xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision b58c6630)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg->bounce_buf);
75 	kfree(seg);
76 }
77 
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 				struct xhci_segment *first)
80 {
81 	struct xhci_segment *seg;
82 
83 	seg = first->next;
84 	while (seg != first) {
85 		struct xhci_segment *next = seg->next;
86 		xhci_segment_free(xhci, seg);
87 		seg = next;
88 	}
89 	xhci_segment_free(xhci, first);
90 }
91 
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
100 		struct xhci_segment *next, enum xhci_ring_type type)
101 {
102 	u32 val;
103 
104 	if (!prev || !next)
105 		return;
106 	prev->next = next;
107 	if (type != TYPE_EVENT) {
108 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
109 			cpu_to_le64(next->dma);
110 
111 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
112 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
113 		val &= ~TRB_TYPE_BITMASK;
114 		val |= TRB_TYPE(TRB_LINK);
115 		/* Always set the chain bit with 0.95 hardware */
116 		/* Set chain bit for isoc rings on AMD 0.96 host */
117 		if (xhci_link_trb_quirk(xhci) ||
118 				(type == TYPE_ISOC &&
119 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
120 			val |= TRB_CHAIN;
121 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 	}
123 }
124 
125 /*
126  * Link the ring to the new segments.
127  * Set Toggle Cycle for the new ring if needed.
128  */
129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 		struct xhci_segment *first, struct xhci_segment *last,
131 		unsigned int num_segs)
132 {
133 	struct xhci_segment *next;
134 
135 	if (!ring || !first || !last)
136 		return;
137 
138 	next = ring->enq_seg->next;
139 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
140 	xhci_link_segments(xhci, last, next, ring->type);
141 	ring->num_segs += num_segs;
142 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
143 
144 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
145 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
146 			&= ~cpu_to_le32(LINK_TOGGLE);
147 		last->trbs[TRBS_PER_SEGMENT-1].link.control
148 			|= cpu_to_le32(LINK_TOGGLE);
149 		ring->last_seg = last;
150 	}
151 }
152 
153 /*
154  * We need a radix tree for mapping physical addresses of TRBs to which stream
155  * ID they belong to.  We need to do this because the host controller won't tell
156  * us which stream ring the TRB came from.  We could store the stream ID in an
157  * event data TRB, but that doesn't help us for the cancellation case, since the
158  * endpoint may stop before it reaches that event data TRB.
159  *
160  * The radix tree maps the upper portion of the TRB DMA address to a ring
161  * segment that has the same upper portion of DMA addresses.  For example, say I
162  * have segments of size 1KB, that are always 1KB aligned.  A segment may
163  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
164  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
165  * pass the radix tree a key to get the right stream ID:
166  *
167  *	0x10c90fff >> 10 = 0x43243
168  *	0x10c912c0 >> 10 = 0x43244
169  *	0x10c91400 >> 10 = 0x43245
170  *
171  * Obviously, only those TRBs with DMA addresses that are within the segment
172  * will make the radix tree return the stream ID for that ring.
173  *
174  * Caveats for the radix tree:
175  *
176  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
177  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
178  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
179  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
180  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
181  * extended systems (where the DMA address can be bigger than 32-bits),
182  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
183  */
184 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
185 		struct xhci_ring *ring,
186 		struct xhci_segment *seg,
187 		gfp_t mem_flags)
188 {
189 	unsigned long key;
190 	int ret;
191 
192 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
193 	/* Skip any segments that were already added. */
194 	if (radix_tree_lookup(trb_address_map, key))
195 		return 0;
196 
197 	ret = radix_tree_maybe_preload(mem_flags);
198 	if (ret)
199 		return ret;
200 	ret = radix_tree_insert(trb_address_map,
201 			key, ring);
202 	radix_tree_preload_end();
203 	return ret;
204 }
205 
206 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
207 		struct xhci_segment *seg)
208 {
209 	unsigned long key;
210 
211 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
212 	if (radix_tree_lookup(trb_address_map, key))
213 		radix_tree_delete(trb_address_map, key);
214 }
215 
216 static int xhci_update_stream_segment_mapping(
217 		struct radix_tree_root *trb_address_map,
218 		struct xhci_ring *ring,
219 		struct xhci_segment *first_seg,
220 		struct xhci_segment *last_seg,
221 		gfp_t mem_flags)
222 {
223 	struct xhci_segment *seg;
224 	struct xhci_segment *failed_seg;
225 	int ret;
226 
227 	if (WARN_ON_ONCE(trb_address_map == NULL))
228 		return 0;
229 
230 	seg = first_seg;
231 	do {
232 		ret = xhci_insert_segment_mapping(trb_address_map,
233 				ring, seg, mem_flags);
234 		if (ret)
235 			goto remove_streams;
236 		if (seg == last_seg)
237 			return 0;
238 		seg = seg->next;
239 	} while (seg != first_seg);
240 
241 	return 0;
242 
243 remove_streams:
244 	failed_seg = seg;
245 	seg = first_seg;
246 	do {
247 		xhci_remove_segment_mapping(trb_address_map, seg);
248 		if (seg == failed_seg)
249 			return ret;
250 		seg = seg->next;
251 	} while (seg != first_seg);
252 
253 	return ret;
254 }
255 
256 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
257 {
258 	struct xhci_segment *seg;
259 
260 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
261 		return;
262 
263 	seg = ring->first_seg;
264 	do {
265 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
266 		seg = seg->next;
267 	} while (seg != ring->first_seg);
268 }
269 
270 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
271 {
272 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
273 			ring->first_seg, ring->last_seg, mem_flags);
274 }
275 
276 /* XXX: Do we need the hcd structure in all these functions? */
277 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
278 {
279 	if (!ring)
280 		return;
281 
282 	trace_xhci_ring_free(ring);
283 
284 	if (ring->first_seg) {
285 		if (ring->type == TYPE_STREAM)
286 			xhci_remove_stream_mapping(ring);
287 		xhci_free_segments_for_ring(xhci, ring->first_seg);
288 	}
289 
290 	kfree(ring);
291 }
292 
293 static void xhci_initialize_ring_info(struct xhci_ring *ring,
294 					unsigned int cycle_state)
295 {
296 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
297 	ring->enqueue = ring->first_seg->trbs;
298 	ring->enq_seg = ring->first_seg;
299 	ring->dequeue = ring->enqueue;
300 	ring->deq_seg = ring->first_seg;
301 	/* The ring is initialized to 0. The producer must write 1 to the cycle
302 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
303 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
304 	 *
305 	 * New rings are initialized with cycle state equal to 1; if we are
306 	 * handling ring expansion, set the cycle state equal to the old ring.
307 	 */
308 	ring->cycle_state = cycle_state;
309 
310 	/*
311 	 * Each segment has a link TRB, and leave an extra TRB for SW
312 	 * accounting purpose
313 	 */
314 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 }
316 
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319 		struct xhci_segment **first, struct xhci_segment **last,
320 		unsigned int num_segs, unsigned int cycle_state,
321 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
322 {
323 	struct xhci_segment *prev;
324 
325 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
326 	if (!prev)
327 		return -ENOMEM;
328 	num_segs--;
329 
330 	*first = prev;
331 	while (num_segs > 0) {
332 		struct xhci_segment	*next;
333 
334 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 		if (!next) {
336 			prev = *first;
337 			while (prev) {
338 				next = prev->next;
339 				xhci_segment_free(xhci, prev);
340 				prev = next;
341 			}
342 			return -ENOMEM;
343 		}
344 		xhci_link_segments(xhci, prev, next, type);
345 
346 		prev = next;
347 		num_segs--;
348 	}
349 	xhci_link_segments(xhci, prev, *first, type);
350 	*last = prev;
351 
352 	return 0;
353 }
354 
355 /**
356  * Create a new ring with zero or more segments.
357  *
358  * Link each segment together into a ring.
359  * Set the end flag and the cycle toggle bit on the last segment.
360  * See section 4.9.1 and figures 15 and 16.
361  */
362 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363 		unsigned int num_segs, unsigned int cycle_state,
364 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
365 {
366 	struct xhci_ring	*ring;
367 	int ret;
368 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
369 
370 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
371 	if (!ring)
372 		return NULL;
373 
374 	ring->num_segs = num_segs;
375 	ring->bounce_buf_len = max_packet;
376 	INIT_LIST_HEAD(&ring->td_list);
377 	ring->type = type;
378 	if (num_segs == 0)
379 		return ring;
380 
381 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
382 			&ring->last_seg, num_segs, cycle_state, type,
383 			max_packet, flags);
384 	if (ret)
385 		goto fail;
386 
387 	/* Only event ring does not use link TRB */
388 	if (type != TYPE_EVENT) {
389 		/* See section 4.9.2.1 and 6.4.4.1 */
390 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
391 			cpu_to_le32(LINK_TOGGLE);
392 	}
393 	xhci_initialize_ring_info(ring, cycle_state);
394 	trace_xhci_ring_alloc(ring);
395 	return ring;
396 
397 fail:
398 	kfree(ring);
399 	return NULL;
400 }
401 
402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403 		struct xhci_virt_device *virt_dev,
404 		unsigned int ep_index)
405 {
406 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407 	virt_dev->eps[ep_index].ring = NULL;
408 }
409 
410 /*
411  * Expand an existing ring.
412  * Allocate a new ring which has same segment numbers and link the two rings.
413  */
414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415 				unsigned int num_trbs, gfp_t flags)
416 {
417 	struct xhci_segment	*first;
418 	struct xhci_segment	*last;
419 	unsigned int		num_segs;
420 	unsigned int		num_segs_needed;
421 	int			ret;
422 
423 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
424 				(TRBS_PER_SEGMENT - 1);
425 
426 	/* Allocate number of segments we needed, or double the ring size */
427 	num_segs = ring->num_segs > num_segs_needed ?
428 			ring->num_segs : num_segs_needed;
429 
430 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
431 			num_segs, ring->cycle_state, ring->type,
432 			ring->bounce_buf_len, flags);
433 	if (ret)
434 		return -ENOMEM;
435 
436 	if (ring->type == TYPE_STREAM)
437 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
438 						ring, first, last, flags);
439 	if (ret) {
440 		struct xhci_segment *next;
441 		do {
442 			next = first->next;
443 			xhci_segment_free(xhci, first);
444 			if (first == last)
445 				break;
446 			first = next;
447 		} while (true);
448 		return ret;
449 	}
450 
451 	xhci_link_rings(xhci, ring, first, last, num_segs);
452 	trace_xhci_ring_expansion(ring);
453 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
454 			"ring expansion succeed, now has %d segments",
455 			ring->num_segs);
456 
457 	return 0;
458 }
459 
460 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
461 						    int type, gfp_t flags)
462 {
463 	struct xhci_container_ctx *ctx;
464 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
465 
466 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
467 		return NULL;
468 
469 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
470 	if (!ctx)
471 		return NULL;
472 
473 	ctx->type = type;
474 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
475 	if (type == XHCI_CTX_TYPE_INPUT)
476 		ctx->size += CTX_SIZE(xhci->hcc_params);
477 
478 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
479 	if (!ctx->bytes) {
480 		kfree(ctx);
481 		return NULL;
482 	}
483 	return ctx;
484 }
485 
486 void xhci_free_container_ctx(struct xhci_hcd *xhci,
487 			     struct xhci_container_ctx *ctx)
488 {
489 	if (!ctx)
490 		return;
491 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
492 	kfree(ctx);
493 }
494 
495 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
496 					      struct xhci_container_ctx *ctx)
497 {
498 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
499 		return NULL;
500 
501 	return (struct xhci_input_control_ctx *)ctx->bytes;
502 }
503 
504 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
505 					struct xhci_container_ctx *ctx)
506 {
507 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
508 		return (struct xhci_slot_ctx *)ctx->bytes;
509 
510 	return (struct xhci_slot_ctx *)
511 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
512 }
513 
514 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
515 				    struct xhci_container_ctx *ctx,
516 				    unsigned int ep_index)
517 {
518 	/* increment ep index by offset of start of ep ctx array */
519 	ep_index++;
520 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
521 		ep_index++;
522 
523 	return (struct xhci_ep_ctx *)
524 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
525 }
526 
527 
528 /***************** Streams structures manipulation *************************/
529 
530 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
531 		unsigned int num_stream_ctxs,
532 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
533 {
534 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
535 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
536 
537 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
538 		dma_free_coherent(dev, size,
539 				stream_ctx, dma);
540 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
541 		return dma_pool_free(xhci->small_streams_pool,
542 				stream_ctx, dma);
543 	else
544 		return dma_pool_free(xhci->medium_streams_pool,
545 				stream_ctx, dma);
546 }
547 
548 /*
549  * The stream context array for each endpoint with bulk streams enabled can
550  * vary in size, based on:
551  *  - how many streams the endpoint supports,
552  *  - the maximum primary stream array size the host controller supports,
553  *  - and how many streams the device driver asks for.
554  *
555  * The stream context array must be a power of 2, and can be as small as
556  * 64 bytes or as large as 1MB.
557  */
558 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
559 		unsigned int num_stream_ctxs, dma_addr_t *dma,
560 		gfp_t mem_flags)
561 {
562 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
563 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
564 
565 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
566 		return dma_alloc_coherent(dev, size,
567 				dma, mem_flags);
568 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
569 		return dma_pool_alloc(xhci->small_streams_pool,
570 				mem_flags, dma);
571 	else
572 		return dma_pool_alloc(xhci->medium_streams_pool,
573 				mem_flags, dma);
574 }
575 
576 struct xhci_ring *xhci_dma_to_transfer_ring(
577 		struct xhci_virt_ep *ep,
578 		u64 address)
579 {
580 	if (ep->ep_state & EP_HAS_STREAMS)
581 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
582 				address >> TRB_SEGMENT_SHIFT);
583 	return ep->ring;
584 }
585 
586 struct xhci_ring *xhci_stream_id_to_ring(
587 		struct xhci_virt_device *dev,
588 		unsigned int ep_index,
589 		unsigned int stream_id)
590 {
591 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
592 
593 	if (stream_id == 0)
594 		return ep->ring;
595 	if (!ep->stream_info)
596 		return NULL;
597 
598 	if (stream_id >= ep->stream_info->num_streams)
599 		return NULL;
600 	return ep->stream_info->stream_rings[stream_id];
601 }
602 
603 /*
604  * Change an endpoint's internal structure so it supports stream IDs.  The
605  * number of requested streams includes stream 0, which cannot be used by device
606  * drivers.
607  *
608  * The number of stream contexts in the stream context array may be bigger than
609  * the number of streams the driver wants to use.  This is because the number of
610  * stream context array entries must be a power of two.
611  */
612 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
613 		unsigned int num_stream_ctxs,
614 		unsigned int num_streams,
615 		unsigned int max_packet, gfp_t mem_flags)
616 {
617 	struct xhci_stream_info *stream_info;
618 	u32 cur_stream;
619 	struct xhci_ring *cur_ring;
620 	u64 addr;
621 	int ret;
622 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
623 
624 	xhci_dbg(xhci, "Allocating %u streams and %u "
625 			"stream context array entries.\n",
626 			num_streams, num_stream_ctxs);
627 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
628 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
629 		return NULL;
630 	}
631 	xhci->cmd_ring_reserved_trbs++;
632 
633 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
634 			dev_to_node(dev));
635 	if (!stream_info)
636 		goto cleanup_trbs;
637 
638 	stream_info->num_streams = num_streams;
639 	stream_info->num_stream_ctxs = num_stream_ctxs;
640 
641 	/* Initialize the array of virtual pointers to stream rings. */
642 	stream_info->stream_rings = kcalloc_node(
643 			num_streams, sizeof(struct xhci_ring *), mem_flags,
644 			dev_to_node(dev));
645 	if (!stream_info->stream_rings)
646 		goto cleanup_info;
647 
648 	/* Initialize the array of DMA addresses for stream rings for the HW. */
649 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
650 			num_stream_ctxs, &stream_info->ctx_array_dma,
651 			mem_flags);
652 	if (!stream_info->stream_ctx_array)
653 		goto cleanup_ctx;
654 	memset(stream_info->stream_ctx_array, 0,
655 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
656 
657 	/* Allocate everything needed to free the stream rings later */
658 	stream_info->free_streams_command =
659 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
660 	if (!stream_info->free_streams_command)
661 		goto cleanup_ctx;
662 
663 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
664 
665 	/* Allocate rings for all the streams that the driver will use,
666 	 * and add their segment DMA addresses to the radix tree.
667 	 * Stream 0 is reserved.
668 	 */
669 
670 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
671 		stream_info->stream_rings[cur_stream] =
672 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
673 					mem_flags);
674 		cur_ring = stream_info->stream_rings[cur_stream];
675 		if (!cur_ring)
676 			goto cleanup_rings;
677 		cur_ring->stream_id = cur_stream;
678 		cur_ring->trb_address_map = &stream_info->trb_address_map;
679 		/* Set deq ptr, cycle bit, and stream context type */
680 		addr = cur_ring->first_seg->dma |
681 			SCT_FOR_CTX(SCT_PRI_TR) |
682 			cur_ring->cycle_state;
683 		stream_info->stream_ctx_array[cur_stream].stream_ring =
684 			cpu_to_le64(addr);
685 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
686 				cur_stream, (unsigned long long) addr);
687 
688 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
689 		if (ret) {
690 			xhci_ring_free(xhci, cur_ring);
691 			stream_info->stream_rings[cur_stream] = NULL;
692 			goto cleanup_rings;
693 		}
694 	}
695 	/* Leave the other unused stream ring pointers in the stream context
696 	 * array initialized to zero.  This will cause the xHC to give us an
697 	 * error if the device asks for a stream ID we don't have setup (if it
698 	 * was any other way, the host controller would assume the ring is
699 	 * "empty" and wait forever for data to be queued to that stream ID).
700 	 */
701 
702 	return stream_info;
703 
704 cleanup_rings:
705 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
706 		cur_ring = stream_info->stream_rings[cur_stream];
707 		if (cur_ring) {
708 			xhci_ring_free(xhci, cur_ring);
709 			stream_info->stream_rings[cur_stream] = NULL;
710 		}
711 	}
712 	xhci_free_command(xhci, stream_info->free_streams_command);
713 cleanup_ctx:
714 	kfree(stream_info->stream_rings);
715 cleanup_info:
716 	kfree(stream_info);
717 cleanup_trbs:
718 	xhci->cmd_ring_reserved_trbs--;
719 	return NULL;
720 }
721 /*
722  * Sets the MaxPStreams field and the Linear Stream Array field.
723  * Sets the dequeue pointer to the stream context array.
724  */
725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
726 		struct xhci_ep_ctx *ep_ctx,
727 		struct xhci_stream_info *stream_info)
728 {
729 	u32 max_primary_streams;
730 	/* MaxPStreams is the number of stream context array entries, not the
731 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
732 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
733 	 */
734 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
735 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
736 			"Setting number of stream ctx array entries to %u",
737 			1 << (max_primary_streams + 1));
738 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
739 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
740 				       | EP_HAS_LSA);
741 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
742 }
743 
744 /*
745  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
746  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
747  * not at the beginning of the ring).
748  */
749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
750 		struct xhci_virt_ep *ep)
751 {
752 	dma_addr_t addr;
753 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
754 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
755 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
756 }
757 
758 /* Frees all stream contexts associated with the endpoint,
759  *
760  * Caller should fix the endpoint context streams fields.
761  */
762 void xhci_free_stream_info(struct xhci_hcd *xhci,
763 		struct xhci_stream_info *stream_info)
764 {
765 	int cur_stream;
766 	struct xhci_ring *cur_ring;
767 
768 	if (!stream_info)
769 		return;
770 
771 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
772 			cur_stream++) {
773 		cur_ring = stream_info->stream_rings[cur_stream];
774 		if (cur_ring) {
775 			xhci_ring_free(xhci, cur_ring);
776 			stream_info->stream_rings[cur_stream] = NULL;
777 		}
778 	}
779 	xhci_free_command(xhci, stream_info->free_streams_command);
780 	xhci->cmd_ring_reserved_trbs--;
781 	if (stream_info->stream_ctx_array)
782 		xhci_free_stream_ctx(xhci,
783 				stream_info->num_stream_ctxs,
784 				stream_info->stream_ctx_array,
785 				stream_info->ctx_array_dma);
786 
787 	kfree(stream_info->stream_rings);
788 	kfree(stream_info);
789 }
790 
791 
792 /***************** Device context manipulation *************************/
793 
794 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
795 		struct xhci_virt_ep *ep)
796 {
797 	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
798 		    0);
799 	ep->xhci = xhci;
800 }
801 
802 static void xhci_free_tt_info(struct xhci_hcd *xhci,
803 		struct xhci_virt_device *virt_dev,
804 		int slot_id)
805 {
806 	struct list_head *tt_list_head;
807 	struct xhci_tt_bw_info *tt_info, *next;
808 	bool slot_found = false;
809 
810 	/* If the device never made it past the Set Address stage,
811 	 * it may not have the real_port set correctly.
812 	 */
813 	if (virt_dev->real_port == 0 ||
814 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
815 		xhci_dbg(xhci, "Bad real port.\n");
816 		return;
817 	}
818 
819 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
820 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
821 		/* Multi-TT hubs will have more than one entry */
822 		if (tt_info->slot_id == slot_id) {
823 			slot_found = true;
824 			list_del(&tt_info->tt_list);
825 			kfree(tt_info);
826 		} else if (slot_found) {
827 			break;
828 		}
829 	}
830 }
831 
832 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
833 		struct xhci_virt_device *virt_dev,
834 		struct usb_device *hdev,
835 		struct usb_tt *tt, gfp_t mem_flags)
836 {
837 	struct xhci_tt_bw_info		*tt_info;
838 	unsigned int			num_ports;
839 	int				i, j;
840 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
841 
842 	if (!tt->multi)
843 		num_ports = 1;
844 	else
845 		num_ports = hdev->maxchild;
846 
847 	for (i = 0; i < num_ports; i++, tt_info++) {
848 		struct xhci_interval_bw_table *bw_table;
849 
850 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
851 				dev_to_node(dev));
852 		if (!tt_info)
853 			goto free_tts;
854 		INIT_LIST_HEAD(&tt_info->tt_list);
855 		list_add(&tt_info->tt_list,
856 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
857 		tt_info->slot_id = virt_dev->udev->slot_id;
858 		if (tt->multi)
859 			tt_info->ttport = i+1;
860 		bw_table = &tt_info->bw_table;
861 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
862 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
863 	}
864 	return 0;
865 
866 free_tts:
867 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
868 	return -ENOMEM;
869 }
870 
871 
872 /* All the xhci_tds in the ring's TD list should be freed at this point.
873  * Should be called with xhci->lock held if there is any chance the TT lists
874  * will be manipulated by the configure endpoint, allocate device, or update
875  * hub functions while this function is removing the TT entries from the list.
876  */
877 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
878 {
879 	struct xhci_virt_device *dev;
880 	int i;
881 	int old_active_eps = 0;
882 
883 	/* Slot ID 0 is reserved */
884 	if (slot_id == 0 || !xhci->devs[slot_id])
885 		return;
886 
887 	dev = xhci->devs[slot_id];
888 
889 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
890 	if (!dev)
891 		return;
892 
893 	trace_xhci_free_virt_device(dev);
894 
895 	if (dev->tt_info)
896 		old_active_eps = dev->tt_info->active_eps;
897 
898 	for (i = 0; i < 31; i++) {
899 		if (dev->eps[i].ring)
900 			xhci_ring_free(xhci, dev->eps[i].ring);
901 		if (dev->eps[i].stream_info)
902 			xhci_free_stream_info(xhci,
903 					dev->eps[i].stream_info);
904 		/* Endpoints on the TT/root port lists should have been removed
905 		 * when usb_disable_device() was called for the device.
906 		 * We can't drop them anyway, because the udev might have gone
907 		 * away by this point, and we can't tell what speed it was.
908 		 */
909 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
910 			xhci_warn(xhci, "Slot %u endpoint %u "
911 					"not removed from BW list!\n",
912 					slot_id, i);
913 	}
914 	/* If this is a hub, free the TT(s) from the TT list */
915 	xhci_free_tt_info(xhci, dev, slot_id);
916 	/* If necessary, update the number of active TTs on this root port */
917 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
918 
919 	if (dev->in_ctx)
920 		xhci_free_container_ctx(xhci, dev->in_ctx);
921 	if (dev->out_ctx)
922 		xhci_free_container_ctx(xhci, dev->out_ctx);
923 
924 	if (dev->udev && dev->udev->slot_id)
925 		dev->udev->slot_id = 0;
926 	kfree(xhci->devs[slot_id]);
927 	xhci->devs[slot_id] = NULL;
928 }
929 
930 /*
931  * Free a virt_device structure.
932  * If the virt_device added a tt_info (a hub) and has children pointing to
933  * that tt_info, then free the child first. Recursive.
934  * We can't rely on udev at this point to find child-parent relationships.
935  */
936 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
937 {
938 	struct xhci_virt_device *vdev;
939 	struct list_head *tt_list_head;
940 	struct xhci_tt_bw_info *tt_info, *next;
941 	int i;
942 
943 	vdev = xhci->devs[slot_id];
944 	if (!vdev)
945 		return;
946 
947 	if (vdev->real_port == 0 ||
948 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
949 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
950 		goto out;
951 	}
952 
953 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
954 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
955 		/* is this a hub device that added a tt_info to the tts list */
956 		if (tt_info->slot_id == slot_id) {
957 			/* are any devices using this tt_info? */
958 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
959 				vdev = xhci->devs[i];
960 				if (vdev && (vdev->tt_info == tt_info))
961 					xhci_free_virt_devices_depth_first(
962 						xhci, i);
963 			}
964 		}
965 	}
966 out:
967 	/* we are now at a leaf device */
968 	xhci_debugfs_remove_slot(xhci, slot_id);
969 	xhci_free_virt_device(xhci, slot_id);
970 }
971 
972 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
973 		struct usb_device *udev, gfp_t flags)
974 {
975 	struct xhci_virt_device *dev;
976 	int i;
977 
978 	/* Slot ID 0 is reserved */
979 	if (slot_id == 0 || xhci->devs[slot_id]) {
980 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
981 		return 0;
982 	}
983 
984 	dev = kzalloc(sizeof(*dev), flags);
985 	if (!dev)
986 		return 0;
987 
988 	/* Allocate the (output) device context that will be used in the HC. */
989 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
990 	if (!dev->out_ctx)
991 		goto fail;
992 
993 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
994 			(unsigned long long)dev->out_ctx->dma);
995 
996 	/* Allocate the (input) device context for address device command */
997 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
998 	if (!dev->in_ctx)
999 		goto fail;
1000 
1001 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1002 			(unsigned long long)dev->in_ctx->dma);
1003 
1004 	/* Initialize the cancellation list and watchdog timers for each ep */
1005 	for (i = 0; i < 31; i++) {
1006 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1007 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1008 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1009 	}
1010 
1011 	/* Allocate endpoint 0 ring */
1012 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1013 	if (!dev->eps[0].ring)
1014 		goto fail;
1015 
1016 	dev->udev = udev;
1017 
1018 	/* Point to output device context in dcbaa. */
1019 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1020 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1021 		 slot_id,
1022 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1023 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1024 
1025 	trace_xhci_alloc_virt_device(dev);
1026 
1027 	xhci->devs[slot_id] = dev;
1028 
1029 	return 1;
1030 fail:
1031 
1032 	if (dev->in_ctx)
1033 		xhci_free_container_ctx(xhci, dev->in_ctx);
1034 	if (dev->out_ctx)
1035 		xhci_free_container_ctx(xhci, dev->out_ctx);
1036 	kfree(dev);
1037 
1038 	return 0;
1039 }
1040 
1041 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1042 		struct usb_device *udev)
1043 {
1044 	struct xhci_virt_device *virt_dev;
1045 	struct xhci_ep_ctx	*ep0_ctx;
1046 	struct xhci_ring	*ep_ring;
1047 
1048 	virt_dev = xhci->devs[udev->slot_id];
1049 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1050 	ep_ring = virt_dev->eps[0].ring;
1051 	/*
1052 	 * FIXME we don't keep track of the dequeue pointer very well after a
1053 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1054 	 * host to our enqueue pointer.  This should only be called after a
1055 	 * configured device has reset, so all control transfers should have
1056 	 * been completed or cancelled before the reset.
1057 	 */
1058 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1059 							ep_ring->enqueue)
1060 				   | ep_ring->cycle_state);
1061 }
1062 
1063 /*
1064  * The xHCI roothub may have ports of differing speeds in any order in the port
1065  * status registers.
1066  *
1067  * The xHCI hardware wants to know the roothub port number that the USB device
1068  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1069  * know is the index of that port under either the USB 2.0 or the USB 3.0
1070  * roothub, but that doesn't give us the real index into the HW port status
1071  * registers. Call xhci_find_raw_port_number() to get real index.
1072  */
1073 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1074 		struct usb_device *udev)
1075 {
1076 	struct usb_device *top_dev;
1077 	struct usb_hcd *hcd;
1078 
1079 	if (udev->speed >= USB_SPEED_SUPER)
1080 		hcd = xhci->shared_hcd;
1081 	else
1082 		hcd = xhci->main_hcd;
1083 
1084 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1085 			top_dev = top_dev->parent)
1086 		/* Found device below root hub */;
1087 
1088 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1089 }
1090 
1091 /* Setup an xHCI virtual device for a Set Address command */
1092 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1093 {
1094 	struct xhci_virt_device *dev;
1095 	struct xhci_ep_ctx	*ep0_ctx;
1096 	struct xhci_slot_ctx    *slot_ctx;
1097 	u32			port_num;
1098 	u32			max_packets;
1099 	struct usb_device *top_dev;
1100 
1101 	dev = xhci->devs[udev->slot_id];
1102 	/* Slot ID 0 is reserved */
1103 	if (udev->slot_id == 0 || !dev) {
1104 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1105 				udev->slot_id);
1106 		return -EINVAL;
1107 	}
1108 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1109 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1110 
1111 	/* 3) Only the control endpoint is valid - one endpoint context */
1112 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1113 	switch (udev->speed) {
1114 	case USB_SPEED_SUPER_PLUS:
1115 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1116 		max_packets = MAX_PACKET(512);
1117 		break;
1118 	case USB_SPEED_SUPER:
1119 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1120 		max_packets = MAX_PACKET(512);
1121 		break;
1122 	case USB_SPEED_HIGH:
1123 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1124 		max_packets = MAX_PACKET(64);
1125 		break;
1126 	/* USB core guesses at a 64-byte max packet first for FS devices */
1127 	case USB_SPEED_FULL:
1128 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1129 		max_packets = MAX_PACKET(64);
1130 		break;
1131 	case USB_SPEED_LOW:
1132 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1133 		max_packets = MAX_PACKET(8);
1134 		break;
1135 	case USB_SPEED_WIRELESS:
1136 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1137 		return -EINVAL;
1138 		break;
1139 	default:
1140 		/* Speed was set earlier, this shouldn't happen. */
1141 		return -EINVAL;
1142 	}
1143 	/* Find the root hub port this device is under */
1144 	port_num = xhci_find_real_port_number(xhci, udev);
1145 	if (!port_num)
1146 		return -EINVAL;
1147 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1148 	/* Set the port number in the virtual_device to the faked port number */
1149 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1150 			top_dev = top_dev->parent)
1151 		/* Found device below root hub */;
1152 	dev->fake_port = top_dev->portnum;
1153 	dev->real_port = port_num;
1154 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1155 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1156 
1157 	/* Find the right bandwidth table that this device will be a part of.
1158 	 * If this is a full speed device attached directly to a root port (or a
1159 	 * decendent of one), it counts as a primary bandwidth domain, not a
1160 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1161 	 * will never be created for the HS root hub.
1162 	 */
1163 	if (!udev->tt || !udev->tt->hub->parent) {
1164 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1165 	} else {
1166 		struct xhci_root_port_bw_info *rh_bw;
1167 		struct xhci_tt_bw_info *tt_bw;
1168 
1169 		rh_bw = &xhci->rh_bw[port_num - 1];
1170 		/* Find the right TT. */
1171 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1172 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1173 				continue;
1174 
1175 			if (!dev->udev->tt->multi ||
1176 					(udev->tt->multi &&
1177 					 tt_bw->ttport == dev->udev->ttport)) {
1178 				dev->bw_table = &tt_bw->bw_table;
1179 				dev->tt_info = tt_bw;
1180 				break;
1181 			}
1182 		}
1183 		if (!dev->tt_info)
1184 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1185 	}
1186 
1187 	/* Is this a LS/FS device under an external HS hub? */
1188 	if (udev->tt && udev->tt->hub->parent) {
1189 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1190 						(udev->ttport << 8));
1191 		if (udev->tt->multi)
1192 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1193 	}
1194 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1195 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1196 
1197 	/* Step 4 - ring already allocated */
1198 	/* Step 5 */
1199 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1200 
1201 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1202 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1203 					 max_packets);
1204 
1205 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1206 				   dev->eps[0].ring->cycle_state);
1207 
1208 	trace_xhci_setup_addressable_virt_device(dev);
1209 
1210 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Convert interval expressed as 2^(bInterval - 1) == interval into
1217  * straight exponent value 2^n == interval.
1218  *
1219  */
1220 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1221 		struct usb_host_endpoint *ep)
1222 {
1223 	unsigned int interval;
1224 
1225 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1226 	if (interval != ep->desc.bInterval - 1)
1227 		dev_warn(&udev->dev,
1228 			 "ep %#x - rounding interval to %d %sframes\n",
1229 			 ep->desc.bEndpointAddress,
1230 			 1 << interval,
1231 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1232 
1233 	if (udev->speed == USB_SPEED_FULL) {
1234 		/*
1235 		 * Full speed isoc endpoints specify interval in frames,
1236 		 * not microframes. We are using microframes everywhere,
1237 		 * so adjust accordingly.
1238 		 */
1239 		interval += 3;	/* 1 frame = 2^3 uframes */
1240 	}
1241 
1242 	return interval;
1243 }
1244 
1245 /*
1246  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1247  * microframes, rounded down to nearest power of 2.
1248  */
1249 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1250 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1251 		unsigned int min_exponent, unsigned int max_exponent)
1252 {
1253 	unsigned int interval;
1254 
1255 	interval = fls(desc_interval) - 1;
1256 	interval = clamp_val(interval, min_exponent, max_exponent);
1257 	if ((1 << interval) != desc_interval)
1258 		dev_dbg(&udev->dev,
1259 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1260 			 ep->desc.bEndpointAddress,
1261 			 1 << interval,
1262 			 desc_interval);
1263 
1264 	return interval;
1265 }
1266 
1267 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1268 		struct usb_host_endpoint *ep)
1269 {
1270 	if (ep->desc.bInterval == 0)
1271 		return 0;
1272 	return xhci_microframes_to_exponent(udev, ep,
1273 			ep->desc.bInterval, 0, 15);
1274 }
1275 
1276 
1277 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1278 		struct usb_host_endpoint *ep)
1279 {
1280 	return xhci_microframes_to_exponent(udev, ep,
1281 			ep->desc.bInterval * 8, 3, 10);
1282 }
1283 
1284 /* Return the polling or NAK interval.
1285  *
1286  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1287  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1288  *
1289  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1290  * is set to 0.
1291  */
1292 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1293 		struct usb_host_endpoint *ep)
1294 {
1295 	unsigned int interval = 0;
1296 
1297 	switch (udev->speed) {
1298 	case USB_SPEED_HIGH:
1299 		/* Max NAK rate */
1300 		if (usb_endpoint_xfer_control(&ep->desc) ||
1301 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1302 			interval = xhci_parse_microframe_interval(udev, ep);
1303 			break;
1304 		}
1305 		/* Fall through - SS and HS isoc/int have same decoding */
1306 
1307 	case USB_SPEED_SUPER_PLUS:
1308 	case USB_SPEED_SUPER:
1309 		if (usb_endpoint_xfer_int(&ep->desc) ||
1310 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1311 			interval = xhci_parse_exponent_interval(udev, ep);
1312 		}
1313 		break;
1314 
1315 	case USB_SPEED_FULL:
1316 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1317 			interval = xhci_parse_exponent_interval(udev, ep);
1318 			break;
1319 		}
1320 		/*
1321 		 * Fall through for interrupt endpoint interval decoding
1322 		 * since it uses the same rules as low speed interrupt
1323 		 * endpoints.
1324 		 */
1325 		/* fall through */
1326 
1327 	case USB_SPEED_LOW:
1328 		if (usb_endpoint_xfer_int(&ep->desc) ||
1329 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1330 
1331 			interval = xhci_parse_frame_interval(udev, ep);
1332 		}
1333 		break;
1334 
1335 	default:
1336 		BUG();
1337 	}
1338 	return interval;
1339 }
1340 
1341 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1342  * High speed endpoint descriptors can define "the number of additional
1343  * transaction opportunities per microframe", but that goes in the Max Burst
1344  * endpoint context field.
1345  */
1346 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1347 		struct usb_host_endpoint *ep)
1348 {
1349 	if (udev->speed < USB_SPEED_SUPER ||
1350 			!usb_endpoint_xfer_isoc(&ep->desc))
1351 		return 0;
1352 	return ep->ss_ep_comp.bmAttributes;
1353 }
1354 
1355 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1356 				       struct usb_host_endpoint *ep)
1357 {
1358 	/* Super speed and Plus have max burst in ep companion desc */
1359 	if (udev->speed >= USB_SPEED_SUPER)
1360 		return ep->ss_ep_comp.bMaxBurst;
1361 
1362 	if (udev->speed == USB_SPEED_HIGH &&
1363 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1364 	     usb_endpoint_xfer_int(&ep->desc)))
1365 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1366 
1367 	return 0;
1368 }
1369 
1370 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1371 {
1372 	int in;
1373 
1374 	in = usb_endpoint_dir_in(&ep->desc);
1375 
1376 	switch (usb_endpoint_type(&ep->desc)) {
1377 	case USB_ENDPOINT_XFER_CONTROL:
1378 		return CTRL_EP;
1379 	case USB_ENDPOINT_XFER_BULK:
1380 		return in ? BULK_IN_EP : BULK_OUT_EP;
1381 	case USB_ENDPOINT_XFER_ISOC:
1382 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1383 	case USB_ENDPOINT_XFER_INT:
1384 		return in ? INT_IN_EP : INT_OUT_EP;
1385 	}
1386 	return 0;
1387 }
1388 
1389 /* Return the maximum endpoint service interval time (ESIT) payload.
1390  * Basically, this is the maxpacket size, multiplied by the burst size
1391  * and mult size.
1392  */
1393 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1394 		struct usb_host_endpoint *ep)
1395 {
1396 	int max_burst;
1397 	int max_packet;
1398 
1399 	/* Only applies for interrupt or isochronous endpoints */
1400 	if (usb_endpoint_xfer_control(&ep->desc) ||
1401 			usb_endpoint_xfer_bulk(&ep->desc))
1402 		return 0;
1403 
1404 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1405 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1406 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1407 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1408 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1409 	else if (udev->speed >= USB_SPEED_SUPER)
1410 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1411 
1412 	max_packet = usb_endpoint_maxp(&ep->desc);
1413 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1414 	/* A 0 in max burst means 1 transfer per ESIT */
1415 	return max_packet * max_burst;
1416 }
1417 
1418 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1419  * Drivers will have to call usb_alloc_streams() to do that.
1420  */
1421 int xhci_endpoint_init(struct xhci_hcd *xhci,
1422 		struct xhci_virt_device *virt_dev,
1423 		struct usb_device *udev,
1424 		struct usb_host_endpoint *ep,
1425 		gfp_t mem_flags)
1426 {
1427 	unsigned int ep_index;
1428 	struct xhci_ep_ctx *ep_ctx;
1429 	struct xhci_ring *ep_ring;
1430 	unsigned int max_packet;
1431 	enum xhci_ring_type ring_type;
1432 	u32 max_esit_payload;
1433 	u32 endpoint_type;
1434 	unsigned int max_burst;
1435 	unsigned int interval;
1436 	unsigned int mult;
1437 	unsigned int avg_trb_len;
1438 	unsigned int err_count = 0;
1439 
1440 	ep_index = xhci_get_endpoint_index(&ep->desc);
1441 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1442 
1443 	endpoint_type = xhci_get_endpoint_type(ep);
1444 	if (!endpoint_type)
1445 		return -EINVAL;
1446 
1447 	ring_type = usb_endpoint_type(&ep->desc);
1448 
1449 	/*
1450 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1451 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1452 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1453 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1454 	 */
1455 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1456 	interval = xhci_get_endpoint_interval(udev, ep);
1457 
1458 	/* Periodic endpoint bInterval limit quirk */
1459 	if (usb_endpoint_xfer_int(&ep->desc) ||
1460 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1461 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1462 		    udev->speed >= USB_SPEED_HIGH &&
1463 		    interval >= 7) {
1464 			interval = 6;
1465 		}
1466 	}
1467 
1468 	mult = xhci_get_endpoint_mult(udev, ep);
1469 	max_packet = usb_endpoint_maxp(&ep->desc);
1470 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1471 	avg_trb_len = max_esit_payload;
1472 
1473 	/* FIXME dig Mult and streams info out of ep companion desc */
1474 
1475 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1476 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1477 		err_count = 3;
1478 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1479 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1480 		if (udev->speed == USB_SPEED_HIGH)
1481 			max_packet = 512;
1482 		if (udev->speed == USB_SPEED_FULL) {
1483 			max_packet = rounddown_pow_of_two(max_packet);
1484 			max_packet = clamp_val(max_packet, 8, 64);
1485 		}
1486 	}
1487 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1488 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1489 		avg_trb_len = 8;
1490 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1491 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1492 		mult = 0;
1493 
1494 	/* Set up the endpoint ring */
1495 	virt_dev->eps[ep_index].new_ring =
1496 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1497 	if (!virt_dev->eps[ep_index].new_ring)
1498 		return -ENOMEM;
1499 
1500 	virt_dev->eps[ep_index].skip = false;
1501 	ep_ring = virt_dev->eps[ep_index].new_ring;
1502 
1503 	/* Fill the endpoint context */
1504 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1505 				      EP_INTERVAL(interval) |
1506 				      EP_MULT(mult));
1507 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1508 				       MAX_PACKET(max_packet) |
1509 				       MAX_BURST(max_burst) |
1510 				       ERROR_COUNT(err_count));
1511 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1512 				  ep_ring->cycle_state);
1513 
1514 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1515 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1516 
1517 	return 0;
1518 }
1519 
1520 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1521 		struct xhci_virt_device *virt_dev,
1522 		struct usb_host_endpoint *ep)
1523 {
1524 	unsigned int ep_index;
1525 	struct xhci_ep_ctx *ep_ctx;
1526 
1527 	ep_index = xhci_get_endpoint_index(&ep->desc);
1528 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1529 
1530 	ep_ctx->ep_info = 0;
1531 	ep_ctx->ep_info2 = 0;
1532 	ep_ctx->deq = 0;
1533 	ep_ctx->tx_info = 0;
1534 	/* Don't free the endpoint ring until the set interface or configuration
1535 	 * request succeeds.
1536 	 */
1537 }
1538 
1539 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1540 {
1541 	bw_info->ep_interval = 0;
1542 	bw_info->mult = 0;
1543 	bw_info->num_packets = 0;
1544 	bw_info->max_packet_size = 0;
1545 	bw_info->type = 0;
1546 	bw_info->max_esit_payload = 0;
1547 }
1548 
1549 void xhci_update_bw_info(struct xhci_hcd *xhci,
1550 		struct xhci_container_ctx *in_ctx,
1551 		struct xhci_input_control_ctx *ctrl_ctx,
1552 		struct xhci_virt_device *virt_dev)
1553 {
1554 	struct xhci_bw_info *bw_info;
1555 	struct xhci_ep_ctx *ep_ctx;
1556 	unsigned int ep_type;
1557 	int i;
1558 
1559 	for (i = 1; i < 31; i++) {
1560 		bw_info = &virt_dev->eps[i].bw_info;
1561 
1562 		/* We can't tell what endpoint type is being dropped, but
1563 		 * unconditionally clearing the bandwidth info for non-periodic
1564 		 * endpoints should be harmless because the info will never be
1565 		 * set in the first place.
1566 		 */
1567 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1568 			/* Dropped endpoint */
1569 			xhci_clear_endpoint_bw_info(bw_info);
1570 			continue;
1571 		}
1572 
1573 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1574 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1575 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1576 
1577 			/* Ignore non-periodic endpoints */
1578 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1579 					ep_type != ISOC_IN_EP &&
1580 					ep_type != INT_IN_EP)
1581 				continue;
1582 
1583 			/* Added or changed endpoint */
1584 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1585 					le32_to_cpu(ep_ctx->ep_info));
1586 			/* Number of packets and mult are zero-based in the
1587 			 * input context, but we want one-based for the
1588 			 * interval table.
1589 			 */
1590 			bw_info->mult = CTX_TO_EP_MULT(
1591 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1592 			bw_info->num_packets = CTX_TO_MAX_BURST(
1593 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1594 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1595 					le32_to_cpu(ep_ctx->ep_info2));
1596 			bw_info->type = ep_type;
1597 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1598 					le32_to_cpu(ep_ctx->tx_info));
1599 		}
1600 	}
1601 }
1602 
1603 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1604  * Useful when you want to change one particular aspect of the endpoint and then
1605  * issue a configure endpoint command.
1606  */
1607 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1608 		struct xhci_container_ctx *in_ctx,
1609 		struct xhci_container_ctx *out_ctx,
1610 		unsigned int ep_index)
1611 {
1612 	struct xhci_ep_ctx *out_ep_ctx;
1613 	struct xhci_ep_ctx *in_ep_ctx;
1614 
1615 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1616 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1617 
1618 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1619 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1620 	in_ep_ctx->deq = out_ep_ctx->deq;
1621 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1622 	if (xhci->quirks & XHCI_MTK_HOST) {
1623 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1624 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1625 	}
1626 }
1627 
1628 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1629  * Useful when you want to change one particular aspect of the endpoint and then
1630  * issue a configure endpoint command.  Only the context entries field matters,
1631  * but we'll copy the whole thing anyway.
1632  */
1633 void xhci_slot_copy(struct xhci_hcd *xhci,
1634 		struct xhci_container_ctx *in_ctx,
1635 		struct xhci_container_ctx *out_ctx)
1636 {
1637 	struct xhci_slot_ctx *in_slot_ctx;
1638 	struct xhci_slot_ctx *out_slot_ctx;
1639 
1640 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1641 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1642 
1643 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1644 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1645 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1646 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1647 }
1648 
1649 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1650 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1651 {
1652 	int i;
1653 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1654 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1655 
1656 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1657 			"Allocating %d scratchpad buffers", num_sp);
1658 
1659 	if (!num_sp)
1660 		return 0;
1661 
1662 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1663 				dev_to_node(dev));
1664 	if (!xhci->scratchpad)
1665 		goto fail_sp;
1666 
1667 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1668 				     num_sp * sizeof(u64),
1669 				     &xhci->scratchpad->sp_dma, flags);
1670 	if (!xhci->scratchpad->sp_array)
1671 		goto fail_sp2;
1672 
1673 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1674 					flags, dev_to_node(dev));
1675 	if (!xhci->scratchpad->sp_buffers)
1676 		goto fail_sp3;
1677 
1678 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1679 	for (i = 0; i < num_sp; i++) {
1680 		dma_addr_t dma;
1681 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1682 					       flags);
1683 		if (!buf)
1684 			goto fail_sp4;
1685 
1686 		xhci->scratchpad->sp_array[i] = dma;
1687 		xhci->scratchpad->sp_buffers[i] = buf;
1688 	}
1689 
1690 	return 0;
1691 
1692  fail_sp4:
1693 	for (i = i - 1; i >= 0; i--) {
1694 		dma_free_coherent(dev, xhci->page_size,
1695 				    xhci->scratchpad->sp_buffers[i],
1696 				    xhci->scratchpad->sp_array[i]);
1697 	}
1698 
1699 	kfree(xhci->scratchpad->sp_buffers);
1700 
1701  fail_sp3:
1702 	dma_free_coherent(dev, num_sp * sizeof(u64),
1703 			    xhci->scratchpad->sp_array,
1704 			    xhci->scratchpad->sp_dma);
1705 
1706  fail_sp2:
1707 	kfree(xhci->scratchpad);
1708 	xhci->scratchpad = NULL;
1709 
1710  fail_sp:
1711 	return -ENOMEM;
1712 }
1713 
1714 static void scratchpad_free(struct xhci_hcd *xhci)
1715 {
1716 	int num_sp;
1717 	int i;
1718 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1719 
1720 	if (!xhci->scratchpad)
1721 		return;
1722 
1723 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1724 
1725 	for (i = 0; i < num_sp; i++) {
1726 		dma_free_coherent(dev, xhci->page_size,
1727 				    xhci->scratchpad->sp_buffers[i],
1728 				    xhci->scratchpad->sp_array[i]);
1729 	}
1730 	kfree(xhci->scratchpad->sp_buffers);
1731 	dma_free_coherent(dev, num_sp * sizeof(u64),
1732 			    xhci->scratchpad->sp_array,
1733 			    xhci->scratchpad->sp_dma);
1734 	kfree(xhci->scratchpad);
1735 	xhci->scratchpad = NULL;
1736 }
1737 
1738 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1739 		bool allocate_completion, gfp_t mem_flags)
1740 {
1741 	struct xhci_command *command;
1742 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1743 
1744 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1745 	if (!command)
1746 		return NULL;
1747 
1748 	if (allocate_completion) {
1749 		command->completion =
1750 			kzalloc_node(sizeof(struct completion), mem_flags,
1751 				dev_to_node(dev));
1752 		if (!command->completion) {
1753 			kfree(command);
1754 			return NULL;
1755 		}
1756 		init_completion(command->completion);
1757 	}
1758 
1759 	command->status = 0;
1760 	INIT_LIST_HEAD(&command->cmd_list);
1761 	return command;
1762 }
1763 
1764 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1765 		bool allocate_completion, gfp_t mem_flags)
1766 {
1767 	struct xhci_command *command;
1768 
1769 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1770 	if (!command)
1771 		return NULL;
1772 
1773 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1774 						   mem_flags);
1775 	if (!command->in_ctx) {
1776 		kfree(command->completion);
1777 		kfree(command);
1778 		return NULL;
1779 	}
1780 	return command;
1781 }
1782 
1783 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1784 {
1785 	kfree(urb_priv);
1786 }
1787 
1788 void xhci_free_command(struct xhci_hcd *xhci,
1789 		struct xhci_command *command)
1790 {
1791 	xhci_free_container_ctx(xhci,
1792 			command->in_ctx);
1793 	kfree(command->completion);
1794 	kfree(command);
1795 }
1796 
1797 int xhci_alloc_erst(struct xhci_hcd *xhci,
1798 		    struct xhci_ring *evt_ring,
1799 		    struct xhci_erst *erst,
1800 		    gfp_t flags)
1801 {
1802 	size_t size;
1803 	unsigned int val;
1804 	struct xhci_segment *seg;
1805 	struct xhci_erst_entry *entry;
1806 
1807 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1808 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1809 					   size, &erst->erst_dma_addr, flags);
1810 	if (!erst->entries)
1811 		return -ENOMEM;
1812 
1813 	erst->num_entries = evt_ring->num_segs;
1814 
1815 	seg = evt_ring->first_seg;
1816 	for (val = 0; val < evt_ring->num_segs; val++) {
1817 		entry = &erst->entries[val];
1818 		entry->seg_addr = cpu_to_le64(seg->dma);
1819 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1820 		entry->rsvd = 0;
1821 		seg = seg->next;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1828 {
1829 	size_t size;
1830 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1831 
1832 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1833 	if (erst->entries)
1834 		dma_free_coherent(dev, size,
1835 				erst->entries,
1836 				erst->erst_dma_addr);
1837 	erst->entries = NULL;
1838 }
1839 
1840 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1841 {
1842 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1843 	int i, j, num_ports;
1844 
1845 	cancel_delayed_work_sync(&xhci->cmd_timer);
1846 
1847 	xhci_free_erst(xhci, &xhci->erst);
1848 
1849 	if (xhci->event_ring)
1850 		xhci_ring_free(xhci, xhci->event_ring);
1851 	xhci->event_ring = NULL;
1852 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1853 
1854 	if (xhci->lpm_command)
1855 		xhci_free_command(xhci, xhci->lpm_command);
1856 	xhci->lpm_command = NULL;
1857 	if (xhci->cmd_ring)
1858 		xhci_ring_free(xhci, xhci->cmd_ring);
1859 	xhci->cmd_ring = NULL;
1860 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1861 	xhci_cleanup_command_queue(xhci);
1862 
1863 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1864 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1865 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1866 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1867 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1868 			while (!list_empty(ep))
1869 				list_del_init(ep->next);
1870 		}
1871 	}
1872 
1873 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1874 		xhci_free_virt_devices_depth_first(xhci, i);
1875 
1876 	dma_pool_destroy(xhci->segment_pool);
1877 	xhci->segment_pool = NULL;
1878 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1879 
1880 	dma_pool_destroy(xhci->device_pool);
1881 	xhci->device_pool = NULL;
1882 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1883 
1884 	dma_pool_destroy(xhci->small_streams_pool);
1885 	xhci->small_streams_pool = NULL;
1886 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1887 			"Freed small stream array pool");
1888 
1889 	dma_pool_destroy(xhci->medium_streams_pool);
1890 	xhci->medium_streams_pool = NULL;
1891 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1892 			"Freed medium stream array pool");
1893 
1894 	if (xhci->dcbaa)
1895 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1896 				xhci->dcbaa, xhci->dcbaa->dma);
1897 	xhci->dcbaa = NULL;
1898 
1899 	scratchpad_free(xhci);
1900 
1901 	if (!xhci->rh_bw)
1902 		goto no_bw;
1903 
1904 	for (i = 0; i < num_ports; i++) {
1905 		struct xhci_tt_bw_info *tt, *n;
1906 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1907 			list_del(&tt->tt_list);
1908 			kfree(tt);
1909 		}
1910 	}
1911 
1912 no_bw:
1913 	xhci->cmd_ring_reserved_trbs = 0;
1914 	xhci->usb2_rhub.num_ports = 0;
1915 	xhci->usb3_rhub.num_ports = 0;
1916 	xhci->num_active_eps = 0;
1917 	kfree(xhci->usb2_rhub.ports);
1918 	kfree(xhci->usb3_rhub.ports);
1919 	kfree(xhci->hw_ports);
1920 	kfree(xhci->rh_bw);
1921 	kfree(xhci->ext_caps);
1922 	for (i = 0; i < xhci->num_port_caps; i++)
1923 		kfree(xhci->port_caps[i].psi);
1924 	kfree(xhci->port_caps);
1925 	xhci->num_port_caps = 0;
1926 
1927 	xhci->usb2_rhub.ports = NULL;
1928 	xhci->usb3_rhub.ports = NULL;
1929 	xhci->hw_ports = NULL;
1930 	xhci->rh_bw = NULL;
1931 	xhci->ext_caps = NULL;
1932 
1933 	xhci->page_size = 0;
1934 	xhci->page_shift = 0;
1935 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1936 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1937 }
1938 
1939 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1940 		struct xhci_segment *input_seg,
1941 		union xhci_trb *start_trb,
1942 		union xhci_trb *end_trb,
1943 		dma_addr_t input_dma,
1944 		struct xhci_segment *result_seg,
1945 		char *test_name, int test_number)
1946 {
1947 	unsigned long long start_dma;
1948 	unsigned long long end_dma;
1949 	struct xhci_segment *seg;
1950 
1951 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1952 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1953 
1954 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1955 	if (seg != result_seg) {
1956 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1957 				test_name, test_number);
1958 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1959 				"input DMA 0x%llx\n",
1960 				input_seg,
1961 				(unsigned long long) input_dma);
1962 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1963 				"ending TRB %p (0x%llx DMA)\n",
1964 				start_trb, start_dma,
1965 				end_trb, end_dma);
1966 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1967 				result_seg, seg);
1968 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1969 			  true);
1970 		return -1;
1971 	}
1972 	return 0;
1973 }
1974 
1975 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1976 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1977 {
1978 	struct {
1979 		dma_addr_t		input_dma;
1980 		struct xhci_segment	*result_seg;
1981 	} simple_test_vector [] = {
1982 		/* A zeroed DMA field should fail */
1983 		{ 0, NULL },
1984 		/* One TRB before the ring start should fail */
1985 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1986 		/* One byte before the ring start should fail */
1987 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1988 		/* Starting TRB should succeed */
1989 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1990 		/* Ending TRB should succeed */
1991 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1992 			xhci->event_ring->first_seg },
1993 		/* One byte after the ring end should fail */
1994 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1995 		/* One TRB after the ring end should fail */
1996 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1997 		/* An address of all ones should fail */
1998 		{ (dma_addr_t) (~0), NULL },
1999 	};
2000 	struct {
2001 		struct xhci_segment	*input_seg;
2002 		union xhci_trb		*start_trb;
2003 		union xhci_trb		*end_trb;
2004 		dma_addr_t		input_dma;
2005 		struct xhci_segment	*result_seg;
2006 	} complex_test_vector [] = {
2007 		/* Test feeding a valid DMA address from a different ring */
2008 		{	.input_seg = xhci->event_ring->first_seg,
2009 			.start_trb = xhci->event_ring->first_seg->trbs,
2010 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011 			.input_dma = xhci->cmd_ring->first_seg->dma,
2012 			.result_seg = NULL,
2013 		},
2014 		/* Test feeding a valid end TRB from a different ring */
2015 		{	.input_seg = xhci->event_ring->first_seg,
2016 			.start_trb = xhci->event_ring->first_seg->trbs,
2017 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2018 			.input_dma = xhci->cmd_ring->first_seg->dma,
2019 			.result_seg = NULL,
2020 		},
2021 		/* Test feeding a valid start and end TRB from a different ring */
2022 		{	.input_seg = xhci->event_ring->first_seg,
2023 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2024 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2025 			.input_dma = xhci->cmd_ring->first_seg->dma,
2026 			.result_seg = NULL,
2027 		},
2028 		/* TRB in this ring, but after this TD */
2029 		{	.input_seg = xhci->event_ring->first_seg,
2030 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2031 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2032 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2033 			.result_seg = NULL,
2034 		},
2035 		/* TRB in this ring, but before this TD */
2036 		{	.input_seg = xhci->event_ring->first_seg,
2037 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2038 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2039 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2040 			.result_seg = NULL,
2041 		},
2042 		/* TRB in this ring, but after this wrapped TD */
2043 		{	.input_seg = xhci->event_ring->first_seg,
2044 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2045 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2046 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2047 			.result_seg = NULL,
2048 		},
2049 		/* TRB in this ring, but before this wrapped TD */
2050 		{	.input_seg = xhci->event_ring->first_seg,
2051 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2052 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2053 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2054 			.result_seg = NULL,
2055 		},
2056 		/* TRB not in this ring, and we have a wrapped TD */
2057 		{	.input_seg = xhci->event_ring->first_seg,
2058 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2059 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2060 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2061 			.result_seg = NULL,
2062 		},
2063 	};
2064 
2065 	unsigned int num_tests;
2066 	int i, ret;
2067 
2068 	num_tests = ARRAY_SIZE(simple_test_vector);
2069 	for (i = 0; i < num_tests; i++) {
2070 		ret = xhci_test_trb_in_td(xhci,
2071 				xhci->event_ring->first_seg,
2072 				xhci->event_ring->first_seg->trbs,
2073 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2074 				simple_test_vector[i].input_dma,
2075 				simple_test_vector[i].result_seg,
2076 				"Simple", i);
2077 		if (ret < 0)
2078 			return ret;
2079 	}
2080 
2081 	num_tests = ARRAY_SIZE(complex_test_vector);
2082 	for (i = 0; i < num_tests; i++) {
2083 		ret = xhci_test_trb_in_td(xhci,
2084 				complex_test_vector[i].input_seg,
2085 				complex_test_vector[i].start_trb,
2086 				complex_test_vector[i].end_trb,
2087 				complex_test_vector[i].input_dma,
2088 				complex_test_vector[i].result_seg,
2089 				"Complex", i);
2090 		if (ret < 0)
2091 			return ret;
2092 	}
2093 	xhci_dbg(xhci, "TRB math tests passed.\n");
2094 	return 0;
2095 }
2096 
2097 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2098 {
2099 	u64 temp;
2100 	dma_addr_t deq;
2101 
2102 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2103 			xhci->event_ring->dequeue);
2104 	if (deq == 0 && !in_interrupt())
2105 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2106 				"dequeue ptr.\n");
2107 	/* Update HC event ring dequeue pointer */
2108 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2109 	temp &= ERST_PTR_MASK;
2110 	/* Don't clear the EHB bit (which is RW1C) because
2111 	 * there might be more events to service.
2112 	 */
2113 	temp &= ~ERST_EHB;
2114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2115 			"// Write event ring dequeue pointer, "
2116 			"preserving EHB bit");
2117 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2118 			&xhci->ir_set->erst_dequeue);
2119 }
2120 
2121 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2122 		__le32 __iomem *addr, int max_caps)
2123 {
2124 	u32 temp, port_offset, port_count;
2125 	int i;
2126 	u8 major_revision, minor_revision;
2127 	struct xhci_hub *rhub;
2128 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2129 	struct xhci_port_cap *port_cap;
2130 
2131 	temp = readl(addr);
2132 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2133 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2134 
2135 	if (major_revision == 0x03) {
2136 		rhub = &xhci->usb3_rhub;
2137 	} else if (major_revision <= 0x02) {
2138 		rhub = &xhci->usb2_rhub;
2139 	} else {
2140 		xhci_warn(xhci, "Ignoring unknown port speed, "
2141 				"Ext Cap %p, revision = 0x%x\n",
2142 				addr, major_revision);
2143 		/* Ignoring port protocol we can't understand. FIXME */
2144 		return;
2145 	}
2146 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2147 
2148 	if (rhub->min_rev < minor_revision)
2149 		rhub->min_rev = minor_revision;
2150 
2151 	/* Port offset and count in the third dword, see section 7.2 */
2152 	temp = readl(addr + 2);
2153 	port_offset = XHCI_EXT_PORT_OFF(temp);
2154 	port_count = XHCI_EXT_PORT_COUNT(temp);
2155 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2156 			"Ext Cap %p, port offset = %u, "
2157 			"count = %u, revision = 0x%x",
2158 			addr, port_offset, port_count, major_revision);
2159 	/* Port count includes the current port offset */
2160 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2161 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2162 		return;
2163 
2164 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2165 	if (xhci->num_port_caps > max_caps)
2166 		return;
2167 
2168 	port_cap->maj_rev = major_revision;
2169 	port_cap->min_rev = minor_revision;
2170 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2171 
2172 	if (port_cap->psi_count) {
2173 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2174 					     sizeof(*port_cap->psi),
2175 					     GFP_KERNEL, dev_to_node(dev));
2176 		if (!port_cap->psi)
2177 			port_cap->psi_count = 0;
2178 
2179 		port_cap->psi_uid_count++;
2180 		for (i = 0; i < port_cap->psi_count; i++) {
2181 			port_cap->psi[i] = readl(addr + 4 + i);
2182 
2183 			/* count unique ID values, two consecutive entries can
2184 			 * have the same ID if link is assymetric
2185 			 */
2186 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2187 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2188 				port_cap->psi_uid_count++;
2189 
2190 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2191 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2192 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2193 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2194 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2195 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2196 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2197 		}
2198 	}
2199 	/* cache usb2 port capabilities */
2200 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2201 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2202 
2203 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2204 		 (temp & XHCI_HLC)) {
2205 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2206 			       "xHCI 1.0: support USB2 hardware lpm");
2207 		xhci->hw_lpm_support = 1;
2208 	}
2209 
2210 	port_offset--;
2211 	for (i = port_offset; i < (port_offset + port_count); i++) {
2212 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2213 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2214 		if (hw_port->rhub) {
2215 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2216 					" port %u\n", addr, i);
2217 			xhci_warn(xhci, "Port was marked as USB %u, "
2218 					"duplicated as USB %u\n",
2219 					hw_port->rhub->maj_rev, major_revision);
2220 			/* Only adjust the roothub port counts if we haven't
2221 			 * found a similar duplicate.
2222 			 */
2223 			if (hw_port->rhub != rhub &&
2224 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2225 				hw_port->rhub->num_ports--;
2226 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2227 			}
2228 			continue;
2229 		}
2230 		hw_port->rhub = rhub;
2231 		hw_port->port_cap = port_cap;
2232 		rhub->num_ports++;
2233 	}
2234 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2235 }
2236 
2237 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2238 					struct xhci_hub *rhub, gfp_t flags)
2239 {
2240 	int port_index = 0;
2241 	int i;
2242 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2243 
2244 	if (!rhub->num_ports)
2245 		return;
2246 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags,
2247 			dev_to_node(dev));
2248 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2249 		if (xhci->hw_ports[i].rhub != rhub ||
2250 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2251 			continue;
2252 		xhci->hw_ports[i].hcd_portnum = port_index;
2253 		rhub->ports[port_index] = &xhci->hw_ports[i];
2254 		port_index++;
2255 		if (port_index == rhub->num_ports)
2256 			break;
2257 	}
2258 }
2259 
2260 /*
2261  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2262  * specify what speeds each port is supposed to be.  We can't count on the port
2263  * speed bits in the PORTSC register being correct until a device is connected,
2264  * but we need to set up the two fake roothubs with the correct number of USB
2265  * 3.0 and USB 2.0 ports at host controller initialization time.
2266  */
2267 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2268 {
2269 	void __iomem *base;
2270 	u32 offset;
2271 	unsigned int num_ports;
2272 	int i, j;
2273 	int cap_count = 0;
2274 	u32 cap_start;
2275 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2276 
2277 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2278 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2279 				flags, dev_to_node(dev));
2280 	if (!xhci->hw_ports)
2281 		return -ENOMEM;
2282 
2283 	for (i = 0; i < num_ports; i++) {
2284 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2285 			NUM_PORT_REGS * i;
2286 		xhci->hw_ports[i].hw_portnum = i;
2287 	}
2288 
2289 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2290 				   dev_to_node(dev));
2291 	if (!xhci->rh_bw)
2292 		return -ENOMEM;
2293 	for (i = 0; i < num_ports; i++) {
2294 		struct xhci_interval_bw_table *bw_table;
2295 
2296 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2297 		bw_table = &xhci->rh_bw[i].bw_table;
2298 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2299 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2300 	}
2301 	base = &xhci->cap_regs->hc_capbase;
2302 
2303 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2304 	if (!cap_start) {
2305 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2306 		return -ENODEV;
2307 	}
2308 
2309 	offset = cap_start;
2310 	/* count extended protocol capability entries for later caching */
2311 	while (offset) {
2312 		cap_count++;
2313 		offset = xhci_find_next_ext_cap(base, offset,
2314 						      XHCI_EXT_CAPS_PROTOCOL);
2315 	}
2316 
2317 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2318 				flags, dev_to_node(dev));
2319 	if (!xhci->ext_caps)
2320 		return -ENOMEM;
2321 
2322 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2323 				flags, dev_to_node(dev));
2324 	if (!xhci->port_caps)
2325 		return -ENOMEM;
2326 
2327 	offset = cap_start;
2328 
2329 	while (offset) {
2330 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2331 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2332 		    num_ports)
2333 			break;
2334 		offset = xhci_find_next_ext_cap(base, offset,
2335 						XHCI_EXT_CAPS_PROTOCOL);
2336 	}
2337 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2338 		xhci_warn(xhci, "No ports on the roothubs?\n");
2339 		return -ENODEV;
2340 	}
2341 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2342 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2343 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2344 
2345 	/* Place limits on the number of roothub ports so that the hub
2346 	 * descriptors aren't longer than the USB core will allocate.
2347 	 */
2348 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2349 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350 				"Limiting USB 3.0 roothub ports to %u.",
2351 				USB_SS_MAXPORTS);
2352 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2353 	}
2354 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2355 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2356 				"Limiting USB 2.0 roothub ports to %u.",
2357 				USB_MAXCHILDREN);
2358 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2359 	}
2360 
2361 	/*
2362 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2363 	 * Not sure how the USB core will handle a hub with no ports...
2364 	 */
2365 
2366 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2367 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2368 
2369 	return 0;
2370 }
2371 
2372 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2373 {
2374 	dma_addr_t	dma;
2375 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2376 	unsigned int	val, val2;
2377 	u64		val_64;
2378 	u32		page_size, temp;
2379 	int		i, ret;
2380 
2381 	INIT_LIST_HEAD(&xhci->cmd_list);
2382 
2383 	/* init command timeout work */
2384 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2385 	init_completion(&xhci->cmd_ring_stop_completion);
2386 
2387 	page_size = readl(&xhci->op_regs->page_size);
2388 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2389 			"Supported page size register = 0x%x", page_size);
2390 	for (i = 0; i < 16; i++) {
2391 		if ((0x1 & page_size) != 0)
2392 			break;
2393 		page_size = page_size >> 1;
2394 	}
2395 	if (i < 16)
2396 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2398 	else
2399 		xhci_warn(xhci, "WARN: no supported page size\n");
2400 	/* Use 4K pages, since that's common and the minimum the HC supports */
2401 	xhci->page_shift = 12;
2402 	xhci->page_size = 1 << xhci->page_shift;
2403 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404 			"HCD page size set to %iK", xhci->page_size / 1024);
2405 
2406 	/*
2407 	 * Program the Number of Device Slots Enabled field in the CONFIG
2408 	 * register with the max value of slots the HC can handle.
2409 	 */
2410 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2411 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 			"// xHC can handle at most %d device slots.", val);
2413 	val2 = readl(&xhci->op_regs->config_reg);
2414 	val |= (val2 & ~HCS_SLOTS_MASK);
2415 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 			"// Setting Max device slots reg = 0x%x.", val);
2417 	writel(val, &xhci->op_regs->config_reg);
2418 
2419 	/*
2420 	 * xHCI section 5.4.6 - doorbell array must be
2421 	 * "physically contiguous and 64-byte (cache line) aligned".
2422 	 */
2423 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2424 			flags);
2425 	if (!xhci->dcbaa)
2426 		goto fail;
2427 	xhci->dcbaa->dma = dma;
2428 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2429 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2430 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2431 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2432 
2433 	/*
2434 	 * Initialize the ring segment pool.  The ring must be a contiguous
2435 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2436 	 * however, the command ring segment needs 64-byte aligned segments
2437 	 * and our use of dma addresses in the trb_address_map radix tree needs
2438 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2439 	 */
2440 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2441 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2442 
2443 	/* See Table 46 and Note on Figure 55 */
2444 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2445 			2112, 64, xhci->page_size);
2446 	if (!xhci->segment_pool || !xhci->device_pool)
2447 		goto fail;
2448 
2449 	/* Linear stream context arrays don't have any boundary restrictions,
2450 	 * and only need to be 16-byte aligned.
2451 	 */
2452 	xhci->small_streams_pool =
2453 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2454 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2455 	xhci->medium_streams_pool =
2456 		dma_pool_create("xHCI 1KB stream ctx arrays",
2457 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2458 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2459 	 * will be allocated with dma_alloc_coherent()
2460 	 */
2461 
2462 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2463 		goto fail;
2464 
2465 	/* Set up the command ring to have one segments for now. */
2466 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2467 	if (!xhci->cmd_ring)
2468 		goto fail;
2469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2470 			"Allocated command ring at %p", xhci->cmd_ring);
2471 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2472 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2473 
2474 	/* Set the address in the Command Ring Control register */
2475 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2476 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2477 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2478 		xhci->cmd_ring->cycle_state;
2479 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2480 			"// Setting command ring address to 0x%016llx", val_64);
2481 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2482 
2483 	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2484 	if (!xhci->lpm_command)
2485 		goto fail;
2486 
2487 	/* Reserve one command ring TRB for disabling LPM.
2488 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2489 	 * disabling LPM, we only need to reserve one TRB for all devices.
2490 	 */
2491 	xhci->cmd_ring_reserved_trbs++;
2492 
2493 	val = readl(&xhci->cap_regs->db_off);
2494 	val &= DBOFF_MASK;
2495 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496 			"// Doorbell array is located at offset 0x%x"
2497 			" from cap regs base addr", val);
2498 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2499 	/* Set ir_set to interrupt register set 0 */
2500 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2501 
2502 	/*
2503 	 * Event ring setup: Allocate a normal ring, but also setup
2504 	 * the event ring segment table (ERST).  Section 4.9.3.
2505 	 */
2506 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2507 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2508 					0, flags);
2509 	if (!xhci->event_ring)
2510 		goto fail;
2511 	if (xhci_check_trb_in_td_math(xhci) < 0)
2512 		goto fail;
2513 
2514 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2515 	if (ret)
2516 		goto fail;
2517 
2518 	/* set ERST count with the number of entries in the segment table */
2519 	val = readl(&xhci->ir_set->erst_size);
2520 	val &= ERST_SIZE_MASK;
2521 	val |= ERST_NUM_SEGS;
2522 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2523 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2524 			val);
2525 	writel(val, &xhci->ir_set->erst_size);
2526 
2527 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2528 			"// Set ERST entries to point to event ring.");
2529 	/* set the segment table base address */
2530 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531 			"// Set ERST base address for ir_set 0 = 0x%llx",
2532 			(unsigned long long)xhci->erst.erst_dma_addr);
2533 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2534 	val_64 &= ERST_PTR_MASK;
2535 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2536 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2537 
2538 	/* Set the event ring dequeue address */
2539 	xhci_set_hc_event_deq(xhci);
2540 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2541 			"Wrote ERST address to ir_set 0.");
2542 
2543 	/*
2544 	 * XXX: Might need to set the Interrupter Moderation Register to
2545 	 * something other than the default (~1ms minimum between interrupts).
2546 	 * See section 5.5.1.2.
2547 	 */
2548 	for (i = 0; i < MAX_HC_SLOTS; i++)
2549 		xhci->devs[i] = NULL;
2550 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2551 		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2552 		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2553 		/* Only the USB 2.0 completions will ever be used. */
2554 		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2555 		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2556 	}
2557 
2558 	if (scratchpad_alloc(xhci, flags))
2559 		goto fail;
2560 	if (xhci_setup_port_arrays(xhci, flags))
2561 		goto fail;
2562 
2563 	/* Enable USB 3.0 device notifications for function remote wake, which
2564 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2565 	 * U3 (device suspend).
2566 	 */
2567 	temp = readl(&xhci->op_regs->dev_notification);
2568 	temp &= ~DEV_NOTE_MASK;
2569 	temp |= DEV_NOTE_FWAKE;
2570 	writel(temp, &xhci->op_regs->dev_notification);
2571 
2572 	return 0;
2573 
2574 fail:
2575 	xhci_halt(xhci);
2576 	xhci_reset(xhci);
2577 	xhci_mem_cleanup(xhci);
2578 	return -ENOMEM;
2579 }
2580