xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision 7b6d864b)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 					unsigned int cycle_state, gfp_t flags)
39 {
40 	struct xhci_segment *seg;
41 	dma_addr_t	dma;
42 	int		i;
43 
44 	seg = kzalloc(sizeof *seg, flags);
45 	if (!seg)
46 		return NULL;
47 
48 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 	if (!seg->trbs) {
50 		kfree(seg);
51 		return NULL;
52 	}
53 
54 	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
55 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 	if (cycle_state == 0) {
57 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 			seg->trbs[i].link.control |= TRB_CYCLE;
59 	}
60 	seg->dma = dma;
61 	seg->next = NULL;
62 
63 	return seg;
64 }
65 
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 	if (seg->trbs) {
69 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 		seg->trbs = NULL;
71 	}
72 	kfree(seg);
73 }
74 
75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 				struct xhci_segment *first)
77 {
78 	struct xhci_segment *seg;
79 
80 	seg = first->next;
81 	while (seg != first) {
82 		struct xhci_segment *next = seg->next;
83 		xhci_segment_free(xhci, seg);
84 		seg = next;
85 	}
86 	xhci_segment_free(xhci, first);
87 }
88 
89 /*
90  * Make the prev segment point to the next segment.
91  *
92  * Change the last TRB in the prev segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97 		struct xhci_segment *next, enum xhci_ring_type type)
98 {
99 	u32 val;
100 
101 	if (!prev || !next)
102 		return;
103 	prev->next = next;
104 	if (type != TYPE_EVENT) {
105 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 			cpu_to_le64(next->dma);
107 
108 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 		val &= ~TRB_TYPE_BITMASK;
111 		val |= TRB_TYPE(TRB_LINK);
112 		/* Always set the chain bit with 0.95 hardware */
113 		/* Set chain bit for isoc rings on AMD 0.96 host */
114 		if (xhci_link_trb_quirk(xhci) ||
115 				(type == TYPE_ISOC &&
116 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 
132 	if (!ring || !first || !last)
133 		return;
134 
135 	next = ring->enq_seg->next;
136 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 	xhci_link_segments(xhci, last, next, ring->type);
138 	ring->num_segs += num_segs;
139 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140 
141 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 			&= ~cpu_to_le32(LINK_TOGGLE);
144 		last->trbs[TRBS_PER_SEGMENT-1].link.control
145 			|= cpu_to_le32(LINK_TOGGLE);
146 		ring->last_seg = last;
147 	}
148 }
149 
150 /* XXX: Do we need the hcd structure in all these functions? */
151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153 	if (!ring)
154 		return;
155 
156 	if (ring->first_seg)
157 		xhci_free_segments_for_ring(xhci, ring->first_seg);
158 
159 	kfree(ring);
160 }
161 
162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 					unsigned int cycle_state)
164 {
165 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
166 	ring->enqueue = ring->first_seg->trbs;
167 	ring->enq_seg = ring->first_seg;
168 	ring->dequeue = ring->enqueue;
169 	ring->deq_seg = ring->first_seg;
170 	/* The ring is initialized to 0. The producer must write 1 to the cycle
171 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
172 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 	 *
174 	 * New rings are initialized with cycle state equal to 1; if we are
175 	 * handling ring expansion, set the cycle state equal to the old ring.
176 	 */
177 	ring->cycle_state = cycle_state;
178 	/* Not necessary for new rings, but needed for re-initialized rings */
179 	ring->enq_updates = 0;
180 	ring->deq_updates = 0;
181 
182 	/*
183 	 * Each segment has a link TRB, and leave an extra TRB for SW
184 	 * accounting purpose
185 	 */
186 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188 
189 /* Allocate segments and link them for a ring */
190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 		struct xhci_segment **first, struct xhci_segment **last,
192 		unsigned int num_segs, unsigned int cycle_state,
193 		enum xhci_ring_type type, gfp_t flags)
194 {
195 	struct xhci_segment *prev;
196 
197 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 	if (!prev)
199 		return -ENOMEM;
200 	num_segs--;
201 
202 	*first = prev;
203 	while (num_segs > 0) {
204 		struct xhci_segment	*next;
205 
206 		next = xhci_segment_alloc(xhci, cycle_state, flags);
207 		if (!next) {
208 			prev = *first;
209 			while (prev) {
210 				next = prev->next;
211 				xhci_segment_free(xhci, prev);
212 				prev = next;
213 			}
214 			return -ENOMEM;
215 		}
216 		xhci_link_segments(xhci, prev, next, type);
217 
218 		prev = next;
219 		num_segs--;
220 	}
221 	xhci_link_segments(xhci, prev, *first, type);
222 	*last = prev;
223 
224 	return 0;
225 }
226 
227 /**
228  * Create a new ring with zero or more segments.
229  *
230  * Link each segment together into a ring.
231  * Set the end flag and the cycle toggle bit on the last segment.
232  * See section 4.9.1 and figures 15 and 16.
233  */
234 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235 		unsigned int num_segs, unsigned int cycle_state,
236 		enum xhci_ring_type type, gfp_t flags)
237 {
238 	struct xhci_ring	*ring;
239 	int ret;
240 
241 	ring = kzalloc(sizeof *(ring), flags);
242 	if (!ring)
243 		return NULL;
244 
245 	ring->num_segs = num_segs;
246 	INIT_LIST_HEAD(&ring->td_list);
247 	ring->type = type;
248 	if (num_segs == 0)
249 		return ring;
250 
251 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252 			&ring->last_seg, num_segs, cycle_state, type, flags);
253 	if (ret)
254 		goto fail;
255 
256 	/* Only event ring does not use link TRB */
257 	if (type != TYPE_EVENT) {
258 		/* See section 4.9.2.1 and 6.4.4.1 */
259 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260 			cpu_to_le32(LINK_TOGGLE);
261 	}
262 	xhci_initialize_ring_info(ring, cycle_state);
263 	return ring;
264 
265 fail:
266 	kfree(ring);
267 	return NULL;
268 }
269 
270 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271 		struct xhci_virt_device *virt_dev,
272 		unsigned int ep_index)
273 {
274 	int rings_cached;
275 
276 	rings_cached = virt_dev->num_rings_cached;
277 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
278 		virt_dev->ring_cache[rings_cached] =
279 			virt_dev->eps[ep_index].ring;
280 		virt_dev->num_rings_cached++;
281 		xhci_dbg(xhci, "Cached old ring, "
282 				"%d ring%s cached\n",
283 				virt_dev->num_rings_cached,
284 				(virt_dev->num_rings_cached > 1) ? "s" : "");
285 	} else {
286 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287 		xhci_dbg(xhci, "Ring cache full (%d rings), "
288 				"freeing ring\n",
289 				virt_dev->num_rings_cached);
290 	}
291 	virt_dev->eps[ep_index].ring = NULL;
292 }
293 
294 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295  * pointers to the beginning of the ring.
296  */
297 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298 			struct xhci_ring *ring, unsigned int cycle_state,
299 			enum xhci_ring_type type)
300 {
301 	struct xhci_segment	*seg = ring->first_seg;
302 	int i;
303 
304 	do {
305 		memset(seg->trbs, 0,
306 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307 		if (cycle_state == 0) {
308 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
309 				seg->trbs[i].link.control |= TRB_CYCLE;
310 		}
311 		/* All endpoint rings have link TRBs */
312 		xhci_link_segments(xhci, seg, seg->next, type);
313 		seg = seg->next;
314 	} while (seg != ring->first_seg);
315 	ring->type = type;
316 	xhci_initialize_ring_info(ring, cycle_state);
317 	/* td list should be empty since all URBs have been cancelled,
318 	 * but just in case...
319 	 */
320 	INIT_LIST_HEAD(&ring->td_list);
321 }
322 
323 /*
324  * Expand an existing ring.
325  * Look for a cached ring or allocate a new ring which has same segment numbers
326  * and link the two rings.
327  */
328 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329 				unsigned int num_trbs, gfp_t flags)
330 {
331 	struct xhci_segment	*first;
332 	struct xhci_segment	*last;
333 	unsigned int		num_segs;
334 	unsigned int		num_segs_needed;
335 	int			ret;
336 
337 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338 				(TRBS_PER_SEGMENT - 1);
339 
340 	/* Allocate number of segments we needed, or double the ring size */
341 	num_segs = ring->num_segs > num_segs_needed ?
342 			ring->num_segs : num_segs_needed;
343 
344 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345 			num_segs, ring->cycle_state, ring->type, flags);
346 	if (ret)
347 		return -ENOMEM;
348 
349 	xhci_link_rings(xhci, ring, first, last, num_segs);
350 	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351 			ring->num_segs);
352 
353 	return 0;
354 }
355 
356 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357 
358 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359 						    int type, gfp_t flags)
360 {
361 	struct xhci_container_ctx *ctx;
362 
363 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
364 		return NULL;
365 
366 	ctx = kzalloc(sizeof(*ctx), flags);
367 	if (!ctx)
368 		return NULL;
369 
370 	ctx->type = type;
371 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
372 	if (type == XHCI_CTX_TYPE_INPUT)
373 		ctx->size += CTX_SIZE(xhci->hcc_params);
374 
375 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
376 	if (!ctx->bytes) {
377 		kfree(ctx);
378 		return NULL;
379 	}
380 	memset(ctx->bytes, 0, ctx->size);
381 	return ctx;
382 }
383 
384 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
385 			     struct xhci_container_ctx *ctx)
386 {
387 	if (!ctx)
388 		return;
389 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
390 	kfree(ctx);
391 }
392 
393 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
394 					      struct xhci_container_ctx *ctx)
395 {
396 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
397 		return NULL;
398 
399 	return (struct xhci_input_control_ctx *)ctx->bytes;
400 }
401 
402 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
403 					struct xhci_container_ctx *ctx)
404 {
405 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
406 		return (struct xhci_slot_ctx *)ctx->bytes;
407 
408 	return (struct xhci_slot_ctx *)
409 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
410 }
411 
412 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
413 				    struct xhci_container_ctx *ctx,
414 				    unsigned int ep_index)
415 {
416 	/* increment ep index by offset of start of ep ctx array */
417 	ep_index++;
418 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
419 		ep_index++;
420 
421 	return (struct xhci_ep_ctx *)
422 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
423 }
424 
425 
426 /***************** Streams structures manipulation *************************/
427 
428 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
429 		unsigned int num_stream_ctxs,
430 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
431 {
432 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
433 
434 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
435 		dma_free_coherent(&pdev->dev,
436 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
437 				stream_ctx, dma);
438 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
439 		return dma_pool_free(xhci->small_streams_pool,
440 				stream_ctx, dma);
441 	else
442 		return dma_pool_free(xhci->medium_streams_pool,
443 				stream_ctx, dma);
444 }
445 
446 /*
447  * The stream context array for each endpoint with bulk streams enabled can
448  * vary in size, based on:
449  *  - how many streams the endpoint supports,
450  *  - the maximum primary stream array size the host controller supports,
451  *  - and how many streams the device driver asks for.
452  *
453  * The stream context array must be a power of 2, and can be as small as
454  * 64 bytes or as large as 1MB.
455  */
456 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
457 		unsigned int num_stream_ctxs, dma_addr_t *dma,
458 		gfp_t mem_flags)
459 {
460 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
461 
462 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
463 		return dma_alloc_coherent(&pdev->dev,
464 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
465 				dma, mem_flags);
466 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
467 		return dma_pool_alloc(xhci->small_streams_pool,
468 				mem_flags, dma);
469 	else
470 		return dma_pool_alloc(xhci->medium_streams_pool,
471 				mem_flags, dma);
472 }
473 
474 struct xhci_ring *xhci_dma_to_transfer_ring(
475 		struct xhci_virt_ep *ep,
476 		u64 address)
477 {
478 	if (ep->ep_state & EP_HAS_STREAMS)
479 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
480 				address >> TRB_SEGMENT_SHIFT);
481 	return ep->ring;
482 }
483 
484 /* Only use this when you know stream_info is valid */
485 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
486 static struct xhci_ring *dma_to_stream_ring(
487 		struct xhci_stream_info *stream_info,
488 		u64 address)
489 {
490 	return radix_tree_lookup(&stream_info->trb_address_map,
491 			address >> TRB_SEGMENT_SHIFT);
492 }
493 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
494 
495 struct xhci_ring *xhci_stream_id_to_ring(
496 		struct xhci_virt_device *dev,
497 		unsigned int ep_index,
498 		unsigned int stream_id)
499 {
500 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
501 
502 	if (stream_id == 0)
503 		return ep->ring;
504 	if (!ep->stream_info)
505 		return NULL;
506 
507 	if (stream_id > ep->stream_info->num_streams)
508 		return NULL;
509 	return ep->stream_info->stream_rings[stream_id];
510 }
511 
512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
513 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
514 		unsigned int num_streams,
515 		struct xhci_stream_info *stream_info)
516 {
517 	u32 cur_stream;
518 	struct xhci_ring *cur_ring;
519 	u64 addr;
520 
521 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
522 		struct xhci_ring *mapped_ring;
523 		int trb_size = sizeof(union xhci_trb);
524 
525 		cur_ring = stream_info->stream_rings[cur_stream];
526 		for (addr = cur_ring->first_seg->dma;
527 				addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
528 				addr += trb_size) {
529 			mapped_ring = dma_to_stream_ring(stream_info, addr);
530 			if (cur_ring != mapped_ring) {
531 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
532 						"didn't map to stream ID %u; "
533 						"mapped to ring %p\n",
534 						(unsigned long long) addr,
535 						cur_stream,
536 						mapped_ring);
537 				return -EINVAL;
538 			}
539 		}
540 		/* One TRB after the end of the ring segment shouldn't return a
541 		 * pointer to the current ring (although it may be a part of a
542 		 * different ring).
543 		 */
544 		mapped_ring = dma_to_stream_ring(stream_info, addr);
545 		if (mapped_ring != cur_ring) {
546 			/* One TRB before should also fail */
547 			addr = cur_ring->first_seg->dma - trb_size;
548 			mapped_ring = dma_to_stream_ring(stream_info, addr);
549 		}
550 		if (mapped_ring == cur_ring) {
551 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
552 					"mapped to valid stream ID %u; "
553 					"mapped ring = %p\n",
554 					(unsigned long long) addr,
555 					cur_stream,
556 					mapped_ring);
557 			return -EINVAL;
558 		}
559 	}
560 	return 0;
561 }
562 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
563 
564 /*
565  * Change an endpoint's internal structure so it supports stream IDs.  The
566  * number of requested streams includes stream 0, which cannot be used by device
567  * drivers.
568  *
569  * The number of stream contexts in the stream context array may be bigger than
570  * the number of streams the driver wants to use.  This is because the number of
571  * stream context array entries must be a power of two.
572  *
573  * We need a radix tree for mapping physical addresses of TRBs to which stream
574  * ID they belong to.  We need to do this because the host controller won't tell
575  * us which stream ring the TRB came from.  We could store the stream ID in an
576  * event data TRB, but that doesn't help us for the cancellation case, since the
577  * endpoint may stop before it reaches that event data TRB.
578  *
579  * The radix tree maps the upper portion of the TRB DMA address to a ring
580  * segment that has the same upper portion of DMA addresses.  For example, say I
581  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
582  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
583  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
584  * pass the radix tree a key to get the right stream ID:
585  *
586  * 	0x10c90fff >> 10 = 0x43243
587  * 	0x10c912c0 >> 10 = 0x43244
588  * 	0x10c91400 >> 10 = 0x43245
589  *
590  * Obviously, only those TRBs with DMA addresses that are within the segment
591  * will make the radix tree return the stream ID for that ring.
592  *
593  * Caveats for the radix tree:
594  *
595  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
596  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
597  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
598  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
599  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
600  * extended systems (where the DMA address can be bigger than 32-bits),
601  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
602  */
603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
604 		unsigned int num_stream_ctxs,
605 		unsigned int num_streams, gfp_t mem_flags)
606 {
607 	struct xhci_stream_info *stream_info;
608 	u32 cur_stream;
609 	struct xhci_ring *cur_ring;
610 	unsigned long key;
611 	u64 addr;
612 	int ret;
613 
614 	xhci_dbg(xhci, "Allocating %u streams and %u "
615 			"stream context array entries.\n",
616 			num_streams, num_stream_ctxs);
617 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
618 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
619 		return NULL;
620 	}
621 	xhci->cmd_ring_reserved_trbs++;
622 
623 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
624 	if (!stream_info)
625 		goto cleanup_trbs;
626 
627 	stream_info->num_streams = num_streams;
628 	stream_info->num_stream_ctxs = num_stream_ctxs;
629 
630 	/* Initialize the array of virtual pointers to stream rings. */
631 	stream_info->stream_rings = kzalloc(
632 			sizeof(struct xhci_ring *)*num_streams,
633 			mem_flags);
634 	if (!stream_info->stream_rings)
635 		goto cleanup_info;
636 
637 	/* Initialize the array of DMA addresses for stream rings for the HW. */
638 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
639 			num_stream_ctxs, &stream_info->ctx_array_dma,
640 			mem_flags);
641 	if (!stream_info->stream_ctx_array)
642 		goto cleanup_ctx;
643 	memset(stream_info->stream_ctx_array, 0,
644 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
645 
646 	/* Allocate everything needed to free the stream rings later */
647 	stream_info->free_streams_command =
648 		xhci_alloc_command(xhci, true, true, mem_flags);
649 	if (!stream_info->free_streams_command)
650 		goto cleanup_ctx;
651 
652 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
653 
654 	/* Allocate rings for all the streams that the driver will use,
655 	 * and add their segment DMA addresses to the radix tree.
656 	 * Stream 0 is reserved.
657 	 */
658 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
659 		stream_info->stream_rings[cur_stream] =
660 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
661 		cur_ring = stream_info->stream_rings[cur_stream];
662 		if (!cur_ring)
663 			goto cleanup_rings;
664 		cur_ring->stream_id = cur_stream;
665 		/* Set deq ptr, cycle bit, and stream context type */
666 		addr = cur_ring->first_seg->dma |
667 			SCT_FOR_CTX(SCT_PRI_TR) |
668 			cur_ring->cycle_state;
669 		stream_info->stream_ctx_array[cur_stream].stream_ring =
670 			cpu_to_le64(addr);
671 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
672 				cur_stream, (unsigned long long) addr);
673 
674 		key = (unsigned long)
675 			(cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
676 		ret = radix_tree_insert(&stream_info->trb_address_map,
677 				key, cur_ring);
678 		if (ret) {
679 			xhci_ring_free(xhci, cur_ring);
680 			stream_info->stream_rings[cur_stream] = NULL;
681 			goto cleanup_rings;
682 		}
683 	}
684 	/* Leave the other unused stream ring pointers in the stream context
685 	 * array initialized to zero.  This will cause the xHC to give us an
686 	 * error if the device asks for a stream ID we don't have setup (if it
687 	 * was any other way, the host controller would assume the ring is
688 	 * "empty" and wait forever for data to be queued to that stream ID).
689 	 */
690 #if XHCI_DEBUG
691 	/* Do a little test on the radix tree to make sure it returns the
692 	 * correct values.
693 	 */
694 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
695 		goto cleanup_rings;
696 #endif
697 
698 	return stream_info;
699 
700 cleanup_rings:
701 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
702 		cur_ring = stream_info->stream_rings[cur_stream];
703 		if (cur_ring) {
704 			addr = cur_ring->first_seg->dma;
705 			radix_tree_delete(&stream_info->trb_address_map,
706 					addr >> TRB_SEGMENT_SHIFT);
707 			xhci_ring_free(xhci, cur_ring);
708 			stream_info->stream_rings[cur_stream] = NULL;
709 		}
710 	}
711 	xhci_free_command(xhci, stream_info->free_streams_command);
712 cleanup_ctx:
713 	kfree(stream_info->stream_rings);
714 cleanup_info:
715 	kfree(stream_info);
716 cleanup_trbs:
717 	xhci->cmd_ring_reserved_trbs--;
718 	return NULL;
719 }
720 /*
721  * Sets the MaxPStreams field and the Linear Stream Array field.
722  * Sets the dequeue pointer to the stream context array.
723  */
724 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
725 		struct xhci_ep_ctx *ep_ctx,
726 		struct xhci_stream_info *stream_info)
727 {
728 	u32 max_primary_streams;
729 	/* MaxPStreams is the number of stream context array entries, not the
730 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
731 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
732 	 */
733 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
734 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
735 			1 << (max_primary_streams + 1));
736 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
737 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
738 				       | EP_HAS_LSA);
739 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
740 }
741 
742 /*
743  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
744  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
745  * not at the beginning of the ring).
746  */
747 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
748 		struct xhci_ep_ctx *ep_ctx,
749 		struct xhci_virt_ep *ep)
750 {
751 	dma_addr_t addr;
752 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
753 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
754 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
755 }
756 
757 /* Frees all stream contexts associated with the endpoint,
758  *
759  * Caller should fix the endpoint context streams fields.
760  */
761 void xhci_free_stream_info(struct xhci_hcd *xhci,
762 		struct xhci_stream_info *stream_info)
763 {
764 	int cur_stream;
765 	struct xhci_ring *cur_ring;
766 	dma_addr_t addr;
767 
768 	if (!stream_info)
769 		return;
770 
771 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
772 			cur_stream++) {
773 		cur_ring = stream_info->stream_rings[cur_stream];
774 		if (cur_ring) {
775 			addr = cur_ring->first_seg->dma;
776 			radix_tree_delete(&stream_info->trb_address_map,
777 					addr >> TRB_SEGMENT_SHIFT);
778 			xhci_ring_free(xhci, cur_ring);
779 			stream_info->stream_rings[cur_stream] = NULL;
780 		}
781 	}
782 	xhci_free_command(xhci, stream_info->free_streams_command);
783 	xhci->cmd_ring_reserved_trbs--;
784 	if (stream_info->stream_ctx_array)
785 		xhci_free_stream_ctx(xhci,
786 				stream_info->num_stream_ctxs,
787 				stream_info->stream_ctx_array,
788 				stream_info->ctx_array_dma);
789 
790 	if (stream_info)
791 		kfree(stream_info->stream_rings);
792 	kfree(stream_info);
793 }
794 
795 
796 /***************** Device context manipulation *************************/
797 
798 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
799 		struct xhci_virt_ep *ep)
800 {
801 	init_timer(&ep->stop_cmd_timer);
802 	ep->stop_cmd_timer.data = (unsigned long) ep;
803 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
804 	ep->xhci = xhci;
805 }
806 
807 static void xhci_free_tt_info(struct xhci_hcd *xhci,
808 		struct xhci_virt_device *virt_dev,
809 		int slot_id)
810 {
811 	struct list_head *tt_list_head;
812 	struct xhci_tt_bw_info *tt_info, *next;
813 	bool slot_found = false;
814 
815 	/* If the device never made it past the Set Address stage,
816 	 * it may not have the real_port set correctly.
817 	 */
818 	if (virt_dev->real_port == 0 ||
819 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
820 		xhci_dbg(xhci, "Bad real port.\n");
821 		return;
822 	}
823 
824 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
825 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
826 		/* Multi-TT hubs will have more than one entry */
827 		if (tt_info->slot_id == slot_id) {
828 			slot_found = true;
829 			list_del(&tt_info->tt_list);
830 			kfree(tt_info);
831 		} else if (slot_found) {
832 			break;
833 		}
834 	}
835 }
836 
837 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
838 		struct xhci_virt_device *virt_dev,
839 		struct usb_device *hdev,
840 		struct usb_tt *tt, gfp_t mem_flags)
841 {
842 	struct xhci_tt_bw_info		*tt_info;
843 	unsigned int			num_ports;
844 	int				i, j;
845 
846 	if (!tt->multi)
847 		num_ports = 1;
848 	else
849 		num_ports = hdev->maxchild;
850 
851 	for (i = 0; i < num_ports; i++, tt_info++) {
852 		struct xhci_interval_bw_table *bw_table;
853 
854 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
855 		if (!tt_info)
856 			goto free_tts;
857 		INIT_LIST_HEAD(&tt_info->tt_list);
858 		list_add(&tt_info->tt_list,
859 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
860 		tt_info->slot_id = virt_dev->udev->slot_id;
861 		if (tt->multi)
862 			tt_info->ttport = i+1;
863 		bw_table = &tt_info->bw_table;
864 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
865 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
866 	}
867 	return 0;
868 
869 free_tts:
870 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
871 	return -ENOMEM;
872 }
873 
874 
875 /* All the xhci_tds in the ring's TD list should be freed at this point.
876  * Should be called with xhci->lock held if there is any chance the TT lists
877  * will be manipulated by the configure endpoint, allocate device, or update
878  * hub functions while this function is removing the TT entries from the list.
879  */
880 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
881 {
882 	struct xhci_virt_device *dev;
883 	int i;
884 	int old_active_eps = 0;
885 
886 	/* Slot ID 0 is reserved */
887 	if (slot_id == 0 || !xhci->devs[slot_id])
888 		return;
889 
890 	dev = xhci->devs[slot_id];
891 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
892 	if (!dev)
893 		return;
894 
895 	if (dev->tt_info)
896 		old_active_eps = dev->tt_info->active_eps;
897 
898 	for (i = 0; i < 31; ++i) {
899 		if (dev->eps[i].ring)
900 			xhci_ring_free(xhci, dev->eps[i].ring);
901 		if (dev->eps[i].stream_info)
902 			xhci_free_stream_info(xhci,
903 					dev->eps[i].stream_info);
904 		/* Endpoints on the TT/root port lists should have been removed
905 		 * when usb_disable_device() was called for the device.
906 		 * We can't drop them anyway, because the udev might have gone
907 		 * away by this point, and we can't tell what speed it was.
908 		 */
909 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
910 			xhci_warn(xhci, "Slot %u endpoint %u "
911 					"not removed from BW list!\n",
912 					slot_id, i);
913 	}
914 	/* If this is a hub, free the TT(s) from the TT list */
915 	xhci_free_tt_info(xhci, dev, slot_id);
916 	/* If necessary, update the number of active TTs on this root port */
917 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
918 
919 	if (dev->ring_cache) {
920 		for (i = 0; i < dev->num_rings_cached; i++)
921 			xhci_ring_free(xhci, dev->ring_cache[i]);
922 		kfree(dev->ring_cache);
923 	}
924 
925 	if (dev->in_ctx)
926 		xhci_free_container_ctx(xhci, dev->in_ctx);
927 	if (dev->out_ctx)
928 		xhci_free_container_ctx(xhci, dev->out_ctx);
929 
930 	kfree(xhci->devs[slot_id]);
931 	xhci->devs[slot_id] = NULL;
932 }
933 
934 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
935 		struct usb_device *udev, gfp_t flags)
936 {
937 	struct xhci_virt_device *dev;
938 	int i;
939 
940 	/* Slot ID 0 is reserved */
941 	if (slot_id == 0 || xhci->devs[slot_id]) {
942 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
943 		return 0;
944 	}
945 
946 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
947 	if (!xhci->devs[slot_id])
948 		return 0;
949 	dev = xhci->devs[slot_id];
950 
951 	/* Allocate the (output) device context that will be used in the HC. */
952 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
953 	if (!dev->out_ctx)
954 		goto fail;
955 
956 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
957 			(unsigned long long)dev->out_ctx->dma);
958 
959 	/* Allocate the (input) device context for address device command */
960 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
961 	if (!dev->in_ctx)
962 		goto fail;
963 
964 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
965 			(unsigned long long)dev->in_ctx->dma);
966 
967 	/* Initialize the cancellation list and watchdog timers for each ep */
968 	for (i = 0; i < 31; i++) {
969 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
970 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
971 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
972 	}
973 
974 	/* Allocate endpoint 0 ring */
975 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
976 	if (!dev->eps[0].ring)
977 		goto fail;
978 
979 	/* Allocate pointers to the ring cache */
980 	dev->ring_cache = kzalloc(
981 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
982 			flags);
983 	if (!dev->ring_cache)
984 		goto fail;
985 	dev->num_rings_cached = 0;
986 
987 	init_completion(&dev->cmd_completion);
988 	INIT_LIST_HEAD(&dev->cmd_list);
989 	dev->udev = udev;
990 
991 	/* Point to output device context in dcbaa. */
992 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
993 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
994 		 slot_id,
995 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
996 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
997 
998 	return 1;
999 fail:
1000 	xhci_free_virt_device(xhci, slot_id);
1001 	return 0;
1002 }
1003 
1004 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1005 		struct usb_device *udev)
1006 {
1007 	struct xhci_virt_device *virt_dev;
1008 	struct xhci_ep_ctx	*ep0_ctx;
1009 	struct xhci_ring	*ep_ring;
1010 
1011 	virt_dev = xhci->devs[udev->slot_id];
1012 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1013 	ep_ring = virt_dev->eps[0].ring;
1014 	/*
1015 	 * FIXME we don't keep track of the dequeue pointer very well after a
1016 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1017 	 * host to our enqueue pointer.  This should only be called after a
1018 	 * configured device has reset, so all control transfers should have
1019 	 * been completed or cancelled before the reset.
1020 	 */
1021 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1022 							ep_ring->enqueue)
1023 				   | ep_ring->cycle_state);
1024 }
1025 
1026 /*
1027  * The xHCI roothub may have ports of differing speeds in any order in the port
1028  * status registers.  xhci->port_array provides an array of the port speed for
1029  * each offset into the port status registers.
1030  *
1031  * The xHCI hardware wants to know the roothub port number that the USB device
1032  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1033  * know is the index of that port under either the USB 2.0 or the USB 3.0
1034  * roothub, but that doesn't give us the real index into the HW port status
1035  * registers. Call xhci_find_raw_port_number() to get real index.
1036  */
1037 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1038 		struct usb_device *udev)
1039 {
1040 	struct usb_device *top_dev;
1041 	struct usb_hcd *hcd;
1042 
1043 	if (udev->speed == USB_SPEED_SUPER)
1044 		hcd = xhci->shared_hcd;
1045 	else
1046 		hcd = xhci->main_hcd;
1047 
1048 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1049 			top_dev = top_dev->parent)
1050 		/* Found device below root hub */;
1051 
1052 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1053 }
1054 
1055 /* Setup an xHCI virtual device for a Set Address command */
1056 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1057 {
1058 	struct xhci_virt_device *dev;
1059 	struct xhci_ep_ctx	*ep0_ctx;
1060 	struct xhci_slot_ctx    *slot_ctx;
1061 	u32			port_num;
1062 	u32			max_packets;
1063 	struct usb_device *top_dev;
1064 
1065 	dev = xhci->devs[udev->slot_id];
1066 	/* Slot ID 0 is reserved */
1067 	if (udev->slot_id == 0 || !dev) {
1068 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1069 				udev->slot_id);
1070 		return -EINVAL;
1071 	}
1072 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1073 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1074 
1075 	/* 3) Only the control endpoint is valid - one endpoint context */
1076 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1077 	switch (udev->speed) {
1078 	case USB_SPEED_SUPER:
1079 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1080 		max_packets = MAX_PACKET(512);
1081 		break;
1082 	case USB_SPEED_HIGH:
1083 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1084 		max_packets = MAX_PACKET(64);
1085 		break;
1086 	/* USB core guesses at a 64-byte max packet first for FS devices */
1087 	case USB_SPEED_FULL:
1088 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1089 		max_packets = MAX_PACKET(64);
1090 		break;
1091 	case USB_SPEED_LOW:
1092 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1093 		max_packets = MAX_PACKET(8);
1094 		break;
1095 	case USB_SPEED_WIRELESS:
1096 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1097 		return -EINVAL;
1098 		break;
1099 	default:
1100 		/* Speed was set earlier, this shouldn't happen. */
1101 		return -EINVAL;
1102 	}
1103 	/* Find the root hub port this device is under */
1104 	port_num = xhci_find_real_port_number(xhci, udev);
1105 	if (!port_num)
1106 		return -EINVAL;
1107 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1108 	/* Set the port number in the virtual_device to the faked port number */
1109 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1110 			top_dev = top_dev->parent)
1111 		/* Found device below root hub */;
1112 	dev->fake_port = top_dev->portnum;
1113 	dev->real_port = port_num;
1114 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1115 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1116 
1117 	/* Find the right bandwidth table that this device will be a part of.
1118 	 * If this is a full speed device attached directly to a root port (or a
1119 	 * decendent of one), it counts as a primary bandwidth domain, not a
1120 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1121 	 * will never be created for the HS root hub.
1122 	 */
1123 	if (!udev->tt || !udev->tt->hub->parent) {
1124 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1125 	} else {
1126 		struct xhci_root_port_bw_info *rh_bw;
1127 		struct xhci_tt_bw_info *tt_bw;
1128 
1129 		rh_bw = &xhci->rh_bw[port_num - 1];
1130 		/* Find the right TT. */
1131 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1132 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1133 				continue;
1134 
1135 			if (!dev->udev->tt->multi ||
1136 					(udev->tt->multi &&
1137 					 tt_bw->ttport == dev->udev->ttport)) {
1138 				dev->bw_table = &tt_bw->bw_table;
1139 				dev->tt_info = tt_bw;
1140 				break;
1141 			}
1142 		}
1143 		if (!dev->tt_info)
1144 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1145 	}
1146 
1147 	/* Is this a LS/FS device under an external HS hub? */
1148 	if (udev->tt && udev->tt->hub->parent) {
1149 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1150 						(udev->ttport << 8));
1151 		if (udev->tt->multi)
1152 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1153 	}
1154 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1155 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1156 
1157 	/* Step 4 - ring already allocated */
1158 	/* Step 5 */
1159 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1160 
1161 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1162 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1163 					 max_packets);
1164 
1165 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1166 				   dev->eps[0].ring->cycle_state);
1167 
1168 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1169 
1170 	return 0;
1171 }
1172 
1173 /*
1174  * Convert interval expressed as 2^(bInterval - 1) == interval into
1175  * straight exponent value 2^n == interval.
1176  *
1177  */
1178 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1179 		struct usb_host_endpoint *ep)
1180 {
1181 	unsigned int interval;
1182 
1183 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1184 	if (interval != ep->desc.bInterval - 1)
1185 		dev_warn(&udev->dev,
1186 			 "ep %#x - rounding interval to %d %sframes\n",
1187 			 ep->desc.bEndpointAddress,
1188 			 1 << interval,
1189 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1190 
1191 	if (udev->speed == USB_SPEED_FULL) {
1192 		/*
1193 		 * Full speed isoc endpoints specify interval in frames,
1194 		 * not microframes. We are using microframes everywhere,
1195 		 * so adjust accordingly.
1196 		 */
1197 		interval += 3;	/* 1 frame = 2^3 uframes */
1198 	}
1199 
1200 	return interval;
1201 }
1202 
1203 /*
1204  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1205  * microframes, rounded down to nearest power of 2.
1206  */
1207 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1208 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1209 		unsigned int min_exponent, unsigned int max_exponent)
1210 {
1211 	unsigned int interval;
1212 
1213 	interval = fls(desc_interval) - 1;
1214 	interval = clamp_val(interval, min_exponent, max_exponent);
1215 	if ((1 << interval) != desc_interval)
1216 		dev_warn(&udev->dev,
1217 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1218 			 ep->desc.bEndpointAddress,
1219 			 1 << interval,
1220 			 desc_interval);
1221 
1222 	return interval;
1223 }
1224 
1225 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1226 		struct usb_host_endpoint *ep)
1227 {
1228 	if (ep->desc.bInterval == 0)
1229 		return 0;
1230 	return xhci_microframes_to_exponent(udev, ep,
1231 			ep->desc.bInterval, 0, 15);
1232 }
1233 
1234 
1235 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1236 		struct usb_host_endpoint *ep)
1237 {
1238 	return xhci_microframes_to_exponent(udev, ep,
1239 			ep->desc.bInterval * 8, 3, 10);
1240 }
1241 
1242 /* Return the polling or NAK interval.
1243  *
1244  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1245  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1246  *
1247  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1248  * is set to 0.
1249  */
1250 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1251 		struct usb_host_endpoint *ep)
1252 {
1253 	unsigned int interval = 0;
1254 
1255 	switch (udev->speed) {
1256 	case USB_SPEED_HIGH:
1257 		/* Max NAK rate */
1258 		if (usb_endpoint_xfer_control(&ep->desc) ||
1259 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1260 			interval = xhci_parse_microframe_interval(udev, ep);
1261 			break;
1262 		}
1263 		/* Fall through - SS and HS isoc/int have same decoding */
1264 
1265 	case USB_SPEED_SUPER:
1266 		if (usb_endpoint_xfer_int(&ep->desc) ||
1267 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1268 			interval = xhci_parse_exponent_interval(udev, ep);
1269 		}
1270 		break;
1271 
1272 	case USB_SPEED_FULL:
1273 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1274 			interval = xhci_parse_exponent_interval(udev, ep);
1275 			break;
1276 		}
1277 		/*
1278 		 * Fall through for interrupt endpoint interval decoding
1279 		 * since it uses the same rules as low speed interrupt
1280 		 * endpoints.
1281 		 */
1282 
1283 	case USB_SPEED_LOW:
1284 		if (usb_endpoint_xfer_int(&ep->desc) ||
1285 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1286 
1287 			interval = xhci_parse_frame_interval(udev, ep);
1288 		}
1289 		break;
1290 
1291 	default:
1292 		BUG();
1293 	}
1294 	return EP_INTERVAL(interval);
1295 }
1296 
1297 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1298  * High speed endpoint descriptors can define "the number of additional
1299  * transaction opportunities per microframe", but that goes in the Max Burst
1300  * endpoint context field.
1301  */
1302 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1303 		struct usb_host_endpoint *ep)
1304 {
1305 	if (udev->speed != USB_SPEED_SUPER ||
1306 			!usb_endpoint_xfer_isoc(&ep->desc))
1307 		return 0;
1308 	return ep->ss_ep_comp.bmAttributes;
1309 }
1310 
1311 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1312 		struct usb_host_endpoint *ep)
1313 {
1314 	int in;
1315 	u32 type;
1316 
1317 	in = usb_endpoint_dir_in(&ep->desc);
1318 	if (usb_endpoint_xfer_control(&ep->desc)) {
1319 		type = EP_TYPE(CTRL_EP);
1320 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1321 		if (in)
1322 			type = EP_TYPE(BULK_IN_EP);
1323 		else
1324 			type = EP_TYPE(BULK_OUT_EP);
1325 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326 		if (in)
1327 			type = EP_TYPE(ISOC_IN_EP);
1328 		else
1329 			type = EP_TYPE(ISOC_OUT_EP);
1330 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1331 		if (in)
1332 			type = EP_TYPE(INT_IN_EP);
1333 		else
1334 			type = EP_TYPE(INT_OUT_EP);
1335 	} else {
1336 		type = 0;
1337 	}
1338 	return type;
1339 }
1340 
1341 /* Return the maximum endpoint service interval time (ESIT) payload.
1342  * Basically, this is the maxpacket size, multiplied by the burst size
1343  * and mult size.
1344  */
1345 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1346 		struct usb_device *udev,
1347 		struct usb_host_endpoint *ep)
1348 {
1349 	int max_burst;
1350 	int max_packet;
1351 
1352 	/* Only applies for interrupt or isochronous endpoints */
1353 	if (usb_endpoint_xfer_control(&ep->desc) ||
1354 			usb_endpoint_xfer_bulk(&ep->desc))
1355 		return 0;
1356 
1357 	if (udev->speed == USB_SPEED_SUPER)
1358 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1359 
1360 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1361 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1362 	/* A 0 in max burst means 1 transfer per ESIT */
1363 	return max_packet * (max_burst + 1);
1364 }
1365 
1366 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1367  * Drivers will have to call usb_alloc_streams() to do that.
1368  */
1369 int xhci_endpoint_init(struct xhci_hcd *xhci,
1370 		struct xhci_virt_device *virt_dev,
1371 		struct usb_device *udev,
1372 		struct usb_host_endpoint *ep,
1373 		gfp_t mem_flags)
1374 {
1375 	unsigned int ep_index;
1376 	struct xhci_ep_ctx *ep_ctx;
1377 	struct xhci_ring *ep_ring;
1378 	unsigned int max_packet;
1379 	unsigned int max_burst;
1380 	enum xhci_ring_type type;
1381 	u32 max_esit_payload;
1382 	u32 endpoint_type;
1383 
1384 	ep_index = xhci_get_endpoint_index(&ep->desc);
1385 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1386 
1387 	endpoint_type = xhci_get_endpoint_type(udev, ep);
1388 	if (!endpoint_type)
1389 		return -EINVAL;
1390 	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1391 
1392 	type = usb_endpoint_type(&ep->desc);
1393 	/* Set up the endpoint ring */
1394 	virt_dev->eps[ep_index].new_ring =
1395 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1396 	if (!virt_dev->eps[ep_index].new_ring) {
1397 		/* Attempt to use the ring cache */
1398 		if (virt_dev->num_rings_cached == 0)
1399 			return -ENOMEM;
1400 		virt_dev->eps[ep_index].new_ring =
1401 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1402 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1403 		virt_dev->num_rings_cached--;
1404 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1405 					1, type);
1406 	}
1407 	virt_dev->eps[ep_index].skip = false;
1408 	ep_ring = virt_dev->eps[ep_index].new_ring;
1409 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1410 
1411 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1412 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1413 
1414 	/* FIXME dig Mult and streams info out of ep companion desc */
1415 
1416 	/* Allow 3 retries for everything but isoc;
1417 	 * CErr shall be set to 0 for Isoch endpoints.
1418 	 */
1419 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1420 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1421 	else
1422 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1423 
1424 	/* Set the max packet size and max burst */
1425 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1426 	max_burst = 0;
1427 	switch (udev->speed) {
1428 	case USB_SPEED_SUPER:
1429 		/* dig out max burst from ep companion desc */
1430 		max_burst = ep->ss_ep_comp.bMaxBurst;
1431 		break;
1432 	case USB_SPEED_HIGH:
1433 		/* Some devices get this wrong */
1434 		if (usb_endpoint_xfer_bulk(&ep->desc))
1435 			max_packet = 512;
1436 		/* bits 11:12 specify the number of additional transaction
1437 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1438 		 */
1439 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1440 				usb_endpoint_xfer_int(&ep->desc)) {
1441 			max_burst = (usb_endpoint_maxp(&ep->desc)
1442 				     & 0x1800) >> 11;
1443 		}
1444 		break;
1445 	case USB_SPEED_FULL:
1446 	case USB_SPEED_LOW:
1447 		break;
1448 	default:
1449 		BUG();
1450 	}
1451 	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1452 			MAX_BURST(max_burst));
1453 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1454 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1455 
1456 	/*
1457 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1458 	 * endpoints, as the driver gives us no clue how big each scatter gather
1459 	 * list entry (or buffer) is going to be.
1460 	 *
1461 	 * For isochronous and interrupt endpoints, we set it to the max
1462 	 * available, until we have new API in the USB core to allow drivers to
1463 	 * declare how much bandwidth they actually need.
1464 	 *
1465 	 * Normally, it would be calculated by taking the total of the buffer
1466 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1467 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1468 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1469 	 * transfers, we're basically dividing by 1.
1470 	 *
1471 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1472 	 * be set to 8 for control endpoints.
1473 	 */
1474 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1475 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1476 	else
1477 		ep_ctx->tx_info |=
1478 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1479 
1480 	/* FIXME Debug endpoint context */
1481 	return 0;
1482 }
1483 
1484 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1485 		struct xhci_virt_device *virt_dev,
1486 		struct usb_host_endpoint *ep)
1487 {
1488 	unsigned int ep_index;
1489 	struct xhci_ep_ctx *ep_ctx;
1490 
1491 	ep_index = xhci_get_endpoint_index(&ep->desc);
1492 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1493 
1494 	ep_ctx->ep_info = 0;
1495 	ep_ctx->ep_info2 = 0;
1496 	ep_ctx->deq = 0;
1497 	ep_ctx->tx_info = 0;
1498 	/* Don't free the endpoint ring until the set interface or configuration
1499 	 * request succeeds.
1500 	 */
1501 }
1502 
1503 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1504 {
1505 	bw_info->ep_interval = 0;
1506 	bw_info->mult = 0;
1507 	bw_info->num_packets = 0;
1508 	bw_info->max_packet_size = 0;
1509 	bw_info->type = 0;
1510 	bw_info->max_esit_payload = 0;
1511 }
1512 
1513 void xhci_update_bw_info(struct xhci_hcd *xhci,
1514 		struct xhci_container_ctx *in_ctx,
1515 		struct xhci_input_control_ctx *ctrl_ctx,
1516 		struct xhci_virt_device *virt_dev)
1517 {
1518 	struct xhci_bw_info *bw_info;
1519 	struct xhci_ep_ctx *ep_ctx;
1520 	unsigned int ep_type;
1521 	int i;
1522 
1523 	for (i = 1; i < 31; ++i) {
1524 		bw_info = &virt_dev->eps[i].bw_info;
1525 
1526 		/* We can't tell what endpoint type is being dropped, but
1527 		 * unconditionally clearing the bandwidth info for non-periodic
1528 		 * endpoints should be harmless because the info will never be
1529 		 * set in the first place.
1530 		 */
1531 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1532 			/* Dropped endpoint */
1533 			xhci_clear_endpoint_bw_info(bw_info);
1534 			continue;
1535 		}
1536 
1537 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1538 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1539 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1540 
1541 			/* Ignore non-periodic endpoints */
1542 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1543 					ep_type != ISOC_IN_EP &&
1544 					ep_type != INT_IN_EP)
1545 				continue;
1546 
1547 			/* Added or changed endpoint */
1548 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1549 					le32_to_cpu(ep_ctx->ep_info));
1550 			/* Number of packets and mult are zero-based in the
1551 			 * input context, but we want one-based for the
1552 			 * interval table.
1553 			 */
1554 			bw_info->mult = CTX_TO_EP_MULT(
1555 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1556 			bw_info->num_packets = CTX_TO_MAX_BURST(
1557 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1558 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1559 					le32_to_cpu(ep_ctx->ep_info2));
1560 			bw_info->type = ep_type;
1561 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1562 					le32_to_cpu(ep_ctx->tx_info));
1563 		}
1564 	}
1565 }
1566 
1567 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1568  * Useful when you want to change one particular aspect of the endpoint and then
1569  * issue a configure endpoint command.
1570  */
1571 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1572 		struct xhci_container_ctx *in_ctx,
1573 		struct xhci_container_ctx *out_ctx,
1574 		unsigned int ep_index)
1575 {
1576 	struct xhci_ep_ctx *out_ep_ctx;
1577 	struct xhci_ep_ctx *in_ep_ctx;
1578 
1579 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1580 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1581 
1582 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1583 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1584 	in_ep_ctx->deq = out_ep_ctx->deq;
1585 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1586 }
1587 
1588 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1589  * Useful when you want to change one particular aspect of the endpoint and then
1590  * issue a configure endpoint command.  Only the context entries field matters,
1591  * but we'll copy the whole thing anyway.
1592  */
1593 void xhci_slot_copy(struct xhci_hcd *xhci,
1594 		struct xhci_container_ctx *in_ctx,
1595 		struct xhci_container_ctx *out_ctx)
1596 {
1597 	struct xhci_slot_ctx *in_slot_ctx;
1598 	struct xhci_slot_ctx *out_slot_ctx;
1599 
1600 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1601 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1602 
1603 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1604 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1605 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1606 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1607 }
1608 
1609 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1610 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1611 {
1612 	int i;
1613 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1614 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1615 
1616 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1617 
1618 	if (!num_sp)
1619 		return 0;
1620 
1621 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1622 	if (!xhci->scratchpad)
1623 		goto fail_sp;
1624 
1625 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1626 				     num_sp * sizeof(u64),
1627 				     &xhci->scratchpad->sp_dma, flags);
1628 	if (!xhci->scratchpad->sp_array)
1629 		goto fail_sp2;
1630 
1631 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1632 	if (!xhci->scratchpad->sp_buffers)
1633 		goto fail_sp3;
1634 
1635 	xhci->scratchpad->sp_dma_buffers =
1636 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1637 
1638 	if (!xhci->scratchpad->sp_dma_buffers)
1639 		goto fail_sp4;
1640 
1641 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1642 	for (i = 0; i < num_sp; i++) {
1643 		dma_addr_t dma;
1644 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1645 				flags);
1646 		if (!buf)
1647 			goto fail_sp5;
1648 
1649 		xhci->scratchpad->sp_array[i] = dma;
1650 		xhci->scratchpad->sp_buffers[i] = buf;
1651 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1652 	}
1653 
1654 	return 0;
1655 
1656  fail_sp5:
1657 	for (i = i - 1; i >= 0; i--) {
1658 		dma_free_coherent(dev, xhci->page_size,
1659 				    xhci->scratchpad->sp_buffers[i],
1660 				    xhci->scratchpad->sp_dma_buffers[i]);
1661 	}
1662 	kfree(xhci->scratchpad->sp_dma_buffers);
1663 
1664  fail_sp4:
1665 	kfree(xhci->scratchpad->sp_buffers);
1666 
1667  fail_sp3:
1668 	dma_free_coherent(dev, num_sp * sizeof(u64),
1669 			    xhci->scratchpad->sp_array,
1670 			    xhci->scratchpad->sp_dma);
1671 
1672  fail_sp2:
1673 	kfree(xhci->scratchpad);
1674 	xhci->scratchpad = NULL;
1675 
1676  fail_sp:
1677 	return -ENOMEM;
1678 }
1679 
1680 static void scratchpad_free(struct xhci_hcd *xhci)
1681 {
1682 	int num_sp;
1683 	int i;
1684 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1685 
1686 	if (!xhci->scratchpad)
1687 		return;
1688 
1689 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1690 
1691 	for (i = 0; i < num_sp; i++) {
1692 		dma_free_coherent(&pdev->dev, xhci->page_size,
1693 				    xhci->scratchpad->sp_buffers[i],
1694 				    xhci->scratchpad->sp_dma_buffers[i]);
1695 	}
1696 	kfree(xhci->scratchpad->sp_dma_buffers);
1697 	kfree(xhci->scratchpad->sp_buffers);
1698 	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1699 			    xhci->scratchpad->sp_array,
1700 			    xhci->scratchpad->sp_dma);
1701 	kfree(xhci->scratchpad);
1702 	xhci->scratchpad = NULL;
1703 }
1704 
1705 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1706 		bool allocate_in_ctx, bool allocate_completion,
1707 		gfp_t mem_flags)
1708 {
1709 	struct xhci_command *command;
1710 
1711 	command = kzalloc(sizeof(*command), mem_flags);
1712 	if (!command)
1713 		return NULL;
1714 
1715 	if (allocate_in_ctx) {
1716 		command->in_ctx =
1717 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1718 					mem_flags);
1719 		if (!command->in_ctx) {
1720 			kfree(command);
1721 			return NULL;
1722 		}
1723 	}
1724 
1725 	if (allocate_completion) {
1726 		command->completion =
1727 			kzalloc(sizeof(struct completion), mem_flags);
1728 		if (!command->completion) {
1729 			xhci_free_container_ctx(xhci, command->in_ctx);
1730 			kfree(command);
1731 			return NULL;
1732 		}
1733 		init_completion(command->completion);
1734 	}
1735 
1736 	command->status = 0;
1737 	INIT_LIST_HEAD(&command->cmd_list);
1738 	return command;
1739 }
1740 
1741 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1742 {
1743 	if (urb_priv) {
1744 		kfree(urb_priv->td[0]);
1745 		kfree(urb_priv);
1746 	}
1747 }
1748 
1749 void xhci_free_command(struct xhci_hcd *xhci,
1750 		struct xhci_command *command)
1751 {
1752 	xhci_free_container_ctx(xhci,
1753 			command->in_ctx);
1754 	kfree(command->completion);
1755 	kfree(command);
1756 }
1757 
1758 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1759 {
1760 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1761 	struct dev_info	*dev_info, *next;
1762 	struct xhci_cd  *cur_cd, *next_cd;
1763 	unsigned long	flags;
1764 	int size;
1765 	int i, j, num_ports;
1766 
1767 	/* Free the Event Ring Segment Table and the actual Event Ring */
1768 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1769 	if (xhci->erst.entries)
1770 		dma_free_coherent(&pdev->dev, size,
1771 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1772 	xhci->erst.entries = NULL;
1773 	xhci_dbg(xhci, "Freed ERST\n");
1774 	if (xhci->event_ring)
1775 		xhci_ring_free(xhci, xhci->event_ring);
1776 	xhci->event_ring = NULL;
1777 	xhci_dbg(xhci, "Freed event ring\n");
1778 
1779 	if (xhci->lpm_command)
1780 		xhci_free_command(xhci, xhci->lpm_command);
1781 	xhci->cmd_ring_reserved_trbs = 0;
1782 	if (xhci->cmd_ring)
1783 		xhci_ring_free(xhci, xhci->cmd_ring);
1784 	xhci->cmd_ring = NULL;
1785 	xhci_dbg(xhci, "Freed command ring\n");
1786 	list_for_each_entry_safe(cur_cd, next_cd,
1787 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1788 		list_del(&cur_cd->cancel_cmd_list);
1789 		kfree(cur_cd);
1790 	}
1791 
1792 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1793 		xhci_free_virt_device(xhci, i);
1794 
1795 	if (xhci->segment_pool)
1796 		dma_pool_destroy(xhci->segment_pool);
1797 	xhci->segment_pool = NULL;
1798 	xhci_dbg(xhci, "Freed segment pool\n");
1799 
1800 	if (xhci->device_pool)
1801 		dma_pool_destroy(xhci->device_pool);
1802 	xhci->device_pool = NULL;
1803 	xhci_dbg(xhci, "Freed device context pool\n");
1804 
1805 	if (xhci->small_streams_pool)
1806 		dma_pool_destroy(xhci->small_streams_pool);
1807 	xhci->small_streams_pool = NULL;
1808 	xhci_dbg(xhci, "Freed small stream array pool\n");
1809 
1810 	if (xhci->medium_streams_pool)
1811 		dma_pool_destroy(xhci->medium_streams_pool);
1812 	xhci->medium_streams_pool = NULL;
1813 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1814 
1815 	if (xhci->dcbaa)
1816 		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1817 				xhci->dcbaa, xhci->dcbaa->dma);
1818 	xhci->dcbaa = NULL;
1819 
1820 	scratchpad_free(xhci);
1821 
1822 	spin_lock_irqsave(&xhci->lock, flags);
1823 	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1824 		list_del(&dev_info->list);
1825 		kfree(dev_info);
1826 	}
1827 	spin_unlock_irqrestore(&xhci->lock, flags);
1828 
1829 	if (!xhci->rh_bw)
1830 		goto no_bw;
1831 
1832 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1833 	for (i = 0; i < num_ports; i++) {
1834 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1835 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1836 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1837 			while (!list_empty(ep))
1838 				list_del_init(ep->next);
1839 		}
1840 	}
1841 
1842 	for (i = 0; i < num_ports; i++) {
1843 		struct xhci_tt_bw_info *tt, *n;
1844 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1845 			list_del(&tt->tt_list);
1846 			kfree(tt);
1847 		}
1848 	}
1849 
1850 no_bw:
1851 	xhci->num_usb2_ports = 0;
1852 	xhci->num_usb3_ports = 0;
1853 	xhci->num_active_eps = 0;
1854 	kfree(xhci->usb2_ports);
1855 	kfree(xhci->usb3_ports);
1856 	kfree(xhci->port_array);
1857 	kfree(xhci->rh_bw);
1858 	kfree(xhci->ext_caps);
1859 
1860 	xhci->page_size = 0;
1861 	xhci->page_shift = 0;
1862 	xhci->bus_state[0].bus_suspended = 0;
1863 	xhci->bus_state[1].bus_suspended = 0;
1864 }
1865 
1866 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1867 		struct xhci_segment *input_seg,
1868 		union xhci_trb *start_trb,
1869 		union xhci_trb *end_trb,
1870 		dma_addr_t input_dma,
1871 		struct xhci_segment *result_seg,
1872 		char *test_name, int test_number)
1873 {
1874 	unsigned long long start_dma;
1875 	unsigned long long end_dma;
1876 	struct xhci_segment *seg;
1877 
1878 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1879 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1880 
1881 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1882 	if (seg != result_seg) {
1883 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1884 				test_name, test_number);
1885 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1886 				"input DMA 0x%llx\n",
1887 				input_seg,
1888 				(unsigned long long) input_dma);
1889 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1890 				"ending TRB %p (0x%llx DMA)\n",
1891 				start_trb, start_dma,
1892 				end_trb, end_dma);
1893 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1894 				result_seg, seg);
1895 		return -1;
1896 	}
1897 	return 0;
1898 }
1899 
1900 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1901 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1902 {
1903 	struct {
1904 		dma_addr_t		input_dma;
1905 		struct xhci_segment	*result_seg;
1906 	} simple_test_vector [] = {
1907 		/* A zeroed DMA field should fail */
1908 		{ 0, NULL },
1909 		/* One TRB before the ring start should fail */
1910 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1911 		/* One byte before the ring start should fail */
1912 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1913 		/* Starting TRB should succeed */
1914 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1915 		/* Ending TRB should succeed */
1916 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1917 			xhci->event_ring->first_seg },
1918 		/* One byte after the ring end should fail */
1919 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1920 		/* One TRB after the ring end should fail */
1921 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1922 		/* An address of all ones should fail */
1923 		{ (dma_addr_t) (~0), NULL },
1924 	};
1925 	struct {
1926 		struct xhci_segment	*input_seg;
1927 		union xhci_trb		*start_trb;
1928 		union xhci_trb		*end_trb;
1929 		dma_addr_t		input_dma;
1930 		struct xhci_segment	*result_seg;
1931 	} complex_test_vector [] = {
1932 		/* Test feeding a valid DMA address from a different ring */
1933 		{	.input_seg = xhci->event_ring->first_seg,
1934 			.start_trb = xhci->event_ring->first_seg->trbs,
1935 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1936 			.input_dma = xhci->cmd_ring->first_seg->dma,
1937 			.result_seg = NULL,
1938 		},
1939 		/* Test feeding a valid end TRB from a different ring */
1940 		{	.input_seg = xhci->event_ring->first_seg,
1941 			.start_trb = xhci->event_ring->first_seg->trbs,
1942 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1943 			.input_dma = xhci->cmd_ring->first_seg->dma,
1944 			.result_seg = NULL,
1945 		},
1946 		/* Test feeding a valid start and end TRB from a different ring */
1947 		{	.input_seg = xhci->event_ring->first_seg,
1948 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1949 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1950 			.input_dma = xhci->cmd_ring->first_seg->dma,
1951 			.result_seg = NULL,
1952 		},
1953 		/* TRB in this ring, but after this TD */
1954 		{	.input_seg = xhci->event_ring->first_seg,
1955 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1956 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1957 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1958 			.result_seg = NULL,
1959 		},
1960 		/* TRB in this ring, but before this TD */
1961 		{	.input_seg = xhci->event_ring->first_seg,
1962 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1963 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1964 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1965 			.result_seg = NULL,
1966 		},
1967 		/* TRB in this ring, but after this wrapped TD */
1968 		{	.input_seg = xhci->event_ring->first_seg,
1969 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1970 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1971 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1972 			.result_seg = NULL,
1973 		},
1974 		/* TRB in this ring, but before this wrapped TD */
1975 		{	.input_seg = xhci->event_ring->first_seg,
1976 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1977 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1978 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1979 			.result_seg = NULL,
1980 		},
1981 		/* TRB not in this ring, and we have a wrapped TD */
1982 		{	.input_seg = xhci->event_ring->first_seg,
1983 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1984 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1985 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1986 			.result_seg = NULL,
1987 		},
1988 	};
1989 
1990 	unsigned int num_tests;
1991 	int i, ret;
1992 
1993 	num_tests = ARRAY_SIZE(simple_test_vector);
1994 	for (i = 0; i < num_tests; i++) {
1995 		ret = xhci_test_trb_in_td(xhci,
1996 				xhci->event_ring->first_seg,
1997 				xhci->event_ring->first_seg->trbs,
1998 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1999 				simple_test_vector[i].input_dma,
2000 				simple_test_vector[i].result_seg,
2001 				"Simple", i);
2002 		if (ret < 0)
2003 			return ret;
2004 	}
2005 
2006 	num_tests = ARRAY_SIZE(complex_test_vector);
2007 	for (i = 0; i < num_tests; i++) {
2008 		ret = xhci_test_trb_in_td(xhci,
2009 				complex_test_vector[i].input_seg,
2010 				complex_test_vector[i].start_trb,
2011 				complex_test_vector[i].end_trb,
2012 				complex_test_vector[i].input_dma,
2013 				complex_test_vector[i].result_seg,
2014 				"Complex", i);
2015 		if (ret < 0)
2016 			return ret;
2017 	}
2018 	xhci_dbg(xhci, "TRB math tests passed.\n");
2019 	return 0;
2020 }
2021 
2022 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2023 {
2024 	u64 temp;
2025 	dma_addr_t deq;
2026 
2027 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2028 			xhci->event_ring->dequeue);
2029 	if (deq == 0 && !in_interrupt())
2030 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2031 				"dequeue ptr.\n");
2032 	/* Update HC event ring dequeue pointer */
2033 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2034 	temp &= ERST_PTR_MASK;
2035 	/* Don't clear the EHB bit (which is RW1C) because
2036 	 * there might be more events to service.
2037 	 */
2038 	temp &= ~ERST_EHB;
2039 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2040 			"preserving EHB bit\n");
2041 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2042 			&xhci->ir_set->erst_dequeue);
2043 }
2044 
2045 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2046 		__le32 __iomem *addr, u8 major_revision, int max_caps)
2047 {
2048 	u32 temp, port_offset, port_count;
2049 	int i;
2050 
2051 	if (major_revision > 0x03) {
2052 		xhci_warn(xhci, "Ignoring unknown port speed, "
2053 				"Ext Cap %p, revision = 0x%x\n",
2054 				addr, major_revision);
2055 		/* Ignoring port protocol we can't understand. FIXME */
2056 		return;
2057 	}
2058 
2059 	/* Port offset and count in the third dword, see section 7.2 */
2060 	temp = xhci_readl(xhci, addr + 2);
2061 	port_offset = XHCI_EXT_PORT_OFF(temp);
2062 	port_count = XHCI_EXT_PORT_COUNT(temp);
2063 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2064 			"count = %u, revision = 0x%x\n",
2065 			addr, port_offset, port_count, major_revision);
2066 	/* Port count includes the current port offset */
2067 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2068 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2069 		return;
2070 
2071 	/* cache usb2 port capabilities */
2072 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2073 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2074 
2075 	/* Check the host's USB2 LPM capability */
2076 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2077 			(temp & XHCI_L1C)) {
2078 		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2079 		xhci->sw_lpm_support = 1;
2080 	}
2081 
2082 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2083 		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2084 		xhci->sw_lpm_support = 1;
2085 		if (temp & XHCI_HLC) {
2086 			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2087 			xhci->hw_lpm_support = 1;
2088 		}
2089 	}
2090 
2091 	port_offset--;
2092 	for (i = port_offset; i < (port_offset + port_count); i++) {
2093 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2094 		if (xhci->port_array[i] != 0) {
2095 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2096 					" port %u\n", addr, i);
2097 			xhci_warn(xhci, "Port was marked as USB %u, "
2098 					"duplicated as USB %u\n",
2099 					xhci->port_array[i], major_revision);
2100 			/* Only adjust the roothub port counts if we haven't
2101 			 * found a similar duplicate.
2102 			 */
2103 			if (xhci->port_array[i] != major_revision &&
2104 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2105 				if (xhci->port_array[i] == 0x03)
2106 					xhci->num_usb3_ports--;
2107 				else
2108 					xhci->num_usb2_ports--;
2109 				xhci->port_array[i] = DUPLICATE_ENTRY;
2110 			}
2111 			/* FIXME: Should we disable the port? */
2112 			continue;
2113 		}
2114 		xhci->port_array[i] = major_revision;
2115 		if (major_revision == 0x03)
2116 			xhci->num_usb3_ports++;
2117 		else
2118 			xhci->num_usb2_ports++;
2119 	}
2120 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2121 }
2122 
2123 /*
2124  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2125  * specify what speeds each port is supposed to be.  We can't count on the port
2126  * speed bits in the PORTSC register being correct until a device is connected,
2127  * but we need to set up the two fake roothubs with the correct number of USB
2128  * 3.0 and USB 2.0 ports at host controller initialization time.
2129  */
2130 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2131 {
2132 	__le32 __iomem *addr, *tmp_addr;
2133 	u32 offset, tmp_offset;
2134 	unsigned int num_ports;
2135 	int i, j, port_index;
2136 	int cap_count = 0;
2137 
2138 	addr = &xhci->cap_regs->hcc_params;
2139 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2140 	if (offset == 0) {
2141 		xhci_err(xhci, "No Extended Capability registers, "
2142 				"unable to set up roothub.\n");
2143 		return -ENODEV;
2144 	}
2145 
2146 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2147 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2148 	if (!xhci->port_array)
2149 		return -ENOMEM;
2150 
2151 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2152 	if (!xhci->rh_bw)
2153 		return -ENOMEM;
2154 	for (i = 0; i < num_ports; i++) {
2155 		struct xhci_interval_bw_table *bw_table;
2156 
2157 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2158 		bw_table = &xhci->rh_bw[i].bw_table;
2159 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2160 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2161 	}
2162 
2163 	/*
2164 	 * For whatever reason, the first capability offset is from the
2165 	 * capability register base, not from the HCCPARAMS register.
2166 	 * See section 5.3.6 for offset calculation.
2167 	 */
2168 	addr = &xhci->cap_regs->hc_capbase + offset;
2169 
2170 	tmp_addr = addr;
2171 	tmp_offset = offset;
2172 
2173 	/* count extended protocol capability entries for later caching */
2174 	do {
2175 		u32 cap_id;
2176 		cap_id = xhci_readl(xhci, tmp_addr);
2177 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2178 			cap_count++;
2179 		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2180 		tmp_addr += tmp_offset;
2181 	} while (tmp_offset);
2182 
2183 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2184 	if (!xhci->ext_caps)
2185 		return -ENOMEM;
2186 
2187 	while (1) {
2188 		u32 cap_id;
2189 
2190 		cap_id = xhci_readl(xhci, addr);
2191 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2192 			xhci_add_in_port(xhci, num_ports, addr,
2193 					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2194 					cap_count);
2195 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2196 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2197 				== num_ports)
2198 			break;
2199 		/*
2200 		 * Once you're into the Extended Capabilities, the offset is
2201 		 * always relative to the register holding the offset.
2202 		 */
2203 		addr += offset;
2204 	}
2205 
2206 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2207 		xhci_warn(xhci, "No ports on the roothubs?\n");
2208 		return -ENODEV;
2209 	}
2210 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2211 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2212 
2213 	/* Place limits on the number of roothub ports so that the hub
2214 	 * descriptors aren't longer than the USB core will allocate.
2215 	 */
2216 	if (xhci->num_usb3_ports > 15) {
2217 		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2218 		xhci->num_usb3_ports = 15;
2219 	}
2220 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2221 		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2222 				USB_MAXCHILDREN);
2223 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2224 	}
2225 
2226 	/*
2227 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2228 	 * Not sure how the USB core will handle a hub with no ports...
2229 	 */
2230 	if (xhci->num_usb2_ports) {
2231 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2232 				xhci->num_usb2_ports, flags);
2233 		if (!xhci->usb2_ports)
2234 			return -ENOMEM;
2235 
2236 		port_index = 0;
2237 		for (i = 0; i < num_ports; i++) {
2238 			if (xhci->port_array[i] == 0x03 ||
2239 					xhci->port_array[i] == 0 ||
2240 					xhci->port_array[i] == DUPLICATE_ENTRY)
2241 				continue;
2242 
2243 			xhci->usb2_ports[port_index] =
2244 				&xhci->op_regs->port_status_base +
2245 				NUM_PORT_REGS*i;
2246 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2247 					"addr = %p\n", i,
2248 					xhci->usb2_ports[port_index]);
2249 			port_index++;
2250 			if (port_index == xhci->num_usb2_ports)
2251 				break;
2252 		}
2253 	}
2254 	if (xhci->num_usb3_ports) {
2255 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2256 				xhci->num_usb3_ports, flags);
2257 		if (!xhci->usb3_ports)
2258 			return -ENOMEM;
2259 
2260 		port_index = 0;
2261 		for (i = 0; i < num_ports; i++)
2262 			if (xhci->port_array[i] == 0x03) {
2263 				xhci->usb3_ports[port_index] =
2264 					&xhci->op_regs->port_status_base +
2265 					NUM_PORT_REGS*i;
2266 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2267 						"addr = %p\n", i,
2268 						xhci->usb3_ports[port_index]);
2269 				port_index++;
2270 				if (port_index == xhci->num_usb3_ports)
2271 					break;
2272 			}
2273 	}
2274 	return 0;
2275 }
2276 
2277 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2278 {
2279 	dma_addr_t	dma;
2280 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2281 	unsigned int	val, val2;
2282 	u64		val_64;
2283 	struct xhci_segment	*seg;
2284 	u32 page_size, temp;
2285 	int i;
2286 
2287 	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2288 	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2289 
2290 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2291 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2292 	for (i = 0; i < 16; i++) {
2293 		if ((0x1 & page_size) != 0)
2294 			break;
2295 		page_size = page_size >> 1;
2296 	}
2297 	if (i < 16)
2298 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2299 	else
2300 		xhci_warn(xhci, "WARN: no supported page size\n");
2301 	/* Use 4K pages, since that's common and the minimum the HC supports */
2302 	xhci->page_shift = 12;
2303 	xhci->page_size = 1 << xhci->page_shift;
2304 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2305 
2306 	/*
2307 	 * Program the Number of Device Slots Enabled field in the CONFIG
2308 	 * register with the max value of slots the HC can handle.
2309 	 */
2310 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2311 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2312 			(unsigned int) val);
2313 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2314 	val |= (val2 & ~HCS_SLOTS_MASK);
2315 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2316 			(unsigned int) val);
2317 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2318 
2319 	/*
2320 	 * Section 5.4.8 - doorbell array must be
2321 	 * "physically contiguous and 64-byte (cache line) aligned".
2322 	 */
2323 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2324 			GFP_KERNEL);
2325 	if (!xhci->dcbaa)
2326 		goto fail;
2327 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2328 	xhci->dcbaa->dma = dma;
2329 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2330 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2331 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2332 
2333 	/*
2334 	 * Initialize the ring segment pool.  The ring must be a contiguous
2335 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2336 	 * however, the command ring segment needs 64-byte aligned segments,
2337 	 * so we pick the greater alignment need.
2338 	 */
2339 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2340 			TRB_SEGMENT_SIZE, 64, xhci->page_size);
2341 
2342 	/* See Table 46 and Note on Figure 55 */
2343 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2344 			2112, 64, xhci->page_size);
2345 	if (!xhci->segment_pool || !xhci->device_pool)
2346 		goto fail;
2347 
2348 	/* Linear stream context arrays don't have any boundary restrictions,
2349 	 * and only need to be 16-byte aligned.
2350 	 */
2351 	xhci->small_streams_pool =
2352 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2353 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2354 	xhci->medium_streams_pool =
2355 		dma_pool_create("xHCI 1KB stream ctx arrays",
2356 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2357 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2358 	 * will be allocated with dma_alloc_coherent()
2359 	 */
2360 
2361 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2362 		goto fail;
2363 
2364 	/* Set up the command ring to have one segments for now. */
2365 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2366 	if (!xhci->cmd_ring)
2367 		goto fail;
2368 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2369 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2370 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2371 
2372 	/* Set the address in the Command Ring Control register */
2373 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2374 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2375 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2376 		xhci->cmd_ring->cycle_state;
2377 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2378 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2379 	xhci_dbg_cmd_ptrs(xhci);
2380 
2381 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2382 	if (!xhci->lpm_command)
2383 		goto fail;
2384 
2385 	/* Reserve one command ring TRB for disabling LPM.
2386 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2387 	 * disabling LPM, we only need to reserve one TRB for all devices.
2388 	 */
2389 	xhci->cmd_ring_reserved_trbs++;
2390 
2391 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2392 	val &= DBOFF_MASK;
2393 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2394 			" from cap regs base addr\n", val);
2395 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2396 	xhci_dbg_regs(xhci);
2397 	xhci_print_run_regs(xhci);
2398 	/* Set ir_set to interrupt register set 0 */
2399 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2400 
2401 	/*
2402 	 * Event ring setup: Allocate a normal ring, but also setup
2403 	 * the event ring segment table (ERST).  Section 4.9.3.
2404 	 */
2405 	xhci_dbg(xhci, "// Allocating event ring\n");
2406 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2407 						flags);
2408 	if (!xhci->event_ring)
2409 		goto fail;
2410 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2411 		goto fail;
2412 
2413 	xhci->erst.entries = dma_alloc_coherent(dev,
2414 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2415 			GFP_KERNEL);
2416 	if (!xhci->erst.entries)
2417 		goto fail;
2418 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2419 			(unsigned long long)dma);
2420 
2421 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2422 	xhci->erst.num_entries = ERST_NUM_SEGS;
2423 	xhci->erst.erst_dma_addr = dma;
2424 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2425 			xhci->erst.num_entries,
2426 			xhci->erst.entries,
2427 			(unsigned long long)xhci->erst.erst_dma_addr);
2428 
2429 	/* set ring base address and size for each segment table entry */
2430 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2431 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2432 		entry->seg_addr = cpu_to_le64(seg->dma);
2433 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2434 		entry->rsvd = 0;
2435 		seg = seg->next;
2436 	}
2437 
2438 	/* set ERST count with the number of entries in the segment table */
2439 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2440 	val &= ERST_SIZE_MASK;
2441 	val |= ERST_NUM_SEGS;
2442 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2443 			val);
2444 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2445 
2446 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2447 	/* set the segment table base address */
2448 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2449 			(unsigned long long)xhci->erst.erst_dma_addr);
2450 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2451 	val_64 &= ERST_PTR_MASK;
2452 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2453 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2454 
2455 	/* Set the event ring dequeue address */
2456 	xhci_set_hc_event_deq(xhci);
2457 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2458 	xhci_print_ir_set(xhci, 0);
2459 
2460 	/*
2461 	 * XXX: Might need to set the Interrupter Moderation Register to
2462 	 * something other than the default (~1ms minimum between interrupts).
2463 	 * See section 5.5.1.2.
2464 	 */
2465 	init_completion(&xhci->addr_dev);
2466 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2467 		xhci->devs[i] = NULL;
2468 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2469 		xhci->bus_state[0].resume_done[i] = 0;
2470 		xhci->bus_state[1].resume_done[i] = 0;
2471 	}
2472 
2473 	if (scratchpad_alloc(xhci, flags))
2474 		goto fail;
2475 	if (xhci_setup_port_arrays(xhci, flags))
2476 		goto fail;
2477 
2478 	/* Enable USB 3.0 device notifications for function remote wake, which
2479 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2480 	 * U3 (device suspend).
2481 	 */
2482 	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2483 	temp &= ~DEV_NOTE_MASK;
2484 	temp |= DEV_NOTE_FWAKE;
2485 	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2486 
2487 	return 0;
2488 
2489 fail:
2490 	xhci_warn(xhci, "Couldn't initialize memory\n");
2491 	xhci_halt(xhci);
2492 	xhci_reset(xhci);
2493 	xhci_mem_cleanup(xhci);
2494 	return -ENOMEM;
2495 }
2496