xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision a2fb4d78)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					unsigned int cycle_state, gfp_t flags)
41 {
42 	struct xhci_segment *seg;
43 	dma_addr_t	dma;
44 	int		i;
45 
46 	seg = kzalloc(sizeof *seg, flags);
47 	if (!seg)
48 		return NULL;
49 
50 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 	if (!seg->trbs) {
52 		kfree(seg);
53 		return NULL;
54 	}
55 
56 	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg);
75 }
76 
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 				struct xhci_segment *first)
79 {
80 	struct xhci_segment *seg;
81 
82 	seg = first->next;
83 	while (seg != first) {
84 		struct xhci_segment *next = seg->next;
85 		xhci_segment_free(xhci, seg);
86 		seg = next;
87 	}
88 	xhci_segment_free(xhci, first);
89 }
90 
91 /*
92  * Make the prev segment point to the next segment.
93  *
94  * Change the last TRB in the prev segment to be a Link TRB which points to the
95  * DMA address of the next segment.  The caller needs to set any Link TRB
96  * related flags, such as End TRB, Toggle Cycle, and no snoop.
97  */
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99 		struct xhci_segment *next, enum xhci_ring_type type)
100 {
101 	u32 val;
102 
103 	if (!prev || !next)
104 		return;
105 	prev->next = next;
106 	if (type != TYPE_EVENT) {
107 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 			cpu_to_le64(next->dma);
109 
110 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112 		val &= ~TRB_TYPE_BITMASK;
113 		val |= TRB_TYPE(TRB_LINK);
114 		/* Always set the chain bit with 0.95 hardware */
115 		/* Set chain bit for isoc rings on AMD 0.96 host */
116 		if (xhci_link_trb_quirk(xhci) ||
117 				(type == TYPE_ISOC &&
118 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119 			val |= TRB_CHAIN;
120 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121 	}
122 }
123 
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 		struct xhci_segment *first, struct xhci_segment *last,
130 		unsigned int num_segs)
131 {
132 	struct xhci_segment *next;
133 
134 	if (!ring || !first || !last)
135 		return;
136 
137 	next = ring->enq_seg->next;
138 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139 	xhci_link_segments(xhci, last, next, ring->type);
140 	ring->num_segs += num_segs;
141 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142 
143 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145 			&= ~cpu_to_le32(LINK_TOGGLE);
146 		last->trbs[TRBS_PER_SEGMENT-1].link.control
147 			|= cpu_to_le32(LINK_TOGGLE);
148 		ring->last_seg = last;
149 	}
150 }
151 
152 /* XXX: Do we need the hcd structure in all these functions? */
153 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
154 {
155 	if (!ring)
156 		return;
157 
158 	if (ring->first_seg)
159 		xhci_free_segments_for_ring(xhci, ring->first_seg);
160 
161 	kfree(ring);
162 }
163 
164 static void xhci_initialize_ring_info(struct xhci_ring *ring,
165 					unsigned int cycle_state)
166 {
167 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
168 	ring->enqueue = ring->first_seg->trbs;
169 	ring->enq_seg = ring->first_seg;
170 	ring->dequeue = ring->enqueue;
171 	ring->deq_seg = ring->first_seg;
172 	/* The ring is initialized to 0. The producer must write 1 to the cycle
173 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
174 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
175 	 *
176 	 * New rings are initialized with cycle state equal to 1; if we are
177 	 * handling ring expansion, set the cycle state equal to the old ring.
178 	 */
179 	ring->cycle_state = cycle_state;
180 	/* Not necessary for new rings, but needed for re-initialized rings */
181 	ring->enq_updates = 0;
182 	ring->deq_updates = 0;
183 
184 	/*
185 	 * Each segment has a link TRB, and leave an extra TRB for SW
186 	 * accounting purpose
187 	 */
188 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
189 }
190 
191 /* Allocate segments and link them for a ring */
192 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
193 		struct xhci_segment **first, struct xhci_segment **last,
194 		unsigned int num_segs, unsigned int cycle_state,
195 		enum xhci_ring_type type, gfp_t flags)
196 {
197 	struct xhci_segment *prev;
198 
199 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
200 	if (!prev)
201 		return -ENOMEM;
202 	num_segs--;
203 
204 	*first = prev;
205 	while (num_segs > 0) {
206 		struct xhci_segment	*next;
207 
208 		next = xhci_segment_alloc(xhci, cycle_state, flags);
209 		if (!next) {
210 			prev = *first;
211 			while (prev) {
212 				next = prev->next;
213 				xhci_segment_free(xhci, prev);
214 				prev = next;
215 			}
216 			return -ENOMEM;
217 		}
218 		xhci_link_segments(xhci, prev, next, type);
219 
220 		prev = next;
221 		num_segs--;
222 	}
223 	xhci_link_segments(xhci, prev, *first, type);
224 	*last = prev;
225 
226 	return 0;
227 }
228 
229 /**
230  * Create a new ring with zero or more segments.
231  *
232  * Link each segment together into a ring.
233  * Set the end flag and the cycle toggle bit on the last segment.
234  * See section 4.9.1 and figures 15 and 16.
235  */
236 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
237 		unsigned int num_segs, unsigned int cycle_state,
238 		enum xhci_ring_type type, gfp_t flags)
239 {
240 	struct xhci_ring	*ring;
241 	int ret;
242 
243 	ring = kzalloc(sizeof *(ring), flags);
244 	if (!ring)
245 		return NULL;
246 
247 	ring->num_segs = num_segs;
248 	INIT_LIST_HEAD(&ring->td_list);
249 	ring->type = type;
250 	if (num_segs == 0)
251 		return ring;
252 
253 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
254 			&ring->last_seg, num_segs, cycle_state, type, flags);
255 	if (ret)
256 		goto fail;
257 
258 	/* Only event ring does not use link TRB */
259 	if (type != TYPE_EVENT) {
260 		/* See section 4.9.2.1 and 6.4.4.1 */
261 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
262 			cpu_to_le32(LINK_TOGGLE);
263 	}
264 	xhci_initialize_ring_info(ring, cycle_state);
265 	return ring;
266 
267 fail:
268 	kfree(ring);
269 	return NULL;
270 }
271 
272 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
273 		struct xhci_virt_device *virt_dev,
274 		unsigned int ep_index)
275 {
276 	int rings_cached;
277 
278 	rings_cached = virt_dev->num_rings_cached;
279 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
280 		virt_dev->ring_cache[rings_cached] =
281 			virt_dev->eps[ep_index].ring;
282 		virt_dev->num_rings_cached++;
283 		xhci_dbg(xhci, "Cached old ring, "
284 				"%d ring%s cached\n",
285 				virt_dev->num_rings_cached,
286 				(virt_dev->num_rings_cached > 1) ? "s" : "");
287 	} else {
288 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
289 		xhci_dbg(xhci, "Ring cache full (%d rings), "
290 				"freeing ring\n",
291 				virt_dev->num_rings_cached);
292 	}
293 	virt_dev->eps[ep_index].ring = NULL;
294 }
295 
296 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
297  * pointers to the beginning of the ring.
298  */
299 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
300 			struct xhci_ring *ring, unsigned int cycle_state,
301 			enum xhci_ring_type type)
302 {
303 	struct xhci_segment	*seg = ring->first_seg;
304 	int i;
305 
306 	do {
307 		memset(seg->trbs, 0,
308 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
309 		if (cycle_state == 0) {
310 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
311 				seg->trbs[i].link.control |=
312 					cpu_to_le32(TRB_CYCLE);
313 		}
314 		/* All endpoint rings have link TRBs */
315 		xhci_link_segments(xhci, seg, seg->next, type);
316 		seg = seg->next;
317 	} while (seg != ring->first_seg);
318 	ring->type = type;
319 	xhci_initialize_ring_info(ring, cycle_state);
320 	/* td list should be empty since all URBs have been cancelled,
321 	 * but just in case...
322 	 */
323 	INIT_LIST_HEAD(&ring->td_list);
324 }
325 
326 /*
327  * Expand an existing ring.
328  * Look for a cached ring or allocate a new ring which has same segment numbers
329  * and link the two rings.
330  */
331 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
332 				unsigned int num_trbs, gfp_t flags)
333 {
334 	struct xhci_segment	*first;
335 	struct xhci_segment	*last;
336 	unsigned int		num_segs;
337 	unsigned int		num_segs_needed;
338 	int			ret;
339 
340 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
341 				(TRBS_PER_SEGMENT - 1);
342 
343 	/* Allocate number of segments we needed, or double the ring size */
344 	num_segs = ring->num_segs > num_segs_needed ?
345 			ring->num_segs : num_segs_needed;
346 
347 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
348 			num_segs, ring->cycle_state, ring->type, flags);
349 	if (ret)
350 		return -ENOMEM;
351 
352 	xhci_link_rings(xhci, ring, first, last, num_segs);
353 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
354 			"ring expansion succeed, now has %d segments",
355 			ring->num_segs);
356 
357 	return 0;
358 }
359 
360 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
361 
362 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
363 						    int type, gfp_t flags)
364 {
365 	struct xhci_container_ctx *ctx;
366 
367 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
368 		return NULL;
369 
370 	ctx = kzalloc(sizeof(*ctx), flags);
371 	if (!ctx)
372 		return NULL;
373 
374 	ctx->type = type;
375 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
376 	if (type == XHCI_CTX_TYPE_INPUT)
377 		ctx->size += CTX_SIZE(xhci->hcc_params);
378 
379 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
380 	if (!ctx->bytes) {
381 		kfree(ctx);
382 		return NULL;
383 	}
384 	memset(ctx->bytes, 0, ctx->size);
385 	return ctx;
386 }
387 
388 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
389 			     struct xhci_container_ctx *ctx)
390 {
391 	if (!ctx)
392 		return;
393 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
394 	kfree(ctx);
395 }
396 
397 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
398 					      struct xhci_container_ctx *ctx)
399 {
400 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
401 		return NULL;
402 
403 	return (struct xhci_input_control_ctx *)ctx->bytes;
404 }
405 
406 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
407 					struct xhci_container_ctx *ctx)
408 {
409 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
410 		return (struct xhci_slot_ctx *)ctx->bytes;
411 
412 	return (struct xhci_slot_ctx *)
413 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
414 }
415 
416 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
417 				    struct xhci_container_ctx *ctx,
418 				    unsigned int ep_index)
419 {
420 	/* increment ep index by offset of start of ep ctx array */
421 	ep_index++;
422 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
423 		ep_index++;
424 
425 	return (struct xhci_ep_ctx *)
426 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
427 }
428 
429 
430 /***************** Streams structures manipulation *************************/
431 
432 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
433 		unsigned int num_stream_ctxs,
434 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
435 {
436 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
437 
438 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
439 		dma_free_coherent(dev,
440 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
441 				stream_ctx, dma);
442 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
443 		return dma_pool_free(xhci->small_streams_pool,
444 				stream_ctx, dma);
445 	else
446 		return dma_pool_free(xhci->medium_streams_pool,
447 				stream_ctx, dma);
448 }
449 
450 /*
451  * The stream context array for each endpoint with bulk streams enabled can
452  * vary in size, based on:
453  *  - how many streams the endpoint supports,
454  *  - the maximum primary stream array size the host controller supports,
455  *  - and how many streams the device driver asks for.
456  *
457  * The stream context array must be a power of 2, and can be as small as
458  * 64 bytes or as large as 1MB.
459  */
460 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
461 		unsigned int num_stream_ctxs, dma_addr_t *dma,
462 		gfp_t mem_flags)
463 {
464 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
465 
466 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
467 		return dma_alloc_coherent(dev,
468 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
469 				dma, mem_flags);
470 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
471 		return dma_pool_alloc(xhci->small_streams_pool,
472 				mem_flags, dma);
473 	else
474 		return dma_pool_alloc(xhci->medium_streams_pool,
475 				mem_flags, dma);
476 }
477 
478 struct xhci_ring *xhci_dma_to_transfer_ring(
479 		struct xhci_virt_ep *ep,
480 		u64 address)
481 {
482 	if (ep->ep_state & EP_HAS_STREAMS)
483 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
484 				address >> TRB_SEGMENT_SHIFT);
485 	return ep->ring;
486 }
487 
488 struct xhci_ring *xhci_stream_id_to_ring(
489 		struct xhci_virt_device *dev,
490 		unsigned int ep_index,
491 		unsigned int stream_id)
492 {
493 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
494 
495 	if (stream_id == 0)
496 		return ep->ring;
497 	if (!ep->stream_info)
498 		return NULL;
499 
500 	if (stream_id > ep->stream_info->num_streams)
501 		return NULL;
502 	return ep->stream_info->stream_rings[stream_id];
503 }
504 
505 /*
506  * Change an endpoint's internal structure so it supports stream IDs.  The
507  * number of requested streams includes stream 0, which cannot be used by device
508  * drivers.
509  *
510  * The number of stream contexts in the stream context array may be bigger than
511  * the number of streams the driver wants to use.  This is because the number of
512  * stream context array entries must be a power of two.
513  *
514  * We need a radix tree for mapping physical addresses of TRBs to which stream
515  * ID they belong to.  We need to do this because the host controller won't tell
516  * us which stream ring the TRB came from.  We could store the stream ID in an
517  * event data TRB, but that doesn't help us for the cancellation case, since the
518  * endpoint may stop before it reaches that event data TRB.
519  *
520  * The radix tree maps the upper portion of the TRB DMA address to a ring
521  * segment that has the same upper portion of DMA addresses.  For example, say I
522  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
523  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
524  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
525  * pass the radix tree a key to get the right stream ID:
526  *
527  * 	0x10c90fff >> 10 = 0x43243
528  * 	0x10c912c0 >> 10 = 0x43244
529  * 	0x10c91400 >> 10 = 0x43245
530  *
531  * Obviously, only those TRBs with DMA addresses that are within the segment
532  * will make the radix tree return the stream ID for that ring.
533  *
534  * Caveats for the radix tree:
535  *
536  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
537  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
538  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
539  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
540  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
541  * extended systems (where the DMA address can be bigger than 32-bits),
542  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
543  */
544 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
545 		unsigned int num_stream_ctxs,
546 		unsigned int num_streams, gfp_t mem_flags)
547 {
548 	struct xhci_stream_info *stream_info;
549 	u32 cur_stream;
550 	struct xhci_ring *cur_ring;
551 	unsigned long key;
552 	u64 addr;
553 	int ret;
554 
555 	xhci_dbg(xhci, "Allocating %u streams and %u "
556 			"stream context array entries.\n",
557 			num_streams, num_stream_ctxs);
558 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
559 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
560 		return NULL;
561 	}
562 	xhci->cmd_ring_reserved_trbs++;
563 
564 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
565 	if (!stream_info)
566 		goto cleanup_trbs;
567 
568 	stream_info->num_streams = num_streams;
569 	stream_info->num_stream_ctxs = num_stream_ctxs;
570 
571 	/* Initialize the array of virtual pointers to stream rings. */
572 	stream_info->stream_rings = kzalloc(
573 			sizeof(struct xhci_ring *)*num_streams,
574 			mem_flags);
575 	if (!stream_info->stream_rings)
576 		goto cleanup_info;
577 
578 	/* Initialize the array of DMA addresses for stream rings for the HW. */
579 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
580 			num_stream_ctxs, &stream_info->ctx_array_dma,
581 			mem_flags);
582 	if (!stream_info->stream_ctx_array)
583 		goto cleanup_ctx;
584 	memset(stream_info->stream_ctx_array, 0,
585 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
586 
587 	/* Allocate everything needed to free the stream rings later */
588 	stream_info->free_streams_command =
589 		xhci_alloc_command(xhci, true, true, mem_flags);
590 	if (!stream_info->free_streams_command)
591 		goto cleanup_ctx;
592 
593 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
594 
595 	/* Allocate rings for all the streams that the driver will use,
596 	 * and add their segment DMA addresses to the radix tree.
597 	 * Stream 0 is reserved.
598 	 */
599 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
600 		stream_info->stream_rings[cur_stream] =
601 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
602 		cur_ring = stream_info->stream_rings[cur_stream];
603 		if (!cur_ring)
604 			goto cleanup_rings;
605 		cur_ring->stream_id = cur_stream;
606 		/* Set deq ptr, cycle bit, and stream context type */
607 		addr = cur_ring->first_seg->dma |
608 			SCT_FOR_CTX(SCT_PRI_TR) |
609 			cur_ring->cycle_state;
610 		stream_info->stream_ctx_array[cur_stream].stream_ring =
611 			cpu_to_le64(addr);
612 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
613 				cur_stream, (unsigned long long) addr);
614 
615 		key = (unsigned long)
616 			(cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
617 		ret = radix_tree_insert(&stream_info->trb_address_map,
618 				key, cur_ring);
619 		if (ret) {
620 			xhci_ring_free(xhci, cur_ring);
621 			stream_info->stream_rings[cur_stream] = NULL;
622 			goto cleanup_rings;
623 		}
624 	}
625 	/* Leave the other unused stream ring pointers in the stream context
626 	 * array initialized to zero.  This will cause the xHC to give us an
627 	 * error if the device asks for a stream ID we don't have setup (if it
628 	 * was any other way, the host controller would assume the ring is
629 	 * "empty" and wait forever for data to be queued to that stream ID).
630 	 */
631 
632 	return stream_info;
633 
634 cleanup_rings:
635 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
636 		cur_ring = stream_info->stream_rings[cur_stream];
637 		if (cur_ring) {
638 			addr = cur_ring->first_seg->dma;
639 			radix_tree_delete(&stream_info->trb_address_map,
640 					addr >> TRB_SEGMENT_SHIFT);
641 			xhci_ring_free(xhci, cur_ring);
642 			stream_info->stream_rings[cur_stream] = NULL;
643 		}
644 	}
645 	xhci_free_command(xhci, stream_info->free_streams_command);
646 cleanup_ctx:
647 	kfree(stream_info->stream_rings);
648 cleanup_info:
649 	kfree(stream_info);
650 cleanup_trbs:
651 	xhci->cmd_ring_reserved_trbs--;
652 	return NULL;
653 }
654 /*
655  * Sets the MaxPStreams field and the Linear Stream Array field.
656  * Sets the dequeue pointer to the stream context array.
657  */
658 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
659 		struct xhci_ep_ctx *ep_ctx,
660 		struct xhci_stream_info *stream_info)
661 {
662 	u32 max_primary_streams;
663 	/* MaxPStreams is the number of stream context array entries, not the
664 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
665 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
666 	 */
667 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
668 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
669 			"Setting number of stream ctx array entries to %u",
670 			1 << (max_primary_streams + 1));
671 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
672 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
673 				       | EP_HAS_LSA);
674 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
675 }
676 
677 /*
678  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
679  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
680  * not at the beginning of the ring).
681  */
682 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
683 		struct xhci_ep_ctx *ep_ctx,
684 		struct xhci_virt_ep *ep)
685 {
686 	dma_addr_t addr;
687 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
688 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
689 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
690 }
691 
692 /* Frees all stream contexts associated with the endpoint,
693  *
694  * Caller should fix the endpoint context streams fields.
695  */
696 void xhci_free_stream_info(struct xhci_hcd *xhci,
697 		struct xhci_stream_info *stream_info)
698 {
699 	int cur_stream;
700 	struct xhci_ring *cur_ring;
701 	dma_addr_t addr;
702 
703 	if (!stream_info)
704 		return;
705 
706 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
707 			cur_stream++) {
708 		cur_ring = stream_info->stream_rings[cur_stream];
709 		if (cur_ring) {
710 			addr = cur_ring->first_seg->dma;
711 			radix_tree_delete(&stream_info->trb_address_map,
712 					addr >> TRB_SEGMENT_SHIFT);
713 			xhci_ring_free(xhci, cur_ring);
714 			stream_info->stream_rings[cur_stream] = NULL;
715 		}
716 	}
717 	xhci_free_command(xhci, stream_info->free_streams_command);
718 	xhci->cmd_ring_reserved_trbs--;
719 	if (stream_info->stream_ctx_array)
720 		xhci_free_stream_ctx(xhci,
721 				stream_info->num_stream_ctxs,
722 				stream_info->stream_ctx_array,
723 				stream_info->ctx_array_dma);
724 
725 	kfree(stream_info->stream_rings);
726 	kfree(stream_info);
727 }
728 
729 
730 /***************** Device context manipulation *************************/
731 
732 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
733 		struct xhci_virt_ep *ep)
734 {
735 	init_timer(&ep->stop_cmd_timer);
736 	ep->stop_cmd_timer.data = (unsigned long) ep;
737 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
738 	ep->xhci = xhci;
739 }
740 
741 static void xhci_free_tt_info(struct xhci_hcd *xhci,
742 		struct xhci_virt_device *virt_dev,
743 		int slot_id)
744 {
745 	struct list_head *tt_list_head;
746 	struct xhci_tt_bw_info *tt_info, *next;
747 	bool slot_found = false;
748 
749 	/* If the device never made it past the Set Address stage,
750 	 * it may not have the real_port set correctly.
751 	 */
752 	if (virt_dev->real_port == 0 ||
753 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
754 		xhci_dbg(xhci, "Bad real port.\n");
755 		return;
756 	}
757 
758 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
759 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
760 		/* Multi-TT hubs will have more than one entry */
761 		if (tt_info->slot_id == slot_id) {
762 			slot_found = true;
763 			list_del(&tt_info->tt_list);
764 			kfree(tt_info);
765 		} else if (slot_found) {
766 			break;
767 		}
768 	}
769 }
770 
771 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
772 		struct xhci_virt_device *virt_dev,
773 		struct usb_device *hdev,
774 		struct usb_tt *tt, gfp_t mem_flags)
775 {
776 	struct xhci_tt_bw_info		*tt_info;
777 	unsigned int			num_ports;
778 	int				i, j;
779 
780 	if (!tt->multi)
781 		num_ports = 1;
782 	else
783 		num_ports = hdev->maxchild;
784 
785 	for (i = 0; i < num_ports; i++, tt_info++) {
786 		struct xhci_interval_bw_table *bw_table;
787 
788 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
789 		if (!tt_info)
790 			goto free_tts;
791 		INIT_LIST_HEAD(&tt_info->tt_list);
792 		list_add(&tt_info->tt_list,
793 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
794 		tt_info->slot_id = virt_dev->udev->slot_id;
795 		if (tt->multi)
796 			tt_info->ttport = i+1;
797 		bw_table = &tt_info->bw_table;
798 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
799 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
800 	}
801 	return 0;
802 
803 free_tts:
804 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
805 	return -ENOMEM;
806 }
807 
808 
809 /* All the xhci_tds in the ring's TD list should be freed at this point.
810  * Should be called with xhci->lock held if there is any chance the TT lists
811  * will be manipulated by the configure endpoint, allocate device, or update
812  * hub functions while this function is removing the TT entries from the list.
813  */
814 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
815 {
816 	struct xhci_virt_device *dev;
817 	int i;
818 	int old_active_eps = 0;
819 
820 	/* Slot ID 0 is reserved */
821 	if (slot_id == 0 || !xhci->devs[slot_id])
822 		return;
823 
824 	dev = xhci->devs[slot_id];
825 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
826 	if (!dev)
827 		return;
828 
829 	if (dev->tt_info)
830 		old_active_eps = dev->tt_info->active_eps;
831 
832 	for (i = 0; i < 31; ++i) {
833 		if (dev->eps[i].ring)
834 			xhci_ring_free(xhci, dev->eps[i].ring);
835 		if (dev->eps[i].stream_info)
836 			xhci_free_stream_info(xhci,
837 					dev->eps[i].stream_info);
838 		/* Endpoints on the TT/root port lists should have been removed
839 		 * when usb_disable_device() was called for the device.
840 		 * We can't drop them anyway, because the udev might have gone
841 		 * away by this point, and we can't tell what speed it was.
842 		 */
843 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
844 			xhci_warn(xhci, "Slot %u endpoint %u "
845 					"not removed from BW list!\n",
846 					slot_id, i);
847 	}
848 	/* If this is a hub, free the TT(s) from the TT list */
849 	xhci_free_tt_info(xhci, dev, slot_id);
850 	/* If necessary, update the number of active TTs on this root port */
851 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
852 
853 	if (dev->ring_cache) {
854 		for (i = 0; i < dev->num_rings_cached; i++)
855 			xhci_ring_free(xhci, dev->ring_cache[i]);
856 		kfree(dev->ring_cache);
857 	}
858 
859 	if (dev->in_ctx)
860 		xhci_free_container_ctx(xhci, dev->in_ctx);
861 	if (dev->out_ctx)
862 		xhci_free_container_ctx(xhci, dev->out_ctx);
863 
864 	kfree(xhci->devs[slot_id]);
865 	xhci->devs[slot_id] = NULL;
866 }
867 
868 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
869 		struct usb_device *udev, gfp_t flags)
870 {
871 	struct xhci_virt_device *dev;
872 	int i;
873 
874 	/* Slot ID 0 is reserved */
875 	if (slot_id == 0 || xhci->devs[slot_id]) {
876 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
877 		return 0;
878 	}
879 
880 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
881 	if (!xhci->devs[slot_id])
882 		return 0;
883 	dev = xhci->devs[slot_id];
884 
885 	/* Allocate the (output) device context that will be used in the HC. */
886 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
887 	if (!dev->out_ctx)
888 		goto fail;
889 
890 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
891 			(unsigned long long)dev->out_ctx->dma);
892 
893 	/* Allocate the (input) device context for address device command */
894 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
895 	if (!dev->in_ctx)
896 		goto fail;
897 
898 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
899 			(unsigned long long)dev->in_ctx->dma);
900 
901 	/* Initialize the cancellation list and watchdog timers for each ep */
902 	for (i = 0; i < 31; i++) {
903 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
904 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
905 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
906 	}
907 
908 	/* Allocate endpoint 0 ring */
909 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
910 	if (!dev->eps[0].ring)
911 		goto fail;
912 
913 	/* Allocate pointers to the ring cache */
914 	dev->ring_cache = kzalloc(
915 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
916 			flags);
917 	if (!dev->ring_cache)
918 		goto fail;
919 	dev->num_rings_cached = 0;
920 
921 	init_completion(&dev->cmd_completion);
922 	INIT_LIST_HEAD(&dev->cmd_list);
923 	dev->udev = udev;
924 
925 	/* Point to output device context in dcbaa. */
926 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
927 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
928 		 slot_id,
929 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
930 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
931 
932 	return 1;
933 fail:
934 	xhci_free_virt_device(xhci, slot_id);
935 	return 0;
936 }
937 
938 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
939 		struct usb_device *udev)
940 {
941 	struct xhci_virt_device *virt_dev;
942 	struct xhci_ep_ctx	*ep0_ctx;
943 	struct xhci_ring	*ep_ring;
944 
945 	virt_dev = xhci->devs[udev->slot_id];
946 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
947 	ep_ring = virt_dev->eps[0].ring;
948 	/*
949 	 * FIXME we don't keep track of the dequeue pointer very well after a
950 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
951 	 * host to our enqueue pointer.  This should only be called after a
952 	 * configured device has reset, so all control transfers should have
953 	 * been completed or cancelled before the reset.
954 	 */
955 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
956 							ep_ring->enqueue)
957 				   | ep_ring->cycle_state);
958 }
959 
960 /*
961  * The xHCI roothub may have ports of differing speeds in any order in the port
962  * status registers.  xhci->port_array provides an array of the port speed for
963  * each offset into the port status registers.
964  *
965  * The xHCI hardware wants to know the roothub port number that the USB device
966  * is attached to (or the roothub port its ancestor hub is attached to).  All we
967  * know is the index of that port under either the USB 2.0 or the USB 3.0
968  * roothub, but that doesn't give us the real index into the HW port status
969  * registers. Call xhci_find_raw_port_number() to get real index.
970  */
971 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
972 		struct usb_device *udev)
973 {
974 	struct usb_device *top_dev;
975 	struct usb_hcd *hcd;
976 
977 	if (udev->speed == USB_SPEED_SUPER)
978 		hcd = xhci->shared_hcd;
979 	else
980 		hcd = xhci->main_hcd;
981 
982 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
983 			top_dev = top_dev->parent)
984 		/* Found device below root hub */;
985 
986 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
987 }
988 
989 /* Setup an xHCI virtual device for a Set Address command */
990 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
991 {
992 	struct xhci_virt_device *dev;
993 	struct xhci_ep_ctx	*ep0_ctx;
994 	struct xhci_slot_ctx    *slot_ctx;
995 	u32			port_num;
996 	u32			max_packets;
997 	struct usb_device *top_dev;
998 
999 	dev = xhci->devs[udev->slot_id];
1000 	/* Slot ID 0 is reserved */
1001 	if (udev->slot_id == 0 || !dev) {
1002 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1003 				udev->slot_id);
1004 		return -EINVAL;
1005 	}
1006 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1007 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1008 
1009 	/* 3) Only the control endpoint is valid - one endpoint context */
1010 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1011 	switch (udev->speed) {
1012 	case USB_SPEED_SUPER:
1013 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1014 		max_packets = MAX_PACKET(512);
1015 		break;
1016 	case USB_SPEED_HIGH:
1017 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1018 		max_packets = MAX_PACKET(64);
1019 		break;
1020 	/* USB core guesses at a 64-byte max packet first for FS devices */
1021 	case USB_SPEED_FULL:
1022 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1023 		max_packets = MAX_PACKET(64);
1024 		break;
1025 	case USB_SPEED_LOW:
1026 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1027 		max_packets = MAX_PACKET(8);
1028 		break;
1029 	case USB_SPEED_WIRELESS:
1030 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1031 		return -EINVAL;
1032 		break;
1033 	default:
1034 		/* Speed was set earlier, this shouldn't happen. */
1035 		return -EINVAL;
1036 	}
1037 	/* Find the root hub port this device is under */
1038 	port_num = xhci_find_real_port_number(xhci, udev);
1039 	if (!port_num)
1040 		return -EINVAL;
1041 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1042 	/* Set the port number in the virtual_device to the faked port number */
1043 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1044 			top_dev = top_dev->parent)
1045 		/* Found device below root hub */;
1046 	dev->fake_port = top_dev->portnum;
1047 	dev->real_port = port_num;
1048 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1049 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1050 
1051 	/* Find the right bandwidth table that this device will be a part of.
1052 	 * If this is a full speed device attached directly to a root port (or a
1053 	 * decendent of one), it counts as a primary bandwidth domain, not a
1054 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1055 	 * will never be created for the HS root hub.
1056 	 */
1057 	if (!udev->tt || !udev->tt->hub->parent) {
1058 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1059 	} else {
1060 		struct xhci_root_port_bw_info *rh_bw;
1061 		struct xhci_tt_bw_info *tt_bw;
1062 
1063 		rh_bw = &xhci->rh_bw[port_num - 1];
1064 		/* Find the right TT. */
1065 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1066 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1067 				continue;
1068 
1069 			if (!dev->udev->tt->multi ||
1070 					(udev->tt->multi &&
1071 					 tt_bw->ttport == dev->udev->ttport)) {
1072 				dev->bw_table = &tt_bw->bw_table;
1073 				dev->tt_info = tt_bw;
1074 				break;
1075 			}
1076 		}
1077 		if (!dev->tt_info)
1078 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1079 	}
1080 
1081 	/* Is this a LS/FS device under an external HS hub? */
1082 	if (udev->tt && udev->tt->hub->parent) {
1083 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1084 						(udev->ttport << 8));
1085 		if (udev->tt->multi)
1086 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1087 	}
1088 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1089 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1090 
1091 	/* Step 4 - ring already allocated */
1092 	/* Step 5 */
1093 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1094 
1095 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1096 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1097 					 max_packets);
1098 
1099 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1100 				   dev->eps[0].ring->cycle_state);
1101 
1102 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1103 
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Convert interval expressed as 2^(bInterval - 1) == interval into
1109  * straight exponent value 2^n == interval.
1110  *
1111  */
1112 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1113 		struct usb_host_endpoint *ep)
1114 {
1115 	unsigned int interval;
1116 
1117 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1118 	if (interval != ep->desc.bInterval - 1)
1119 		dev_warn(&udev->dev,
1120 			 "ep %#x - rounding interval to %d %sframes\n",
1121 			 ep->desc.bEndpointAddress,
1122 			 1 << interval,
1123 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1124 
1125 	if (udev->speed == USB_SPEED_FULL) {
1126 		/*
1127 		 * Full speed isoc endpoints specify interval in frames,
1128 		 * not microframes. We are using microframes everywhere,
1129 		 * so adjust accordingly.
1130 		 */
1131 		interval += 3;	/* 1 frame = 2^3 uframes */
1132 	}
1133 
1134 	return interval;
1135 }
1136 
1137 /*
1138  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1139  * microframes, rounded down to nearest power of 2.
1140  */
1141 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1142 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1143 		unsigned int min_exponent, unsigned int max_exponent)
1144 {
1145 	unsigned int interval;
1146 
1147 	interval = fls(desc_interval) - 1;
1148 	interval = clamp_val(interval, min_exponent, max_exponent);
1149 	if ((1 << interval) != desc_interval)
1150 		dev_warn(&udev->dev,
1151 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1152 			 ep->desc.bEndpointAddress,
1153 			 1 << interval,
1154 			 desc_interval);
1155 
1156 	return interval;
1157 }
1158 
1159 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1160 		struct usb_host_endpoint *ep)
1161 {
1162 	if (ep->desc.bInterval == 0)
1163 		return 0;
1164 	return xhci_microframes_to_exponent(udev, ep,
1165 			ep->desc.bInterval, 0, 15);
1166 }
1167 
1168 
1169 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1170 		struct usb_host_endpoint *ep)
1171 {
1172 	return xhci_microframes_to_exponent(udev, ep,
1173 			ep->desc.bInterval * 8, 3, 10);
1174 }
1175 
1176 /* Return the polling or NAK interval.
1177  *
1178  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1179  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1180  *
1181  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1182  * is set to 0.
1183  */
1184 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1185 		struct usb_host_endpoint *ep)
1186 {
1187 	unsigned int interval = 0;
1188 
1189 	switch (udev->speed) {
1190 	case USB_SPEED_HIGH:
1191 		/* Max NAK rate */
1192 		if (usb_endpoint_xfer_control(&ep->desc) ||
1193 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1194 			interval = xhci_parse_microframe_interval(udev, ep);
1195 			break;
1196 		}
1197 		/* Fall through - SS and HS isoc/int have same decoding */
1198 
1199 	case USB_SPEED_SUPER:
1200 		if (usb_endpoint_xfer_int(&ep->desc) ||
1201 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1202 			interval = xhci_parse_exponent_interval(udev, ep);
1203 		}
1204 		break;
1205 
1206 	case USB_SPEED_FULL:
1207 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1208 			interval = xhci_parse_exponent_interval(udev, ep);
1209 			break;
1210 		}
1211 		/*
1212 		 * Fall through for interrupt endpoint interval decoding
1213 		 * since it uses the same rules as low speed interrupt
1214 		 * endpoints.
1215 		 */
1216 
1217 	case USB_SPEED_LOW:
1218 		if (usb_endpoint_xfer_int(&ep->desc) ||
1219 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1220 
1221 			interval = xhci_parse_frame_interval(udev, ep);
1222 		}
1223 		break;
1224 
1225 	default:
1226 		BUG();
1227 	}
1228 	return EP_INTERVAL(interval);
1229 }
1230 
1231 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1232  * High speed endpoint descriptors can define "the number of additional
1233  * transaction opportunities per microframe", but that goes in the Max Burst
1234  * endpoint context field.
1235  */
1236 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1237 		struct usb_host_endpoint *ep)
1238 {
1239 	if (udev->speed != USB_SPEED_SUPER ||
1240 			!usb_endpoint_xfer_isoc(&ep->desc))
1241 		return 0;
1242 	return ep->ss_ep_comp.bmAttributes;
1243 }
1244 
1245 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1246 		struct usb_host_endpoint *ep)
1247 {
1248 	int in;
1249 	u32 type;
1250 
1251 	in = usb_endpoint_dir_in(&ep->desc);
1252 	if (usb_endpoint_xfer_control(&ep->desc)) {
1253 		type = EP_TYPE(CTRL_EP);
1254 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1255 		if (in)
1256 			type = EP_TYPE(BULK_IN_EP);
1257 		else
1258 			type = EP_TYPE(BULK_OUT_EP);
1259 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1260 		if (in)
1261 			type = EP_TYPE(ISOC_IN_EP);
1262 		else
1263 			type = EP_TYPE(ISOC_OUT_EP);
1264 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1265 		if (in)
1266 			type = EP_TYPE(INT_IN_EP);
1267 		else
1268 			type = EP_TYPE(INT_OUT_EP);
1269 	} else {
1270 		type = 0;
1271 	}
1272 	return type;
1273 }
1274 
1275 /* Return the maximum endpoint service interval time (ESIT) payload.
1276  * Basically, this is the maxpacket size, multiplied by the burst size
1277  * and mult size.
1278  */
1279 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1280 		struct usb_device *udev,
1281 		struct usb_host_endpoint *ep)
1282 {
1283 	int max_burst;
1284 	int max_packet;
1285 
1286 	/* Only applies for interrupt or isochronous endpoints */
1287 	if (usb_endpoint_xfer_control(&ep->desc) ||
1288 			usb_endpoint_xfer_bulk(&ep->desc))
1289 		return 0;
1290 
1291 	if (udev->speed == USB_SPEED_SUPER)
1292 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1293 
1294 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1295 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1296 	/* A 0 in max burst means 1 transfer per ESIT */
1297 	return max_packet * (max_burst + 1);
1298 }
1299 
1300 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1301  * Drivers will have to call usb_alloc_streams() to do that.
1302  */
1303 int xhci_endpoint_init(struct xhci_hcd *xhci,
1304 		struct xhci_virt_device *virt_dev,
1305 		struct usb_device *udev,
1306 		struct usb_host_endpoint *ep,
1307 		gfp_t mem_flags)
1308 {
1309 	unsigned int ep_index;
1310 	struct xhci_ep_ctx *ep_ctx;
1311 	struct xhci_ring *ep_ring;
1312 	unsigned int max_packet;
1313 	unsigned int max_burst;
1314 	enum xhci_ring_type type;
1315 	u32 max_esit_payload;
1316 	u32 endpoint_type;
1317 
1318 	ep_index = xhci_get_endpoint_index(&ep->desc);
1319 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1320 
1321 	endpoint_type = xhci_get_endpoint_type(udev, ep);
1322 	if (!endpoint_type)
1323 		return -EINVAL;
1324 	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1325 
1326 	type = usb_endpoint_type(&ep->desc);
1327 	/* Set up the endpoint ring */
1328 	virt_dev->eps[ep_index].new_ring =
1329 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1330 	if (!virt_dev->eps[ep_index].new_ring) {
1331 		/* Attempt to use the ring cache */
1332 		if (virt_dev->num_rings_cached == 0)
1333 			return -ENOMEM;
1334 		virt_dev->eps[ep_index].new_ring =
1335 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1336 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1337 		virt_dev->num_rings_cached--;
1338 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1339 					1, type);
1340 	}
1341 	virt_dev->eps[ep_index].skip = false;
1342 	ep_ring = virt_dev->eps[ep_index].new_ring;
1343 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1344 
1345 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1346 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1347 
1348 	/* FIXME dig Mult and streams info out of ep companion desc */
1349 
1350 	/* Allow 3 retries for everything but isoc;
1351 	 * CErr shall be set to 0 for Isoch endpoints.
1352 	 */
1353 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1354 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1355 	else
1356 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1357 
1358 	/* Set the max packet size and max burst */
1359 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1360 	max_burst = 0;
1361 	switch (udev->speed) {
1362 	case USB_SPEED_SUPER:
1363 		/* dig out max burst from ep companion desc */
1364 		max_burst = ep->ss_ep_comp.bMaxBurst;
1365 		break;
1366 	case USB_SPEED_HIGH:
1367 		/* Some devices get this wrong */
1368 		if (usb_endpoint_xfer_bulk(&ep->desc))
1369 			max_packet = 512;
1370 		/* bits 11:12 specify the number of additional transaction
1371 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1372 		 */
1373 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1374 				usb_endpoint_xfer_int(&ep->desc)) {
1375 			max_burst = (usb_endpoint_maxp(&ep->desc)
1376 				     & 0x1800) >> 11;
1377 		}
1378 		break;
1379 	case USB_SPEED_FULL:
1380 	case USB_SPEED_LOW:
1381 		break;
1382 	default:
1383 		BUG();
1384 	}
1385 	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1386 			MAX_BURST(max_burst));
1387 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1388 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1389 
1390 	/*
1391 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1392 	 * endpoints, as the driver gives us no clue how big each scatter gather
1393 	 * list entry (or buffer) is going to be.
1394 	 *
1395 	 * For isochronous and interrupt endpoints, we set it to the max
1396 	 * available, until we have new API in the USB core to allow drivers to
1397 	 * declare how much bandwidth they actually need.
1398 	 *
1399 	 * Normally, it would be calculated by taking the total of the buffer
1400 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1401 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1402 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1403 	 * transfers, we're basically dividing by 1.
1404 	 *
1405 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1406 	 * be set to 8 for control endpoints.
1407 	 */
1408 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1409 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1410 	else
1411 		ep_ctx->tx_info |=
1412 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1413 
1414 	/* FIXME Debug endpoint context */
1415 	return 0;
1416 }
1417 
1418 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1419 		struct xhci_virt_device *virt_dev,
1420 		struct usb_host_endpoint *ep)
1421 {
1422 	unsigned int ep_index;
1423 	struct xhci_ep_ctx *ep_ctx;
1424 
1425 	ep_index = xhci_get_endpoint_index(&ep->desc);
1426 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1427 
1428 	ep_ctx->ep_info = 0;
1429 	ep_ctx->ep_info2 = 0;
1430 	ep_ctx->deq = 0;
1431 	ep_ctx->tx_info = 0;
1432 	/* Don't free the endpoint ring until the set interface or configuration
1433 	 * request succeeds.
1434 	 */
1435 }
1436 
1437 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1438 {
1439 	bw_info->ep_interval = 0;
1440 	bw_info->mult = 0;
1441 	bw_info->num_packets = 0;
1442 	bw_info->max_packet_size = 0;
1443 	bw_info->type = 0;
1444 	bw_info->max_esit_payload = 0;
1445 }
1446 
1447 void xhci_update_bw_info(struct xhci_hcd *xhci,
1448 		struct xhci_container_ctx *in_ctx,
1449 		struct xhci_input_control_ctx *ctrl_ctx,
1450 		struct xhci_virt_device *virt_dev)
1451 {
1452 	struct xhci_bw_info *bw_info;
1453 	struct xhci_ep_ctx *ep_ctx;
1454 	unsigned int ep_type;
1455 	int i;
1456 
1457 	for (i = 1; i < 31; ++i) {
1458 		bw_info = &virt_dev->eps[i].bw_info;
1459 
1460 		/* We can't tell what endpoint type is being dropped, but
1461 		 * unconditionally clearing the bandwidth info for non-periodic
1462 		 * endpoints should be harmless because the info will never be
1463 		 * set in the first place.
1464 		 */
1465 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1466 			/* Dropped endpoint */
1467 			xhci_clear_endpoint_bw_info(bw_info);
1468 			continue;
1469 		}
1470 
1471 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1472 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1473 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1474 
1475 			/* Ignore non-periodic endpoints */
1476 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1477 					ep_type != ISOC_IN_EP &&
1478 					ep_type != INT_IN_EP)
1479 				continue;
1480 
1481 			/* Added or changed endpoint */
1482 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1483 					le32_to_cpu(ep_ctx->ep_info));
1484 			/* Number of packets and mult are zero-based in the
1485 			 * input context, but we want one-based for the
1486 			 * interval table.
1487 			 */
1488 			bw_info->mult = CTX_TO_EP_MULT(
1489 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1490 			bw_info->num_packets = CTX_TO_MAX_BURST(
1491 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1492 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1493 					le32_to_cpu(ep_ctx->ep_info2));
1494 			bw_info->type = ep_type;
1495 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1496 					le32_to_cpu(ep_ctx->tx_info));
1497 		}
1498 	}
1499 }
1500 
1501 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1502  * Useful when you want to change one particular aspect of the endpoint and then
1503  * issue a configure endpoint command.
1504  */
1505 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1506 		struct xhci_container_ctx *in_ctx,
1507 		struct xhci_container_ctx *out_ctx,
1508 		unsigned int ep_index)
1509 {
1510 	struct xhci_ep_ctx *out_ep_ctx;
1511 	struct xhci_ep_ctx *in_ep_ctx;
1512 
1513 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1514 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1515 
1516 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1517 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1518 	in_ep_ctx->deq = out_ep_ctx->deq;
1519 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1520 }
1521 
1522 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1523  * Useful when you want to change one particular aspect of the endpoint and then
1524  * issue a configure endpoint command.  Only the context entries field matters,
1525  * but we'll copy the whole thing anyway.
1526  */
1527 void xhci_slot_copy(struct xhci_hcd *xhci,
1528 		struct xhci_container_ctx *in_ctx,
1529 		struct xhci_container_ctx *out_ctx)
1530 {
1531 	struct xhci_slot_ctx *in_slot_ctx;
1532 	struct xhci_slot_ctx *out_slot_ctx;
1533 
1534 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1535 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1536 
1537 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1538 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1539 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1540 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1541 }
1542 
1543 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1544 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1545 {
1546 	int i;
1547 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1548 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1549 
1550 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1551 			"Allocating %d scratchpad buffers", num_sp);
1552 
1553 	if (!num_sp)
1554 		return 0;
1555 
1556 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1557 	if (!xhci->scratchpad)
1558 		goto fail_sp;
1559 
1560 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1561 				     num_sp * sizeof(u64),
1562 				     &xhci->scratchpad->sp_dma, flags);
1563 	if (!xhci->scratchpad->sp_array)
1564 		goto fail_sp2;
1565 
1566 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1567 	if (!xhci->scratchpad->sp_buffers)
1568 		goto fail_sp3;
1569 
1570 	xhci->scratchpad->sp_dma_buffers =
1571 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1572 
1573 	if (!xhci->scratchpad->sp_dma_buffers)
1574 		goto fail_sp4;
1575 
1576 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1577 	for (i = 0; i < num_sp; i++) {
1578 		dma_addr_t dma;
1579 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1580 				flags);
1581 		if (!buf)
1582 			goto fail_sp5;
1583 
1584 		xhci->scratchpad->sp_array[i] = dma;
1585 		xhci->scratchpad->sp_buffers[i] = buf;
1586 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1587 	}
1588 
1589 	return 0;
1590 
1591  fail_sp5:
1592 	for (i = i - 1; i >= 0; i--) {
1593 		dma_free_coherent(dev, xhci->page_size,
1594 				    xhci->scratchpad->sp_buffers[i],
1595 				    xhci->scratchpad->sp_dma_buffers[i]);
1596 	}
1597 	kfree(xhci->scratchpad->sp_dma_buffers);
1598 
1599  fail_sp4:
1600 	kfree(xhci->scratchpad->sp_buffers);
1601 
1602  fail_sp3:
1603 	dma_free_coherent(dev, num_sp * sizeof(u64),
1604 			    xhci->scratchpad->sp_array,
1605 			    xhci->scratchpad->sp_dma);
1606 
1607  fail_sp2:
1608 	kfree(xhci->scratchpad);
1609 	xhci->scratchpad = NULL;
1610 
1611  fail_sp:
1612 	return -ENOMEM;
1613 }
1614 
1615 static void scratchpad_free(struct xhci_hcd *xhci)
1616 {
1617 	int num_sp;
1618 	int i;
1619 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1620 
1621 	if (!xhci->scratchpad)
1622 		return;
1623 
1624 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1625 
1626 	for (i = 0; i < num_sp; i++) {
1627 		dma_free_coherent(dev, xhci->page_size,
1628 				    xhci->scratchpad->sp_buffers[i],
1629 				    xhci->scratchpad->sp_dma_buffers[i]);
1630 	}
1631 	kfree(xhci->scratchpad->sp_dma_buffers);
1632 	kfree(xhci->scratchpad->sp_buffers);
1633 	dma_free_coherent(dev, num_sp * sizeof(u64),
1634 			    xhci->scratchpad->sp_array,
1635 			    xhci->scratchpad->sp_dma);
1636 	kfree(xhci->scratchpad);
1637 	xhci->scratchpad = NULL;
1638 }
1639 
1640 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1641 		bool allocate_in_ctx, bool allocate_completion,
1642 		gfp_t mem_flags)
1643 {
1644 	struct xhci_command *command;
1645 
1646 	command = kzalloc(sizeof(*command), mem_flags);
1647 	if (!command)
1648 		return NULL;
1649 
1650 	if (allocate_in_ctx) {
1651 		command->in_ctx =
1652 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1653 					mem_flags);
1654 		if (!command->in_ctx) {
1655 			kfree(command);
1656 			return NULL;
1657 		}
1658 	}
1659 
1660 	if (allocate_completion) {
1661 		command->completion =
1662 			kzalloc(sizeof(struct completion), mem_flags);
1663 		if (!command->completion) {
1664 			xhci_free_container_ctx(xhci, command->in_ctx);
1665 			kfree(command);
1666 			return NULL;
1667 		}
1668 		init_completion(command->completion);
1669 	}
1670 
1671 	command->status = 0;
1672 	INIT_LIST_HEAD(&command->cmd_list);
1673 	return command;
1674 }
1675 
1676 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1677 {
1678 	if (urb_priv) {
1679 		kfree(urb_priv->td[0]);
1680 		kfree(urb_priv);
1681 	}
1682 }
1683 
1684 void xhci_free_command(struct xhci_hcd *xhci,
1685 		struct xhci_command *command)
1686 {
1687 	xhci_free_container_ctx(xhci,
1688 			command->in_ctx);
1689 	kfree(command->completion);
1690 	kfree(command);
1691 }
1692 
1693 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1694 {
1695 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1696 	struct xhci_cd  *cur_cd, *next_cd;
1697 	int size;
1698 	int i, j, num_ports;
1699 
1700 	/* Free the Event Ring Segment Table and the actual Event Ring */
1701 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1702 	if (xhci->erst.entries)
1703 		dma_free_coherent(dev, size,
1704 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1705 	xhci->erst.entries = NULL;
1706 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1707 	if (xhci->event_ring)
1708 		xhci_ring_free(xhci, xhci->event_ring);
1709 	xhci->event_ring = NULL;
1710 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1711 
1712 	if (xhci->lpm_command)
1713 		xhci_free_command(xhci, xhci->lpm_command);
1714 	xhci->cmd_ring_reserved_trbs = 0;
1715 	if (xhci->cmd_ring)
1716 		xhci_ring_free(xhci, xhci->cmd_ring);
1717 	xhci->cmd_ring = NULL;
1718 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1719 	list_for_each_entry_safe(cur_cd, next_cd,
1720 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1721 		list_del(&cur_cd->cancel_cmd_list);
1722 		kfree(cur_cd);
1723 	}
1724 
1725 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1726 		xhci_free_virt_device(xhci, i);
1727 
1728 	if (xhci->segment_pool)
1729 		dma_pool_destroy(xhci->segment_pool);
1730 	xhci->segment_pool = NULL;
1731 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1732 
1733 	if (xhci->device_pool)
1734 		dma_pool_destroy(xhci->device_pool);
1735 	xhci->device_pool = NULL;
1736 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1737 
1738 	if (xhci->small_streams_pool)
1739 		dma_pool_destroy(xhci->small_streams_pool);
1740 	xhci->small_streams_pool = NULL;
1741 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1742 			"Freed small stream array pool");
1743 
1744 	if (xhci->medium_streams_pool)
1745 		dma_pool_destroy(xhci->medium_streams_pool);
1746 	xhci->medium_streams_pool = NULL;
1747 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1748 			"Freed medium stream array pool");
1749 
1750 	if (xhci->dcbaa)
1751 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1752 				xhci->dcbaa, xhci->dcbaa->dma);
1753 	xhci->dcbaa = NULL;
1754 
1755 	scratchpad_free(xhci);
1756 
1757 	if (!xhci->rh_bw)
1758 		goto no_bw;
1759 
1760 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1761 	for (i = 0; i < num_ports; i++) {
1762 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1763 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1764 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1765 			while (!list_empty(ep))
1766 				list_del_init(ep->next);
1767 		}
1768 	}
1769 
1770 	for (i = 0; i < num_ports; i++) {
1771 		struct xhci_tt_bw_info *tt, *n;
1772 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1773 			list_del(&tt->tt_list);
1774 			kfree(tt);
1775 		}
1776 	}
1777 
1778 no_bw:
1779 	xhci->num_usb2_ports = 0;
1780 	xhci->num_usb3_ports = 0;
1781 	xhci->num_active_eps = 0;
1782 	kfree(xhci->usb2_ports);
1783 	kfree(xhci->usb3_ports);
1784 	kfree(xhci->port_array);
1785 	kfree(xhci->rh_bw);
1786 	kfree(xhci->ext_caps);
1787 
1788 	xhci->page_size = 0;
1789 	xhci->page_shift = 0;
1790 	xhci->bus_state[0].bus_suspended = 0;
1791 	xhci->bus_state[1].bus_suspended = 0;
1792 }
1793 
1794 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1795 		struct xhci_segment *input_seg,
1796 		union xhci_trb *start_trb,
1797 		union xhci_trb *end_trb,
1798 		dma_addr_t input_dma,
1799 		struct xhci_segment *result_seg,
1800 		char *test_name, int test_number)
1801 {
1802 	unsigned long long start_dma;
1803 	unsigned long long end_dma;
1804 	struct xhci_segment *seg;
1805 
1806 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1807 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1808 
1809 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1810 	if (seg != result_seg) {
1811 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1812 				test_name, test_number);
1813 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1814 				"input DMA 0x%llx\n",
1815 				input_seg,
1816 				(unsigned long long) input_dma);
1817 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1818 				"ending TRB %p (0x%llx DMA)\n",
1819 				start_trb, start_dma,
1820 				end_trb, end_dma);
1821 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1822 				result_seg, seg);
1823 		return -1;
1824 	}
1825 	return 0;
1826 }
1827 
1828 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1829 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1830 {
1831 	struct {
1832 		dma_addr_t		input_dma;
1833 		struct xhci_segment	*result_seg;
1834 	} simple_test_vector [] = {
1835 		/* A zeroed DMA field should fail */
1836 		{ 0, NULL },
1837 		/* One TRB before the ring start should fail */
1838 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1839 		/* One byte before the ring start should fail */
1840 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1841 		/* Starting TRB should succeed */
1842 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1843 		/* Ending TRB should succeed */
1844 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1845 			xhci->event_ring->first_seg },
1846 		/* One byte after the ring end should fail */
1847 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1848 		/* One TRB after the ring end should fail */
1849 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1850 		/* An address of all ones should fail */
1851 		{ (dma_addr_t) (~0), NULL },
1852 	};
1853 	struct {
1854 		struct xhci_segment	*input_seg;
1855 		union xhci_trb		*start_trb;
1856 		union xhci_trb		*end_trb;
1857 		dma_addr_t		input_dma;
1858 		struct xhci_segment	*result_seg;
1859 	} complex_test_vector [] = {
1860 		/* Test feeding a valid DMA address from a different ring */
1861 		{	.input_seg = xhci->event_ring->first_seg,
1862 			.start_trb = xhci->event_ring->first_seg->trbs,
1863 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1864 			.input_dma = xhci->cmd_ring->first_seg->dma,
1865 			.result_seg = NULL,
1866 		},
1867 		/* Test feeding a valid end TRB from a different ring */
1868 		{	.input_seg = xhci->event_ring->first_seg,
1869 			.start_trb = xhci->event_ring->first_seg->trbs,
1870 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1871 			.input_dma = xhci->cmd_ring->first_seg->dma,
1872 			.result_seg = NULL,
1873 		},
1874 		/* Test feeding a valid start and end TRB from a different ring */
1875 		{	.input_seg = xhci->event_ring->first_seg,
1876 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1877 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1878 			.input_dma = xhci->cmd_ring->first_seg->dma,
1879 			.result_seg = NULL,
1880 		},
1881 		/* TRB in this ring, but after this TD */
1882 		{	.input_seg = xhci->event_ring->first_seg,
1883 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1884 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1885 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1886 			.result_seg = NULL,
1887 		},
1888 		/* TRB in this ring, but before this TD */
1889 		{	.input_seg = xhci->event_ring->first_seg,
1890 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1891 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1892 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1893 			.result_seg = NULL,
1894 		},
1895 		/* TRB in this ring, but after this wrapped TD */
1896 		{	.input_seg = xhci->event_ring->first_seg,
1897 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1898 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1899 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1900 			.result_seg = NULL,
1901 		},
1902 		/* TRB in this ring, but before this wrapped TD */
1903 		{	.input_seg = xhci->event_ring->first_seg,
1904 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1905 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1906 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1907 			.result_seg = NULL,
1908 		},
1909 		/* TRB not in this ring, and we have a wrapped TD */
1910 		{	.input_seg = xhci->event_ring->first_seg,
1911 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1912 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1913 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1914 			.result_seg = NULL,
1915 		},
1916 	};
1917 
1918 	unsigned int num_tests;
1919 	int i, ret;
1920 
1921 	num_tests = ARRAY_SIZE(simple_test_vector);
1922 	for (i = 0; i < num_tests; i++) {
1923 		ret = xhci_test_trb_in_td(xhci,
1924 				xhci->event_ring->first_seg,
1925 				xhci->event_ring->first_seg->trbs,
1926 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1927 				simple_test_vector[i].input_dma,
1928 				simple_test_vector[i].result_seg,
1929 				"Simple", i);
1930 		if (ret < 0)
1931 			return ret;
1932 	}
1933 
1934 	num_tests = ARRAY_SIZE(complex_test_vector);
1935 	for (i = 0; i < num_tests; i++) {
1936 		ret = xhci_test_trb_in_td(xhci,
1937 				complex_test_vector[i].input_seg,
1938 				complex_test_vector[i].start_trb,
1939 				complex_test_vector[i].end_trb,
1940 				complex_test_vector[i].input_dma,
1941 				complex_test_vector[i].result_seg,
1942 				"Complex", i);
1943 		if (ret < 0)
1944 			return ret;
1945 	}
1946 	xhci_dbg(xhci, "TRB math tests passed.\n");
1947 	return 0;
1948 }
1949 
1950 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1951 {
1952 	u64 temp;
1953 	dma_addr_t deq;
1954 
1955 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1956 			xhci->event_ring->dequeue);
1957 	if (deq == 0 && !in_interrupt())
1958 		xhci_warn(xhci, "WARN something wrong with SW event ring "
1959 				"dequeue ptr.\n");
1960 	/* Update HC event ring dequeue pointer */
1961 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1962 	temp &= ERST_PTR_MASK;
1963 	/* Don't clear the EHB bit (which is RW1C) because
1964 	 * there might be more events to service.
1965 	 */
1966 	temp &= ~ERST_EHB;
1967 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1968 			"// Write event ring dequeue pointer, "
1969 			"preserving EHB bit");
1970 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1971 			&xhci->ir_set->erst_dequeue);
1972 }
1973 
1974 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1975 		__le32 __iomem *addr, u8 major_revision, int max_caps)
1976 {
1977 	u32 temp, port_offset, port_count;
1978 	int i;
1979 
1980 	if (major_revision > 0x03) {
1981 		xhci_warn(xhci, "Ignoring unknown port speed, "
1982 				"Ext Cap %p, revision = 0x%x\n",
1983 				addr, major_revision);
1984 		/* Ignoring port protocol we can't understand. FIXME */
1985 		return;
1986 	}
1987 
1988 	/* Port offset and count in the third dword, see section 7.2 */
1989 	temp = readl(addr + 2);
1990 	port_offset = XHCI_EXT_PORT_OFF(temp);
1991 	port_count = XHCI_EXT_PORT_COUNT(temp);
1992 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1993 			"Ext Cap %p, port offset = %u, "
1994 			"count = %u, revision = 0x%x",
1995 			addr, port_offset, port_count, major_revision);
1996 	/* Port count includes the current port offset */
1997 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1998 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1999 		return;
2000 
2001 	/* cache usb2 port capabilities */
2002 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2003 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2004 
2005 	/* Check the host's USB2 LPM capability */
2006 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2007 			(temp & XHCI_L1C)) {
2008 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2009 				"xHCI 0.96: support USB2 software lpm");
2010 		xhci->sw_lpm_support = 1;
2011 	}
2012 
2013 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2014 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2015 				"xHCI 1.0: support USB2 software lpm");
2016 		xhci->sw_lpm_support = 1;
2017 		if (temp & XHCI_HLC) {
2018 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2019 					"xHCI 1.0: support USB2 hardware lpm");
2020 			xhci->hw_lpm_support = 1;
2021 		}
2022 	}
2023 
2024 	port_offset--;
2025 	for (i = port_offset; i < (port_offset + port_count); i++) {
2026 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2027 		if (xhci->port_array[i] != 0) {
2028 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2029 					" port %u\n", addr, i);
2030 			xhci_warn(xhci, "Port was marked as USB %u, "
2031 					"duplicated as USB %u\n",
2032 					xhci->port_array[i], major_revision);
2033 			/* Only adjust the roothub port counts if we haven't
2034 			 * found a similar duplicate.
2035 			 */
2036 			if (xhci->port_array[i] != major_revision &&
2037 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2038 				if (xhci->port_array[i] == 0x03)
2039 					xhci->num_usb3_ports--;
2040 				else
2041 					xhci->num_usb2_ports--;
2042 				xhci->port_array[i] = DUPLICATE_ENTRY;
2043 			}
2044 			/* FIXME: Should we disable the port? */
2045 			continue;
2046 		}
2047 		xhci->port_array[i] = major_revision;
2048 		if (major_revision == 0x03)
2049 			xhci->num_usb3_ports++;
2050 		else
2051 			xhci->num_usb2_ports++;
2052 	}
2053 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2054 }
2055 
2056 /*
2057  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2058  * specify what speeds each port is supposed to be.  We can't count on the port
2059  * speed bits in the PORTSC register being correct until a device is connected,
2060  * but we need to set up the two fake roothubs with the correct number of USB
2061  * 3.0 and USB 2.0 ports at host controller initialization time.
2062  */
2063 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2064 {
2065 	__le32 __iomem *addr, *tmp_addr;
2066 	u32 offset, tmp_offset;
2067 	unsigned int num_ports;
2068 	int i, j, port_index;
2069 	int cap_count = 0;
2070 
2071 	addr = &xhci->cap_regs->hcc_params;
2072 	offset = XHCI_HCC_EXT_CAPS(readl(addr));
2073 	if (offset == 0) {
2074 		xhci_err(xhci, "No Extended Capability registers, "
2075 				"unable to set up roothub.\n");
2076 		return -ENODEV;
2077 	}
2078 
2079 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2080 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2081 	if (!xhci->port_array)
2082 		return -ENOMEM;
2083 
2084 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2085 	if (!xhci->rh_bw)
2086 		return -ENOMEM;
2087 	for (i = 0; i < num_ports; i++) {
2088 		struct xhci_interval_bw_table *bw_table;
2089 
2090 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2091 		bw_table = &xhci->rh_bw[i].bw_table;
2092 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2093 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2094 	}
2095 
2096 	/*
2097 	 * For whatever reason, the first capability offset is from the
2098 	 * capability register base, not from the HCCPARAMS register.
2099 	 * See section 5.3.6 for offset calculation.
2100 	 */
2101 	addr = &xhci->cap_regs->hc_capbase + offset;
2102 
2103 	tmp_addr = addr;
2104 	tmp_offset = offset;
2105 
2106 	/* count extended protocol capability entries for later caching */
2107 	do {
2108 		u32 cap_id;
2109 		cap_id = readl(tmp_addr);
2110 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2111 			cap_count++;
2112 		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2113 		tmp_addr += tmp_offset;
2114 	} while (tmp_offset);
2115 
2116 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2117 	if (!xhci->ext_caps)
2118 		return -ENOMEM;
2119 
2120 	while (1) {
2121 		u32 cap_id;
2122 
2123 		cap_id = readl(addr);
2124 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2125 			xhci_add_in_port(xhci, num_ports, addr,
2126 					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2127 					cap_count);
2128 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2129 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2130 				== num_ports)
2131 			break;
2132 		/*
2133 		 * Once you're into the Extended Capabilities, the offset is
2134 		 * always relative to the register holding the offset.
2135 		 */
2136 		addr += offset;
2137 	}
2138 
2139 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2140 		xhci_warn(xhci, "No ports on the roothubs?\n");
2141 		return -ENODEV;
2142 	}
2143 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2144 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2145 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2146 
2147 	/* Place limits on the number of roothub ports so that the hub
2148 	 * descriptors aren't longer than the USB core will allocate.
2149 	 */
2150 	if (xhci->num_usb3_ports > 15) {
2151 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2152 				"Limiting USB 3.0 roothub ports to 15.");
2153 		xhci->num_usb3_ports = 15;
2154 	}
2155 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2156 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2157 				"Limiting USB 2.0 roothub ports to %u.",
2158 				USB_MAXCHILDREN);
2159 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2160 	}
2161 
2162 	/*
2163 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2164 	 * Not sure how the USB core will handle a hub with no ports...
2165 	 */
2166 	if (xhci->num_usb2_ports) {
2167 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2168 				xhci->num_usb2_ports, flags);
2169 		if (!xhci->usb2_ports)
2170 			return -ENOMEM;
2171 
2172 		port_index = 0;
2173 		for (i = 0; i < num_ports; i++) {
2174 			if (xhci->port_array[i] == 0x03 ||
2175 					xhci->port_array[i] == 0 ||
2176 					xhci->port_array[i] == DUPLICATE_ENTRY)
2177 				continue;
2178 
2179 			xhci->usb2_ports[port_index] =
2180 				&xhci->op_regs->port_status_base +
2181 				NUM_PORT_REGS*i;
2182 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2183 					"USB 2.0 port at index %u, "
2184 					"addr = %p", i,
2185 					xhci->usb2_ports[port_index]);
2186 			port_index++;
2187 			if (port_index == xhci->num_usb2_ports)
2188 				break;
2189 		}
2190 	}
2191 	if (xhci->num_usb3_ports) {
2192 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2193 				xhci->num_usb3_ports, flags);
2194 		if (!xhci->usb3_ports)
2195 			return -ENOMEM;
2196 
2197 		port_index = 0;
2198 		for (i = 0; i < num_ports; i++)
2199 			if (xhci->port_array[i] == 0x03) {
2200 				xhci->usb3_ports[port_index] =
2201 					&xhci->op_regs->port_status_base +
2202 					NUM_PORT_REGS*i;
2203 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2204 						"USB 3.0 port at index %u, "
2205 						"addr = %p", i,
2206 						xhci->usb3_ports[port_index]);
2207 				port_index++;
2208 				if (port_index == xhci->num_usb3_ports)
2209 					break;
2210 			}
2211 	}
2212 	return 0;
2213 }
2214 
2215 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2216 {
2217 	dma_addr_t	dma;
2218 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2219 	unsigned int	val, val2;
2220 	u64		val_64;
2221 	struct xhci_segment	*seg;
2222 	u32 page_size, temp;
2223 	int i;
2224 
2225 	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2226 
2227 	page_size = readl(&xhci->op_regs->page_size);
2228 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2229 			"Supported page size register = 0x%x", page_size);
2230 	for (i = 0; i < 16; i++) {
2231 		if ((0x1 & page_size) != 0)
2232 			break;
2233 		page_size = page_size >> 1;
2234 	}
2235 	if (i < 16)
2236 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2237 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2238 	else
2239 		xhci_warn(xhci, "WARN: no supported page size\n");
2240 	/* Use 4K pages, since that's common and the minimum the HC supports */
2241 	xhci->page_shift = 12;
2242 	xhci->page_size = 1 << xhci->page_shift;
2243 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2244 			"HCD page size set to %iK", xhci->page_size / 1024);
2245 
2246 	/*
2247 	 * Program the Number of Device Slots Enabled field in the CONFIG
2248 	 * register with the max value of slots the HC can handle.
2249 	 */
2250 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2251 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2252 			"// xHC can handle at most %d device slots.", val);
2253 	val2 = readl(&xhci->op_regs->config_reg);
2254 	val |= (val2 & ~HCS_SLOTS_MASK);
2255 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2256 			"// Setting Max device slots reg = 0x%x.", val);
2257 	writel(val, &xhci->op_regs->config_reg);
2258 
2259 	/*
2260 	 * Section 5.4.8 - doorbell array must be
2261 	 * "physically contiguous and 64-byte (cache line) aligned".
2262 	 */
2263 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2264 			GFP_KERNEL);
2265 	if (!xhci->dcbaa)
2266 		goto fail;
2267 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2268 	xhci->dcbaa->dma = dma;
2269 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2270 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2271 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2272 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2273 
2274 	/*
2275 	 * Initialize the ring segment pool.  The ring must be a contiguous
2276 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2277 	 * however, the command ring segment needs 64-byte aligned segments,
2278 	 * so we pick the greater alignment need.
2279 	 */
2280 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2281 			TRB_SEGMENT_SIZE, 64, xhci->page_size);
2282 
2283 	/* See Table 46 and Note on Figure 55 */
2284 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2285 			2112, 64, xhci->page_size);
2286 	if (!xhci->segment_pool || !xhci->device_pool)
2287 		goto fail;
2288 
2289 	/* Linear stream context arrays don't have any boundary restrictions,
2290 	 * and only need to be 16-byte aligned.
2291 	 */
2292 	xhci->small_streams_pool =
2293 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2294 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2295 	xhci->medium_streams_pool =
2296 		dma_pool_create("xHCI 1KB stream ctx arrays",
2297 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2298 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2299 	 * will be allocated with dma_alloc_coherent()
2300 	 */
2301 
2302 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2303 		goto fail;
2304 
2305 	/* Set up the command ring to have one segments for now. */
2306 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2307 	if (!xhci->cmd_ring)
2308 		goto fail;
2309 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2310 			"Allocated command ring at %p", xhci->cmd_ring);
2311 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2312 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2313 
2314 	/* Set the address in the Command Ring Control register */
2315 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2316 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2317 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2318 		xhci->cmd_ring->cycle_state;
2319 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2320 			"// Setting command ring address to 0x%x", val);
2321 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2322 	xhci_dbg_cmd_ptrs(xhci);
2323 
2324 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2325 	if (!xhci->lpm_command)
2326 		goto fail;
2327 
2328 	/* Reserve one command ring TRB for disabling LPM.
2329 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2330 	 * disabling LPM, we only need to reserve one TRB for all devices.
2331 	 */
2332 	xhci->cmd_ring_reserved_trbs++;
2333 
2334 	val = readl(&xhci->cap_regs->db_off);
2335 	val &= DBOFF_MASK;
2336 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2337 			"// Doorbell array is located at offset 0x%x"
2338 			" from cap regs base addr", val);
2339 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2340 	xhci_dbg_regs(xhci);
2341 	xhci_print_run_regs(xhci);
2342 	/* Set ir_set to interrupt register set 0 */
2343 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2344 
2345 	/*
2346 	 * Event ring setup: Allocate a normal ring, but also setup
2347 	 * the event ring segment table (ERST).  Section 4.9.3.
2348 	 */
2349 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2350 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2351 						flags);
2352 	if (!xhci->event_ring)
2353 		goto fail;
2354 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2355 		goto fail;
2356 
2357 	xhci->erst.entries = dma_alloc_coherent(dev,
2358 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2359 			GFP_KERNEL);
2360 	if (!xhci->erst.entries)
2361 		goto fail;
2362 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2363 			"// Allocated event ring segment table at 0x%llx",
2364 			(unsigned long long)dma);
2365 
2366 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2367 	xhci->erst.num_entries = ERST_NUM_SEGS;
2368 	xhci->erst.erst_dma_addr = dma;
2369 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2370 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2371 			xhci->erst.num_entries,
2372 			xhci->erst.entries,
2373 			(unsigned long long)xhci->erst.erst_dma_addr);
2374 
2375 	/* set ring base address and size for each segment table entry */
2376 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2377 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2378 		entry->seg_addr = cpu_to_le64(seg->dma);
2379 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2380 		entry->rsvd = 0;
2381 		seg = seg->next;
2382 	}
2383 
2384 	/* set ERST count with the number of entries in the segment table */
2385 	val = readl(&xhci->ir_set->erst_size);
2386 	val &= ERST_SIZE_MASK;
2387 	val |= ERST_NUM_SEGS;
2388 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2389 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2390 			val);
2391 	writel(val, &xhci->ir_set->erst_size);
2392 
2393 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2394 			"// Set ERST entries to point to event ring.");
2395 	/* set the segment table base address */
2396 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397 			"// Set ERST base address for ir_set 0 = 0x%llx",
2398 			(unsigned long long)xhci->erst.erst_dma_addr);
2399 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2400 	val_64 &= ERST_PTR_MASK;
2401 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2402 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2403 
2404 	/* Set the event ring dequeue address */
2405 	xhci_set_hc_event_deq(xhci);
2406 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2407 			"Wrote ERST address to ir_set 0.");
2408 	xhci_print_ir_set(xhci, 0);
2409 
2410 	/*
2411 	 * XXX: Might need to set the Interrupter Moderation Register to
2412 	 * something other than the default (~1ms minimum between interrupts).
2413 	 * See section 5.5.1.2.
2414 	 */
2415 	init_completion(&xhci->addr_dev);
2416 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2417 		xhci->devs[i] = NULL;
2418 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2419 		xhci->bus_state[0].resume_done[i] = 0;
2420 		xhci->bus_state[1].resume_done[i] = 0;
2421 		/* Only the USB 2.0 completions will ever be used. */
2422 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2423 	}
2424 
2425 	if (scratchpad_alloc(xhci, flags))
2426 		goto fail;
2427 	if (xhci_setup_port_arrays(xhci, flags))
2428 		goto fail;
2429 
2430 	/* Enable USB 3.0 device notifications for function remote wake, which
2431 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2432 	 * U3 (device suspend).
2433 	 */
2434 	temp = readl(&xhci->op_regs->dev_notification);
2435 	temp &= ~DEV_NOTE_MASK;
2436 	temp |= DEV_NOTE_FWAKE;
2437 	writel(temp, &xhci->op_regs->dev_notification);
2438 
2439 	return 0;
2440 
2441 fail:
2442 	xhci_warn(xhci, "Couldn't initialize memory\n");
2443 	xhci_halt(xhci);
2444 	xhci_reset(xhci);
2445 	xhci_mem_cleanup(xhci);
2446 	return -ENOMEM;
2447 }
2448