xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision a36954f5)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					       unsigned int cycle_state,
41 					       unsigned int max_packet,
42 					       gfp_t flags)
43 {
44 	struct xhci_segment *seg;
45 	dma_addr_t	dma;
46 	int		i;
47 
48 	seg = kzalloc(sizeof *seg, flags);
49 	if (!seg)
50 		return NULL;
51 
52 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 	if (!seg->trbs) {
54 		kfree(seg);
55 		return NULL;
56 	}
57 
58 	if (max_packet) {
59 		seg->bounce_buf = kzalloc(max_packet, flags);
60 		if (!seg->bounce_buf) {
61 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62 			kfree(seg);
63 			return NULL;
64 		}
65 	}
66 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 	if (cycle_state == 0) {
68 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
69 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70 	}
71 	seg->dma = dma;
72 	seg->next = NULL;
73 
74 	return seg;
75 }
76 
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79 	if (seg->trbs) {
80 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81 		seg->trbs = NULL;
82 	}
83 	kfree(seg->bounce_buf);
84 	kfree(seg);
85 }
86 
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88 				struct xhci_segment *first)
89 {
90 	struct xhci_segment *seg;
91 
92 	seg = first->next;
93 	while (seg != first) {
94 		struct xhci_segment *next = seg->next;
95 		xhci_segment_free(xhci, seg);
96 		seg = next;
97 	}
98 	xhci_segment_free(xhci, first);
99 }
100 
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109 		struct xhci_segment *next, enum xhci_ring_type type)
110 {
111 	u32 val;
112 
113 	if (!prev || !next)
114 		return;
115 	prev->next = next;
116 	if (type != TYPE_EVENT) {
117 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118 			cpu_to_le64(next->dma);
119 
120 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 		val &= ~TRB_TYPE_BITMASK;
123 		val |= TRB_TYPE(TRB_LINK);
124 		/* Always set the chain bit with 0.95 hardware */
125 		/* Set chain bit for isoc rings on AMD 0.96 host */
126 		if (xhci_link_trb_quirk(xhci) ||
127 				(type == TYPE_ISOC &&
128 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129 			val |= TRB_CHAIN;
130 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131 	}
132 }
133 
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139 		struct xhci_segment *first, struct xhci_segment *last,
140 		unsigned int num_segs)
141 {
142 	struct xhci_segment *next;
143 
144 	if (!ring || !first || !last)
145 		return;
146 
147 	next = ring->enq_seg->next;
148 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149 	xhci_link_segments(xhci, last, next, ring->type);
150 	ring->num_segs += num_segs;
151 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152 
153 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155 			&= ~cpu_to_le32(LINK_TOGGLE);
156 		last->trbs[TRBS_PER_SEGMENT-1].link.control
157 			|= cpu_to_le32(LINK_TOGGLE);
158 		ring->last_seg = last;
159 	}
160 }
161 
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *	0x10c90fff >> 10 = 0x43243
177  *	0x10c912c0 >> 10 = 0x43244
178  *	0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194 		struct xhci_ring *ring,
195 		struct xhci_segment *seg,
196 		gfp_t mem_flags)
197 {
198 	unsigned long key;
199 	int ret;
200 
201 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202 	/* Skip any segments that were already added. */
203 	if (radix_tree_lookup(trb_address_map, key))
204 		return 0;
205 
206 	ret = radix_tree_maybe_preload(mem_flags);
207 	if (ret)
208 		return ret;
209 	ret = radix_tree_insert(trb_address_map,
210 			key, ring);
211 	radix_tree_preload_end();
212 	return ret;
213 }
214 
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216 		struct xhci_segment *seg)
217 {
218 	unsigned long key;
219 
220 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221 	if (radix_tree_lookup(trb_address_map, key))
222 		radix_tree_delete(trb_address_map, key);
223 }
224 
225 static int xhci_update_stream_segment_mapping(
226 		struct radix_tree_root *trb_address_map,
227 		struct xhci_ring *ring,
228 		struct xhci_segment *first_seg,
229 		struct xhci_segment *last_seg,
230 		gfp_t mem_flags)
231 {
232 	struct xhci_segment *seg;
233 	struct xhci_segment *failed_seg;
234 	int ret;
235 
236 	if (WARN_ON_ONCE(trb_address_map == NULL))
237 		return 0;
238 
239 	seg = first_seg;
240 	do {
241 		ret = xhci_insert_segment_mapping(trb_address_map,
242 				ring, seg, mem_flags);
243 		if (ret)
244 			goto remove_streams;
245 		if (seg == last_seg)
246 			return 0;
247 		seg = seg->next;
248 	} while (seg != first_seg);
249 
250 	return 0;
251 
252 remove_streams:
253 	failed_seg = seg;
254 	seg = first_seg;
255 	do {
256 		xhci_remove_segment_mapping(trb_address_map, seg);
257 		if (seg == failed_seg)
258 			return ret;
259 		seg = seg->next;
260 	} while (seg != first_seg);
261 
262 	return ret;
263 }
264 
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267 	struct xhci_segment *seg;
268 
269 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270 		return;
271 
272 	seg = ring->first_seg;
273 	do {
274 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
275 		seg = seg->next;
276 	} while (seg != ring->first_seg);
277 }
278 
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282 			ring->first_seg, ring->last_seg, mem_flags);
283 }
284 
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288 	if (!ring)
289 		return;
290 
291 	trace_xhci_ring_free(ring);
292 
293 	if (ring->first_seg) {
294 		if (ring->type == TYPE_STREAM)
295 			xhci_remove_stream_mapping(ring);
296 		xhci_free_segments_for_ring(xhci, ring->first_seg);
297 	}
298 
299 	kfree(ring);
300 }
301 
302 static void xhci_initialize_ring_info(struct xhci_ring *ring,
303 					unsigned int cycle_state)
304 {
305 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
306 	ring->enqueue = ring->first_seg->trbs;
307 	ring->enq_seg = ring->first_seg;
308 	ring->dequeue = ring->enqueue;
309 	ring->deq_seg = ring->first_seg;
310 	/* The ring is initialized to 0. The producer must write 1 to the cycle
311 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
312 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
313 	 *
314 	 * New rings are initialized with cycle state equal to 1; if we are
315 	 * handling ring expansion, set the cycle state equal to the old ring.
316 	 */
317 	ring->cycle_state = cycle_state;
318 
319 	/*
320 	 * Each segment has a link TRB, and leave an extra TRB for SW
321 	 * accounting purpose
322 	 */
323 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
324 }
325 
326 /* Allocate segments and link them for a ring */
327 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
328 		struct xhci_segment **first, struct xhci_segment **last,
329 		unsigned int num_segs, unsigned int cycle_state,
330 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
331 {
332 	struct xhci_segment *prev;
333 
334 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 	if (!prev)
336 		return -ENOMEM;
337 	num_segs--;
338 
339 	*first = prev;
340 	while (num_segs > 0) {
341 		struct xhci_segment	*next;
342 
343 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 		if (!next) {
345 			prev = *first;
346 			while (prev) {
347 				next = prev->next;
348 				xhci_segment_free(xhci, prev);
349 				prev = next;
350 			}
351 			return -ENOMEM;
352 		}
353 		xhci_link_segments(xhci, prev, next, type);
354 
355 		prev = next;
356 		num_segs--;
357 	}
358 	xhci_link_segments(xhci, prev, *first, type);
359 	*last = prev;
360 
361 	return 0;
362 }
363 
364 /**
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 		unsigned int num_segs, unsigned int cycle_state,
373 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375 	struct xhci_ring	*ring;
376 	int ret;
377 
378 	ring = kzalloc(sizeof *(ring), flags);
379 	if (!ring)
380 		return NULL;
381 
382 	ring->num_segs = num_segs;
383 	ring->bounce_buf_len = max_packet;
384 	INIT_LIST_HEAD(&ring->td_list);
385 	ring->type = type;
386 	if (num_segs == 0)
387 		return ring;
388 
389 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
390 			&ring->last_seg, num_segs, cycle_state, type,
391 			max_packet, flags);
392 	if (ret)
393 		goto fail;
394 
395 	/* Only event ring does not use link TRB */
396 	if (type != TYPE_EVENT) {
397 		/* See section 4.9.2.1 and 6.4.4.1 */
398 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
399 			cpu_to_le32(LINK_TOGGLE);
400 	}
401 	xhci_initialize_ring_info(ring, cycle_state);
402 	trace_xhci_ring_alloc(ring);
403 	return ring;
404 
405 fail:
406 	kfree(ring);
407 	return NULL;
408 }
409 
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411 		struct xhci_virt_device *virt_dev,
412 		unsigned int ep_index)
413 {
414 	int rings_cached;
415 
416 	rings_cached = virt_dev->num_rings_cached;
417 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418 		virt_dev->ring_cache[rings_cached] =
419 			virt_dev->eps[ep_index].ring;
420 		virt_dev->num_rings_cached++;
421 		xhci_dbg(xhci, "Cached old ring, "
422 				"%d ring%s cached\n",
423 				virt_dev->num_rings_cached,
424 				(virt_dev->num_rings_cached > 1) ? "s" : "");
425 	} else {
426 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427 		xhci_dbg(xhci, "Ring cache full (%d rings), "
428 				"freeing ring\n",
429 				virt_dev->num_rings_cached);
430 	}
431 	virt_dev->eps[ep_index].ring = NULL;
432 }
433 
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435  * pointers to the beginning of the ring.
436  */
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438 			struct xhci_ring *ring, unsigned int cycle_state,
439 			enum xhci_ring_type type)
440 {
441 	struct xhci_segment	*seg = ring->first_seg;
442 	int i;
443 
444 	do {
445 		memset(seg->trbs, 0,
446 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447 		if (cycle_state == 0) {
448 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
449 				seg->trbs[i].link.control |=
450 					cpu_to_le32(TRB_CYCLE);
451 		}
452 		/* All endpoint rings have link TRBs */
453 		xhci_link_segments(xhci, seg, seg->next, type);
454 		seg = seg->next;
455 	} while (seg != ring->first_seg);
456 	ring->type = type;
457 	xhci_initialize_ring_info(ring, cycle_state);
458 	/* td list should be empty since all URBs have been cancelled,
459 	 * but just in case...
460 	 */
461 	INIT_LIST_HEAD(&ring->td_list);
462 }
463 
464 /*
465  * Expand an existing ring.
466  * Look for a cached ring or allocate a new ring which has same segment numbers
467  * and link the two rings.
468  */
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470 				unsigned int num_trbs, gfp_t flags)
471 {
472 	struct xhci_segment	*first;
473 	struct xhci_segment	*last;
474 	unsigned int		num_segs;
475 	unsigned int		num_segs_needed;
476 	int			ret;
477 
478 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479 				(TRBS_PER_SEGMENT - 1);
480 
481 	/* Allocate number of segments we needed, or double the ring size */
482 	num_segs = ring->num_segs > num_segs_needed ?
483 			ring->num_segs : num_segs_needed;
484 
485 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486 			num_segs, ring->cycle_state, ring->type,
487 			ring->bounce_buf_len, flags);
488 	if (ret)
489 		return -ENOMEM;
490 
491 	if (ring->type == TYPE_STREAM)
492 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493 						ring, first, last, flags);
494 	if (ret) {
495 		struct xhci_segment *next;
496 		do {
497 			next = first->next;
498 			xhci_segment_free(xhci, first);
499 			if (first == last)
500 				break;
501 			first = next;
502 		} while (true);
503 		return ret;
504 	}
505 
506 	xhci_link_rings(xhci, ring, first, last, num_segs);
507 	trace_xhci_ring_expansion(ring);
508 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
509 			"ring expansion succeed, now has %d segments",
510 			ring->num_segs);
511 
512 	return 0;
513 }
514 
515 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
516 
517 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
518 						    int type, gfp_t flags)
519 {
520 	struct xhci_container_ctx *ctx;
521 
522 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
523 		return NULL;
524 
525 	ctx = kzalloc(sizeof(*ctx), flags);
526 	if (!ctx)
527 		return NULL;
528 
529 	ctx->type = type;
530 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
531 	if (type == XHCI_CTX_TYPE_INPUT)
532 		ctx->size += CTX_SIZE(xhci->hcc_params);
533 
534 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
535 	if (!ctx->bytes) {
536 		kfree(ctx);
537 		return NULL;
538 	}
539 	return ctx;
540 }
541 
542 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
543 			     struct xhci_container_ctx *ctx)
544 {
545 	if (!ctx)
546 		return;
547 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
548 	kfree(ctx);
549 }
550 
551 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
552 					      struct xhci_container_ctx *ctx)
553 {
554 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
555 		return NULL;
556 
557 	return (struct xhci_input_control_ctx *)ctx->bytes;
558 }
559 
560 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
561 					struct xhci_container_ctx *ctx)
562 {
563 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
564 		return (struct xhci_slot_ctx *)ctx->bytes;
565 
566 	return (struct xhci_slot_ctx *)
567 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
568 }
569 
570 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
571 				    struct xhci_container_ctx *ctx,
572 				    unsigned int ep_index)
573 {
574 	/* increment ep index by offset of start of ep ctx array */
575 	ep_index++;
576 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
577 		ep_index++;
578 
579 	return (struct xhci_ep_ctx *)
580 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
581 }
582 
583 
584 /***************** Streams structures manipulation *************************/
585 
586 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
587 		unsigned int num_stream_ctxs,
588 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
589 {
590 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
591 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
592 
593 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
594 		dma_free_coherent(dev, size,
595 				stream_ctx, dma);
596 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
597 		return dma_pool_free(xhci->small_streams_pool,
598 				stream_ctx, dma);
599 	else
600 		return dma_pool_free(xhci->medium_streams_pool,
601 				stream_ctx, dma);
602 }
603 
604 /*
605  * The stream context array for each endpoint with bulk streams enabled can
606  * vary in size, based on:
607  *  - how many streams the endpoint supports,
608  *  - the maximum primary stream array size the host controller supports,
609  *  - and how many streams the device driver asks for.
610  *
611  * The stream context array must be a power of 2, and can be as small as
612  * 64 bytes or as large as 1MB.
613  */
614 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
615 		unsigned int num_stream_ctxs, dma_addr_t *dma,
616 		gfp_t mem_flags)
617 {
618 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
619 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
620 
621 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
622 		return dma_alloc_coherent(dev, size,
623 				dma, mem_flags);
624 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
625 		return dma_pool_alloc(xhci->small_streams_pool,
626 				mem_flags, dma);
627 	else
628 		return dma_pool_alloc(xhci->medium_streams_pool,
629 				mem_flags, dma);
630 }
631 
632 struct xhci_ring *xhci_dma_to_transfer_ring(
633 		struct xhci_virt_ep *ep,
634 		u64 address)
635 {
636 	if (ep->ep_state & EP_HAS_STREAMS)
637 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
638 				address >> TRB_SEGMENT_SHIFT);
639 	return ep->ring;
640 }
641 
642 struct xhci_ring *xhci_stream_id_to_ring(
643 		struct xhci_virt_device *dev,
644 		unsigned int ep_index,
645 		unsigned int stream_id)
646 {
647 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
648 
649 	if (stream_id == 0)
650 		return ep->ring;
651 	if (!ep->stream_info)
652 		return NULL;
653 
654 	if (stream_id > ep->stream_info->num_streams)
655 		return NULL;
656 	return ep->stream_info->stream_rings[stream_id];
657 }
658 
659 /*
660  * Change an endpoint's internal structure so it supports stream IDs.  The
661  * number of requested streams includes stream 0, which cannot be used by device
662  * drivers.
663  *
664  * The number of stream contexts in the stream context array may be bigger than
665  * the number of streams the driver wants to use.  This is because the number of
666  * stream context array entries must be a power of two.
667  */
668 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
669 		unsigned int num_stream_ctxs,
670 		unsigned int num_streams,
671 		unsigned int max_packet, gfp_t mem_flags)
672 {
673 	struct xhci_stream_info *stream_info;
674 	u32 cur_stream;
675 	struct xhci_ring *cur_ring;
676 	u64 addr;
677 	int ret;
678 
679 	xhci_dbg(xhci, "Allocating %u streams and %u "
680 			"stream context array entries.\n",
681 			num_streams, num_stream_ctxs);
682 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
683 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
684 		return NULL;
685 	}
686 	xhci->cmd_ring_reserved_trbs++;
687 
688 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
689 	if (!stream_info)
690 		goto cleanup_trbs;
691 
692 	stream_info->num_streams = num_streams;
693 	stream_info->num_stream_ctxs = num_stream_ctxs;
694 
695 	/* Initialize the array of virtual pointers to stream rings. */
696 	stream_info->stream_rings = kzalloc(
697 			sizeof(struct xhci_ring *)*num_streams,
698 			mem_flags);
699 	if (!stream_info->stream_rings)
700 		goto cleanup_info;
701 
702 	/* Initialize the array of DMA addresses for stream rings for the HW. */
703 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
704 			num_stream_ctxs, &stream_info->ctx_array_dma,
705 			mem_flags);
706 	if (!stream_info->stream_ctx_array)
707 		goto cleanup_ctx;
708 	memset(stream_info->stream_ctx_array, 0,
709 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
710 
711 	/* Allocate everything needed to free the stream rings later */
712 	stream_info->free_streams_command =
713 		xhci_alloc_command(xhci, true, true, mem_flags);
714 	if (!stream_info->free_streams_command)
715 		goto cleanup_ctx;
716 
717 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
718 
719 	/* Allocate rings for all the streams that the driver will use,
720 	 * and add their segment DMA addresses to the radix tree.
721 	 * Stream 0 is reserved.
722 	 */
723 
724 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
725 		stream_info->stream_rings[cur_stream] =
726 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
727 					mem_flags);
728 		cur_ring = stream_info->stream_rings[cur_stream];
729 		if (!cur_ring)
730 			goto cleanup_rings;
731 		cur_ring->stream_id = cur_stream;
732 		cur_ring->trb_address_map = &stream_info->trb_address_map;
733 		/* Set deq ptr, cycle bit, and stream context type */
734 		addr = cur_ring->first_seg->dma |
735 			SCT_FOR_CTX(SCT_PRI_TR) |
736 			cur_ring->cycle_state;
737 		stream_info->stream_ctx_array[cur_stream].stream_ring =
738 			cpu_to_le64(addr);
739 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
740 				cur_stream, (unsigned long long) addr);
741 
742 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
743 		if (ret) {
744 			xhci_ring_free(xhci, cur_ring);
745 			stream_info->stream_rings[cur_stream] = NULL;
746 			goto cleanup_rings;
747 		}
748 	}
749 	/* Leave the other unused stream ring pointers in the stream context
750 	 * array initialized to zero.  This will cause the xHC to give us an
751 	 * error if the device asks for a stream ID we don't have setup (if it
752 	 * was any other way, the host controller would assume the ring is
753 	 * "empty" and wait forever for data to be queued to that stream ID).
754 	 */
755 
756 	return stream_info;
757 
758 cleanup_rings:
759 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
760 		cur_ring = stream_info->stream_rings[cur_stream];
761 		if (cur_ring) {
762 			xhci_ring_free(xhci, cur_ring);
763 			stream_info->stream_rings[cur_stream] = NULL;
764 		}
765 	}
766 	xhci_free_command(xhci, stream_info->free_streams_command);
767 cleanup_ctx:
768 	kfree(stream_info->stream_rings);
769 cleanup_info:
770 	kfree(stream_info);
771 cleanup_trbs:
772 	xhci->cmd_ring_reserved_trbs--;
773 	return NULL;
774 }
775 /*
776  * Sets the MaxPStreams field and the Linear Stream Array field.
777  * Sets the dequeue pointer to the stream context array.
778  */
779 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
780 		struct xhci_ep_ctx *ep_ctx,
781 		struct xhci_stream_info *stream_info)
782 {
783 	u32 max_primary_streams;
784 	/* MaxPStreams is the number of stream context array entries, not the
785 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
786 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
787 	 */
788 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
789 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
790 			"Setting number of stream ctx array entries to %u",
791 			1 << (max_primary_streams + 1));
792 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
793 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
794 				       | EP_HAS_LSA);
795 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
796 }
797 
798 /*
799  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
800  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
801  * not at the beginning of the ring).
802  */
803 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
804 		struct xhci_virt_ep *ep)
805 {
806 	dma_addr_t addr;
807 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
808 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
809 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
810 }
811 
812 /* Frees all stream contexts associated with the endpoint,
813  *
814  * Caller should fix the endpoint context streams fields.
815  */
816 void xhci_free_stream_info(struct xhci_hcd *xhci,
817 		struct xhci_stream_info *stream_info)
818 {
819 	int cur_stream;
820 	struct xhci_ring *cur_ring;
821 
822 	if (!stream_info)
823 		return;
824 
825 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
826 			cur_stream++) {
827 		cur_ring = stream_info->stream_rings[cur_stream];
828 		if (cur_ring) {
829 			xhci_ring_free(xhci, cur_ring);
830 			stream_info->stream_rings[cur_stream] = NULL;
831 		}
832 	}
833 	xhci_free_command(xhci, stream_info->free_streams_command);
834 	xhci->cmd_ring_reserved_trbs--;
835 	if (stream_info->stream_ctx_array)
836 		xhci_free_stream_ctx(xhci,
837 				stream_info->num_stream_ctxs,
838 				stream_info->stream_ctx_array,
839 				stream_info->ctx_array_dma);
840 
841 	kfree(stream_info->stream_rings);
842 	kfree(stream_info);
843 }
844 
845 
846 /***************** Device context manipulation *************************/
847 
848 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
849 		struct xhci_virt_ep *ep)
850 {
851 	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
852 		    (unsigned long)ep);
853 	ep->xhci = xhci;
854 }
855 
856 static void xhci_free_tt_info(struct xhci_hcd *xhci,
857 		struct xhci_virt_device *virt_dev,
858 		int slot_id)
859 {
860 	struct list_head *tt_list_head;
861 	struct xhci_tt_bw_info *tt_info, *next;
862 	bool slot_found = false;
863 
864 	/* If the device never made it past the Set Address stage,
865 	 * it may not have the real_port set correctly.
866 	 */
867 	if (virt_dev->real_port == 0 ||
868 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
869 		xhci_dbg(xhci, "Bad real port.\n");
870 		return;
871 	}
872 
873 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
874 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
875 		/* Multi-TT hubs will have more than one entry */
876 		if (tt_info->slot_id == slot_id) {
877 			slot_found = true;
878 			list_del(&tt_info->tt_list);
879 			kfree(tt_info);
880 		} else if (slot_found) {
881 			break;
882 		}
883 	}
884 }
885 
886 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
887 		struct xhci_virt_device *virt_dev,
888 		struct usb_device *hdev,
889 		struct usb_tt *tt, gfp_t mem_flags)
890 {
891 	struct xhci_tt_bw_info		*tt_info;
892 	unsigned int			num_ports;
893 	int				i, j;
894 
895 	if (!tt->multi)
896 		num_ports = 1;
897 	else
898 		num_ports = hdev->maxchild;
899 
900 	for (i = 0; i < num_ports; i++, tt_info++) {
901 		struct xhci_interval_bw_table *bw_table;
902 
903 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
904 		if (!tt_info)
905 			goto free_tts;
906 		INIT_LIST_HEAD(&tt_info->tt_list);
907 		list_add(&tt_info->tt_list,
908 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
909 		tt_info->slot_id = virt_dev->udev->slot_id;
910 		if (tt->multi)
911 			tt_info->ttport = i+1;
912 		bw_table = &tt_info->bw_table;
913 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
914 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
915 	}
916 	return 0;
917 
918 free_tts:
919 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
920 	return -ENOMEM;
921 }
922 
923 
924 /* All the xhci_tds in the ring's TD list should be freed at this point.
925  * Should be called with xhci->lock held if there is any chance the TT lists
926  * will be manipulated by the configure endpoint, allocate device, or update
927  * hub functions while this function is removing the TT entries from the list.
928  */
929 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
930 {
931 	struct xhci_virt_device *dev;
932 	int i;
933 	int old_active_eps = 0;
934 
935 	/* Slot ID 0 is reserved */
936 	if (slot_id == 0 || !xhci->devs[slot_id])
937 		return;
938 
939 	dev = xhci->devs[slot_id];
940 
941 	trace_xhci_free_virt_device(dev);
942 
943 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
944 	if (!dev)
945 		return;
946 
947 	if (dev->tt_info)
948 		old_active_eps = dev->tt_info->active_eps;
949 
950 	for (i = 0; i < 31; i++) {
951 		if (dev->eps[i].ring)
952 			xhci_ring_free(xhci, dev->eps[i].ring);
953 		if (dev->eps[i].stream_info)
954 			xhci_free_stream_info(xhci,
955 					dev->eps[i].stream_info);
956 		/* Endpoints on the TT/root port lists should have been removed
957 		 * when usb_disable_device() was called for the device.
958 		 * We can't drop them anyway, because the udev might have gone
959 		 * away by this point, and we can't tell what speed it was.
960 		 */
961 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
962 			xhci_warn(xhci, "Slot %u endpoint %u "
963 					"not removed from BW list!\n",
964 					slot_id, i);
965 	}
966 	/* If this is a hub, free the TT(s) from the TT list */
967 	xhci_free_tt_info(xhci, dev, slot_id);
968 	/* If necessary, update the number of active TTs on this root port */
969 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
970 
971 	if (dev->ring_cache) {
972 		for (i = 0; i < dev->num_rings_cached; i++)
973 			xhci_ring_free(xhci, dev->ring_cache[i]);
974 		kfree(dev->ring_cache);
975 	}
976 
977 	if (dev->in_ctx)
978 		xhci_free_container_ctx(xhci, dev->in_ctx);
979 	if (dev->out_ctx)
980 		xhci_free_container_ctx(xhci, dev->out_ctx);
981 
982 	kfree(xhci->devs[slot_id]);
983 	xhci->devs[slot_id] = NULL;
984 }
985 
986 /*
987  * Free a virt_device structure.
988  * If the virt_device added a tt_info (a hub) and has children pointing to
989  * that tt_info, then free the child first. Recursive.
990  * We can't rely on udev at this point to find child-parent relationships.
991  */
992 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
993 {
994 	struct xhci_virt_device *vdev;
995 	struct list_head *tt_list_head;
996 	struct xhci_tt_bw_info *tt_info, *next;
997 	int i;
998 
999 	vdev = xhci->devs[slot_id];
1000 	if (!vdev)
1001 		return;
1002 
1003 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1004 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1005 		/* is this a hub device that added a tt_info to the tts list */
1006 		if (tt_info->slot_id == slot_id) {
1007 			/* are any devices using this tt_info? */
1008 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1009 				vdev = xhci->devs[i];
1010 				if (vdev && (vdev->tt_info == tt_info))
1011 					xhci_free_virt_devices_depth_first(
1012 						xhci, i);
1013 			}
1014 		}
1015 	}
1016 	/* we are now at a leaf device */
1017 	xhci_free_virt_device(xhci, slot_id);
1018 }
1019 
1020 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1021 		struct usb_device *udev, gfp_t flags)
1022 {
1023 	struct xhci_virt_device *dev;
1024 	int i;
1025 
1026 	/* Slot ID 0 is reserved */
1027 	if (slot_id == 0 || xhci->devs[slot_id]) {
1028 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1029 		return 0;
1030 	}
1031 
1032 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
1033 	if (!xhci->devs[slot_id])
1034 		return 0;
1035 	dev = xhci->devs[slot_id];
1036 
1037 	/* Allocate the (output) device context that will be used in the HC. */
1038 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1039 	if (!dev->out_ctx)
1040 		goto fail;
1041 
1042 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1043 			(unsigned long long)dev->out_ctx->dma);
1044 
1045 	/* Allocate the (input) device context for address device command */
1046 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1047 	if (!dev->in_ctx)
1048 		goto fail;
1049 
1050 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1051 			(unsigned long long)dev->in_ctx->dma);
1052 
1053 	/* Initialize the cancellation list and watchdog timers for each ep */
1054 	for (i = 0; i < 31; i++) {
1055 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1056 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1057 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1058 	}
1059 
1060 	/* Allocate endpoint 0 ring */
1061 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1062 	if (!dev->eps[0].ring)
1063 		goto fail;
1064 
1065 	/* Allocate pointers to the ring cache */
1066 	dev->ring_cache = kzalloc(
1067 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1068 			flags);
1069 	if (!dev->ring_cache)
1070 		goto fail;
1071 	dev->num_rings_cached = 0;
1072 
1073 	dev->udev = udev;
1074 
1075 	/* Point to output device context in dcbaa. */
1076 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1077 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1078 		 slot_id,
1079 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1080 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1081 
1082 	trace_xhci_alloc_virt_device(dev);
1083 
1084 	return 1;
1085 fail:
1086 	xhci_free_virt_device(xhci, slot_id);
1087 	return 0;
1088 }
1089 
1090 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1091 		struct usb_device *udev)
1092 {
1093 	struct xhci_virt_device *virt_dev;
1094 	struct xhci_ep_ctx	*ep0_ctx;
1095 	struct xhci_ring	*ep_ring;
1096 
1097 	virt_dev = xhci->devs[udev->slot_id];
1098 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1099 	ep_ring = virt_dev->eps[0].ring;
1100 	/*
1101 	 * FIXME we don't keep track of the dequeue pointer very well after a
1102 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1103 	 * host to our enqueue pointer.  This should only be called after a
1104 	 * configured device has reset, so all control transfers should have
1105 	 * been completed or cancelled before the reset.
1106 	 */
1107 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1108 							ep_ring->enqueue)
1109 				   | ep_ring->cycle_state);
1110 }
1111 
1112 /*
1113  * The xHCI roothub may have ports of differing speeds in any order in the port
1114  * status registers.  xhci->port_array provides an array of the port speed for
1115  * each offset into the port status registers.
1116  *
1117  * The xHCI hardware wants to know the roothub port number that the USB device
1118  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1119  * know is the index of that port under either the USB 2.0 or the USB 3.0
1120  * roothub, but that doesn't give us the real index into the HW port status
1121  * registers. Call xhci_find_raw_port_number() to get real index.
1122  */
1123 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1124 		struct usb_device *udev)
1125 {
1126 	struct usb_device *top_dev;
1127 	struct usb_hcd *hcd;
1128 
1129 	if (udev->speed >= USB_SPEED_SUPER)
1130 		hcd = xhci->shared_hcd;
1131 	else
1132 		hcd = xhci->main_hcd;
1133 
1134 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1135 			top_dev = top_dev->parent)
1136 		/* Found device below root hub */;
1137 
1138 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1139 }
1140 
1141 /* Setup an xHCI virtual device for a Set Address command */
1142 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1143 {
1144 	struct xhci_virt_device *dev;
1145 	struct xhci_ep_ctx	*ep0_ctx;
1146 	struct xhci_slot_ctx    *slot_ctx;
1147 	u32			port_num;
1148 	u32			max_packets;
1149 	struct usb_device *top_dev;
1150 
1151 	dev = xhci->devs[udev->slot_id];
1152 	/* Slot ID 0 is reserved */
1153 	if (udev->slot_id == 0 || !dev) {
1154 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1155 				udev->slot_id);
1156 		return -EINVAL;
1157 	}
1158 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1159 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1160 
1161 	/* 3) Only the control endpoint is valid - one endpoint context */
1162 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1163 	switch (udev->speed) {
1164 	case USB_SPEED_SUPER_PLUS:
1165 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1166 		max_packets = MAX_PACKET(512);
1167 		break;
1168 	case USB_SPEED_SUPER:
1169 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1170 		max_packets = MAX_PACKET(512);
1171 		break;
1172 	case USB_SPEED_HIGH:
1173 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1174 		max_packets = MAX_PACKET(64);
1175 		break;
1176 	/* USB core guesses at a 64-byte max packet first for FS devices */
1177 	case USB_SPEED_FULL:
1178 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1179 		max_packets = MAX_PACKET(64);
1180 		break;
1181 	case USB_SPEED_LOW:
1182 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1183 		max_packets = MAX_PACKET(8);
1184 		break;
1185 	case USB_SPEED_WIRELESS:
1186 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1187 		return -EINVAL;
1188 		break;
1189 	default:
1190 		/* Speed was set earlier, this shouldn't happen. */
1191 		return -EINVAL;
1192 	}
1193 	/* Find the root hub port this device is under */
1194 	port_num = xhci_find_real_port_number(xhci, udev);
1195 	if (!port_num)
1196 		return -EINVAL;
1197 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1198 	/* Set the port number in the virtual_device to the faked port number */
1199 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1200 			top_dev = top_dev->parent)
1201 		/* Found device below root hub */;
1202 	dev->fake_port = top_dev->portnum;
1203 	dev->real_port = port_num;
1204 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1205 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1206 
1207 	/* Find the right bandwidth table that this device will be a part of.
1208 	 * If this is a full speed device attached directly to a root port (or a
1209 	 * decendent of one), it counts as a primary bandwidth domain, not a
1210 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1211 	 * will never be created for the HS root hub.
1212 	 */
1213 	if (!udev->tt || !udev->tt->hub->parent) {
1214 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1215 	} else {
1216 		struct xhci_root_port_bw_info *rh_bw;
1217 		struct xhci_tt_bw_info *tt_bw;
1218 
1219 		rh_bw = &xhci->rh_bw[port_num - 1];
1220 		/* Find the right TT. */
1221 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1222 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1223 				continue;
1224 
1225 			if (!dev->udev->tt->multi ||
1226 					(udev->tt->multi &&
1227 					 tt_bw->ttport == dev->udev->ttport)) {
1228 				dev->bw_table = &tt_bw->bw_table;
1229 				dev->tt_info = tt_bw;
1230 				break;
1231 			}
1232 		}
1233 		if (!dev->tt_info)
1234 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1235 	}
1236 
1237 	/* Is this a LS/FS device under an external HS hub? */
1238 	if (udev->tt && udev->tt->hub->parent) {
1239 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1240 						(udev->ttport << 8));
1241 		if (udev->tt->multi)
1242 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1243 	}
1244 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1245 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1246 
1247 	/* Step 4 - ring already allocated */
1248 	/* Step 5 */
1249 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1250 
1251 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1252 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1253 					 max_packets);
1254 
1255 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1256 				   dev->eps[0].ring->cycle_state);
1257 
1258 	trace_xhci_setup_addressable_virt_device(dev);
1259 
1260 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Convert interval expressed as 2^(bInterval - 1) == interval into
1267  * straight exponent value 2^n == interval.
1268  *
1269  */
1270 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1271 		struct usb_host_endpoint *ep)
1272 {
1273 	unsigned int interval;
1274 
1275 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1276 	if (interval != ep->desc.bInterval - 1)
1277 		dev_warn(&udev->dev,
1278 			 "ep %#x - rounding interval to %d %sframes\n",
1279 			 ep->desc.bEndpointAddress,
1280 			 1 << interval,
1281 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1282 
1283 	if (udev->speed == USB_SPEED_FULL) {
1284 		/*
1285 		 * Full speed isoc endpoints specify interval in frames,
1286 		 * not microframes. We are using microframes everywhere,
1287 		 * so adjust accordingly.
1288 		 */
1289 		interval += 3;	/* 1 frame = 2^3 uframes */
1290 	}
1291 
1292 	return interval;
1293 }
1294 
1295 /*
1296  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1297  * microframes, rounded down to nearest power of 2.
1298  */
1299 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1300 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1301 		unsigned int min_exponent, unsigned int max_exponent)
1302 {
1303 	unsigned int interval;
1304 
1305 	interval = fls(desc_interval) - 1;
1306 	interval = clamp_val(interval, min_exponent, max_exponent);
1307 	if ((1 << interval) != desc_interval)
1308 		dev_dbg(&udev->dev,
1309 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1310 			 ep->desc.bEndpointAddress,
1311 			 1 << interval,
1312 			 desc_interval);
1313 
1314 	return interval;
1315 }
1316 
1317 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1318 		struct usb_host_endpoint *ep)
1319 {
1320 	if (ep->desc.bInterval == 0)
1321 		return 0;
1322 	return xhci_microframes_to_exponent(udev, ep,
1323 			ep->desc.bInterval, 0, 15);
1324 }
1325 
1326 
1327 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1328 		struct usb_host_endpoint *ep)
1329 {
1330 	return xhci_microframes_to_exponent(udev, ep,
1331 			ep->desc.bInterval * 8, 3, 10);
1332 }
1333 
1334 /* Return the polling or NAK interval.
1335  *
1336  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1337  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1338  *
1339  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1340  * is set to 0.
1341  */
1342 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1343 		struct usb_host_endpoint *ep)
1344 {
1345 	unsigned int interval = 0;
1346 
1347 	switch (udev->speed) {
1348 	case USB_SPEED_HIGH:
1349 		/* Max NAK rate */
1350 		if (usb_endpoint_xfer_control(&ep->desc) ||
1351 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1352 			interval = xhci_parse_microframe_interval(udev, ep);
1353 			break;
1354 		}
1355 		/* Fall through - SS and HS isoc/int have same decoding */
1356 
1357 	case USB_SPEED_SUPER_PLUS:
1358 	case USB_SPEED_SUPER:
1359 		if (usb_endpoint_xfer_int(&ep->desc) ||
1360 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1361 			interval = xhci_parse_exponent_interval(udev, ep);
1362 		}
1363 		break;
1364 
1365 	case USB_SPEED_FULL:
1366 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1367 			interval = xhci_parse_exponent_interval(udev, ep);
1368 			break;
1369 		}
1370 		/*
1371 		 * Fall through for interrupt endpoint interval decoding
1372 		 * since it uses the same rules as low speed interrupt
1373 		 * endpoints.
1374 		 */
1375 
1376 	case USB_SPEED_LOW:
1377 		if (usb_endpoint_xfer_int(&ep->desc) ||
1378 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1379 
1380 			interval = xhci_parse_frame_interval(udev, ep);
1381 		}
1382 		break;
1383 
1384 	default:
1385 		BUG();
1386 	}
1387 	return interval;
1388 }
1389 
1390 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1391  * High speed endpoint descriptors can define "the number of additional
1392  * transaction opportunities per microframe", but that goes in the Max Burst
1393  * endpoint context field.
1394  */
1395 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1396 		struct usb_host_endpoint *ep)
1397 {
1398 	if (udev->speed < USB_SPEED_SUPER ||
1399 			!usb_endpoint_xfer_isoc(&ep->desc))
1400 		return 0;
1401 	return ep->ss_ep_comp.bmAttributes;
1402 }
1403 
1404 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1405 				       struct usb_host_endpoint *ep)
1406 {
1407 	/* Super speed and Plus have max burst in ep companion desc */
1408 	if (udev->speed >= USB_SPEED_SUPER)
1409 		return ep->ss_ep_comp.bMaxBurst;
1410 
1411 	if (udev->speed == USB_SPEED_HIGH &&
1412 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1413 	     usb_endpoint_xfer_int(&ep->desc)))
1414 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1415 
1416 	return 0;
1417 }
1418 
1419 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1420 {
1421 	int in;
1422 
1423 	in = usb_endpoint_dir_in(&ep->desc);
1424 
1425 	switch (usb_endpoint_type(&ep->desc)) {
1426 	case USB_ENDPOINT_XFER_CONTROL:
1427 		return CTRL_EP;
1428 	case USB_ENDPOINT_XFER_BULK:
1429 		return in ? BULK_IN_EP : BULK_OUT_EP;
1430 	case USB_ENDPOINT_XFER_ISOC:
1431 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1432 	case USB_ENDPOINT_XFER_INT:
1433 		return in ? INT_IN_EP : INT_OUT_EP;
1434 	}
1435 	return 0;
1436 }
1437 
1438 /* Return the maximum endpoint service interval time (ESIT) payload.
1439  * Basically, this is the maxpacket size, multiplied by the burst size
1440  * and mult size.
1441  */
1442 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1443 		struct usb_host_endpoint *ep)
1444 {
1445 	int max_burst;
1446 	int max_packet;
1447 
1448 	/* Only applies for interrupt or isochronous endpoints */
1449 	if (usb_endpoint_xfer_control(&ep->desc) ||
1450 			usb_endpoint_xfer_bulk(&ep->desc))
1451 		return 0;
1452 
1453 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1454 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1455 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1456 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1457 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1458 	else if (udev->speed >= USB_SPEED_SUPER)
1459 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1460 
1461 	max_packet = usb_endpoint_maxp(&ep->desc);
1462 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1463 	/* A 0 in max burst means 1 transfer per ESIT */
1464 	return max_packet * max_burst;
1465 }
1466 
1467 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1468  * Drivers will have to call usb_alloc_streams() to do that.
1469  */
1470 int xhci_endpoint_init(struct xhci_hcd *xhci,
1471 		struct xhci_virt_device *virt_dev,
1472 		struct usb_device *udev,
1473 		struct usb_host_endpoint *ep,
1474 		gfp_t mem_flags)
1475 {
1476 	unsigned int ep_index;
1477 	struct xhci_ep_ctx *ep_ctx;
1478 	struct xhci_ring *ep_ring;
1479 	unsigned int max_packet;
1480 	enum xhci_ring_type ring_type;
1481 	u32 max_esit_payload;
1482 	u32 endpoint_type;
1483 	unsigned int max_burst;
1484 	unsigned int interval;
1485 	unsigned int mult;
1486 	unsigned int avg_trb_len;
1487 	unsigned int err_count = 0;
1488 
1489 	ep_index = xhci_get_endpoint_index(&ep->desc);
1490 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1491 
1492 	endpoint_type = xhci_get_endpoint_type(ep);
1493 	if (!endpoint_type)
1494 		return -EINVAL;
1495 
1496 	ring_type = usb_endpoint_type(&ep->desc);
1497 
1498 	/*
1499 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1500 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1501 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1502 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1503 	 */
1504 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1505 	interval = xhci_get_endpoint_interval(udev, ep);
1506 
1507 	/* Periodic endpoint bInterval limit quirk */
1508 	if (usb_endpoint_xfer_int(&ep->desc) ||
1509 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1510 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1511 		    udev->speed >= USB_SPEED_HIGH &&
1512 		    interval >= 7) {
1513 			interval = 6;
1514 		}
1515 	}
1516 
1517 	mult = xhci_get_endpoint_mult(udev, ep);
1518 	max_packet = usb_endpoint_maxp(&ep->desc);
1519 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1520 	avg_trb_len = max_esit_payload;
1521 
1522 	/* FIXME dig Mult and streams info out of ep companion desc */
1523 
1524 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1525 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1526 		err_count = 3;
1527 	/* Some devices get this wrong */
1528 	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1529 		max_packet = 512;
1530 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1531 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1532 		avg_trb_len = 8;
1533 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1534 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1535 		mult = 0;
1536 
1537 	/* Set up the endpoint ring */
1538 	virt_dev->eps[ep_index].new_ring =
1539 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1540 	if (!virt_dev->eps[ep_index].new_ring) {
1541 		/* Attempt to use the ring cache */
1542 		if (virt_dev->num_rings_cached == 0)
1543 			return -ENOMEM;
1544 		virt_dev->num_rings_cached--;
1545 		virt_dev->eps[ep_index].new_ring =
1546 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1547 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1548 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1549 					1, ring_type);
1550 	}
1551 	virt_dev->eps[ep_index].skip = false;
1552 	ep_ring = virt_dev->eps[ep_index].new_ring;
1553 
1554 	/* Fill the endpoint context */
1555 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1556 				      EP_INTERVAL(interval) |
1557 				      EP_MULT(mult));
1558 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1559 				       MAX_PACKET(max_packet) |
1560 				       MAX_BURST(max_burst) |
1561 				       ERROR_COUNT(err_count));
1562 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1563 				  ep_ring->cycle_state);
1564 
1565 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1566 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1567 
1568 	/* FIXME Debug endpoint context */
1569 	return 0;
1570 }
1571 
1572 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1573 		struct xhci_virt_device *virt_dev,
1574 		struct usb_host_endpoint *ep)
1575 {
1576 	unsigned int ep_index;
1577 	struct xhci_ep_ctx *ep_ctx;
1578 
1579 	ep_index = xhci_get_endpoint_index(&ep->desc);
1580 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1581 
1582 	ep_ctx->ep_info = 0;
1583 	ep_ctx->ep_info2 = 0;
1584 	ep_ctx->deq = 0;
1585 	ep_ctx->tx_info = 0;
1586 	/* Don't free the endpoint ring until the set interface or configuration
1587 	 * request succeeds.
1588 	 */
1589 }
1590 
1591 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1592 {
1593 	bw_info->ep_interval = 0;
1594 	bw_info->mult = 0;
1595 	bw_info->num_packets = 0;
1596 	bw_info->max_packet_size = 0;
1597 	bw_info->type = 0;
1598 	bw_info->max_esit_payload = 0;
1599 }
1600 
1601 void xhci_update_bw_info(struct xhci_hcd *xhci,
1602 		struct xhci_container_ctx *in_ctx,
1603 		struct xhci_input_control_ctx *ctrl_ctx,
1604 		struct xhci_virt_device *virt_dev)
1605 {
1606 	struct xhci_bw_info *bw_info;
1607 	struct xhci_ep_ctx *ep_ctx;
1608 	unsigned int ep_type;
1609 	int i;
1610 
1611 	for (i = 1; i < 31; i++) {
1612 		bw_info = &virt_dev->eps[i].bw_info;
1613 
1614 		/* We can't tell what endpoint type is being dropped, but
1615 		 * unconditionally clearing the bandwidth info for non-periodic
1616 		 * endpoints should be harmless because the info will never be
1617 		 * set in the first place.
1618 		 */
1619 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1620 			/* Dropped endpoint */
1621 			xhci_clear_endpoint_bw_info(bw_info);
1622 			continue;
1623 		}
1624 
1625 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1626 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1627 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1628 
1629 			/* Ignore non-periodic endpoints */
1630 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1631 					ep_type != ISOC_IN_EP &&
1632 					ep_type != INT_IN_EP)
1633 				continue;
1634 
1635 			/* Added or changed endpoint */
1636 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1637 					le32_to_cpu(ep_ctx->ep_info));
1638 			/* Number of packets and mult are zero-based in the
1639 			 * input context, but we want one-based for the
1640 			 * interval table.
1641 			 */
1642 			bw_info->mult = CTX_TO_EP_MULT(
1643 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1644 			bw_info->num_packets = CTX_TO_MAX_BURST(
1645 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1646 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1647 					le32_to_cpu(ep_ctx->ep_info2));
1648 			bw_info->type = ep_type;
1649 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1650 					le32_to_cpu(ep_ctx->tx_info));
1651 		}
1652 	}
1653 }
1654 
1655 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1656  * Useful when you want to change one particular aspect of the endpoint and then
1657  * issue a configure endpoint command.
1658  */
1659 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1660 		struct xhci_container_ctx *in_ctx,
1661 		struct xhci_container_ctx *out_ctx,
1662 		unsigned int ep_index)
1663 {
1664 	struct xhci_ep_ctx *out_ep_ctx;
1665 	struct xhci_ep_ctx *in_ep_ctx;
1666 
1667 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1668 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1669 
1670 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1671 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1672 	in_ep_ctx->deq = out_ep_ctx->deq;
1673 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1674 }
1675 
1676 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1677  * Useful when you want to change one particular aspect of the endpoint and then
1678  * issue a configure endpoint command.  Only the context entries field matters,
1679  * but we'll copy the whole thing anyway.
1680  */
1681 void xhci_slot_copy(struct xhci_hcd *xhci,
1682 		struct xhci_container_ctx *in_ctx,
1683 		struct xhci_container_ctx *out_ctx)
1684 {
1685 	struct xhci_slot_ctx *in_slot_ctx;
1686 	struct xhci_slot_ctx *out_slot_ctx;
1687 
1688 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1689 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1690 
1691 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1692 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1693 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1694 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1695 }
1696 
1697 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1698 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1699 {
1700 	int i;
1701 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703 
1704 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1705 			"Allocating %d scratchpad buffers", num_sp);
1706 
1707 	if (!num_sp)
1708 		return 0;
1709 
1710 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1711 	if (!xhci->scratchpad)
1712 		goto fail_sp;
1713 
1714 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1715 				     num_sp * sizeof(u64),
1716 				     &xhci->scratchpad->sp_dma, flags);
1717 	if (!xhci->scratchpad->sp_array)
1718 		goto fail_sp2;
1719 
1720 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1721 	if (!xhci->scratchpad->sp_buffers)
1722 		goto fail_sp3;
1723 
1724 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1725 	for (i = 0; i < num_sp; i++) {
1726 		dma_addr_t dma;
1727 		void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1728 				flags);
1729 		if (!buf)
1730 			goto fail_sp4;
1731 
1732 		xhci->scratchpad->sp_array[i] = dma;
1733 		xhci->scratchpad->sp_buffers[i] = buf;
1734 	}
1735 
1736 	return 0;
1737 
1738  fail_sp4:
1739 	for (i = i - 1; i >= 0; i--) {
1740 		dma_free_coherent(dev, xhci->page_size,
1741 				    xhci->scratchpad->sp_buffers[i],
1742 				    xhci->scratchpad->sp_array[i]);
1743 	}
1744 
1745 	kfree(xhci->scratchpad->sp_buffers);
1746 
1747  fail_sp3:
1748 	dma_free_coherent(dev, num_sp * sizeof(u64),
1749 			    xhci->scratchpad->sp_array,
1750 			    xhci->scratchpad->sp_dma);
1751 
1752  fail_sp2:
1753 	kfree(xhci->scratchpad);
1754 	xhci->scratchpad = NULL;
1755 
1756  fail_sp:
1757 	return -ENOMEM;
1758 }
1759 
1760 static void scratchpad_free(struct xhci_hcd *xhci)
1761 {
1762 	int num_sp;
1763 	int i;
1764 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1765 
1766 	if (!xhci->scratchpad)
1767 		return;
1768 
1769 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1770 
1771 	for (i = 0; i < num_sp; i++) {
1772 		dma_free_coherent(dev, xhci->page_size,
1773 				    xhci->scratchpad->sp_buffers[i],
1774 				    xhci->scratchpad->sp_array[i]);
1775 	}
1776 	kfree(xhci->scratchpad->sp_buffers);
1777 	dma_free_coherent(dev, num_sp * sizeof(u64),
1778 			    xhci->scratchpad->sp_array,
1779 			    xhci->scratchpad->sp_dma);
1780 	kfree(xhci->scratchpad);
1781 	xhci->scratchpad = NULL;
1782 }
1783 
1784 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1785 		bool allocate_in_ctx, bool allocate_completion,
1786 		gfp_t mem_flags)
1787 {
1788 	struct xhci_command *command;
1789 
1790 	command = kzalloc(sizeof(*command), mem_flags);
1791 	if (!command)
1792 		return NULL;
1793 
1794 	if (allocate_in_ctx) {
1795 		command->in_ctx =
1796 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1797 					mem_flags);
1798 		if (!command->in_ctx) {
1799 			kfree(command);
1800 			return NULL;
1801 		}
1802 	}
1803 
1804 	if (allocate_completion) {
1805 		command->completion =
1806 			kzalloc(sizeof(struct completion), mem_flags);
1807 		if (!command->completion) {
1808 			xhci_free_container_ctx(xhci, command->in_ctx);
1809 			kfree(command);
1810 			return NULL;
1811 		}
1812 		init_completion(command->completion);
1813 	}
1814 
1815 	command->status = 0;
1816 	INIT_LIST_HEAD(&command->cmd_list);
1817 	return command;
1818 }
1819 
1820 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1821 {
1822 	kfree(urb_priv);
1823 }
1824 
1825 void xhci_free_command(struct xhci_hcd *xhci,
1826 		struct xhci_command *command)
1827 {
1828 	xhci_free_container_ctx(xhci,
1829 			command->in_ctx);
1830 	kfree(command->completion);
1831 	kfree(command);
1832 }
1833 
1834 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1835 {
1836 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1837 	int size;
1838 	int i, j, num_ports;
1839 
1840 	cancel_delayed_work_sync(&xhci->cmd_timer);
1841 
1842 	/* Free the Event Ring Segment Table and the actual Event Ring */
1843 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1844 	if (xhci->erst.entries)
1845 		dma_free_coherent(dev, size,
1846 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1847 	xhci->erst.entries = NULL;
1848 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1849 	if (xhci->event_ring)
1850 		xhci_ring_free(xhci, xhci->event_ring);
1851 	xhci->event_ring = NULL;
1852 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1853 
1854 	if (xhci->lpm_command)
1855 		xhci_free_command(xhci, xhci->lpm_command);
1856 	xhci->lpm_command = NULL;
1857 	if (xhci->cmd_ring)
1858 		xhci_ring_free(xhci, xhci->cmd_ring);
1859 	xhci->cmd_ring = NULL;
1860 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1861 	xhci_cleanup_command_queue(xhci);
1862 
1863 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1864 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1865 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1866 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1867 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1868 			while (!list_empty(ep))
1869 				list_del_init(ep->next);
1870 		}
1871 	}
1872 
1873 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1874 		xhci_free_virt_devices_depth_first(xhci, i);
1875 
1876 	dma_pool_destroy(xhci->segment_pool);
1877 	xhci->segment_pool = NULL;
1878 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1879 
1880 	dma_pool_destroy(xhci->device_pool);
1881 	xhci->device_pool = NULL;
1882 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1883 
1884 	dma_pool_destroy(xhci->small_streams_pool);
1885 	xhci->small_streams_pool = NULL;
1886 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1887 			"Freed small stream array pool");
1888 
1889 	dma_pool_destroy(xhci->medium_streams_pool);
1890 	xhci->medium_streams_pool = NULL;
1891 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1892 			"Freed medium stream array pool");
1893 
1894 	if (xhci->dcbaa)
1895 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1896 				xhci->dcbaa, xhci->dcbaa->dma);
1897 	xhci->dcbaa = NULL;
1898 
1899 	scratchpad_free(xhci);
1900 
1901 	if (!xhci->rh_bw)
1902 		goto no_bw;
1903 
1904 	for (i = 0; i < num_ports; i++) {
1905 		struct xhci_tt_bw_info *tt, *n;
1906 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1907 			list_del(&tt->tt_list);
1908 			kfree(tt);
1909 		}
1910 	}
1911 
1912 no_bw:
1913 	xhci->cmd_ring_reserved_trbs = 0;
1914 	xhci->num_usb2_ports = 0;
1915 	xhci->num_usb3_ports = 0;
1916 	xhci->num_active_eps = 0;
1917 	kfree(xhci->usb2_ports);
1918 	kfree(xhci->usb3_ports);
1919 	kfree(xhci->port_array);
1920 	kfree(xhci->rh_bw);
1921 	kfree(xhci->ext_caps);
1922 
1923 	xhci->usb2_ports = NULL;
1924 	xhci->usb3_ports = NULL;
1925 	xhci->port_array = NULL;
1926 	xhci->rh_bw = NULL;
1927 	xhci->ext_caps = NULL;
1928 
1929 	xhci->page_size = 0;
1930 	xhci->page_shift = 0;
1931 	xhci->bus_state[0].bus_suspended = 0;
1932 	xhci->bus_state[1].bus_suspended = 0;
1933 }
1934 
1935 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1936 		struct xhci_segment *input_seg,
1937 		union xhci_trb *start_trb,
1938 		union xhci_trb *end_trb,
1939 		dma_addr_t input_dma,
1940 		struct xhci_segment *result_seg,
1941 		char *test_name, int test_number)
1942 {
1943 	unsigned long long start_dma;
1944 	unsigned long long end_dma;
1945 	struct xhci_segment *seg;
1946 
1947 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1948 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1949 
1950 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1951 	if (seg != result_seg) {
1952 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1953 				test_name, test_number);
1954 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1955 				"input DMA 0x%llx\n",
1956 				input_seg,
1957 				(unsigned long long) input_dma);
1958 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1959 				"ending TRB %p (0x%llx DMA)\n",
1960 				start_trb, start_dma,
1961 				end_trb, end_dma);
1962 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1963 				result_seg, seg);
1964 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1965 			  true);
1966 		return -1;
1967 	}
1968 	return 0;
1969 }
1970 
1971 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1972 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1973 {
1974 	struct {
1975 		dma_addr_t		input_dma;
1976 		struct xhci_segment	*result_seg;
1977 	} simple_test_vector [] = {
1978 		/* A zeroed DMA field should fail */
1979 		{ 0, NULL },
1980 		/* One TRB before the ring start should fail */
1981 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1982 		/* One byte before the ring start should fail */
1983 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1984 		/* Starting TRB should succeed */
1985 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1986 		/* Ending TRB should succeed */
1987 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1988 			xhci->event_ring->first_seg },
1989 		/* One byte after the ring end should fail */
1990 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1991 		/* One TRB after the ring end should fail */
1992 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1993 		/* An address of all ones should fail */
1994 		{ (dma_addr_t) (~0), NULL },
1995 	};
1996 	struct {
1997 		struct xhci_segment	*input_seg;
1998 		union xhci_trb		*start_trb;
1999 		union xhci_trb		*end_trb;
2000 		dma_addr_t		input_dma;
2001 		struct xhci_segment	*result_seg;
2002 	} complex_test_vector [] = {
2003 		/* Test feeding a valid DMA address from a different ring */
2004 		{	.input_seg = xhci->event_ring->first_seg,
2005 			.start_trb = xhci->event_ring->first_seg->trbs,
2006 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2007 			.input_dma = xhci->cmd_ring->first_seg->dma,
2008 			.result_seg = NULL,
2009 		},
2010 		/* Test feeding a valid end TRB from a different ring */
2011 		{	.input_seg = xhci->event_ring->first_seg,
2012 			.start_trb = xhci->event_ring->first_seg->trbs,
2013 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2014 			.input_dma = xhci->cmd_ring->first_seg->dma,
2015 			.result_seg = NULL,
2016 		},
2017 		/* Test feeding a valid start and end TRB from a different ring */
2018 		{	.input_seg = xhci->event_ring->first_seg,
2019 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2020 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2021 			.input_dma = xhci->cmd_ring->first_seg->dma,
2022 			.result_seg = NULL,
2023 		},
2024 		/* TRB in this ring, but after this TD */
2025 		{	.input_seg = xhci->event_ring->first_seg,
2026 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2027 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2028 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2029 			.result_seg = NULL,
2030 		},
2031 		/* TRB in this ring, but before this TD */
2032 		{	.input_seg = xhci->event_ring->first_seg,
2033 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2034 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2035 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2036 			.result_seg = NULL,
2037 		},
2038 		/* TRB in this ring, but after this wrapped TD */
2039 		{	.input_seg = xhci->event_ring->first_seg,
2040 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2041 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2042 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2043 			.result_seg = NULL,
2044 		},
2045 		/* TRB in this ring, but before this wrapped TD */
2046 		{	.input_seg = xhci->event_ring->first_seg,
2047 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2048 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2049 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2050 			.result_seg = NULL,
2051 		},
2052 		/* TRB not in this ring, and we have a wrapped TD */
2053 		{	.input_seg = xhci->event_ring->first_seg,
2054 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2055 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2056 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2057 			.result_seg = NULL,
2058 		},
2059 	};
2060 
2061 	unsigned int num_tests;
2062 	int i, ret;
2063 
2064 	num_tests = ARRAY_SIZE(simple_test_vector);
2065 	for (i = 0; i < num_tests; i++) {
2066 		ret = xhci_test_trb_in_td(xhci,
2067 				xhci->event_ring->first_seg,
2068 				xhci->event_ring->first_seg->trbs,
2069 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2070 				simple_test_vector[i].input_dma,
2071 				simple_test_vector[i].result_seg,
2072 				"Simple", i);
2073 		if (ret < 0)
2074 			return ret;
2075 	}
2076 
2077 	num_tests = ARRAY_SIZE(complex_test_vector);
2078 	for (i = 0; i < num_tests; i++) {
2079 		ret = xhci_test_trb_in_td(xhci,
2080 				complex_test_vector[i].input_seg,
2081 				complex_test_vector[i].start_trb,
2082 				complex_test_vector[i].end_trb,
2083 				complex_test_vector[i].input_dma,
2084 				complex_test_vector[i].result_seg,
2085 				"Complex", i);
2086 		if (ret < 0)
2087 			return ret;
2088 	}
2089 	xhci_dbg(xhci, "TRB math tests passed.\n");
2090 	return 0;
2091 }
2092 
2093 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2094 {
2095 	u64 temp;
2096 	dma_addr_t deq;
2097 
2098 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2099 			xhci->event_ring->dequeue);
2100 	if (deq == 0 && !in_interrupt())
2101 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2102 				"dequeue ptr.\n");
2103 	/* Update HC event ring dequeue pointer */
2104 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2105 	temp &= ERST_PTR_MASK;
2106 	/* Don't clear the EHB bit (which is RW1C) because
2107 	 * there might be more events to service.
2108 	 */
2109 	temp &= ~ERST_EHB;
2110 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111 			"// Write event ring dequeue pointer, "
2112 			"preserving EHB bit");
2113 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2114 			&xhci->ir_set->erst_dequeue);
2115 }
2116 
2117 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2118 		__le32 __iomem *addr, int max_caps)
2119 {
2120 	u32 temp, port_offset, port_count;
2121 	int i;
2122 	u8 major_revision;
2123 	struct xhci_hub *rhub;
2124 
2125 	temp = readl(addr);
2126 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2127 
2128 	if (major_revision == 0x03) {
2129 		rhub = &xhci->usb3_rhub;
2130 	} else if (major_revision <= 0x02) {
2131 		rhub = &xhci->usb2_rhub;
2132 	} else {
2133 		xhci_warn(xhci, "Ignoring unknown port speed, "
2134 				"Ext Cap %p, revision = 0x%x\n",
2135 				addr, major_revision);
2136 		/* Ignoring port protocol we can't understand. FIXME */
2137 		return;
2138 	}
2139 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2140 	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2141 
2142 	/* Port offset and count in the third dword, see section 7.2 */
2143 	temp = readl(addr + 2);
2144 	port_offset = XHCI_EXT_PORT_OFF(temp);
2145 	port_count = XHCI_EXT_PORT_COUNT(temp);
2146 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2147 			"Ext Cap %p, port offset = %u, "
2148 			"count = %u, revision = 0x%x",
2149 			addr, port_offset, port_count, major_revision);
2150 	/* Port count includes the current port offset */
2151 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2152 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2153 		return;
2154 
2155 	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2156 	if (rhub->psi_count) {
2157 		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2158 				    GFP_KERNEL);
2159 		if (!rhub->psi)
2160 			rhub->psi_count = 0;
2161 
2162 		rhub->psi_uid_count++;
2163 		for (i = 0; i < rhub->psi_count; i++) {
2164 			rhub->psi[i] = readl(addr + 4 + i);
2165 
2166 			/* count unique ID values, two consecutive entries can
2167 			 * have the same ID if link is assymetric
2168 			 */
2169 			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2170 				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2171 				rhub->psi_uid_count++;
2172 
2173 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2174 				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2175 				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2176 				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2177 				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2178 				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2179 				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2180 		}
2181 	}
2182 	/* cache usb2 port capabilities */
2183 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2184 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2185 
2186 	/* Check the host's USB2 LPM capability */
2187 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2188 			(temp & XHCI_L1C)) {
2189 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2190 				"xHCI 0.96: support USB2 software lpm");
2191 		xhci->sw_lpm_support = 1;
2192 	}
2193 
2194 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2195 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2196 				"xHCI 1.0: support USB2 software lpm");
2197 		xhci->sw_lpm_support = 1;
2198 		if (temp & XHCI_HLC) {
2199 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2200 					"xHCI 1.0: support USB2 hardware lpm");
2201 			xhci->hw_lpm_support = 1;
2202 		}
2203 	}
2204 
2205 	port_offset--;
2206 	for (i = port_offset; i < (port_offset + port_count); i++) {
2207 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2208 		if (xhci->port_array[i] != 0) {
2209 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2210 					" port %u\n", addr, i);
2211 			xhci_warn(xhci, "Port was marked as USB %u, "
2212 					"duplicated as USB %u\n",
2213 					xhci->port_array[i], major_revision);
2214 			/* Only adjust the roothub port counts if we haven't
2215 			 * found a similar duplicate.
2216 			 */
2217 			if (xhci->port_array[i] != major_revision &&
2218 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2219 				if (xhci->port_array[i] == 0x03)
2220 					xhci->num_usb3_ports--;
2221 				else
2222 					xhci->num_usb2_ports--;
2223 				xhci->port_array[i] = DUPLICATE_ENTRY;
2224 			}
2225 			/* FIXME: Should we disable the port? */
2226 			continue;
2227 		}
2228 		xhci->port_array[i] = major_revision;
2229 		if (major_revision == 0x03)
2230 			xhci->num_usb3_ports++;
2231 		else
2232 			xhci->num_usb2_ports++;
2233 	}
2234 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2235 }
2236 
2237 /*
2238  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2239  * specify what speeds each port is supposed to be.  We can't count on the port
2240  * speed bits in the PORTSC register being correct until a device is connected,
2241  * but we need to set up the two fake roothubs with the correct number of USB
2242  * 3.0 and USB 2.0 ports at host controller initialization time.
2243  */
2244 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2245 {
2246 	void __iomem *base;
2247 	u32 offset;
2248 	unsigned int num_ports;
2249 	int i, j, port_index;
2250 	int cap_count = 0;
2251 	u32 cap_start;
2252 
2253 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2254 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2255 	if (!xhci->port_array)
2256 		return -ENOMEM;
2257 
2258 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2259 	if (!xhci->rh_bw)
2260 		return -ENOMEM;
2261 	for (i = 0; i < num_ports; i++) {
2262 		struct xhci_interval_bw_table *bw_table;
2263 
2264 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2265 		bw_table = &xhci->rh_bw[i].bw_table;
2266 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2267 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2268 	}
2269 	base = &xhci->cap_regs->hc_capbase;
2270 
2271 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2272 	if (!cap_start) {
2273 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2274 		return -ENODEV;
2275 	}
2276 
2277 	offset = cap_start;
2278 	/* count extended protocol capability entries for later caching */
2279 	while (offset) {
2280 		cap_count++;
2281 		offset = xhci_find_next_ext_cap(base, offset,
2282 						      XHCI_EXT_CAPS_PROTOCOL);
2283 	}
2284 
2285 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2286 	if (!xhci->ext_caps)
2287 		return -ENOMEM;
2288 
2289 	offset = cap_start;
2290 
2291 	while (offset) {
2292 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2293 		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2294 			break;
2295 		offset = xhci_find_next_ext_cap(base, offset,
2296 						XHCI_EXT_CAPS_PROTOCOL);
2297 	}
2298 
2299 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2300 		xhci_warn(xhci, "No ports on the roothubs?\n");
2301 		return -ENODEV;
2302 	}
2303 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2304 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2305 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2306 
2307 	/* Place limits on the number of roothub ports so that the hub
2308 	 * descriptors aren't longer than the USB core will allocate.
2309 	 */
2310 	if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2312 				"Limiting USB 3.0 roothub ports to %u.",
2313 				USB_SS_MAXPORTS);
2314 		xhci->num_usb3_ports = USB_SS_MAXPORTS;
2315 	}
2316 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2317 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2318 				"Limiting USB 2.0 roothub ports to %u.",
2319 				USB_MAXCHILDREN);
2320 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2321 	}
2322 
2323 	/*
2324 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2325 	 * Not sure how the USB core will handle a hub with no ports...
2326 	 */
2327 	if (xhci->num_usb2_ports) {
2328 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2329 				xhci->num_usb2_ports, flags);
2330 		if (!xhci->usb2_ports)
2331 			return -ENOMEM;
2332 
2333 		port_index = 0;
2334 		for (i = 0; i < num_ports; i++) {
2335 			if (xhci->port_array[i] == 0x03 ||
2336 					xhci->port_array[i] == 0 ||
2337 					xhci->port_array[i] == DUPLICATE_ENTRY)
2338 				continue;
2339 
2340 			xhci->usb2_ports[port_index] =
2341 				&xhci->op_regs->port_status_base +
2342 				NUM_PORT_REGS*i;
2343 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2344 					"USB 2.0 port at index %u, "
2345 					"addr = %p", i,
2346 					xhci->usb2_ports[port_index]);
2347 			port_index++;
2348 			if (port_index == xhci->num_usb2_ports)
2349 				break;
2350 		}
2351 	}
2352 	if (xhci->num_usb3_ports) {
2353 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2354 				xhci->num_usb3_ports, flags);
2355 		if (!xhci->usb3_ports)
2356 			return -ENOMEM;
2357 
2358 		port_index = 0;
2359 		for (i = 0; i < num_ports; i++)
2360 			if (xhci->port_array[i] == 0x03) {
2361 				xhci->usb3_ports[port_index] =
2362 					&xhci->op_regs->port_status_base +
2363 					NUM_PORT_REGS*i;
2364 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365 						"USB 3.0 port at index %u, "
2366 						"addr = %p", i,
2367 						xhci->usb3_ports[port_index]);
2368 				port_index++;
2369 				if (port_index == xhci->num_usb3_ports)
2370 					break;
2371 			}
2372 	}
2373 	return 0;
2374 }
2375 
2376 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2377 {
2378 	dma_addr_t	dma;
2379 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2380 	unsigned int	val, val2;
2381 	u64		val_64;
2382 	struct xhci_segment	*seg;
2383 	u32 page_size, temp;
2384 	int i;
2385 
2386 	INIT_LIST_HEAD(&xhci->cmd_list);
2387 
2388 	/* init command timeout work */
2389 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2390 	init_completion(&xhci->cmd_ring_stop_completion);
2391 
2392 	page_size = readl(&xhci->op_regs->page_size);
2393 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2394 			"Supported page size register = 0x%x", page_size);
2395 	for (i = 0; i < 16; i++) {
2396 		if ((0x1 & page_size) != 0)
2397 			break;
2398 		page_size = page_size >> 1;
2399 	}
2400 	if (i < 16)
2401 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2402 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2403 	else
2404 		xhci_warn(xhci, "WARN: no supported page size\n");
2405 	/* Use 4K pages, since that's common and the minimum the HC supports */
2406 	xhci->page_shift = 12;
2407 	xhci->page_size = 1 << xhci->page_shift;
2408 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2409 			"HCD page size set to %iK", xhci->page_size / 1024);
2410 
2411 	/*
2412 	 * Program the Number of Device Slots Enabled field in the CONFIG
2413 	 * register with the max value of slots the HC can handle.
2414 	 */
2415 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2416 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2417 			"// xHC can handle at most %d device slots.", val);
2418 	val2 = readl(&xhci->op_regs->config_reg);
2419 	val |= (val2 & ~HCS_SLOTS_MASK);
2420 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421 			"// Setting Max device slots reg = 0x%x.", val);
2422 	writel(val, &xhci->op_regs->config_reg);
2423 
2424 	/*
2425 	 * xHCI section 5.4.6 - doorbell array must be
2426 	 * "physically contiguous and 64-byte (cache line) aligned".
2427 	 */
2428 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2429 			flags);
2430 	if (!xhci->dcbaa)
2431 		goto fail;
2432 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2433 	xhci->dcbaa->dma = dma;
2434 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2436 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2437 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2438 
2439 	/*
2440 	 * Initialize the ring segment pool.  The ring must be a contiguous
2441 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2442 	 * however, the command ring segment needs 64-byte aligned segments
2443 	 * and our use of dma addresses in the trb_address_map radix tree needs
2444 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2445 	 */
2446 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2447 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2448 
2449 	/* See Table 46 and Note on Figure 55 */
2450 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2451 			2112, 64, xhci->page_size);
2452 	if (!xhci->segment_pool || !xhci->device_pool)
2453 		goto fail;
2454 
2455 	/* Linear stream context arrays don't have any boundary restrictions,
2456 	 * and only need to be 16-byte aligned.
2457 	 */
2458 	xhci->small_streams_pool =
2459 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2460 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2461 	xhci->medium_streams_pool =
2462 		dma_pool_create("xHCI 1KB stream ctx arrays",
2463 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2464 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2465 	 * will be allocated with dma_alloc_coherent()
2466 	 */
2467 
2468 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2469 		goto fail;
2470 
2471 	/* Set up the command ring to have one segments for now. */
2472 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2473 	if (!xhci->cmd_ring)
2474 		goto fail;
2475 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2476 			"Allocated command ring at %p", xhci->cmd_ring);
2477 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2478 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2479 
2480 	/* Set the address in the Command Ring Control register */
2481 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2482 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2483 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2484 		xhci->cmd_ring->cycle_state;
2485 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2486 			"// Setting command ring address to 0x%016llx", val_64);
2487 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2488 	xhci_dbg_cmd_ptrs(xhci);
2489 
2490 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2491 	if (!xhci->lpm_command)
2492 		goto fail;
2493 
2494 	/* Reserve one command ring TRB for disabling LPM.
2495 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2496 	 * disabling LPM, we only need to reserve one TRB for all devices.
2497 	 */
2498 	xhci->cmd_ring_reserved_trbs++;
2499 
2500 	val = readl(&xhci->cap_regs->db_off);
2501 	val &= DBOFF_MASK;
2502 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503 			"// Doorbell array is located at offset 0x%x"
2504 			" from cap regs base addr", val);
2505 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2506 	xhci_dbg_regs(xhci);
2507 	xhci_print_run_regs(xhci);
2508 	/* Set ir_set to interrupt register set 0 */
2509 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2510 
2511 	/*
2512 	 * Event ring setup: Allocate a normal ring, but also setup
2513 	 * the event ring segment table (ERST).  Section 4.9.3.
2514 	 */
2515 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2516 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2517 					0, flags);
2518 	if (!xhci->event_ring)
2519 		goto fail;
2520 	if (xhci_check_trb_in_td_math(xhci) < 0)
2521 		goto fail;
2522 
2523 	xhci->erst.entries = dma_alloc_coherent(dev,
2524 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2525 			flags);
2526 	if (!xhci->erst.entries)
2527 		goto fail;
2528 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529 			"// Allocated event ring segment table at 0x%llx",
2530 			(unsigned long long)dma);
2531 
2532 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2533 	xhci->erst.num_entries = ERST_NUM_SEGS;
2534 	xhci->erst.erst_dma_addr = dma;
2535 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2536 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2537 			xhci->erst.num_entries,
2538 			xhci->erst.entries,
2539 			(unsigned long long)xhci->erst.erst_dma_addr);
2540 
2541 	/* set ring base address and size for each segment table entry */
2542 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2543 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2544 		entry->seg_addr = cpu_to_le64(seg->dma);
2545 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2546 		entry->rsvd = 0;
2547 		seg = seg->next;
2548 	}
2549 
2550 	/* set ERST count with the number of entries in the segment table */
2551 	val = readl(&xhci->ir_set->erst_size);
2552 	val &= ERST_SIZE_MASK;
2553 	val |= ERST_NUM_SEGS;
2554 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2555 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2556 			val);
2557 	writel(val, &xhci->ir_set->erst_size);
2558 
2559 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2560 			"// Set ERST entries to point to event ring.");
2561 	/* set the segment table base address */
2562 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2563 			"// Set ERST base address for ir_set 0 = 0x%llx",
2564 			(unsigned long long)xhci->erst.erst_dma_addr);
2565 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2566 	val_64 &= ERST_PTR_MASK;
2567 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2568 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2569 
2570 	/* Set the event ring dequeue address */
2571 	xhci_set_hc_event_deq(xhci);
2572 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2573 			"Wrote ERST address to ir_set 0.");
2574 	xhci_print_ir_set(xhci, 0);
2575 
2576 	/*
2577 	 * XXX: Might need to set the Interrupter Moderation Register to
2578 	 * something other than the default (~1ms minimum between interrupts).
2579 	 * See section 5.5.1.2.
2580 	 */
2581 	for (i = 0; i < MAX_HC_SLOTS; i++)
2582 		xhci->devs[i] = NULL;
2583 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2584 		xhci->bus_state[0].resume_done[i] = 0;
2585 		xhci->bus_state[1].resume_done[i] = 0;
2586 		/* Only the USB 2.0 completions will ever be used. */
2587 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2588 	}
2589 
2590 	if (scratchpad_alloc(xhci, flags))
2591 		goto fail;
2592 	if (xhci_setup_port_arrays(xhci, flags))
2593 		goto fail;
2594 
2595 	/* Enable USB 3.0 device notifications for function remote wake, which
2596 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2597 	 * U3 (device suspend).
2598 	 */
2599 	temp = readl(&xhci->op_regs->dev_notification);
2600 	temp &= ~DEV_NOTE_MASK;
2601 	temp |= DEV_NOTE_FWAKE;
2602 	writel(temp, &xhci->op_regs->dev_notification);
2603 
2604 	return 0;
2605 
2606 fail:
2607 	xhci_halt(xhci);
2608 	xhci_reset(xhci);
2609 	xhci_mem_cleanup(xhci);
2610 	return -ENOMEM;
2611 }
2612