1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 #include <linux/dma-mapping.h> 28 29 #include "xhci.h" 30 #include "xhci-trace.h" 31 32 /* 33 * Allocates a generic ring segment from the ring pool, sets the dma address, 34 * initializes the segment to zero, and sets the private next pointer to NULL. 35 * 36 * Section 4.11.1.1: 37 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 38 */ 39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 40 unsigned int cycle_state, gfp_t flags) 41 { 42 struct xhci_segment *seg; 43 dma_addr_t dma; 44 int i; 45 46 seg = kzalloc(sizeof *seg, flags); 47 if (!seg) 48 return NULL; 49 50 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); 51 if (!seg->trbs) { 52 kfree(seg); 53 return NULL; 54 } 55 56 memset(seg->trbs, 0, TRB_SEGMENT_SIZE); 57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 58 if (cycle_state == 0) { 59 for (i = 0; i < TRBS_PER_SEGMENT; i++) 60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 61 } 62 seg->dma = dma; 63 seg->next = NULL; 64 65 return seg; 66 } 67 68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 69 { 70 if (seg->trbs) { 71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 72 seg->trbs = NULL; 73 } 74 kfree(seg); 75 } 76 77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 78 struct xhci_segment *first) 79 { 80 struct xhci_segment *seg; 81 82 seg = first->next; 83 while (seg != first) { 84 struct xhci_segment *next = seg->next; 85 xhci_segment_free(xhci, seg); 86 seg = next; 87 } 88 xhci_segment_free(xhci, first); 89 } 90 91 /* 92 * Make the prev segment point to the next segment. 93 * 94 * Change the last TRB in the prev segment to be a Link TRB which points to the 95 * DMA address of the next segment. The caller needs to set any Link TRB 96 * related flags, such as End TRB, Toggle Cycle, and no snoop. 97 */ 98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 99 struct xhci_segment *next, enum xhci_ring_type type) 100 { 101 u32 val; 102 103 if (!prev || !next) 104 return; 105 prev->next = next; 106 if (type != TYPE_EVENT) { 107 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 108 cpu_to_le64(next->dma); 109 110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 111 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 112 val &= ~TRB_TYPE_BITMASK; 113 val |= TRB_TYPE(TRB_LINK); 114 /* Always set the chain bit with 0.95 hardware */ 115 /* Set chain bit for isoc rings on AMD 0.96 host */ 116 if (xhci_link_trb_quirk(xhci) || 117 (type == TYPE_ISOC && 118 (xhci->quirks & XHCI_AMD_0x96_HOST))) 119 val |= TRB_CHAIN; 120 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 121 } 122 } 123 124 /* 125 * Link the ring to the new segments. 126 * Set Toggle Cycle for the new ring if needed. 127 */ 128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 129 struct xhci_segment *first, struct xhci_segment *last, 130 unsigned int num_segs) 131 { 132 struct xhci_segment *next; 133 134 if (!ring || !first || !last) 135 return; 136 137 next = ring->enq_seg->next; 138 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 139 xhci_link_segments(xhci, last, next, ring->type); 140 ring->num_segs += num_segs; 141 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 142 143 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 144 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 145 &= ~cpu_to_le32(LINK_TOGGLE); 146 last->trbs[TRBS_PER_SEGMENT-1].link.control 147 |= cpu_to_le32(LINK_TOGGLE); 148 ring->last_seg = last; 149 } 150 } 151 152 /* XXX: Do we need the hcd structure in all these functions? */ 153 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 154 { 155 if (!ring) 156 return; 157 158 if (ring->first_seg) 159 xhci_free_segments_for_ring(xhci, ring->first_seg); 160 161 kfree(ring); 162 } 163 164 static void xhci_initialize_ring_info(struct xhci_ring *ring, 165 unsigned int cycle_state) 166 { 167 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 168 ring->enqueue = ring->first_seg->trbs; 169 ring->enq_seg = ring->first_seg; 170 ring->dequeue = ring->enqueue; 171 ring->deq_seg = ring->first_seg; 172 /* The ring is initialized to 0. The producer must write 1 to the cycle 173 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 174 * compare CCS to the cycle bit to check ownership, so CCS = 1. 175 * 176 * New rings are initialized with cycle state equal to 1; if we are 177 * handling ring expansion, set the cycle state equal to the old ring. 178 */ 179 ring->cycle_state = cycle_state; 180 /* Not necessary for new rings, but needed for re-initialized rings */ 181 ring->enq_updates = 0; 182 ring->deq_updates = 0; 183 184 /* 185 * Each segment has a link TRB, and leave an extra TRB for SW 186 * accounting purpose 187 */ 188 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 189 } 190 191 /* Allocate segments and link them for a ring */ 192 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 193 struct xhci_segment **first, struct xhci_segment **last, 194 unsigned int num_segs, unsigned int cycle_state, 195 enum xhci_ring_type type, gfp_t flags) 196 { 197 struct xhci_segment *prev; 198 199 prev = xhci_segment_alloc(xhci, cycle_state, flags); 200 if (!prev) 201 return -ENOMEM; 202 num_segs--; 203 204 *first = prev; 205 while (num_segs > 0) { 206 struct xhci_segment *next; 207 208 next = xhci_segment_alloc(xhci, cycle_state, flags); 209 if (!next) { 210 prev = *first; 211 while (prev) { 212 next = prev->next; 213 xhci_segment_free(xhci, prev); 214 prev = next; 215 } 216 return -ENOMEM; 217 } 218 xhci_link_segments(xhci, prev, next, type); 219 220 prev = next; 221 num_segs--; 222 } 223 xhci_link_segments(xhci, prev, *first, type); 224 *last = prev; 225 226 return 0; 227 } 228 229 /** 230 * Create a new ring with zero or more segments. 231 * 232 * Link each segment together into a ring. 233 * Set the end flag and the cycle toggle bit on the last segment. 234 * See section 4.9.1 and figures 15 and 16. 235 */ 236 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 237 unsigned int num_segs, unsigned int cycle_state, 238 enum xhci_ring_type type, gfp_t flags) 239 { 240 struct xhci_ring *ring; 241 int ret; 242 243 ring = kzalloc(sizeof *(ring), flags); 244 if (!ring) 245 return NULL; 246 247 ring->num_segs = num_segs; 248 INIT_LIST_HEAD(&ring->td_list); 249 ring->type = type; 250 if (num_segs == 0) 251 return ring; 252 253 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 254 &ring->last_seg, num_segs, cycle_state, type, flags); 255 if (ret) 256 goto fail; 257 258 /* Only event ring does not use link TRB */ 259 if (type != TYPE_EVENT) { 260 /* See section 4.9.2.1 and 6.4.4.1 */ 261 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 262 cpu_to_le32(LINK_TOGGLE); 263 } 264 xhci_initialize_ring_info(ring, cycle_state); 265 return ring; 266 267 fail: 268 kfree(ring); 269 return NULL; 270 } 271 272 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 273 struct xhci_virt_device *virt_dev, 274 unsigned int ep_index) 275 { 276 int rings_cached; 277 278 rings_cached = virt_dev->num_rings_cached; 279 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 280 virt_dev->ring_cache[rings_cached] = 281 virt_dev->eps[ep_index].ring; 282 virt_dev->num_rings_cached++; 283 xhci_dbg(xhci, "Cached old ring, " 284 "%d ring%s cached\n", 285 virt_dev->num_rings_cached, 286 (virt_dev->num_rings_cached > 1) ? "s" : ""); 287 } else { 288 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 289 xhci_dbg(xhci, "Ring cache full (%d rings), " 290 "freeing ring\n", 291 virt_dev->num_rings_cached); 292 } 293 virt_dev->eps[ep_index].ring = NULL; 294 } 295 296 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 297 * pointers to the beginning of the ring. 298 */ 299 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 300 struct xhci_ring *ring, unsigned int cycle_state, 301 enum xhci_ring_type type) 302 { 303 struct xhci_segment *seg = ring->first_seg; 304 int i; 305 306 do { 307 memset(seg->trbs, 0, 308 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 309 if (cycle_state == 0) { 310 for (i = 0; i < TRBS_PER_SEGMENT; i++) 311 seg->trbs[i].link.control |= 312 cpu_to_le32(TRB_CYCLE); 313 } 314 /* All endpoint rings have link TRBs */ 315 xhci_link_segments(xhci, seg, seg->next, type); 316 seg = seg->next; 317 } while (seg != ring->first_seg); 318 ring->type = type; 319 xhci_initialize_ring_info(ring, cycle_state); 320 /* td list should be empty since all URBs have been cancelled, 321 * but just in case... 322 */ 323 INIT_LIST_HEAD(&ring->td_list); 324 } 325 326 /* 327 * Expand an existing ring. 328 * Look for a cached ring or allocate a new ring which has same segment numbers 329 * and link the two rings. 330 */ 331 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 332 unsigned int num_trbs, gfp_t flags) 333 { 334 struct xhci_segment *first; 335 struct xhci_segment *last; 336 unsigned int num_segs; 337 unsigned int num_segs_needed; 338 int ret; 339 340 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 341 (TRBS_PER_SEGMENT - 1); 342 343 /* Allocate number of segments we needed, or double the ring size */ 344 num_segs = ring->num_segs > num_segs_needed ? 345 ring->num_segs : num_segs_needed; 346 347 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 348 num_segs, ring->cycle_state, ring->type, flags); 349 if (ret) 350 return -ENOMEM; 351 352 xhci_link_rings(xhci, ring, first, last, num_segs); 353 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 354 "ring expansion succeed, now has %d segments", 355 ring->num_segs); 356 357 return 0; 358 } 359 360 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 361 362 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 363 int type, gfp_t flags) 364 { 365 struct xhci_container_ctx *ctx; 366 367 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 368 return NULL; 369 370 ctx = kzalloc(sizeof(*ctx), flags); 371 if (!ctx) 372 return NULL; 373 374 ctx->type = type; 375 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 376 if (type == XHCI_CTX_TYPE_INPUT) 377 ctx->size += CTX_SIZE(xhci->hcc_params); 378 379 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); 380 if (!ctx->bytes) { 381 kfree(ctx); 382 return NULL; 383 } 384 memset(ctx->bytes, 0, ctx->size); 385 return ctx; 386 } 387 388 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 389 struct xhci_container_ctx *ctx) 390 { 391 if (!ctx) 392 return; 393 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 394 kfree(ctx); 395 } 396 397 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, 398 struct xhci_container_ctx *ctx) 399 { 400 if (ctx->type != XHCI_CTX_TYPE_INPUT) 401 return NULL; 402 403 return (struct xhci_input_control_ctx *)ctx->bytes; 404 } 405 406 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 407 struct xhci_container_ctx *ctx) 408 { 409 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 410 return (struct xhci_slot_ctx *)ctx->bytes; 411 412 return (struct xhci_slot_ctx *) 413 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 414 } 415 416 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 417 struct xhci_container_ctx *ctx, 418 unsigned int ep_index) 419 { 420 /* increment ep index by offset of start of ep ctx array */ 421 ep_index++; 422 if (ctx->type == XHCI_CTX_TYPE_INPUT) 423 ep_index++; 424 425 return (struct xhci_ep_ctx *) 426 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 427 } 428 429 430 /***************** Streams structures manipulation *************************/ 431 432 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 433 unsigned int num_stream_ctxs, 434 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 435 { 436 struct device *dev = xhci_to_hcd(xhci)->self.controller; 437 438 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 439 dma_free_coherent(dev, 440 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 441 stream_ctx, dma); 442 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 443 return dma_pool_free(xhci->small_streams_pool, 444 stream_ctx, dma); 445 else 446 return dma_pool_free(xhci->medium_streams_pool, 447 stream_ctx, dma); 448 } 449 450 /* 451 * The stream context array for each endpoint with bulk streams enabled can 452 * vary in size, based on: 453 * - how many streams the endpoint supports, 454 * - the maximum primary stream array size the host controller supports, 455 * - and how many streams the device driver asks for. 456 * 457 * The stream context array must be a power of 2, and can be as small as 458 * 64 bytes or as large as 1MB. 459 */ 460 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 461 unsigned int num_stream_ctxs, dma_addr_t *dma, 462 gfp_t mem_flags) 463 { 464 struct device *dev = xhci_to_hcd(xhci)->self.controller; 465 466 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 467 return dma_alloc_coherent(dev, 468 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 469 dma, mem_flags); 470 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 471 return dma_pool_alloc(xhci->small_streams_pool, 472 mem_flags, dma); 473 else 474 return dma_pool_alloc(xhci->medium_streams_pool, 475 mem_flags, dma); 476 } 477 478 struct xhci_ring *xhci_dma_to_transfer_ring( 479 struct xhci_virt_ep *ep, 480 u64 address) 481 { 482 if (ep->ep_state & EP_HAS_STREAMS) 483 return radix_tree_lookup(&ep->stream_info->trb_address_map, 484 address >> TRB_SEGMENT_SHIFT); 485 return ep->ring; 486 } 487 488 struct xhci_ring *xhci_stream_id_to_ring( 489 struct xhci_virt_device *dev, 490 unsigned int ep_index, 491 unsigned int stream_id) 492 { 493 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 494 495 if (stream_id == 0) 496 return ep->ring; 497 if (!ep->stream_info) 498 return NULL; 499 500 if (stream_id > ep->stream_info->num_streams) 501 return NULL; 502 return ep->stream_info->stream_rings[stream_id]; 503 } 504 505 /* 506 * Change an endpoint's internal structure so it supports stream IDs. The 507 * number of requested streams includes stream 0, which cannot be used by device 508 * drivers. 509 * 510 * The number of stream contexts in the stream context array may be bigger than 511 * the number of streams the driver wants to use. This is because the number of 512 * stream context array entries must be a power of two. 513 * 514 * We need a radix tree for mapping physical addresses of TRBs to which stream 515 * ID they belong to. We need to do this because the host controller won't tell 516 * us which stream ring the TRB came from. We could store the stream ID in an 517 * event data TRB, but that doesn't help us for the cancellation case, since the 518 * endpoint may stop before it reaches that event data TRB. 519 * 520 * The radix tree maps the upper portion of the TRB DMA address to a ring 521 * segment that has the same upper portion of DMA addresses. For example, say I 522 * have segments of size 1KB, that are always 64-byte aligned. A segment may 523 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 524 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 525 * pass the radix tree a key to get the right stream ID: 526 * 527 * 0x10c90fff >> 10 = 0x43243 528 * 0x10c912c0 >> 10 = 0x43244 529 * 0x10c91400 >> 10 = 0x43245 530 * 531 * Obviously, only those TRBs with DMA addresses that are within the segment 532 * will make the radix tree return the stream ID for that ring. 533 * 534 * Caveats for the radix tree: 535 * 536 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 537 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 538 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 539 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 540 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 541 * extended systems (where the DMA address can be bigger than 32-bits), 542 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 543 */ 544 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 545 unsigned int num_stream_ctxs, 546 unsigned int num_streams, gfp_t mem_flags) 547 { 548 struct xhci_stream_info *stream_info; 549 u32 cur_stream; 550 struct xhci_ring *cur_ring; 551 unsigned long key; 552 u64 addr; 553 int ret; 554 555 xhci_dbg(xhci, "Allocating %u streams and %u " 556 "stream context array entries.\n", 557 num_streams, num_stream_ctxs); 558 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 559 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 560 return NULL; 561 } 562 xhci->cmd_ring_reserved_trbs++; 563 564 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 565 if (!stream_info) 566 goto cleanup_trbs; 567 568 stream_info->num_streams = num_streams; 569 stream_info->num_stream_ctxs = num_stream_ctxs; 570 571 /* Initialize the array of virtual pointers to stream rings. */ 572 stream_info->stream_rings = kzalloc( 573 sizeof(struct xhci_ring *)*num_streams, 574 mem_flags); 575 if (!stream_info->stream_rings) 576 goto cleanup_info; 577 578 /* Initialize the array of DMA addresses for stream rings for the HW. */ 579 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 580 num_stream_ctxs, &stream_info->ctx_array_dma, 581 mem_flags); 582 if (!stream_info->stream_ctx_array) 583 goto cleanup_ctx; 584 memset(stream_info->stream_ctx_array, 0, 585 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 586 587 /* Allocate everything needed to free the stream rings later */ 588 stream_info->free_streams_command = 589 xhci_alloc_command(xhci, true, true, mem_flags); 590 if (!stream_info->free_streams_command) 591 goto cleanup_ctx; 592 593 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 594 595 /* Allocate rings for all the streams that the driver will use, 596 * and add their segment DMA addresses to the radix tree. 597 * Stream 0 is reserved. 598 */ 599 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 600 stream_info->stream_rings[cur_stream] = 601 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags); 602 cur_ring = stream_info->stream_rings[cur_stream]; 603 if (!cur_ring) 604 goto cleanup_rings; 605 cur_ring->stream_id = cur_stream; 606 /* Set deq ptr, cycle bit, and stream context type */ 607 addr = cur_ring->first_seg->dma | 608 SCT_FOR_CTX(SCT_PRI_TR) | 609 cur_ring->cycle_state; 610 stream_info->stream_ctx_array[cur_stream].stream_ring = 611 cpu_to_le64(addr); 612 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 613 cur_stream, (unsigned long long) addr); 614 615 key = (unsigned long) 616 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT); 617 ret = radix_tree_insert(&stream_info->trb_address_map, 618 key, cur_ring); 619 if (ret) { 620 xhci_ring_free(xhci, cur_ring); 621 stream_info->stream_rings[cur_stream] = NULL; 622 goto cleanup_rings; 623 } 624 } 625 /* Leave the other unused stream ring pointers in the stream context 626 * array initialized to zero. This will cause the xHC to give us an 627 * error if the device asks for a stream ID we don't have setup (if it 628 * was any other way, the host controller would assume the ring is 629 * "empty" and wait forever for data to be queued to that stream ID). 630 */ 631 632 return stream_info; 633 634 cleanup_rings: 635 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 636 cur_ring = stream_info->stream_rings[cur_stream]; 637 if (cur_ring) { 638 addr = cur_ring->first_seg->dma; 639 radix_tree_delete(&stream_info->trb_address_map, 640 addr >> TRB_SEGMENT_SHIFT); 641 xhci_ring_free(xhci, cur_ring); 642 stream_info->stream_rings[cur_stream] = NULL; 643 } 644 } 645 xhci_free_command(xhci, stream_info->free_streams_command); 646 cleanup_ctx: 647 kfree(stream_info->stream_rings); 648 cleanup_info: 649 kfree(stream_info); 650 cleanup_trbs: 651 xhci->cmd_ring_reserved_trbs--; 652 return NULL; 653 } 654 /* 655 * Sets the MaxPStreams field and the Linear Stream Array field. 656 * Sets the dequeue pointer to the stream context array. 657 */ 658 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 659 struct xhci_ep_ctx *ep_ctx, 660 struct xhci_stream_info *stream_info) 661 { 662 u32 max_primary_streams; 663 /* MaxPStreams is the number of stream context array entries, not the 664 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 665 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 666 */ 667 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 668 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 669 "Setting number of stream ctx array entries to %u", 670 1 << (max_primary_streams + 1)); 671 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 672 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 673 | EP_HAS_LSA); 674 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 675 } 676 677 /* 678 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 679 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 680 * not at the beginning of the ring). 681 */ 682 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, 683 struct xhci_ep_ctx *ep_ctx, 684 struct xhci_virt_ep *ep) 685 { 686 dma_addr_t addr; 687 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 688 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 689 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 690 } 691 692 /* Frees all stream contexts associated with the endpoint, 693 * 694 * Caller should fix the endpoint context streams fields. 695 */ 696 void xhci_free_stream_info(struct xhci_hcd *xhci, 697 struct xhci_stream_info *stream_info) 698 { 699 int cur_stream; 700 struct xhci_ring *cur_ring; 701 dma_addr_t addr; 702 703 if (!stream_info) 704 return; 705 706 for (cur_stream = 1; cur_stream < stream_info->num_streams; 707 cur_stream++) { 708 cur_ring = stream_info->stream_rings[cur_stream]; 709 if (cur_ring) { 710 addr = cur_ring->first_seg->dma; 711 radix_tree_delete(&stream_info->trb_address_map, 712 addr >> TRB_SEGMENT_SHIFT); 713 xhci_ring_free(xhci, cur_ring); 714 stream_info->stream_rings[cur_stream] = NULL; 715 } 716 } 717 xhci_free_command(xhci, stream_info->free_streams_command); 718 xhci->cmd_ring_reserved_trbs--; 719 if (stream_info->stream_ctx_array) 720 xhci_free_stream_ctx(xhci, 721 stream_info->num_stream_ctxs, 722 stream_info->stream_ctx_array, 723 stream_info->ctx_array_dma); 724 725 kfree(stream_info->stream_rings); 726 kfree(stream_info); 727 } 728 729 730 /***************** Device context manipulation *************************/ 731 732 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 733 struct xhci_virt_ep *ep) 734 { 735 init_timer(&ep->stop_cmd_timer); 736 ep->stop_cmd_timer.data = (unsigned long) ep; 737 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; 738 ep->xhci = xhci; 739 } 740 741 static void xhci_free_tt_info(struct xhci_hcd *xhci, 742 struct xhci_virt_device *virt_dev, 743 int slot_id) 744 { 745 struct list_head *tt_list_head; 746 struct xhci_tt_bw_info *tt_info, *next; 747 bool slot_found = false; 748 749 /* If the device never made it past the Set Address stage, 750 * it may not have the real_port set correctly. 751 */ 752 if (virt_dev->real_port == 0 || 753 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 754 xhci_dbg(xhci, "Bad real port.\n"); 755 return; 756 } 757 758 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 759 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 760 /* Multi-TT hubs will have more than one entry */ 761 if (tt_info->slot_id == slot_id) { 762 slot_found = true; 763 list_del(&tt_info->tt_list); 764 kfree(tt_info); 765 } else if (slot_found) { 766 break; 767 } 768 } 769 } 770 771 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 772 struct xhci_virt_device *virt_dev, 773 struct usb_device *hdev, 774 struct usb_tt *tt, gfp_t mem_flags) 775 { 776 struct xhci_tt_bw_info *tt_info; 777 unsigned int num_ports; 778 int i, j; 779 780 if (!tt->multi) 781 num_ports = 1; 782 else 783 num_ports = hdev->maxchild; 784 785 for (i = 0; i < num_ports; i++, tt_info++) { 786 struct xhci_interval_bw_table *bw_table; 787 788 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 789 if (!tt_info) 790 goto free_tts; 791 INIT_LIST_HEAD(&tt_info->tt_list); 792 list_add(&tt_info->tt_list, 793 &xhci->rh_bw[virt_dev->real_port - 1].tts); 794 tt_info->slot_id = virt_dev->udev->slot_id; 795 if (tt->multi) 796 tt_info->ttport = i+1; 797 bw_table = &tt_info->bw_table; 798 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 799 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 800 } 801 return 0; 802 803 free_tts: 804 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 805 return -ENOMEM; 806 } 807 808 809 /* All the xhci_tds in the ring's TD list should be freed at this point. 810 * Should be called with xhci->lock held if there is any chance the TT lists 811 * will be manipulated by the configure endpoint, allocate device, or update 812 * hub functions while this function is removing the TT entries from the list. 813 */ 814 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 815 { 816 struct xhci_virt_device *dev; 817 int i; 818 int old_active_eps = 0; 819 820 /* Slot ID 0 is reserved */ 821 if (slot_id == 0 || !xhci->devs[slot_id]) 822 return; 823 824 dev = xhci->devs[slot_id]; 825 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 826 if (!dev) 827 return; 828 829 if (dev->tt_info) 830 old_active_eps = dev->tt_info->active_eps; 831 832 for (i = 0; i < 31; ++i) { 833 if (dev->eps[i].ring) 834 xhci_ring_free(xhci, dev->eps[i].ring); 835 if (dev->eps[i].stream_info) 836 xhci_free_stream_info(xhci, 837 dev->eps[i].stream_info); 838 /* Endpoints on the TT/root port lists should have been removed 839 * when usb_disable_device() was called for the device. 840 * We can't drop them anyway, because the udev might have gone 841 * away by this point, and we can't tell what speed it was. 842 */ 843 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 844 xhci_warn(xhci, "Slot %u endpoint %u " 845 "not removed from BW list!\n", 846 slot_id, i); 847 } 848 /* If this is a hub, free the TT(s) from the TT list */ 849 xhci_free_tt_info(xhci, dev, slot_id); 850 /* If necessary, update the number of active TTs on this root port */ 851 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 852 853 if (dev->ring_cache) { 854 for (i = 0; i < dev->num_rings_cached; i++) 855 xhci_ring_free(xhci, dev->ring_cache[i]); 856 kfree(dev->ring_cache); 857 } 858 859 if (dev->in_ctx) 860 xhci_free_container_ctx(xhci, dev->in_ctx); 861 if (dev->out_ctx) 862 xhci_free_container_ctx(xhci, dev->out_ctx); 863 864 kfree(xhci->devs[slot_id]); 865 xhci->devs[slot_id] = NULL; 866 } 867 868 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 869 struct usb_device *udev, gfp_t flags) 870 { 871 struct xhci_virt_device *dev; 872 int i; 873 874 /* Slot ID 0 is reserved */ 875 if (slot_id == 0 || xhci->devs[slot_id]) { 876 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 877 return 0; 878 } 879 880 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 881 if (!xhci->devs[slot_id]) 882 return 0; 883 dev = xhci->devs[slot_id]; 884 885 /* Allocate the (output) device context that will be used in the HC. */ 886 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 887 if (!dev->out_ctx) 888 goto fail; 889 890 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 891 (unsigned long long)dev->out_ctx->dma); 892 893 /* Allocate the (input) device context for address device command */ 894 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 895 if (!dev->in_ctx) 896 goto fail; 897 898 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 899 (unsigned long long)dev->in_ctx->dma); 900 901 /* Initialize the cancellation list and watchdog timers for each ep */ 902 for (i = 0; i < 31; i++) { 903 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 904 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 905 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 906 } 907 908 /* Allocate endpoint 0 ring */ 909 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags); 910 if (!dev->eps[0].ring) 911 goto fail; 912 913 /* Allocate pointers to the ring cache */ 914 dev->ring_cache = kzalloc( 915 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 916 flags); 917 if (!dev->ring_cache) 918 goto fail; 919 dev->num_rings_cached = 0; 920 921 init_completion(&dev->cmd_completion); 922 INIT_LIST_HEAD(&dev->cmd_list); 923 dev->udev = udev; 924 925 /* Point to output device context in dcbaa. */ 926 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 927 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 928 slot_id, 929 &xhci->dcbaa->dev_context_ptrs[slot_id], 930 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 931 932 return 1; 933 fail: 934 xhci_free_virt_device(xhci, slot_id); 935 return 0; 936 } 937 938 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 939 struct usb_device *udev) 940 { 941 struct xhci_virt_device *virt_dev; 942 struct xhci_ep_ctx *ep0_ctx; 943 struct xhci_ring *ep_ring; 944 945 virt_dev = xhci->devs[udev->slot_id]; 946 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 947 ep_ring = virt_dev->eps[0].ring; 948 /* 949 * FIXME we don't keep track of the dequeue pointer very well after a 950 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 951 * host to our enqueue pointer. This should only be called after a 952 * configured device has reset, so all control transfers should have 953 * been completed or cancelled before the reset. 954 */ 955 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 956 ep_ring->enqueue) 957 | ep_ring->cycle_state); 958 } 959 960 /* 961 * The xHCI roothub may have ports of differing speeds in any order in the port 962 * status registers. xhci->port_array provides an array of the port speed for 963 * each offset into the port status registers. 964 * 965 * The xHCI hardware wants to know the roothub port number that the USB device 966 * is attached to (or the roothub port its ancestor hub is attached to). All we 967 * know is the index of that port under either the USB 2.0 or the USB 3.0 968 * roothub, but that doesn't give us the real index into the HW port status 969 * registers. Call xhci_find_raw_port_number() to get real index. 970 */ 971 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 972 struct usb_device *udev) 973 { 974 struct usb_device *top_dev; 975 struct usb_hcd *hcd; 976 977 if (udev->speed == USB_SPEED_SUPER) 978 hcd = xhci->shared_hcd; 979 else 980 hcd = xhci->main_hcd; 981 982 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 983 top_dev = top_dev->parent) 984 /* Found device below root hub */; 985 986 return xhci_find_raw_port_number(hcd, top_dev->portnum); 987 } 988 989 /* Setup an xHCI virtual device for a Set Address command */ 990 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 991 { 992 struct xhci_virt_device *dev; 993 struct xhci_ep_ctx *ep0_ctx; 994 struct xhci_slot_ctx *slot_ctx; 995 u32 port_num; 996 u32 max_packets; 997 struct usb_device *top_dev; 998 999 dev = xhci->devs[udev->slot_id]; 1000 /* Slot ID 0 is reserved */ 1001 if (udev->slot_id == 0 || !dev) { 1002 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1003 udev->slot_id); 1004 return -EINVAL; 1005 } 1006 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1007 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1008 1009 /* 3) Only the control endpoint is valid - one endpoint context */ 1010 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1011 switch (udev->speed) { 1012 case USB_SPEED_SUPER: 1013 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1014 max_packets = MAX_PACKET(512); 1015 break; 1016 case USB_SPEED_HIGH: 1017 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1018 max_packets = MAX_PACKET(64); 1019 break; 1020 /* USB core guesses at a 64-byte max packet first for FS devices */ 1021 case USB_SPEED_FULL: 1022 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1023 max_packets = MAX_PACKET(64); 1024 break; 1025 case USB_SPEED_LOW: 1026 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1027 max_packets = MAX_PACKET(8); 1028 break; 1029 case USB_SPEED_WIRELESS: 1030 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1031 return -EINVAL; 1032 break; 1033 default: 1034 /* Speed was set earlier, this shouldn't happen. */ 1035 return -EINVAL; 1036 } 1037 /* Find the root hub port this device is under */ 1038 port_num = xhci_find_real_port_number(xhci, udev); 1039 if (!port_num) 1040 return -EINVAL; 1041 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1042 /* Set the port number in the virtual_device to the faked port number */ 1043 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1044 top_dev = top_dev->parent) 1045 /* Found device below root hub */; 1046 dev->fake_port = top_dev->portnum; 1047 dev->real_port = port_num; 1048 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1049 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1050 1051 /* Find the right bandwidth table that this device will be a part of. 1052 * If this is a full speed device attached directly to a root port (or a 1053 * decendent of one), it counts as a primary bandwidth domain, not a 1054 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1055 * will never be created for the HS root hub. 1056 */ 1057 if (!udev->tt || !udev->tt->hub->parent) { 1058 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1059 } else { 1060 struct xhci_root_port_bw_info *rh_bw; 1061 struct xhci_tt_bw_info *tt_bw; 1062 1063 rh_bw = &xhci->rh_bw[port_num - 1]; 1064 /* Find the right TT. */ 1065 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1066 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1067 continue; 1068 1069 if (!dev->udev->tt->multi || 1070 (udev->tt->multi && 1071 tt_bw->ttport == dev->udev->ttport)) { 1072 dev->bw_table = &tt_bw->bw_table; 1073 dev->tt_info = tt_bw; 1074 break; 1075 } 1076 } 1077 if (!dev->tt_info) 1078 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1079 } 1080 1081 /* Is this a LS/FS device under an external HS hub? */ 1082 if (udev->tt && udev->tt->hub->parent) { 1083 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1084 (udev->ttport << 8)); 1085 if (udev->tt->multi) 1086 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1087 } 1088 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1089 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1090 1091 /* Step 4 - ring already allocated */ 1092 /* Step 5 */ 1093 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1094 1095 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1096 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1097 max_packets); 1098 1099 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1100 dev->eps[0].ring->cycle_state); 1101 1102 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1103 1104 return 0; 1105 } 1106 1107 /* 1108 * Convert interval expressed as 2^(bInterval - 1) == interval into 1109 * straight exponent value 2^n == interval. 1110 * 1111 */ 1112 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1113 struct usb_host_endpoint *ep) 1114 { 1115 unsigned int interval; 1116 1117 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1118 if (interval != ep->desc.bInterval - 1) 1119 dev_warn(&udev->dev, 1120 "ep %#x - rounding interval to %d %sframes\n", 1121 ep->desc.bEndpointAddress, 1122 1 << interval, 1123 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1124 1125 if (udev->speed == USB_SPEED_FULL) { 1126 /* 1127 * Full speed isoc endpoints specify interval in frames, 1128 * not microframes. We are using microframes everywhere, 1129 * so adjust accordingly. 1130 */ 1131 interval += 3; /* 1 frame = 2^3 uframes */ 1132 } 1133 1134 return interval; 1135 } 1136 1137 /* 1138 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1139 * microframes, rounded down to nearest power of 2. 1140 */ 1141 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1142 struct usb_host_endpoint *ep, unsigned int desc_interval, 1143 unsigned int min_exponent, unsigned int max_exponent) 1144 { 1145 unsigned int interval; 1146 1147 interval = fls(desc_interval) - 1; 1148 interval = clamp_val(interval, min_exponent, max_exponent); 1149 if ((1 << interval) != desc_interval) 1150 dev_warn(&udev->dev, 1151 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1152 ep->desc.bEndpointAddress, 1153 1 << interval, 1154 desc_interval); 1155 1156 return interval; 1157 } 1158 1159 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1160 struct usb_host_endpoint *ep) 1161 { 1162 if (ep->desc.bInterval == 0) 1163 return 0; 1164 return xhci_microframes_to_exponent(udev, ep, 1165 ep->desc.bInterval, 0, 15); 1166 } 1167 1168 1169 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1170 struct usb_host_endpoint *ep) 1171 { 1172 return xhci_microframes_to_exponent(udev, ep, 1173 ep->desc.bInterval * 8, 3, 10); 1174 } 1175 1176 /* Return the polling or NAK interval. 1177 * 1178 * The polling interval is expressed in "microframes". If xHCI's Interval field 1179 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1180 * 1181 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1182 * is set to 0. 1183 */ 1184 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1185 struct usb_host_endpoint *ep) 1186 { 1187 unsigned int interval = 0; 1188 1189 switch (udev->speed) { 1190 case USB_SPEED_HIGH: 1191 /* Max NAK rate */ 1192 if (usb_endpoint_xfer_control(&ep->desc) || 1193 usb_endpoint_xfer_bulk(&ep->desc)) { 1194 interval = xhci_parse_microframe_interval(udev, ep); 1195 break; 1196 } 1197 /* Fall through - SS and HS isoc/int have same decoding */ 1198 1199 case USB_SPEED_SUPER: 1200 if (usb_endpoint_xfer_int(&ep->desc) || 1201 usb_endpoint_xfer_isoc(&ep->desc)) { 1202 interval = xhci_parse_exponent_interval(udev, ep); 1203 } 1204 break; 1205 1206 case USB_SPEED_FULL: 1207 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1208 interval = xhci_parse_exponent_interval(udev, ep); 1209 break; 1210 } 1211 /* 1212 * Fall through for interrupt endpoint interval decoding 1213 * since it uses the same rules as low speed interrupt 1214 * endpoints. 1215 */ 1216 1217 case USB_SPEED_LOW: 1218 if (usb_endpoint_xfer_int(&ep->desc) || 1219 usb_endpoint_xfer_isoc(&ep->desc)) { 1220 1221 interval = xhci_parse_frame_interval(udev, ep); 1222 } 1223 break; 1224 1225 default: 1226 BUG(); 1227 } 1228 return EP_INTERVAL(interval); 1229 } 1230 1231 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1232 * High speed endpoint descriptors can define "the number of additional 1233 * transaction opportunities per microframe", but that goes in the Max Burst 1234 * endpoint context field. 1235 */ 1236 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1237 struct usb_host_endpoint *ep) 1238 { 1239 if (udev->speed != USB_SPEED_SUPER || 1240 !usb_endpoint_xfer_isoc(&ep->desc)) 1241 return 0; 1242 return ep->ss_ep_comp.bmAttributes; 1243 } 1244 1245 static u32 xhci_get_endpoint_type(struct usb_device *udev, 1246 struct usb_host_endpoint *ep) 1247 { 1248 int in; 1249 u32 type; 1250 1251 in = usb_endpoint_dir_in(&ep->desc); 1252 if (usb_endpoint_xfer_control(&ep->desc)) { 1253 type = EP_TYPE(CTRL_EP); 1254 } else if (usb_endpoint_xfer_bulk(&ep->desc)) { 1255 if (in) 1256 type = EP_TYPE(BULK_IN_EP); 1257 else 1258 type = EP_TYPE(BULK_OUT_EP); 1259 } else if (usb_endpoint_xfer_isoc(&ep->desc)) { 1260 if (in) 1261 type = EP_TYPE(ISOC_IN_EP); 1262 else 1263 type = EP_TYPE(ISOC_OUT_EP); 1264 } else if (usb_endpoint_xfer_int(&ep->desc)) { 1265 if (in) 1266 type = EP_TYPE(INT_IN_EP); 1267 else 1268 type = EP_TYPE(INT_OUT_EP); 1269 } else { 1270 type = 0; 1271 } 1272 return type; 1273 } 1274 1275 /* Return the maximum endpoint service interval time (ESIT) payload. 1276 * Basically, this is the maxpacket size, multiplied by the burst size 1277 * and mult size. 1278 */ 1279 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, 1280 struct usb_device *udev, 1281 struct usb_host_endpoint *ep) 1282 { 1283 int max_burst; 1284 int max_packet; 1285 1286 /* Only applies for interrupt or isochronous endpoints */ 1287 if (usb_endpoint_xfer_control(&ep->desc) || 1288 usb_endpoint_xfer_bulk(&ep->desc)) 1289 return 0; 1290 1291 if (udev->speed == USB_SPEED_SUPER) 1292 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1293 1294 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1295 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; 1296 /* A 0 in max burst means 1 transfer per ESIT */ 1297 return max_packet * (max_burst + 1); 1298 } 1299 1300 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1301 * Drivers will have to call usb_alloc_streams() to do that. 1302 */ 1303 int xhci_endpoint_init(struct xhci_hcd *xhci, 1304 struct xhci_virt_device *virt_dev, 1305 struct usb_device *udev, 1306 struct usb_host_endpoint *ep, 1307 gfp_t mem_flags) 1308 { 1309 unsigned int ep_index; 1310 struct xhci_ep_ctx *ep_ctx; 1311 struct xhci_ring *ep_ring; 1312 unsigned int max_packet; 1313 unsigned int max_burst; 1314 enum xhci_ring_type type; 1315 u32 max_esit_payload; 1316 u32 endpoint_type; 1317 1318 ep_index = xhci_get_endpoint_index(&ep->desc); 1319 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1320 1321 endpoint_type = xhci_get_endpoint_type(udev, ep); 1322 if (!endpoint_type) 1323 return -EINVAL; 1324 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type); 1325 1326 type = usb_endpoint_type(&ep->desc); 1327 /* Set up the endpoint ring */ 1328 virt_dev->eps[ep_index].new_ring = 1329 xhci_ring_alloc(xhci, 2, 1, type, mem_flags); 1330 if (!virt_dev->eps[ep_index].new_ring) { 1331 /* Attempt to use the ring cache */ 1332 if (virt_dev->num_rings_cached == 0) 1333 return -ENOMEM; 1334 virt_dev->eps[ep_index].new_ring = 1335 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1336 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1337 virt_dev->num_rings_cached--; 1338 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1339 1, type); 1340 } 1341 virt_dev->eps[ep_index].skip = false; 1342 ep_ring = virt_dev->eps[ep_index].new_ring; 1343 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); 1344 1345 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) 1346 | EP_MULT(xhci_get_endpoint_mult(udev, ep))); 1347 1348 /* FIXME dig Mult and streams info out of ep companion desc */ 1349 1350 /* Allow 3 retries for everything but isoc; 1351 * CErr shall be set to 0 for Isoch endpoints. 1352 */ 1353 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1354 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3)); 1355 else 1356 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0)); 1357 1358 /* Set the max packet size and max burst */ 1359 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1360 max_burst = 0; 1361 switch (udev->speed) { 1362 case USB_SPEED_SUPER: 1363 /* dig out max burst from ep companion desc */ 1364 max_burst = ep->ss_ep_comp.bMaxBurst; 1365 break; 1366 case USB_SPEED_HIGH: 1367 /* Some devices get this wrong */ 1368 if (usb_endpoint_xfer_bulk(&ep->desc)) 1369 max_packet = 512; 1370 /* bits 11:12 specify the number of additional transaction 1371 * opportunities per microframe (USB 2.0, section 9.6.6) 1372 */ 1373 if (usb_endpoint_xfer_isoc(&ep->desc) || 1374 usb_endpoint_xfer_int(&ep->desc)) { 1375 max_burst = (usb_endpoint_maxp(&ep->desc) 1376 & 0x1800) >> 11; 1377 } 1378 break; 1379 case USB_SPEED_FULL: 1380 case USB_SPEED_LOW: 1381 break; 1382 default: 1383 BUG(); 1384 } 1385 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) | 1386 MAX_BURST(max_burst)); 1387 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); 1388 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); 1389 1390 /* 1391 * XXX no idea how to calculate the average TRB buffer length for bulk 1392 * endpoints, as the driver gives us no clue how big each scatter gather 1393 * list entry (or buffer) is going to be. 1394 * 1395 * For isochronous and interrupt endpoints, we set it to the max 1396 * available, until we have new API in the USB core to allow drivers to 1397 * declare how much bandwidth they actually need. 1398 * 1399 * Normally, it would be calculated by taking the total of the buffer 1400 * lengths in the TD and then dividing by the number of TRBs in a TD, 1401 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't 1402 * use Event Data TRBs, and we don't chain in a link TRB on short 1403 * transfers, we're basically dividing by 1. 1404 * 1405 * xHCI 1.0 specification indicates that the Average TRB Length should 1406 * be set to 8 for control endpoints. 1407 */ 1408 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100) 1409 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); 1410 else 1411 ep_ctx->tx_info |= 1412 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); 1413 1414 /* FIXME Debug endpoint context */ 1415 return 0; 1416 } 1417 1418 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1419 struct xhci_virt_device *virt_dev, 1420 struct usb_host_endpoint *ep) 1421 { 1422 unsigned int ep_index; 1423 struct xhci_ep_ctx *ep_ctx; 1424 1425 ep_index = xhci_get_endpoint_index(&ep->desc); 1426 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1427 1428 ep_ctx->ep_info = 0; 1429 ep_ctx->ep_info2 = 0; 1430 ep_ctx->deq = 0; 1431 ep_ctx->tx_info = 0; 1432 /* Don't free the endpoint ring until the set interface or configuration 1433 * request succeeds. 1434 */ 1435 } 1436 1437 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1438 { 1439 bw_info->ep_interval = 0; 1440 bw_info->mult = 0; 1441 bw_info->num_packets = 0; 1442 bw_info->max_packet_size = 0; 1443 bw_info->type = 0; 1444 bw_info->max_esit_payload = 0; 1445 } 1446 1447 void xhci_update_bw_info(struct xhci_hcd *xhci, 1448 struct xhci_container_ctx *in_ctx, 1449 struct xhci_input_control_ctx *ctrl_ctx, 1450 struct xhci_virt_device *virt_dev) 1451 { 1452 struct xhci_bw_info *bw_info; 1453 struct xhci_ep_ctx *ep_ctx; 1454 unsigned int ep_type; 1455 int i; 1456 1457 for (i = 1; i < 31; ++i) { 1458 bw_info = &virt_dev->eps[i].bw_info; 1459 1460 /* We can't tell what endpoint type is being dropped, but 1461 * unconditionally clearing the bandwidth info for non-periodic 1462 * endpoints should be harmless because the info will never be 1463 * set in the first place. 1464 */ 1465 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1466 /* Dropped endpoint */ 1467 xhci_clear_endpoint_bw_info(bw_info); 1468 continue; 1469 } 1470 1471 if (EP_IS_ADDED(ctrl_ctx, i)) { 1472 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1473 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1474 1475 /* Ignore non-periodic endpoints */ 1476 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1477 ep_type != ISOC_IN_EP && 1478 ep_type != INT_IN_EP) 1479 continue; 1480 1481 /* Added or changed endpoint */ 1482 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1483 le32_to_cpu(ep_ctx->ep_info)); 1484 /* Number of packets and mult are zero-based in the 1485 * input context, but we want one-based for the 1486 * interval table. 1487 */ 1488 bw_info->mult = CTX_TO_EP_MULT( 1489 le32_to_cpu(ep_ctx->ep_info)) + 1; 1490 bw_info->num_packets = CTX_TO_MAX_BURST( 1491 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1492 bw_info->max_packet_size = MAX_PACKET_DECODED( 1493 le32_to_cpu(ep_ctx->ep_info2)); 1494 bw_info->type = ep_type; 1495 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1496 le32_to_cpu(ep_ctx->tx_info)); 1497 } 1498 } 1499 } 1500 1501 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1502 * Useful when you want to change one particular aspect of the endpoint and then 1503 * issue a configure endpoint command. 1504 */ 1505 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1506 struct xhci_container_ctx *in_ctx, 1507 struct xhci_container_ctx *out_ctx, 1508 unsigned int ep_index) 1509 { 1510 struct xhci_ep_ctx *out_ep_ctx; 1511 struct xhci_ep_ctx *in_ep_ctx; 1512 1513 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1514 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1515 1516 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1517 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1518 in_ep_ctx->deq = out_ep_ctx->deq; 1519 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1520 } 1521 1522 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1523 * Useful when you want to change one particular aspect of the endpoint and then 1524 * issue a configure endpoint command. Only the context entries field matters, 1525 * but we'll copy the whole thing anyway. 1526 */ 1527 void xhci_slot_copy(struct xhci_hcd *xhci, 1528 struct xhci_container_ctx *in_ctx, 1529 struct xhci_container_ctx *out_ctx) 1530 { 1531 struct xhci_slot_ctx *in_slot_ctx; 1532 struct xhci_slot_ctx *out_slot_ctx; 1533 1534 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1535 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1536 1537 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1538 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1539 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1540 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1541 } 1542 1543 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1544 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1545 { 1546 int i; 1547 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1548 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1549 1550 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1551 "Allocating %d scratchpad buffers", num_sp); 1552 1553 if (!num_sp) 1554 return 0; 1555 1556 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1557 if (!xhci->scratchpad) 1558 goto fail_sp; 1559 1560 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1561 num_sp * sizeof(u64), 1562 &xhci->scratchpad->sp_dma, flags); 1563 if (!xhci->scratchpad->sp_array) 1564 goto fail_sp2; 1565 1566 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1567 if (!xhci->scratchpad->sp_buffers) 1568 goto fail_sp3; 1569 1570 xhci->scratchpad->sp_dma_buffers = 1571 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1572 1573 if (!xhci->scratchpad->sp_dma_buffers) 1574 goto fail_sp4; 1575 1576 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1577 for (i = 0; i < num_sp; i++) { 1578 dma_addr_t dma; 1579 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1580 flags); 1581 if (!buf) 1582 goto fail_sp5; 1583 1584 xhci->scratchpad->sp_array[i] = dma; 1585 xhci->scratchpad->sp_buffers[i] = buf; 1586 xhci->scratchpad->sp_dma_buffers[i] = dma; 1587 } 1588 1589 return 0; 1590 1591 fail_sp5: 1592 for (i = i - 1; i >= 0; i--) { 1593 dma_free_coherent(dev, xhci->page_size, 1594 xhci->scratchpad->sp_buffers[i], 1595 xhci->scratchpad->sp_dma_buffers[i]); 1596 } 1597 kfree(xhci->scratchpad->sp_dma_buffers); 1598 1599 fail_sp4: 1600 kfree(xhci->scratchpad->sp_buffers); 1601 1602 fail_sp3: 1603 dma_free_coherent(dev, num_sp * sizeof(u64), 1604 xhci->scratchpad->sp_array, 1605 xhci->scratchpad->sp_dma); 1606 1607 fail_sp2: 1608 kfree(xhci->scratchpad); 1609 xhci->scratchpad = NULL; 1610 1611 fail_sp: 1612 return -ENOMEM; 1613 } 1614 1615 static void scratchpad_free(struct xhci_hcd *xhci) 1616 { 1617 int num_sp; 1618 int i; 1619 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1620 1621 if (!xhci->scratchpad) 1622 return; 1623 1624 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1625 1626 for (i = 0; i < num_sp; i++) { 1627 dma_free_coherent(dev, xhci->page_size, 1628 xhci->scratchpad->sp_buffers[i], 1629 xhci->scratchpad->sp_dma_buffers[i]); 1630 } 1631 kfree(xhci->scratchpad->sp_dma_buffers); 1632 kfree(xhci->scratchpad->sp_buffers); 1633 dma_free_coherent(dev, num_sp * sizeof(u64), 1634 xhci->scratchpad->sp_array, 1635 xhci->scratchpad->sp_dma); 1636 kfree(xhci->scratchpad); 1637 xhci->scratchpad = NULL; 1638 } 1639 1640 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1641 bool allocate_in_ctx, bool allocate_completion, 1642 gfp_t mem_flags) 1643 { 1644 struct xhci_command *command; 1645 1646 command = kzalloc(sizeof(*command), mem_flags); 1647 if (!command) 1648 return NULL; 1649 1650 if (allocate_in_ctx) { 1651 command->in_ctx = 1652 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1653 mem_flags); 1654 if (!command->in_ctx) { 1655 kfree(command); 1656 return NULL; 1657 } 1658 } 1659 1660 if (allocate_completion) { 1661 command->completion = 1662 kzalloc(sizeof(struct completion), mem_flags); 1663 if (!command->completion) { 1664 xhci_free_container_ctx(xhci, command->in_ctx); 1665 kfree(command); 1666 return NULL; 1667 } 1668 init_completion(command->completion); 1669 } 1670 1671 command->status = 0; 1672 INIT_LIST_HEAD(&command->cmd_list); 1673 return command; 1674 } 1675 1676 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) 1677 { 1678 if (urb_priv) { 1679 kfree(urb_priv->td[0]); 1680 kfree(urb_priv); 1681 } 1682 } 1683 1684 void xhci_free_command(struct xhci_hcd *xhci, 1685 struct xhci_command *command) 1686 { 1687 xhci_free_container_ctx(xhci, 1688 command->in_ctx); 1689 kfree(command->completion); 1690 kfree(command); 1691 } 1692 1693 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1694 { 1695 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1696 struct xhci_cd *cur_cd, *next_cd; 1697 int size; 1698 int i, j, num_ports; 1699 1700 /* Free the Event Ring Segment Table and the actual Event Ring */ 1701 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1702 if (xhci->erst.entries) 1703 dma_free_coherent(dev, size, 1704 xhci->erst.entries, xhci->erst.erst_dma_addr); 1705 xhci->erst.entries = NULL; 1706 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); 1707 if (xhci->event_ring) 1708 xhci_ring_free(xhci, xhci->event_ring); 1709 xhci->event_ring = NULL; 1710 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1711 1712 if (xhci->lpm_command) 1713 xhci_free_command(xhci, xhci->lpm_command); 1714 xhci->cmd_ring_reserved_trbs = 0; 1715 if (xhci->cmd_ring) 1716 xhci_ring_free(xhci, xhci->cmd_ring); 1717 xhci->cmd_ring = NULL; 1718 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1719 list_for_each_entry_safe(cur_cd, next_cd, 1720 &xhci->cancel_cmd_list, cancel_cmd_list) { 1721 list_del(&cur_cd->cancel_cmd_list); 1722 kfree(cur_cd); 1723 } 1724 1725 for (i = 1; i < MAX_HC_SLOTS; ++i) 1726 xhci_free_virt_device(xhci, i); 1727 1728 if (xhci->segment_pool) 1729 dma_pool_destroy(xhci->segment_pool); 1730 xhci->segment_pool = NULL; 1731 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1732 1733 if (xhci->device_pool) 1734 dma_pool_destroy(xhci->device_pool); 1735 xhci->device_pool = NULL; 1736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1737 1738 if (xhci->small_streams_pool) 1739 dma_pool_destroy(xhci->small_streams_pool); 1740 xhci->small_streams_pool = NULL; 1741 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1742 "Freed small stream array pool"); 1743 1744 if (xhci->medium_streams_pool) 1745 dma_pool_destroy(xhci->medium_streams_pool); 1746 xhci->medium_streams_pool = NULL; 1747 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1748 "Freed medium stream array pool"); 1749 1750 if (xhci->dcbaa) 1751 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1752 xhci->dcbaa, xhci->dcbaa->dma); 1753 xhci->dcbaa = NULL; 1754 1755 scratchpad_free(xhci); 1756 1757 if (!xhci->rh_bw) 1758 goto no_bw; 1759 1760 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1761 for (i = 0; i < num_ports; i++) { 1762 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1763 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1764 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1765 while (!list_empty(ep)) 1766 list_del_init(ep->next); 1767 } 1768 } 1769 1770 for (i = 0; i < num_ports; i++) { 1771 struct xhci_tt_bw_info *tt, *n; 1772 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1773 list_del(&tt->tt_list); 1774 kfree(tt); 1775 } 1776 } 1777 1778 no_bw: 1779 xhci->num_usb2_ports = 0; 1780 xhci->num_usb3_ports = 0; 1781 xhci->num_active_eps = 0; 1782 kfree(xhci->usb2_ports); 1783 kfree(xhci->usb3_ports); 1784 kfree(xhci->port_array); 1785 kfree(xhci->rh_bw); 1786 kfree(xhci->ext_caps); 1787 1788 xhci->page_size = 0; 1789 xhci->page_shift = 0; 1790 xhci->bus_state[0].bus_suspended = 0; 1791 xhci->bus_state[1].bus_suspended = 0; 1792 } 1793 1794 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1795 struct xhci_segment *input_seg, 1796 union xhci_trb *start_trb, 1797 union xhci_trb *end_trb, 1798 dma_addr_t input_dma, 1799 struct xhci_segment *result_seg, 1800 char *test_name, int test_number) 1801 { 1802 unsigned long long start_dma; 1803 unsigned long long end_dma; 1804 struct xhci_segment *seg; 1805 1806 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1807 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1808 1809 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); 1810 if (seg != result_seg) { 1811 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1812 test_name, test_number); 1813 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1814 "input DMA 0x%llx\n", 1815 input_seg, 1816 (unsigned long long) input_dma); 1817 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1818 "ending TRB %p (0x%llx DMA)\n", 1819 start_trb, start_dma, 1820 end_trb, end_dma); 1821 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1822 result_seg, seg); 1823 return -1; 1824 } 1825 return 0; 1826 } 1827 1828 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1829 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) 1830 { 1831 struct { 1832 dma_addr_t input_dma; 1833 struct xhci_segment *result_seg; 1834 } simple_test_vector [] = { 1835 /* A zeroed DMA field should fail */ 1836 { 0, NULL }, 1837 /* One TRB before the ring start should fail */ 1838 { xhci->event_ring->first_seg->dma - 16, NULL }, 1839 /* One byte before the ring start should fail */ 1840 { xhci->event_ring->first_seg->dma - 1, NULL }, 1841 /* Starting TRB should succeed */ 1842 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1843 /* Ending TRB should succeed */ 1844 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1845 xhci->event_ring->first_seg }, 1846 /* One byte after the ring end should fail */ 1847 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1848 /* One TRB after the ring end should fail */ 1849 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1850 /* An address of all ones should fail */ 1851 { (dma_addr_t) (~0), NULL }, 1852 }; 1853 struct { 1854 struct xhci_segment *input_seg; 1855 union xhci_trb *start_trb; 1856 union xhci_trb *end_trb; 1857 dma_addr_t input_dma; 1858 struct xhci_segment *result_seg; 1859 } complex_test_vector [] = { 1860 /* Test feeding a valid DMA address from a different ring */ 1861 { .input_seg = xhci->event_ring->first_seg, 1862 .start_trb = xhci->event_ring->first_seg->trbs, 1863 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1864 .input_dma = xhci->cmd_ring->first_seg->dma, 1865 .result_seg = NULL, 1866 }, 1867 /* Test feeding a valid end TRB from a different ring */ 1868 { .input_seg = xhci->event_ring->first_seg, 1869 .start_trb = xhci->event_ring->first_seg->trbs, 1870 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1871 .input_dma = xhci->cmd_ring->first_seg->dma, 1872 .result_seg = NULL, 1873 }, 1874 /* Test feeding a valid start and end TRB from a different ring */ 1875 { .input_seg = xhci->event_ring->first_seg, 1876 .start_trb = xhci->cmd_ring->first_seg->trbs, 1877 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1878 .input_dma = xhci->cmd_ring->first_seg->dma, 1879 .result_seg = NULL, 1880 }, 1881 /* TRB in this ring, but after this TD */ 1882 { .input_seg = xhci->event_ring->first_seg, 1883 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1884 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1885 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1886 .result_seg = NULL, 1887 }, 1888 /* TRB in this ring, but before this TD */ 1889 { .input_seg = xhci->event_ring->first_seg, 1890 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1891 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1892 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1893 .result_seg = NULL, 1894 }, 1895 /* TRB in this ring, but after this wrapped TD */ 1896 { .input_seg = xhci->event_ring->first_seg, 1897 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1898 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1899 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1900 .result_seg = NULL, 1901 }, 1902 /* TRB in this ring, but before this wrapped TD */ 1903 { .input_seg = xhci->event_ring->first_seg, 1904 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1905 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1906 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 1907 .result_seg = NULL, 1908 }, 1909 /* TRB not in this ring, and we have a wrapped TD */ 1910 { .input_seg = xhci->event_ring->first_seg, 1911 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1912 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1913 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 1914 .result_seg = NULL, 1915 }, 1916 }; 1917 1918 unsigned int num_tests; 1919 int i, ret; 1920 1921 num_tests = ARRAY_SIZE(simple_test_vector); 1922 for (i = 0; i < num_tests; i++) { 1923 ret = xhci_test_trb_in_td(xhci, 1924 xhci->event_ring->first_seg, 1925 xhci->event_ring->first_seg->trbs, 1926 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1927 simple_test_vector[i].input_dma, 1928 simple_test_vector[i].result_seg, 1929 "Simple", i); 1930 if (ret < 0) 1931 return ret; 1932 } 1933 1934 num_tests = ARRAY_SIZE(complex_test_vector); 1935 for (i = 0; i < num_tests; i++) { 1936 ret = xhci_test_trb_in_td(xhci, 1937 complex_test_vector[i].input_seg, 1938 complex_test_vector[i].start_trb, 1939 complex_test_vector[i].end_trb, 1940 complex_test_vector[i].input_dma, 1941 complex_test_vector[i].result_seg, 1942 "Complex", i); 1943 if (ret < 0) 1944 return ret; 1945 } 1946 xhci_dbg(xhci, "TRB math tests passed.\n"); 1947 return 0; 1948 } 1949 1950 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 1951 { 1952 u64 temp; 1953 dma_addr_t deq; 1954 1955 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 1956 xhci->event_ring->dequeue); 1957 if (deq == 0 && !in_interrupt()) 1958 xhci_warn(xhci, "WARN something wrong with SW event ring " 1959 "dequeue ptr.\n"); 1960 /* Update HC event ring dequeue pointer */ 1961 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 1962 temp &= ERST_PTR_MASK; 1963 /* Don't clear the EHB bit (which is RW1C) because 1964 * there might be more events to service. 1965 */ 1966 temp &= ~ERST_EHB; 1967 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1968 "// Write event ring dequeue pointer, " 1969 "preserving EHB bit"); 1970 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 1971 &xhci->ir_set->erst_dequeue); 1972 } 1973 1974 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 1975 __le32 __iomem *addr, u8 major_revision, int max_caps) 1976 { 1977 u32 temp, port_offset, port_count; 1978 int i; 1979 1980 if (major_revision > 0x03) { 1981 xhci_warn(xhci, "Ignoring unknown port speed, " 1982 "Ext Cap %p, revision = 0x%x\n", 1983 addr, major_revision); 1984 /* Ignoring port protocol we can't understand. FIXME */ 1985 return; 1986 } 1987 1988 /* Port offset and count in the third dword, see section 7.2 */ 1989 temp = readl(addr + 2); 1990 port_offset = XHCI_EXT_PORT_OFF(temp); 1991 port_count = XHCI_EXT_PORT_COUNT(temp); 1992 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1993 "Ext Cap %p, port offset = %u, " 1994 "count = %u, revision = 0x%x", 1995 addr, port_offset, port_count, major_revision); 1996 /* Port count includes the current port offset */ 1997 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 1998 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 1999 return; 2000 2001 /* cache usb2 port capabilities */ 2002 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2003 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2004 2005 /* Check the host's USB2 LPM capability */ 2006 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2007 (temp & XHCI_L1C)) { 2008 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2009 "xHCI 0.96: support USB2 software lpm"); 2010 xhci->sw_lpm_support = 1; 2011 } 2012 2013 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2014 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2015 "xHCI 1.0: support USB2 software lpm"); 2016 xhci->sw_lpm_support = 1; 2017 if (temp & XHCI_HLC) { 2018 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2019 "xHCI 1.0: support USB2 hardware lpm"); 2020 xhci->hw_lpm_support = 1; 2021 } 2022 } 2023 2024 port_offset--; 2025 for (i = port_offset; i < (port_offset + port_count); i++) { 2026 /* Duplicate entry. Ignore the port if the revisions differ. */ 2027 if (xhci->port_array[i] != 0) { 2028 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2029 " port %u\n", addr, i); 2030 xhci_warn(xhci, "Port was marked as USB %u, " 2031 "duplicated as USB %u\n", 2032 xhci->port_array[i], major_revision); 2033 /* Only adjust the roothub port counts if we haven't 2034 * found a similar duplicate. 2035 */ 2036 if (xhci->port_array[i] != major_revision && 2037 xhci->port_array[i] != DUPLICATE_ENTRY) { 2038 if (xhci->port_array[i] == 0x03) 2039 xhci->num_usb3_ports--; 2040 else 2041 xhci->num_usb2_ports--; 2042 xhci->port_array[i] = DUPLICATE_ENTRY; 2043 } 2044 /* FIXME: Should we disable the port? */ 2045 continue; 2046 } 2047 xhci->port_array[i] = major_revision; 2048 if (major_revision == 0x03) 2049 xhci->num_usb3_ports++; 2050 else 2051 xhci->num_usb2_ports++; 2052 } 2053 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2054 } 2055 2056 /* 2057 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2058 * specify what speeds each port is supposed to be. We can't count on the port 2059 * speed bits in the PORTSC register being correct until a device is connected, 2060 * but we need to set up the two fake roothubs with the correct number of USB 2061 * 3.0 and USB 2.0 ports at host controller initialization time. 2062 */ 2063 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2064 { 2065 __le32 __iomem *addr, *tmp_addr; 2066 u32 offset, tmp_offset; 2067 unsigned int num_ports; 2068 int i, j, port_index; 2069 int cap_count = 0; 2070 2071 addr = &xhci->cap_regs->hcc_params; 2072 offset = XHCI_HCC_EXT_CAPS(readl(addr)); 2073 if (offset == 0) { 2074 xhci_err(xhci, "No Extended Capability registers, " 2075 "unable to set up roothub.\n"); 2076 return -ENODEV; 2077 } 2078 2079 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2080 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2081 if (!xhci->port_array) 2082 return -ENOMEM; 2083 2084 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2085 if (!xhci->rh_bw) 2086 return -ENOMEM; 2087 for (i = 0; i < num_ports; i++) { 2088 struct xhci_interval_bw_table *bw_table; 2089 2090 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2091 bw_table = &xhci->rh_bw[i].bw_table; 2092 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2093 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2094 } 2095 2096 /* 2097 * For whatever reason, the first capability offset is from the 2098 * capability register base, not from the HCCPARAMS register. 2099 * See section 5.3.6 for offset calculation. 2100 */ 2101 addr = &xhci->cap_regs->hc_capbase + offset; 2102 2103 tmp_addr = addr; 2104 tmp_offset = offset; 2105 2106 /* count extended protocol capability entries for later caching */ 2107 do { 2108 u32 cap_id; 2109 cap_id = readl(tmp_addr); 2110 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2111 cap_count++; 2112 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id); 2113 tmp_addr += tmp_offset; 2114 } while (tmp_offset); 2115 2116 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2117 if (!xhci->ext_caps) 2118 return -ENOMEM; 2119 2120 while (1) { 2121 u32 cap_id; 2122 2123 cap_id = readl(addr); 2124 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2125 xhci_add_in_port(xhci, num_ports, addr, 2126 (u8) XHCI_EXT_PORT_MAJOR(cap_id), 2127 cap_count); 2128 offset = XHCI_EXT_CAPS_NEXT(cap_id); 2129 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) 2130 == num_ports) 2131 break; 2132 /* 2133 * Once you're into the Extended Capabilities, the offset is 2134 * always relative to the register holding the offset. 2135 */ 2136 addr += offset; 2137 } 2138 2139 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2140 xhci_warn(xhci, "No ports on the roothubs?\n"); 2141 return -ENODEV; 2142 } 2143 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2144 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2145 xhci->num_usb2_ports, xhci->num_usb3_ports); 2146 2147 /* Place limits on the number of roothub ports so that the hub 2148 * descriptors aren't longer than the USB core will allocate. 2149 */ 2150 if (xhci->num_usb3_ports > 15) { 2151 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2152 "Limiting USB 3.0 roothub ports to 15."); 2153 xhci->num_usb3_ports = 15; 2154 } 2155 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2156 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2157 "Limiting USB 2.0 roothub ports to %u.", 2158 USB_MAXCHILDREN); 2159 xhci->num_usb2_ports = USB_MAXCHILDREN; 2160 } 2161 2162 /* 2163 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2164 * Not sure how the USB core will handle a hub with no ports... 2165 */ 2166 if (xhci->num_usb2_ports) { 2167 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2168 xhci->num_usb2_ports, flags); 2169 if (!xhci->usb2_ports) 2170 return -ENOMEM; 2171 2172 port_index = 0; 2173 for (i = 0; i < num_ports; i++) { 2174 if (xhci->port_array[i] == 0x03 || 2175 xhci->port_array[i] == 0 || 2176 xhci->port_array[i] == DUPLICATE_ENTRY) 2177 continue; 2178 2179 xhci->usb2_ports[port_index] = 2180 &xhci->op_regs->port_status_base + 2181 NUM_PORT_REGS*i; 2182 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2183 "USB 2.0 port at index %u, " 2184 "addr = %p", i, 2185 xhci->usb2_ports[port_index]); 2186 port_index++; 2187 if (port_index == xhci->num_usb2_ports) 2188 break; 2189 } 2190 } 2191 if (xhci->num_usb3_ports) { 2192 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2193 xhci->num_usb3_ports, flags); 2194 if (!xhci->usb3_ports) 2195 return -ENOMEM; 2196 2197 port_index = 0; 2198 for (i = 0; i < num_ports; i++) 2199 if (xhci->port_array[i] == 0x03) { 2200 xhci->usb3_ports[port_index] = 2201 &xhci->op_regs->port_status_base + 2202 NUM_PORT_REGS*i; 2203 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2204 "USB 3.0 port at index %u, " 2205 "addr = %p", i, 2206 xhci->usb3_ports[port_index]); 2207 port_index++; 2208 if (port_index == xhci->num_usb3_ports) 2209 break; 2210 } 2211 } 2212 return 0; 2213 } 2214 2215 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2216 { 2217 dma_addr_t dma; 2218 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2219 unsigned int val, val2; 2220 u64 val_64; 2221 struct xhci_segment *seg; 2222 u32 page_size, temp; 2223 int i; 2224 2225 INIT_LIST_HEAD(&xhci->cancel_cmd_list); 2226 2227 page_size = readl(&xhci->op_regs->page_size); 2228 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2229 "Supported page size register = 0x%x", page_size); 2230 for (i = 0; i < 16; i++) { 2231 if ((0x1 & page_size) != 0) 2232 break; 2233 page_size = page_size >> 1; 2234 } 2235 if (i < 16) 2236 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2237 "Supported page size of %iK", (1 << (i+12)) / 1024); 2238 else 2239 xhci_warn(xhci, "WARN: no supported page size\n"); 2240 /* Use 4K pages, since that's common and the minimum the HC supports */ 2241 xhci->page_shift = 12; 2242 xhci->page_size = 1 << xhci->page_shift; 2243 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2244 "HCD page size set to %iK", xhci->page_size / 1024); 2245 2246 /* 2247 * Program the Number of Device Slots Enabled field in the CONFIG 2248 * register with the max value of slots the HC can handle. 2249 */ 2250 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2251 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2252 "// xHC can handle at most %d device slots.", val); 2253 val2 = readl(&xhci->op_regs->config_reg); 2254 val |= (val2 & ~HCS_SLOTS_MASK); 2255 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2256 "// Setting Max device slots reg = 0x%x.", val); 2257 writel(val, &xhci->op_regs->config_reg); 2258 2259 /* 2260 * Section 5.4.8 - doorbell array must be 2261 * "physically contiguous and 64-byte (cache line) aligned". 2262 */ 2263 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2264 GFP_KERNEL); 2265 if (!xhci->dcbaa) 2266 goto fail; 2267 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2268 xhci->dcbaa->dma = dma; 2269 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2270 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2271 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2272 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2273 2274 /* 2275 * Initialize the ring segment pool. The ring must be a contiguous 2276 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2277 * however, the command ring segment needs 64-byte aligned segments, 2278 * so we pick the greater alignment need. 2279 */ 2280 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2281 TRB_SEGMENT_SIZE, 64, xhci->page_size); 2282 2283 /* See Table 46 and Note on Figure 55 */ 2284 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2285 2112, 64, xhci->page_size); 2286 if (!xhci->segment_pool || !xhci->device_pool) 2287 goto fail; 2288 2289 /* Linear stream context arrays don't have any boundary restrictions, 2290 * and only need to be 16-byte aligned. 2291 */ 2292 xhci->small_streams_pool = 2293 dma_pool_create("xHCI 256 byte stream ctx arrays", 2294 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2295 xhci->medium_streams_pool = 2296 dma_pool_create("xHCI 1KB stream ctx arrays", 2297 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2298 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2299 * will be allocated with dma_alloc_coherent() 2300 */ 2301 2302 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2303 goto fail; 2304 2305 /* Set up the command ring to have one segments for now. */ 2306 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags); 2307 if (!xhci->cmd_ring) 2308 goto fail; 2309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2310 "Allocated command ring at %p", xhci->cmd_ring); 2311 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2312 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2313 2314 /* Set the address in the Command Ring Control register */ 2315 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2316 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2317 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2318 xhci->cmd_ring->cycle_state; 2319 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2320 "// Setting command ring address to 0x%x", val); 2321 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2322 xhci_dbg_cmd_ptrs(xhci); 2323 2324 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2325 if (!xhci->lpm_command) 2326 goto fail; 2327 2328 /* Reserve one command ring TRB for disabling LPM. 2329 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2330 * disabling LPM, we only need to reserve one TRB for all devices. 2331 */ 2332 xhci->cmd_ring_reserved_trbs++; 2333 2334 val = readl(&xhci->cap_regs->db_off); 2335 val &= DBOFF_MASK; 2336 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2337 "// Doorbell array is located at offset 0x%x" 2338 " from cap regs base addr", val); 2339 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2340 xhci_dbg_regs(xhci); 2341 xhci_print_run_regs(xhci); 2342 /* Set ir_set to interrupt register set 0 */ 2343 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2344 2345 /* 2346 * Event ring setup: Allocate a normal ring, but also setup 2347 * the event ring segment table (ERST). Section 4.9.3. 2348 */ 2349 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2350 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2351 flags); 2352 if (!xhci->event_ring) 2353 goto fail; 2354 if (xhci_check_trb_in_td_math(xhci, flags) < 0) 2355 goto fail; 2356 2357 xhci->erst.entries = dma_alloc_coherent(dev, 2358 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2359 GFP_KERNEL); 2360 if (!xhci->erst.entries) 2361 goto fail; 2362 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2363 "// Allocated event ring segment table at 0x%llx", 2364 (unsigned long long)dma); 2365 2366 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2367 xhci->erst.num_entries = ERST_NUM_SEGS; 2368 xhci->erst.erst_dma_addr = dma; 2369 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2370 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", 2371 xhci->erst.num_entries, 2372 xhci->erst.entries, 2373 (unsigned long long)xhci->erst.erst_dma_addr); 2374 2375 /* set ring base address and size for each segment table entry */ 2376 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2377 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2378 entry->seg_addr = cpu_to_le64(seg->dma); 2379 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2380 entry->rsvd = 0; 2381 seg = seg->next; 2382 } 2383 2384 /* set ERST count with the number of entries in the segment table */ 2385 val = readl(&xhci->ir_set->erst_size); 2386 val &= ERST_SIZE_MASK; 2387 val |= ERST_NUM_SEGS; 2388 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2389 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2390 val); 2391 writel(val, &xhci->ir_set->erst_size); 2392 2393 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2394 "// Set ERST entries to point to event ring."); 2395 /* set the segment table base address */ 2396 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2397 "// Set ERST base address for ir_set 0 = 0x%llx", 2398 (unsigned long long)xhci->erst.erst_dma_addr); 2399 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2400 val_64 &= ERST_PTR_MASK; 2401 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2402 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2403 2404 /* Set the event ring dequeue address */ 2405 xhci_set_hc_event_deq(xhci); 2406 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2407 "Wrote ERST address to ir_set 0."); 2408 xhci_print_ir_set(xhci, 0); 2409 2410 /* 2411 * XXX: Might need to set the Interrupter Moderation Register to 2412 * something other than the default (~1ms minimum between interrupts). 2413 * See section 5.5.1.2. 2414 */ 2415 init_completion(&xhci->addr_dev); 2416 for (i = 0; i < MAX_HC_SLOTS; ++i) 2417 xhci->devs[i] = NULL; 2418 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2419 xhci->bus_state[0].resume_done[i] = 0; 2420 xhci->bus_state[1].resume_done[i] = 0; 2421 /* Only the USB 2.0 completions will ever be used. */ 2422 init_completion(&xhci->bus_state[1].rexit_done[i]); 2423 } 2424 2425 if (scratchpad_alloc(xhci, flags)) 2426 goto fail; 2427 if (xhci_setup_port_arrays(xhci, flags)) 2428 goto fail; 2429 2430 /* Enable USB 3.0 device notifications for function remote wake, which 2431 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2432 * U3 (device suspend). 2433 */ 2434 temp = readl(&xhci->op_regs->dev_notification); 2435 temp &= ~DEV_NOTE_MASK; 2436 temp |= DEV_NOTE_FWAKE; 2437 writel(temp, &xhci->op_regs->dev_notification); 2438 2439 return 0; 2440 2441 fail: 2442 xhci_warn(xhci, "Couldn't initialize memory\n"); 2443 xhci_halt(xhci); 2444 xhci_reset(xhci); 2445 xhci_mem_cleanup(xhci); 2446 return -ENOMEM; 2447 } 2448