xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision afb46f79)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					unsigned int cycle_state, gfp_t flags)
41 {
42 	struct xhci_segment *seg;
43 	dma_addr_t	dma;
44 	int		i;
45 
46 	seg = kzalloc(sizeof *seg, flags);
47 	if (!seg)
48 		return NULL;
49 
50 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 	if (!seg->trbs) {
52 		kfree(seg);
53 		return NULL;
54 	}
55 
56 	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg);
75 }
76 
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 				struct xhci_segment *first)
79 {
80 	struct xhci_segment *seg;
81 
82 	seg = first->next;
83 	while (seg != first) {
84 		struct xhci_segment *next = seg->next;
85 		xhci_segment_free(xhci, seg);
86 		seg = next;
87 	}
88 	xhci_segment_free(xhci, first);
89 }
90 
91 /*
92  * Make the prev segment point to the next segment.
93  *
94  * Change the last TRB in the prev segment to be a Link TRB which points to the
95  * DMA address of the next segment.  The caller needs to set any Link TRB
96  * related flags, such as End TRB, Toggle Cycle, and no snoop.
97  */
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99 		struct xhci_segment *next, enum xhci_ring_type type)
100 {
101 	u32 val;
102 
103 	if (!prev || !next)
104 		return;
105 	prev->next = next;
106 	if (type != TYPE_EVENT) {
107 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 			cpu_to_le64(next->dma);
109 
110 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112 		val &= ~TRB_TYPE_BITMASK;
113 		val |= TRB_TYPE(TRB_LINK);
114 		/* Always set the chain bit with 0.95 hardware */
115 		/* Set chain bit for isoc rings on AMD 0.96 host */
116 		if (xhci_link_trb_quirk(xhci) ||
117 				(type == TYPE_ISOC &&
118 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119 			val |= TRB_CHAIN;
120 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121 	}
122 }
123 
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 		struct xhci_segment *first, struct xhci_segment *last,
130 		unsigned int num_segs)
131 {
132 	struct xhci_segment *next;
133 
134 	if (!ring || !first || !last)
135 		return;
136 
137 	next = ring->enq_seg->next;
138 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139 	xhci_link_segments(xhci, last, next, ring->type);
140 	ring->num_segs += num_segs;
141 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142 
143 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145 			&= ~cpu_to_le32(LINK_TOGGLE);
146 		last->trbs[TRBS_PER_SEGMENT-1].link.control
147 			|= cpu_to_le32(LINK_TOGGLE);
148 		ring->last_seg = last;
149 	}
150 }
151 
152 /*
153  * We need a radix tree for mapping physical addresses of TRBs to which stream
154  * ID they belong to.  We need to do this because the host controller won't tell
155  * us which stream ring the TRB came from.  We could store the stream ID in an
156  * event data TRB, but that doesn't help us for the cancellation case, since the
157  * endpoint may stop before it reaches that event data TRB.
158  *
159  * The radix tree maps the upper portion of the TRB DMA address to a ring
160  * segment that has the same upper portion of DMA addresses.  For example, say I
161  * have segments of size 1KB, that are always 1KB aligned.  A segment may
162  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
163  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
164  * pass the radix tree a key to get the right stream ID:
165  *
166  *	0x10c90fff >> 10 = 0x43243
167  *	0x10c912c0 >> 10 = 0x43244
168  *	0x10c91400 >> 10 = 0x43245
169  *
170  * Obviously, only those TRBs with DMA addresses that are within the segment
171  * will make the radix tree return the stream ID for that ring.
172  *
173  * Caveats for the radix tree:
174  *
175  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
176  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
178  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
180  * extended systems (where the DMA address can be bigger than 32-bits),
181  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
182  */
183 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
184 		struct xhci_ring *ring,
185 		struct xhci_segment *seg,
186 		gfp_t mem_flags)
187 {
188 	unsigned long key;
189 	int ret;
190 
191 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
192 	/* Skip any segments that were already added. */
193 	if (radix_tree_lookup(trb_address_map, key))
194 		return 0;
195 
196 	ret = radix_tree_maybe_preload(mem_flags);
197 	if (ret)
198 		return ret;
199 	ret = radix_tree_insert(trb_address_map,
200 			key, ring);
201 	radix_tree_preload_end();
202 	return ret;
203 }
204 
205 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
206 		struct xhci_segment *seg)
207 {
208 	unsigned long key;
209 
210 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
211 	if (radix_tree_lookup(trb_address_map, key))
212 		radix_tree_delete(trb_address_map, key);
213 }
214 
215 static int xhci_update_stream_segment_mapping(
216 		struct radix_tree_root *trb_address_map,
217 		struct xhci_ring *ring,
218 		struct xhci_segment *first_seg,
219 		struct xhci_segment *last_seg,
220 		gfp_t mem_flags)
221 {
222 	struct xhci_segment *seg;
223 	struct xhci_segment *failed_seg;
224 	int ret;
225 
226 	if (WARN_ON_ONCE(trb_address_map == NULL))
227 		return 0;
228 
229 	seg = first_seg;
230 	do {
231 		ret = xhci_insert_segment_mapping(trb_address_map,
232 				ring, seg, mem_flags);
233 		if (ret)
234 			goto remove_streams;
235 		if (seg == last_seg)
236 			return 0;
237 		seg = seg->next;
238 	} while (seg != first_seg);
239 
240 	return 0;
241 
242 remove_streams:
243 	failed_seg = seg;
244 	seg = first_seg;
245 	do {
246 		xhci_remove_segment_mapping(trb_address_map, seg);
247 		if (seg == failed_seg)
248 			return ret;
249 		seg = seg->next;
250 	} while (seg != first_seg);
251 
252 	return ret;
253 }
254 
255 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256 {
257 	struct xhci_segment *seg;
258 
259 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
260 		return;
261 
262 	seg = ring->first_seg;
263 	do {
264 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
265 		seg = seg->next;
266 	} while (seg != ring->first_seg);
267 }
268 
269 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270 {
271 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
272 			ring->first_seg, ring->last_seg, mem_flags);
273 }
274 
275 /* XXX: Do we need the hcd structure in all these functions? */
276 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
277 {
278 	if (!ring)
279 		return;
280 
281 	if (ring->first_seg) {
282 		if (ring->type == TYPE_STREAM)
283 			xhci_remove_stream_mapping(ring);
284 		xhci_free_segments_for_ring(xhci, ring->first_seg);
285 	}
286 
287 	kfree(ring);
288 }
289 
290 static void xhci_initialize_ring_info(struct xhci_ring *ring,
291 					unsigned int cycle_state)
292 {
293 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
294 	ring->enqueue = ring->first_seg->trbs;
295 	ring->enq_seg = ring->first_seg;
296 	ring->dequeue = ring->enqueue;
297 	ring->deq_seg = ring->first_seg;
298 	/* The ring is initialized to 0. The producer must write 1 to the cycle
299 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
300 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
301 	 *
302 	 * New rings are initialized with cycle state equal to 1; if we are
303 	 * handling ring expansion, set the cycle state equal to the old ring.
304 	 */
305 	ring->cycle_state = cycle_state;
306 	/* Not necessary for new rings, but needed for re-initialized rings */
307 	ring->enq_updates = 0;
308 	ring->deq_updates = 0;
309 
310 	/*
311 	 * Each segment has a link TRB, and leave an extra TRB for SW
312 	 * accounting purpose
313 	 */
314 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 }
316 
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319 		struct xhci_segment **first, struct xhci_segment **last,
320 		unsigned int num_segs, unsigned int cycle_state,
321 		enum xhci_ring_type type, gfp_t flags)
322 {
323 	struct xhci_segment *prev;
324 
325 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
326 	if (!prev)
327 		return -ENOMEM;
328 	num_segs--;
329 
330 	*first = prev;
331 	while (num_segs > 0) {
332 		struct xhci_segment	*next;
333 
334 		next = xhci_segment_alloc(xhci, cycle_state, flags);
335 		if (!next) {
336 			prev = *first;
337 			while (prev) {
338 				next = prev->next;
339 				xhci_segment_free(xhci, prev);
340 				prev = next;
341 			}
342 			return -ENOMEM;
343 		}
344 		xhci_link_segments(xhci, prev, next, type);
345 
346 		prev = next;
347 		num_segs--;
348 	}
349 	xhci_link_segments(xhci, prev, *first, type);
350 	*last = prev;
351 
352 	return 0;
353 }
354 
355 /**
356  * Create a new ring with zero or more segments.
357  *
358  * Link each segment together into a ring.
359  * Set the end flag and the cycle toggle bit on the last segment.
360  * See section 4.9.1 and figures 15 and 16.
361  */
362 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363 		unsigned int num_segs, unsigned int cycle_state,
364 		enum xhci_ring_type type, gfp_t flags)
365 {
366 	struct xhci_ring	*ring;
367 	int ret;
368 
369 	ring = kzalloc(sizeof *(ring), flags);
370 	if (!ring)
371 		return NULL;
372 
373 	ring->num_segs = num_segs;
374 	INIT_LIST_HEAD(&ring->td_list);
375 	ring->type = type;
376 	if (num_segs == 0)
377 		return ring;
378 
379 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
380 			&ring->last_seg, num_segs, cycle_state, type, flags);
381 	if (ret)
382 		goto fail;
383 
384 	/* Only event ring does not use link TRB */
385 	if (type != TYPE_EVENT) {
386 		/* See section 4.9.2.1 and 6.4.4.1 */
387 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 			cpu_to_le32(LINK_TOGGLE);
389 	}
390 	xhci_initialize_ring_info(ring, cycle_state);
391 	return ring;
392 
393 fail:
394 	kfree(ring);
395 	return NULL;
396 }
397 
398 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
399 		struct xhci_virt_device *virt_dev,
400 		unsigned int ep_index)
401 {
402 	int rings_cached;
403 
404 	rings_cached = virt_dev->num_rings_cached;
405 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
406 		virt_dev->ring_cache[rings_cached] =
407 			virt_dev->eps[ep_index].ring;
408 		virt_dev->num_rings_cached++;
409 		xhci_dbg(xhci, "Cached old ring, "
410 				"%d ring%s cached\n",
411 				virt_dev->num_rings_cached,
412 				(virt_dev->num_rings_cached > 1) ? "s" : "");
413 	} else {
414 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415 		xhci_dbg(xhci, "Ring cache full (%d rings), "
416 				"freeing ring\n",
417 				virt_dev->num_rings_cached);
418 	}
419 	virt_dev->eps[ep_index].ring = NULL;
420 }
421 
422 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423  * pointers to the beginning of the ring.
424  */
425 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
426 			struct xhci_ring *ring, unsigned int cycle_state,
427 			enum xhci_ring_type type)
428 {
429 	struct xhci_segment	*seg = ring->first_seg;
430 	int i;
431 
432 	do {
433 		memset(seg->trbs, 0,
434 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
435 		if (cycle_state == 0) {
436 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
437 				seg->trbs[i].link.control |=
438 					cpu_to_le32(TRB_CYCLE);
439 		}
440 		/* All endpoint rings have link TRBs */
441 		xhci_link_segments(xhci, seg, seg->next, type);
442 		seg = seg->next;
443 	} while (seg != ring->first_seg);
444 	ring->type = type;
445 	xhci_initialize_ring_info(ring, cycle_state);
446 	/* td list should be empty since all URBs have been cancelled,
447 	 * but just in case...
448 	 */
449 	INIT_LIST_HEAD(&ring->td_list);
450 }
451 
452 /*
453  * Expand an existing ring.
454  * Look for a cached ring or allocate a new ring which has same segment numbers
455  * and link the two rings.
456  */
457 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
458 				unsigned int num_trbs, gfp_t flags)
459 {
460 	struct xhci_segment	*first;
461 	struct xhci_segment	*last;
462 	unsigned int		num_segs;
463 	unsigned int		num_segs_needed;
464 	int			ret;
465 
466 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
467 				(TRBS_PER_SEGMENT - 1);
468 
469 	/* Allocate number of segments we needed, or double the ring size */
470 	num_segs = ring->num_segs > num_segs_needed ?
471 			ring->num_segs : num_segs_needed;
472 
473 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
474 			num_segs, ring->cycle_state, ring->type, flags);
475 	if (ret)
476 		return -ENOMEM;
477 
478 	if (ring->type == TYPE_STREAM)
479 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
480 						ring, first, last, flags);
481 	if (ret) {
482 		struct xhci_segment *next;
483 		do {
484 			next = first->next;
485 			xhci_segment_free(xhci, first);
486 			if (first == last)
487 				break;
488 			first = next;
489 		} while (true);
490 		return ret;
491 	}
492 
493 	xhci_link_rings(xhci, ring, first, last, num_segs);
494 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
495 			"ring expansion succeed, now has %d segments",
496 			ring->num_segs);
497 
498 	return 0;
499 }
500 
501 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
502 
503 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
504 						    int type, gfp_t flags)
505 {
506 	struct xhci_container_ctx *ctx;
507 
508 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
509 		return NULL;
510 
511 	ctx = kzalloc(sizeof(*ctx), flags);
512 	if (!ctx)
513 		return NULL;
514 
515 	ctx->type = type;
516 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
517 	if (type == XHCI_CTX_TYPE_INPUT)
518 		ctx->size += CTX_SIZE(xhci->hcc_params);
519 
520 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
521 	if (!ctx->bytes) {
522 		kfree(ctx);
523 		return NULL;
524 	}
525 	memset(ctx->bytes, 0, ctx->size);
526 	return ctx;
527 }
528 
529 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
530 			     struct xhci_container_ctx *ctx)
531 {
532 	if (!ctx)
533 		return;
534 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
535 	kfree(ctx);
536 }
537 
538 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
539 					      struct xhci_container_ctx *ctx)
540 {
541 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
542 		return NULL;
543 
544 	return (struct xhci_input_control_ctx *)ctx->bytes;
545 }
546 
547 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
548 					struct xhci_container_ctx *ctx)
549 {
550 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
551 		return (struct xhci_slot_ctx *)ctx->bytes;
552 
553 	return (struct xhci_slot_ctx *)
554 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
555 }
556 
557 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
558 				    struct xhci_container_ctx *ctx,
559 				    unsigned int ep_index)
560 {
561 	/* increment ep index by offset of start of ep ctx array */
562 	ep_index++;
563 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
564 		ep_index++;
565 
566 	return (struct xhci_ep_ctx *)
567 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
568 }
569 
570 
571 /***************** Streams structures manipulation *************************/
572 
573 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
574 		unsigned int num_stream_ctxs,
575 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
576 {
577 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
578 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
579 
580 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
581 		dma_free_coherent(dev, size,
582 				stream_ctx, dma);
583 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
584 		return dma_pool_free(xhci->small_streams_pool,
585 				stream_ctx, dma);
586 	else
587 		return dma_pool_free(xhci->medium_streams_pool,
588 				stream_ctx, dma);
589 }
590 
591 /*
592  * The stream context array for each endpoint with bulk streams enabled can
593  * vary in size, based on:
594  *  - how many streams the endpoint supports,
595  *  - the maximum primary stream array size the host controller supports,
596  *  - and how many streams the device driver asks for.
597  *
598  * The stream context array must be a power of 2, and can be as small as
599  * 64 bytes or as large as 1MB.
600  */
601 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
602 		unsigned int num_stream_ctxs, dma_addr_t *dma,
603 		gfp_t mem_flags)
604 {
605 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
606 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
607 
608 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
609 		return dma_alloc_coherent(dev, size,
610 				dma, mem_flags);
611 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
612 		return dma_pool_alloc(xhci->small_streams_pool,
613 				mem_flags, dma);
614 	else
615 		return dma_pool_alloc(xhci->medium_streams_pool,
616 				mem_flags, dma);
617 }
618 
619 struct xhci_ring *xhci_dma_to_transfer_ring(
620 		struct xhci_virt_ep *ep,
621 		u64 address)
622 {
623 	if (ep->ep_state & EP_HAS_STREAMS)
624 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
625 				address >> TRB_SEGMENT_SHIFT);
626 	return ep->ring;
627 }
628 
629 struct xhci_ring *xhci_stream_id_to_ring(
630 		struct xhci_virt_device *dev,
631 		unsigned int ep_index,
632 		unsigned int stream_id)
633 {
634 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
635 
636 	if (stream_id == 0)
637 		return ep->ring;
638 	if (!ep->stream_info)
639 		return NULL;
640 
641 	if (stream_id > ep->stream_info->num_streams)
642 		return NULL;
643 	return ep->stream_info->stream_rings[stream_id];
644 }
645 
646 /*
647  * Change an endpoint's internal structure so it supports stream IDs.  The
648  * number of requested streams includes stream 0, which cannot be used by device
649  * drivers.
650  *
651  * The number of stream contexts in the stream context array may be bigger than
652  * the number of streams the driver wants to use.  This is because the number of
653  * stream context array entries must be a power of two.
654  */
655 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
656 		unsigned int num_stream_ctxs,
657 		unsigned int num_streams, gfp_t mem_flags)
658 {
659 	struct xhci_stream_info *stream_info;
660 	u32 cur_stream;
661 	struct xhci_ring *cur_ring;
662 	u64 addr;
663 	int ret;
664 
665 	xhci_dbg(xhci, "Allocating %u streams and %u "
666 			"stream context array entries.\n",
667 			num_streams, num_stream_ctxs);
668 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
669 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
670 		return NULL;
671 	}
672 	xhci->cmd_ring_reserved_trbs++;
673 
674 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
675 	if (!stream_info)
676 		goto cleanup_trbs;
677 
678 	stream_info->num_streams = num_streams;
679 	stream_info->num_stream_ctxs = num_stream_ctxs;
680 
681 	/* Initialize the array of virtual pointers to stream rings. */
682 	stream_info->stream_rings = kzalloc(
683 			sizeof(struct xhci_ring *)*num_streams,
684 			mem_flags);
685 	if (!stream_info->stream_rings)
686 		goto cleanup_info;
687 
688 	/* Initialize the array of DMA addresses for stream rings for the HW. */
689 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
690 			num_stream_ctxs, &stream_info->ctx_array_dma,
691 			mem_flags);
692 	if (!stream_info->stream_ctx_array)
693 		goto cleanup_ctx;
694 	memset(stream_info->stream_ctx_array, 0,
695 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
696 
697 	/* Allocate everything needed to free the stream rings later */
698 	stream_info->free_streams_command =
699 		xhci_alloc_command(xhci, true, true, mem_flags);
700 	if (!stream_info->free_streams_command)
701 		goto cleanup_ctx;
702 
703 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
704 
705 	/* Allocate rings for all the streams that the driver will use,
706 	 * and add their segment DMA addresses to the radix tree.
707 	 * Stream 0 is reserved.
708 	 */
709 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
710 		stream_info->stream_rings[cur_stream] =
711 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
712 		cur_ring = stream_info->stream_rings[cur_stream];
713 		if (!cur_ring)
714 			goto cleanup_rings;
715 		cur_ring->stream_id = cur_stream;
716 		cur_ring->trb_address_map = &stream_info->trb_address_map;
717 		/* Set deq ptr, cycle bit, and stream context type */
718 		addr = cur_ring->first_seg->dma |
719 			SCT_FOR_CTX(SCT_PRI_TR) |
720 			cur_ring->cycle_state;
721 		stream_info->stream_ctx_array[cur_stream].stream_ring =
722 			cpu_to_le64(addr);
723 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
724 				cur_stream, (unsigned long long) addr);
725 
726 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
727 		if (ret) {
728 			xhci_ring_free(xhci, cur_ring);
729 			stream_info->stream_rings[cur_stream] = NULL;
730 			goto cleanup_rings;
731 		}
732 	}
733 	/* Leave the other unused stream ring pointers in the stream context
734 	 * array initialized to zero.  This will cause the xHC to give us an
735 	 * error if the device asks for a stream ID we don't have setup (if it
736 	 * was any other way, the host controller would assume the ring is
737 	 * "empty" and wait forever for data to be queued to that stream ID).
738 	 */
739 
740 	return stream_info;
741 
742 cleanup_rings:
743 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
744 		cur_ring = stream_info->stream_rings[cur_stream];
745 		if (cur_ring) {
746 			xhci_ring_free(xhci, cur_ring);
747 			stream_info->stream_rings[cur_stream] = NULL;
748 		}
749 	}
750 	xhci_free_command(xhci, stream_info->free_streams_command);
751 cleanup_ctx:
752 	kfree(stream_info->stream_rings);
753 cleanup_info:
754 	kfree(stream_info);
755 cleanup_trbs:
756 	xhci->cmd_ring_reserved_trbs--;
757 	return NULL;
758 }
759 /*
760  * Sets the MaxPStreams field and the Linear Stream Array field.
761  * Sets the dequeue pointer to the stream context array.
762  */
763 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
764 		struct xhci_ep_ctx *ep_ctx,
765 		struct xhci_stream_info *stream_info)
766 {
767 	u32 max_primary_streams;
768 	/* MaxPStreams is the number of stream context array entries, not the
769 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
770 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
771 	 */
772 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
773 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
774 			"Setting number of stream ctx array entries to %u",
775 			1 << (max_primary_streams + 1));
776 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
777 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
778 				       | EP_HAS_LSA);
779 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
780 }
781 
782 /*
783  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785  * not at the beginning of the ring).
786  */
787 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
788 		struct xhci_ep_ctx *ep_ctx,
789 		struct xhci_virt_ep *ep)
790 {
791 	dma_addr_t addr;
792 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
793 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
794 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
795 }
796 
797 /* Frees all stream contexts associated with the endpoint,
798  *
799  * Caller should fix the endpoint context streams fields.
800  */
801 void xhci_free_stream_info(struct xhci_hcd *xhci,
802 		struct xhci_stream_info *stream_info)
803 {
804 	int cur_stream;
805 	struct xhci_ring *cur_ring;
806 
807 	if (!stream_info)
808 		return;
809 
810 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
811 			cur_stream++) {
812 		cur_ring = stream_info->stream_rings[cur_stream];
813 		if (cur_ring) {
814 			xhci_ring_free(xhci, cur_ring);
815 			stream_info->stream_rings[cur_stream] = NULL;
816 		}
817 	}
818 	xhci_free_command(xhci, stream_info->free_streams_command);
819 	xhci->cmd_ring_reserved_trbs--;
820 	if (stream_info->stream_ctx_array)
821 		xhci_free_stream_ctx(xhci,
822 				stream_info->num_stream_ctxs,
823 				stream_info->stream_ctx_array,
824 				stream_info->ctx_array_dma);
825 
826 	kfree(stream_info->stream_rings);
827 	kfree(stream_info);
828 }
829 
830 
831 /***************** Device context manipulation *************************/
832 
833 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
834 		struct xhci_virt_ep *ep)
835 {
836 	init_timer(&ep->stop_cmd_timer);
837 	ep->stop_cmd_timer.data = (unsigned long) ep;
838 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
839 	ep->xhci = xhci;
840 }
841 
842 static void xhci_free_tt_info(struct xhci_hcd *xhci,
843 		struct xhci_virt_device *virt_dev,
844 		int slot_id)
845 {
846 	struct list_head *tt_list_head;
847 	struct xhci_tt_bw_info *tt_info, *next;
848 	bool slot_found = false;
849 
850 	/* If the device never made it past the Set Address stage,
851 	 * it may not have the real_port set correctly.
852 	 */
853 	if (virt_dev->real_port == 0 ||
854 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
855 		xhci_dbg(xhci, "Bad real port.\n");
856 		return;
857 	}
858 
859 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
860 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
861 		/* Multi-TT hubs will have more than one entry */
862 		if (tt_info->slot_id == slot_id) {
863 			slot_found = true;
864 			list_del(&tt_info->tt_list);
865 			kfree(tt_info);
866 		} else if (slot_found) {
867 			break;
868 		}
869 	}
870 }
871 
872 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
873 		struct xhci_virt_device *virt_dev,
874 		struct usb_device *hdev,
875 		struct usb_tt *tt, gfp_t mem_flags)
876 {
877 	struct xhci_tt_bw_info		*tt_info;
878 	unsigned int			num_ports;
879 	int				i, j;
880 
881 	if (!tt->multi)
882 		num_ports = 1;
883 	else
884 		num_ports = hdev->maxchild;
885 
886 	for (i = 0; i < num_ports; i++, tt_info++) {
887 		struct xhci_interval_bw_table *bw_table;
888 
889 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
890 		if (!tt_info)
891 			goto free_tts;
892 		INIT_LIST_HEAD(&tt_info->tt_list);
893 		list_add(&tt_info->tt_list,
894 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
895 		tt_info->slot_id = virt_dev->udev->slot_id;
896 		if (tt->multi)
897 			tt_info->ttport = i+1;
898 		bw_table = &tt_info->bw_table;
899 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
900 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
901 	}
902 	return 0;
903 
904 free_tts:
905 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
906 	return -ENOMEM;
907 }
908 
909 
910 /* All the xhci_tds in the ring's TD list should be freed at this point.
911  * Should be called with xhci->lock held if there is any chance the TT lists
912  * will be manipulated by the configure endpoint, allocate device, or update
913  * hub functions while this function is removing the TT entries from the list.
914  */
915 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
916 {
917 	struct xhci_virt_device *dev;
918 	int i;
919 	int old_active_eps = 0;
920 
921 	/* Slot ID 0 is reserved */
922 	if (slot_id == 0 || !xhci->devs[slot_id])
923 		return;
924 
925 	dev = xhci->devs[slot_id];
926 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
927 	if (!dev)
928 		return;
929 
930 	if (dev->tt_info)
931 		old_active_eps = dev->tt_info->active_eps;
932 
933 	for (i = 0; i < 31; ++i) {
934 		if (dev->eps[i].ring)
935 			xhci_ring_free(xhci, dev->eps[i].ring);
936 		if (dev->eps[i].stream_info)
937 			xhci_free_stream_info(xhci,
938 					dev->eps[i].stream_info);
939 		/* Endpoints on the TT/root port lists should have been removed
940 		 * when usb_disable_device() was called for the device.
941 		 * We can't drop them anyway, because the udev might have gone
942 		 * away by this point, and we can't tell what speed it was.
943 		 */
944 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
945 			xhci_warn(xhci, "Slot %u endpoint %u "
946 					"not removed from BW list!\n",
947 					slot_id, i);
948 	}
949 	/* If this is a hub, free the TT(s) from the TT list */
950 	xhci_free_tt_info(xhci, dev, slot_id);
951 	/* If necessary, update the number of active TTs on this root port */
952 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
953 
954 	if (dev->ring_cache) {
955 		for (i = 0; i < dev->num_rings_cached; i++)
956 			xhci_ring_free(xhci, dev->ring_cache[i]);
957 		kfree(dev->ring_cache);
958 	}
959 
960 	if (dev->in_ctx)
961 		xhci_free_container_ctx(xhci, dev->in_ctx);
962 	if (dev->out_ctx)
963 		xhci_free_container_ctx(xhci, dev->out_ctx);
964 
965 	kfree(xhci->devs[slot_id]);
966 	xhci->devs[slot_id] = NULL;
967 }
968 
969 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
970 		struct usb_device *udev, gfp_t flags)
971 {
972 	struct xhci_virt_device *dev;
973 	int i;
974 
975 	/* Slot ID 0 is reserved */
976 	if (slot_id == 0 || xhci->devs[slot_id]) {
977 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
978 		return 0;
979 	}
980 
981 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
982 	if (!xhci->devs[slot_id])
983 		return 0;
984 	dev = xhci->devs[slot_id];
985 
986 	/* Allocate the (output) device context that will be used in the HC. */
987 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
988 	if (!dev->out_ctx)
989 		goto fail;
990 
991 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
992 			(unsigned long long)dev->out_ctx->dma);
993 
994 	/* Allocate the (input) device context for address device command */
995 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
996 	if (!dev->in_ctx)
997 		goto fail;
998 
999 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1000 			(unsigned long long)dev->in_ctx->dma);
1001 
1002 	/* Initialize the cancellation list and watchdog timers for each ep */
1003 	for (i = 0; i < 31; i++) {
1004 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1005 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1006 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007 	}
1008 
1009 	/* Allocate endpoint 0 ring */
1010 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1011 	if (!dev->eps[0].ring)
1012 		goto fail;
1013 
1014 	/* Allocate pointers to the ring cache */
1015 	dev->ring_cache = kzalloc(
1016 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1017 			flags);
1018 	if (!dev->ring_cache)
1019 		goto fail;
1020 	dev->num_rings_cached = 0;
1021 
1022 	init_completion(&dev->cmd_completion);
1023 	INIT_LIST_HEAD(&dev->cmd_list);
1024 	dev->udev = udev;
1025 
1026 	/* Point to output device context in dcbaa. */
1027 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1028 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1029 		 slot_id,
1030 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1031 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1032 
1033 	return 1;
1034 fail:
1035 	xhci_free_virt_device(xhci, slot_id);
1036 	return 0;
1037 }
1038 
1039 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1040 		struct usb_device *udev)
1041 {
1042 	struct xhci_virt_device *virt_dev;
1043 	struct xhci_ep_ctx	*ep0_ctx;
1044 	struct xhci_ring	*ep_ring;
1045 
1046 	virt_dev = xhci->devs[udev->slot_id];
1047 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1048 	ep_ring = virt_dev->eps[0].ring;
1049 	/*
1050 	 * FIXME we don't keep track of the dequeue pointer very well after a
1051 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1052 	 * host to our enqueue pointer.  This should only be called after a
1053 	 * configured device has reset, so all control transfers should have
1054 	 * been completed or cancelled before the reset.
1055 	 */
1056 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1057 							ep_ring->enqueue)
1058 				   | ep_ring->cycle_state);
1059 }
1060 
1061 /*
1062  * The xHCI roothub may have ports of differing speeds in any order in the port
1063  * status registers.  xhci->port_array provides an array of the port speed for
1064  * each offset into the port status registers.
1065  *
1066  * The xHCI hardware wants to know the roothub port number that the USB device
1067  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1068  * know is the index of that port under either the USB 2.0 or the USB 3.0
1069  * roothub, but that doesn't give us the real index into the HW port status
1070  * registers. Call xhci_find_raw_port_number() to get real index.
1071  */
1072 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1073 		struct usb_device *udev)
1074 {
1075 	struct usb_device *top_dev;
1076 	struct usb_hcd *hcd;
1077 
1078 	if (udev->speed == USB_SPEED_SUPER)
1079 		hcd = xhci->shared_hcd;
1080 	else
1081 		hcd = xhci->main_hcd;
1082 
1083 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1084 			top_dev = top_dev->parent)
1085 		/* Found device below root hub */;
1086 
1087 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1088 }
1089 
1090 /* Setup an xHCI virtual device for a Set Address command */
1091 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1092 {
1093 	struct xhci_virt_device *dev;
1094 	struct xhci_ep_ctx	*ep0_ctx;
1095 	struct xhci_slot_ctx    *slot_ctx;
1096 	u32			port_num;
1097 	u32			max_packets;
1098 	struct usb_device *top_dev;
1099 
1100 	dev = xhci->devs[udev->slot_id];
1101 	/* Slot ID 0 is reserved */
1102 	if (udev->slot_id == 0 || !dev) {
1103 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1104 				udev->slot_id);
1105 		return -EINVAL;
1106 	}
1107 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1108 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1109 
1110 	/* 3) Only the control endpoint is valid - one endpoint context */
1111 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1112 	switch (udev->speed) {
1113 	case USB_SPEED_SUPER:
1114 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1115 		max_packets = MAX_PACKET(512);
1116 		break;
1117 	case USB_SPEED_HIGH:
1118 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1119 		max_packets = MAX_PACKET(64);
1120 		break;
1121 	/* USB core guesses at a 64-byte max packet first for FS devices */
1122 	case USB_SPEED_FULL:
1123 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1124 		max_packets = MAX_PACKET(64);
1125 		break;
1126 	case USB_SPEED_LOW:
1127 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1128 		max_packets = MAX_PACKET(8);
1129 		break;
1130 	case USB_SPEED_WIRELESS:
1131 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1132 		return -EINVAL;
1133 		break;
1134 	default:
1135 		/* Speed was set earlier, this shouldn't happen. */
1136 		return -EINVAL;
1137 	}
1138 	/* Find the root hub port this device is under */
1139 	port_num = xhci_find_real_port_number(xhci, udev);
1140 	if (!port_num)
1141 		return -EINVAL;
1142 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143 	/* Set the port number in the virtual_device to the faked port number */
1144 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145 			top_dev = top_dev->parent)
1146 		/* Found device below root hub */;
1147 	dev->fake_port = top_dev->portnum;
1148 	dev->real_port = port_num;
1149 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151 
1152 	/* Find the right bandwidth table that this device will be a part of.
1153 	 * If this is a full speed device attached directly to a root port (or a
1154 	 * decendent of one), it counts as a primary bandwidth domain, not a
1155 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156 	 * will never be created for the HS root hub.
1157 	 */
1158 	if (!udev->tt || !udev->tt->hub->parent) {
1159 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160 	} else {
1161 		struct xhci_root_port_bw_info *rh_bw;
1162 		struct xhci_tt_bw_info *tt_bw;
1163 
1164 		rh_bw = &xhci->rh_bw[port_num - 1];
1165 		/* Find the right TT. */
1166 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168 				continue;
1169 
1170 			if (!dev->udev->tt->multi ||
1171 					(udev->tt->multi &&
1172 					 tt_bw->ttport == dev->udev->ttport)) {
1173 				dev->bw_table = &tt_bw->bw_table;
1174 				dev->tt_info = tt_bw;
1175 				break;
1176 			}
1177 		}
1178 		if (!dev->tt_info)
1179 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180 	}
1181 
1182 	/* Is this a LS/FS device under an external HS hub? */
1183 	if (udev->tt && udev->tt->hub->parent) {
1184 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185 						(udev->ttport << 8));
1186 		if (udev->tt->multi)
1187 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188 	}
1189 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191 
1192 	/* Step 4 - ring already allocated */
1193 	/* Step 5 */
1194 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195 
1196 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198 					 max_packets);
1199 
1200 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201 				   dev->eps[0].ring->cycle_state);
1202 
1203 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Convert interval expressed as 2^(bInterval - 1) == interval into
1210  * straight exponent value 2^n == interval.
1211  *
1212  */
1213 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214 		struct usb_host_endpoint *ep)
1215 {
1216 	unsigned int interval;
1217 
1218 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219 	if (interval != ep->desc.bInterval - 1)
1220 		dev_warn(&udev->dev,
1221 			 "ep %#x - rounding interval to %d %sframes\n",
1222 			 ep->desc.bEndpointAddress,
1223 			 1 << interval,
1224 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1225 
1226 	if (udev->speed == USB_SPEED_FULL) {
1227 		/*
1228 		 * Full speed isoc endpoints specify interval in frames,
1229 		 * not microframes. We are using microframes everywhere,
1230 		 * so adjust accordingly.
1231 		 */
1232 		interval += 3;	/* 1 frame = 2^3 uframes */
1233 	}
1234 
1235 	return interval;
1236 }
1237 
1238 /*
1239  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240  * microframes, rounded down to nearest power of 2.
1241  */
1242 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1244 		unsigned int min_exponent, unsigned int max_exponent)
1245 {
1246 	unsigned int interval;
1247 
1248 	interval = fls(desc_interval) - 1;
1249 	interval = clamp_val(interval, min_exponent, max_exponent);
1250 	if ((1 << interval) != desc_interval)
1251 		dev_warn(&udev->dev,
1252 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253 			 ep->desc.bEndpointAddress,
1254 			 1 << interval,
1255 			 desc_interval);
1256 
1257 	return interval;
1258 }
1259 
1260 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261 		struct usb_host_endpoint *ep)
1262 {
1263 	if (ep->desc.bInterval == 0)
1264 		return 0;
1265 	return xhci_microframes_to_exponent(udev, ep,
1266 			ep->desc.bInterval, 0, 15);
1267 }
1268 
1269 
1270 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271 		struct usb_host_endpoint *ep)
1272 {
1273 	return xhci_microframes_to_exponent(udev, ep,
1274 			ep->desc.bInterval * 8, 3, 10);
1275 }
1276 
1277 /* Return the polling or NAK interval.
1278  *
1279  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1280  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281  *
1282  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283  * is set to 0.
1284  */
1285 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286 		struct usb_host_endpoint *ep)
1287 {
1288 	unsigned int interval = 0;
1289 
1290 	switch (udev->speed) {
1291 	case USB_SPEED_HIGH:
1292 		/* Max NAK rate */
1293 		if (usb_endpoint_xfer_control(&ep->desc) ||
1294 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1295 			interval = xhci_parse_microframe_interval(udev, ep);
1296 			break;
1297 		}
1298 		/* Fall through - SS and HS isoc/int have same decoding */
1299 
1300 	case USB_SPEED_SUPER:
1301 		if (usb_endpoint_xfer_int(&ep->desc) ||
1302 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303 			interval = xhci_parse_exponent_interval(udev, ep);
1304 		}
1305 		break;
1306 
1307 	case USB_SPEED_FULL:
1308 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309 			interval = xhci_parse_exponent_interval(udev, ep);
1310 			break;
1311 		}
1312 		/*
1313 		 * Fall through for interrupt endpoint interval decoding
1314 		 * since it uses the same rules as low speed interrupt
1315 		 * endpoints.
1316 		 */
1317 
1318 	case USB_SPEED_LOW:
1319 		if (usb_endpoint_xfer_int(&ep->desc) ||
1320 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1321 
1322 			interval = xhci_parse_frame_interval(udev, ep);
1323 		}
1324 		break;
1325 
1326 	default:
1327 		BUG();
1328 	}
1329 	return EP_INTERVAL(interval);
1330 }
1331 
1332 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333  * High speed endpoint descriptors can define "the number of additional
1334  * transaction opportunities per microframe", but that goes in the Max Burst
1335  * endpoint context field.
1336  */
1337 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338 		struct usb_host_endpoint *ep)
1339 {
1340 	if (udev->speed != USB_SPEED_SUPER ||
1341 			!usb_endpoint_xfer_isoc(&ep->desc))
1342 		return 0;
1343 	return ep->ss_ep_comp.bmAttributes;
1344 }
1345 
1346 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1347 		struct usb_host_endpoint *ep)
1348 {
1349 	int in;
1350 	u32 type;
1351 
1352 	in = usb_endpoint_dir_in(&ep->desc);
1353 	if (usb_endpoint_xfer_control(&ep->desc)) {
1354 		type = EP_TYPE(CTRL_EP);
1355 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1356 		if (in)
1357 			type = EP_TYPE(BULK_IN_EP);
1358 		else
1359 			type = EP_TYPE(BULK_OUT_EP);
1360 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1361 		if (in)
1362 			type = EP_TYPE(ISOC_IN_EP);
1363 		else
1364 			type = EP_TYPE(ISOC_OUT_EP);
1365 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1366 		if (in)
1367 			type = EP_TYPE(INT_IN_EP);
1368 		else
1369 			type = EP_TYPE(INT_OUT_EP);
1370 	} else {
1371 		type = 0;
1372 	}
1373 	return type;
1374 }
1375 
1376 /* Return the maximum endpoint service interval time (ESIT) payload.
1377  * Basically, this is the maxpacket size, multiplied by the burst size
1378  * and mult size.
1379  */
1380 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1381 		struct usb_device *udev,
1382 		struct usb_host_endpoint *ep)
1383 {
1384 	int max_burst;
1385 	int max_packet;
1386 
1387 	/* Only applies for interrupt or isochronous endpoints */
1388 	if (usb_endpoint_xfer_control(&ep->desc) ||
1389 			usb_endpoint_xfer_bulk(&ep->desc))
1390 		return 0;
1391 
1392 	if (udev->speed == USB_SPEED_SUPER)
1393 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1394 
1395 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1396 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1397 	/* A 0 in max burst means 1 transfer per ESIT */
1398 	return max_packet * (max_burst + 1);
1399 }
1400 
1401 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1402  * Drivers will have to call usb_alloc_streams() to do that.
1403  */
1404 int xhci_endpoint_init(struct xhci_hcd *xhci,
1405 		struct xhci_virt_device *virt_dev,
1406 		struct usb_device *udev,
1407 		struct usb_host_endpoint *ep,
1408 		gfp_t mem_flags)
1409 {
1410 	unsigned int ep_index;
1411 	struct xhci_ep_ctx *ep_ctx;
1412 	struct xhci_ring *ep_ring;
1413 	unsigned int max_packet;
1414 	unsigned int max_burst;
1415 	enum xhci_ring_type type;
1416 	u32 max_esit_payload;
1417 	u32 endpoint_type;
1418 
1419 	ep_index = xhci_get_endpoint_index(&ep->desc);
1420 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1421 
1422 	endpoint_type = xhci_get_endpoint_type(udev, ep);
1423 	if (!endpoint_type)
1424 		return -EINVAL;
1425 	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1426 
1427 	type = usb_endpoint_type(&ep->desc);
1428 	/* Set up the endpoint ring */
1429 	virt_dev->eps[ep_index].new_ring =
1430 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1431 	if (!virt_dev->eps[ep_index].new_ring) {
1432 		/* Attempt to use the ring cache */
1433 		if (virt_dev->num_rings_cached == 0)
1434 			return -ENOMEM;
1435 		virt_dev->eps[ep_index].new_ring =
1436 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1437 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1438 		virt_dev->num_rings_cached--;
1439 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1440 					1, type);
1441 	}
1442 	virt_dev->eps[ep_index].skip = false;
1443 	ep_ring = virt_dev->eps[ep_index].new_ring;
1444 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1445 
1446 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1447 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1448 
1449 	/* FIXME dig Mult and streams info out of ep companion desc */
1450 
1451 	/* Allow 3 retries for everything but isoc;
1452 	 * CErr shall be set to 0 for Isoch endpoints.
1453 	 */
1454 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1455 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1456 	else
1457 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1458 
1459 	/* Set the max packet size and max burst */
1460 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1461 	max_burst = 0;
1462 	switch (udev->speed) {
1463 	case USB_SPEED_SUPER:
1464 		/* dig out max burst from ep companion desc */
1465 		max_burst = ep->ss_ep_comp.bMaxBurst;
1466 		break;
1467 	case USB_SPEED_HIGH:
1468 		/* Some devices get this wrong */
1469 		if (usb_endpoint_xfer_bulk(&ep->desc))
1470 			max_packet = 512;
1471 		/* bits 11:12 specify the number of additional transaction
1472 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1473 		 */
1474 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1475 				usb_endpoint_xfer_int(&ep->desc)) {
1476 			max_burst = (usb_endpoint_maxp(&ep->desc)
1477 				     & 0x1800) >> 11;
1478 		}
1479 		break;
1480 	case USB_SPEED_FULL:
1481 	case USB_SPEED_LOW:
1482 		break;
1483 	default:
1484 		BUG();
1485 	}
1486 	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1487 			MAX_BURST(max_burst));
1488 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1489 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1490 
1491 	/*
1492 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1493 	 * endpoints, as the driver gives us no clue how big each scatter gather
1494 	 * list entry (or buffer) is going to be.
1495 	 *
1496 	 * For isochronous and interrupt endpoints, we set it to the max
1497 	 * available, until we have new API in the USB core to allow drivers to
1498 	 * declare how much bandwidth they actually need.
1499 	 *
1500 	 * Normally, it would be calculated by taking the total of the buffer
1501 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1502 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1503 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1504 	 * transfers, we're basically dividing by 1.
1505 	 *
1506 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1507 	 * be set to 8 for control endpoints.
1508 	 */
1509 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1510 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1511 	else
1512 		ep_ctx->tx_info |=
1513 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1514 
1515 	/* FIXME Debug endpoint context */
1516 	return 0;
1517 }
1518 
1519 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1520 		struct xhci_virt_device *virt_dev,
1521 		struct usb_host_endpoint *ep)
1522 {
1523 	unsigned int ep_index;
1524 	struct xhci_ep_ctx *ep_ctx;
1525 
1526 	ep_index = xhci_get_endpoint_index(&ep->desc);
1527 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1528 
1529 	ep_ctx->ep_info = 0;
1530 	ep_ctx->ep_info2 = 0;
1531 	ep_ctx->deq = 0;
1532 	ep_ctx->tx_info = 0;
1533 	/* Don't free the endpoint ring until the set interface or configuration
1534 	 * request succeeds.
1535 	 */
1536 }
1537 
1538 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1539 {
1540 	bw_info->ep_interval = 0;
1541 	bw_info->mult = 0;
1542 	bw_info->num_packets = 0;
1543 	bw_info->max_packet_size = 0;
1544 	bw_info->type = 0;
1545 	bw_info->max_esit_payload = 0;
1546 }
1547 
1548 void xhci_update_bw_info(struct xhci_hcd *xhci,
1549 		struct xhci_container_ctx *in_ctx,
1550 		struct xhci_input_control_ctx *ctrl_ctx,
1551 		struct xhci_virt_device *virt_dev)
1552 {
1553 	struct xhci_bw_info *bw_info;
1554 	struct xhci_ep_ctx *ep_ctx;
1555 	unsigned int ep_type;
1556 	int i;
1557 
1558 	for (i = 1; i < 31; ++i) {
1559 		bw_info = &virt_dev->eps[i].bw_info;
1560 
1561 		/* We can't tell what endpoint type is being dropped, but
1562 		 * unconditionally clearing the bandwidth info for non-periodic
1563 		 * endpoints should be harmless because the info will never be
1564 		 * set in the first place.
1565 		 */
1566 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1567 			/* Dropped endpoint */
1568 			xhci_clear_endpoint_bw_info(bw_info);
1569 			continue;
1570 		}
1571 
1572 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1573 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1574 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1575 
1576 			/* Ignore non-periodic endpoints */
1577 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1578 					ep_type != ISOC_IN_EP &&
1579 					ep_type != INT_IN_EP)
1580 				continue;
1581 
1582 			/* Added or changed endpoint */
1583 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1584 					le32_to_cpu(ep_ctx->ep_info));
1585 			/* Number of packets and mult are zero-based in the
1586 			 * input context, but we want one-based for the
1587 			 * interval table.
1588 			 */
1589 			bw_info->mult = CTX_TO_EP_MULT(
1590 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1591 			bw_info->num_packets = CTX_TO_MAX_BURST(
1592 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1593 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1594 					le32_to_cpu(ep_ctx->ep_info2));
1595 			bw_info->type = ep_type;
1596 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1597 					le32_to_cpu(ep_ctx->tx_info));
1598 		}
1599 	}
1600 }
1601 
1602 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1603  * Useful when you want to change one particular aspect of the endpoint and then
1604  * issue a configure endpoint command.
1605  */
1606 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1607 		struct xhci_container_ctx *in_ctx,
1608 		struct xhci_container_ctx *out_ctx,
1609 		unsigned int ep_index)
1610 {
1611 	struct xhci_ep_ctx *out_ep_ctx;
1612 	struct xhci_ep_ctx *in_ep_ctx;
1613 
1614 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1615 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1616 
1617 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1618 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1619 	in_ep_ctx->deq = out_ep_ctx->deq;
1620 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1621 }
1622 
1623 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624  * Useful when you want to change one particular aspect of the endpoint and then
1625  * issue a configure endpoint command.  Only the context entries field matters,
1626  * but we'll copy the whole thing anyway.
1627  */
1628 void xhci_slot_copy(struct xhci_hcd *xhci,
1629 		struct xhci_container_ctx *in_ctx,
1630 		struct xhci_container_ctx *out_ctx)
1631 {
1632 	struct xhci_slot_ctx *in_slot_ctx;
1633 	struct xhci_slot_ctx *out_slot_ctx;
1634 
1635 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637 
1638 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642 }
1643 
1644 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646 {
1647 	int i;
1648 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1649 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650 
1651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652 			"Allocating %d scratchpad buffers", num_sp);
1653 
1654 	if (!num_sp)
1655 		return 0;
1656 
1657 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1658 	if (!xhci->scratchpad)
1659 		goto fail_sp;
1660 
1661 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1662 				     num_sp * sizeof(u64),
1663 				     &xhci->scratchpad->sp_dma, flags);
1664 	if (!xhci->scratchpad->sp_array)
1665 		goto fail_sp2;
1666 
1667 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1668 	if (!xhci->scratchpad->sp_buffers)
1669 		goto fail_sp3;
1670 
1671 	xhci->scratchpad->sp_dma_buffers =
1672 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1673 
1674 	if (!xhci->scratchpad->sp_dma_buffers)
1675 		goto fail_sp4;
1676 
1677 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1678 	for (i = 0; i < num_sp; i++) {
1679 		dma_addr_t dma;
1680 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1681 				flags);
1682 		if (!buf)
1683 			goto fail_sp5;
1684 
1685 		xhci->scratchpad->sp_array[i] = dma;
1686 		xhci->scratchpad->sp_buffers[i] = buf;
1687 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1688 	}
1689 
1690 	return 0;
1691 
1692  fail_sp5:
1693 	for (i = i - 1; i >= 0; i--) {
1694 		dma_free_coherent(dev, xhci->page_size,
1695 				    xhci->scratchpad->sp_buffers[i],
1696 				    xhci->scratchpad->sp_dma_buffers[i]);
1697 	}
1698 	kfree(xhci->scratchpad->sp_dma_buffers);
1699 
1700  fail_sp4:
1701 	kfree(xhci->scratchpad->sp_buffers);
1702 
1703  fail_sp3:
1704 	dma_free_coherent(dev, num_sp * sizeof(u64),
1705 			    xhci->scratchpad->sp_array,
1706 			    xhci->scratchpad->sp_dma);
1707 
1708  fail_sp2:
1709 	kfree(xhci->scratchpad);
1710 	xhci->scratchpad = NULL;
1711 
1712  fail_sp:
1713 	return -ENOMEM;
1714 }
1715 
1716 static void scratchpad_free(struct xhci_hcd *xhci)
1717 {
1718 	int num_sp;
1719 	int i;
1720 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1721 
1722 	if (!xhci->scratchpad)
1723 		return;
1724 
1725 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1726 
1727 	for (i = 0; i < num_sp; i++) {
1728 		dma_free_coherent(dev, xhci->page_size,
1729 				    xhci->scratchpad->sp_buffers[i],
1730 				    xhci->scratchpad->sp_dma_buffers[i]);
1731 	}
1732 	kfree(xhci->scratchpad->sp_dma_buffers);
1733 	kfree(xhci->scratchpad->sp_buffers);
1734 	dma_free_coherent(dev, num_sp * sizeof(u64),
1735 			    xhci->scratchpad->sp_array,
1736 			    xhci->scratchpad->sp_dma);
1737 	kfree(xhci->scratchpad);
1738 	xhci->scratchpad = NULL;
1739 }
1740 
1741 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1742 		bool allocate_in_ctx, bool allocate_completion,
1743 		gfp_t mem_flags)
1744 {
1745 	struct xhci_command *command;
1746 
1747 	command = kzalloc(sizeof(*command), mem_flags);
1748 	if (!command)
1749 		return NULL;
1750 
1751 	if (allocate_in_ctx) {
1752 		command->in_ctx =
1753 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1754 					mem_flags);
1755 		if (!command->in_ctx) {
1756 			kfree(command);
1757 			return NULL;
1758 		}
1759 	}
1760 
1761 	if (allocate_completion) {
1762 		command->completion =
1763 			kzalloc(sizeof(struct completion), mem_flags);
1764 		if (!command->completion) {
1765 			xhci_free_container_ctx(xhci, command->in_ctx);
1766 			kfree(command);
1767 			return NULL;
1768 		}
1769 		init_completion(command->completion);
1770 	}
1771 
1772 	command->status = 0;
1773 	INIT_LIST_HEAD(&command->cmd_list);
1774 	return command;
1775 }
1776 
1777 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1778 {
1779 	if (urb_priv) {
1780 		kfree(urb_priv->td[0]);
1781 		kfree(urb_priv);
1782 	}
1783 }
1784 
1785 void xhci_free_command(struct xhci_hcd *xhci,
1786 		struct xhci_command *command)
1787 {
1788 	xhci_free_container_ctx(xhci,
1789 			command->in_ctx);
1790 	kfree(command->completion);
1791 	kfree(command);
1792 }
1793 
1794 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1795 {
1796 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1797 	struct xhci_cd  *cur_cd, *next_cd;
1798 	int size;
1799 	int i, j, num_ports;
1800 
1801 	/* Free the Event Ring Segment Table and the actual Event Ring */
1802 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803 	if (xhci->erst.entries)
1804 		dma_free_coherent(dev, size,
1805 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1806 	xhci->erst.entries = NULL;
1807 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808 	if (xhci->event_ring)
1809 		xhci_ring_free(xhci, xhci->event_ring);
1810 	xhci->event_ring = NULL;
1811 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812 
1813 	if (xhci->lpm_command)
1814 		xhci_free_command(xhci, xhci->lpm_command);
1815 	if (xhci->cmd_ring)
1816 		xhci_ring_free(xhci, xhci->cmd_ring);
1817 	xhci->cmd_ring = NULL;
1818 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1819 	list_for_each_entry_safe(cur_cd, next_cd,
1820 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1821 		list_del(&cur_cd->cancel_cmd_list);
1822 		kfree(cur_cd);
1823 	}
1824 
1825 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1826 		xhci_free_virt_device(xhci, i);
1827 
1828 	if (xhci->segment_pool)
1829 		dma_pool_destroy(xhci->segment_pool);
1830 	xhci->segment_pool = NULL;
1831 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1832 
1833 	if (xhci->device_pool)
1834 		dma_pool_destroy(xhci->device_pool);
1835 	xhci->device_pool = NULL;
1836 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1837 
1838 	if (xhci->small_streams_pool)
1839 		dma_pool_destroy(xhci->small_streams_pool);
1840 	xhci->small_streams_pool = NULL;
1841 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1842 			"Freed small stream array pool");
1843 
1844 	if (xhci->medium_streams_pool)
1845 		dma_pool_destroy(xhci->medium_streams_pool);
1846 	xhci->medium_streams_pool = NULL;
1847 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1848 			"Freed medium stream array pool");
1849 
1850 	if (xhci->dcbaa)
1851 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1852 				xhci->dcbaa, xhci->dcbaa->dma);
1853 	xhci->dcbaa = NULL;
1854 
1855 	scratchpad_free(xhci);
1856 
1857 	if (!xhci->rh_bw)
1858 		goto no_bw;
1859 
1860 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1861 	for (i = 0; i < num_ports; i++) {
1862 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1863 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1864 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1865 			while (!list_empty(ep))
1866 				list_del_init(ep->next);
1867 		}
1868 	}
1869 
1870 	for (i = 0; i < num_ports; i++) {
1871 		struct xhci_tt_bw_info *tt, *n;
1872 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1873 			list_del(&tt->tt_list);
1874 			kfree(tt);
1875 		}
1876 	}
1877 
1878 no_bw:
1879 	xhci->cmd_ring_reserved_trbs = 0;
1880 	xhci->num_usb2_ports = 0;
1881 	xhci->num_usb3_ports = 0;
1882 	xhci->num_active_eps = 0;
1883 	kfree(xhci->usb2_ports);
1884 	kfree(xhci->usb3_ports);
1885 	kfree(xhci->port_array);
1886 	kfree(xhci->rh_bw);
1887 	kfree(xhci->ext_caps);
1888 
1889 	xhci->page_size = 0;
1890 	xhci->page_shift = 0;
1891 	xhci->bus_state[0].bus_suspended = 0;
1892 	xhci->bus_state[1].bus_suspended = 0;
1893 }
1894 
1895 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1896 		struct xhci_segment *input_seg,
1897 		union xhci_trb *start_trb,
1898 		union xhci_trb *end_trb,
1899 		dma_addr_t input_dma,
1900 		struct xhci_segment *result_seg,
1901 		char *test_name, int test_number)
1902 {
1903 	unsigned long long start_dma;
1904 	unsigned long long end_dma;
1905 	struct xhci_segment *seg;
1906 
1907 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1908 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1909 
1910 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1911 	if (seg != result_seg) {
1912 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1913 				test_name, test_number);
1914 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1915 				"input DMA 0x%llx\n",
1916 				input_seg,
1917 				(unsigned long long) input_dma);
1918 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1919 				"ending TRB %p (0x%llx DMA)\n",
1920 				start_trb, start_dma,
1921 				end_trb, end_dma);
1922 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1923 				result_seg, seg);
1924 		return -1;
1925 	}
1926 	return 0;
1927 }
1928 
1929 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1930 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1931 {
1932 	struct {
1933 		dma_addr_t		input_dma;
1934 		struct xhci_segment	*result_seg;
1935 	} simple_test_vector [] = {
1936 		/* A zeroed DMA field should fail */
1937 		{ 0, NULL },
1938 		/* One TRB before the ring start should fail */
1939 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1940 		/* One byte before the ring start should fail */
1941 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1942 		/* Starting TRB should succeed */
1943 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1944 		/* Ending TRB should succeed */
1945 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1946 			xhci->event_ring->first_seg },
1947 		/* One byte after the ring end should fail */
1948 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1949 		/* One TRB after the ring end should fail */
1950 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1951 		/* An address of all ones should fail */
1952 		{ (dma_addr_t) (~0), NULL },
1953 	};
1954 	struct {
1955 		struct xhci_segment	*input_seg;
1956 		union xhci_trb		*start_trb;
1957 		union xhci_trb		*end_trb;
1958 		dma_addr_t		input_dma;
1959 		struct xhci_segment	*result_seg;
1960 	} complex_test_vector [] = {
1961 		/* Test feeding a valid DMA address from a different ring */
1962 		{	.input_seg = xhci->event_ring->first_seg,
1963 			.start_trb = xhci->event_ring->first_seg->trbs,
1964 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1965 			.input_dma = xhci->cmd_ring->first_seg->dma,
1966 			.result_seg = NULL,
1967 		},
1968 		/* Test feeding a valid end TRB from a different ring */
1969 		{	.input_seg = xhci->event_ring->first_seg,
1970 			.start_trb = xhci->event_ring->first_seg->trbs,
1971 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1972 			.input_dma = xhci->cmd_ring->first_seg->dma,
1973 			.result_seg = NULL,
1974 		},
1975 		/* Test feeding a valid start and end TRB from a different ring */
1976 		{	.input_seg = xhci->event_ring->first_seg,
1977 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1978 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1979 			.input_dma = xhci->cmd_ring->first_seg->dma,
1980 			.result_seg = NULL,
1981 		},
1982 		/* TRB in this ring, but after this TD */
1983 		{	.input_seg = xhci->event_ring->first_seg,
1984 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1985 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1986 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1987 			.result_seg = NULL,
1988 		},
1989 		/* TRB in this ring, but before this TD */
1990 		{	.input_seg = xhci->event_ring->first_seg,
1991 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1992 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1993 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1994 			.result_seg = NULL,
1995 		},
1996 		/* TRB in this ring, but after this wrapped TD */
1997 		{	.input_seg = xhci->event_ring->first_seg,
1998 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1999 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2000 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2001 			.result_seg = NULL,
2002 		},
2003 		/* TRB in this ring, but before this wrapped TD */
2004 		{	.input_seg = xhci->event_ring->first_seg,
2005 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2006 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2007 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2008 			.result_seg = NULL,
2009 		},
2010 		/* TRB not in this ring, and we have a wrapped TD */
2011 		{	.input_seg = xhci->event_ring->first_seg,
2012 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2013 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2014 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2015 			.result_seg = NULL,
2016 		},
2017 	};
2018 
2019 	unsigned int num_tests;
2020 	int i, ret;
2021 
2022 	num_tests = ARRAY_SIZE(simple_test_vector);
2023 	for (i = 0; i < num_tests; i++) {
2024 		ret = xhci_test_trb_in_td(xhci,
2025 				xhci->event_ring->first_seg,
2026 				xhci->event_ring->first_seg->trbs,
2027 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2028 				simple_test_vector[i].input_dma,
2029 				simple_test_vector[i].result_seg,
2030 				"Simple", i);
2031 		if (ret < 0)
2032 			return ret;
2033 	}
2034 
2035 	num_tests = ARRAY_SIZE(complex_test_vector);
2036 	for (i = 0; i < num_tests; i++) {
2037 		ret = xhci_test_trb_in_td(xhci,
2038 				complex_test_vector[i].input_seg,
2039 				complex_test_vector[i].start_trb,
2040 				complex_test_vector[i].end_trb,
2041 				complex_test_vector[i].input_dma,
2042 				complex_test_vector[i].result_seg,
2043 				"Complex", i);
2044 		if (ret < 0)
2045 			return ret;
2046 	}
2047 	xhci_dbg(xhci, "TRB math tests passed.\n");
2048 	return 0;
2049 }
2050 
2051 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2052 {
2053 	u64 temp;
2054 	dma_addr_t deq;
2055 
2056 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2057 			xhci->event_ring->dequeue);
2058 	if (deq == 0 && !in_interrupt())
2059 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2060 				"dequeue ptr.\n");
2061 	/* Update HC event ring dequeue pointer */
2062 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2063 	temp &= ERST_PTR_MASK;
2064 	/* Don't clear the EHB bit (which is RW1C) because
2065 	 * there might be more events to service.
2066 	 */
2067 	temp &= ~ERST_EHB;
2068 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2069 			"// Write event ring dequeue pointer, "
2070 			"preserving EHB bit");
2071 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2072 			&xhci->ir_set->erst_dequeue);
2073 }
2074 
2075 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2076 		__le32 __iomem *addr, u8 major_revision, int max_caps)
2077 {
2078 	u32 temp, port_offset, port_count;
2079 	int i;
2080 
2081 	if (major_revision > 0x03) {
2082 		xhci_warn(xhci, "Ignoring unknown port speed, "
2083 				"Ext Cap %p, revision = 0x%x\n",
2084 				addr, major_revision);
2085 		/* Ignoring port protocol we can't understand. FIXME */
2086 		return;
2087 	}
2088 
2089 	/* Port offset and count in the third dword, see section 7.2 */
2090 	temp = readl(addr + 2);
2091 	port_offset = XHCI_EXT_PORT_OFF(temp);
2092 	port_count = XHCI_EXT_PORT_COUNT(temp);
2093 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2094 			"Ext Cap %p, port offset = %u, "
2095 			"count = %u, revision = 0x%x",
2096 			addr, port_offset, port_count, major_revision);
2097 	/* Port count includes the current port offset */
2098 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2099 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2100 		return;
2101 
2102 	/* cache usb2 port capabilities */
2103 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2104 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2105 
2106 	/* Check the host's USB2 LPM capability */
2107 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2108 			(temp & XHCI_L1C)) {
2109 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2110 				"xHCI 0.96: support USB2 software lpm");
2111 		xhci->sw_lpm_support = 1;
2112 	}
2113 
2114 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2115 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2116 				"xHCI 1.0: support USB2 software lpm");
2117 		xhci->sw_lpm_support = 1;
2118 		if (temp & XHCI_HLC) {
2119 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2120 					"xHCI 1.0: support USB2 hardware lpm");
2121 			xhci->hw_lpm_support = 1;
2122 		}
2123 	}
2124 
2125 	port_offset--;
2126 	for (i = port_offset; i < (port_offset + port_count); i++) {
2127 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2128 		if (xhci->port_array[i] != 0) {
2129 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2130 					" port %u\n", addr, i);
2131 			xhci_warn(xhci, "Port was marked as USB %u, "
2132 					"duplicated as USB %u\n",
2133 					xhci->port_array[i], major_revision);
2134 			/* Only adjust the roothub port counts if we haven't
2135 			 * found a similar duplicate.
2136 			 */
2137 			if (xhci->port_array[i] != major_revision &&
2138 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2139 				if (xhci->port_array[i] == 0x03)
2140 					xhci->num_usb3_ports--;
2141 				else
2142 					xhci->num_usb2_ports--;
2143 				xhci->port_array[i] = DUPLICATE_ENTRY;
2144 			}
2145 			/* FIXME: Should we disable the port? */
2146 			continue;
2147 		}
2148 		xhci->port_array[i] = major_revision;
2149 		if (major_revision == 0x03)
2150 			xhci->num_usb3_ports++;
2151 		else
2152 			xhci->num_usb2_ports++;
2153 	}
2154 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2155 }
2156 
2157 /*
2158  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2159  * specify what speeds each port is supposed to be.  We can't count on the port
2160  * speed bits in the PORTSC register being correct until a device is connected,
2161  * but we need to set up the two fake roothubs with the correct number of USB
2162  * 3.0 and USB 2.0 ports at host controller initialization time.
2163  */
2164 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2165 {
2166 	__le32 __iomem *addr, *tmp_addr;
2167 	u32 offset, tmp_offset;
2168 	unsigned int num_ports;
2169 	int i, j, port_index;
2170 	int cap_count = 0;
2171 
2172 	addr = &xhci->cap_regs->hcc_params;
2173 	offset = XHCI_HCC_EXT_CAPS(readl(addr));
2174 	if (offset == 0) {
2175 		xhci_err(xhci, "No Extended Capability registers, "
2176 				"unable to set up roothub.\n");
2177 		return -ENODEV;
2178 	}
2179 
2180 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2181 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2182 	if (!xhci->port_array)
2183 		return -ENOMEM;
2184 
2185 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2186 	if (!xhci->rh_bw)
2187 		return -ENOMEM;
2188 	for (i = 0; i < num_ports; i++) {
2189 		struct xhci_interval_bw_table *bw_table;
2190 
2191 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2192 		bw_table = &xhci->rh_bw[i].bw_table;
2193 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2194 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2195 	}
2196 
2197 	/*
2198 	 * For whatever reason, the first capability offset is from the
2199 	 * capability register base, not from the HCCPARAMS register.
2200 	 * See section 5.3.6 for offset calculation.
2201 	 */
2202 	addr = &xhci->cap_regs->hc_capbase + offset;
2203 
2204 	tmp_addr = addr;
2205 	tmp_offset = offset;
2206 
2207 	/* count extended protocol capability entries for later caching */
2208 	do {
2209 		u32 cap_id;
2210 		cap_id = readl(tmp_addr);
2211 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2212 			cap_count++;
2213 		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2214 		tmp_addr += tmp_offset;
2215 	} while (tmp_offset);
2216 
2217 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2218 	if (!xhci->ext_caps)
2219 		return -ENOMEM;
2220 
2221 	while (1) {
2222 		u32 cap_id;
2223 
2224 		cap_id = readl(addr);
2225 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2226 			xhci_add_in_port(xhci, num_ports, addr,
2227 					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2228 					cap_count);
2229 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2230 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2231 				== num_ports)
2232 			break;
2233 		/*
2234 		 * Once you're into the Extended Capabilities, the offset is
2235 		 * always relative to the register holding the offset.
2236 		 */
2237 		addr += offset;
2238 	}
2239 
2240 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2241 		xhci_warn(xhci, "No ports on the roothubs?\n");
2242 		return -ENODEV;
2243 	}
2244 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2246 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2247 
2248 	/* Place limits on the number of roothub ports so that the hub
2249 	 * descriptors aren't longer than the USB core will allocate.
2250 	 */
2251 	if (xhci->num_usb3_ports > 15) {
2252 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253 				"Limiting USB 3.0 roothub ports to 15.");
2254 		xhci->num_usb3_ports = 15;
2255 	}
2256 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2257 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2258 				"Limiting USB 2.0 roothub ports to %u.",
2259 				USB_MAXCHILDREN);
2260 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2261 	}
2262 
2263 	/*
2264 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2265 	 * Not sure how the USB core will handle a hub with no ports...
2266 	 */
2267 	if (xhci->num_usb2_ports) {
2268 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2269 				xhci->num_usb2_ports, flags);
2270 		if (!xhci->usb2_ports)
2271 			return -ENOMEM;
2272 
2273 		port_index = 0;
2274 		for (i = 0; i < num_ports; i++) {
2275 			if (xhci->port_array[i] == 0x03 ||
2276 					xhci->port_array[i] == 0 ||
2277 					xhci->port_array[i] == DUPLICATE_ENTRY)
2278 				continue;
2279 
2280 			xhci->usb2_ports[port_index] =
2281 				&xhci->op_regs->port_status_base +
2282 				NUM_PORT_REGS*i;
2283 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2284 					"USB 2.0 port at index %u, "
2285 					"addr = %p", i,
2286 					xhci->usb2_ports[port_index]);
2287 			port_index++;
2288 			if (port_index == xhci->num_usb2_ports)
2289 				break;
2290 		}
2291 	}
2292 	if (xhci->num_usb3_ports) {
2293 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2294 				xhci->num_usb3_ports, flags);
2295 		if (!xhci->usb3_ports)
2296 			return -ENOMEM;
2297 
2298 		port_index = 0;
2299 		for (i = 0; i < num_ports; i++)
2300 			if (xhci->port_array[i] == 0x03) {
2301 				xhci->usb3_ports[port_index] =
2302 					&xhci->op_regs->port_status_base +
2303 					NUM_PORT_REGS*i;
2304 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2305 						"USB 3.0 port at index %u, "
2306 						"addr = %p", i,
2307 						xhci->usb3_ports[port_index]);
2308 				port_index++;
2309 				if (port_index == xhci->num_usb3_ports)
2310 					break;
2311 			}
2312 	}
2313 	return 0;
2314 }
2315 
2316 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2317 {
2318 	dma_addr_t	dma;
2319 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2320 	unsigned int	val, val2;
2321 	u64		val_64;
2322 	struct xhci_segment	*seg;
2323 	u32 page_size, temp;
2324 	int i;
2325 
2326 	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2327 
2328 	page_size = readl(&xhci->op_regs->page_size);
2329 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2330 			"Supported page size register = 0x%x", page_size);
2331 	for (i = 0; i < 16; i++) {
2332 		if ((0x1 & page_size) != 0)
2333 			break;
2334 		page_size = page_size >> 1;
2335 	}
2336 	if (i < 16)
2337 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2338 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2339 	else
2340 		xhci_warn(xhci, "WARN: no supported page size\n");
2341 	/* Use 4K pages, since that's common and the minimum the HC supports */
2342 	xhci->page_shift = 12;
2343 	xhci->page_size = 1 << xhci->page_shift;
2344 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2345 			"HCD page size set to %iK", xhci->page_size / 1024);
2346 
2347 	/*
2348 	 * Program the Number of Device Slots Enabled field in the CONFIG
2349 	 * register with the max value of slots the HC can handle.
2350 	 */
2351 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2352 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2353 			"// xHC can handle at most %d device slots.", val);
2354 	val2 = readl(&xhci->op_regs->config_reg);
2355 	val |= (val2 & ~HCS_SLOTS_MASK);
2356 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357 			"// Setting Max device slots reg = 0x%x.", val);
2358 	writel(val, &xhci->op_regs->config_reg);
2359 
2360 	/*
2361 	 * Section 5.4.8 - doorbell array must be
2362 	 * "physically contiguous and 64-byte (cache line) aligned".
2363 	 */
2364 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2365 			GFP_KERNEL);
2366 	if (!xhci->dcbaa)
2367 		goto fail;
2368 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2369 	xhci->dcbaa->dma = dma;
2370 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2372 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2373 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2374 
2375 	/*
2376 	 * Initialize the ring segment pool.  The ring must be a contiguous
2377 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2378 	 * however, the command ring segment needs 64-byte aligned segments
2379 	 * and our use of dma addresses in the trb_address_map radix tree needs
2380 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2381 	 */
2382 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2383 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2384 
2385 	/* See Table 46 and Note on Figure 55 */
2386 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2387 			2112, 64, xhci->page_size);
2388 	if (!xhci->segment_pool || !xhci->device_pool)
2389 		goto fail;
2390 
2391 	/* Linear stream context arrays don't have any boundary restrictions,
2392 	 * and only need to be 16-byte aligned.
2393 	 */
2394 	xhci->small_streams_pool =
2395 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2396 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2397 	xhci->medium_streams_pool =
2398 		dma_pool_create("xHCI 1KB stream ctx arrays",
2399 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2400 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2401 	 * will be allocated with dma_alloc_coherent()
2402 	 */
2403 
2404 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2405 		goto fail;
2406 
2407 	/* Set up the command ring to have one segments for now. */
2408 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2409 	if (!xhci->cmd_ring)
2410 		goto fail;
2411 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 			"Allocated command ring at %p", xhci->cmd_ring);
2413 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2414 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2415 
2416 	/* Set the address in the Command Ring Control register */
2417 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2418 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2419 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2420 		xhci->cmd_ring->cycle_state;
2421 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422 			"// Setting command ring address to 0x%x", val);
2423 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2424 	xhci_dbg_cmd_ptrs(xhci);
2425 
2426 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2427 	if (!xhci->lpm_command)
2428 		goto fail;
2429 
2430 	/* Reserve one command ring TRB for disabling LPM.
2431 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2432 	 * disabling LPM, we only need to reserve one TRB for all devices.
2433 	 */
2434 	xhci->cmd_ring_reserved_trbs++;
2435 
2436 	val = readl(&xhci->cap_regs->db_off);
2437 	val &= DBOFF_MASK;
2438 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439 			"// Doorbell array is located at offset 0x%x"
2440 			" from cap regs base addr", val);
2441 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2442 	xhci_dbg_regs(xhci);
2443 	xhci_print_run_regs(xhci);
2444 	/* Set ir_set to interrupt register set 0 */
2445 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2446 
2447 	/*
2448 	 * Event ring setup: Allocate a normal ring, but also setup
2449 	 * the event ring segment table (ERST).  Section 4.9.3.
2450 	 */
2451 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2452 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2453 						flags);
2454 	if (!xhci->event_ring)
2455 		goto fail;
2456 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2457 		goto fail;
2458 
2459 	xhci->erst.entries = dma_alloc_coherent(dev,
2460 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2461 			GFP_KERNEL);
2462 	if (!xhci->erst.entries)
2463 		goto fail;
2464 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2465 			"// Allocated event ring segment table at 0x%llx",
2466 			(unsigned long long)dma);
2467 
2468 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2469 	xhci->erst.num_entries = ERST_NUM_SEGS;
2470 	xhci->erst.erst_dma_addr = dma;
2471 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2473 			xhci->erst.num_entries,
2474 			xhci->erst.entries,
2475 			(unsigned long long)xhci->erst.erst_dma_addr);
2476 
2477 	/* set ring base address and size for each segment table entry */
2478 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2479 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2480 		entry->seg_addr = cpu_to_le64(seg->dma);
2481 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2482 		entry->rsvd = 0;
2483 		seg = seg->next;
2484 	}
2485 
2486 	/* set ERST count with the number of entries in the segment table */
2487 	val = readl(&xhci->ir_set->erst_size);
2488 	val &= ERST_SIZE_MASK;
2489 	val |= ERST_NUM_SEGS;
2490 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2491 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2492 			val);
2493 	writel(val, &xhci->ir_set->erst_size);
2494 
2495 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496 			"// Set ERST entries to point to event ring.");
2497 	/* set the segment table base address */
2498 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499 			"// Set ERST base address for ir_set 0 = 0x%llx",
2500 			(unsigned long long)xhci->erst.erst_dma_addr);
2501 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2502 	val_64 &= ERST_PTR_MASK;
2503 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2504 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2505 
2506 	/* Set the event ring dequeue address */
2507 	xhci_set_hc_event_deq(xhci);
2508 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509 			"Wrote ERST address to ir_set 0.");
2510 	xhci_print_ir_set(xhci, 0);
2511 
2512 	/*
2513 	 * XXX: Might need to set the Interrupter Moderation Register to
2514 	 * something other than the default (~1ms minimum between interrupts).
2515 	 * See section 5.5.1.2.
2516 	 */
2517 	init_completion(&xhci->addr_dev);
2518 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2519 		xhci->devs[i] = NULL;
2520 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2521 		xhci->bus_state[0].resume_done[i] = 0;
2522 		xhci->bus_state[1].resume_done[i] = 0;
2523 		/* Only the USB 2.0 completions will ever be used. */
2524 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2525 	}
2526 
2527 	if (scratchpad_alloc(xhci, flags))
2528 		goto fail;
2529 	if (xhci_setup_port_arrays(xhci, flags))
2530 		goto fail;
2531 
2532 	/* Enable USB 3.0 device notifications for function remote wake, which
2533 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2534 	 * U3 (device suspend).
2535 	 */
2536 	temp = readl(&xhci->op_regs->dev_notification);
2537 	temp &= ~DEV_NOTE_MASK;
2538 	temp |= DEV_NOTE_FWAKE;
2539 	writel(temp, &xhci->op_regs->dev_notification);
2540 
2541 	return 0;
2542 
2543 fail:
2544 	xhci_warn(xhci, "Couldn't initialize memory\n");
2545 	xhci_halt(xhci);
2546 	xhci_reset(xhci);
2547 	xhci_mem_cleanup(xhci);
2548 	return -ENOMEM;
2549 }
2550