhci_slot_ctx *)
507 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
508 }
509 
510 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511 				    struct xhci_container_ctx *ctx,
512 				    unsigned int ep_index)
513 {
514 	/* increment ep index by offset of start of ep ctx array */
515 	ep_index++;
516 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
517 		ep_index++;
518 
519 	return (struct xhci_ep_ctx *)
520 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
521 }
522 
523 
524 /***************** Streams structures manipulation *************************/
525 
526 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
527 		unsigned int num_stream_ctxs,
528 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
529 {
530 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
532 
533 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
534 		dma_free_coherent(dev, size,
535 				stream_ctx, dma);
536 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
537 		return dma_pool_free(xhci->small_streams_pool,
538 				stream_ctx, dma);
539 	else
540 		return dma_pool_free(xhci->medium_streams_pool,
541 				stream_ctx, dma);
542 }
543 
544 /*
545  * The stream context array for each endpoint with bulk streams enabled can
546  * vary in size, based on:
547  *  - how many streams the endpoint supports,
548  *  - the maximum primary stream array size the host controller supports,
549  *  - and how many streams the device driver asks for.
550  *
551  * The stream context array must be a power of 2, and can be as small as
552  * 64 bytes or as large as 1MB.
553  */
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555 		unsigned int num_stream_ctxs, dma_addr_t *dma,
556 		gfp_t mem_flags)
557 {
558 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560 
561 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 		return dma_alloc_coherent(dev, size,
563 				dma, mem_flags);
564 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
565 		return dma_pool_alloc(xhci->small_streams_pool,
566 				mem_flags, dma);
567 	else
568 		return dma_pool_alloc(xhci->medium_streams_pool,
569 				mem_flags, dma);
570 }
571 
572 struct xhci_ring *xhci_dma_to_transfer_ring(
573 		struct xhci_virt_ep *ep,
574 		u64 address)
575 {
576 	if (ep->ep_state & EP_HAS_STREAMS)
577 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
578 				address >> TRB_SEGMENT_SHIFT);
579 	return ep->ring;
580 }
581 
582 struct xhci_ring *xhci_stream_id_to_ring(
583 		struct xhci_virt_device *dev,
584 		unsigned int ep_index,
585 		unsigned int stream_id)
586 {
587 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
588 
589 	if (stream_id == 0)
590 		return ep->ring;
591 	if (!ep->stream_info)
592 		return NULL;
593 
594 	if (stream_id > ep->stream_info->num_streams)
595 		return NULL;
596 	return ep->stream_info->stream_rings[stream_id];
597 }
598 
599 /*
600  * Change an endpoint's internal structure so it supports stream IDs.  The
601  * number of requested streams includes stream 0, which cannot be used by device
602  * drivers.
603  *
604  * The number of stream contexts in the stream context array may be bigger than
605  * the number of streams the driver wants to use.  This is because the number of
606  * stream context array entries must be a power of two.
607  */
608 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609 		unsigned int num_stream_ctxs,
610 		unsigned int num_streams,
611 		unsigned int max_packet, gfp_t mem_flags)
612 {
613 	struct xhci_stream_info *stream_info;
614 	u32 cur_stream;
615 	struct xhci_ring *cur_ring;
616 	u64 addr;
617 	int ret;
618 
619 	xhci_dbg(xhci, "Allocating %u streams and %u "
620 			"stream context array entries.\n",
621 			num_streams, num_stream_ctxs);
622 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
624 		return NULL;
625 	}
626 	xhci->cmd_ring_reserved_trbs++;
627 
628 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
629 	if (!stream_info)
630 		goto cleanup_trbs;
631 
632 	stream_info->num_streams = num_streams;
633 	stream_info->num_stream_ctxs = num_stream_ctxs;
634 
635 	/* Initialize the array of virtual pointers to stream rings. */
636 	stream_info->stream_rings = kzalloc(
637 			sizeof(struct xhci_ring *)*num_streams,
638 			mem_flags);
639 	if (!stream_info->stream_rings)
640 		goto cleanup_info;
641 
642 	/* Initialize the array of DMA addresses for stream rings for the HW. */
643 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 			num_stream_ctxs, &stream_info->ctx_array_dma,
645 			mem_flags);
646 	if (!stream_info->stream_ctx_array)
647 		goto cleanup_ctx;
648 	memset(stream_info->stream_ctx_array, 0,
649 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650 
651 	/* Allocate everything needed to free the stream rings later */
652 	stream_info->free_streams_command =
653 		xhci_alloc_command(xhci, true, true, mem_flags);
654 	if (!stream_info->free_streams_command)
655 		goto cleanup_ctx;
656 
657 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658 
659 	/* Allocate rings for all the streams that the driver will use,
660 	 * and add their segment DMA addresses to the radix tree.
661 	 * Stream 0 is reserved.
662 	 */
663 
664 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 		stream_info->stream_rings[cur_stream] =
666 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 					mem_flags);
668 		cur_ring = stream_info->stream_rings[cur_stream];
669 		if (!cur_ring)
670 			goto cleanup_rings;
671 		cur_ring->stream_id = cur_stream;
672 		cur_ring->trb_address_map = &stream_info->trb_address_map;
673 		/* Set deq ptr, cycle bit, and stream context type */
674 		addr = cur_ring->first_seg->dma |
675 			SCT_FOR_CTX(SCT_PRI_TR) |
676 			cur_ring->cycle_state;
677 		stream_info->stream_ctx_array[cur_stream].stream_ring =
678 			cpu_to_le64(addr);
679 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 				cur_stream, (unsigned long long) addr);
681 
682 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683 		if (ret) {
684 			xhci_ring_free(xhci, cur_ring);
685 			stream_info->stream_rings[cur_stream] = NULL;
686 			goto cleanup_rings;
687 		}
688 	}
689 	/* Leave the other unused stream ring pointers in the stream context
690 	 * array initialized to zero.  This will cause the xHC to give us an
691 	 * error if the device asks for a stream ID we don't have setup (if it
692 	 * was any other way, the host controller would assume the ring is
693 	 * "empty" and wait forever for data to be queued to that stream ID).
694 	 */
695 
696 	return stream_info;
697 
698 cleanup_rings:
699 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 		cur_ring = stream_info->stream_rings[cur_stream];
701 		if (cur_ring) {
702 			xhci_ring_free(xhci, cur_ring);
703 			stream_info->stream_rings[cur_stream] = NULL;
704 		}
705 	}
706 	xhci_free_command(xhci, stream_info->free_streams_command);
707 cleanup_ctx:
708 	kfree(stream_info->stream_rings);
709 cleanup_info:
710 	kfree(stream_info);
711 cleanup_trbs:
712 	xhci->cmd_ring_reserved_trbs--;
713 	return NULL;
714 }
715 /*
716  * Sets the MaxPStreams field and the Linear Stream Array field.
717  * Sets the dequeue pointer to the stream context array.
718  */
719 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720 		struct xhci_ep_ctx *ep_ctx,
721 		struct xhci_stream_info *stream_info)
722 {
723 	u32 max_primary_streams;
724 	/* MaxPStreams is the number of stream context array entries, not the
725 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
726 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
727 	 */
728 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
729 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
730 			"Setting number of stream ctx array entries to %u",
731 			1 << (max_primary_streams + 1));
732 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734 				       | EP_HAS_LSA);
735 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
736 }
737 
738 /*
739  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741  * not at the beginning of the ring).
742  */
743 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
744 		struct xhci_virt_ep *ep)
745 {
746 	dma_addr_t addr;
747 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
748 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
749 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
750 }
751 
752 /* Frees all stream contexts associated with the endpoint,
753  *
754  * Caller should fix the endpoint context streams fields.
755  */
756 void xhci_free_stream_info(struct xhci_hcd *xhci,
757 		struct xhci_stream_info *stream_info)
758 {
759 	int cur_stream;
760 	struct xhci_ring *cur_ring;
761 
762 	if (!stream_info)
763 		return;
764 
765 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 			cur_stream++) {
767 		cur_ring = stream_info->stream_rings[cur_stream];
768 		if (cur_ring) {
769 			xhci_ring_free(xhci, cur_ring);
770 			stream_info->stream_rings[cur_stream] = NULL;
771 		}
772 	}
773 	xhci_free_command(xhci, stream_info->free_streams_command);
774 	xhci->cmd_ring_reserved_trbs--;
775 	if (stream_info->stream_ctx_array)
776 		xhci_free_stream_ctx(xhci,
777 				stream_info->num_stream_ctxs,
778 				stream_info->stream_ctx_array,
779 				stream_info->ctx_array_dma);
780 
781 	kfree(stream_info->stream_rings);
782 	kfree(stream_info);
783 }
784 
785 
786 /***************** Device context manipulation *************************/
787 
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 		struct xhci_virt_ep *ep)
790 {
791 	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
792 		    0);
793 	ep->xhci = xhci;
794 }
795 
796 static void xhci_free_tt_info(struct xhci_hcd *xhci,
797 		struct xhci_virt_device *virt_dev,
798 		int slot_id)
799 {
800 	struct list_head *tt_list_head;
801 	struct xhci_tt_bw_info *tt_info, *next;
802 	bool slot_found = false;
803 
804 	/* If the device never made it past the Set Address stage,
805 	 * it may not have the real_port set correctly.
806 	 */
807 	if (virt_dev->real_port == 0 ||
808 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809 		xhci_dbg(xhci, "Bad real port.\n");
810 		return;
811 	}
812 
813 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
814 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815 		/* Multi-TT hubs will have more than one entry */
816 		if (tt_info->slot_id == slot_id) {
817 			slot_found = true;
818 			list_del(&tt_info->tt_list);
819 			kfree(tt_info);
820 		} else if (slot_found) {
821 			break;
822 		}
823 	}
824 }
825 
826 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827 		struct xhci_virt_device *virt_dev,
828 		struct usb_device *hdev,
829 		struct usb_tt *tt, gfp_t mem_flags)
830 {
831 	struct xhci_tt_bw_info		*tt_info;
832 	unsigned int			num_ports;
833 	int				i, j;
834 
835 	if (!tt->multi)
836 		num_ports = 1;
837 	else
838 		num_ports = hdev->maxchild;
839 
840 	for (i = 0; i < num_ports; i++, tt_info++) {
841 		struct xhci_interval_bw_table *bw_table;
842 
843 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
844 		if (!tt_info)
845 			goto free_tts;
846 		INIT_LIST_HEAD(&tt_info->tt_list);
847 		list_add(&tt_info->tt_list,
848 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
849 		tt_info->slot_id = virt_dev->udev->slot_id;
850 		if (tt->multi)
851 			tt_info->ttport = i+1;
852 		bw_table = &tt_info->bw_table;
853 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855 	}
856 	return 0;
857 
858 free_tts:
859 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860 	return -ENOMEM;
861 }
862 
863 
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865  * Should be called with xhci->lock held if there is any chance the TT lists
866  * will be manipulated by the configure endpoint, allocate device, or update
867  * hub functions while this function is removing the TT entries from the list.
868  */
869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870 {
871 	struct xhci_virt_device *dev;
872 	int i;
873 	int old_active_eps = 0;
874 
875 	/* Slot ID 0 is reserved */
876 	if (slot_id == 0 || !xhci->devs[slot_id])
877 		return;
878 
879 	dev = xhci->devs[slot_id];
880 
881 	trace_xhci_free_virt_device(dev);
882 
883 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
884 	if (!dev)
885 		return;
886 
887 	if (dev->tt_info)
888 		old_active_eps = dev->tt_info->active_eps;
889 
890 	for (i = 0; i < 31; i++) {
891 		if (dev->eps[i].ring)
892 			xhci_ring_free(xhci, dev->eps[i].ring);
893 		if (dev->eps[i].stream_info)
894 			xhci_free_stream_info(xhci,
895 					dev->eps[i].stream_info);
896 		/* Endpoints on the TT/root port lists should have been removed
897 		 * when usb_disable_device() was called for the device.
898 		 * We can't drop them anyway, because the udev might have gone
899 		 * away by this point, and we can't tell what speed it was.
900 		 */
901 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
902 			xhci_warn(xhci, "Slot %u endpoint %u "
903 					"not removed from BW list!\n",
904 					slot_id, i);
905 	}
906 	/* If this is a hub, free the TT(s) from the TT list */
907 	xhci_free_tt_info(xhci, dev, slot_id);
908 	/* If necessary, update the number of active TTs on this root port */
909 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910 
911 	if (dev->in_ctx)
912 		xhci_free_container_ctx(xhci, dev->in_ctx);
913 	if (dev->out_ctx)
914 		xhci_free_container_ctx(xhci, dev->out_ctx);
915 
916 	kfree(xhci->devs[slot_id]);
917 	xhci->devs[slot_id] = NULL;
918 }
919 
920 /*
921  * Free a virt_device structure.
922  * If the virt_device added a tt_info (a hub) and has children pointing to
923  * that tt_info, then free the child first. Recursive.
924  * We can't rely on udev at this point to find child-parent relationships.
925  */
926 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
927 {
928 	struct xhci_virt_device *vdev;
929 	struct list_head *tt_list_head;
930 	struct xhci_tt_bw_info *tt_info, *next;
931 	int i;
932 
933 	vdev = xhci->devs[slot_id];
934 	if (!vdev)
935 		return;
936 
937 	if (vdev->real_port == 0 ||
938 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
939 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
940 		goto out;
941 	}
942 
943 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
944 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
945 		/* is this a hub device that added a tt_info to the tts list */
946 		if (tt_info->slot_id == slot_id) {
947 			/* are any devices using this tt_info? */
948 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
949 				vdev = xhci->devs[i];
950 				if (vdev && (vdev->tt_info == tt_info))
951 					xhci_free_virt_devices_depth_first(
952 						xhci, i);
953 			}
954 		}
955 	}
956 out:
957 	/* we are now at a leaf device */
958 	xhci_debugfs_remove_slot(xhci, slot_id);
959 	xhci_free_virt_device(xhci, slot_id);
960 }
961 
962 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
963 		struct usb_device *udev, gfp_t flags)
964 {
965 	struct xhci_virt_device *dev;
966 	int i;
967 
968 	/* Slot ID 0 is reserved */
969 	if (slot_id == 0 || xhci->devs[slot_id]) {
970 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
971 		return 0;
972 	}
973 
974 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
975 	if (!xhci->devs[slot_id])
976 		return 0;
977 	dev = xhci->devs[slot_id];
978 
979 	/* Allocate the (output) device context that will be used in the HC. */
980 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
981 	if (!dev->out_ctx)
982 		goto fail;
983 
984 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
985 			(unsigned long long)dev->out_ctx->dma);
986 
987 	/* Allocate the (input) device context for address device command */
988 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
989 	if (!dev->in_ctx)
990 		goto fail;
991 
992 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
993 			(unsigned long long)dev->in_ctx->dma);
994 
995 	/* Initialize the cancellation list and watchdog timers for each ep */
996 	for (i = 0; i < 31; i++) {
997 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
998 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
999 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1000 	}
1001 
1002 	/* Allocate endpoint 0 ring */
1003 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1004 	if (!dev->eps[0].ring)
1005 		goto fail;
1006 
1007 	dev->udev = udev;
1008 
1009 	/* Point to output device context in dcbaa. */
1010 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1011 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1012 		 slot_id,
1013 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1014 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1015 
1016 	trace_xhci_alloc_virt_device(dev);
1017 
1018 	return 1;
1019 fail:
1020 	xhci_free_virt_device(xhci, slot_id);
1021 	return 0;
1022 }
1023 
1024 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1025 		struct usb_device *udev)
1026 {
1027 	struct xhci_virt_device *virt_dev;
1028 	struct xhci_ep_ctx	*ep0_ctx;
1029 	struct xhci_ring	*ep_ring;
1030 
1031 	virt_dev = xhci->devs[udev->slot_id];
1032 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1033 	ep_ring = virt_dev->eps[0].ring;
1034 	/*
1035 	 * FIXME we don't keep track of the dequeue pointer very well after a
1036 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1037 	 * host to our enqueue pointer.  This should only be called after a
1038 	 * configured device has reset, so all control transfers should have
1039 	 * been completed or cancelled before the reset.
1040 	 */
1041 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1042 							ep_ring->enqueue)
1043 				   | ep_ring->cycle_state);
1044 }
1045 
1046 /*
1047  * The xHCI roothub may have ports of differing speeds in any order in the port
1048  * status registers.  xhci->port_array provides an array of the port speed for
1049  * each offset into the port status registers.
1050  *
1051  * The xHCI hardware wants to know the roothub port number that the USB device
1052  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1053  * know is the index of that port under either the USB 2.0 or the USB 3.0
1054  * roothub, but that doesn't give us the real index into the HW port status
1055  * registers. Call xhci_find_raw_port_number() to get real index.
1056  */
1057 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1058 		struct usb_device *udev)
1059 {
1060 	struct usb_device *top_dev;
1061 	struct usb_hcd *hcd;
1062 
1063 	if (udev->speed >= USB_SPEED_SUPER)
1064 		hcd = xhci->shared_hcd;
1065 	else
1066 		hcd = xhci->main_hcd;
1067 
1068 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1069 			top_dev = top_dev->parent)
1070 		/* Found device below root hub */;
1071 
1072 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1073 }
1074 
1075 /* Setup an xHCI virtual device for a Set Address command */
1076 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1077 {
1078 	struct xhci_virt_device *dev;
1079 	struct xhci_ep_ctx	*ep0_ctx;
1080 	struct xhci_slot_ctx    *slot_ctx;
1081 	u32			port_num;
1082 	u32			max_packets;
1083 	struct usb_device *top_dev;
1084 
1085 	dev = xhci->devs[udev->slot_id];
1086 	/* Slot ID 0 is reserved */
1087 	if (udev->slot_id == 0 || !dev) {
1088 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1089 				udev->slot_id);
1090 		return -EINVAL;
1091 	}
1092 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1093 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1094 
1095 	/* 3) Only the control endpoint is valid - one endpoint context */
1096 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1097 	switch (udev->speed) {
1098 	case USB_SPEED_SUPER_PLUS:
1099 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1100 		max_packets = MAX_PACKET(512);
1101 		break;
1102 	case USB_SPEED_SUPER:
1103 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1104 		max_packets = MAX_PACKET(512);
1105 		break;
1106 	case USB_SPEED_HIGH:
1107 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1108 		max_packets = MAX_PACKET(64);
1109 		break;
1110 	/* USB core guesses at a 64-byte max packet first for FS devices */
1111 	case USB_SPEED_FULL:
1112 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1113 		max_packets = MAX_PACKET(64);
1114 		break;
1115 	case USB_SPEED_LOW:
1116 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1117 		max_packets = MAX_PACKET(8);
1118 		break;
1119 	case USB_SPEED_WIRELESS:
1120 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1121 		return -EINVAL;
1122 		break;
1123 	default:
1124 		/* Speed was set earlier, this shouldn't happen. */
1125 		return -EINVAL;
1126 	}
1127 	/* Find the root hub port this device is under */
1128 	port_num = xhci_find_real_port_number(xhci, udev);
1129 	if (!port_num)
1130 		return -EINVAL;
1131 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1132 	/* Set the port number in the virtual_device to the faked port number */
1133 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1134 			top_dev = top_dev->parent)
1135 		/* Found device below root hub */;
1136 	dev->fake_port = top_dev->portnum;
1137 	dev->real_port = port_num;
1138 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1139 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1140 
1141 	/* Find the right bandwidth table that this device will be a part of.
1142 	 * If this is a full speed device attached directly to a root port (or a
1143 	 * decendent of one), it counts as a primary bandwidth domain, not a
1144 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1145 	 * will never be created for the HS root hub.
1146 	 */
1147 	if (!udev->tt || !udev->tt->hub->parent) {
1148 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1149 	} else {
1150 		struct xhci_root_port_bw_info *rh_bw;
1151 		struct xhci_tt_bw_info *tt_bw;
1152 
1153 		rh_bw = &xhci->rh_bw[port_num - 1];
1154 		/* Find the right TT. */
1155 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1156 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1157 				continue;
1158 
1159 			if (!dev->udev->tt->multi ||
1160 					(udev->tt->multi &&
1161 					 tt_bw->ttport == dev->udev->ttport)) {
1162 				dev->bw_table = &tt_bw->bw_table;
1163 				dev->tt_info = tt_bw;
1164 				break;
1165 			}
1166 		}
1167 		if (!dev->tt_info)
1168 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1169 	}
1170 
1171 	/* Is this a LS/FS device under an external HS hub? */
1172 	if (udev->tt && udev->tt->hub->parent) {
1173 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1174 						(udev->ttport << 8));
1175 		if (udev->tt->multi)
1176 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1177 	}
1178 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1179 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1180 
1181 	/* Step 4 - ring already allocated */
1182 	/* Step 5 */
1183 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1184 
1185 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1186 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1187 					 max_packets);
1188 
1189 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1190 				   dev->eps[0].ring->cycle_state);
1191 
1192 	trace_xhci_setup_addressable_virt_device(dev);
1193 
1194 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1195 
1196 	return 0;
1197 }
1198 
1199 /*
1200  * Convert interval expressed as 2^(bInterval - 1) == interval into
1201  * straight exponent value 2^n == interval.
1202  *
1203  */
1204 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1205 		struct usb_host_endpoint *ep)
1206 {
1207 	unsigned int interval;
1208 
1209 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1210 	if (interval != ep->desc.bInterval - 1)
1211 		dev_warn(&udev->dev,
1212 			 "ep %#x - rounding interval to %d %sframes\n",
1213 			 ep->desc.bEndpointAddress,
1214 			 1 << interval,
1215 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1216 
1217 	if (udev->speed == USB_SPEED_FULL) {
1218 		/*
1219 		 * Full speed isoc endpoints specify interval in frames,
1220 		 * not microframes. We are using microframes everywhere,
1221 		 * so adjust accordingly.
1222 		 */
1223 		interval += 3;	/* 1 frame = 2^3 uframes */
1224 	}
1225 
1226 	return interval;
1227 }
1228 
1229 /*
1230  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1231  * microframes, rounded down to nearest power of 2.
1232  */
1233 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1234 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1235 		unsigned int min_exponent, unsigned int max_exponent)
1236 {
1237 	unsigned int interval;
1238 
1239 	interval = fls(desc_interval) - 1;
1240 	interval = clamp_val(interval, min_exponent, max_exponent);
1241 	if ((1 << interval) != desc_interval)
1242 		dev_dbg(&udev->dev,
1243 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1244 			 ep->desc.bEndpointAddress,
1245 			 1 << interval,
1246 			 desc_interval);
1247 
1248 	return interval;
1249 }
1250 
1251 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1252 		struct usb_host_endpoint *ep)
1253 {
1254 	if (ep->desc.bInterval == 0)
1255 		return 0;
1256 	return xhci_microframes_to_exponent(udev, ep,
1257 			ep->desc.bInterval, 0, 15);
1258 }
1259 
1260 
1261 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1262 		struct usb_host_endpoint *ep)
1263 {
1264 	return xhci_microframes_to_exponent(udev, ep,
1265 			ep->desc.bInterval * 8, 3, 10);
1266 }
1267 
1268 /* Return the polling or NAK interval.
1269  *
1270  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1271  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1272  *
1273  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1274  * is set to 0.
1275  */
1276 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1277 		struct usb_host_endpoint *ep)
1278 {
1279 	unsigned int interval = 0;
1280 
1281 	switch (udev->speed) {
1282 	case USB_SPEED_HIGH:
1283 		/* Max NAK rate */
1284 		if (usb_endpoint_xfer_control(&ep->desc) ||
1285 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1286 			interval = xhci_parse_microframe_interval(udev, ep);
1287 			break;
1288 		}
1289 		/* Fall through - SS and HS isoc/int have same decoding */
1290 
1291 	case USB_SPEED_SUPER_PLUS:
1292 	case USB_SPEED_SUPER:
1293 		if (usb_endpoint_xfer_int(&ep->desc) ||
1294 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1295 			interval = xhci_parse_exponent_interval(udev, ep);
1296 		}
1297 		break;
1298 
1299 	case USB_SPEED_FULL:
1300 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1301 			interval = xhci_parse_exponent_interval(udev, ep);
1302 			break;
1303 		}
1304 		/*
1305 		 * Fall through for interrupt endpoint interval decoding
1306 		 * since it uses the same rules as low speed interrupt
1307 		 * endpoints.
1308 		 */
1309 		/* fall through */
1310 
1311 	case USB_SPEED_LOW:
1312 		if (usb_endpoint_xfer_int(&ep->desc) ||
1313 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1314 
1315 			interval = xhci_parse_frame_interval(udev, ep);
1316 		}
1317 		break;
1318 
1319 	default:
1320 		BUG();
1321 	}
1322 	return interval;
1323 }
1324 
1325 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1326  * High speed endpoint descriptors can define "the number of additional
1327  * transaction opportunities per microframe", but that goes in the Max Burst
1328  * endpoint context field.
1329  */
1330 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1331 		struct usb_host_endpoint *ep)
1332 {
1333 	if (udev->speed < USB_SPEED_SUPER ||
1334 			!usb_endpoint_xfer_isoc(&ep->desc))
1335 		return 0;
1336 	return ep->ss_ep_comp.bmAttributes;
1337 }
1338 
1339 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1340 				       struct usb_host_endpoint *ep)
1341 {
1342 	/* Super speed and Plus have max burst in ep companion desc */
1343 	if (udev->speed >= USB_SPEED_SUPER)
1344 		return ep->ss_ep_comp.bMaxBurst;
1345 
1346 	if (udev->speed == USB_SPEED_HIGH &&
1347 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1348 	     usb_endpoint_xfer_int(&ep->desc)))
1349 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1350 
1351 	return 0;
1352 }
1353 
1354 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1355 {
1356 	int in;
1357 
1358 	in = usb_endpoint_dir_in(&ep->desc);
1359 
1360 	switch (usb_endpoint_type(&ep->desc)) {
1361 	case USB_ENDPOINT_XFER_CONTROL:
1362 		return CTRL_EP;
1363 	case USB_ENDPOINT_XFER_BULK:
1364 		return in ? BULK_IN_EP : BULK_OUT_EP;
1365 	case USB_ENDPOINT_XFER_ISOC:
1366 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1367 	case USB_ENDPOINT_XFER_INT:
1368 		return in ? INT_IN_EP : INT_OUT_EP;
1369 	}
1370 	return 0;
1371 }
1372 
1373 /* Return the maximum endpoint service interval time (ESIT) payload.
1374  * Basically, this is the maxpacket size, multiplied by the burst size
1375  * and mult size.
1376  */
1377 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1378 		struct usb_host_endpoint *ep)
1379 {
1380 	int max_burst;
1381 	int max_packet;
1382 
1383 	/* Only applies for interrupt or isochronous endpoints */
1384 	if (usb_endpoint_xfer_control(&ep->desc) ||
1385 			usb_endpoint_xfer_bulk(&ep->desc))
1386 		return 0;
1387 
1388 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1389 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1390 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1391 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1392 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1393 	else if (udev->speed >= USB_SPEED_SUPER)
1394 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395 
1396 	max_packet = usb_endpoint_maxp(&ep->desc);
1397 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1398 	/* A 0 in max burst means 1 transfer per ESIT */
1399 	return max_packet * max_burst;
1400 }
1401 
1402 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1403  * Drivers will have to call usb_alloc_streams() to do that.
1404  */
1405 int xhci_endpoint_init(struct xhci_hcd *xhci,
1406 		struct xhci_virt_device *virt_dev,
1407 		struct usb_device *udev,
1408 		struct usb_host_endpoint *ep,
1409 		gfp_t mem_flags)
1410 {
1411 	unsigned int ep_index;
1412 	struct xhci_ep_ctx *ep_ctx;
1413 	struct xhci_ring *ep_ring;
1414 	unsigned int max_packet;
1415 	enum xhci_ring_type ring_type;
1416 	u32 max_esit_payload;
1417 	u32 endpoint_type;
1418 	unsigned int max_burst;
1419 	unsigned int interval;
1420 	unsigned int mult;
1421 	unsigned int avg_trb_len;
1422 	unsigned int err_count = 0;
1423 
1424 	ep_index = xhci_get_endpoint_index(&ep->desc);
1425 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426 
1427 	endpoint_type = xhci_get_endpoint_type(ep);
1428 	if (!endpoint_type)
1429 		return -EINVAL;
1430 
1431 	ring_type = usb_endpoint_type(&ep->desc);
1432 
1433 	/*
1434 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1435 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1436 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1437 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438 	 */
1439 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1440 	interval = xhci_get_endpoint_interval(udev, ep);
1441 
1442 	/* Periodic endpoint bInterval limit quirk */
1443 	if (usb_endpoint_xfer_int(&ep->desc) ||
1444 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1445 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1446 		    udev->speed >= USB_SPEED_HIGH &&
1447 		    interval >= 7) {
1448 			interval = 6;
1449 		}
1450 	}
1451 
1452 	mult = xhci_get_endpoint_mult(udev, ep);
1453 	max_packet = usb_endpoint_maxp(&ep->desc);
1454 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1455 	avg_trb_len = max_esit_payload;
1456 
1457 	/* FIXME dig Mult and streams info out of ep companion desc */
1458 
1459 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1460 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1461 		err_count = 3;
1462 	/* Some devices get this wrong */
1463 	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1464 		max_packet = 512;
1465 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1466 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1467 		avg_trb_len = 8;
1468 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1469 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1470 		mult = 0;
1471 
1472 	/* Set up the endpoint ring */
1473 	virt_dev->eps[ep_index].new_ring =
1474 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1475 	if (!virt_dev->eps[ep_index].new_ring)
1476 		return -ENOMEM;
1477 
1478 	virt_dev->eps[ep_index].skip = false;
1479 	ep_ring = virt_dev->eps[ep_index].new_ring;
1480 
1481 	/* Fill the endpoint context */
1482 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1483 				      EP_INTERVAL(interval) |
1484 				      EP_MULT(mult));
1485 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1486 				       MAX_PACKET(max_packet) |
1487 				       MAX_BURST(max_burst) |
1488 				       ERROR_COUNT(err_count));
1489 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1490 				  ep_ring->cycle_state);
1491 
1492 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1493 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1494 
1495 	return 0;
1496 }
1497 
1498 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1499 		struct xhci_virt_device *virt_dev,
1500 		struct usb_host_endpoint *ep)
1501 {
1502 	unsigned int ep_index;
1503 	struct xhci_ep_ctx *ep_ctx;
1504 
1505 	ep_index = xhci_get_endpoint_index(&ep->desc);
1506 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1507 
1508 	ep_ctx->ep_info = 0;
1509 	ep_ctx->ep_info2 = 0;
1510 	ep_ctx->deq = 0;
1511 	ep_ctx->tx_info = 0;
1512 	/* Don't free the endpoint ring until the set interface or configuration
1513 	 * request succeeds.
1514 	 */
1515 }
1516 
1517 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1518 {
1519 	bw_info->ep_interval = 0;
1520 	bw_info->mult = 0;
1521 	bw_info->num_packets = 0;
1522 	bw_info->max_packet_size = 0;
1523 	bw_info->type = 0;
1524 	bw_info->max_esit_payload = 0;
1525 }
1526 
1527 void xhci_update_bw_info(struct xhci_hcd *xhci,
1528 		struct xhci_container_ctx *in_ctx,
1529 		struct xhci_input_control_ctx *ctrl_ctx,
1530 		struct xhci_virt_device *virt_dev)
1531 {
1532 	struct xhci_bw_info *bw_info;
1533 	struct xhci_ep_ctx *ep_ctx;
1534 	unsigned int ep_type;
1535 	int i;
1536 
1537 	for (i = 1; i < 31; i++) {
1538 		bw_info = &virt_dev->eps[i].bw_info;
1539 
1540 		/* We can't tell what endpoint type is being dropped, but
1541 		 * unconditionally clearing the bandwidth info for non-periodic
1542 		 * endpoints should be harmless because the info will never be
1543 		 * set in the first place.
1544 		 */
1545 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1546 			/* Dropped endpoint */
1547 			xhci_clear_endpoint_bw_info(bw_info);
1548 			continue;
1549 		}
1550 
1551 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1552 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1553 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1554 
1555 			/* Ignore non-periodic endpoints */
1556 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1557 					ep_type != ISOC_IN_EP &&
1558 					ep_type != INT_IN_EP)
1559 				continue;
1560 
1561 			/* Added or changed endpoint */
1562 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1563 					le32_to_cpu(ep_ctx->ep_info));
1564 			/* Number of packets and mult are zero-based in the
1565 			 * input context, but we want one-based for the
1566 			 * interval table.
1567 			 */
1568 			bw_info->mult = CTX_TO_EP_MULT(
1569 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1570 			bw_info->num_packets = CTX_TO_MAX_BURST(
1571 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1572 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1573 					le32_to_cpu(ep_ctx->ep_info2));
1574 			bw_info->type = ep_type;
1575 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1576 					le32_to_cpu(ep_ctx->tx_info));
1577 		}
1578 	}
1579 }
1580 
1581 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1582  * Useful when you want to change one particular aspect of the endpoint and then
1583  * issue a configure endpoint command.
1584  */
1585 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1586 		struct xhci_container_ctx *in_ctx,
1587 		struct xhci_container_ctx *out_ctx,
1588 		unsigned int ep_index)
1589 {
1590 	struct xhci_ep_ctx *out_ep_ctx;
1591 	struct xhci_ep_ctx *in_ep_ctx;
1592 
1593 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1594 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1595 
1596 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1597 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1598 	in_ep_ctx->deq = out_ep_ctx->deq;
1599 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1600 }
1601 
1602 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1603  * Useful when you want to change one particular aspect of the endpoint and then
1604  * issue a configure endpoint command.  Only the context entries field matters,
1605  * but we'll copy the whole thing anyway.
1606  */
1607 void xhci_slot_copy(struct xhci_hcd *xhci,
1608 		struct xhci_container_ctx *in_ctx,
1609 		struct xhci_container_ctx *out_ctx)
1610 {
1611 	struct xhci_slot_ctx *in_slot_ctx;
1612 	struct xhci_slot_ctx *out_slot_ctx;
1613 
1614 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1615 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1616 
1617 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1618 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1619 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1620 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1621 }
1622 
1623 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1624 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1625 {
1626 	int i;
1627 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1628 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1629 
1630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1631 			"Allocating %d scratchpad buffers", num_sp);
1632 
1633 	if (!num_sp)
1634 		return 0;
1635 
1636 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1637 	if (!xhci->scratchpad)
1638 		goto fail_sp;
1639 
1640 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1641 				     num_sp * sizeof(u64),
1642 				     &xhci->scratchpad->sp_dma, flags);
1643 	if (!xhci->scratchpad->sp_array)
1644 		goto fail_sp2;
1645 
1646 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1647 	if (!xhci->scratchpad->sp_buffers)
1648 		goto fail_sp3;
1649 
1650 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1651 	for (i = 0; i < num_sp; i++) {
1652 		dma_addr_t dma;
1653 		void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1654 				flags);
1655 		if (!buf)
1656 			goto fail_sp4;
1657 
1658 		xhci->scratchpad->sp_array[i] = dma;
1659 		xhci->scratchpad->sp_buffers[i] = buf;
1660 	}
1661 
1662 	return 0;
1663 
1664  fail_sp4:
1665 	for (i = i - 1; i >= 0; i--) {
1666 		dma_free_coherent(dev, xhci->page_size,
1667 				    xhci->scratchpad->sp_buffers[i],
1668 				    xhci->scratchpad->sp_array[i]);
1669 	}
1670 
1671 	kfree(xhci->scratchpad->sp_buffers);
1672 
1673  fail_sp3:
1674 	dma_free_coherent(dev, num_sp * sizeof(u64),
1675 			    xhci->scratchpad->sp_array,
1676 			    xhci->scratchpad->sp_dma);
1677 
1678  fail_sp2:
1679 	kfree(xhci->scratchpad);
1680 	xhci->scratchpad = NULL;
1681 
1682  fail_sp:
1683 	return -ENOMEM;
1684 }
1685 
1686 static void scratchpad_free(struct xhci_hcd *xhci)
1687 {
1688 	int num_sp;
1689 	int i;
1690 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1691 
1692 	if (!xhci->scratchpad)
1693 		return;
1694 
1695 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1696 
1697 	for (i = 0; i < num_sp; i++) {
1698 		dma_free_coherent(dev, xhci->page_size,
1699 				    xhci->scratchpad->sp_buffers[i],
1700 				    xhci->scratchpad->sp_array[i]);
1701 	}
1702 	kfree(xhci->scratchpad->sp_buffers);
1703 	dma_free_coherent(dev, num_sp * sizeof(u64),
1704 			    xhci->scratchpad->sp_array,
1705 			    xhci->scratchpad->sp_dma);
1706 	kfree(xhci->scratchpad);
1707 	xhci->scratchpad = NULL;
1708 }
1709 
1710 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1711 		bool allocate_in_ctx, bool allocate_completion,
1712 		gfp_t mem_flags)
1713 {
1714 	struct xhci_command *command;
1715 
1716 	command = kzalloc(sizeof(*command), mem_flags);
1717 	if (!command)
1718 		return NULL;
1719 
1720 	if (allocate_in_ctx) {
1721 		command->in_ctx =
1722 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1723 					mem_flags);
1724 		if (!command->in_ctx) {
1725 			kfree(command);
1726 			return NULL;
1727 		}
1728 	}
1729 
1730 	if (allocate_completion) {
1731 		command->completion =
1732 			kzalloc(sizeof(struct completion), mem_flags);
1733 		if (!command->completion) {
1734 			xhci_free_container_ctx(xhci, command->in_ctx);
1735 			kfree(command);
1736 			return NULL;
1737 		}
1738 		init_completion(command->completion);
1739 	}
1740 
1741 	command->status = 0;
1742 	INIT_LIST_HEAD(&command->cmd_list);
1743 	return command;
1744 }
1745 
1746 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1747 {
1748 	kfree(urb_priv);
1749 }
1750 
1751 void xhci_free_command(struct xhci_hcd *xhci,
1752 		struct xhci_command *command)
1753 {
1754 	xhci_free_container_ctx(xhci,
1755 			command->in_ctx);
1756 	kfree(command->completion);
1757 	kfree(command);
1758 }
1759 
1760 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1761 {
1762 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1763 	int size;
1764 	int i, j, num_ports;
1765 
1766 	cancel_delayed_work_sync(&xhci->cmd_timer);
1767 
1768 	/* Free the Event Ring Segment Table and the actual Event Ring */
1769 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1770 	if (xhci->erst.entries)
1771 		dma_free_coherent(dev, size,
1772 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1773 	xhci->erst.entries = NULL;
1774 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1775 	if (xhci->event_ring)
1776 		xhci_ring_free(xhci, xhci->event_ring);
1777 	xhci->event_ring = NULL;
1778 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1779 
1780 	if (xhci->lpm_command)
1781 		xhci_free_command(xhci, xhci->lpm_command);
1782 	xhci->lpm_command = NULL;
1783 	if (xhci->cmd_ring)
1784 		xhci_ring_free(xhci, xhci->cmd_ring);
1785 	xhci->cmd_ring = NULL;
1786 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1787 	xhci_cleanup_command_queue(xhci);
1788 
1789 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1790 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1791 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1792 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1793 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1794 			while (!list_empty(ep))
1795 				list_del_init(ep->next);
1796 		}
1797 	}
1798 
1799 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1800 		xhci_free_virt_devices_depth_first(xhci, i);
1801 
1802 	dma_pool_destroy(xhci->segment_pool);
1803 	xhci->segment_pool = NULL;
1804 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1805 
1806 	dma_pool_destroy(xhci->device_pool);
1807 	xhci->device_pool = NULL;
1808 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1809 
1810 	dma_pool_destroy(xhci->small_streams_pool);
1811 	xhci->small_streams_pool = NULL;
1812 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1813 			"Freed small stream array pool");
1814 
1815 	dma_pool_destroy(xhci->medium_streams_pool);
1816 	xhci->medium_streams_pool = NULL;
1817 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1818 			"Freed medium stream array pool");
1819 
1820 	if (xhci->dcbaa)
1821 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1822 				xhci->dcbaa, xhci->dcbaa->dma);
1823 	xhci->dcbaa = NULL;
1824 
1825 	scratchpad_free(xhci);
1826 
1827 	if (!xhci->rh_bw)
1828 		goto no_bw;
1829 
1830 	for (i = 0; i < num_ports; i++) {
1831 		struct xhci_tt_bw_info *tt, *n;
1832 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1833 			list_del(&tt->tt_list);
1834 			kfree(tt);
1835 		}
1836 	}
1837 
1838 no_bw:
1839 	xhci->cmd_ring_reserved_trbs = 0;
1840 	xhci->num_usb2_ports = 0;
1841 	xhci->num_usb3_ports = 0;
1842 	xhci->num_active_eps = 0;
1843 	kfree(xhci->usb2_ports);
1844 	kfree(xhci->usb3_ports);
1845 	kfree(xhci->port_array);
1846 	kfree(xhci->rh_bw);
1847 	kfree(xhci->ext_caps);
1848 
1849 	xhci->usb2_ports = NULL;
1850 	xhci->usb3_ports = NULL;
1851 	xhci->port_array = NULL;
1852 	xhci->rh_bw = NULL;
1853 	xhci->ext_caps = NULL;
1854 
1855 	xhci->page_size = 0;
1856 	xhci->page_shift = 0;
1857 	xhci->bus_state[0].bus_suspended = 0;
1858 	xhci->bus_state[1].bus_suspended = 0;
1859 }
1860 
1861 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1862 		struct xhci_segment *input_seg,
1863 		union xhci_trb *start_trb,
1864 		union xhci_trb *end_trb,
1865 		dma_addr_t input_dma,
1866 		struct xhci_segment *result_seg,
1867 		char *test_name, int test_number)
1868 {
1869 	unsigned long long start_dma;
1870 	unsigned long long end_dma;
1871 	struct xhci_segment *seg;
1872 
1873 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1874 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1875 
1876 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1877 	if (seg != result_seg) {
1878 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1879 				test_name, test_number);
1880 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1881 				"input DMA 0x%llx\n",
1882 				input_seg,
1883 				(unsigned long long) input_dma);
1884 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1885 				"ending TRB %p (0x%llx DMA)\n",
1886 				start_trb, start_dma,
1887 				end_trb, end_dma);
1888 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1889 				result_seg, seg);
1890 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1891 			  true);
1892 		return -1;
1893 	}
1894 	return 0;
1895 }
1896 
1897 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1898 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1899 {
1900 	struct {
1901 		dma_addr_t		input_dma;
1902 		struct xhci_segment	*result_seg;
1903 	} simple_test_vector [] = {
1904 		/* A zeroed DMA field should fail */
1905 		{ 0, NULL },
1906 		/* One TRB before the ring start should fail */
1907 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1908 		/* One byte before the ring start should fail */
1909 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1910 		/* Starting TRB should succeed */
1911 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1912 		/* Ending TRB should succeed */
1913 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1914 			xhci->event_ring->first_seg },
1915 		/* One byte after the ring end should fail */
1916 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1917 		/* One TRB after the ring end should fail */
1918 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1919 		/* An address of all ones should fail */
1920 		{ (dma_addr_t) (~0), NULL },
1921 	};
1922 	struct {
1923 		struct xhci_segment	*input_seg;
1924 		union xhci_trb		*start_trb;
1925 		union xhci_trb		*end_trb;
1926 		dma_addr_t		input_dma;
1927 		struct xhci_segment	*result_seg;
1928 	} complex_test_vector [] = {
1929 		/* Test feeding a valid DMA address from a different ring */
1930 		{	.input_seg = xhci->event_ring->first_seg,
1931 			.start_trb = xhci->event_ring->first_seg->trbs,
1932 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1933 			.input_dma = xhci->cmd_ring->first_seg->dma,
1934 			.result_seg = NULL,
1935 		},
1936 		/* Test feeding a valid end TRB from a different ring */
1937 		{	.input_seg = xhci->event_ring->first_seg,
1938 			.start_trb = xhci->event_ring->first_seg->trbs,
1939 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1940 			.input_dma = xhci->cmd_ring->first_seg->dma,
1941 			.result_seg = NULL,
1942 		},
1943 		/* Test feeding a valid start and end TRB from a different ring */
1944 		{	.input_seg = xhci->event_ring->first_seg,
1945 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1946 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1947 			.input_dma = xhci->cmd_ring->first_seg->dma,
1948 			.result_seg = NULL,
1949 		},
1950 		/* TRB in this ring, but after this TD */
1951 		{	.input_seg = xhci->event_ring->first_seg,
1952 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1953 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1954 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1955 			.result_seg = NULL,
1956 		},
1957 		/* TRB in this ring, but before this TD */
1958 		{	.input_seg = xhci->event_ring->first_seg,
1959 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1960 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1961 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1962 			.result_seg = NULL,
1963 		},
1964 		/* TRB in this ring, but after this wrapped TD */
1965 		{	.input_seg = xhci->event_ring->first_seg,
1966 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1967 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1968 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1969 			.result_seg = NULL,
1970 		},
1971 		/* TRB in this ring, but before this wrapped TD */
1972 		{	.input_seg = xhci->event_ring->first_seg,
1973 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1974 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1975 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1976 			.result_seg = NULL,
1977 		},
1978 		/* TRB not in this ring, and we have a wrapped TD */
1979 		{	.input_seg = xhci->event_ring->first_seg,
1980 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1981 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1982 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1983 			.result_seg = NULL,
1984 		},
1985 	};
1986 
1987 	unsigned int num_tests;
1988 	int i, ret;
1989 
1990 	num_tests = ARRAY_SIZE(simple_test_vector);
1991 	for (i = 0; i < num_tests; i++) {
1992 		ret = xhci_test_trb_in_td(xhci,
1993 				xhci->event_ring->first_seg,
1994 				xhci->event_ring->first_seg->trbs,
1995 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1996 				simple_test_vector[i].input_dma,
1997 				simple_test_vector[i].result_seg,
1998 				"Simple", i);
1999 		if (ret < 0)
2000 			return ret;
2001 	}
2002 
2003 	num_tests = ARRAY_SIZE(complex_test_vector);
2004 	for (i = 0; i < num_tests; i++) {
2005 		ret = xhci_test_trb_in_td(xhci,
2006 				complex_test_vector[i].input_seg,
2007 				complex_test_vector[i].start_trb,
2008 				complex_test_vector[i].end_trb,
2009 				complex_test_vector[i].input_dma,
2010 				complex_test_vector[i].result_seg,
2011 				"Complex", i);
2012 		if (ret < 0)
2013 			return ret;
2014 	}
2015 	xhci_dbg(xhci, "TRB math tests passed.\n");
2016 	return 0;
2017 }
2018 
2019 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2020 {
2021 	u64 temp;
2022 	dma_addr_t deq;
2023 
2024 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2025 			xhci->event_ring->dequeue);
2026 	if (deq == 0 && !in_interrupt())
2027 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2028 				"dequeue ptr.\n");
2029 	/* Update HC event ring dequeue pointer */
2030 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2031 	temp &= ERST_PTR_MASK;
2032 	/* Don't clear the EHB bit (which is RW1C) because
2033 	 * there might be more events to service.
2034 	 */
2035 	temp &= ~ERST_EHB;
2036 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2037 			"// Write event ring dequeue pointer, "
2038 			"preserving EHB bit");
2039 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2040 			&xhci->ir_set->erst_dequeue);
2041 }
2042 
2043 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2044 		__le32 __iomem *addr, int max_caps)
2045 {
2046 	u32 temp, port_offset, port_count;
2047 	int i;
2048 	u8 major_revision, minor_revision;
2049 	struct xhci_hub *rhub;
2050 
2051 	temp = readl(addr);
2052 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2053 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2054 
2055 	if (major_revision == 0x03) {
2056 		rhub = &xhci->usb3_rhub;
2057 	} else if (major_revision <= 0x02) {
2058 		rhub = &xhci->usb2_rhub;
2059 	} else {
2060 		xhci_warn(xhci, "Ignoring unknown port speed, "
2061 				"Ext Cap %p, revision = 0x%x\n",
2062 				addr, major_revision);
2063 		/* Ignoring port protocol we can't understand. FIXME */
2064 		return;
2065 	}
2066 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2067 
2068 	if (rhub->min_rev < minor_revision)
2069 		rhub->min_rev = minor_revision;
2070 
2071 	/* Port offset and count in the third dword, see section 7.2 */
2072 	temp = readl(addr + 2);
2073 	port_offset = XHCI_EXT_PORT_OFF(temp);
2074 	port_count = XHCI_EXT_PORT_COUNT(temp);
2075 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2076 			"Ext Cap %p, port offset = %u, "
2077 			"count = %u, revision = 0x%x",
2078 			addr, port_offset, port_count, major_revision);
2079 	/* Port count includes the current port offset */
2080 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2081 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2082 		return;
2083 
2084 	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2085 	if (rhub->psi_count) {
2086 		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2087 				    GFP_KERNEL);
2088 		if (!rhub->psi)
2089 			rhub->psi_count = 0;
2090 
2091 		rhub->psi_uid_count++;
2092 		for (i = 0; i < rhub->psi_count; i++) {
2093 			rhub->psi[i] = readl(addr + 4 + i);
2094 
2095 			/* count unique ID values, two consecutive entries can
2096 			 * have the same ID if link is assymetric
2097 			 */
2098 			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2099 				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2100 				rhub->psi_uid_count++;
2101 
2102 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2103 				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2104 				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2105 				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2106 				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2107 				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2108 				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2109 		}
2110 	}
2111 	/* cache usb2 port capabilities */
2112 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2113 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2114 
2115 	/* Check the host's USB2 LPM capability */
2116 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2117 			(temp & XHCI_L1C)) {
2118 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2119 				"xHCI 0.96: support USB2 software lpm");
2120 		xhci->sw_lpm_support = 1;
2121 	}
2122 
2123 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2124 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2125 				"xHCI 1.0: support USB2 software lpm");
2126 		xhci->sw_lpm_support = 1;
2127 		if (temp & XHCI_HLC) {
2128 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2129 					"xHCI 1.0: support USB2 hardware lpm");
2130 			xhci->hw_lpm_support = 1;
2131 		}
2132 	}
2133 
2134 	port_offset--;
2135 	for (i = port_offset; i < (port_offset + port_count); i++) {
2136 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2137 		if (xhci->port_array[i] != 0) {
2138 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2139 					" port %u\n", addr, i);
2140 			xhci_warn(xhci, "Port was marked as USB %u, "
2141 					"duplicated as USB %u\n",
2142 					xhci->port_array[i], major_revision);
2143 			/* Only adjust the roothub port counts if we haven't
2144 			 * found a similar duplicate.
2145 			 */
2146 			if (xhci->port_array[i] != major_revision &&
2147 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2148 				if (xhci->port_array[i] == 0x03)
2149 					xhci->num_usb3_ports--;
2150 				else
2151 					xhci->num_usb2_ports--;
2152 				xhci->port_array[i] = DUPLICATE_ENTRY;
2153 			}
2154 			/* FIXME: Should we disable the port? */
2155 			continue;
2156 		}
2157 		xhci->port_array[i] = major_revision;
2158 		if (major_revision == 0x03)
2159 			xhci->num_usb3_ports++;
2160 		else
2161 			xhci->num_usb2_ports++;
2162 	}
2163 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2164 }
2165 
2166 /*
2167  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2168  * specify what speeds each port is supposed to be.  We can't count on the port
2169  * speed bits in the PORTSC register being correct until a device is connected,
2170  * but we need to set up the two fake roothubs with the correct number of USB
2171  * 3.0 and USB 2.0 ports at host controller initialization time.
2172  */
2173 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2174 {
2175 	void __iomem *base;
2176 	u32 offset;
2177 	unsigned int num_ports;
2178 	int i, j, port_index;
2179 	int cap_count = 0;
2180 	u32 cap_start;
2181 
2182 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2183 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2184 	if (!xhci->port_array)
2185 		return -ENOMEM;
2186 
2187 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2188 	if (!xhci->rh_bw)
2189 		return -ENOMEM;
2190 	for (i = 0; i < num_ports; i++) {
2191 		struct xhci_interval_bw_table *bw_table;
2192 
2193 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2194 		bw_table = &xhci->rh_bw[i].bw_table;
2195 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2196 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2197 	}
2198 	base = &xhci->cap_regs->hc_capbase;
2199 
2200 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2201 	if (!cap_start) {
2202 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2203 		return -ENODEV;
2204 	}
2205 
2206 	offset = cap_start;
2207 	/* count extended protocol capability entries for later caching */
2208 	while (offset) {
2209 		cap_count++;
2210 		offset = xhci_find_next_ext_cap(base, offset,
2211 						      XHCI_EXT_CAPS_PROTOCOL);
2212 	}
2213 
2214 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2215 	if (!xhci->ext_caps)
2216 		return -ENOMEM;
2217 
2218 	offset = cap_start;
2219 
2220 	while (offset) {
2221 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2222 		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2223 			break;
2224 		offset = xhci_find_next_ext_cap(base, offset,
2225 						XHCI_EXT_CAPS_PROTOCOL);
2226 	}
2227 
2228 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2229 		xhci_warn(xhci, "No ports on the roothubs?\n");
2230 		return -ENODEV;
2231 	}
2232 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2233 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2234 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2235 
2236 	/* Place limits on the number of roothub ports so that the hub
2237 	 * descriptors aren't longer than the USB core will allocate.
2238 	 */
2239 	if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2240 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2241 				"Limiting USB 3.0 roothub ports to %u.",
2242 				USB_SS_MAXPORTS);
2243 		xhci->num_usb3_ports = USB_SS_MAXPORTS;
2244 	}
2245 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2246 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2247 				"Limiting USB 2.0 roothub ports to %u.",
2248 				USB_MAXCHILDREN);
2249 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2250 	}
2251 
2252 	/*
2253 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2254 	 * Not sure how the USB core will handle a hub with no ports...
2255 	 */
2256 	if (xhci->num_usb2_ports) {
2257 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2258 				xhci->num_usb2_ports, flags);
2259 		if (!xhci->usb2_ports)
2260 			return -ENOMEM;
2261 
2262 		port_index = 0;
2263 		for (i = 0; i < num_ports; i++) {
2264 			if (xhci->port_array[i] == 0x03 ||
2265 					xhci->port_array[i] == 0 ||
2266 					xhci->port_array[i] == DUPLICATE_ENTRY)
2267 				continue;
2268 
2269 			xhci->usb2_ports[port_index] =
2270 				&xhci->op_regs->port_status_base +
2271 				NUM_PORT_REGS*i;
2272 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2273 					"USB 2.0 port at index %u, "
2274 					"addr = %p", i,
2275 					xhci->usb2_ports[port_index]);
2276 			port_index++;
2277 			if (port_index == xhci->num_usb2_ports)
2278 				break;
2279 		}
2280 	}
2281 	if (xhci->num_usb3_ports) {
2282 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2283 				xhci->num_usb3_ports, flags);
2284 		if (!xhci->usb3_ports)
2285 			return -ENOMEM;
2286 
2287 		port_index = 0;
2288 		for (i = 0; i < num_ports; i++)
2289 			if (xhci->port_array[i] == 0x03) {
2290 				xhci->usb3_ports[port_index] =
2291 					&xhci->op_regs->port_status_base +
2292 					NUM_PORT_REGS*i;
2293 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2294 						"USB 3.0 port at index %u, "
2295 						"addr = %p", i,
2296 						xhci->usb3_ports[port_index]);
2297 				port_index++;
2298 				if (port_index == xhci->num_usb3_ports)
2299 					break;
2300 			}
2301 	}
2302 	return 0;
2303 }
2304 
2305 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2306 {
2307 	dma_addr_t	dma;
2308 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2309 	unsigned int	val, val2;
2310 	u64		val_64;
2311 	struct xhci_segment	*seg;
2312 	u32 page_size, temp;
2313 	int i;
2314 
2315 	INIT_LIST_HEAD(&xhci->cmd_list);
2316 
2317 	/* init command timeout work */
2318 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2319 	init_completion(&xhci->cmd_ring_stop_completion);
2320 
2321 	page_size = readl(&xhci->op_regs->page_size);
2322 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2323 			"Supported page size register = 0x%x", page_size);
2324 	for (i = 0; i < 16; i++) {
2325 		if ((0x1 & page_size) != 0)
2326 			break;
2327 		page_size = page_size >> 1;
2328 	}
2329 	if (i < 16)
2330 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2331 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2332 	else
2333 		xhci_warn(xhci, "WARN: no supported page size\n");
2334 	/* Use 4K pages, since that's common and the minimum the HC supports */
2335 	xhci->page_shift = 12;
2336 	xhci->page_size = 1 << xhci->page_shift;
2337 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338 			"HCD page size set to %iK", xhci->page_size / 1024);
2339 
2340 	/*
2341 	 * Program the Number of Device Slots Enabled field in the CONFIG
2342 	 * register with the max value of slots the HC can handle.
2343 	 */
2344 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2345 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2346 			"// xHC can handle at most %d device slots.", val);
2347 	val2 = readl(&xhci->op_regs->config_reg);
2348 	val |= (val2 & ~HCS_SLOTS_MASK);
2349 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350 			"// Setting Max device slots reg = 0x%x.", val);
2351 	writel(val, &xhci->op_regs->config_reg);
2352 
2353 	/*
2354 	 * xHCI section 5.4.6 - doorbell array must be
2355 	 * "physically contiguous and 64-byte (cache line) aligned".
2356 	 */
2357 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2358 			flags);
2359 	if (!xhci->dcbaa)
2360 		goto fail;
2361 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2362 	xhci->dcbaa->dma = dma;
2363 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2364 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2365 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2366 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2367 
2368 	/*
2369 	 * Initialize the ring segment pool.  The ring must be a contiguous
2370 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2371 	 * however, the command ring segment needs 64-byte aligned segments
2372 	 * and our use of dma addresses in the trb_address_map radix tree needs
2373 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2374 	 */
2375 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2376 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2377 
2378 	/* See Table 46 and Note on Figure 55 */
2379 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2380 			2112, 64, xhci->page_size);
2381 	if (!xhci->segment_pool || !xhci->device_pool)
2382 		goto fail;
2383 
2384 	/* Linear stream context arrays don't have any boundary restrictions,
2385 	 * and only need to be 16-byte aligned.
2386 	 */
2387 	xhci->small_streams_pool =
2388 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2389 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2390 	xhci->medium_streams_pool =
2391 		dma_pool_create("xHCI 1KB stream ctx arrays",
2392 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2393 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2394 	 * will be allocated with dma_alloc_coherent()
2395 	 */
2396 
2397 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2398 		goto fail;
2399 
2400 	/* Set up the command ring to have one segments for now. */
2401 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2402 	if (!xhci->cmd_ring)
2403 		goto fail;
2404 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405 			"Allocated command ring at %p", xhci->cmd_ring);
2406 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2407 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2408 
2409 	/* Set the address in the Command Ring Control register */
2410 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2411 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2412 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2413 		xhci->cmd_ring->cycle_state;
2414 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2415 			"// Setting command ring address to 0x%016llx", val_64);
2416 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2417 	xhci_dbg_cmd_ptrs(xhci);
2418 
2419 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2420 	if (!xhci->lpm_command)
2421 		goto fail;
2422 
2423 	/* Reserve one command ring TRB for disabling LPM.
2424 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2425 	 * disabling LPM, we only need to reserve one TRB for all devices.
2426 	 */
2427 	xhci->cmd_ring_reserved_trbs++;
2428 
2429 	val = readl(&xhci->cap_regs->db_off);
2430 	val &= DBOFF_MASK;
2431 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2432 			"// Doorbell array is located at offset 0x%x"
2433 			" from cap regs base addr", val);
2434 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2435 	xhci_dbg_regs(xhci);
2436 	xhci_print_run_regs(xhci);
2437 	/* Set ir_set to interrupt register set 0 */
2438 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2439 
2440 	/*
2441 	 * Event ring setup: Allocate a normal ring, but also setup
2442 	 * the event ring segment table (ERST).  Section 4.9.3.
2443 	 */
2444 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2445 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2446 					0, flags);
2447 	if (!xhci->event_ring)
2448 		goto fail;
2449 	if (xhci_check_trb_in_td_math(xhci) < 0)
2450 		goto fail;
2451 
2452 	xhci->erst.entries = dma_alloc_coherent(dev,
2453 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2454 			flags);
2455 	if (!xhci->erst.entries)
2456 		goto fail;
2457 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2458 			"// Allocated event ring segment table at 0x%llx",
2459 			(unsigned long long)dma);
2460 
2461 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2462 	xhci->erst.num_entries = ERST_NUM_SEGS;
2463 	xhci->erst.erst_dma_addr = dma;
2464 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2465 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2466 			xhci->erst.num_entries,
2467 			xhci->erst.entries,
2468 			(unsigned long long)xhci->erst.erst_dma_addr);
2469 
2470 	/* set ring base address and size for each segment table entry */
2471 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2472 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2473 		entry->seg_addr = cpu_to_le64(seg->dma);
2474 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2475 		entry->rsvd = 0;
2476 		seg = seg->next;
2477 	}
2478 
2479 	/* set ERST count with the number of entries in the segment table */
2480 	val = readl(&xhci->ir_set->erst_size);
2481 	val &= ERST_SIZE_MASK;
2482 	val |= ERST_NUM_SEGS;
2483 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2484 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2485 			val);
2486 	writel(val, &xhci->ir_set->erst_size);
2487 
2488 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489 			"// Set ERST entries to point to event ring.");
2490 	/* set the segment table base address */
2491 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2492 			"// Set ERST base address for ir_set 0 = 0x%llx",
2493 			(unsigned long long)xhci->erst.erst_dma_addr);
2494 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2495 	val_64 &= ERST_PTR_MASK;
2496 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2497 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2498 
2499 	/* Set the event ring dequeue address */
2500 	xhci_set_hc_event_deq(xhci);
2501 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2502 			"Wrote ERST address to ir_set 0.");
2503 	xhci_print_ir_set(xhci, 0);
2504 
2505 	/*
2506 	 * XXX: Might need to set the Interrupter Moderation Register to
2507 	 * something other than the default (~1ms minimum between interrupts).
2508 	 * See section 5.5.1.2.
2509 	 */
2510 	for (i = 0; i < MAX_HC_SLOTS; i++)
2511 		xhci->devs[i] = NULL;
2512 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2513 		xhci->bus_state[0].resume_done[i] = 0;
2514 		xhci->bus_state[1].resume_done[i] = 0;
2515 		/* Only the USB 2.0 completions will ever be used. */
2516 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2517 	}
2518 
2519 	if (scratchpad_alloc(xhci, flags))
2520 		goto fail;
2521 	if (xhci_setup_port_arrays(xhci, flags))
2522 		goto fail;
2523 
2524 	/* Enable USB 3.0 device notifications for function remote wake, which
2525 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2526 	 * U3 (device suspend).
2527 	 */
2528 	temp = readl(&xhci->op_regs->dev_notification);
2529 	temp &= ~DEV_NOTE_MASK;
2530 	temp |= DEV_NOTE_FWAKE;
2531 	writel(temp, &xhci->op_regs->dev_notification);
2532 
2533 	return 0;
2534 
2535 fail:
2536 	xhci_halt(xhci);
2537 	xhci_reset(xhci);
2538 	xhci_mem_cleanup(xhci);
2539 	return -ENOMEM;
2540 }
2541