1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 28 #include "xhci.h" 29 30 /* 31 * Allocates a generic ring segment from the ring pool, sets the dma address, 32 * initializes the segment to zero, and sets the private next pointer to NULL. 33 * 34 * Section 4.11.1.1: 35 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 36 */ 37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 38 unsigned int cycle_state, gfp_t flags) 39 { 40 struct xhci_segment *seg; 41 dma_addr_t dma; 42 int i; 43 44 seg = kzalloc(sizeof *seg, flags); 45 if (!seg) 46 return NULL; 47 48 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); 49 if (!seg->trbs) { 50 kfree(seg); 51 return NULL; 52 } 53 54 memset(seg->trbs, 0, TRB_SEGMENT_SIZE); 55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 56 if (cycle_state == 0) { 57 for (i = 0; i < TRBS_PER_SEGMENT; i++) 58 seg->trbs[i].link.control |= TRB_CYCLE; 59 } 60 seg->dma = dma; 61 seg->next = NULL; 62 63 return seg; 64 } 65 66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 67 { 68 if (seg->trbs) { 69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 70 seg->trbs = NULL; 71 } 72 kfree(seg); 73 } 74 75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 76 struct xhci_segment *first) 77 { 78 struct xhci_segment *seg; 79 80 seg = first->next; 81 while (seg != first) { 82 struct xhci_segment *next = seg->next; 83 xhci_segment_free(xhci, seg); 84 seg = next; 85 } 86 xhci_segment_free(xhci, first); 87 } 88 89 /* 90 * Make the prev segment point to the next segment. 91 * 92 * Change the last TRB in the prev segment to be a Link TRB which points to the 93 * DMA address of the next segment. The caller needs to set any Link TRB 94 * related flags, such as End TRB, Toggle Cycle, and no snoop. 95 */ 96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 97 struct xhci_segment *next, enum xhci_ring_type type) 98 { 99 u32 val; 100 101 if (!prev || !next) 102 return; 103 prev->next = next; 104 if (type != TYPE_EVENT) { 105 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 106 cpu_to_le64(next->dma); 107 108 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 109 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 110 val &= ~TRB_TYPE_BITMASK; 111 val |= TRB_TYPE(TRB_LINK); 112 /* Always set the chain bit with 0.95 hardware */ 113 /* Set chain bit for isoc rings on AMD 0.96 host */ 114 if (xhci_link_trb_quirk(xhci) || 115 (type == TYPE_ISOC && 116 (xhci->quirks & XHCI_AMD_0x96_HOST))) 117 val |= TRB_CHAIN; 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 119 } 120 } 121 122 /* 123 * Link the ring to the new segments. 124 * Set Toggle Cycle for the new ring if needed. 125 */ 126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 127 struct xhci_segment *first, struct xhci_segment *last, 128 unsigned int num_segs) 129 { 130 struct xhci_segment *next; 131 132 if (!ring || !first || !last) 133 return; 134 135 next = ring->enq_seg->next; 136 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 137 xhci_link_segments(xhci, last, next, ring->type); 138 ring->num_segs += num_segs; 139 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 140 141 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 142 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 143 &= ~cpu_to_le32(LINK_TOGGLE); 144 last->trbs[TRBS_PER_SEGMENT-1].link.control 145 |= cpu_to_le32(LINK_TOGGLE); 146 ring->last_seg = last; 147 } 148 } 149 150 /* XXX: Do we need the hcd structure in all these functions? */ 151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 152 { 153 if (!ring) 154 return; 155 156 if (ring->first_seg) 157 xhci_free_segments_for_ring(xhci, ring->first_seg); 158 159 kfree(ring); 160 } 161 162 static void xhci_initialize_ring_info(struct xhci_ring *ring, 163 unsigned int cycle_state) 164 { 165 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 166 ring->enqueue = ring->first_seg->trbs; 167 ring->enq_seg = ring->first_seg; 168 ring->dequeue = ring->enqueue; 169 ring->deq_seg = ring->first_seg; 170 /* The ring is initialized to 0. The producer must write 1 to the cycle 171 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 172 * compare CCS to the cycle bit to check ownership, so CCS = 1. 173 * 174 * New rings are initialized with cycle state equal to 1; if we are 175 * handling ring expansion, set the cycle state equal to the old ring. 176 */ 177 ring->cycle_state = cycle_state; 178 /* Not necessary for new rings, but needed for re-initialized rings */ 179 ring->enq_updates = 0; 180 ring->deq_updates = 0; 181 182 /* 183 * Each segment has a link TRB, and leave an extra TRB for SW 184 * accounting purpose 185 */ 186 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 187 } 188 189 /* Allocate segments and link them for a ring */ 190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 191 struct xhci_segment **first, struct xhci_segment **last, 192 unsigned int num_segs, unsigned int cycle_state, 193 enum xhci_ring_type type, gfp_t flags) 194 { 195 struct xhci_segment *prev; 196 197 prev = xhci_segment_alloc(xhci, cycle_state, flags); 198 if (!prev) 199 return -ENOMEM; 200 num_segs--; 201 202 *first = prev; 203 while (num_segs > 0) { 204 struct xhci_segment *next; 205 206 next = xhci_segment_alloc(xhci, cycle_state, flags); 207 if (!next) { 208 prev = *first; 209 while (prev) { 210 next = prev->next; 211 xhci_segment_free(xhci, prev); 212 prev = next; 213 } 214 return -ENOMEM; 215 } 216 xhci_link_segments(xhci, prev, next, type); 217 218 prev = next; 219 num_segs--; 220 } 221 xhci_link_segments(xhci, prev, *first, type); 222 *last = prev; 223 224 return 0; 225 } 226 227 /** 228 * Create a new ring with zero or more segments. 229 * 230 * Link each segment together into a ring. 231 * Set the end flag and the cycle toggle bit on the last segment. 232 * See section 4.9.1 and figures 15 and 16. 233 */ 234 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 235 unsigned int num_segs, unsigned int cycle_state, 236 enum xhci_ring_type type, gfp_t flags) 237 { 238 struct xhci_ring *ring; 239 int ret; 240 241 ring = kzalloc(sizeof *(ring), flags); 242 if (!ring) 243 return NULL; 244 245 ring->num_segs = num_segs; 246 INIT_LIST_HEAD(&ring->td_list); 247 ring->type = type; 248 if (num_segs == 0) 249 return ring; 250 251 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 252 &ring->last_seg, num_segs, cycle_state, type, flags); 253 if (ret) 254 goto fail; 255 256 /* Only event ring does not use link TRB */ 257 if (type != TYPE_EVENT) { 258 /* See section 4.9.2.1 and 6.4.4.1 */ 259 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 260 cpu_to_le32(LINK_TOGGLE); 261 } 262 xhci_initialize_ring_info(ring, cycle_state); 263 return ring; 264 265 fail: 266 kfree(ring); 267 return NULL; 268 } 269 270 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 271 struct xhci_virt_device *virt_dev, 272 unsigned int ep_index) 273 { 274 int rings_cached; 275 276 rings_cached = virt_dev->num_rings_cached; 277 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 278 virt_dev->ring_cache[rings_cached] = 279 virt_dev->eps[ep_index].ring; 280 virt_dev->num_rings_cached++; 281 xhci_dbg(xhci, "Cached old ring, " 282 "%d ring%s cached\n", 283 virt_dev->num_rings_cached, 284 (virt_dev->num_rings_cached > 1) ? "s" : ""); 285 } else { 286 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 287 xhci_dbg(xhci, "Ring cache full (%d rings), " 288 "freeing ring\n", 289 virt_dev->num_rings_cached); 290 } 291 virt_dev->eps[ep_index].ring = NULL; 292 } 293 294 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 295 * pointers to the beginning of the ring. 296 */ 297 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 298 struct xhci_ring *ring, unsigned int cycle_state, 299 enum xhci_ring_type type) 300 { 301 struct xhci_segment *seg = ring->first_seg; 302 int i; 303 304 do { 305 memset(seg->trbs, 0, 306 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 307 if (cycle_state == 0) { 308 for (i = 0; i < TRBS_PER_SEGMENT; i++) 309 seg->trbs[i].link.control |= TRB_CYCLE; 310 } 311 /* All endpoint rings have link TRBs */ 312 xhci_link_segments(xhci, seg, seg->next, type); 313 seg = seg->next; 314 } while (seg != ring->first_seg); 315 ring->type = type; 316 xhci_initialize_ring_info(ring, cycle_state); 317 /* td list should be empty since all URBs have been cancelled, 318 * but just in case... 319 */ 320 INIT_LIST_HEAD(&ring->td_list); 321 } 322 323 /* 324 * Expand an existing ring. 325 * Look for a cached ring or allocate a new ring which has same segment numbers 326 * and link the two rings. 327 */ 328 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 329 unsigned int num_trbs, gfp_t flags) 330 { 331 struct xhci_segment *first; 332 struct xhci_segment *last; 333 unsigned int num_segs; 334 unsigned int num_segs_needed; 335 int ret; 336 337 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 338 (TRBS_PER_SEGMENT - 1); 339 340 /* Allocate number of segments we needed, or double the ring size */ 341 num_segs = ring->num_segs > num_segs_needed ? 342 ring->num_segs : num_segs_needed; 343 344 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 345 num_segs, ring->cycle_state, ring->type, flags); 346 if (ret) 347 return -ENOMEM; 348 349 xhci_link_rings(xhci, ring, first, last, num_segs); 350 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n", 351 ring->num_segs); 352 353 return 0; 354 } 355 356 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 357 358 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 359 int type, gfp_t flags) 360 { 361 struct xhci_container_ctx *ctx; 362 363 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 364 return NULL; 365 366 ctx = kzalloc(sizeof(*ctx), flags); 367 if (!ctx) 368 return NULL; 369 370 ctx->type = type; 371 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 372 if (type == XHCI_CTX_TYPE_INPUT) 373 ctx->size += CTX_SIZE(xhci->hcc_params); 374 375 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); 376 if (!ctx->bytes) { 377 kfree(ctx); 378 return NULL; 379 } 380 memset(ctx->bytes, 0, ctx->size); 381 return ctx; 382 } 383 384 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 385 struct xhci_container_ctx *ctx) 386 { 387 if (!ctx) 388 return; 389 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 390 kfree(ctx); 391 } 392 393 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, 394 struct xhci_container_ctx *ctx) 395 { 396 if (ctx->type != XHCI_CTX_TYPE_INPUT) 397 return NULL; 398 399 return (struct xhci_input_control_ctx *)ctx->bytes; 400 } 401 402 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 403 struct xhci_container_ctx *ctx) 404 { 405 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 406 return (struct xhci_slot_ctx *)ctx->bytes; 407 408 return (struct xhci_slot_ctx *) 409 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 410 } 411 412 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 413 struct xhci_container_ctx *ctx, 414 unsigned int ep_index) 415 { 416 /* increment ep index by offset of start of ep ctx array */ 417 ep_index++; 418 if (ctx->type == XHCI_CTX_TYPE_INPUT) 419 ep_index++; 420 421 return (struct xhci_ep_ctx *) 422 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 423 } 424 425 426 /***************** Streams structures manipulation *************************/ 427 428 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 429 unsigned int num_stream_ctxs, 430 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 431 { 432 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 433 434 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 435 dma_free_coherent(&pdev->dev, 436 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 437 stream_ctx, dma); 438 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 439 return dma_pool_free(xhci->small_streams_pool, 440 stream_ctx, dma); 441 else 442 return dma_pool_free(xhci->medium_streams_pool, 443 stream_ctx, dma); 444 } 445 446 /* 447 * The stream context array for each endpoint with bulk streams enabled can 448 * vary in size, based on: 449 * - how many streams the endpoint supports, 450 * - the maximum primary stream array size the host controller supports, 451 * - and how many streams the device driver asks for. 452 * 453 * The stream context array must be a power of 2, and can be as small as 454 * 64 bytes or as large as 1MB. 455 */ 456 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 457 unsigned int num_stream_ctxs, dma_addr_t *dma, 458 gfp_t mem_flags) 459 { 460 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 461 462 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 463 return dma_alloc_coherent(&pdev->dev, 464 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 465 dma, mem_flags); 466 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 467 return dma_pool_alloc(xhci->small_streams_pool, 468 mem_flags, dma); 469 else 470 return dma_pool_alloc(xhci->medium_streams_pool, 471 mem_flags, dma); 472 } 473 474 struct xhci_ring *xhci_dma_to_transfer_ring( 475 struct xhci_virt_ep *ep, 476 u64 address) 477 { 478 if (ep->ep_state & EP_HAS_STREAMS) 479 return radix_tree_lookup(&ep->stream_info->trb_address_map, 480 address >> TRB_SEGMENT_SHIFT); 481 return ep->ring; 482 } 483 484 /* Only use this when you know stream_info is valid */ 485 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 486 static struct xhci_ring *dma_to_stream_ring( 487 struct xhci_stream_info *stream_info, 488 u64 address) 489 { 490 return radix_tree_lookup(&stream_info->trb_address_map, 491 address >> TRB_SEGMENT_SHIFT); 492 } 493 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 494 495 struct xhci_ring *xhci_stream_id_to_ring( 496 struct xhci_virt_device *dev, 497 unsigned int ep_index, 498 unsigned int stream_id) 499 { 500 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 501 502 if (stream_id == 0) 503 return ep->ring; 504 if (!ep->stream_info) 505 return NULL; 506 507 if (stream_id > ep->stream_info->num_streams) 508 return NULL; 509 return ep->stream_info->stream_rings[stream_id]; 510 } 511 512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 513 static int xhci_test_radix_tree(struct xhci_hcd *xhci, 514 unsigned int num_streams, 515 struct xhci_stream_info *stream_info) 516 { 517 u32 cur_stream; 518 struct xhci_ring *cur_ring; 519 u64 addr; 520 521 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 522 struct xhci_ring *mapped_ring; 523 int trb_size = sizeof(union xhci_trb); 524 525 cur_ring = stream_info->stream_rings[cur_stream]; 526 for (addr = cur_ring->first_seg->dma; 527 addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE; 528 addr += trb_size) { 529 mapped_ring = dma_to_stream_ring(stream_info, addr); 530 if (cur_ring != mapped_ring) { 531 xhci_warn(xhci, "WARN: DMA address 0x%08llx " 532 "didn't map to stream ID %u; " 533 "mapped to ring %p\n", 534 (unsigned long long) addr, 535 cur_stream, 536 mapped_ring); 537 return -EINVAL; 538 } 539 } 540 /* One TRB after the end of the ring segment shouldn't return a 541 * pointer to the current ring (although it may be a part of a 542 * different ring). 543 */ 544 mapped_ring = dma_to_stream_ring(stream_info, addr); 545 if (mapped_ring != cur_ring) { 546 /* One TRB before should also fail */ 547 addr = cur_ring->first_seg->dma - trb_size; 548 mapped_ring = dma_to_stream_ring(stream_info, addr); 549 } 550 if (mapped_ring == cur_ring) { 551 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx " 552 "mapped to valid stream ID %u; " 553 "mapped ring = %p\n", 554 (unsigned long long) addr, 555 cur_stream, 556 mapped_ring); 557 return -EINVAL; 558 } 559 } 560 return 0; 561 } 562 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 563 564 /* 565 * Change an endpoint's internal structure so it supports stream IDs. The 566 * number of requested streams includes stream 0, which cannot be used by device 567 * drivers. 568 * 569 * The number of stream contexts in the stream context array may be bigger than 570 * the number of streams the driver wants to use. This is because the number of 571 * stream context array entries must be a power of two. 572 * 573 * We need a radix tree for mapping physical addresses of TRBs to which stream 574 * ID they belong to. We need to do this because the host controller won't tell 575 * us which stream ring the TRB came from. We could store the stream ID in an 576 * event data TRB, but that doesn't help us for the cancellation case, since the 577 * endpoint may stop before it reaches that event data TRB. 578 * 579 * The radix tree maps the upper portion of the TRB DMA address to a ring 580 * segment that has the same upper portion of DMA addresses. For example, say I 581 * have segments of size 1KB, that are always 64-byte aligned. A segment may 582 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 583 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 584 * pass the radix tree a key to get the right stream ID: 585 * 586 * 0x10c90fff >> 10 = 0x43243 587 * 0x10c912c0 >> 10 = 0x43244 588 * 0x10c91400 >> 10 = 0x43245 589 * 590 * Obviously, only those TRBs with DMA addresses that are within the segment 591 * will make the radix tree return the stream ID for that ring. 592 * 593 * Caveats for the radix tree: 594 * 595 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 596 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 597 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 598 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 599 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 600 * extended systems (where the DMA address can be bigger than 32-bits), 601 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 602 */ 603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 604 unsigned int num_stream_ctxs, 605 unsigned int num_streams, gfp_t mem_flags) 606 { 607 struct xhci_stream_info *stream_info; 608 u32 cur_stream; 609 struct xhci_ring *cur_ring; 610 unsigned long key; 611 u64 addr; 612 int ret; 613 614 xhci_dbg(xhci, "Allocating %u streams and %u " 615 "stream context array entries.\n", 616 num_streams, num_stream_ctxs); 617 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 618 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 619 return NULL; 620 } 621 xhci->cmd_ring_reserved_trbs++; 622 623 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 624 if (!stream_info) 625 goto cleanup_trbs; 626 627 stream_info->num_streams = num_streams; 628 stream_info->num_stream_ctxs = num_stream_ctxs; 629 630 /* Initialize the array of virtual pointers to stream rings. */ 631 stream_info->stream_rings = kzalloc( 632 sizeof(struct xhci_ring *)*num_streams, 633 mem_flags); 634 if (!stream_info->stream_rings) 635 goto cleanup_info; 636 637 /* Initialize the array of DMA addresses for stream rings for the HW. */ 638 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 639 num_stream_ctxs, &stream_info->ctx_array_dma, 640 mem_flags); 641 if (!stream_info->stream_ctx_array) 642 goto cleanup_ctx; 643 memset(stream_info->stream_ctx_array, 0, 644 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 645 646 /* Allocate everything needed to free the stream rings later */ 647 stream_info->free_streams_command = 648 xhci_alloc_command(xhci, true, true, mem_flags); 649 if (!stream_info->free_streams_command) 650 goto cleanup_ctx; 651 652 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 653 654 /* Allocate rings for all the streams that the driver will use, 655 * and add their segment DMA addresses to the radix tree. 656 * Stream 0 is reserved. 657 */ 658 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 659 stream_info->stream_rings[cur_stream] = 660 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags); 661 cur_ring = stream_info->stream_rings[cur_stream]; 662 if (!cur_ring) 663 goto cleanup_rings; 664 cur_ring->stream_id = cur_stream; 665 /* Set deq ptr, cycle bit, and stream context type */ 666 addr = cur_ring->first_seg->dma | 667 SCT_FOR_CTX(SCT_PRI_TR) | 668 cur_ring->cycle_state; 669 stream_info->stream_ctx_array[cur_stream].stream_ring = 670 cpu_to_le64(addr); 671 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 672 cur_stream, (unsigned long long) addr); 673 674 key = (unsigned long) 675 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT); 676 ret = radix_tree_insert(&stream_info->trb_address_map, 677 key, cur_ring); 678 if (ret) { 679 xhci_ring_free(xhci, cur_ring); 680 stream_info->stream_rings[cur_stream] = NULL; 681 goto cleanup_rings; 682 } 683 } 684 /* Leave the other unused stream ring pointers in the stream context 685 * array initialized to zero. This will cause the xHC to give us an 686 * error if the device asks for a stream ID we don't have setup (if it 687 * was any other way, the host controller would assume the ring is 688 * "empty" and wait forever for data to be queued to that stream ID). 689 */ 690 #if XHCI_DEBUG 691 /* Do a little test on the radix tree to make sure it returns the 692 * correct values. 693 */ 694 if (xhci_test_radix_tree(xhci, num_streams, stream_info)) 695 goto cleanup_rings; 696 #endif 697 698 return stream_info; 699 700 cleanup_rings: 701 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 702 cur_ring = stream_info->stream_rings[cur_stream]; 703 if (cur_ring) { 704 addr = cur_ring->first_seg->dma; 705 radix_tree_delete(&stream_info->trb_address_map, 706 addr >> TRB_SEGMENT_SHIFT); 707 xhci_ring_free(xhci, cur_ring); 708 stream_info->stream_rings[cur_stream] = NULL; 709 } 710 } 711 xhci_free_command(xhci, stream_info->free_streams_command); 712 cleanup_ctx: 713 kfree(stream_info->stream_rings); 714 cleanup_info: 715 kfree(stream_info); 716 cleanup_trbs: 717 xhci->cmd_ring_reserved_trbs--; 718 return NULL; 719 } 720 /* 721 * Sets the MaxPStreams field and the Linear Stream Array field. 722 * Sets the dequeue pointer to the stream context array. 723 */ 724 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 725 struct xhci_ep_ctx *ep_ctx, 726 struct xhci_stream_info *stream_info) 727 { 728 u32 max_primary_streams; 729 /* MaxPStreams is the number of stream context array entries, not the 730 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 731 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 732 */ 733 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 734 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", 735 1 << (max_primary_streams + 1)); 736 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 737 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 738 | EP_HAS_LSA); 739 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 740 } 741 742 /* 743 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 744 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 745 * not at the beginning of the ring). 746 */ 747 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, 748 struct xhci_ep_ctx *ep_ctx, 749 struct xhci_virt_ep *ep) 750 { 751 dma_addr_t addr; 752 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 753 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 754 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 755 } 756 757 /* Frees all stream contexts associated with the endpoint, 758 * 759 * Caller should fix the endpoint context streams fields. 760 */ 761 void xhci_free_stream_info(struct xhci_hcd *xhci, 762 struct xhci_stream_info *stream_info) 763 { 764 int cur_stream; 765 struct xhci_ring *cur_ring; 766 dma_addr_t addr; 767 768 if (!stream_info) 769 return; 770 771 for (cur_stream = 1; cur_stream < stream_info->num_streams; 772 cur_stream++) { 773 cur_ring = stream_info->stream_rings[cur_stream]; 774 if (cur_ring) { 775 addr = cur_ring->first_seg->dma; 776 radix_tree_delete(&stream_info->trb_address_map, 777 addr >> TRB_SEGMENT_SHIFT); 778 xhci_ring_free(xhci, cur_ring); 779 stream_info->stream_rings[cur_stream] = NULL; 780 } 781 } 782 xhci_free_command(xhci, stream_info->free_streams_command); 783 xhci->cmd_ring_reserved_trbs--; 784 if (stream_info->stream_ctx_array) 785 xhci_free_stream_ctx(xhci, 786 stream_info->num_stream_ctxs, 787 stream_info->stream_ctx_array, 788 stream_info->ctx_array_dma); 789 790 if (stream_info) 791 kfree(stream_info->stream_rings); 792 kfree(stream_info); 793 } 794 795 796 /***************** Device context manipulation *************************/ 797 798 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 799 struct xhci_virt_ep *ep) 800 { 801 init_timer(&ep->stop_cmd_timer); 802 ep->stop_cmd_timer.data = (unsigned long) ep; 803 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; 804 ep->xhci = xhci; 805 } 806 807 static void xhci_free_tt_info(struct xhci_hcd *xhci, 808 struct xhci_virt_device *virt_dev, 809 int slot_id) 810 { 811 struct list_head *tt_list_head; 812 struct xhci_tt_bw_info *tt_info, *next; 813 bool slot_found = false; 814 815 /* If the device never made it past the Set Address stage, 816 * it may not have the real_port set correctly. 817 */ 818 if (virt_dev->real_port == 0 || 819 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 820 xhci_dbg(xhci, "Bad real port.\n"); 821 return; 822 } 823 824 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 825 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 826 /* Multi-TT hubs will have more than one entry */ 827 if (tt_info->slot_id == slot_id) { 828 slot_found = true; 829 list_del(&tt_info->tt_list); 830 kfree(tt_info); 831 } else if (slot_found) { 832 break; 833 } 834 } 835 } 836 837 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 838 struct xhci_virt_device *virt_dev, 839 struct usb_device *hdev, 840 struct usb_tt *tt, gfp_t mem_flags) 841 { 842 struct xhci_tt_bw_info *tt_info; 843 unsigned int num_ports; 844 int i, j; 845 846 if (!tt->multi) 847 num_ports = 1; 848 else 849 num_ports = hdev->maxchild; 850 851 for (i = 0; i < num_ports; i++, tt_info++) { 852 struct xhci_interval_bw_table *bw_table; 853 854 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 855 if (!tt_info) 856 goto free_tts; 857 INIT_LIST_HEAD(&tt_info->tt_list); 858 list_add(&tt_info->tt_list, 859 &xhci->rh_bw[virt_dev->real_port - 1].tts); 860 tt_info->slot_id = virt_dev->udev->slot_id; 861 if (tt->multi) 862 tt_info->ttport = i+1; 863 bw_table = &tt_info->bw_table; 864 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 865 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 866 } 867 return 0; 868 869 free_tts: 870 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 871 return -ENOMEM; 872 } 873 874 875 /* All the xhci_tds in the ring's TD list should be freed at this point. 876 * Should be called with xhci->lock held if there is any chance the TT lists 877 * will be manipulated by the configure endpoint, allocate device, or update 878 * hub functions while this function is removing the TT entries from the list. 879 */ 880 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 881 { 882 struct xhci_virt_device *dev; 883 int i; 884 int old_active_eps = 0; 885 886 /* Slot ID 0 is reserved */ 887 if (slot_id == 0 || !xhci->devs[slot_id]) 888 return; 889 890 dev = xhci->devs[slot_id]; 891 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 892 if (!dev) 893 return; 894 895 if (dev->tt_info) 896 old_active_eps = dev->tt_info->active_eps; 897 898 for (i = 0; i < 31; ++i) { 899 if (dev->eps[i].ring) 900 xhci_ring_free(xhci, dev->eps[i].ring); 901 if (dev->eps[i].stream_info) 902 xhci_free_stream_info(xhci, 903 dev->eps[i].stream_info); 904 /* Endpoints on the TT/root port lists should have been removed 905 * when usb_disable_device() was called for the device. 906 * We can't drop them anyway, because the udev might have gone 907 * away by this point, and we can't tell what speed it was. 908 */ 909 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 910 xhci_warn(xhci, "Slot %u endpoint %u " 911 "not removed from BW list!\n", 912 slot_id, i); 913 } 914 /* If this is a hub, free the TT(s) from the TT list */ 915 xhci_free_tt_info(xhci, dev, slot_id); 916 /* If necessary, update the number of active TTs on this root port */ 917 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 918 919 if (dev->ring_cache) { 920 for (i = 0; i < dev->num_rings_cached; i++) 921 xhci_ring_free(xhci, dev->ring_cache[i]); 922 kfree(dev->ring_cache); 923 } 924 925 if (dev->in_ctx) 926 xhci_free_container_ctx(xhci, dev->in_ctx); 927 if (dev->out_ctx) 928 xhci_free_container_ctx(xhci, dev->out_ctx); 929 930 kfree(xhci->devs[slot_id]); 931 xhci->devs[slot_id] = NULL; 932 } 933 934 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 935 struct usb_device *udev, gfp_t flags) 936 { 937 struct xhci_virt_device *dev; 938 int i; 939 940 /* Slot ID 0 is reserved */ 941 if (slot_id == 0 || xhci->devs[slot_id]) { 942 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 943 return 0; 944 } 945 946 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 947 if (!xhci->devs[slot_id]) 948 return 0; 949 dev = xhci->devs[slot_id]; 950 951 /* Allocate the (output) device context that will be used in the HC. */ 952 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 953 if (!dev->out_ctx) 954 goto fail; 955 956 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 957 (unsigned long long)dev->out_ctx->dma); 958 959 /* Allocate the (input) device context for address device command */ 960 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 961 if (!dev->in_ctx) 962 goto fail; 963 964 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 965 (unsigned long long)dev->in_ctx->dma); 966 967 /* Initialize the cancellation list and watchdog timers for each ep */ 968 for (i = 0; i < 31; i++) { 969 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 970 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 971 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 972 } 973 974 /* Allocate endpoint 0 ring */ 975 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags); 976 if (!dev->eps[0].ring) 977 goto fail; 978 979 /* Allocate pointers to the ring cache */ 980 dev->ring_cache = kzalloc( 981 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 982 flags); 983 if (!dev->ring_cache) 984 goto fail; 985 dev->num_rings_cached = 0; 986 987 init_completion(&dev->cmd_completion); 988 INIT_LIST_HEAD(&dev->cmd_list); 989 dev->udev = udev; 990 991 /* Point to output device context in dcbaa. */ 992 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 993 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 994 slot_id, 995 &xhci->dcbaa->dev_context_ptrs[slot_id], 996 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 997 998 return 1; 999 fail: 1000 xhci_free_virt_device(xhci, slot_id); 1001 return 0; 1002 } 1003 1004 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1005 struct usb_device *udev) 1006 { 1007 struct xhci_virt_device *virt_dev; 1008 struct xhci_ep_ctx *ep0_ctx; 1009 struct xhci_ring *ep_ring; 1010 1011 virt_dev = xhci->devs[udev->slot_id]; 1012 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1013 ep_ring = virt_dev->eps[0].ring; 1014 /* 1015 * FIXME we don't keep track of the dequeue pointer very well after a 1016 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1017 * host to our enqueue pointer. This should only be called after a 1018 * configured device has reset, so all control transfers should have 1019 * been completed or cancelled before the reset. 1020 */ 1021 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1022 ep_ring->enqueue) 1023 | ep_ring->cycle_state); 1024 } 1025 1026 /* 1027 * The xHCI roothub may have ports of differing speeds in any order in the port 1028 * status registers. xhci->port_array provides an array of the port speed for 1029 * each offset into the port status registers. 1030 * 1031 * The xHCI hardware wants to know the roothub port number that the USB device 1032 * is attached to (or the roothub port its ancestor hub is attached to). All we 1033 * know is the index of that port under either the USB 2.0 or the USB 3.0 1034 * roothub, but that doesn't give us the real index into the HW port status 1035 * registers. Call xhci_find_raw_port_number() to get real index. 1036 */ 1037 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1038 struct usb_device *udev) 1039 { 1040 struct usb_device *top_dev; 1041 struct usb_hcd *hcd; 1042 1043 if (udev->speed == USB_SPEED_SUPER) 1044 hcd = xhci->shared_hcd; 1045 else 1046 hcd = xhci->main_hcd; 1047 1048 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1049 top_dev = top_dev->parent) 1050 /* Found device below root hub */; 1051 1052 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1053 } 1054 1055 /* Setup an xHCI virtual device for a Set Address command */ 1056 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1057 { 1058 struct xhci_virt_device *dev; 1059 struct xhci_ep_ctx *ep0_ctx; 1060 struct xhci_slot_ctx *slot_ctx; 1061 u32 port_num; 1062 u32 max_packets; 1063 struct usb_device *top_dev; 1064 1065 dev = xhci->devs[udev->slot_id]; 1066 /* Slot ID 0 is reserved */ 1067 if (udev->slot_id == 0 || !dev) { 1068 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1069 udev->slot_id); 1070 return -EINVAL; 1071 } 1072 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1073 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1074 1075 /* 3) Only the control endpoint is valid - one endpoint context */ 1076 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1077 switch (udev->speed) { 1078 case USB_SPEED_SUPER: 1079 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1080 max_packets = MAX_PACKET(512); 1081 break; 1082 case USB_SPEED_HIGH: 1083 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1084 max_packets = MAX_PACKET(64); 1085 break; 1086 /* USB core guesses at a 64-byte max packet first for FS devices */ 1087 case USB_SPEED_FULL: 1088 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1089 max_packets = MAX_PACKET(64); 1090 break; 1091 case USB_SPEED_LOW: 1092 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1093 max_packets = MAX_PACKET(8); 1094 break; 1095 case USB_SPEED_WIRELESS: 1096 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1097 return -EINVAL; 1098 break; 1099 default: 1100 /* Speed was set earlier, this shouldn't happen. */ 1101 return -EINVAL; 1102 } 1103 /* Find the root hub port this device is under */ 1104 port_num = xhci_find_real_port_number(xhci, udev); 1105 if (!port_num) 1106 return -EINVAL; 1107 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1108 /* Set the port number in the virtual_device to the faked port number */ 1109 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1110 top_dev = top_dev->parent) 1111 /* Found device below root hub */; 1112 dev->fake_port = top_dev->portnum; 1113 dev->real_port = port_num; 1114 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1115 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1116 1117 /* Find the right bandwidth table that this device will be a part of. 1118 * If this is a full speed device attached directly to a root port (or a 1119 * decendent of one), it counts as a primary bandwidth domain, not a 1120 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1121 * will never be created for the HS root hub. 1122 */ 1123 if (!udev->tt || !udev->tt->hub->parent) { 1124 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1125 } else { 1126 struct xhci_root_port_bw_info *rh_bw; 1127 struct xhci_tt_bw_info *tt_bw; 1128 1129 rh_bw = &xhci->rh_bw[port_num - 1]; 1130 /* Find the right TT. */ 1131 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1132 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1133 continue; 1134 1135 if (!dev->udev->tt->multi || 1136 (udev->tt->multi && 1137 tt_bw->ttport == dev->udev->ttport)) { 1138 dev->bw_table = &tt_bw->bw_table; 1139 dev->tt_info = tt_bw; 1140 break; 1141 } 1142 } 1143 if (!dev->tt_info) 1144 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1145 } 1146 1147 /* Is this a LS/FS device under an external HS hub? */ 1148 if (udev->tt && udev->tt->hub->parent) { 1149 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1150 (udev->ttport << 8)); 1151 if (udev->tt->multi) 1152 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1153 } 1154 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1155 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1156 1157 /* Step 4 - ring already allocated */ 1158 /* Step 5 */ 1159 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1160 1161 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1162 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1163 max_packets); 1164 1165 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1166 dev->eps[0].ring->cycle_state); 1167 1168 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1169 1170 return 0; 1171 } 1172 1173 /* 1174 * Convert interval expressed as 2^(bInterval - 1) == interval into 1175 * straight exponent value 2^n == interval. 1176 * 1177 */ 1178 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1179 struct usb_host_endpoint *ep) 1180 { 1181 unsigned int interval; 1182 1183 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1184 if (interval != ep->desc.bInterval - 1) 1185 dev_warn(&udev->dev, 1186 "ep %#x - rounding interval to %d %sframes\n", 1187 ep->desc.bEndpointAddress, 1188 1 << interval, 1189 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1190 1191 if (udev->speed == USB_SPEED_FULL) { 1192 /* 1193 * Full speed isoc endpoints specify interval in frames, 1194 * not microframes. We are using microframes everywhere, 1195 * so adjust accordingly. 1196 */ 1197 interval += 3; /* 1 frame = 2^3 uframes */ 1198 } 1199 1200 return interval; 1201 } 1202 1203 /* 1204 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1205 * microframes, rounded down to nearest power of 2. 1206 */ 1207 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1208 struct usb_host_endpoint *ep, unsigned int desc_interval, 1209 unsigned int min_exponent, unsigned int max_exponent) 1210 { 1211 unsigned int interval; 1212 1213 interval = fls(desc_interval) - 1; 1214 interval = clamp_val(interval, min_exponent, max_exponent); 1215 if ((1 << interval) != desc_interval) 1216 dev_warn(&udev->dev, 1217 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1218 ep->desc.bEndpointAddress, 1219 1 << interval, 1220 desc_interval); 1221 1222 return interval; 1223 } 1224 1225 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1226 struct usb_host_endpoint *ep) 1227 { 1228 if (ep->desc.bInterval == 0) 1229 return 0; 1230 return xhci_microframes_to_exponent(udev, ep, 1231 ep->desc.bInterval, 0, 15); 1232 } 1233 1234 1235 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1236 struct usb_host_endpoint *ep) 1237 { 1238 return xhci_microframes_to_exponent(udev, ep, 1239 ep->desc.bInterval * 8, 3, 10); 1240 } 1241 1242 /* Return the polling or NAK interval. 1243 * 1244 * The polling interval is expressed in "microframes". If xHCI's Interval field 1245 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1246 * 1247 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1248 * is set to 0. 1249 */ 1250 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1251 struct usb_host_endpoint *ep) 1252 { 1253 unsigned int interval = 0; 1254 1255 switch (udev->speed) { 1256 case USB_SPEED_HIGH: 1257 /* Max NAK rate */ 1258 if (usb_endpoint_xfer_control(&ep->desc) || 1259 usb_endpoint_xfer_bulk(&ep->desc)) { 1260 interval = xhci_parse_microframe_interval(udev, ep); 1261 break; 1262 } 1263 /* Fall through - SS and HS isoc/int have same decoding */ 1264 1265 case USB_SPEED_SUPER: 1266 if (usb_endpoint_xfer_int(&ep->desc) || 1267 usb_endpoint_xfer_isoc(&ep->desc)) { 1268 interval = xhci_parse_exponent_interval(udev, ep); 1269 } 1270 break; 1271 1272 case USB_SPEED_FULL: 1273 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1274 interval = xhci_parse_exponent_interval(udev, ep); 1275 break; 1276 } 1277 /* 1278 * Fall through for interrupt endpoint interval decoding 1279 * since it uses the same rules as low speed interrupt 1280 * endpoints. 1281 */ 1282 1283 case USB_SPEED_LOW: 1284 if (usb_endpoint_xfer_int(&ep->desc) || 1285 usb_endpoint_xfer_isoc(&ep->desc)) { 1286 1287 interval = xhci_parse_frame_interval(udev, ep); 1288 } 1289 break; 1290 1291 default: 1292 BUG(); 1293 } 1294 return EP_INTERVAL(interval); 1295 } 1296 1297 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1298 * High speed endpoint descriptors can define "the number of additional 1299 * transaction opportunities per microframe", but that goes in the Max Burst 1300 * endpoint context field. 1301 */ 1302 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1303 struct usb_host_endpoint *ep) 1304 { 1305 if (udev->speed != USB_SPEED_SUPER || 1306 !usb_endpoint_xfer_isoc(&ep->desc)) 1307 return 0; 1308 return ep->ss_ep_comp.bmAttributes; 1309 } 1310 1311 static u32 xhci_get_endpoint_type(struct usb_device *udev, 1312 struct usb_host_endpoint *ep) 1313 { 1314 int in; 1315 u32 type; 1316 1317 in = usb_endpoint_dir_in(&ep->desc); 1318 if (usb_endpoint_xfer_control(&ep->desc)) { 1319 type = EP_TYPE(CTRL_EP); 1320 } else if (usb_endpoint_xfer_bulk(&ep->desc)) { 1321 if (in) 1322 type = EP_TYPE(BULK_IN_EP); 1323 else 1324 type = EP_TYPE(BULK_OUT_EP); 1325 } else if (usb_endpoint_xfer_isoc(&ep->desc)) { 1326 if (in) 1327 type = EP_TYPE(ISOC_IN_EP); 1328 else 1329 type = EP_TYPE(ISOC_OUT_EP); 1330 } else if (usb_endpoint_xfer_int(&ep->desc)) { 1331 if (in) 1332 type = EP_TYPE(INT_IN_EP); 1333 else 1334 type = EP_TYPE(INT_OUT_EP); 1335 } else { 1336 type = 0; 1337 } 1338 return type; 1339 } 1340 1341 /* Return the maximum endpoint service interval time (ESIT) payload. 1342 * Basically, this is the maxpacket size, multiplied by the burst size 1343 * and mult size. 1344 */ 1345 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, 1346 struct usb_device *udev, 1347 struct usb_host_endpoint *ep) 1348 { 1349 int max_burst; 1350 int max_packet; 1351 1352 /* Only applies for interrupt or isochronous endpoints */ 1353 if (usb_endpoint_xfer_control(&ep->desc) || 1354 usb_endpoint_xfer_bulk(&ep->desc)) 1355 return 0; 1356 1357 if (udev->speed == USB_SPEED_SUPER) 1358 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1359 1360 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1361 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; 1362 /* A 0 in max burst means 1 transfer per ESIT */ 1363 return max_packet * (max_burst + 1); 1364 } 1365 1366 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1367 * Drivers will have to call usb_alloc_streams() to do that. 1368 */ 1369 int xhci_endpoint_init(struct xhci_hcd *xhci, 1370 struct xhci_virt_device *virt_dev, 1371 struct usb_device *udev, 1372 struct usb_host_endpoint *ep, 1373 gfp_t mem_flags) 1374 { 1375 unsigned int ep_index; 1376 struct xhci_ep_ctx *ep_ctx; 1377 struct xhci_ring *ep_ring; 1378 unsigned int max_packet; 1379 unsigned int max_burst; 1380 enum xhci_ring_type type; 1381 u32 max_esit_payload; 1382 u32 endpoint_type; 1383 1384 ep_index = xhci_get_endpoint_index(&ep->desc); 1385 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1386 1387 endpoint_type = xhci_get_endpoint_type(udev, ep); 1388 if (!endpoint_type) 1389 return -EINVAL; 1390 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type); 1391 1392 type = usb_endpoint_type(&ep->desc); 1393 /* Set up the endpoint ring */ 1394 virt_dev->eps[ep_index].new_ring = 1395 xhci_ring_alloc(xhci, 2, 1, type, mem_flags); 1396 if (!virt_dev->eps[ep_index].new_ring) { 1397 /* Attempt to use the ring cache */ 1398 if (virt_dev->num_rings_cached == 0) 1399 return -ENOMEM; 1400 virt_dev->eps[ep_index].new_ring = 1401 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1402 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1403 virt_dev->num_rings_cached--; 1404 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1405 1, type); 1406 } 1407 virt_dev->eps[ep_index].skip = false; 1408 ep_ring = virt_dev->eps[ep_index].new_ring; 1409 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); 1410 1411 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) 1412 | EP_MULT(xhci_get_endpoint_mult(udev, ep))); 1413 1414 /* FIXME dig Mult and streams info out of ep companion desc */ 1415 1416 /* Allow 3 retries for everything but isoc; 1417 * CErr shall be set to 0 for Isoch endpoints. 1418 */ 1419 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1420 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3)); 1421 else 1422 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0)); 1423 1424 /* Set the max packet size and max burst */ 1425 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1426 max_burst = 0; 1427 switch (udev->speed) { 1428 case USB_SPEED_SUPER: 1429 /* dig out max burst from ep companion desc */ 1430 max_burst = ep->ss_ep_comp.bMaxBurst; 1431 break; 1432 case USB_SPEED_HIGH: 1433 /* Some devices get this wrong */ 1434 if (usb_endpoint_xfer_bulk(&ep->desc)) 1435 max_packet = 512; 1436 /* bits 11:12 specify the number of additional transaction 1437 * opportunities per microframe (USB 2.0, section 9.6.6) 1438 */ 1439 if (usb_endpoint_xfer_isoc(&ep->desc) || 1440 usb_endpoint_xfer_int(&ep->desc)) { 1441 max_burst = (usb_endpoint_maxp(&ep->desc) 1442 & 0x1800) >> 11; 1443 } 1444 break; 1445 case USB_SPEED_FULL: 1446 case USB_SPEED_LOW: 1447 break; 1448 default: 1449 BUG(); 1450 } 1451 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) | 1452 MAX_BURST(max_burst)); 1453 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); 1454 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); 1455 1456 /* 1457 * XXX no idea how to calculate the average TRB buffer length for bulk 1458 * endpoints, as the driver gives us no clue how big each scatter gather 1459 * list entry (or buffer) is going to be. 1460 * 1461 * For isochronous and interrupt endpoints, we set it to the max 1462 * available, until we have new API in the USB core to allow drivers to 1463 * declare how much bandwidth they actually need. 1464 * 1465 * Normally, it would be calculated by taking the total of the buffer 1466 * lengths in the TD and then dividing by the number of TRBs in a TD, 1467 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't 1468 * use Event Data TRBs, and we don't chain in a link TRB on short 1469 * transfers, we're basically dividing by 1. 1470 * 1471 * xHCI 1.0 specification indicates that the Average TRB Length should 1472 * be set to 8 for control endpoints. 1473 */ 1474 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100) 1475 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); 1476 else 1477 ep_ctx->tx_info |= 1478 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); 1479 1480 /* FIXME Debug endpoint context */ 1481 return 0; 1482 } 1483 1484 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1485 struct xhci_virt_device *virt_dev, 1486 struct usb_host_endpoint *ep) 1487 { 1488 unsigned int ep_index; 1489 struct xhci_ep_ctx *ep_ctx; 1490 1491 ep_index = xhci_get_endpoint_index(&ep->desc); 1492 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1493 1494 ep_ctx->ep_info = 0; 1495 ep_ctx->ep_info2 = 0; 1496 ep_ctx->deq = 0; 1497 ep_ctx->tx_info = 0; 1498 /* Don't free the endpoint ring until the set interface or configuration 1499 * request succeeds. 1500 */ 1501 } 1502 1503 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1504 { 1505 bw_info->ep_interval = 0; 1506 bw_info->mult = 0; 1507 bw_info->num_packets = 0; 1508 bw_info->max_packet_size = 0; 1509 bw_info->type = 0; 1510 bw_info->max_esit_payload = 0; 1511 } 1512 1513 void xhci_update_bw_info(struct xhci_hcd *xhci, 1514 struct xhci_container_ctx *in_ctx, 1515 struct xhci_input_control_ctx *ctrl_ctx, 1516 struct xhci_virt_device *virt_dev) 1517 { 1518 struct xhci_bw_info *bw_info; 1519 struct xhci_ep_ctx *ep_ctx; 1520 unsigned int ep_type; 1521 int i; 1522 1523 for (i = 1; i < 31; ++i) { 1524 bw_info = &virt_dev->eps[i].bw_info; 1525 1526 /* We can't tell what endpoint type is being dropped, but 1527 * unconditionally clearing the bandwidth info for non-periodic 1528 * endpoints should be harmless because the info will never be 1529 * set in the first place. 1530 */ 1531 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1532 /* Dropped endpoint */ 1533 xhci_clear_endpoint_bw_info(bw_info); 1534 continue; 1535 } 1536 1537 if (EP_IS_ADDED(ctrl_ctx, i)) { 1538 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1539 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1540 1541 /* Ignore non-periodic endpoints */ 1542 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1543 ep_type != ISOC_IN_EP && 1544 ep_type != INT_IN_EP) 1545 continue; 1546 1547 /* Added or changed endpoint */ 1548 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1549 le32_to_cpu(ep_ctx->ep_info)); 1550 /* Number of packets and mult are zero-based in the 1551 * input context, but we want one-based for the 1552 * interval table. 1553 */ 1554 bw_info->mult = CTX_TO_EP_MULT( 1555 le32_to_cpu(ep_ctx->ep_info)) + 1; 1556 bw_info->num_packets = CTX_TO_MAX_BURST( 1557 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1558 bw_info->max_packet_size = MAX_PACKET_DECODED( 1559 le32_to_cpu(ep_ctx->ep_info2)); 1560 bw_info->type = ep_type; 1561 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1562 le32_to_cpu(ep_ctx->tx_info)); 1563 } 1564 } 1565 } 1566 1567 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1568 * Useful when you want to change one particular aspect of the endpoint and then 1569 * issue a configure endpoint command. 1570 */ 1571 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1572 struct xhci_container_ctx *in_ctx, 1573 struct xhci_container_ctx *out_ctx, 1574 unsigned int ep_index) 1575 { 1576 struct xhci_ep_ctx *out_ep_ctx; 1577 struct xhci_ep_ctx *in_ep_ctx; 1578 1579 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1580 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1581 1582 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1583 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1584 in_ep_ctx->deq = out_ep_ctx->deq; 1585 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1586 } 1587 1588 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1589 * Useful when you want to change one particular aspect of the endpoint and then 1590 * issue a configure endpoint command. Only the context entries field matters, 1591 * but we'll copy the whole thing anyway. 1592 */ 1593 void xhci_slot_copy(struct xhci_hcd *xhci, 1594 struct xhci_container_ctx *in_ctx, 1595 struct xhci_container_ctx *out_ctx) 1596 { 1597 struct xhci_slot_ctx *in_slot_ctx; 1598 struct xhci_slot_ctx *out_slot_ctx; 1599 1600 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1601 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1602 1603 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1604 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1605 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1606 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1607 } 1608 1609 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1610 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1611 { 1612 int i; 1613 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1614 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1615 1616 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); 1617 1618 if (!num_sp) 1619 return 0; 1620 1621 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1622 if (!xhci->scratchpad) 1623 goto fail_sp; 1624 1625 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1626 num_sp * sizeof(u64), 1627 &xhci->scratchpad->sp_dma, flags); 1628 if (!xhci->scratchpad->sp_array) 1629 goto fail_sp2; 1630 1631 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1632 if (!xhci->scratchpad->sp_buffers) 1633 goto fail_sp3; 1634 1635 xhci->scratchpad->sp_dma_buffers = 1636 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1637 1638 if (!xhci->scratchpad->sp_dma_buffers) 1639 goto fail_sp4; 1640 1641 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1642 for (i = 0; i < num_sp; i++) { 1643 dma_addr_t dma; 1644 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1645 flags); 1646 if (!buf) 1647 goto fail_sp5; 1648 1649 xhci->scratchpad->sp_array[i] = dma; 1650 xhci->scratchpad->sp_buffers[i] = buf; 1651 xhci->scratchpad->sp_dma_buffers[i] = dma; 1652 } 1653 1654 return 0; 1655 1656 fail_sp5: 1657 for (i = i - 1; i >= 0; i--) { 1658 dma_free_coherent(dev, xhci->page_size, 1659 xhci->scratchpad->sp_buffers[i], 1660 xhci->scratchpad->sp_dma_buffers[i]); 1661 } 1662 kfree(xhci->scratchpad->sp_dma_buffers); 1663 1664 fail_sp4: 1665 kfree(xhci->scratchpad->sp_buffers); 1666 1667 fail_sp3: 1668 dma_free_coherent(dev, num_sp * sizeof(u64), 1669 xhci->scratchpad->sp_array, 1670 xhci->scratchpad->sp_dma); 1671 1672 fail_sp2: 1673 kfree(xhci->scratchpad); 1674 xhci->scratchpad = NULL; 1675 1676 fail_sp: 1677 return -ENOMEM; 1678 } 1679 1680 static void scratchpad_free(struct xhci_hcd *xhci) 1681 { 1682 int num_sp; 1683 int i; 1684 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1685 1686 if (!xhci->scratchpad) 1687 return; 1688 1689 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1690 1691 for (i = 0; i < num_sp; i++) { 1692 dma_free_coherent(&pdev->dev, xhci->page_size, 1693 xhci->scratchpad->sp_buffers[i], 1694 xhci->scratchpad->sp_dma_buffers[i]); 1695 } 1696 kfree(xhci->scratchpad->sp_dma_buffers); 1697 kfree(xhci->scratchpad->sp_buffers); 1698 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64), 1699 xhci->scratchpad->sp_array, 1700 xhci->scratchpad->sp_dma); 1701 kfree(xhci->scratchpad); 1702 xhci->scratchpad = NULL; 1703 } 1704 1705 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1706 bool allocate_in_ctx, bool allocate_completion, 1707 gfp_t mem_flags) 1708 { 1709 struct xhci_command *command; 1710 1711 command = kzalloc(sizeof(*command), mem_flags); 1712 if (!command) 1713 return NULL; 1714 1715 if (allocate_in_ctx) { 1716 command->in_ctx = 1717 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1718 mem_flags); 1719 if (!command->in_ctx) { 1720 kfree(command); 1721 return NULL; 1722 } 1723 } 1724 1725 if (allocate_completion) { 1726 command->completion = 1727 kzalloc(sizeof(struct completion), mem_flags); 1728 if (!command->completion) { 1729 xhci_free_container_ctx(xhci, command->in_ctx); 1730 kfree(command); 1731 return NULL; 1732 } 1733 init_completion(command->completion); 1734 } 1735 1736 command->status = 0; 1737 INIT_LIST_HEAD(&command->cmd_list); 1738 return command; 1739 } 1740 1741 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) 1742 { 1743 if (urb_priv) { 1744 kfree(urb_priv->td[0]); 1745 kfree(urb_priv); 1746 } 1747 } 1748 1749 void xhci_free_command(struct xhci_hcd *xhci, 1750 struct xhci_command *command) 1751 { 1752 xhci_free_container_ctx(xhci, 1753 command->in_ctx); 1754 kfree(command->completion); 1755 kfree(command); 1756 } 1757 1758 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1759 { 1760 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1761 struct dev_info *dev_info, *next; 1762 struct xhci_cd *cur_cd, *next_cd; 1763 unsigned long flags; 1764 int size; 1765 int i, j, num_ports; 1766 1767 /* Free the Event Ring Segment Table and the actual Event Ring */ 1768 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1769 if (xhci->erst.entries) 1770 dma_free_coherent(&pdev->dev, size, 1771 xhci->erst.entries, xhci->erst.erst_dma_addr); 1772 xhci->erst.entries = NULL; 1773 xhci_dbg(xhci, "Freed ERST\n"); 1774 if (xhci->event_ring) 1775 xhci_ring_free(xhci, xhci->event_ring); 1776 xhci->event_ring = NULL; 1777 xhci_dbg(xhci, "Freed event ring\n"); 1778 1779 if (xhci->lpm_command) 1780 xhci_free_command(xhci, xhci->lpm_command); 1781 xhci->cmd_ring_reserved_trbs = 0; 1782 if (xhci->cmd_ring) 1783 xhci_ring_free(xhci, xhci->cmd_ring); 1784 xhci->cmd_ring = NULL; 1785 xhci_dbg(xhci, "Freed command ring\n"); 1786 list_for_each_entry_safe(cur_cd, next_cd, 1787 &xhci->cancel_cmd_list, cancel_cmd_list) { 1788 list_del(&cur_cd->cancel_cmd_list); 1789 kfree(cur_cd); 1790 } 1791 1792 for (i = 1; i < MAX_HC_SLOTS; ++i) 1793 xhci_free_virt_device(xhci, i); 1794 1795 if (xhci->segment_pool) 1796 dma_pool_destroy(xhci->segment_pool); 1797 xhci->segment_pool = NULL; 1798 xhci_dbg(xhci, "Freed segment pool\n"); 1799 1800 if (xhci->device_pool) 1801 dma_pool_destroy(xhci->device_pool); 1802 xhci->device_pool = NULL; 1803 xhci_dbg(xhci, "Freed device context pool\n"); 1804 1805 if (xhci->small_streams_pool) 1806 dma_pool_destroy(xhci->small_streams_pool); 1807 xhci->small_streams_pool = NULL; 1808 xhci_dbg(xhci, "Freed small stream array pool\n"); 1809 1810 if (xhci->medium_streams_pool) 1811 dma_pool_destroy(xhci->medium_streams_pool); 1812 xhci->medium_streams_pool = NULL; 1813 xhci_dbg(xhci, "Freed medium stream array pool\n"); 1814 1815 if (xhci->dcbaa) 1816 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa), 1817 xhci->dcbaa, xhci->dcbaa->dma); 1818 xhci->dcbaa = NULL; 1819 1820 scratchpad_free(xhci); 1821 1822 spin_lock_irqsave(&xhci->lock, flags); 1823 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) { 1824 list_del(&dev_info->list); 1825 kfree(dev_info); 1826 } 1827 spin_unlock_irqrestore(&xhci->lock, flags); 1828 1829 if (!xhci->rh_bw) 1830 goto no_bw; 1831 1832 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1833 for (i = 0; i < num_ports; i++) { 1834 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1835 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1836 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1837 while (!list_empty(ep)) 1838 list_del_init(ep->next); 1839 } 1840 } 1841 1842 for (i = 0; i < num_ports; i++) { 1843 struct xhci_tt_bw_info *tt, *n; 1844 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1845 list_del(&tt->tt_list); 1846 kfree(tt); 1847 } 1848 } 1849 1850 no_bw: 1851 xhci->num_usb2_ports = 0; 1852 xhci->num_usb3_ports = 0; 1853 xhci->num_active_eps = 0; 1854 kfree(xhci->usb2_ports); 1855 kfree(xhci->usb3_ports); 1856 kfree(xhci->port_array); 1857 kfree(xhci->rh_bw); 1858 kfree(xhci->ext_caps); 1859 1860 xhci->page_size = 0; 1861 xhci->page_shift = 0; 1862 xhci->bus_state[0].bus_suspended = 0; 1863 xhci->bus_state[1].bus_suspended = 0; 1864 } 1865 1866 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1867 struct xhci_segment *input_seg, 1868 union xhci_trb *start_trb, 1869 union xhci_trb *end_trb, 1870 dma_addr_t input_dma, 1871 struct xhci_segment *result_seg, 1872 char *test_name, int test_number) 1873 { 1874 unsigned long long start_dma; 1875 unsigned long long end_dma; 1876 struct xhci_segment *seg; 1877 1878 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1879 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1880 1881 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); 1882 if (seg != result_seg) { 1883 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1884 test_name, test_number); 1885 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1886 "input DMA 0x%llx\n", 1887 input_seg, 1888 (unsigned long long) input_dma); 1889 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1890 "ending TRB %p (0x%llx DMA)\n", 1891 start_trb, start_dma, 1892 end_trb, end_dma); 1893 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1894 result_seg, seg); 1895 return -1; 1896 } 1897 return 0; 1898 } 1899 1900 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1901 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) 1902 { 1903 struct { 1904 dma_addr_t input_dma; 1905 struct xhci_segment *result_seg; 1906 } simple_test_vector [] = { 1907 /* A zeroed DMA field should fail */ 1908 { 0, NULL }, 1909 /* One TRB before the ring start should fail */ 1910 { xhci->event_ring->first_seg->dma - 16, NULL }, 1911 /* One byte before the ring start should fail */ 1912 { xhci->event_ring->first_seg->dma - 1, NULL }, 1913 /* Starting TRB should succeed */ 1914 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1915 /* Ending TRB should succeed */ 1916 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1917 xhci->event_ring->first_seg }, 1918 /* One byte after the ring end should fail */ 1919 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1920 /* One TRB after the ring end should fail */ 1921 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1922 /* An address of all ones should fail */ 1923 { (dma_addr_t) (~0), NULL }, 1924 }; 1925 struct { 1926 struct xhci_segment *input_seg; 1927 union xhci_trb *start_trb; 1928 union xhci_trb *end_trb; 1929 dma_addr_t input_dma; 1930 struct xhci_segment *result_seg; 1931 } complex_test_vector [] = { 1932 /* Test feeding a valid DMA address from a different ring */ 1933 { .input_seg = xhci->event_ring->first_seg, 1934 .start_trb = xhci->event_ring->first_seg->trbs, 1935 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1936 .input_dma = xhci->cmd_ring->first_seg->dma, 1937 .result_seg = NULL, 1938 }, 1939 /* Test feeding a valid end TRB from a different ring */ 1940 { .input_seg = xhci->event_ring->first_seg, 1941 .start_trb = xhci->event_ring->first_seg->trbs, 1942 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1943 .input_dma = xhci->cmd_ring->first_seg->dma, 1944 .result_seg = NULL, 1945 }, 1946 /* Test feeding a valid start and end TRB from a different ring */ 1947 { .input_seg = xhci->event_ring->first_seg, 1948 .start_trb = xhci->cmd_ring->first_seg->trbs, 1949 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1950 .input_dma = xhci->cmd_ring->first_seg->dma, 1951 .result_seg = NULL, 1952 }, 1953 /* TRB in this ring, but after this TD */ 1954 { .input_seg = xhci->event_ring->first_seg, 1955 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1956 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1957 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1958 .result_seg = NULL, 1959 }, 1960 /* TRB in this ring, but before this TD */ 1961 { .input_seg = xhci->event_ring->first_seg, 1962 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1963 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1964 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1965 .result_seg = NULL, 1966 }, 1967 /* TRB in this ring, but after this wrapped TD */ 1968 { .input_seg = xhci->event_ring->first_seg, 1969 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1970 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1971 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1972 .result_seg = NULL, 1973 }, 1974 /* TRB in this ring, but before this wrapped TD */ 1975 { .input_seg = xhci->event_ring->first_seg, 1976 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1977 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1978 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 1979 .result_seg = NULL, 1980 }, 1981 /* TRB not in this ring, and we have a wrapped TD */ 1982 { .input_seg = xhci->event_ring->first_seg, 1983 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1984 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1985 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 1986 .result_seg = NULL, 1987 }, 1988 }; 1989 1990 unsigned int num_tests; 1991 int i, ret; 1992 1993 num_tests = ARRAY_SIZE(simple_test_vector); 1994 for (i = 0; i < num_tests; i++) { 1995 ret = xhci_test_trb_in_td(xhci, 1996 xhci->event_ring->first_seg, 1997 xhci->event_ring->first_seg->trbs, 1998 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1999 simple_test_vector[i].input_dma, 2000 simple_test_vector[i].result_seg, 2001 "Simple", i); 2002 if (ret < 0) 2003 return ret; 2004 } 2005 2006 num_tests = ARRAY_SIZE(complex_test_vector); 2007 for (i = 0; i < num_tests; i++) { 2008 ret = xhci_test_trb_in_td(xhci, 2009 complex_test_vector[i].input_seg, 2010 complex_test_vector[i].start_trb, 2011 complex_test_vector[i].end_trb, 2012 complex_test_vector[i].input_dma, 2013 complex_test_vector[i].result_seg, 2014 "Complex", i); 2015 if (ret < 0) 2016 return ret; 2017 } 2018 xhci_dbg(xhci, "TRB math tests passed.\n"); 2019 return 0; 2020 } 2021 2022 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2023 { 2024 u64 temp; 2025 dma_addr_t deq; 2026 2027 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2028 xhci->event_ring->dequeue); 2029 if (deq == 0 && !in_interrupt()) 2030 xhci_warn(xhci, "WARN something wrong with SW event ring " 2031 "dequeue ptr.\n"); 2032 /* Update HC event ring dequeue pointer */ 2033 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2034 temp &= ERST_PTR_MASK; 2035 /* Don't clear the EHB bit (which is RW1C) because 2036 * there might be more events to service. 2037 */ 2038 temp &= ~ERST_EHB; 2039 xhci_dbg(xhci, "// Write event ring dequeue pointer, " 2040 "preserving EHB bit\n"); 2041 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2042 &xhci->ir_set->erst_dequeue); 2043 } 2044 2045 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2046 __le32 __iomem *addr, u8 major_revision, int max_caps) 2047 { 2048 u32 temp, port_offset, port_count; 2049 int i; 2050 2051 if (major_revision > 0x03) { 2052 xhci_warn(xhci, "Ignoring unknown port speed, " 2053 "Ext Cap %p, revision = 0x%x\n", 2054 addr, major_revision); 2055 /* Ignoring port protocol we can't understand. FIXME */ 2056 return; 2057 } 2058 2059 /* Port offset and count in the third dword, see section 7.2 */ 2060 temp = xhci_readl(xhci, addr + 2); 2061 port_offset = XHCI_EXT_PORT_OFF(temp); 2062 port_count = XHCI_EXT_PORT_COUNT(temp); 2063 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, " 2064 "count = %u, revision = 0x%x\n", 2065 addr, port_offset, port_count, major_revision); 2066 /* Port count includes the current port offset */ 2067 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2068 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2069 return; 2070 2071 /* cache usb2 port capabilities */ 2072 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2073 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2074 2075 /* Check the host's USB2 LPM capability */ 2076 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2077 (temp & XHCI_L1C)) { 2078 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n"); 2079 xhci->sw_lpm_support = 1; 2080 } 2081 2082 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2083 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n"); 2084 xhci->sw_lpm_support = 1; 2085 if (temp & XHCI_HLC) { 2086 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n"); 2087 xhci->hw_lpm_support = 1; 2088 } 2089 } 2090 2091 port_offset--; 2092 for (i = port_offset; i < (port_offset + port_count); i++) { 2093 /* Duplicate entry. Ignore the port if the revisions differ. */ 2094 if (xhci->port_array[i] != 0) { 2095 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2096 " port %u\n", addr, i); 2097 xhci_warn(xhci, "Port was marked as USB %u, " 2098 "duplicated as USB %u\n", 2099 xhci->port_array[i], major_revision); 2100 /* Only adjust the roothub port counts if we haven't 2101 * found a similar duplicate. 2102 */ 2103 if (xhci->port_array[i] != major_revision && 2104 xhci->port_array[i] != DUPLICATE_ENTRY) { 2105 if (xhci->port_array[i] == 0x03) 2106 xhci->num_usb3_ports--; 2107 else 2108 xhci->num_usb2_ports--; 2109 xhci->port_array[i] = DUPLICATE_ENTRY; 2110 } 2111 /* FIXME: Should we disable the port? */ 2112 continue; 2113 } 2114 xhci->port_array[i] = major_revision; 2115 if (major_revision == 0x03) 2116 xhci->num_usb3_ports++; 2117 else 2118 xhci->num_usb2_ports++; 2119 } 2120 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2121 } 2122 2123 /* 2124 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2125 * specify what speeds each port is supposed to be. We can't count on the port 2126 * speed bits in the PORTSC register being correct until a device is connected, 2127 * but we need to set up the two fake roothubs with the correct number of USB 2128 * 3.0 and USB 2.0 ports at host controller initialization time. 2129 */ 2130 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2131 { 2132 __le32 __iomem *addr, *tmp_addr; 2133 u32 offset, tmp_offset; 2134 unsigned int num_ports; 2135 int i, j, port_index; 2136 int cap_count = 0; 2137 2138 addr = &xhci->cap_regs->hcc_params; 2139 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr)); 2140 if (offset == 0) { 2141 xhci_err(xhci, "No Extended Capability registers, " 2142 "unable to set up roothub.\n"); 2143 return -ENODEV; 2144 } 2145 2146 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2147 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2148 if (!xhci->port_array) 2149 return -ENOMEM; 2150 2151 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2152 if (!xhci->rh_bw) 2153 return -ENOMEM; 2154 for (i = 0; i < num_ports; i++) { 2155 struct xhci_interval_bw_table *bw_table; 2156 2157 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2158 bw_table = &xhci->rh_bw[i].bw_table; 2159 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2160 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2161 } 2162 2163 /* 2164 * For whatever reason, the first capability offset is from the 2165 * capability register base, not from the HCCPARAMS register. 2166 * See section 5.3.6 for offset calculation. 2167 */ 2168 addr = &xhci->cap_regs->hc_capbase + offset; 2169 2170 tmp_addr = addr; 2171 tmp_offset = offset; 2172 2173 /* count extended protocol capability entries for later caching */ 2174 do { 2175 u32 cap_id; 2176 cap_id = xhci_readl(xhci, tmp_addr); 2177 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2178 cap_count++; 2179 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id); 2180 tmp_addr += tmp_offset; 2181 } while (tmp_offset); 2182 2183 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2184 if (!xhci->ext_caps) 2185 return -ENOMEM; 2186 2187 while (1) { 2188 u32 cap_id; 2189 2190 cap_id = xhci_readl(xhci, addr); 2191 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2192 xhci_add_in_port(xhci, num_ports, addr, 2193 (u8) XHCI_EXT_PORT_MAJOR(cap_id), 2194 cap_count); 2195 offset = XHCI_EXT_CAPS_NEXT(cap_id); 2196 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) 2197 == num_ports) 2198 break; 2199 /* 2200 * Once you're into the Extended Capabilities, the offset is 2201 * always relative to the register holding the offset. 2202 */ 2203 addr += offset; 2204 } 2205 2206 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2207 xhci_warn(xhci, "No ports on the roothubs?\n"); 2208 return -ENODEV; 2209 } 2210 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n", 2211 xhci->num_usb2_ports, xhci->num_usb3_ports); 2212 2213 /* Place limits on the number of roothub ports so that the hub 2214 * descriptors aren't longer than the USB core will allocate. 2215 */ 2216 if (xhci->num_usb3_ports > 15) { 2217 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n"); 2218 xhci->num_usb3_ports = 15; 2219 } 2220 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2221 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n", 2222 USB_MAXCHILDREN); 2223 xhci->num_usb2_ports = USB_MAXCHILDREN; 2224 } 2225 2226 /* 2227 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2228 * Not sure how the USB core will handle a hub with no ports... 2229 */ 2230 if (xhci->num_usb2_ports) { 2231 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2232 xhci->num_usb2_ports, flags); 2233 if (!xhci->usb2_ports) 2234 return -ENOMEM; 2235 2236 port_index = 0; 2237 for (i = 0; i < num_ports; i++) { 2238 if (xhci->port_array[i] == 0x03 || 2239 xhci->port_array[i] == 0 || 2240 xhci->port_array[i] == DUPLICATE_ENTRY) 2241 continue; 2242 2243 xhci->usb2_ports[port_index] = 2244 &xhci->op_regs->port_status_base + 2245 NUM_PORT_REGS*i; 2246 xhci_dbg(xhci, "USB 2.0 port at index %u, " 2247 "addr = %p\n", i, 2248 xhci->usb2_ports[port_index]); 2249 port_index++; 2250 if (port_index == xhci->num_usb2_ports) 2251 break; 2252 } 2253 } 2254 if (xhci->num_usb3_ports) { 2255 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2256 xhci->num_usb3_ports, flags); 2257 if (!xhci->usb3_ports) 2258 return -ENOMEM; 2259 2260 port_index = 0; 2261 for (i = 0; i < num_ports; i++) 2262 if (xhci->port_array[i] == 0x03) { 2263 xhci->usb3_ports[port_index] = 2264 &xhci->op_regs->port_status_base + 2265 NUM_PORT_REGS*i; 2266 xhci_dbg(xhci, "USB 3.0 port at index %u, " 2267 "addr = %p\n", i, 2268 xhci->usb3_ports[port_index]); 2269 port_index++; 2270 if (port_index == xhci->num_usb3_ports) 2271 break; 2272 } 2273 } 2274 return 0; 2275 } 2276 2277 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2278 { 2279 dma_addr_t dma; 2280 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2281 unsigned int val, val2; 2282 u64 val_64; 2283 struct xhci_segment *seg; 2284 u32 page_size, temp; 2285 int i; 2286 2287 INIT_LIST_HEAD(&xhci->lpm_failed_devs); 2288 INIT_LIST_HEAD(&xhci->cancel_cmd_list); 2289 2290 page_size = xhci_readl(xhci, &xhci->op_regs->page_size); 2291 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); 2292 for (i = 0; i < 16; i++) { 2293 if ((0x1 & page_size) != 0) 2294 break; 2295 page_size = page_size >> 1; 2296 } 2297 if (i < 16) 2298 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); 2299 else 2300 xhci_warn(xhci, "WARN: no supported page size\n"); 2301 /* Use 4K pages, since that's common and the minimum the HC supports */ 2302 xhci->page_shift = 12; 2303 xhci->page_size = 1 << xhci->page_shift; 2304 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); 2305 2306 /* 2307 * Program the Number of Device Slots Enabled field in the CONFIG 2308 * register with the max value of slots the HC can handle. 2309 */ 2310 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); 2311 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", 2312 (unsigned int) val); 2313 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); 2314 val |= (val2 & ~HCS_SLOTS_MASK); 2315 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", 2316 (unsigned int) val); 2317 xhci_writel(xhci, val, &xhci->op_regs->config_reg); 2318 2319 /* 2320 * Section 5.4.8 - doorbell array must be 2321 * "physically contiguous and 64-byte (cache line) aligned". 2322 */ 2323 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2324 GFP_KERNEL); 2325 if (!xhci->dcbaa) 2326 goto fail; 2327 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2328 xhci->dcbaa->dma = dma; 2329 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", 2330 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2331 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2332 2333 /* 2334 * Initialize the ring segment pool. The ring must be a contiguous 2335 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2336 * however, the command ring segment needs 64-byte aligned segments, 2337 * so we pick the greater alignment need. 2338 */ 2339 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2340 TRB_SEGMENT_SIZE, 64, xhci->page_size); 2341 2342 /* See Table 46 and Note on Figure 55 */ 2343 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2344 2112, 64, xhci->page_size); 2345 if (!xhci->segment_pool || !xhci->device_pool) 2346 goto fail; 2347 2348 /* Linear stream context arrays don't have any boundary restrictions, 2349 * and only need to be 16-byte aligned. 2350 */ 2351 xhci->small_streams_pool = 2352 dma_pool_create("xHCI 256 byte stream ctx arrays", 2353 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2354 xhci->medium_streams_pool = 2355 dma_pool_create("xHCI 1KB stream ctx arrays", 2356 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2357 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2358 * will be allocated with dma_alloc_coherent() 2359 */ 2360 2361 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2362 goto fail; 2363 2364 /* Set up the command ring to have one segments for now. */ 2365 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags); 2366 if (!xhci->cmd_ring) 2367 goto fail; 2368 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); 2369 xhci_dbg(xhci, "First segment DMA is 0x%llx\n", 2370 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2371 2372 /* Set the address in the Command Ring Control register */ 2373 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2374 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2375 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2376 xhci->cmd_ring->cycle_state; 2377 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); 2378 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2379 xhci_dbg_cmd_ptrs(xhci); 2380 2381 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2382 if (!xhci->lpm_command) 2383 goto fail; 2384 2385 /* Reserve one command ring TRB for disabling LPM. 2386 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2387 * disabling LPM, we only need to reserve one TRB for all devices. 2388 */ 2389 xhci->cmd_ring_reserved_trbs++; 2390 2391 val = xhci_readl(xhci, &xhci->cap_regs->db_off); 2392 val &= DBOFF_MASK; 2393 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" 2394 " from cap regs base addr\n", val); 2395 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2396 xhci_dbg_regs(xhci); 2397 xhci_print_run_regs(xhci); 2398 /* Set ir_set to interrupt register set 0 */ 2399 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2400 2401 /* 2402 * Event ring setup: Allocate a normal ring, but also setup 2403 * the event ring segment table (ERST). Section 4.9.3. 2404 */ 2405 xhci_dbg(xhci, "// Allocating event ring\n"); 2406 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2407 flags); 2408 if (!xhci->event_ring) 2409 goto fail; 2410 if (xhci_check_trb_in_td_math(xhci, flags) < 0) 2411 goto fail; 2412 2413 xhci->erst.entries = dma_alloc_coherent(dev, 2414 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2415 GFP_KERNEL); 2416 if (!xhci->erst.entries) 2417 goto fail; 2418 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", 2419 (unsigned long long)dma); 2420 2421 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2422 xhci->erst.num_entries = ERST_NUM_SEGS; 2423 xhci->erst.erst_dma_addr = dma; 2424 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", 2425 xhci->erst.num_entries, 2426 xhci->erst.entries, 2427 (unsigned long long)xhci->erst.erst_dma_addr); 2428 2429 /* set ring base address and size for each segment table entry */ 2430 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2431 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2432 entry->seg_addr = cpu_to_le64(seg->dma); 2433 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2434 entry->rsvd = 0; 2435 seg = seg->next; 2436 } 2437 2438 /* set ERST count with the number of entries in the segment table */ 2439 val = xhci_readl(xhci, &xhci->ir_set->erst_size); 2440 val &= ERST_SIZE_MASK; 2441 val |= ERST_NUM_SEGS; 2442 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", 2443 val); 2444 xhci_writel(xhci, val, &xhci->ir_set->erst_size); 2445 2446 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); 2447 /* set the segment table base address */ 2448 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", 2449 (unsigned long long)xhci->erst.erst_dma_addr); 2450 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2451 val_64 &= ERST_PTR_MASK; 2452 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2453 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2454 2455 /* Set the event ring dequeue address */ 2456 xhci_set_hc_event_deq(xhci); 2457 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); 2458 xhci_print_ir_set(xhci, 0); 2459 2460 /* 2461 * XXX: Might need to set the Interrupter Moderation Register to 2462 * something other than the default (~1ms minimum between interrupts). 2463 * See section 5.5.1.2. 2464 */ 2465 init_completion(&xhci->addr_dev); 2466 for (i = 0; i < MAX_HC_SLOTS; ++i) 2467 xhci->devs[i] = NULL; 2468 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2469 xhci->bus_state[0].resume_done[i] = 0; 2470 xhci->bus_state[1].resume_done[i] = 0; 2471 } 2472 2473 if (scratchpad_alloc(xhci, flags)) 2474 goto fail; 2475 if (xhci_setup_port_arrays(xhci, flags)) 2476 goto fail; 2477 2478 /* Enable USB 3.0 device notifications for function remote wake, which 2479 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2480 * U3 (device suspend). 2481 */ 2482 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification); 2483 temp &= ~DEV_NOTE_MASK; 2484 temp |= DEV_NOTE_FWAKE; 2485 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification); 2486 2487 return 0; 2488 2489 fail: 2490 xhci_warn(xhci, "Couldn't initialize memory\n"); 2491 xhci_halt(xhci); 2492 xhci_reset(xhci); 2493 xhci_mem_cleanup(xhci); 2494 return -ENOMEM; 2495 } 2496