xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision a06c488d)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					unsigned int cycle_state, gfp_t flags)
41 {
42 	struct xhci_segment *seg;
43 	dma_addr_t	dma;
44 	int		i;
45 
46 	seg = kzalloc(sizeof *seg, flags);
47 	if (!seg)
48 		return NULL;
49 
50 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
51 	if (!seg->trbs) {
52 		kfree(seg);
53 		return NULL;
54 	}
55 
56 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
57 	if (cycle_state == 0) {
58 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
59 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
60 	}
61 	seg->dma = dma;
62 	seg->next = NULL;
63 
64 	return seg;
65 }
66 
67 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
68 {
69 	if (seg->trbs) {
70 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
71 		seg->trbs = NULL;
72 	}
73 	kfree(seg);
74 }
75 
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 				struct xhci_segment *first)
78 {
79 	struct xhci_segment *seg;
80 
81 	seg = first->next;
82 	while (seg != first) {
83 		struct xhci_segment *next = seg->next;
84 		xhci_segment_free(xhci, seg);
85 		seg = next;
86 	}
87 	xhci_segment_free(xhci, first);
88 }
89 
90 /*
91  * Make the prev segment point to the next segment.
92  *
93  * Change the last TRB in the prev segment to be a Link TRB which points to the
94  * DMA address of the next segment.  The caller needs to set any Link TRB
95  * related flags, such as End TRB, Toggle Cycle, and no snoop.
96  */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 		struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 	u32 val;
101 
102 	if (!prev || !next)
103 		return;
104 	prev->next = next;
105 	if (type != TYPE_EVENT) {
106 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 			cpu_to_le64(next->dma);
108 
109 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 		val &= ~TRB_TYPE_BITMASK;
112 		val |= TRB_TYPE(TRB_LINK);
113 		/* Always set the chain bit with 0.95 hardware */
114 		/* Set chain bit for isoc rings on AMD 0.96 host */
115 		if (xhci_link_trb_quirk(xhci) ||
116 				(type == TYPE_ISOC &&
117 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 			val |= TRB_CHAIN;
119 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 	}
121 }
122 
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 		struct xhci_segment *first, struct xhci_segment *last,
129 		unsigned int num_segs)
130 {
131 	struct xhci_segment *next;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	next = ring->enq_seg->next;
137 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 	xhci_link_segments(xhci, last, next, ring->type);
139 	ring->num_segs += num_segs;
140 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141 
142 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 			&= ~cpu_to_le32(LINK_TOGGLE);
145 		last->trbs[TRBS_PER_SEGMENT-1].link.control
146 			|= cpu_to_le32(LINK_TOGGLE);
147 		ring->last_seg = last;
148 	}
149 }
150 
151 /*
152  * We need a radix tree for mapping physical addresses of TRBs to which stream
153  * ID they belong to.  We need to do this because the host controller won't tell
154  * us which stream ring the TRB came from.  We could store the stream ID in an
155  * event data TRB, but that doesn't help us for the cancellation case, since the
156  * endpoint may stop before it reaches that event data TRB.
157  *
158  * The radix tree maps the upper portion of the TRB DMA address to a ring
159  * segment that has the same upper portion of DMA addresses.  For example, say I
160  * have segments of size 1KB, that are always 1KB aligned.  A segment may
161  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
162  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
163  * pass the radix tree a key to get the right stream ID:
164  *
165  *	0x10c90fff >> 10 = 0x43243
166  *	0x10c912c0 >> 10 = 0x43244
167  *	0x10c91400 >> 10 = 0x43245
168  *
169  * Obviously, only those TRBs with DMA addresses that are within the segment
170  * will make the radix tree return the stream ID for that ring.
171  *
172  * Caveats for the radix tree:
173  *
174  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
175  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
177  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
179  * extended systems (where the DMA address can be bigger than 32-bits),
180  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
181  */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 		struct xhci_ring *ring,
184 		struct xhci_segment *seg,
185 		gfp_t mem_flags)
186 {
187 	unsigned long key;
188 	int ret;
189 
190 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 	/* Skip any segments that were already added. */
192 	if (radix_tree_lookup(trb_address_map, key))
193 		return 0;
194 
195 	ret = radix_tree_maybe_preload(mem_flags);
196 	if (ret)
197 		return ret;
198 	ret = radix_tree_insert(trb_address_map,
199 			key, ring);
200 	radix_tree_preload_end();
201 	return ret;
202 }
203 
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 		struct xhci_segment *seg)
206 {
207 	unsigned long key;
208 
209 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 	if (radix_tree_lookup(trb_address_map, key))
211 		radix_tree_delete(trb_address_map, key);
212 }
213 
214 static int xhci_update_stream_segment_mapping(
215 		struct radix_tree_root *trb_address_map,
216 		struct xhci_ring *ring,
217 		struct xhci_segment *first_seg,
218 		struct xhci_segment *last_seg,
219 		gfp_t mem_flags)
220 {
221 	struct xhci_segment *seg;
222 	struct xhci_segment *failed_seg;
223 	int ret;
224 
225 	if (WARN_ON_ONCE(trb_address_map == NULL))
226 		return 0;
227 
228 	seg = first_seg;
229 	do {
230 		ret = xhci_insert_segment_mapping(trb_address_map,
231 				ring, seg, mem_flags);
232 		if (ret)
233 			goto remove_streams;
234 		if (seg == last_seg)
235 			return 0;
236 		seg = seg->next;
237 	} while (seg != first_seg);
238 
239 	return 0;
240 
241 remove_streams:
242 	failed_seg = seg;
243 	seg = first_seg;
244 	do {
245 		xhci_remove_segment_mapping(trb_address_map, seg);
246 		if (seg == failed_seg)
247 			return ret;
248 		seg = seg->next;
249 	} while (seg != first_seg);
250 
251 	return ret;
252 }
253 
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256 	struct xhci_segment *seg;
257 
258 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 		return;
260 
261 	seg = ring->first_seg;
262 	do {
263 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 		seg = seg->next;
265 	} while (seg != ring->first_seg);
266 }
267 
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 			ring->first_seg, ring->last_seg, mem_flags);
272 }
273 
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 	if (!ring)
278 		return;
279 
280 	if (ring->first_seg) {
281 		if (ring->type == TYPE_STREAM)
282 			xhci_remove_stream_mapping(ring);
283 		xhci_free_segments_for_ring(xhci, ring->first_seg);
284 	}
285 
286 	kfree(ring);
287 }
288 
289 static void xhci_initialize_ring_info(struct xhci_ring *ring,
290 					unsigned int cycle_state)
291 {
292 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
293 	ring->enqueue = ring->first_seg->trbs;
294 	ring->enq_seg = ring->first_seg;
295 	ring->dequeue = ring->enqueue;
296 	ring->deq_seg = ring->first_seg;
297 	/* The ring is initialized to 0. The producer must write 1 to the cycle
298 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
299 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
300 	 *
301 	 * New rings are initialized with cycle state equal to 1; if we are
302 	 * handling ring expansion, set the cycle state equal to the old ring.
303 	 */
304 	ring->cycle_state = cycle_state;
305 	/* Not necessary for new rings, but needed for re-initialized rings */
306 	ring->enq_updates = 0;
307 	ring->deq_updates = 0;
308 
309 	/*
310 	 * Each segment has a link TRB, and leave an extra TRB for SW
311 	 * accounting purpose
312 	 */
313 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
314 }
315 
316 /* Allocate segments and link them for a ring */
317 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
318 		struct xhci_segment **first, struct xhci_segment **last,
319 		unsigned int num_segs, unsigned int cycle_state,
320 		enum xhci_ring_type type, gfp_t flags)
321 {
322 	struct xhci_segment *prev;
323 
324 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
325 	if (!prev)
326 		return -ENOMEM;
327 	num_segs--;
328 
329 	*first = prev;
330 	while (num_segs > 0) {
331 		struct xhci_segment	*next;
332 
333 		next = xhci_segment_alloc(xhci, cycle_state, flags);
334 		if (!next) {
335 			prev = *first;
336 			while (prev) {
337 				next = prev->next;
338 				xhci_segment_free(xhci, prev);
339 				prev = next;
340 			}
341 			return -ENOMEM;
342 		}
343 		xhci_link_segments(xhci, prev, next, type);
344 
345 		prev = next;
346 		num_segs--;
347 	}
348 	xhci_link_segments(xhci, prev, *first, type);
349 	*last = prev;
350 
351 	return 0;
352 }
353 
354 /**
355  * Create a new ring with zero or more segments.
356  *
357  * Link each segment together into a ring.
358  * Set the end flag and the cycle toggle bit on the last segment.
359  * See section 4.9.1 and figures 15 and 16.
360  */
361 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
362 		unsigned int num_segs, unsigned int cycle_state,
363 		enum xhci_ring_type type, gfp_t flags)
364 {
365 	struct xhci_ring	*ring;
366 	int ret;
367 
368 	ring = kzalloc(sizeof *(ring), flags);
369 	if (!ring)
370 		return NULL;
371 
372 	ring->num_segs = num_segs;
373 	INIT_LIST_HEAD(&ring->td_list);
374 	ring->type = type;
375 	if (num_segs == 0)
376 		return ring;
377 
378 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 			&ring->last_seg, num_segs, cycle_state, type, flags);
380 	if (ret)
381 		goto fail;
382 
383 	/* Only event ring does not use link TRB */
384 	if (type != TYPE_EVENT) {
385 		/* See section 4.9.2.1 and 6.4.4.1 */
386 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
387 			cpu_to_le32(LINK_TOGGLE);
388 	}
389 	xhci_initialize_ring_info(ring, cycle_state);
390 	return ring;
391 
392 fail:
393 	kfree(ring);
394 	return NULL;
395 }
396 
397 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
398 		struct xhci_virt_device *virt_dev,
399 		unsigned int ep_index)
400 {
401 	int rings_cached;
402 
403 	rings_cached = virt_dev->num_rings_cached;
404 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
405 		virt_dev->ring_cache[rings_cached] =
406 			virt_dev->eps[ep_index].ring;
407 		virt_dev->num_rings_cached++;
408 		xhci_dbg(xhci, "Cached old ring, "
409 				"%d ring%s cached\n",
410 				virt_dev->num_rings_cached,
411 				(virt_dev->num_rings_cached > 1) ? "s" : "");
412 	} else {
413 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
414 		xhci_dbg(xhci, "Ring cache full (%d rings), "
415 				"freeing ring\n",
416 				virt_dev->num_rings_cached);
417 	}
418 	virt_dev->eps[ep_index].ring = NULL;
419 }
420 
421 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
422  * pointers to the beginning of the ring.
423  */
424 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
425 			struct xhci_ring *ring, unsigned int cycle_state,
426 			enum xhci_ring_type type)
427 {
428 	struct xhci_segment	*seg = ring->first_seg;
429 	int i;
430 
431 	do {
432 		memset(seg->trbs, 0,
433 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
434 		if (cycle_state == 0) {
435 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
436 				seg->trbs[i].link.control |=
437 					cpu_to_le32(TRB_CYCLE);
438 		}
439 		/* All endpoint rings have link TRBs */
440 		xhci_link_segments(xhci, seg, seg->next, type);
441 		seg = seg->next;
442 	} while (seg != ring->first_seg);
443 	ring->type = type;
444 	xhci_initialize_ring_info(ring, cycle_state);
445 	/* td list should be empty since all URBs have been cancelled,
446 	 * but just in case...
447 	 */
448 	INIT_LIST_HEAD(&ring->td_list);
449 }
450 
451 /*
452  * Expand an existing ring.
453  * Look for a cached ring or allocate a new ring which has same segment numbers
454  * and link the two rings.
455  */
456 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
457 				unsigned int num_trbs, gfp_t flags)
458 {
459 	struct xhci_segment	*first;
460 	struct xhci_segment	*last;
461 	unsigned int		num_segs;
462 	unsigned int		num_segs_needed;
463 	int			ret;
464 
465 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
466 				(TRBS_PER_SEGMENT - 1);
467 
468 	/* Allocate number of segments we needed, or double the ring size */
469 	num_segs = ring->num_segs > num_segs_needed ?
470 			ring->num_segs : num_segs_needed;
471 
472 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
473 			num_segs, ring->cycle_state, ring->type, flags);
474 	if (ret)
475 		return -ENOMEM;
476 
477 	if (ring->type == TYPE_STREAM)
478 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
479 						ring, first, last, flags);
480 	if (ret) {
481 		struct xhci_segment *next;
482 		do {
483 			next = first->next;
484 			xhci_segment_free(xhci, first);
485 			if (first == last)
486 				break;
487 			first = next;
488 		} while (true);
489 		return ret;
490 	}
491 
492 	xhci_link_rings(xhci, ring, first, last, num_segs);
493 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
494 			"ring expansion succeed, now has %d segments",
495 			ring->num_segs);
496 
497 	return 0;
498 }
499 
500 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
501 
502 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
503 						    int type, gfp_t flags)
504 {
505 	struct xhci_container_ctx *ctx;
506 
507 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
508 		return NULL;
509 
510 	ctx = kzalloc(sizeof(*ctx), flags);
511 	if (!ctx)
512 		return NULL;
513 
514 	ctx->type = type;
515 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
516 	if (type == XHCI_CTX_TYPE_INPUT)
517 		ctx->size += CTX_SIZE(xhci->hcc_params);
518 
519 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
520 	if (!ctx->bytes) {
521 		kfree(ctx);
522 		return NULL;
523 	}
524 	return ctx;
525 }
526 
527 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
528 			     struct xhci_container_ctx *ctx)
529 {
530 	if (!ctx)
531 		return;
532 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
533 	kfree(ctx);
534 }
535 
536 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
537 					      struct xhci_container_ctx *ctx)
538 {
539 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
540 		return NULL;
541 
542 	return (struct xhci_input_control_ctx *)ctx->bytes;
543 }
544 
545 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
546 					struct xhci_container_ctx *ctx)
547 {
548 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
549 		return (struct xhci_slot_ctx *)ctx->bytes;
550 
551 	return (struct xhci_slot_ctx *)
552 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
553 }
554 
555 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
556 				    struct xhci_container_ctx *ctx,
557 				    unsigned int ep_index)
558 {
559 	/* increment ep index by offset of start of ep ctx array */
560 	ep_index++;
561 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
562 		ep_index++;
563 
564 	return (struct xhci_ep_ctx *)
565 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
566 }
567 
568 
569 /***************** Streams structures manipulation *************************/
570 
571 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
572 		unsigned int num_stream_ctxs,
573 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
574 {
575 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
576 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
577 
578 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
579 		dma_free_coherent(dev, size,
580 				stream_ctx, dma);
581 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
582 		return dma_pool_free(xhci->small_streams_pool,
583 				stream_ctx, dma);
584 	else
585 		return dma_pool_free(xhci->medium_streams_pool,
586 				stream_ctx, dma);
587 }
588 
589 /*
590  * The stream context array for each endpoint with bulk streams enabled can
591  * vary in size, based on:
592  *  - how many streams the endpoint supports,
593  *  - the maximum primary stream array size the host controller supports,
594  *  - and how many streams the device driver asks for.
595  *
596  * The stream context array must be a power of 2, and can be as small as
597  * 64 bytes or as large as 1MB.
598  */
599 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
600 		unsigned int num_stream_ctxs, dma_addr_t *dma,
601 		gfp_t mem_flags)
602 {
603 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
604 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
605 
606 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
607 		return dma_alloc_coherent(dev, size,
608 				dma, mem_flags);
609 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
610 		return dma_pool_alloc(xhci->small_streams_pool,
611 				mem_flags, dma);
612 	else
613 		return dma_pool_alloc(xhci->medium_streams_pool,
614 				mem_flags, dma);
615 }
616 
617 struct xhci_ring *xhci_dma_to_transfer_ring(
618 		struct xhci_virt_ep *ep,
619 		u64 address)
620 {
621 	if (ep->ep_state & EP_HAS_STREAMS)
622 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
623 				address >> TRB_SEGMENT_SHIFT);
624 	return ep->ring;
625 }
626 
627 struct xhci_ring *xhci_stream_id_to_ring(
628 		struct xhci_virt_device *dev,
629 		unsigned int ep_index,
630 		unsigned int stream_id)
631 {
632 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
633 
634 	if (stream_id == 0)
635 		return ep->ring;
636 	if (!ep->stream_info)
637 		return NULL;
638 
639 	if (stream_id > ep->stream_info->num_streams)
640 		return NULL;
641 	return ep->stream_info->stream_rings[stream_id];
642 }
643 
644 /*
645  * Change an endpoint's internal structure so it supports stream IDs.  The
646  * number of requested streams includes stream 0, which cannot be used by device
647  * drivers.
648  *
649  * The number of stream contexts in the stream context array may be bigger than
650  * the number of streams the driver wants to use.  This is because the number of
651  * stream context array entries must be a power of two.
652  */
653 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
654 		unsigned int num_stream_ctxs,
655 		unsigned int num_streams, gfp_t mem_flags)
656 {
657 	struct xhci_stream_info *stream_info;
658 	u32 cur_stream;
659 	struct xhci_ring *cur_ring;
660 	u64 addr;
661 	int ret;
662 
663 	xhci_dbg(xhci, "Allocating %u streams and %u "
664 			"stream context array entries.\n",
665 			num_streams, num_stream_ctxs);
666 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
667 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
668 		return NULL;
669 	}
670 	xhci->cmd_ring_reserved_trbs++;
671 
672 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
673 	if (!stream_info)
674 		goto cleanup_trbs;
675 
676 	stream_info->num_streams = num_streams;
677 	stream_info->num_stream_ctxs = num_stream_ctxs;
678 
679 	/* Initialize the array of virtual pointers to stream rings. */
680 	stream_info->stream_rings = kzalloc(
681 			sizeof(struct xhci_ring *)*num_streams,
682 			mem_flags);
683 	if (!stream_info->stream_rings)
684 		goto cleanup_info;
685 
686 	/* Initialize the array of DMA addresses for stream rings for the HW. */
687 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
688 			num_stream_ctxs, &stream_info->ctx_array_dma,
689 			mem_flags);
690 	if (!stream_info->stream_ctx_array)
691 		goto cleanup_ctx;
692 	memset(stream_info->stream_ctx_array, 0,
693 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
694 
695 	/* Allocate everything needed to free the stream rings later */
696 	stream_info->free_streams_command =
697 		xhci_alloc_command(xhci, true, true, mem_flags);
698 	if (!stream_info->free_streams_command)
699 		goto cleanup_ctx;
700 
701 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
702 
703 	/* Allocate rings for all the streams that the driver will use,
704 	 * and add their segment DMA addresses to the radix tree.
705 	 * Stream 0 is reserved.
706 	 */
707 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
708 		stream_info->stream_rings[cur_stream] =
709 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
710 		cur_ring = stream_info->stream_rings[cur_stream];
711 		if (!cur_ring)
712 			goto cleanup_rings;
713 		cur_ring->stream_id = cur_stream;
714 		cur_ring->trb_address_map = &stream_info->trb_address_map;
715 		/* Set deq ptr, cycle bit, and stream context type */
716 		addr = cur_ring->first_seg->dma |
717 			SCT_FOR_CTX(SCT_PRI_TR) |
718 			cur_ring->cycle_state;
719 		stream_info->stream_ctx_array[cur_stream].stream_ring =
720 			cpu_to_le64(addr);
721 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
722 				cur_stream, (unsigned long long) addr);
723 
724 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
725 		if (ret) {
726 			xhci_ring_free(xhci, cur_ring);
727 			stream_info->stream_rings[cur_stream] = NULL;
728 			goto cleanup_rings;
729 		}
730 	}
731 	/* Leave the other unused stream ring pointers in the stream context
732 	 * array initialized to zero.  This will cause the xHC to give us an
733 	 * error if the device asks for a stream ID we don't have setup (if it
734 	 * was any other way, the host controller would assume the ring is
735 	 * "empty" and wait forever for data to be queued to that stream ID).
736 	 */
737 
738 	return stream_info;
739 
740 cleanup_rings:
741 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
742 		cur_ring = stream_info->stream_rings[cur_stream];
743 		if (cur_ring) {
744 			xhci_ring_free(xhci, cur_ring);
745 			stream_info->stream_rings[cur_stream] = NULL;
746 		}
747 	}
748 	xhci_free_command(xhci, stream_info->free_streams_command);
749 cleanup_ctx:
750 	kfree(stream_info->stream_rings);
751 cleanup_info:
752 	kfree(stream_info);
753 cleanup_trbs:
754 	xhci->cmd_ring_reserved_trbs--;
755 	return NULL;
756 }
757 /*
758  * Sets the MaxPStreams field and the Linear Stream Array field.
759  * Sets the dequeue pointer to the stream context array.
760  */
761 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
762 		struct xhci_ep_ctx *ep_ctx,
763 		struct xhci_stream_info *stream_info)
764 {
765 	u32 max_primary_streams;
766 	/* MaxPStreams is the number of stream context array entries, not the
767 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
768 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
769 	 */
770 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
771 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
772 			"Setting number of stream ctx array entries to %u",
773 			1 << (max_primary_streams + 1));
774 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
775 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
776 				       | EP_HAS_LSA);
777 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
778 }
779 
780 /*
781  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
782  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
783  * not at the beginning of the ring).
784  */
785 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
786 		struct xhci_virt_ep *ep)
787 {
788 	dma_addr_t addr;
789 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
790 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
791 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
792 }
793 
794 /* Frees all stream contexts associated with the endpoint,
795  *
796  * Caller should fix the endpoint context streams fields.
797  */
798 void xhci_free_stream_info(struct xhci_hcd *xhci,
799 		struct xhci_stream_info *stream_info)
800 {
801 	int cur_stream;
802 	struct xhci_ring *cur_ring;
803 
804 	if (!stream_info)
805 		return;
806 
807 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
808 			cur_stream++) {
809 		cur_ring = stream_info->stream_rings[cur_stream];
810 		if (cur_ring) {
811 			xhci_ring_free(xhci, cur_ring);
812 			stream_info->stream_rings[cur_stream] = NULL;
813 		}
814 	}
815 	xhci_free_command(xhci, stream_info->free_streams_command);
816 	xhci->cmd_ring_reserved_trbs--;
817 	if (stream_info->stream_ctx_array)
818 		xhci_free_stream_ctx(xhci,
819 				stream_info->num_stream_ctxs,
820 				stream_info->stream_ctx_array,
821 				stream_info->ctx_array_dma);
822 
823 	kfree(stream_info->stream_rings);
824 	kfree(stream_info);
825 }
826 
827 
828 /***************** Device context manipulation *************************/
829 
830 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
831 		struct xhci_virt_ep *ep)
832 {
833 	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
834 		    (unsigned long)ep);
835 	ep->xhci = xhci;
836 }
837 
838 static void xhci_free_tt_info(struct xhci_hcd *xhci,
839 		struct xhci_virt_device *virt_dev,
840 		int slot_id)
841 {
842 	struct list_head *tt_list_head;
843 	struct xhci_tt_bw_info *tt_info, *next;
844 	bool slot_found = false;
845 
846 	/* If the device never made it past the Set Address stage,
847 	 * it may not have the real_port set correctly.
848 	 */
849 	if (virt_dev->real_port == 0 ||
850 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
851 		xhci_dbg(xhci, "Bad real port.\n");
852 		return;
853 	}
854 
855 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
856 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
857 		/* Multi-TT hubs will have more than one entry */
858 		if (tt_info->slot_id == slot_id) {
859 			slot_found = true;
860 			list_del(&tt_info->tt_list);
861 			kfree(tt_info);
862 		} else if (slot_found) {
863 			break;
864 		}
865 	}
866 }
867 
868 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
869 		struct xhci_virt_device *virt_dev,
870 		struct usb_device *hdev,
871 		struct usb_tt *tt, gfp_t mem_flags)
872 {
873 	struct xhci_tt_bw_info		*tt_info;
874 	unsigned int			num_ports;
875 	int				i, j;
876 
877 	if (!tt->multi)
878 		num_ports = 1;
879 	else
880 		num_ports = hdev->maxchild;
881 
882 	for (i = 0; i < num_ports; i++, tt_info++) {
883 		struct xhci_interval_bw_table *bw_table;
884 
885 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
886 		if (!tt_info)
887 			goto free_tts;
888 		INIT_LIST_HEAD(&tt_info->tt_list);
889 		list_add(&tt_info->tt_list,
890 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
891 		tt_info->slot_id = virt_dev->udev->slot_id;
892 		if (tt->multi)
893 			tt_info->ttport = i+1;
894 		bw_table = &tt_info->bw_table;
895 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
896 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
897 	}
898 	return 0;
899 
900 free_tts:
901 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
902 	return -ENOMEM;
903 }
904 
905 
906 /* All the xhci_tds in the ring's TD list should be freed at this point.
907  * Should be called with xhci->lock held if there is any chance the TT lists
908  * will be manipulated by the configure endpoint, allocate device, or update
909  * hub functions while this function is removing the TT entries from the list.
910  */
911 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
912 {
913 	struct xhci_virt_device *dev;
914 	int i;
915 	int old_active_eps = 0;
916 
917 	/* Slot ID 0 is reserved */
918 	if (slot_id == 0 || !xhci->devs[slot_id])
919 		return;
920 
921 	dev = xhci->devs[slot_id];
922 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
923 	if (!dev)
924 		return;
925 
926 	if (dev->tt_info)
927 		old_active_eps = dev->tt_info->active_eps;
928 
929 	for (i = 0; i < 31; ++i) {
930 		if (dev->eps[i].ring)
931 			xhci_ring_free(xhci, dev->eps[i].ring);
932 		if (dev->eps[i].stream_info)
933 			xhci_free_stream_info(xhci,
934 					dev->eps[i].stream_info);
935 		/* Endpoints on the TT/root port lists should have been removed
936 		 * when usb_disable_device() was called for the device.
937 		 * We can't drop them anyway, because the udev might have gone
938 		 * away by this point, and we can't tell what speed it was.
939 		 */
940 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
941 			xhci_warn(xhci, "Slot %u endpoint %u "
942 					"not removed from BW list!\n",
943 					slot_id, i);
944 	}
945 	/* If this is a hub, free the TT(s) from the TT list */
946 	xhci_free_tt_info(xhci, dev, slot_id);
947 	/* If necessary, update the number of active TTs on this root port */
948 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
949 
950 	if (dev->ring_cache) {
951 		for (i = 0; i < dev->num_rings_cached; i++)
952 			xhci_ring_free(xhci, dev->ring_cache[i]);
953 		kfree(dev->ring_cache);
954 	}
955 
956 	if (dev->in_ctx)
957 		xhci_free_container_ctx(xhci, dev->in_ctx);
958 	if (dev->out_ctx)
959 		xhci_free_container_ctx(xhci, dev->out_ctx);
960 
961 	kfree(xhci->devs[slot_id]);
962 	xhci->devs[slot_id] = NULL;
963 }
964 
965 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
966 		struct usb_device *udev, gfp_t flags)
967 {
968 	struct xhci_virt_device *dev;
969 	int i;
970 
971 	/* Slot ID 0 is reserved */
972 	if (slot_id == 0 || xhci->devs[slot_id]) {
973 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
974 		return 0;
975 	}
976 
977 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
978 	if (!xhci->devs[slot_id])
979 		return 0;
980 	dev = xhci->devs[slot_id];
981 
982 	/* Allocate the (output) device context that will be used in the HC. */
983 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
984 	if (!dev->out_ctx)
985 		goto fail;
986 
987 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
988 			(unsigned long long)dev->out_ctx->dma);
989 
990 	/* Allocate the (input) device context for address device command */
991 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
992 	if (!dev->in_ctx)
993 		goto fail;
994 
995 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
996 			(unsigned long long)dev->in_ctx->dma);
997 
998 	/* Initialize the cancellation list and watchdog timers for each ep */
999 	for (i = 0; i < 31; i++) {
1000 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1001 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1002 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1003 	}
1004 
1005 	/* Allocate endpoint 0 ring */
1006 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1007 	if (!dev->eps[0].ring)
1008 		goto fail;
1009 
1010 	/* Allocate pointers to the ring cache */
1011 	dev->ring_cache = kzalloc(
1012 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1013 			flags);
1014 	if (!dev->ring_cache)
1015 		goto fail;
1016 	dev->num_rings_cached = 0;
1017 
1018 	init_completion(&dev->cmd_completion);
1019 	dev->udev = udev;
1020 
1021 	/* Point to output device context in dcbaa. */
1022 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1023 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1024 		 slot_id,
1025 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1026 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1027 
1028 	return 1;
1029 fail:
1030 	xhci_free_virt_device(xhci, slot_id);
1031 	return 0;
1032 }
1033 
1034 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1035 		struct usb_device *udev)
1036 {
1037 	struct xhci_virt_device *virt_dev;
1038 	struct xhci_ep_ctx	*ep0_ctx;
1039 	struct xhci_ring	*ep_ring;
1040 
1041 	virt_dev = xhci->devs[udev->slot_id];
1042 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1043 	ep_ring = virt_dev->eps[0].ring;
1044 	/*
1045 	 * FIXME we don't keep track of the dequeue pointer very well after a
1046 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1047 	 * host to our enqueue pointer.  This should only be called after a
1048 	 * configured device has reset, so all control transfers should have
1049 	 * been completed or cancelled before the reset.
1050 	 */
1051 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1052 							ep_ring->enqueue)
1053 				   | ep_ring->cycle_state);
1054 }
1055 
1056 /*
1057  * The xHCI roothub may have ports of differing speeds in any order in the port
1058  * status registers.  xhci->port_array provides an array of the port speed for
1059  * each offset into the port status registers.
1060  *
1061  * The xHCI hardware wants to know the roothub port number that the USB device
1062  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1063  * know is the index of that port under either the USB 2.0 or the USB 3.0
1064  * roothub, but that doesn't give us the real index into the HW port status
1065  * registers. Call xhci_find_raw_port_number() to get real index.
1066  */
1067 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1068 		struct usb_device *udev)
1069 {
1070 	struct usb_device *top_dev;
1071 	struct usb_hcd *hcd;
1072 
1073 	if (udev->speed == USB_SPEED_SUPER)
1074 		hcd = xhci->shared_hcd;
1075 	else
1076 		hcd = xhci->main_hcd;
1077 
1078 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1079 			top_dev = top_dev->parent)
1080 		/* Found device below root hub */;
1081 
1082 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1083 }
1084 
1085 /* Setup an xHCI virtual device for a Set Address command */
1086 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1087 {
1088 	struct xhci_virt_device *dev;
1089 	struct xhci_ep_ctx	*ep0_ctx;
1090 	struct xhci_slot_ctx    *slot_ctx;
1091 	u32			port_num;
1092 	u32			max_packets;
1093 	struct usb_device *top_dev;
1094 
1095 	dev = xhci->devs[udev->slot_id];
1096 	/* Slot ID 0 is reserved */
1097 	if (udev->slot_id == 0 || !dev) {
1098 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1099 				udev->slot_id);
1100 		return -EINVAL;
1101 	}
1102 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1103 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1104 
1105 	/* 3) Only the control endpoint is valid - one endpoint context */
1106 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1107 	switch (udev->speed) {
1108 	case USB_SPEED_SUPER:
1109 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1110 		max_packets = MAX_PACKET(512);
1111 		break;
1112 	case USB_SPEED_HIGH:
1113 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1114 		max_packets = MAX_PACKET(64);
1115 		break;
1116 	/* USB core guesses at a 64-byte max packet first for FS devices */
1117 	case USB_SPEED_FULL:
1118 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1119 		max_packets = MAX_PACKET(64);
1120 		break;
1121 	case USB_SPEED_LOW:
1122 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1123 		max_packets = MAX_PACKET(8);
1124 		break;
1125 	case USB_SPEED_WIRELESS:
1126 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1127 		return -EINVAL;
1128 		break;
1129 	default:
1130 		/* Speed was set earlier, this shouldn't happen. */
1131 		return -EINVAL;
1132 	}
1133 	/* Find the root hub port this device is under */
1134 	port_num = xhci_find_real_port_number(xhci, udev);
1135 	if (!port_num)
1136 		return -EINVAL;
1137 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1138 	/* Set the port number in the virtual_device to the faked port number */
1139 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1140 			top_dev = top_dev->parent)
1141 		/* Found device below root hub */;
1142 	dev->fake_port = top_dev->portnum;
1143 	dev->real_port = port_num;
1144 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1145 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1146 
1147 	/* Find the right bandwidth table that this device will be a part of.
1148 	 * If this is a full speed device attached directly to a root port (or a
1149 	 * decendent of one), it counts as a primary bandwidth domain, not a
1150 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1151 	 * will never be created for the HS root hub.
1152 	 */
1153 	if (!udev->tt || !udev->tt->hub->parent) {
1154 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1155 	} else {
1156 		struct xhci_root_port_bw_info *rh_bw;
1157 		struct xhci_tt_bw_info *tt_bw;
1158 
1159 		rh_bw = &xhci->rh_bw[port_num - 1];
1160 		/* Find the right TT. */
1161 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1162 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1163 				continue;
1164 
1165 			if (!dev->udev->tt->multi ||
1166 					(udev->tt->multi &&
1167 					 tt_bw->ttport == dev->udev->ttport)) {
1168 				dev->bw_table = &tt_bw->bw_table;
1169 				dev->tt_info = tt_bw;
1170 				break;
1171 			}
1172 		}
1173 		if (!dev->tt_info)
1174 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1175 	}
1176 
1177 	/* Is this a LS/FS device under an external HS hub? */
1178 	if (udev->tt && udev->tt->hub->parent) {
1179 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1180 						(udev->ttport << 8));
1181 		if (udev->tt->multi)
1182 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1183 	}
1184 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1185 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1186 
1187 	/* Step 4 - ring already allocated */
1188 	/* Step 5 */
1189 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1190 
1191 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1192 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1193 					 max_packets);
1194 
1195 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1196 				   dev->eps[0].ring->cycle_state);
1197 
1198 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1199 
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Convert interval expressed as 2^(bInterval - 1) == interval into
1205  * straight exponent value 2^n == interval.
1206  *
1207  */
1208 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1209 		struct usb_host_endpoint *ep)
1210 {
1211 	unsigned int interval;
1212 
1213 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1214 	if (interval != ep->desc.bInterval - 1)
1215 		dev_warn(&udev->dev,
1216 			 "ep %#x - rounding interval to %d %sframes\n",
1217 			 ep->desc.bEndpointAddress,
1218 			 1 << interval,
1219 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1220 
1221 	if (udev->speed == USB_SPEED_FULL) {
1222 		/*
1223 		 * Full speed isoc endpoints specify interval in frames,
1224 		 * not microframes. We are using microframes everywhere,
1225 		 * so adjust accordingly.
1226 		 */
1227 		interval += 3;	/* 1 frame = 2^3 uframes */
1228 	}
1229 
1230 	return interval;
1231 }
1232 
1233 /*
1234  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1235  * microframes, rounded down to nearest power of 2.
1236  */
1237 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1238 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1239 		unsigned int min_exponent, unsigned int max_exponent)
1240 {
1241 	unsigned int interval;
1242 
1243 	interval = fls(desc_interval) - 1;
1244 	interval = clamp_val(interval, min_exponent, max_exponent);
1245 	if ((1 << interval) != desc_interval)
1246 		dev_dbg(&udev->dev,
1247 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1248 			 ep->desc.bEndpointAddress,
1249 			 1 << interval,
1250 			 desc_interval);
1251 
1252 	return interval;
1253 }
1254 
1255 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1256 		struct usb_host_endpoint *ep)
1257 {
1258 	if (ep->desc.bInterval == 0)
1259 		return 0;
1260 	return xhci_microframes_to_exponent(udev, ep,
1261 			ep->desc.bInterval, 0, 15);
1262 }
1263 
1264 
1265 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1266 		struct usb_host_endpoint *ep)
1267 {
1268 	return xhci_microframes_to_exponent(udev, ep,
1269 			ep->desc.bInterval * 8, 3, 10);
1270 }
1271 
1272 /* Return the polling or NAK interval.
1273  *
1274  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1275  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1276  *
1277  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1278  * is set to 0.
1279  */
1280 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1281 		struct usb_host_endpoint *ep)
1282 {
1283 	unsigned int interval = 0;
1284 
1285 	switch (udev->speed) {
1286 	case USB_SPEED_HIGH:
1287 		/* Max NAK rate */
1288 		if (usb_endpoint_xfer_control(&ep->desc) ||
1289 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1290 			interval = xhci_parse_microframe_interval(udev, ep);
1291 			break;
1292 		}
1293 		/* Fall through - SS and HS isoc/int have same decoding */
1294 
1295 	case USB_SPEED_SUPER:
1296 		if (usb_endpoint_xfer_int(&ep->desc) ||
1297 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1298 			interval = xhci_parse_exponent_interval(udev, ep);
1299 		}
1300 		break;
1301 
1302 	case USB_SPEED_FULL:
1303 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1304 			interval = xhci_parse_exponent_interval(udev, ep);
1305 			break;
1306 		}
1307 		/*
1308 		 * Fall through for interrupt endpoint interval decoding
1309 		 * since it uses the same rules as low speed interrupt
1310 		 * endpoints.
1311 		 */
1312 
1313 	case USB_SPEED_LOW:
1314 		if (usb_endpoint_xfer_int(&ep->desc) ||
1315 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1316 
1317 			interval = xhci_parse_frame_interval(udev, ep);
1318 		}
1319 		break;
1320 
1321 	default:
1322 		BUG();
1323 	}
1324 	return EP_INTERVAL(interval);
1325 }
1326 
1327 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1328  * High speed endpoint descriptors can define "the number of additional
1329  * transaction opportunities per microframe", but that goes in the Max Burst
1330  * endpoint context field.
1331  */
1332 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1333 		struct usb_host_endpoint *ep)
1334 {
1335 	if (udev->speed != USB_SPEED_SUPER ||
1336 			!usb_endpoint_xfer_isoc(&ep->desc))
1337 		return 0;
1338 	return ep->ss_ep_comp.bmAttributes;
1339 }
1340 
1341 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1342 {
1343 	int in;
1344 	u32 type;
1345 
1346 	in = usb_endpoint_dir_in(&ep->desc);
1347 	if (usb_endpoint_xfer_control(&ep->desc)) {
1348 		type = EP_TYPE(CTRL_EP);
1349 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1350 		if (in)
1351 			type = EP_TYPE(BULK_IN_EP);
1352 		else
1353 			type = EP_TYPE(BULK_OUT_EP);
1354 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1355 		if (in)
1356 			type = EP_TYPE(ISOC_IN_EP);
1357 		else
1358 			type = EP_TYPE(ISOC_OUT_EP);
1359 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1360 		if (in)
1361 			type = EP_TYPE(INT_IN_EP);
1362 		else
1363 			type = EP_TYPE(INT_OUT_EP);
1364 	} else {
1365 		type = 0;
1366 	}
1367 	return type;
1368 }
1369 
1370 /* Return the maximum endpoint service interval time (ESIT) payload.
1371  * Basically, this is the maxpacket size, multiplied by the burst size
1372  * and mult size.
1373  */
1374 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1375 		struct usb_host_endpoint *ep)
1376 {
1377 	int max_burst;
1378 	int max_packet;
1379 
1380 	/* Only applies for interrupt or isochronous endpoints */
1381 	if (usb_endpoint_xfer_control(&ep->desc) ||
1382 			usb_endpoint_xfer_bulk(&ep->desc))
1383 		return 0;
1384 
1385 	if (udev->speed == USB_SPEED_SUPER)
1386 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1387 
1388 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1389 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1390 	/* A 0 in max burst means 1 transfer per ESIT */
1391 	return max_packet * (max_burst + 1);
1392 }
1393 
1394 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1395  * Drivers will have to call usb_alloc_streams() to do that.
1396  */
1397 int xhci_endpoint_init(struct xhci_hcd *xhci,
1398 		struct xhci_virt_device *virt_dev,
1399 		struct usb_device *udev,
1400 		struct usb_host_endpoint *ep,
1401 		gfp_t mem_flags)
1402 {
1403 	unsigned int ep_index;
1404 	struct xhci_ep_ctx *ep_ctx;
1405 	struct xhci_ring *ep_ring;
1406 	unsigned int max_packet;
1407 	unsigned int max_burst;
1408 	enum xhci_ring_type type;
1409 	u32 max_esit_payload;
1410 	u32 endpoint_type;
1411 
1412 	ep_index = xhci_get_endpoint_index(&ep->desc);
1413 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1414 
1415 	endpoint_type = xhci_get_endpoint_type(ep);
1416 	if (!endpoint_type)
1417 		return -EINVAL;
1418 	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1419 
1420 	type = usb_endpoint_type(&ep->desc);
1421 	/* Set up the endpoint ring */
1422 	virt_dev->eps[ep_index].new_ring =
1423 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1424 	if (!virt_dev->eps[ep_index].new_ring) {
1425 		/* Attempt to use the ring cache */
1426 		if (virt_dev->num_rings_cached == 0)
1427 			return -ENOMEM;
1428 		virt_dev->num_rings_cached--;
1429 		virt_dev->eps[ep_index].new_ring =
1430 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1431 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1432 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1433 					1, type);
1434 	}
1435 	virt_dev->eps[ep_index].skip = false;
1436 	ep_ring = virt_dev->eps[ep_index].new_ring;
1437 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1438 
1439 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1440 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1441 
1442 	/* FIXME dig Mult and streams info out of ep companion desc */
1443 
1444 	/* Allow 3 retries for everything but isoc;
1445 	 * CErr shall be set to 0 for Isoch endpoints.
1446 	 */
1447 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1448 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1449 	else
1450 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1451 
1452 	/* Set the max packet size and max burst */
1453 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1454 	max_burst = 0;
1455 	switch (udev->speed) {
1456 	case USB_SPEED_SUPER:
1457 		/* dig out max burst from ep companion desc */
1458 		max_burst = ep->ss_ep_comp.bMaxBurst;
1459 		break;
1460 	case USB_SPEED_HIGH:
1461 		/* Some devices get this wrong */
1462 		if (usb_endpoint_xfer_bulk(&ep->desc))
1463 			max_packet = 512;
1464 		/* bits 11:12 specify the number of additional transaction
1465 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1466 		 */
1467 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1468 				usb_endpoint_xfer_int(&ep->desc)) {
1469 			max_burst = (usb_endpoint_maxp(&ep->desc)
1470 				     & 0x1800) >> 11;
1471 		}
1472 		break;
1473 	case USB_SPEED_FULL:
1474 	case USB_SPEED_LOW:
1475 		break;
1476 	default:
1477 		BUG();
1478 	}
1479 	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1480 			MAX_BURST(max_burst));
1481 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1482 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1483 
1484 	/*
1485 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1486 	 * endpoints, as the driver gives us no clue how big each scatter gather
1487 	 * list entry (or buffer) is going to be.
1488 	 *
1489 	 * For isochronous and interrupt endpoints, we set it to the max
1490 	 * available, until we have new API in the USB core to allow drivers to
1491 	 * declare how much bandwidth they actually need.
1492 	 *
1493 	 * Normally, it would be calculated by taking the total of the buffer
1494 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1495 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1496 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1497 	 * transfers, we're basically dividing by 1.
1498 	 *
1499 	 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1500 	 * should be set to 8 for control endpoints.
1501 	 */
1502 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1503 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1504 	else
1505 		ep_ctx->tx_info |=
1506 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1507 
1508 	/* FIXME Debug endpoint context */
1509 	return 0;
1510 }
1511 
1512 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1513 		struct xhci_virt_device *virt_dev,
1514 		struct usb_host_endpoint *ep)
1515 {
1516 	unsigned int ep_index;
1517 	struct xhci_ep_ctx *ep_ctx;
1518 
1519 	ep_index = xhci_get_endpoint_index(&ep->desc);
1520 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1521 
1522 	ep_ctx->ep_info = 0;
1523 	ep_ctx->ep_info2 = 0;
1524 	ep_ctx->deq = 0;
1525 	ep_ctx->tx_info = 0;
1526 	/* Don't free the endpoint ring until the set interface or configuration
1527 	 * request succeeds.
1528 	 */
1529 }
1530 
1531 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1532 {
1533 	bw_info->ep_interval = 0;
1534 	bw_info->mult = 0;
1535 	bw_info->num_packets = 0;
1536 	bw_info->max_packet_size = 0;
1537 	bw_info->type = 0;
1538 	bw_info->max_esit_payload = 0;
1539 }
1540 
1541 void xhci_update_bw_info(struct xhci_hcd *xhci,
1542 		struct xhci_container_ctx *in_ctx,
1543 		struct xhci_input_control_ctx *ctrl_ctx,
1544 		struct xhci_virt_device *virt_dev)
1545 {
1546 	struct xhci_bw_info *bw_info;
1547 	struct xhci_ep_ctx *ep_ctx;
1548 	unsigned int ep_type;
1549 	int i;
1550 
1551 	for (i = 1; i < 31; ++i) {
1552 		bw_info = &virt_dev->eps[i].bw_info;
1553 
1554 		/* We can't tell what endpoint type is being dropped, but
1555 		 * unconditionally clearing the bandwidth info for non-periodic
1556 		 * endpoints should be harmless because the info will never be
1557 		 * set in the first place.
1558 		 */
1559 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1560 			/* Dropped endpoint */
1561 			xhci_clear_endpoint_bw_info(bw_info);
1562 			continue;
1563 		}
1564 
1565 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1566 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1567 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1568 
1569 			/* Ignore non-periodic endpoints */
1570 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1571 					ep_type != ISOC_IN_EP &&
1572 					ep_type != INT_IN_EP)
1573 				continue;
1574 
1575 			/* Added or changed endpoint */
1576 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1577 					le32_to_cpu(ep_ctx->ep_info));
1578 			/* Number of packets and mult are zero-based in the
1579 			 * input context, but we want one-based for the
1580 			 * interval table.
1581 			 */
1582 			bw_info->mult = CTX_TO_EP_MULT(
1583 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1584 			bw_info->num_packets = CTX_TO_MAX_BURST(
1585 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1586 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1587 					le32_to_cpu(ep_ctx->ep_info2));
1588 			bw_info->type = ep_type;
1589 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1590 					le32_to_cpu(ep_ctx->tx_info));
1591 		}
1592 	}
1593 }
1594 
1595 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1596  * Useful when you want to change one particular aspect of the endpoint and then
1597  * issue a configure endpoint command.
1598  */
1599 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1600 		struct xhci_container_ctx *in_ctx,
1601 		struct xhci_container_ctx *out_ctx,
1602 		unsigned int ep_index)
1603 {
1604 	struct xhci_ep_ctx *out_ep_ctx;
1605 	struct xhci_ep_ctx *in_ep_ctx;
1606 
1607 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1608 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1609 
1610 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1611 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1612 	in_ep_ctx->deq = out_ep_ctx->deq;
1613 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1614 }
1615 
1616 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1617  * Useful when you want to change one particular aspect of the endpoint and then
1618  * issue a configure endpoint command.  Only the context entries field matters,
1619  * but we'll copy the whole thing anyway.
1620  */
1621 void xhci_slot_copy(struct xhci_hcd *xhci,
1622 		struct xhci_container_ctx *in_ctx,
1623 		struct xhci_container_ctx *out_ctx)
1624 {
1625 	struct xhci_slot_ctx *in_slot_ctx;
1626 	struct xhci_slot_ctx *out_slot_ctx;
1627 
1628 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1629 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1630 
1631 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1632 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1633 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1634 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1635 }
1636 
1637 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1638 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1639 {
1640 	int i;
1641 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1642 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1643 
1644 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1645 			"Allocating %d scratchpad buffers", num_sp);
1646 
1647 	if (!num_sp)
1648 		return 0;
1649 
1650 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1651 	if (!xhci->scratchpad)
1652 		goto fail_sp;
1653 
1654 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1655 				     num_sp * sizeof(u64),
1656 				     &xhci->scratchpad->sp_dma, flags);
1657 	if (!xhci->scratchpad->sp_array)
1658 		goto fail_sp2;
1659 
1660 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1661 	if (!xhci->scratchpad->sp_buffers)
1662 		goto fail_sp3;
1663 
1664 	xhci->scratchpad->sp_dma_buffers =
1665 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1666 
1667 	if (!xhci->scratchpad->sp_dma_buffers)
1668 		goto fail_sp4;
1669 
1670 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1671 	for (i = 0; i < num_sp; i++) {
1672 		dma_addr_t dma;
1673 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1674 				flags);
1675 		if (!buf)
1676 			goto fail_sp5;
1677 
1678 		xhci->scratchpad->sp_array[i] = dma;
1679 		xhci->scratchpad->sp_buffers[i] = buf;
1680 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1681 	}
1682 
1683 	return 0;
1684 
1685  fail_sp5:
1686 	for (i = i - 1; i >= 0; i--) {
1687 		dma_free_coherent(dev, xhci->page_size,
1688 				    xhci->scratchpad->sp_buffers[i],
1689 				    xhci->scratchpad->sp_dma_buffers[i]);
1690 	}
1691 	kfree(xhci->scratchpad->sp_dma_buffers);
1692 
1693  fail_sp4:
1694 	kfree(xhci->scratchpad->sp_buffers);
1695 
1696  fail_sp3:
1697 	dma_free_coherent(dev, num_sp * sizeof(u64),
1698 			    xhci->scratchpad->sp_array,
1699 			    xhci->scratchpad->sp_dma);
1700 
1701  fail_sp2:
1702 	kfree(xhci->scratchpad);
1703 	xhci->scratchpad = NULL;
1704 
1705  fail_sp:
1706 	return -ENOMEM;
1707 }
1708 
1709 static void scratchpad_free(struct xhci_hcd *xhci)
1710 {
1711 	int num_sp;
1712 	int i;
1713 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1714 
1715 	if (!xhci->scratchpad)
1716 		return;
1717 
1718 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1719 
1720 	for (i = 0; i < num_sp; i++) {
1721 		dma_free_coherent(dev, xhci->page_size,
1722 				    xhci->scratchpad->sp_buffers[i],
1723 				    xhci->scratchpad->sp_dma_buffers[i]);
1724 	}
1725 	kfree(xhci->scratchpad->sp_dma_buffers);
1726 	kfree(xhci->scratchpad->sp_buffers);
1727 	dma_free_coherent(dev, num_sp * sizeof(u64),
1728 			    xhci->scratchpad->sp_array,
1729 			    xhci->scratchpad->sp_dma);
1730 	kfree(xhci->scratchpad);
1731 	xhci->scratchpad = NULL;
1732 }
1733 
1734 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1735 		bool allocate_in_ctx, bool allocate_completion,
1736 		gfp_t mem_flags)
1737 {
1738 	struct xhci_command *command;
1739 
1740 	command = kzalloc(sizeof(*command), mem_flags);
1741 	if (!command)
1742 		return NULL;
1743 
1744 	if (allocate_in_ctx) {
1745 		command->in_ctx =
1746 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1747 					mem_flags);
1748 		if (!command->in_ctx) {
1749 			kfree(command);
1750 			return NULL;
1751 		}
1752 	}
1753 
1754 	if (allocate_completion) {
1755 		command->completion =
1756 			kzalloc(sizeof(struct completion), mem_flags);
1757 		if (!command->completion) {
1758 			xhci_free_container_ctx(xhci, command->in_ctx);
1759 			kfree(command);
1760 			return NULL;
1761 		}
1762 		init_completion(command->completion);
1763 	}
1764 
1765 	command->status = 0;
1766 	INIT_LIST_HEAD(&command->cmd_list);
1767 	return command;
1768 }
1769 
1770 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1771 {
1772 	if (urb_priv) {
1773 		kfree(urb_priv->td[0]);
1774 		kfree(urb_priv);
1775 	}
1776 }
1777 
1778 void xhci_free_command(struct xhci_hcd *xhci,
1779 		struct xhci_command *command)
1780 {
1781 	xhci_free_container_ctx(xhci,
1782 			command->in_ctx);
1783 	kfree(command->completion);
1784 	kfree(command);
1785 }
1786 
1787 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1788 {
1789 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1790 	int size;
1791 	int i, j, num_ports;
1792 
1793 	del_timer_sync(&xhci->cmd_timer);
1794 
1795 	/* Free the Event Ring Segment Table and the actual Event Ring */
1796 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1797 	if (xhci->erst.entries)
1798 		dma_free_coherent(dev, size,
1799 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1800 	xhci->erst.entries = NULL;
1801 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1802 	if (xhci->event_ring)
1803 		xhci_ring_free(xhci, xhci->event_ring);
1804 	xhci->event_ring = NULL;
1805 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1806 
1807 	if (xhci->lpm_command)
1808 		xhci_free_command(xhci, xhci->lpm_command);
1809 	xhci->lpm_command = NULL;
1810 	if (xhci->cmd_ring)
1811 		xhci_ring_free(xhci, xhci->cmd_ring);
1812 	xhci->cmd_ring = NULL;
1813 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1814 	xhci_cleanup_command_queue(xhci);
1815 
1816 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1817 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1818 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1819 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1820 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1821 			while (!list_empty(ep))
1822 				list_del_init(ep->next);
1823 		}
1824 	}
1825 
1826 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1827 		xhci_free_virt_device(xhci, i);
1828 
1829 	dma_pool_destroy(xhci->segment_pool);
1830 	xhci->segment_pool = NULL;
1831 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1832 
1833 	dma_pool_destroy(xhci->device_pool);
1834 	xhci->device_pool = NULL;
1835 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1836 
1837 	dma_pool_destroy(xhci->small_streams_pool);
1838 	xhci->small_streams_pool = NULL;
1839 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1840 			"Freed small stream array pool");
1841 
1842 	dma_pool_destroy(xhci->medium_streams_pool);
1843 	xhci->medium_streams_pool = NULL;
1844 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1845 			"Freed medium stream array pool");
1846 
1847 	if (xhci->dcbaa)
1848 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1849 				xhci->dcbaa, xhci->dcbaa->dma);
1850 	xhci->dcbaa = NULL;
1851 
1852 	scratchpad_free(xhci);
1853 
1854 	if (!xhci->rh_bw)
1855 		goto no_bw;
1856 
1857 	for (i = 0; i < num_ports; i++) {
1858 		struct xhci_tt_bw_info *tt, *n;
1859 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1860 			list_del(&tt->tt_list);
1861 			kfree(tt);
1862 		}
1863 	}
1864 
1865 no_bw:
1866 	xhci->cmd_ring_reserved_trbs = 0;
1867 	xhci->num_usb2_ports = 0;
1868 	xhci->num_usb3_ports = 0;
1869 	xhci->num_active_eps = 0;
1870 	kfree(xhci->usb2_ports);
1871 	kfree(xhci->usb3_ports);
1872 	kfree(xhci->port_array);
1873 	kfree(xhci->rh_bw);
1874 	kfree(xhci->ext_caps);
1875 
1876 	xhci->page_size = 0;
1877 	xhci->page_shift = 0;
1878 	xhci->bus_state[0].bus_suspended = 0;
1879 	xhci->bus_state[1].bus_suspended = 0;
1880 }
1881 
1882 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1883 		struct xhci_segment *input_seg,
1884 		union xhci_trb *start_trb,
1885 		union xhci_trb *end_trb,
1886 		dma_addr_t input_dma,
1887 		struct xhci_segment *result_seg,
1888 		char *test_name, int test_number)
1889 {
1890 	unsigned long long start_dma;
1891 	unsigned long long end_dma;
1892 	struct xhci_segment *seg;
1893 
1894 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1895 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1896 
1897 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1898 	if (seg != result_seg) {
1899 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1900 				test_name, test_number);
1901 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1902 				"input DMA 0x%llx\n",
1903 				input_seg,
1904 				(unsigned long long) input_dma);
1905 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1906 				"ending TRB %p (0x%llx DMA)\n",
1907 				start_trb, start_dma,
1908 				end_trb, end_dma);
1909 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1910 				result_seg, seg);
1911 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1912 			  true);
1913 		return -1;
1914 	}
1915 	return 0;
1916 }
1917 
1918 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1919 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1920 {
1921 	struct {
1922 		dma_addr_t		input_dma;
1923 		struct xhci_segment	*result_seg;
1924 	} simple_test_vector [] = {
1925 		/* A zeroed DMA field should fail */
1926 		{ 0, NULL },
1927 		/* One TRB before the ring start should fail */
1928 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1929 		/* One byte before the ring start should fail */
1930 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1931 		/* Starting TRB should succeed */
1932 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1933 		/* Ending TRB should succeed */
1934 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1935 			xhci->event_ring->first_seg },
1936 		/* One byte after the ring end should fail */
1937 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1938 		/* One TRB after the ring end should fail */
1939 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1940 		/* An address of all ones should fail */
1941 		{ (dma_addr_t) (~0), NULL },
1942 	};
1943 	struct {
1944 		struct xhci_segment	*input_seg;
1945 		union xhci_trb		*start_trb;
1946 		union xhci_trb		*end_trb;
1947 		dma_addr_t		input_dma;
1948 		struct xhci_segment	*result_seg;
1949 	} complex_test_vector [] = {
1950 		/* Test feeding a valid DMA address from a different ring */
1951 		{	.input_seg = xhci->event_ring->first_seg,
1952 			.start_trb = xhci->event_ring->first_seg->trbs,
1953 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1954 			.input_dma = xhci->cmd_ring->first_seg->dma,
1955 			.result_seg = NULL,
1956 		},
1957 		/* Test feeding a valid end TRB from a different ring */
1958 		{	.input_seg = xhci->event_ring->first_seg,
1959 			.start_trb = xhci->event_ring->first_seg->trbs,
1960 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1961 			.input_dma = xhci->cmd_ring->first_seg->dma,
1962 			.result_seg = NULL,
1963 		},
1964 		/* Test feeding a valid start and end TRB from a different ring */
1965 		{	.input_seg = xhci->event_ring->first_seg,
1966 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1967 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1968 			.input_dma = xhci->cmd_ring->first_seg->dma,
1969 			.result_seg = NULL,
1970 		},
1971 		/* TRB in this ring, but after this TD */
1972 		{	.input_seg = xhci->event_ring->first_seg,
1973 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1974 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1975 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1976 			.result_seg = NULL,
1977 		},
1978 		/* TRB in this ring, but before this TD */
1979 		{	.input_seg = xhci->event_ring->first_seg,
1980 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1981 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1982 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1983 			.result_seg = NULL,
1984 		},
1985 		/* TRB in this ring, but after this wrapped TD */
1986 		{	.input_seg = xhci->event_ring->first_seg,
1987 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1988 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1989 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1990 			.result_seg = NULL,
1991 		},
1992 		/* TRB in this ring, but before this wrapped TD */
1993 		{	.input_seg = xhci->event_ring->first_seg,
1994 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1995 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1996 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1997 			.result_seg = NULL,
1998 		},
1999 		/* TRB not in this ring, and we have a wrapped TD */
2000 		{	.input_seg = xhci->event_ring->first_seg,
2001 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2002 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2003 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2004 			.result_seg = NULL,
2005 		},
2006 	};
2007 
2008 	unsigned int num_tests;
2009 	int i, ret;
2010 
2011 	num_tests = ARRAY_SIZE(simple_test_vector);
2012 	for (i = 0; i < num_tests; i++) {
2013 		ret = xhci_test_trb_in_td(xhci,
2014 				xhci->event_ring->first_seg,
2015 				xhci->event_ring->first_seg->trbs,
2016 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2017 				simple_test_vector[i].input_dma,
2018 				simple_test_vector[i].result_seg,
2019 				"Simple", i);
2020 		if (ret < 0)
2021 			return ret;
2022 	}
2023 
2024 	num_tests = ARRAY_SIZE(complex_test_vector);
2025 	for (i = 0; i < num_tests; i++) {
2026 		ret = xhci_test_trb_in_td(xhci,
2027 				complex_test_vector[i].input_seg,
2028 				complex_test_vector[i].start_trb,
2029 				complex_test_vector[i].end_trb,
2030 				complex_test_vector[i].input_dma,
2031 				complex_test_vector[i].result_seg,
2032 				"Complex", i);
2033 		if (ret < 0)
2034 			return ret;
2035 	}
2036 	xhci_dbg(xhci, "TRB math tests passed.\n");
2037 	return 0;
2038 }
2039 
2040 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2041 {
2042 	u64 temp;
2043 	dma_addr_t deq;
2044 
2045 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2046 			xhci->event_ring->dequeue);
2047 	if (deq == 0 && !in_interrupt())
2048 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2049 				"dequeue ptr.\n");
2050 	/* Update HC event ring dequeue pointer */
2051 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2052 	temp &= ERST_PTR_MASK;
2053 	/* Don't clear the EHB bit (which is RW1C) because
2054 	 * there might be more events to service.
2055 	 */
2056 	temp &= ~ERST_EHB;
2057 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2058 			"// Write event ring dequeue pointer, "
2059 			"preserving EHB bit");
2060 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2061 			&xhci->ir_set->erst_dequeue);
2062 }
2063 
2064 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2065 		__le32 __iomem *addr, int max_caps)
2066 {
2067 	u32 temp, port_offset, port_count;
2068 	int i;
2069 	u8 major_revision;
2070 	struct xhci_hub *rhub;
2071 
2072 	temp = readl(addr);
2073 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2074 
2075 	if (major_revision == 0x03) {
2076 		rhub = &xhci->usb3_rhub;
2077 	} else if (major_revision <= 0x02) {
2078 		rhub = &xhci->usb2_rhub;
2079 	} else {
2080 		xhci_warn(xhci, "Ignoring unknown port speed, "
2081 				"Ext Cap %p, revision = 0x%x\n",
2082 				addr, major_revision);
2083 		/* Ignoring port protocol we can't understand. FIXME */
2084 		return;
2085 	}
2086 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2087 	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2088 
2089 	/* Port offset and count in the third dword, see section 7.2 */
2090 	temp = readl(addr + 2);
2091 	port_offset = XHCI_EXT_PORT_OFF(temp);
2092 	port_count = XHCI_EXT_PORT_COUNT(temp);
2093 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2094 			"Ext Cap %p, port offset = %u, "
2095 			"count = %u, revision = 0x%x",
2096 			addr, port_offset, port_count, major_revision);
2097 	/* Port count includes the current port offset */
2098 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2099 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2100 		return;
2101 
2102 	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2103 	if (rhub->psi_count) {
2104 		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2105 				    GFP_KERNEL);
2106 		if (!rhub->psi)
2107 			rhub->psi_count = 0;
2108 
2109 		rhub->psi_uid_count++;
2110 		for (i = 0; i < rhub->psi_count; i++) {
2111 			rhub->psi[i] = readl(addr + 4 + i);
2112 
2113 			/* count unique ID values, two consecutive entries can
2114 			 * have the same ID if link is assymetric
2115 			 */
2116 			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2117 				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2118 				rhub->psi_uid_count++;
2119 
2120 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2121 				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2122 				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2123 				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2124 				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2125 				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2126 				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2127 		}
2128 	}
2129 	/* cache usb2 port capabilities */
2130 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2131 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2132 
2133 	/* Check the host's USB2 LPM capability */
2134 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2135 			(temp & XHCI_L1C)) {
2136 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2137 				"xHCI 0.96: support USB2 software lpm");
2138 		xhci->sw_lpm_support = 1;
2139 	}
2140 
2141 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2142 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2143 				"xHCI 1.0: support USB2 software lpm");
2144 		xhci->sw_lpm_support = 1;
2145 		if (temp & XHCI_HLC) {
2146 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2147 					"xHCI 1.0: support USB2 hardware lpm");
2148 			xhci->hw_lpm_support = 1;
2149 		}
2150 	}
2151 
2152 	port_offset--;
2153 	for (i = port_offset; i < (port_offset + port_count); i++) {
2154 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2155 		if (xhci->port_array[i] != 0) {
2156 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2157 					" port %u\n", addr, i);
2158 			xhci_warn(xhci, "Port was marked as USB %u, "
2159 					"duplicated as USB %u\n",
2160 					xhci->port_array[i], major_revision);
2161 			/* Only adjust the roothub port counts if we haven't
2162 			 * found a similar duplicate.
2163 			 */
2164 			if (xhci->port_array[i] != major_revision &&
2165 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2166 				if (xhci->port_array[i] == 0x03)
2167 					xhci->num_usb3_ports--;
2168 				else
2169 					xhci->num_usb2_ports--;
2170 				xhci->port_array[i] = DUPLICATE_ENTRY;
2171 			}
2172 			/* FIXME: Should we disable the port? */
2173 			continue;
2174 		}
2175 		xhci->port_array[i] = major_revision;
2176 		if (major_revision == 0x03)
2177 			xhci->num_usb3_ports++;
2178 		else
2179 			xhci->num_usb2_ports++;
2180 	}
2181 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2182 }
2183 
2184 /*
2185  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2186  * specify what speeds each port is supposed to be.  We can't count on the port
2187  * speed bits in the PORTSC register being correct until a device is connected,
2188  * but we need to set up the two fake roothubs with the correct number of USB
2189  * 3.0 and USB 2.0 ports at host controller initialization time.
2190  */
2191 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2192 {
2193 	void __iomem *base;
2194 	u32 offset;
2195 	unsigned int num_ports;
2196 	int i, j, port_index;
2197 	int cap_count = 0;
2198 	u32 cap_start;
2199 
2200 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2201 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2202 	if (!xhci->port_array)
2203 		return -ENOMEM;
2204 
2205 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2206 	if (!xhci->rh_bw)
2207 		return -ENOMEM;
2208 	for (i = 0; i < num_ports; i++) {
2209 		struct xhci_interval_bw_table *bw_table;
2210 
2211 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2212 		bw_table = &xhci->rh_bw[i].bw_table;
2213 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2214 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2215 	}
2216 	base = &xhci->cap_regs->hc_capbase;
2217 
2218 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2219 	if (!cap_start) {
2220 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2221 		return -ENODEV;
2222 	}
2223 
2224 	offset = cap_start;
2225 	/* count extended protocol capability entries for later caching */
2226 	while (offset) {
2227 		cap_count++;
2228 		offset = xhci_find_next_ext_cap(base, offset,
2229 						      XHCI_EXT_CAPS_PROTOCOL);
2230 	}
2231 
2232 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2233 	if (!xhci->ext_caps)
2234 		return -ENOMEM;
2235 
2236 	offset = cap_start;
2237 
2238 	while (offset) {
2239 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2240 		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2241 			break;
2242 		offset = xhci_find_next_ext_cap(base, offset,
2243 						XHCI_EXT_CAPS_PROTOCOL);
2244 	}
2245 
2246 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2247 		xhci_warn(xhci, "No ports on the roothubs?\n");
2248 		return -ENODEV;
2249 	}
2250 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2251 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2252 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2253 
2254 	/* Place limits on the number of roothub ports so that the hub
2255 	 * descriptors aren't longer than the USB core will allocate.
2256 	 */
2257 	if (xhci->num_usb3_ports > 15) {
2258 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2259 				"Limiting USB 3.0 roothub ports to 15.");
2260 		xhci->num_usb3_ports = 15;
2261 	}
2262 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2263 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2264 				"Limiting USB 2.0 roothub ports to %u.",
2265 				USB_MAXCHILDREN);
2266 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2267 	}
2268 
2269 	/*
2270 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2271 	 * Not sure how the USB core will handle a hub with no ports...
2272 	 */
2273 	if (xhci->num_usb2_ports) {
2274 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2275 				xhci->num_usb2_ports, flags);
2276 		if (!xhci->usb2_ports)
2277 			return -ENOMEM;
2278 
2279 		port_index = 0;
2280 		for (i = 0; i < num_ports; i++) {
2281 			if (xhci->port_array[i] == 0x03 ||
2282 					xhci->port_array[i] == 0 ||
2283 					xhci->port_array[i] == DUPLICATE_ENTRY)
2284 				continue;
2285 
2286 			xhci->usb2_ports[port_index] =
2287 				&xhci->op_regs->port_status_base +
2288 				NUM_PORT_REGS*i;
2289 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2290 					"USB 2.0 port at index %u, "
2291 					"addr = %p", i,
2292 					xhci->usb2_ports[port_index]);
2293 			port_index++;
2294 			if (port_index == xhci->num_usb2_ports)
2295 				break;
2296 		}
2297 	}
2298 	if (xhci->num_usb3_ports) {
2299 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2300 				xhci->num_usb3_ports, flags);
2301 		if (!xhci->usb3_ports)
2302 			return -ENOMEM;
2303 
2304 		port_index = 0;
2305 		for (i = 0; i < num_ports; i++)
2306 			if (xhci->port_array[i] == 0x03) {
2307 				xhci->usb3_ports[port_index] =
2308 					&xhci->op_regs->port_status_base +
2309 					NUM_PORT_REGS*i;
2310 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2311 						"USB 3.0 port at index %u, "
2312 						"addr = %p", i,
2313 						xhci->usb3_ports[port_index]);
2314 				port_index++;
2315 				if (port_index == xhci->num_usb3_ports)
2316 					break;
2317 			}
2318 	}
2319 	return 0;
2320 }
2321 
2322 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2323 {
2324 	dma_addr_t	dma;
2325 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2326 	unsigned int	val, val2;
2327 	u64		val_64;
2328 	struct xhci_segment	*seg;
2329 	u32 page_size, temp;
2330 	int i;
2331 
2332 	INIT_LIST_HEAD(&xhci->cmd_list);
2333 
2334 	/* init command timeout timer */
2335 	setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2336 		    (unsigned long)xhci);
2337 
2338 	page_size = readl(&xhci->op_regs->page_size);
2339 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2340 			"Supported page size register = 0x%x", page_size);
2341 	for (i = 0; i < 16; i++) {
2342 		if ((0x1 & page_size) != 0)
2343 			break;
2344 		page_size = page_size >> 1;
2345 	}
2346 	if (i < 16)
2347 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2348 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2349 	else
2350 		xhci_warn(xhci, "WARN: no supported page size\n");
2351 	/* Use 4K pages, since that's common and the minimum the HC supports */
2352 	xhci->page_shift = 12;
2353 	xhci->page_size = 1 << xhci->page_shift;
2354 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355 			"HCD page size set to %iK", xhci->page_size / 1024);
2356 
2357 	/*
2358 	 * Program the Number of Device Slots Enabled field in the CONFIG
2359 	 * register with the max value of slots the HC can handle.
2360 	 */
2361 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2362 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2363 			"// xHC can handle at most %d device slots.", val);
2364 	val2 = readl(&xhci->op_regs->config_reg);
2365 	val |= (val2 & ~HCS_SLOTS_MASK);
2366 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2367 			"// Setting Max device slots reg = 0x%x.", val);
2368 	writel(val, &xhci->op_regs->config_reg);
2369 
2370 	/*
2371 	 * Section 5.4.8 - doorbell array must be
2372 	 * "physically contiguous and 64-byte (cache line) aligned".
2373 	 */
2374 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2375 			GFP_KERNEL);
2376 	if (!xhci->dcbaa)
2377 		goto fail;
2378 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2379 	xhci->dcbaa->dma = dma;
2380 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2381 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2382 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2383 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2384 
2385 	/*
2386 	 * Initialize the ring segment pool.  The ring must be a contiguous
2387 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2388 	 * however, the command ring segment needs 64-byte aligned segments
2389 	 * and our use of dma addresses in the trb_address_map radix tree needs
2390 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2391 	 */
2392 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2393 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2394 
2395 	/* See Table 46 and Note on Figure 55 */
2396 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2397 			2112, 64, xhci->page_size);
2398 	if (!xhci->segment_pool || !xhci->device_pool)
2399 		goto fail;
2400 
2401 	/* Linear stream context arrays don't have any boundary restrictions,
2402 	 * and only need to be 16-byte aligned.
2403 	 */
2404 	xhci->small_streams_pool =
2405 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2406 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2407 	xhci->medium_streams_pool =
2408 		dma_pool_create("xHCI 1KB stream ctx arrays",
2409 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2410 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2411 	 * will be allocated with dma_alloc_coherent()
2412 	 */
2413 
2414 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2415 		goto fail;
2416 
2417 	/* Set up the command ring to have one segments for now. */
2418 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2419 	if (!xhci->cmd_ring)
2420 		goto fail;
2421 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422 			"Allocated command ring at %p", xhci->cmd_ring);
2423 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2424 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2425 
2426 	/* Set the address in the Command Ring Control register */
2427 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2428 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2429 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2430 		xhci->cmd_ring->cycle_state;
2431 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2432 			"// Setting command ring address to 0x%x", val);
2433 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2434 	xhci_dbg_cmd_ptrs(xhci);
2435 
2436 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2437 	if (!xhci->lpm_command)
2438 		goto fail;
2439 
2440 	/* Reserve one command ring TRB for disabling LPM.
2441 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2442 	 * disabling LPM, we only need to reserve one TRB for all devices.
2443 	 */
2444 	xhci->cmd_ring_reserved_trbs++;
2445 
2446 	val = readl(&xhci->cap_regs->db_off);
2447 	val &= DBOFF_MASK;
2448 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2449 			"// Doorbell array is located at offset 0x%x"
2450 			" from cap regs base addr", val);
2451 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2452 	xhci_dbg_regs(xhci);
2453 	xhci_print_run_regs(xhci);
2454 	/* Set ir_set to interrupt register set 0 */
2455 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2456 
2457 	/*
2458 	 * Event ring setup: Allocate a normal ring, but also setup
2459 	 * the event ring segment table (ERST).  Section 4.9.3.
2460 	 */
2461 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2462 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2463 						flags);
2464 	if (!xhci->event_ring)
2465 		goto fail;
2466 	if (xhci_check_trb_in_td_math(xhci) < 0)
2467 		goto fail;
2468 
2469 	xhci->erst.entries = dma_alloc_coherent(dev,
2470 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2471 			GFP_KERNEL);
2472 	if (!xhci->erst.entries)
2473 		goto fail;
2474 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2475 			"// Allocated event ring segment table at 0x%llx",
2476 			(unsigned long long)dma);
2477 
2478 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2479 	xhci->erst.num_entries = ERST_NUM_SEGS;
2480 	xhci->erst.erst_dma_addr = dma;
2481 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2482 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2483 			xhci->erst.num_entries,
2484 			xhci->erst.entries,
2485 			(unsigned long long)xhci->erst.erst_dma_addr);
2486 
2487 	/* set ring base address and size for each segment table entry */
2488 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2489 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2490 		entry->seg_addr = cpu_to_le64(seg->dma);
2491 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2492 		entry->rsvd = 0;
2493 		seg = seg->next;
2494 	}
2495 
2496 	/* set ERST count with the number of entries in the segment table */
2497 	val = readl(&xhci->ir_set->erst_size);
2498 	val &= ERST_SIZE_MASK;
2499 	val |= ERST_NUM_SEGS;
2500 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2501 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2502 			val);
2503 	writel(val, &xhci->ir_set->erst_size);
2504 
2505 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2506 			"// Set ERST entries to point to event ring.");
2507 	/* set the segment table base address */
2508 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509 			"// Set ERST base address for ir_set 0 = 0x%llx",
2510 			(unsigned long long)xhci->erst.erst_dma_addr);
2511 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2512 	val_64 &= ERST_PTR_MASK;
2513 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2514 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2515 
2516 	/* Set the event ring dequeue address */
2517 	xhci_set_hc_event_deq(xhci);
2518 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519 			"Wrote ERST address to ir_set 0.");
2520 	xhci_print_ir_set(xhci, 0);
2521 
2522 	/*
2523 	 * XXX: Might need to set the Interrupter Moderation Register to
2524 	 * something other than the default (~1ms minimum between interrupts).
2525 	 * See section 5.5.1.2.
2526 	 */
2527 	init_completion(&xhci->addr_dev);
2528 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2529 		xhci->devs[i] = NULL;
2530 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2531 		xhci->bus_state[0].resume_done[i] = 0;
2532 		xhci->bus_state[1].resume_done[i] = 0;
2533 		/* Only the USB 2.0 completions will ever be used. */
2534 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2535 	}
2536 
2537 	if (scratchpad_alloc(xhci, flags))
2538 		goto fail;
2539 	if (xhci_setup_port_arrays(xhci, flags))
2540 		goto fail;
2541 
2542 	/* Enable USB 3.0 device notifications for function remote wake, which
2543 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2544 	 * U3 (device suspend).
2545 	 */
2546 	temp = readl(&xhci->op_regs->dev_notification);
2547 	temp &= ~DEV_NOTE_MASK;
2548 	temp |= DEV_NOTE_FWAKE;
2549 	writel(temp, &xhci->op_regs->dev_notification);
2550 
2551 	return 0;
2552 
2553 fail:
2554 	xhci_warn(xhci, "Couldn't initialize memory\n");
2555 	xhci_halt(xhci);
2556 	xhci_reset(xhci);
2557 	xhci_mem_cleanup(xhci);
2558 	return -ENOMEM;
2559 }
2560