1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/overflow.h> 13 #include <linux/pci.h> 14 #include <linux/slab.h> 15 #include <linux/dmapool.h> 16 #include <linux/dma-mapping.h> 17 18 #include "xhci.h" 19 #include "xhci-trace.h" 20 #include "xhci-debugfs.h" 21 22 /* 23 * Allocates a generic ring segment from the ring pool, sets the dma address, 24 * initializes the segment to zero, and sets the private next pointer to NULL. 25 * 26 * Section 4.11.1.1: 27 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 28 */ 29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 30 unsigned int cycle_state, 31 unsigned int max_packet, 32 gfp_t flags) 33 { 34 struct xhci_segment *seg; 35 dma_addr_t dma; 36 int i; 37 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 38 39 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 40 if (!seg) 41 return NULL; 42 43 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 44 if (!seg->trbs) { 45 kfree(seg); 46 return NULL; 47 } 48 49 if (max_packet) { 50 seg->bounce_buf = kzalloc_node(max_packet, flags, 51 dev_to_node(dev)); 52 if (!seg->bounce_buf) { 53 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 54 kfree(seg); 55 return NULL; 56 } 57 } 58 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 59 if (cycle_state == 0) { 60 for (i = 0; i < TRBS_PER_SEGMENT; i++) 61 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); 62 } 63 seg->dma = dma; 64 seg->next = NULL; 65 66 return seg; 67 } 68 69 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 70 { 71 if (seg->trbs) { 72 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 73 seg->trbs = NULL; 74 } 75 kfree(seg->bounce_buf); 76 kfree(seg); 77 } 78 79 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 80 struct xhci_segment *first) 81 { 82 struct xhci_segment *seg; 83 84 seg = first->next; 85 while (seg != first) { 86 struct xhci_segment *next = seg->next; 87 xhci_segment_free(xhci, seg); 88 seg = next; 89 } 90 xhci_segment_free(xhci, first); 91 } 92 93 /* 94 * Make the prev segment point to the next segment. 95 * 96 * Change the last TRB in the prev segment to be a Link TRB which points to the 97 * DMA address of the next segment. The caller needs to set any Link TRB 98 * related flags, such as End TRB, Toggle Cycle, and no snoop. 99 */ 100 static void xhci_link_segments(struct xhci_segment *prev, 101 struct xhci_segment *next, 102 enum xhci_ring_type type, bool chain_links) 103 { 104 u32 val; 105 106 if (!prev || !next) 107 return; 108 prev->next = next; 109 if (type != TYPE_EVENT) { 110 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 111 cpu_to_le64(next->dma); 112 113 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 114 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 115 val &= ~TRB_TYPE_BITMASK; 116 val |= TRB_TYPE(TRB_LINK); 117 if (chain_links) 118 val |= TRB_CHAIN; 119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 120 } 121 } 122 123 /* 124 * Link the ring to the new segments. 125 * Set Toggle Cycle for the new ring if needed. 126 */ 127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 128 struct xhci_segment *first, struct xhci_segment *last, 129 unsigned int num_segs) 130 { 131 struct xhci_segment *next; 132 bool chain_links; 133 134 if (!ring || !first || !last) 135 return; 136 137 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 138 chain_links = !!(xhci_link_trb_quirk(xhci) || 139 (ring->type == TYPE_ISOC && 140 (xhci->quirks & XHCI_AMD_0x96_HOST))); 141 142 next = ring->enq_seg->next; 143 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 144 xhci_link_segments(last, next, ring->type, chain_links); 145 ring->num_segs += num_segs; 146 147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 149 &= ~cpu_to_le32(LINK_TOGGLE); 150 last->trbs[TRBS_PER_SEGMENT-1].link.control 151 |= cpu_to_le32(LINK_TOGGLE); 152 ring->last_seg = last; 153 } 154 } 155 156 /* 157 * We need a radix tree for mapping physical addresses of TRBs to which stream 158 * ID they belong to. We need to do this because the host controller won't tell 159 * us which stream ring the TRB came from. We could store the stream ID in an 160 * event data TRB, but that doesn't help us for the cancellation case, since the 161 * endpoint may stop before it reaches that event data TRB. 162 * 163 * The radix tree maps the upper portion of the TRB DMA address to a ring 164 * segment that has the same upper portion of DMA addresses. For example, say I 165 * have segments of size 1KB, that are always 1KB aligned. A segment may 166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 168 * pass the radix tree a key to get the right stream ID: 169 * 170 * 0x10c90fff >> 10 = 0x43243 171 * 0x10c912c0 >> 10 = 0x43244 172 * 0x10c91400 >> 10 = 0x43245 173 * 174 * Obviously, only those TRBs with DMA addresses that are within the segment 175 * will make the radix tree return the stream ID for that ring. 176 * 177 * Caveats for the radix tree: 178 * 179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 184 * extended systems (where the DMA address can be bigger than 32-bits), 185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 186 */ 187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 188 struct xhci_ring *ring, 189 struct xhci_segment *seg, 190 gfp_t mem_flags) 191 { 192 unsigned long key; 193 int ret; 194 195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 196 /* Skip any segments that were already added. */ 197 if (radix_tree_lookup(trb_address_map, key)) 198 return 0; 199 200 ret = radix_tree_maybe_preload(mem_flags); 201 if (ret) 202 return ret; 203 ret = radix_tree_insert(trb_address_map, 204 key, ring); 205 radix_tree_preload_end(); 206 return ret; 207 } 208 209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 210 struct xhci_segment *seg) 211 { 212 unsigned long key; 213 214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 215 if (radix_tree_lookup(trb_address_map, key)) 216 radix_tree_delete(trb_address_map, key); 217 } 218 219 static int xhci_update_stream_segment_mapping( 220 struct radix_tree_root *trb_address_map, 221 struct xhci_ring *ring, 222 struct xhci_segment *first_seg, 223 struct xhci_segment *last_seg, 224 gfp_t mem_flags) 225 { 226 struct xhci_segment *seg; 227 struct xhci_segment *failed_seg; 228 int ret; 229 230 if (WARN_ON_ONCE(trb_address_map == NULL)) 231 return 0; 232 233 seg = first_seg; 234 do { 235 ret = xhci_insert_segment_mapping(trb_address_map, 236 ring, seg, mem_flags); 237 if (ret) 238 goto remove_streams; 239 if (seg == last_seg) 240 return 0; 241 seg = seg->next; 242 } while (seg != first_seg); 243 244 return 0; 245 246 remove_streams: 247 failed_seg = seg; 248 seg = first_seg; 249 do { 250 xhci_remove_segment_mapping(trb_address_map, seg); 251 if (seg == failed_seg) 252 return ret; 253 seg = seg->next; 254 } while (seg != first_seg); 255 256 return ret; 257 } 258 259 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 260 { 261 struct xhci_segment *seg; 262 263 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 264 return; 265 266 seg = ring->first_seg; 267 do { 268 xhci_remove_segment_mapping(ring->trb_address_map, seg); 269 seg = seg->next; 270 } while (seg != ring->first_seg); 271 } 272 273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 274 { 275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 276 ring->first_seg, ring->last_seg, mem_flags); 277 } 278 279 /* XXX: Do we need the hcd structure in all these functions? */ 280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 if (!ring) 283 return; 284 285 trace_xhci_ring_free(ring); 286 287 if (ring->first_seg) { 288 if (ring->type == TYPE_STREAM) 289 xhci_remove_stream_mapping(ring); 290 xhci_free_segments_for_ring(xhci, ring->first_seg); 291 } 292 293 kfree(ring); 294 } 295 296 void xhci_initialize_ring_info(struct xhci_ring *ring, 297 unsigned int cycle_state) 298 { 299 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 300 ring->enqueue = ring->first_seg->trbs; 301 ring->enq_seg = ring->first_seg; 302 ring->dequeue = ring->enqueue; 303 ring->deq_seg = ring->first_seg; 304 /* The ring is initialized to 0. The producer must write 1 to the cycle 305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 306 * compare CCS to the cycle bit to check ownership, so CCS = 1. 307 * 308 * New rings are initialized with cycle state equal to 1; if we are 309 * handling ring expansion, set the cycle state equal to the old ring. 310 */ 311 ring->cycle_state = cycle_state; 312 313 /* 314 * Each segment has a link TRB, and leave an extra TRB for SW 315 * accounting purpose 316 */ 317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 318 } 319 320 /* Allocate segments and link them for a ring */ 321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 322 struct xhci_segment **first, struct xhci_segment **last, 323 unsigned int num_segs, unsigned int cycle_state, 324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 325 { 326 struct xhci_segment *prev; 327 bool chain_links; 328 329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 330 chain_links = !!(xhci_link_trb_quirk(xhci) || 331 (type == TYPE_ISOC && 332 (xhci->quirks & XHCI_AMD_0x96_HOST))); 333 334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 335 if (!prev) 336 return -ENOMEM; 337 num_segs--; 338 339 *first = prev; 340 while (num_segs > 0) { 341 struct xhci_segment *next; 342 343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 344 if (!next) { 345 prev = *first; 346 while (prev) { 347 next = prev->next; 348 xhci_segment_free(xhci, prev); 349 prev = next; 350 } 351 return -ENOMEM; 352 } 353 xhci_link_segments(prev, next, type, chain_links); 354 355 prev = next; 356 num_segs--; 357 } 358 xhci_link_segments(prev, *first, type, chain_links); 359 *last = prev; 360 361 return 0; 362 } 363 364 /* 365 * Create a new ring with zero or more segments. 366 * 367 * Link each segment together into a ring. 368 * Set the end flag and the cycle toggle bit on the last segment. 369 * See section 4.9.1 and figures 15 and 16. 370 */ 371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 372 unsigned int num_segs, unsigned int cycle_state, 373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 374 { 375 struct xhci_ring *ring; 376 int ret; 377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 378 379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 380 if (!ring) 381 return NULL; 382 383 ring->num_segs = num_segs; 384 ring->bounce_buf_len = max_packet; 385 INIT_LIST_HEAD(&ring->td_list); 386 ring->type = type; 387 if (num_segs == 0) 388 return ring; 389 390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 391 &ring->last_seg, num_segs, cycle_state, type, 392 max_packet, flags); 393 if (ret) 394 goto fail; 395 396 /* Only event ring does not use link TRB */ 397 if (type != TYPE_EVENT) { 398 /* See section 4.9.2.1 and 6.4.4.1 */ 399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 400 cpu_to_le32(LINK_TOGGLE); 401 } 402 xhci_initialize_ring_info(ring, cycle_state); 403 trace_xhci_ring_alloc(ring); 404 return ring; 405 406 fail: 407 kfree(ring); 408 return NULL; 409 } 410 411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 412 struct xhci_virt_device *virt_dev, 413 unsigned int ep_index) 414 { 415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 416 virt_dev->eps[ep_index].ring = NULL; 417 } 418 419 /* 420 * Expand an existing ring. 421 * Allocate a new ring which has same segment numbers and link the two rings. 422 */ 423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 424 unsigned int num_new_segs, gfp_t flags) 425 { 426 struct xhci_segment *first; 427 struct xhci_segment *last; 428 int ret; 429 430 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 431 num_new_segs, ring->cycle_state, ring->type, 432 ring->bounce_buf_len, flags); 433 if (ret) 434 return -ENOMEM; 435 436 if (ring->type == TYPE_STREAM) 437 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 438 ring, first, last, flags); 439 if (ret) { 440 struct xhci_segment *next; 441 do { 442 next = first->next; 443 xhci_segment_free(xhci, first); 444 if (first == last) 445 break; 446 first = next; 447 } while (true); 448 return ret; 449 } 450 451 xhci_link_rings(xhci, ring, first, last, num_new_segs); 452 trace_xhci_ring_expansion(ring); 453 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 454 "ring expansion succeed, now has %d segments", 455 ring->num_segs); 456 457 return 0; 458 } 459 460 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 461 int type, gfp_t flags) 462 { 463 struct xhci_container_ctx *ctx; 464 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 465 466 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 467 return NULL; 468 469 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 470 if (!ctx) 471 return NULL; 472 473 ctx->type = type; 474 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 475 if (type == XHCI_CTX_TYPE_INPUT) 476 ctx->size += CTX_SIZE(xhci->hcc_params); 477 478 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 479 if (!ctx->bytes) { 480 kfree(ctx); 481 return NULL; 482 } 483 return ctx; 484 } 485 486 void xhci_free_container_ctx(struct xhci_hcd *xhci, 487 struct xhci_container_ctx *ctx) 488 { 489 if (!ctx) 490 return; 491 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 492 kfree(ctx); 493 } 494 495 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 496 struct xhci_container_ctx *ctx) 497 { 498 if (ctx->type != XHCI_CTX_TYPE_INPUT) 499 return NULL; 500 501 return (struct xhci_input_control_ctx *)ctx->bytes; 502 } 503 504 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 505 struct xhci_container_ctx *ctx) 506 { 507 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 508 return (struct xhci_slot_ctx *)ctx->bytes; 509 510 return (struct xhci_slot_ctx *) 511 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 512 } 513 514 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 515 struct xhci_container_ctx *ctx, 516 unsigned int ep_index) 517 { 518 /* increment ep index by offset of start of ep ctx array */ 519 ep_index++; 520 if (ctx->type == XHCI_CTX_TYPE_INPUT) 521 ep_index++; 522 523 return (struct xhci_ep_ctx *) 524 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 525 } 526 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 527 528 /***************** Streams structures manipulation *************************/ 529 530 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 531 unsigned int num_stream_ctxs, 532 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 533 { 534 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 535 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 536 537 if (size > MEDIUM_STREAM_ARRAY_SIZE) 538 dma_free_coherent(dev, size, stream_ctx, dma); 539 else if (size > SMALL_STREAM_ARRAY_SIZE) 540 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); 541 else 542 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); 543 } 544 545 /* 546 * The stream context array for each endpoint with bulk streams enabled can 547 * vary in size, based on: 548 * - how many streams the endpoint supports, 549 * - the maximum primary stream array size the host controller supports, 550 * - and how many streams the device driver asks for. 551 * 552 * The stream context array must be a power of 2, and can be as small as 553 * 64 bytes or as large as 1MB. 554 */ 555 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 556 unsigned int num_stream_ctxs, dma_addr_t *dma, 557 gfp_t mem_flags) 558 { 559 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 560 size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs); 561 562 if (size > MEDIUM_STREAM_ARRAY_SIZE) 563 return dma_alloc_coherent(dev, size, dma, mem_flags); 564 if (size > SMALL_STREAM_ARRAY_SIZE) 565 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma); 566 else 567 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma); 568 } 569 570 struct xhci_ring *xhci_dma_to_transfer_ring( 571 struct xhci_virt_ep *ep, 572 u64 address) 573 { 574 if (ep->ep_state & EP_HAS_STREAMS) 575 return radix_tree_lookup(&ep->stream_info->trb_address_map, 576 address >> TRB_SEGMENT_SHIFT); 577 return ep->ring; 578 } 579 580 /* 581 * Change an endpoint's internal structure so it supports stream IDs. The 582 * number of requested streams includes stream 0, which cannot be used by device 583 * drivers. 584 * 585 * The number of stream contexts in the stream context array may be bigger than 586 * the number of streams the driver wants to use. This is because the number of 587 * stream context array entries must be a power of two. 588 */ 589 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 590 unsigned int num_stream_ctxs, 591 unsigned int num_streams, 592 unsigned int max_packet, gfp_t mem_flags) 593 { 594 struct xhci_stream_info *stream_info; 595 u32 cur_stream; 596 struct xhci_ring *cur_ring; 597 u64 addr; 598 int ret; 599 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 600 601 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", 602 num_streams, num_stream_ctxs); 603 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 604 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 605 return NULL; 606 } 607 xhci->cmd_ring_reserved_trbs++; 608 609 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 610 dev_to_node(dev)); 611 if (!stream_info) 612 goto cleanup_trbs; 613 614 stream_info->num_streams = num_streams; 615 stream_info->num_stream_ctxs = num_stream_ctxs; 616 617 /* Initialize the array of virtual pointers to stream rings. */ 618 stream_info->stream_rings = kcalloc_node( 619 num_streams, sizeof(struct xhci_ring *), mem_flags, 620 dev_to_node(dev)); 621 if (!stream_info->stream_rings) 622 goto cleanup_info; 623 624 /* Initialize the array of DMA addresses for stream rings for the HW. */ 625 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 626 num_stream_ctxs, &stream_info->ctx_array_dma, 627 mem_flags); 628 if (!stream_info->stream_ctx_array) 629 goto cleanup_ring_array; 630 631 /* Allocate everything needed to free the stream rings later */ 632 stream_info->free_streams_command = 633 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 634 if (!stream_info->free_streams_command) 635 goto cleanup_ctx; 636 637 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 638 639 /* Allocate rings for all the streams that the driver will use, 640 * and add their segment DMA addresses to the radix tree. 641 * Stream 0 is reserved. 642 */ 643 644 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 645 stream_info->stream_rings[cur_stream] = 646 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 647 mem_flags); 648 cur_ring = stream_info->stream_rings[cur_stream]; 649 if (!cur_ring) 650 goto cleanup_rings; 651 cur_ring->stream_id = cur_stream; 652 cur_ring->trb_address_map = &stream_info->trb_address_map; 653 /* Set deq ptr, cycle bit, and stream context type */ 654 addr = cur_ring->first_seg->dma | 655 SCT_FOR_CTX(SCT_PRI_TR) | 656 cur_ring->cycle_state; 657 stream_info->stream_ctx_array[cur_stream].stream_ring = 658 cpu_to_le64(addr); 659 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); 660 661 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 662 if (ret) { 663 xhci_ring_free(xhci, cur_ring); 664 stream_info->stream_rings[cur_stream] = NULL; 665 goto cleanup_rings; 666 } 667 } 668 /* Leave the other unused stream ring pointers in the stream context 669 * array initialized to zero. This will cause the xHC to give us an 670 * error if the device asks for a stream ID we don't have setup (if it 671 * was any other way, the host controller would assume the ring is 672 * "empty" and wait forever for data to be queued to that stream ID). 673 */ 674 675 return stream_info; 676 677 cleanup_rings: 678 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 679 cur_ring = stream_info->stream_rings[cur_stream]; 680 if (cur_ring) { 681 xhci_ring_free(xhci, cur_ring); 682 stream_info->stream_rings[cur_stream] = NULL; 683 } 684 } 685 xhci_free_command(xhci, stream_info->free_streams_command); 686 cleanup_ctx: 687 xhci_free_stream_ctx(xhci, 688 stream_info->num_stream_ctxs, 689 stream_info->stream_ctx_array, 690 stream_info->ctx_array_dma); 691 cleanup_ring_array: 692 kfree(stream_info->stream_rings); 693 cleanup_info: 694 kfree(stream_info); 695 cleanup_trbs: 696 xhci->cmd_ring_reserved_trbs--; 697 return NULL; 698 } 699 /* 700 * Sets the MaxPStreams field and the Linear Stream Array field. 701 * Sets the dequeue pointer to the stream context array. 702 */ 703 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 704 struct xhci_ep_ctx *ep_ctx, 705 struct xhci_stream_info *stream_info) 706 { 707 u32 max_primary_streams; 708 /* MaxPStreams is the number of stream context array entries, not the 709 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 710 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 711 */ 712 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 713 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 714 "Setting number of stream ctx array entries to %u", 715 1 << (max_primary_streams + 1)); 716 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 717 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 718 | EP_HAS_LSA); 719 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 720 } 721 722 /* 723 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 724 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 725 * not at the beginning of the ring). 726 */ 727 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 728 struct xhci_virt_ep *ep) 729 { 730 dma_addr_t addr; 731 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 732 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 733 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 734 } 735 736 /* Frees all stream contexts associated with the endpoint, 737 * 738 * Caller should fix the endpoint context streams fields. 739 */ 740 void xhci_free_stream_info(struct xhci_hcd *xhci, 741 struct xhci_stream_info *stream_info) 742 { 743 int cur_stream; 744 struct xhci_ring *cur_ring; 745 746 if (!stream_info) 747 return; 748 749 for (cur_stream = 1; cur_stream < stream_info->num_streams; 750 cur_stream++) { 751 cur_ring = stream_info->stream_rings[cur_stream]; 752 if (cur_ring) { 753 xhci_ring_free(xhci, cur_ring); 754 stream_info->stream_rings[cur_stream] = NULL; 755 } 756 } 757 xhci_free_command(xhci, stream_info->free_streams_command); 758 xhci->cmd_ring_reserved_trbs--; 759 if (stream_info->stream_ctx_array) 760 xhci_free_stream_ctx(xhci, 761 stream_info->num_stream_ctxs, 762 stream_info->stream_ctx_array, 763 stream_info->ctx_array_dma); 764 765 kfree(stream_info->stream_rings); 766 kfree(stream_info); 767 } 768 769 770 /***************** Device context manipulation *************************/ 771 772 static void xhci_free_tt_info(struct xhci_hcd *xhci, 773 struct xhci_virt_device *virt_dev, 774 int slot_id) 775 { 776 struct list_head *tt_list_head; 777 struct xhci_tt_bw_info *tt_info, *next; 778 bool slot_found = false; 779 780 /* If the device never made it past the Set Address stage, 781 * it may not have the real_port set correctly. 782 */ 783 if (virt_dev->real_port == 0 || 784 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 785 xhci_dbg(xhci, "Bad real port.\n"); 786 return; 787 } 788 789 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 790 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 791 /* Multi-TT hubs will have more than one entry */ 792 if (tt_info->slot_id == slot_id) { 793 slot_found = true; 794 list_del(&tt_info->tt_list); 795 kfree(tt_info); 796 } else if (slot_found) { 797 break; 798 } 799 } 800 } 801 802 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 803 struct xhci_virt_device *virt_dev, 804 struct usb_device *hdev, 805 struct usb_tt *tt, gfp_t mem_flags) 806 { 807 struct xhci_tt_bw_info *tt_info; 808 unsigned int num_ports; 809 int i, j; 810 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 811 812 if (!tt->multi) 813 num_ports = 1; 814 else 815 num_ports = hdev->maxchild; 816 817 for (i = 0; i < num_ports; i++, tt_info++) { 818 struct xhci_interval_bw_table *bw_table; 819 820 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 821 dev_to_node(dev)); 822 if (!tt_info) 823 goto free_tts; 824 INIT_LIST_HEAD(&tt_info->tt_list); 825 list_add(&tt_info->tt_list, 826 &xhci->rh_bw[virt_dev->real_port - 1].tts); 827 tt_info->slot_id = virt_dev->udev->slot_id; 828 if (tt->multi) 829 tt_info->ttport = i+1; 830 bw_table = &tt_info->bw_table; 831 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 832 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 833 } 834 return 0; 835 836 free_tts: 837 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 838 return -ENOMEM; 839 } 840 841 842 /* All the xhci_tds in the ring's TD list should be freed at this point. 843 * Should be called with xhci->lock held if there is any chance the TT lists 844 * will be manipulated by the configure endpoint, allocate device, or update 845 * hub functions while this function is removing the TT entries from the list. 846 */ 847 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 848 { 849 struct xhci_virt_device *dev; 850 int i; 851 int old_active_eps = 0; 852 853 /* Slot ID 0 is reserved */ 854 if (slot_id == 0 || !xhci->devs[slot_id]) 855 return; 856 857 dev = xhci->devs[slot_id]; 858 859 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 860 if (!dev) 861 return; 862 863 trace_xhci_free_virt_device(dev); 864 865 if (dev->tt_info) 866 old_active_eps = dev->tt_info->active_eps; 867 868 for (i = 0; i < 31; i++) { 869 if (dev->eps[i].ring) 870 xhci_ring_free(xhci, dev->eps[i].ring); 871 if (dev->eps[i].stream_info) 872 xhci_free_stream_info(xhci, 873 dev->eps[i].stream_info); 874 /* 875 * Endpoints are normally deleted from the bandwidth list when 876 * endpoints are dropped, before device is freed. 877 * If host is dying or being removed then endpoints aren't 878 * dropped cleanly, so delete the endpoint from list here. 879 * Only applicable for hosts with software bandwidth checking. 880 */ 881 882 if (!list_empty(&dev->eps[i].bw_endpoint_list)) { 883 list_del_init(&dev->eps[i].bw_endpoint_list); 884 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", 885 slot_id, i); 886 } 887 } 888 /* If this is a hub, free the TT(s) from the TT list */ 889 xhci_free_tt_info(xhci, dev, slot_id); 890 /* If necessary, update the number of active TTs on this root port */ 891 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 892 893 if (dev->in_ctx) 894 xhci_free_container_ctx(xhci, dev->in_ctx); 895 if (dev->out_ctx) 896 xhci_free_container_ctx(xhci, dev->out_ctx); 897 898 if (dev->udev && dev->udev->slot_id) 899 dev->udev->slot_id = 0; 900 kfree(xhci->devs[slot_id]); 901 xhci->devs[slot_id] = NULL; 902 } 903 904 /* 905 * Free a virt_device structure. 906 * If the virt_device added a tt_info (a hub) and has children pointing to 907 * that tt_info, then free the child first. Recursive. 908 * We can't rely on udev at this point to find child-parent relationships. 909 */ 910 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 911 { 912 struct xhci_virt_device *vdev; 913 struct list_head *tt_list_head; 914 struct xhci_tt_bw_info *tt_info, *next; 915 int i; 916 917 vdev = xhci->devs[slot_id]; 918 if (!vdev) 919 return; 920 921 if (vdev->real_port == 0 || 922 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 923 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 924 goto out; 925 } 926 927 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 928 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 929 /* is this a hub device that added a tt_info to the tts list */ 930 if (tt_info->slot_id == slot_id) { 931 /* are any devices using this tt_info? */ 932 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 933 vdev = xhci->devs[i]; 934 if (vdev && (vdev->tt_info == tt_info)) 935 xhci_free_virt_devices_depth_first( 936 xhci, i); 937 } 938 } 939 } 940 out: 941 /* we are now at a leaf device */ 942 xhci_debugfs_remove_slot(xhci, slot_id); 943 xhci_free_virt_device(xhci, slot_id); 944 } 945 946 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 947 struct usb_device *udev, gfp_t flags) 948 { 949 struct xhci_virt_device *dev; 950 int i; 951 952 /* Slot ID 0 is reserved */ 953 if (slot_id == 0 || xhci->devs[slot_id]) { 954 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 955 return 0; 956 } 957 958 dev = kzalloc(sizeof(*dev), flags); 959 if (!dev) 960 return 0; 961 962 dev->slot_id = slot_id; 963 964 /* Allocate the (output) device context that will be used in the HC. */ 965 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 966 if (!dev->out_ctx) 967 goto fail; 968 969 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); 970 971 /* Allocate the (input) device context for address device command */ 972 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 973 if (!dev->in_ctx) 974 goto fail; 975 976 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); 977 978 /* Initialize the cancellation and bandwidth list for each ep */ 979 for (i = 0; i < 31; i++) { 980 dev->eps[i].ep_index = i; 981 dev->eps[i].vdev = dev; 982 dev->eps[i].xhci = xhci; 983 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 984 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 985 } 986 987 /* Allocate endpoint 0 ring */ 988 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 989 if (!dev->eps[0].ring) 990 goto fail; 991 992 dev->udev = udev; 993 994 /* Point to output device context in dcbaa. */ 995 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 996 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 997 slot_id, 998 &xhci->dcbaa->dev_context_ptrs[slot_id], 999 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1000 1001 trace_xhci_alloc_virt_device(dev); 1002 1003 xhci->devs[slot_id] = dev; 1004 1005 return 1; 1006 fail: 1007 1008 if (dev->in_ctx) 1009 xhci_free_container_ctx(xhci, dev->in_ctx); 1010 if (dev->out_ctx) 1011 xhci_free_container_ctx(xhci, dev->out_ctx); 1012 kfree(dev); 1013 1014 return 0; 1015 } 1016 1017 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1018 struct usb_device *udev) 1019 { 1020 struct xhci_virt_device *virt_dev; 1021 struct xhci_ep_ctx *ep0_ctx; 1022 struct xhci_ring *ep_ring; 1023 1024 virt_dev = xhci->devs[udev->slot_id]; 1025 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1026 ep_ring = virt_dev->eps[0].ring; 1027 /* 1028 * FIXME we don't keep track of the dequeue pointer very well after a 1029 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1030 * host to our enqueue pointer. This should only be called after a 1031 * configured device has reset, so all control transfers should have 1032 * been completed or cancelled before the reset. 1033 */ 1034 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1035 ep_ring->enqueue) 1036 | ep_ring->cycle_state); 1037 } 1038 1039 /* 1040 * The xHCI roothub may have ports of differing speeds in any order in the port 1041 * status registers. 1042 * 1043 * The xHCI hardware wants to know the roothub port number that the USB device 1044 * is attached to (or the roothub port its ancestor hub is attached to). All we 1045 * know is the index of that port under either the USB 2.0 or the USB 3.0 1046 * roothub, but that doesn't give us the real index into the HW port status 1047 * registers. Call xhci_find_raw_port_number() to get real index. 1048 */ 1049 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1050 struct usb_device *udev) 1051 { 1052 struct usb_device *top_dev; 1053 struct usb_hcd *hcd; 1054 1055 if (udev->speed >= USB_SPEED_SUPER) 1056 hcd = xhci_get_usb3_hcd(xhci); 1057 else 1058 hcd = xhci->main_hcd; 1059 1060 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1061 top_dev = top_dev->parent) 1062 /* Found device below root hub */; 1063 1064 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1065 } 1066 1067 /* Setup an xHCI virtual device for a Set Address command */ 1068 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1069 { 1070 struct xhci_virt_device *dev; 1071 struct xhci_ep_ctx *ep0_ctx; 1072 struct xhci_slot_ctx *slot_ctx; 1073 u32 port_num; 1074 u32 max_packets; 1075 struct usb_device *top_dev; 1076 1077 dev = xhci->devs[udev->slot_id]; 1078 /* Slot ID 0 is reserved */ 1079 if (udev->slot_id == 0 || !dev) { 1080 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1081 udev->slot_id); 1082 return -EINVAL; 1083 } 1084 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1085 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1086 1087 /* 3) Only the control endpoint is valid - one endpoint context */ 1088 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1089 switch (udev->speed) { 1090 case USB_SPEED_SUPER_PLUS: 1091 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1092 max_packets = MAX_PACKET(512); 1093 break; 1094 case USB_SPEED_SUPER: 1095 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1096 max_packets = MAX_PACKET(512); 1097 break; 1098 case USB_SPEED_HIGH: 1099 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1100 max_packets = MAX_PACKET(64); 1101 break; 1102 /* USB core guesses at a 64-byte max packet first for FS devices */ 1103 case USB_SPEED_FULL: 1104 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1105 max_packets = MAX_PACKET(64); 1106 break; 1107 case USB_SPEED_LOW: 1108 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1109 max_packets = MAX_PACKET(8); 1110 break; 1111 default: 1112 /* Speed was set earlier, this shouldn't happen. */ 1113 return -EINVAL; 1114 } 1115 /* Find the root hub port this device is under */ 1116 port_num = xhci_find_real_port_number(xhci, udev); 1117 if (!port_num) 1118 return -EINVAL; 1119 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1120 /* Set the port number in the virtual_device to the faked port number */ 1121 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1122 top_dev = top_dev->parent) 1123 /* Found device below root hub */; 1124 dev->fake_port = top_dev->portnum; 1125 dev->real_port = port_num; 1126 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1127 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1128 1129 /* Find the right bandwidth table that this device will be a part of. 1130 * If this is a full speed device attached directly to a root port (or a 1131 * decendent of one), it counts as a primary bandwidth domain, not a 1132 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1133 * will never be created for the HS root hub. 1134 */ 1135 if (!udev->tt || !udev->tt->hub->parent) { 1136 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1137 } else { 1138 struct xhci_root_port_bw_info *rh_bw; 1139 struct xhci_tt_bw_info *tt_bw; 1140 1141 rh_bw = &xhci->rh_bw[port_num - 1]; 1142 /* Find the right TT. */ 1143 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1144 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1145 continue; 1146 1147 if (!dev->udev->tt->multi || 1148 (udev->tt->multi && 1149 tt_bw->ttport == dev->udev->ttport)) { 1150 dev->bw_table = &tt_bw->bw_table; 1151 dev->tt_info = tt_bw; 1152 break; 1153 } 1154 } 1155 if (!dev->tt_info) 1156 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1157 } 1158 1159 /* Is this a LS/FS device under an external HS hub? */ 1160 if (udev->tt && udev->tt->hub->parent) { 1161 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1162 (udev->ttport << 8)); 1163 if (udev->tt->multi) 1164 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1165 } 1166 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1167 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1168 1169 /* Step 4 - ring already allocated */ 1170 /* Step 5 */ 1171 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1172 1173 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1174 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1175 max_packets); 1176 1177 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1178 dev->eps[0].ring->cycle_state); 1179 1180 trace_xhci_setup_addressable_virt_device(dev); 1181 1182 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * Convert interval expressed as 2^(bInterval - 1) == interval into 1189 * straight exponent value 2^n == interval. 1190 * 1191 */ 1192 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1193 struct usb_host_endpoint *ep) 1194 { 1195 unsigned int interval; 1196 1197 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1198 if (interval != ep->desc.bInterval - 1) 1199 dev_warn(&udev->dev, 1200 "ep %#x - rounding interval to %d %sframes\n", 1201 ep->desc.bEndpointAddress, 1202 1 << interval, 1203 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1204 1205 if (udev->speed == USB_SPEED_FULL) { 1206 /* 1207 * Full speed isoc endpoints specify interval in frames, 1208 * not microframes. We are using microframes everywhere, 1209 * so adjust accordingly. 1210 */ 1211 interval += 3; /* 1 frame = 2^3 uframes */ 1212 } 1213 1214 return interval; 1215 } 1216 1217 /* 1218 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1219 * microframes, rounded down to nearest power of 2. 1220 */ 1221 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1222 struct usb_host_endpoint *ep, unsigned int desc_interval, 1223 unsigned int min_exponent, unsigned int max_exponent) 1224 { 1225 unsigned int interval; 1226 1227 interval = fls(desc_interval) - 1; 1228 interval = clamp_val(interval, min_exponent, max_exponent); 1229 if ((1 << interval) != desc_interval) 1230 dev_dbg(&udev->dev, 1231 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1232 ep->desc.bEndpointAddress, 1233 1 << interval, 1234 desc_interval); 1235 1236 return interval; 1237 } 1238 1239 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1240 struct usb_host_endpoint *ep) 1241 { 1242 if (ep->desc.bInterval == 0) 1243 return 0; 1244 return xhci_microframes_to_exponent(udev, ep, 1245 ep->desc.bInterval, 0, 15); 1246 } 1247 1248 1249 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1250 struct usb_host_endpoint *ep) 1251 { 1252 return xhci_microframes_to_exponent(udev, ep, 1253 ep->desc.bInterval * 8, 3, 10); 1254 } 1255 1256 /* Return the polling or NAK interval. 1257 * 1258 * The polling interval is expressed in "microframes". If xHCI's Interval field 1259 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1260 * 1261 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1262 * is set to 0. 1263 */ 1264 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1265 struct usb_host_endpoint *ep) 1266 { 1267 unsigned int interval = 0; 1268 1269 switch (udev->speed) { 1270 case USB_SPEED_HIGH: 1271 /* Max NAK rate */ 1272 if (usb_endpoint_xfer_control(&ep->desc) || 1273 usb_endpoint_xfer_bulk(&ep->desc)) { 1274 interval = xhci_parse_microframe_interval(udev, ep); 1275 break; 1276 } 1277 fallthrough; /* SS and HS isoc/int have same decoding */ 1278 1279 case USB_SPEED_SUPER_PLUS: 1280 case USB_SPEED_SUPER: 1281 if (usb_endpoint_xfer_int(&ep->desc) || 1282 usb_endpoint_xfer_isoc(&ep->desc)) { 1283 interval = xhci_parse_exponent_interval(udev, ep); 1284 } 1285 break; 1286 1287 case USB_SPEED_FULL: 1288 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1289 interval = xhci_parse_exponent_interval(udev, ep); 1290 break; 1291 } 1292 /* 1293 * Fall through for interrupt endpoint interval decoding 1294 * since it uses the same rules as low speed interrupt 1295 * endpoints. 1296 */ 1297 fallthrough; 1298 1299 case USB_SPEED_LOW: 1300 if (usb_endpoint_xfer_int(&ep->desc) || 1301 usb_endpoint_xfer_isoc(&ep->desc)) { 1302 1303 interval = xhci_parse_frame_interval(udev, ep); 1304 } 1305 break; 1306 1307 default: 1308 BUG(); 1309 } 1310 return interval; 1311 } 1312 1313 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1314 * High speed endpoint descriptors can define "the number of additional 1315 * transaction opportunities per microframe", but that goes in the Max Burst 1316 * endpoint context field. 1317 */ 1318 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1319 struct usb_host_endpoint *ep) 1320 { 1321 if (udev->speed < USB_SPEED_SUPER || 1322 !usb_endpoint_xfer_isoc(&ep->desc)) 1323 return 0; 1324 return ep->ss_ep_comp.bmAttributes; 1325 } 1326 1327 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1328 struct usb_host_endpoint *ep) 1329 { 1330 /* Super speed and Plus have max burst in ep companion desc */ 1331 if (udev->speed >= USB_SPEED_SUPER) 1332 return ep->ss_ep_comp.bMaxBurst; 1333 1334 if (udev->speed == USB_SPEED_HIGH && 1335 (usb_endpoint_xfer_isoc(&ep->desc) || 1336 usb_endpoint_xfer_int(&ep->desc))) 1337 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1338 1339 return 0; 1340 } 1341 1342 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1343 { 1344 int in; 1345 1346 in = usb_endpoint_dir_in(&ep->desc); 1347 1348 switch (usb_endpoint_type(&ep->desc)) { 1349 case USB_ENDPOINT_XFER_CONTROL: 1350 return CTRL_EP; 1351 case USB_ENDPOINT_XFER_BULK: 1352 return in ? BULK_IN_EP : BULK_OUT_EP; 1353 case USB_ENDPOINT_XFER_ISOC: 1354 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1355 case USB_ENDPOINT_XFER_INT: 1356 return in ? INT_IN_EP : INT_OUT_EP; 1357 } 1358 return 0; 1359 } 1360 1361 /* Return the maximum endpoint service interval time (ESIT) payload. 1362 * Basically, this is the maxpacket size, multiplied by the burst size 1363 * and mult size. 1364 */ 1365 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1366 struct usb_host_endpoint *ep) 1367 { 1368 int max_burst; 1369 int max_packet; 1370 1371 /* Only applies for interrupt or isochronous endpoints */ 1372 if (usb_endpoint_xfer_control(&ep->desc) || 1373 usb_endpoint_xfer_bulk(&ep->desc)) 1374 return 0; 1375 1376 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1377 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1378 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1379 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1380 1381 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1382 if (udev->speed >= USB_SPEED_SUPER) 1383 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1384 1385 max_packet = usb_endpoint_maxp(&ep->desc); 1386 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1387 /* A 0 in max burst means 1 transfer per ESIT */ 1388 return max_packet * max_burst; 1389 } 1390 1391 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1392 * Drivers will have to call usb_alloc_streams() to do that. 1393 */ 1394 int xhci_endpoint_init(struct xhci_hcd *xhci, 1395 struct xhci_virt_device *virt_dev, 1396 struct usb_device *udev, 1397 struct usb_host_endpoint *ep, 1398 gfp_t mem_flags) 1399 { 1400 unsigned int ep_index; 1401 struct xhci_ep_ctx *ep_ctx; 1402 struct xhci_ring *ep_ring; 1403 unsigned int max_packet; 1404 enum xhci_ring_type ring_type; 1405 u32 max_esit_payload; 1406 u32 endpoint_type; 1407 unsigned int max_burst; 1408 unsigned int interval; 1409 unsigned int mult; 1410 unsigned int avg_trb_len; 1411 unsigned int err_count = 0; 1412 1413 ep_index = xhci_get_endpoint_index(&ep->desc); 1414 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1415 1416 endpoint_type = xhci_get_endpoint_type(ep); 1417 if (!endpoint_type) 1418 return -EINVAL; 1419 1420 ring_type = usb_endpoint_type(&ep->desc); 1421 1422 /* 1423 * Get values to fill the endpoint context, mostly from ep descriptor. 1424 * The average TRB buffer lengt for bulk endpoints is unclear as we 1425 * have no clue on scatter gather list entry size. For Isoc and Int, 1426 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1427 */ 1428 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1429 interval = xhci_get_endpoint_interval(udev, ep); 1430 1431 /* Periodic endpoint bInterval limit quirk */ 1432 if (usb_endpoint_xfer_int(&ep->desc) || 1433 usb_endpoint_xfer_isoc(&ep->desc)) { 1434 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1435 udev->speed >= USB_SPEED_HIGH && 1436 interval >= 7) { 1437 interval = 6; 1438 } 1439 } 1440 1441 mult = xhci_get_endpoint_mult(udev, ep); 1442 max_packet = usb_endpoint_maxp(&ep->desc); 1443 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1444 avg_trb_len = max_esit_payload; 1445 1446 /* FIXME dig Mult and streams info out of ep companion desc */ 1447 1448 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1449 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1450 err_count = 3; 1451 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1452 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1453 if (udev->speed == USB_SPEED_HIGH) 1454 max_packet = 512; 1455 if (udev->speed == USB_SPEED_FULL) { 1456 max_packet = rounddown_pow_of_two(max_packet); 1457 max_packet = clamp_val(max_packet, 8, 64); 1458 } 1459 } 1460 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1461 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1462 avg_trb_len = 8; 1463 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1464 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1465 mult = 0; 1466 1467 /* Set up the endpoint ring */ 1468 virt_dev->eps[ep_index].new_ring = 1469 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1470 if (!virt_dev->eps[ep_index].new_ring) 1471 return -ENOMEM; 1472 1473 virt_dev->eps[ep_index].skip = false; 1474 ep_ring = virt_dev->eps[ep_index].new_ring; 1475 1476 /* Fill the endpoint context */ 1477 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1478 EP_INTERVAL(interval) | 1479 EP_MULT(mult)); 1480 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1481 MAX_PACKET(max_packet) | 1482 MAX_BURST(max_burst) | 1483 ERROR_COUNT(err_count)); 1484 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1485 ep_ring->cycle_state); 1486 1487 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1488 EP_AVG_TRB_LENGTH(avg_trb_len)); 1489 1490 return 0; 1491 } 1492 1493 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1494 struct xhci_virt_device *virt_dev, 1495 struct usb_host_endpoint *ep) 1496 { 1497 unsigned int ep_index; 1498 struct xhci_ep_ctx *ep_ctx; 1499 1500 ep_index = xhci_get_endpoint_index(&ep->desc); 1501 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1502 1503 ep_ctx->ep_info = 0; 1504 ep_ctx->ep_info2 = 0; 1505 ep_ctx->deq = 0; 1506 ep_ctx->tx_info = 0; 1507 /* Don't free the endpoint ring until the set interface or configuration 1508 * request succeeds. 1509 */ 1510 } 1511 1512 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1513 { 1514 bw_info->ep_interval = 0; 1515 bw_info->mult = 0; 1516 bw_info->num_packets = 0; 1517 bw_info->max_packet_size = 0; 1518 bw_info->type = 0; 1519 bw_info->max_esit_payload = 0; 1520 } 1521 1522 void xhci_update_bw_info(struct xhci_hcd *xhci, 1523 struct xhci_container_ctx *in_ctx, 1524 struct xhci_input_control_ctx *ctrl_ctx, 1525 struct xhci_virt_device *virt_dev) 1526 { 1527 struct xhci_bw_info *bw_info; 1528 struct xhci_ep_ctx *ep_ctx; 1529 unsigned int ep_type; 1530 int i; 1531 1532 for (i = 1; i < 31; i++) { 1533 bw_info = &virt_dev->eps[i].bw_info; 1534 1535 /* We can't tell what endpoint type is being dropped, but 1536 * unconditionally clearing the bandwidth info for non-periodic 1537 * endpoints should be harmless because the info will never be 1538 * set in the first place. 1539 */ 1540 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1541 /* Dropped endpoint */ 1542 xhci_clear_endpoint_bw_info(bw_info); 1543 continue; 1544 } 1545 1546 if (EP_IS_ADDED(ctrl_ctx, i)) { 1547 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1548 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1549 1550 /* Ignore non-periodic endpoints */ 1551 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1552 ep_type != ISOC_IN_EP && 1553 ep_type != INT_IN_EP) 1554 continue; 1555 1556 /* Added or changed endpoint */ 1557 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1558 le32_to_cpu(ep_ctx->ep_info)); 1559 /* Number of packets and mult are zero-based in the 1560 * input context, but we want one-based for the 1561 * interval table. 1562 */ 1563 bw_info->mult = CTX_TO_EP_MULT( 1564 le32_to_cpu(ep_ctx->ep_info)) + 1; 1565 bw_info->num_packets = CTX_TO_MAX_BURST( 1566 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1567 bw_info->max_packet_size = MAX_PACKET_DECODED( 1568 le32_to_cpu(ep_ctx->ep_info2)); 1569 bw_info->type = ep_type; 1570 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1571 le32_to_cpu(ep_ctx->tx_info)); 1572 } 1573 } 1574 } 1575 1576 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1577 * Useful when you want to change one particular aspect of the endpoint and then 1578 * issue a configure endpoint command. 1579 */ 1580 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1581 struct xhci_container_ctx *in_ctx, 1582 struct xhci_container_ctx *out_ctx, 1583 unsigned int ep_index) 1584 { 1585 struct xhci_ep_ctx *out_ep_ctx; 1586 struct xhci_ep_ctx *in_ep_ctx; 1587 1588 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1589 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1590 1591 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1592 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1593 in_ep_ctx->deq = out_ep_ctx->deq; 1594 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1595 if (xhci->quirks & XHCI_MTK_HOST) { 1596 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1597 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1598 } 1599 } 1600 1601 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1602 * Useful when you want to change one particular aspect of the endpoint and then 1603 * issue a configure endpoint command. Only the context entries field matters, 1604 * but we'll copy the whole thing anyway. 1605 */ 1606 void xhci_slot_copy(struct xhci_hcd *xhci, 1607 struct xhci_container_ctx *in_ctx, 1608 struct xhci_container_ctx *out_ctx) 1609 { 1610 struct xhci_slot_ctx *in_slot_ctx; 1611 struct xhci_slot_ctx *out_slot_ctx; 1612 1613 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1614 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1615 1616 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1617 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1618 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1619 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1620 } 1621 1622 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1623 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1624 { 1625 int i; 1626 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1627 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1628 1629 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1630 "Allocating %d scratchpad buffers", num_sp); 1631 1632 if (!num_sp) 1633 return 0; 1634 1635 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1636 dev_to_node(dev)); 1637 if (!xhci->scratchpad) 1638 goto fail_sp; 1639 1640 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1641 size_mul(sizeof(u64), num_sp), 1642 &xhci->scratchpad->sp_dma, flags); 1643 if (!xhci->scratchpad->sp_array) 1644 goto fail_sp2; 1645 1646 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1647 flags, dev_to_node(dev)); 1648 if (!xhci->scratchpad->sp_buffers) 1649 goto fail_sp3; 1650 1651 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1652 for (i = 0; i < num_sp; i++) { 1653 dma_addr_t dma; 1654 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1655 flags); 1656 if (!buf) 1657 goto fail_sp4; 1658 1659 xhci->scratchpad->sp_array[i] = dma; 1660 xhci->scratchpad->sp_buffers[i] = buf; 1661 } 1662 1663 return 0; 1664 1665 fail_sp4: 1666 while (i--) 1667 dma_free_coherent(dev, xhci->page_size, 1668 xhci->scratchpad->sp_buffers[i], 1669 xhci->scratchpad->sp_array[i]); 1670 1671 kfree(xhci->scratchpad->sp_buffers); 1672 1673 fail_sp3: 1674 dma_free_coherent(dev, num_sp * sizeof(u64), 1675 xhci->scratchpad->sp_array, 1676 xhci->scratchpad->sp_dma); 1677 1678 fail_sp2: 1679 kfree(xhci->scratchpad); 1680 xhci->scratchpad = NULL; 1681 1682 fail_sp: 1683 return -ENOMEM; 1684 } 1685 1686 static void scratchpad_free(struct xhci_hcd *xhci) 1687 { 1688 int num_sp; 1689 int i; 1690 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1691 1692 if (!xhci->scratchpad) 1693 return; 1694 1695 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1696 1697 for (i = 0; i < num_sp; i++) { 1698 dma_free_coherent(dev, xhci->page_size, 1699 xhci->scratchpad->sp_buffers[i], 1700 xhci->scratchpad->sp_array[i]); 1701 } 1702 kfree(xhci->scratchpad->sp_buffers); 1703 dma_free_coherent(dev, num_sp * sizeof(u64), 1704 xhci->scratchpad->sp_array, 1705 xhci->scratchpad->sp_dma); 1706 kfree(xhci->scratchpad); 1707 xhci->scratchpad = NULL; 1708 } 1709 1710 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1711 bool allocate_completion, gfp_t mem_flags) 1712 { 1713 struct xhci_command *command; 1714 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1715 1716 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1717 if (!command) 1718 return NULL; 1719 1720 if (allocate_completion) { 1721 command->completion = 1722 kzalloc_node(sizeof(struct completion), mem_flags, 1723 dev_to_node(dev)); 1724 if (!command->completion) { 1725 kfree(command); 1726 return NULL; 1727 } 1728 init_completion(command->completion); 1729 } 1730 1731 command->status = 0; 1732 INIT_LIST_HEAD(&command->cmd_list); 1733 return command; 1734 } 1735 1736 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1737 bool allocate_completion, gfp_t mem_flags) 1738 { 1739 struct xhci_command *command; 1740 1741 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1742 if (!command) 1743 return NULL; 1744 1745 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1746 mem_flags); 1747 if (!command->in_ctx) { 1748 kfree(command->completion); 1749 kfree(command); 1750 return NULL; 1751 } 1752 return command; 1753 } 1754 1755 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1756 { 1757 kfree(urb_priv); 1758 } 1759 1760 void xhci_free_command(struct xhci_hcd *xhci, 1761 struct xhci_command *command) 1762 { 1763 xhci_free_container_ctx(xhci, 1764 command->in_ctx); 1765 kfree(command->completion); 1766 kfree(command); 1767 } 1768 1769 int xhci_alloc_erst(struct xhci_hcd *xhci, 1770 struct xhci_ring *evt_ring, 1771 struct xhci_erst *erst, 1772 gfp_t flags) 1773 { 1774 size_t size; 1775 unsigned int val; 1776 struct xhci_segment *seg; 1777 struct xhci_erst_entry *entry; 1778 1779 size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs); 1780 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1781 size, &erst->erst_dma_addr, flags); 1782 if (!erst->entries) 1783 return -ENOMEM; 1784 1785 erst->num_entries = evt_ring->num_segs; 1786 1787 seg = evt_ring->first_seg; 1788 for (val = 0; val < evt_ring->num_segs; val++) { 1789 entry = &erst->entries[val]; 1790 entry->seg_addr = cpu_to_le64(seg->dma); 1791 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1792 entry->rsvd = 0; 1793 seg = seg->next; 1794 } 1795 1796 return 0; 1797 } 1798 1799 static void 1800 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1801 { 1802 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1803 size_t erst_size; 1804 u64 tmp64; 1805 u32 tmp; 1806 1807 if (!ir) 1808 return; 1809 1810 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries; 1811 if (ir->erst.entries) 1812 dma_free_coherent(dev, erst_size, 1813 ir->erst.entries, 1814 ir->erst.erst_dma_addr); 1815 ir->erst.entries = NULL; 1816 1817 /* 1818 * Clean out interrupter registers except ERSTBA. Clearing either the 1819 * low or high 32 bits of ERSTBA immediately causes the controller to 1820 * dereference the partially cleared 64 bit address, causing IOMMU error. 1821 */ 1822 if (ir->ir_set) { 1823 tmp = readl(&ir->ir_set->erst_size); 1824 tmp &= ERST_SIZE_MASK; 1825 writel(tmp, &ir->ir_set->erst_size); 1826 1827 tmp64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 1828 tmp64 &= (u64) ERST_PTR_MASK; 1829 xhci_write_64(xhci, tmp64, &ir->ir_set->erst_dequeue); 1830 } 1831 1832 /* free interrrupter event ring */ 1833 if (ir->event_ring) 1834 xhci_ring_free(xhci, ir->event_ring); 1835 ir->event_ring = NULL; 1836 1837 kfree(ir); 1838 } 1839 1840 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1841 { 1842 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1843 int i, j, num_ports; 1844 1845 cancel_delayed_work_sync(&xhci->cmd_timer); 1846 1847 xhci_free_interrupter(xhci, xhci->interrupter); 1848 xhci->interrupter = NULL; 1849 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed primary event ring"); 1850 1851 if (xhci->cmd_ring) 1852 xhci_ring_free(xhci, xhci->cmd_ring); 1853 xhci->cmd_ring = NULL; 1854 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1855 xhci_cleanup_command_queue(xhci); 1856 1857 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1858 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1859 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1860 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1861 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1862 while (!list_empty(ep)) 1863 list_del_init(ep->next); 1864 } 1865 } 1866 1867 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1868 xhci_free_virt_devices_depth_first(xhci, i); 1869 1870 dma_pool_destroy(xhci->segment_pool); 1871 xhci->segment_pool = NULL; 1872 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1873 1874 dma_pool_destroy(xhci->device_pool); 1875 xhci->device_pool = NULL; 1876 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1877 1878 dma_pool_destroy(xhci->small_streams_pool); 1879 xhci->small_streams_pool = NULL; 1880 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1881 "Freed small stream array pool"); 1882 1883 dma_pool_destroy(xhci->medium_streams_pool); 1884 xhci->medium_streams_pool = NULL; 1885 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1886 "Freed medium stream array pool"); 1887 1888 if (xhci->dcbaa) 1889 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1890 xhci->dcbaa, xhci->dcbaa->dma); 1891 xhci->dcbaa = NULL; 1892 1893 scratchpad_free(xhci); 1894 1895 if (!xhci->rh_bw) 1896 goto no_bw; 1897 1898 for (i = 0; i < num_ports; i++) { 1899 struct xhci_tt_bw_info *tt, *n; 1900 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1901 list_del(&tt->tt_list); 1902 kfree(tt); 1903 } 1904 } 1905 1906 no_bw: 1907 xhci->cmd_ring_reserved_trbs = 0; 1908 xhci->usb2_rhub.num_ports = 0; 1909 xhci->usb3_rhub.num_ports = 0; 1910 xhci->num_active_eps = 0; 1911 kfree(xhci->usb2_rhub.ports); 1912 kfree(xhci->usb3_rhub.ports); 1913 kfree(xhci->hw_ports); 1914 kfree(xhci->rh_bw); 1915 kfree(xhci->ext_caps); 1916 for (i = 0; i < xhci->num_port_caps; i++) 1917 kfree(xhci->port_caps[i].psi); 1918 kfree(xhci->port_caps); 1919 xhci->num_port_caps = 0; 1920 1921 xhci->usb2_rhub.ports = NULL; 1922 xhci->usb3_rhub.ports = NULL; 1923 xhci->hw_ports = NULL; 1924 xhci->rh_bw = NULL; 1925 xhci->ext_caps = NULL; 1926 xhci->port_caps = NULL; 1927 1928 xhci->page_size = 0; 1929 xhci->page_shift = 0; 1930 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1931 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1932 } 1933 1934 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1935 { 1936 u64 temp; 1937 dma_addr_t deq; 1938 1939 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 1940 ir->event_ring->dequeue); 1941 if (!deq) 1942 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); 1943 /* Update HC event ring dequeue pointer */ 1944 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 1945 temp &= ERST_PTR_MASK; 1946 /* Don't clear the EHB bit (which is RW1C) because 1947 * there might be more events to service. 1948 */ 1949 temp &= ~ERST_EHB; 1950 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1951 "// Write event ring dequeue pointer, preserving EHB bit"); 1952 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 1953 &ir->ir_set->erst_dequeue); 1954 } 1955 1956 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 1957 __le32 __iomem *addr, int max_caps) 1958 { 1959 u32 temp, port_offset, port_count; 1960 int i; 1961 u8 major_revision, minor_revision, tmp_minor_revision; 1962 struct xhci_hub *rhub; 1963 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1964 struct xhci_port_cap *port_cap; 1965 1966 temp = readl(addr); 1967 major_revision = XHCI_EXT_PORT_MAJOR(temp); 1968 minor_revision = XHCI_EXT_PORT_MINOR(temp); 1969 1970 if (major_revision == 0x03) { 1971 rhub = &xhci->usb3_rhub; 1972 /* 1973 * Some hosts incorrectly use sub-minor version for minor 1974 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 1975 * for bcdUSB 0x310). Since there is no USB release with sub 1976 * minor version 0x301 to 0x309, we can assume that they are 1977 * incorrect and fix it here. 1978 */ 1979 if (minor_revision > 0x00 && minor_revision < 0x10) 1980 minor_revision <<= 4; 1981 /* 1982 * Some zhaoxin's xHCI controller that follow usb3.1 spec 1983 * but only support Gen1. 1984 */ 1985 if (xhci->quirks & XHCI_ZHAOXIN_HOST) { 1986 tmp_minor_revision = minor_revision; 1987 minor_revision = 0; 1988 } 1989 1990 } else if (major_revision <= 0x02) { 1991 rhub = &xhci->usb2_rhub; 1992 } else { 1993 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", 1994 addr, major_revision); 1995 /* Ignoring port protocol we can't understand. FIXME */ 1996 return; 1997 } 1998 1999 /* Port offset and count in the third dword, see section 7.2 */ 2000 temp = readl(addr + 2); 2001 port_offset = XHCI_EXT_PORT_OFF(temp); 2002 port_count = XHCI_EXT_PORT_COUNT(temp); 2003 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2004 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", 2005 addr, port_offset, port_count, major_revision); 2006 /* Port count includes the current port offset */ 2007 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2008 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2009 return; 2010 2011 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2012 if (xhci->num_port_caps > max_caps) 2013 return; 2014 2015 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2016 2017 if (port_cap->psi_count) { 2018 port_cap->psi = kcalloc_node(port_cap->psi_count, 2019 sizeof(*port_cap->psi), 2020 GFP_KERNEL, dev_to_node(dev)); 2021 if (!port_cap->psi) 2022 port_cap->psi_count = 0; 2023 2024 port_cap->psi_uid_count++; 2025 for (i = 0; i < port_cap->psi_count; i++) { 2026 port_cap->psi[i] = readl(addr + 4 + i); 2027 2028 /* count unique ID values, two consecutive entries can 2029 * have the same ID if link is assymetric 2030 */ 2031 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2032 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2033 port_cap->psi_uid_count++; 2034 2035 if (xhci->quirks & XHCI_ZHAOXIN_HOST && 2036 major_revision == 0x03 && 2037 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) 2038 minor_revision = tmp_minor_revision; 2039 2040 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2041 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2042 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2043 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2044 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2045 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2046 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2047 } 2048 } 2049 2050 rhub->maj_rev = major_revision; 2051 2052 if (rhub->min_rev < minor_revision) 2053 rhub->min_rev = minor_revision; 2054 2055 port_cap->maj_rev = major_revision; 2056 port_cap->min_rev = minor_revision; 2057 2058 /* cache usb2 port capabilities */ 2059 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2060 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2061 2062 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2063 (temp & XHCI_HLC)) { 2064 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2065 "xHCI 1.0: support USB2 hardware lpm"); 2066 xhci->hw_lpm_support = 1; 2067 } 2068 2069 port_offset--; 2070 for (i = port_offset; i < (port_offset + port_count); i++) { 2071 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2072 /* Duplicate entry. Ignore the port if the revisions differ. */ 2073 if (hw_port->rhub) { 2074 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); 2075 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", 2076 hw_port->rhub->maj_rev, major_revision); 2077 /* Only adjust the roothub port counts if we haven't 2078 * found a similar duplicate. 2079 */ 2080 if (hw_port->rhub != rhub && 2081 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2082 hw_port->rhub->num_ports--; 2083 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2084 } 2085 continue; 2086 } 2087 hw_port->rhub = rhub; 2088 hw_port->port_cap = port_cap; 2089 rhub->num_ports++; 2090 } 2091 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2092 } 2093 2094 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2095 struct xhci_hub *rhub, gfp_t flags) 2096 { 2097 int port_index = 0; 2098 int i; 2099 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2100 2101 if (!rhub->num_ports) 2102 return; 2103 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2104 flags, dev_to_node(dev)); 2105 if (!rhub->ports) 2106 return; 2107 2108 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2109 if (xhci->hw_ports[i].rhub != rhub || 2110 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2111 continue; 2112 xhci->hw_ports[i].hcd_portnum = port_index; 2113 rhub->ports[port_index] = &xhci->hw_ports[i]; 2114 port_index++; 2115 if (port_index == rhub->num_ports) 2116 break; 2117 } 2118 } 2119 2120 /* 2121 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2122 * specify what speeds each port is supposed to be. We can't count on the port 2123 * speed bits in the PORTSC register being correct until a device is connected, 2124 * but we need to set up the two fake roothubs with the correct number of USB 2125 * 3.0 and USB 2.0 ports at host controller initialization time. 2126 */ 2127 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2128 { 2129 void __iomem *base; 2130 u32 offset; 2131 unsigned int num_ports; 2132 int i, j; 2133 int cap_count = 0; 2134 u32 cap_start; 2135 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2136 2137 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2138 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2139 flags, dev_to_node(dev)); 2140 if (!xhci->hw_ports) 2141 return -ENOMEM; 2142 2143 for (i = 0; i < num_ports; i++) { 2144 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2145 NUM_PORT_REGS * i; 2146 xhci->hw_ports[i].hw_portnum = i; 2147 2148 init_completion(&xhci->hw_ports[i].rexit_done); 2149 init_completion(&xhci->hw_ports[i].u3exit_done); 2150 } 2151 2152 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2153 dev_to_node(dev)); 2154 if (!xhci->rh_bw) 2155 return -ENOMEM; 2156 for (i = 0; i < num_ports; i++) { 2157 struct xhci_interval_bw_table *bw_table; 2158 2159 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2160 bw_table = &xhci->rh_bw[i].bw_table; 2161 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2162 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2163 } 2164 base = &xhci->cap_regs->hc_capbase; 2165 2166 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2167 if (!cap_start) { 2168 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2169 return -ENODEV; 2170 } 2171 2172 offset = cap_start; 2173 /* count extended protocol capability entries for later caching */ 2174 while (offset) { 2175 cap_count++; 2176 offset = xhci_find_next_ext_cap(base, offset, 2177 XHCI_EXT_CAPS_PROTOCOL); 2178 } 2179 2180 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2181 flags, dev_to_node(dev)); 2182 if (!xhci->ext_caps) 2183 return -ENOMEM; 2184 2185 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2186 flags, dev_to_node(dev)); 2187 if (!xhci->port_caps) 2188 return -ENOMEM; 2189 2190 offset = cap_start; 2191 2192 while (offset) { 2193 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2194 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2195 num_ports) 2196 break; 2197 offset = xhci_find_next_ext_cap(base, offset, 2198 XHCI_EXT_CAPS_PROTOCOL); 2199 } 2200 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2201 xhci_warn(xhci, "No ports on the roothubs?\n"); 2202 return -ENODEV; 2203 } 2204 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2205 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2206 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2207 2208 /* Place limits on the number of roothub ports so that the hub 2209 * descriptors aren't longer than the USB core will allocate. 2210 */ 2211 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2212 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2213 "Limiting USB 3.0 roothub ports to %u.", 2214 USB_SS_MAXPORTS); 2215 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2216 } 2217 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2218 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2219 "Limiting USB 2.0 roothub ports to %u.", 2220 USB_MAXCHILDREN); 2221 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2222 } 2223 2224 if (!xhci->usb2_rhub.num_ports) 2225 xhci_info(xhci, "USB2 root hub has no ports\n"); 2226 2227 if (!xhci->usb3_rhub.num_ports) 2228 xhci_info(xhci, "USB3 root hub has no ports\n"); 2229 2230 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2231 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2232 2233 return 0; 2234 } 2235 2236 static struct xhci_interrupter * 2237 xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags) 2238 { 2239 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2240 struct xhci_interrupter *ir; 2241 int ret; 2242 2243 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); 2244 if (!ir) 2245 return NULL; 2246 2247 ir->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2248 0, flags); 2249 if (!ir->event_ring) { 2250 xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); 2251 kfree(ir); 2252 return NULL; 2253 } 2254 2255 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags); 2256 if (ret) { 2257 xhci_warn(xhci, "Failed to allocate interrupter erst\n"); 2258 xhci_ring_free(xhci, ir->event_ring); 2259 kfree(ir); 2260 return NULL; 2261 } 2262 2263 return ir; 2264 } 2265 2266 static int 2267 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2268 unsigned int intr_num) 2269 { 2270 u64 erst_base; 2271 u32 erst_size; 2272 2273 if (intr_num > xhci->max_interrupters) { 2274 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n", 2275 intr_num, xhci->max_interrupters); 2276 return -EINVAL; 2277 } 2278 2279 ir->ir_set = &xhci->run_regs->ir_set[intr_num]; 2280 2281 /* set ERST count with the number of entries in the segment table */ 2282 erst_size = readl(&ir->ir_set->erst_size); 2283 erst_size &= ERST_SIZE_MASK; 2284 erst_size |= ERST_NUM_SEGS; 2285 writel(erst_size, &ir->ir_set->erst_size); 2286 2287 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 2288 erst_base &= ERST_BASE_RSVDP; 2289 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP; 2290 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base); 2291 2292 /* Set the event ring dequeue address of this interrupter */ 2293 xhci_set_hc_event_deq(xhci, ir); 2294 2295 return 0; 2296 } 2297 2298 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2299 { 2300 dma_addr_t dma; 2301 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2302 unsigned int val, val2; 2303 u64 val_64; 2304 u32 page_size, temp; 2305 int i; 2306 2307 INIT_LIST_HEAD(&xhci->cmd_list); 2308 2309 /* init command timeout work */ 2310 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2311 init_completion(&xhci->cmd_ring_stop_completion); 2312 2313 page_size = readl(&xhci->op_regs->page_size); 2314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2315 "Supported page size register = 0x%x", page_size); 2316 i = ffs(page_size); 2317 if (i < 16) 2318 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2319 "Supported page size of %iK", (1 << (i+12)) / 1024); 2320 else 2321 xhci_warn(xhci, "WARN: no supported page size\n"); 2322 /* Use 4K pages, since that's common and the minimum the HC supports */ 2323 xhci->page_shift = 12; 2324 xhci->page_size = 1 << xhci->page_shift; 2325 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2326 "HCD page size set to %iK", xhci->page_size / 1024); 2327 2328 /* 2329 * Program the Number of Device Slots Enabled field in the CONFIG 2330 * register with the max value of slots the HC can handle. 2331 */ 2332 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2333 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2334 "// xHC can handle at most %d device slots.", val); 2335 val2 = readl(&xhci->op_regs->config_reg); 2336 val |= (val2 & ~HCS_SLOTS_MASK); 2337 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2338 "// Setting Max device slots reg = 0x%x.", val); 2339 writel(val, &xhci->op_regs->config_reg); 2340 2341 /* 2342 * xHCI section 5.4.6 - Device Context array must be 2343 * "physically contiguous and 64-byte (cache line) aligned". 2344 */ 2345 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2346 flags); 2347 if (!xhci->dcbaa) 2348 goto fail; 2349 xhci->dcbaa->dma = dma; 2350 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2351 "// Device context base array address = 0x%pad (DMA), %p (virt)", 2352 &xhci->dcbaa->dma, xhci->dcbaa); 2353 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2354 2355 /* 2356 * Initialize the ring segment pool. The ring must be a contiguous 2357 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2358 * however, the command ring segment needs 64-byte aligned segments 2359 * and our use of dma addresses in the trb_address_map radix tree needs 2360 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2361 */ 2362 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH) 2363 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2364 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2); 2365 else 2366 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2367 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2368 2369 /* See Table 46 and Note on Figure 55 */ 2370 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2371 2112, 64, xhci->page_size); 2372 if (!xhci->segment_pool || !xhci->device_pool) 2373 goto fail; 2374 2375 /* Linear stream context arrays don't have any boundary restrictions, 2376 * and only need to be 16-byte aligned. 2377 */ 2378 xhci->small_streams_pool = 2379 dma_pool_create("xHCI 256 byte stream ctx arrays", 2380 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2381 xhci->medium_streams_pool = 2382 dma_pool_create("xHCI 1KB stream ctx arrays", 2383 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2384 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2385 * will be allocated with dma_alloc_coherent() 2386 */ 2387 2388 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2389 goto fail; 2390 2391 /* Set up the command ring to have one segments for now. */ 2392 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2393 if (!xhci->cmd_ring) 2394 goto fail; 2395 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2396 "Allocated command ring at %p", xhci->cmd_ring); 2397 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad", 2398 &xhci->cmd_ring->first_seg->dma); 2399 2400 /* Set the address in the Command Ring Control register */ 2401 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2402 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2403 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2404 xhci->cmd_ring->cycle_state; 2405 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2406 "// Setting command ring address to 0x%016llx", val_64); 2407 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2408 2409 /* Reserve one command ring TRB for disabling LPM. 2410 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2411 * disabling LPM, we only need to reserve one TRB for all devices. 2412 */ 2413 xhci->cmd_ring_reserved_trbs++; 2414 2415 val = readl(&xhci->cap_regs->db_off); 2416 val &= DBOFF_MASK; 2417 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2418 "// Doorbell array is located at offset 0x%x from cap regs base addr", 2419 val); 2420 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2421 2422 /* Allocate and set up primary interrupter 0 with an event ring. */ 2423 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2424 "Allocating primary event ring"); 2425 xhci->interrupter = xhci_alloc_interrupter(xhci, flags); 2426 if (!xhci->interrupter) 2427 goto fail; 2428 2429 if (xhci_add_interrupter(xhci, xhci->interrupter, 0)) 2430 goto fail; 2431 2432 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 2433 2434 /* 2435 * XXX: Might need to set the Interrupter Moderation Register to 2436 * something other than the default (~1ms minimum between interrupts). 2437 * See section 5.5.1.2. 2438 */ 2439 for (i = 0; i < MAX_HC_SLOTS; i++) 2440 xhci->devs[i] = NULL; 2441 2442 if (scratchpad_alloc(xhci, flags)) 2443 goto fail; 2444 if (xhci_setup_port_arrays(xhci, flags)) 2445 goto fail; 2446 2447 /* Enable USB 3.0 device notifications for function remote wake, which 2448 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2449 * U3 (device suspend). 2450 */ 2451 temp = readl(&xhci->op_regs->dev_notification); 2452 temp &= ~DEV_NOTE_MASK; 2453 temp |= DEV_NOTE_FWAKE; 2454 writel(temp, &xhci->op_regs->dev_notification); 2455 2456 return 0; 2457 2458 fail: 2459 xhci_halt(xhci); 2460 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2461 xhci_mem_cleanup(xhci); 2462 return -ENOMEM; 2463 } 2464