1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/pci.h> 13 #include <linux/slab.h> 14 #include <linux/dmapool.h> 15 #include <linux/dma-mapping.h> 16 17 #include "xhci.h" 18 #include "xhci-trace.h" 19 #include "xhci-debugfs.h" 20 21 /* 22 * Allocates a generic ring segment from the ring pool, sets the dma address, 23 * initializes the segment to zero, and sets the private next pointer to NULL. 24 * 25 * Section 4.11.1.1: 26 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 27 */ 28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 29 unsigned int cycle_state, 30 unsigned int max_packet, 31 gfp_t flags) 32 { 33 struct xhci_segment *seg; 34 dma_addr_t dma; 35 int i; 36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 37 38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 39 if (!seg) 40 return NULL; 41 42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 43 if (!seg->trbs) { 44 kfree(seg); 45 return NULL; 46 } 47 48 if (max_packet) { 49 seg->bounce_buf = kzalloc_node(max_packet, flags, 50 dev_to_node(dev)); 51 if (!seg->bounce_buf) { 52 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 53 kfree(seg); 54 return NULL; 55 } 56 } 57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 58 if (cycle_state == 0) { 59 for (i = 0; i < TRBS_PER_SEGMENT; i++) 60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 61 } 62 seg->dma = dma; 63 seg->next = NULL; 64 65 return seg; 66 } 67 68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 69 { 70 if (seg->trbs) { 71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 72 seg->trbs = NULL; 73 } 74 kfree(seg->bounce_buf); 75 kfree(seg); 76 } 77 78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 79 struct xhci_segment *first) 80 { 81 struct xhci_segment *seg; 82 83 seg = first->next; 84 while (seg != first) { 85 struct xhci_segment *next = seg->next; 86 xhci_segment_free(xhci, seg); 87 seg = next; 88 } 89 xhci_segment_free(xhci, first); 90 } 91 92 /* 93 * Make the prev segment point to the next segment. 94 * 95 * Change the last TRB in the prev segment to be a Link TRB which points to the 96 * DMA address of the next segment. The caller needs to set any Link TRB 97 * related flags, such as End TRB, Toggle Cycle, and no snoop. 98 */ 99 static void xhci_link_segments(struct xhci_segment *prev, 100 struct xhci_segment *next, 101 enum xhci_ring_type type, bool chain_links) 102 { 103 u32 val; 104 105 if (!prev || !next) 106 return; 107 prev->next = next; 108 if (type != TYPE_EVENT) { 109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 110 cpu_to_le64(next->dma); 111 112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 114 val &= ~TRB_TYPE_BITMASK; 115 val |= TRB_TYPE(TRB_LINK); 116 if (chain_links) 117 val |= TRB_CHAIN; 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 119 } 120 } 121 122 /* 123 * Link the ring to the new segments. 124 * Set Toggle Cycle for the new ring if needed. 125 */ 126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 127 struct xhci_segment *first, struct xhci_segment *last, 128 unsigned int num_segs) 129 { 130 struct xhci_segment *next; 131 bool chain_links; 132 133 if (!ring || !first || !last) 134 return; 135 136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 137 chain_links = !!(xhci_link_trb_quirk(xhci) || 138 (ring->type == TYPE_ISOC && 139 (xhci->quirks & XHCI_AMD_0x96_HOST))); 140 141 next = ring->enq_seg->next; 142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 143 xhci_link_segments(last, next, ring->type, chain_links); 144 ring->num_segs += num_segs; 145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 146 147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 149 &= ~cpu_to_le32(LINK_TOGGLE); 150 last->trbs[TRBS_PER_SEGMENT-1].link.control 151 |= cpu_to_le32(LINK_TOGGLE); 152 ring->last_seg = last; 153 } 154 } 155 156 /* 157 * We need a radix tree for mapping physical addresses of TRBs to which stream 158 * ID they belong to. We need to do this because the host controller won't tell 159 * us which stream ring the TRB came from. We could store the stream ID in an 160 * event data TRB, but that doesn't help us for the cancellation case, since the 161 * endpoint may stop before it reaches that event data TRB. 162 * 163 * The radix tree maps the upper portion of the TRB DMA address to a ring 164 * segment that has the same upper portion of DMA addresses. For example, say I 165 * have segments of size 1KB, that are always 1KB aligned. A segment may 166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 168 * pass the radix tree a key to get the right stream ID: 169 * 170 * 0x10c90fff >> 10 = 0x43243 171 * 0x10c912c0 >> 10 = 0x43244 172 * 0x10c91400 >> 10 = 0x43245 173 * 174 * Obviously, only those TRBs with DMA addresses that are within the segment 175 * will make the radix tree return the stream ID for that ring. 176 * 177 * Caveats for the radix tree: 178 * 179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 184 * extended systems (where the DMA address can be bigger than 32-bits), 185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 186 */ 187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 188 struct xhci_ring *ring, 189 struct xhci_segment *seg, 190 gfp_t mem_flags) 191 { 192 unsigned long key; 193 int ret; 194 195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 196 /* Skip any segments that were already added. */ 197 if (radix_tree_lookup(trb_address_map, key)) 198 return 0; 199 200 ret = radix_tree_maybe_preload(mem_flags); 201 if (ret) 202 return ret; 203 ret = radix_tree_insert(trb_address_map, 204 key, ring); 205 radix_tree_preload_end(); 206 return ret; 207 } 208 209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 210 struct xhci_segment *seg) 211 { 212 unsigned long key; 213 214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 215 if (radix_tree_lookup(trb_address_map, key)) 216 radix_tree_delete(trb_address_map, key); 217 } 218 219 static int xhci_update_stream_segment_mapping( 220 struct radix_tree_root *trb_address_map, 221 struct xhci_ring *ring, 222 struct xhci_segment *first_seg, 223 struct xhci_segment *last_seg, 224 gfp_t mem_flags) 225 { 226 struct xhci_segment *seg; 227 struct xhci_segment *failed_seg; 228 int ret; 229 230 if (WARN_ON_ONCE(trb_address_map == NULL)) 231 return 0; 232 233 seg = first_seg; 234 do { 235 ret = xhci_insert_segment_mapping(trb_address_map, 236 ring, seg, mem_flags); 237 if (ret) 238 goto remove_streams; 239 if (seg == last_seg) 240 return 0; 241 seg = seg->next; 242 } while (seg != first_seg); 243 244 return 0; 245 246 remove_streams: 247 failed_seg = seg; 248 seg = first_seg; 249 do { 250 xhci_remove_segment_mapping(trb_address_map, seg); 251 if (seg == failed_seg) 252 return ret; 253 seg = seg->next; 254 } while (seg != first_seg); 255 256 return ret; 257 } 258 259 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 260 { 261 struct xhci_segment *seg; 262 263 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 264 return; 265 266 seg = ring->first_seg; 267 do { 268 xhci_remove_segment_mapping(ring->trb_address_map, seg); 269 seg = seg->next; 270 } while (seg != ring->first_seg); 271 } 272 273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 274 { 275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 276 ring->first_seg, ring->last_seg, mem_flags); 277 } 278 279 /* XXX: Do we need the hcd structure in all these functions? */ 280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 if (!ring) 283 return; 284 285 trace_xhci_ring_free(ring); 286 287 if (ring->first_seg) { 288 if (ring->type == TYPE_STREAM) 289 xhci_remove_stream_mapping(ring); 290 xhci_free_segments_for_ring(xhci, ring->first_seg); 291 } 292 293 kfree(ring); 294 } 295 296 void xhci_initialize_ring_info(struct xhci_ring *ring, 297 unsigned int cycle_state) 298 { 299 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 300 ring->enqueue = ring->first_seg->trbs; 301 ring->enq_seg = ring->first_seg; 302 ring->dequeue = ring->enqueue; 303 ring->deq_seg = ring->first_seg; 304 /* The ring is initialized to 0. The producer must write 1 to the cycle 305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 306 * compare CCS to the cycle bit to check ownership, so CCS = 1. 307 * 308 * New rings are initialized with cycle state equal to 1; if we are 309 * handling ring expansion, set the cycle state equal to the old ring. 310 */ 311 ring->cycle_state = cycle_state; 312 313 /* 314 * Each segment has a link TRB, and leave an extra TRB for SW 315 * accounting purpose 316 */ 317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 318 } 319 320 /* Allocate segments and link them for a ring */ 321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 322 struct xhci_segment **first, struct xhci_segment **last, 323 unsigned int num_segs, unsigned int cycle_state, 324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 325 { 326 struct xhci_segment *prev; 327 bool chain_links; 328 329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 330 chain_links = !!(xhci_link_trb_quirk(xhci) || 331 (type == TYPE_ISOC && 332 (xhci->quirks & XHCI_AMD_0x96_HOST))); 333 334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 335 if (!prev) 336 return -ENOMEM; 337 num_segs--; 338 339 *first = prev; 340 while (num_segs > 0) { 341 struct xhci_segment *next; 342 343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 344 if (!next) { 345 prev = *first; 346 while (prev) { 347 next = prev->next; 348 xhci_segment_free(xhci, prev); 349 prev = next; 350 } 351 return -ENOMEM; 352 } 353 xhci_link_segments(prev, next, type, chain_links); 354 355 prev = next; 356 num_segs--; 357 } 358 xhci_link_segments(prev, *first, type, chain_links); 359 *last = prev; 360 361 return 0; 362 } 363 364 /* 365 * Create a new ring with zero or more segments. 366 * 367 * Link each segment together into a ring. 368 * Set the end flag and the cycle toggle bit on the last segment. 369 * See section 4.9.1 and figures 15 and 16. 370 */ 371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 372 unsigned int num_segs, unsigned int cycle_state, 373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 374 { 375 struct xhci_ring *ring; 376 int ret; 377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 378 379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 380 if (!ring) 381 return NULL; 382 383 ring->num_segs = num_segs; 384 ring->bounce_buf_len = max_packet; 385 INIT_LIST_HEAD(&ring->td_list); 386 ring->type = type; 387 if (num_segs == 0) 388 return ring; 389 390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 391 &ring->last_seg, num_segs, cycle_state, type, 392 max_packet, flags); 393 if (ret) 394 goto fail; 395 396 /* Only event ring does not use link TRB */ 397 if (type != TYPE_EVENT) { 398 /* See section 4.9.2.1 and 6.4.4.1 */ 399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 400 cpu_to_le32(LINK_TOGGLE); 401 } 402 xhci_initialize_ring_info(ring, cycle_state); 403 trace_xhci_ring_alloc(ring); 404 return ring; 405 406 fail: 407 kfree(ring); 408 return NULL; 409 } 410 411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 412 struct xhci_virt_device *virt_dev, 413 unsigned int ep_index) 414 { 415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 416 virt_dev->eps[ep_index].ring = NULL; 417 } 418 419 /* 420 * Expand an existing ring. 421 * Allocate a new ring which has same segment numbers and link the two rings. 422 */ 423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 424 unsigned int num_trbs, gfp_t flags) 425 { 426 struct xhci_segment *first; 427 struct xhci_segment *last; 428 unsigned int num_segs; 429 unsigned int num_segs_needed; 430 int ret; 431 432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 433 (TRBS_PER_SEGMENT - 1); 434 435 /* Allocate number of segments we needed, or double the ring size */ 436 num_segs = ring->num_segs > num_segs_needed ? 437 ring->num_segs : num_segs_needed; 438 439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 440 num_segs, ring->cycle_state, ring->type, 441 ring->bounce_buf_len, flags); 442 if (ret) 443 return -ENOMEM; 444 445 if (ring->type == TYPE_STREAM) 446 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 447 ring, first, last, flags); 448 if (ret) { 449 struct xhci_segment *next; 450 do { 451 next = first->next; 452 xhci_segment_free(xhci, first); 453 if (first == last) 454 break; 455 first = next; 456 } while (true); 457 return ret; 458 } 459 460 xhci_link_rings(xhci, ring, first, last, num_segs); 461 trace_xhci_ring_expansion(ring); 462 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 463 "ring expansion succeed, now has %d segments", 464 ring->num_segs); 465 466 return 0; 467 } 468 469 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 470 int type, gfp_t flags) 471 { 472 struct xhci_container_ctx *ctx; 473 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 474 475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 476 return NULL; 477 478 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 479 if (!ctx) 480 return NULL; 481 482 ctx->type = type; 483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 484 if (type == XHCI_CTX_TYPE_INPUT) 485 ctx->size += CTX_SIZE(xhci->hcc_params); 486 487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 488 if (!ctx->bytes) { 489 kfree(ctx); 490 return NULL; 491 } 492 return ctx; 493 } 494 495 void xhci_free_container_ctx(struct xhci_hcd *xhci, 496 struct xhci_container_ctx *ctx) 497 { 498 if (!ctx) 499 return; 500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 501 kfree(ctx); 502 } 503 504 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 505 struct xhci_container_ctx *ctx) 506 { 507 if (ctx->type != XHCI_CTX_TYPE_INPUT) 508 return NULL; 509 510 return (struct xhci_input_control_ctx *)ctx->bytes; 511 } 512 513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 514 struct xhci_container_ctx *ctx) 515 { 516 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 517 return (struct xhci_slot_ctx *)ctx->bytes; 518 519 return (struct xhci_slot_ctx *) 520 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 521 } 522 523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 524 struct xhci_container_ctx *ctx, 525 unsigned int ep_index) 526 { 527 /* increment ep index by offset of start of ep ctx array */ 528 ep_index++; 529 if (ctx->type == XHCI_CTX_TYPE_INPUT) 530 ep_index++; 531 532 return (struct xhci_ep_ctx *) 533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 534 } 535 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 536 537 /***************** Streams structures manipulation *************************/ 538 539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 540 unsigned int num_stream_ctxs, 541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 542 { 543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 545 546 if (size > MEDIUM_STREAM_ARRAY_SIZE) 547 dma_free_coherent(dev, size, 548 stream_ctx, dma); 549 else if (size <= SMALL_STREAM_ARRAY_SIZE) 550 return dma_pool_free(xhci->small_streams_pool, 551 stream_ctx, dma); 552 else 553 return dma_pool_free(xhci->medium_streams_pool, 554 stream_ctx, dma); 555 } 556 557 /* 558 * The stream context array for each endpoint with bulk streams enabled can 559 * vary in size, based on: 560 * - how many streams the endpoint supports, 561 * - the maximum primary stream array size the host controller supports, 562 * - and how many streams the device driver asks for. 563 * 564 * The stream context array must be a power of 2, and can be as small as 565 * 64 bytes or as large as 1MB. 566 */ 567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 568 unsigned int num_stream_ctxs, dma_addr_t *dma, 569 gfp_t mem_flags) 570 { 571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 573 574 if (size > MEDIUM_STREAM_ARRAY_SIZE) 575 return dma_alloc_coherent(dev, size, 576 dma, mem_flags); 577 else if (size <= SMALL_STREAM_ARRAY_SIZE) 578 return dma_pool_alloc(xhci->small_streams_pool, 579 mem_flags, dma); 580 else 581 return dma_pool_alloc(xhci->medium_streams_pool, 582 mem_flags, dma); 583 } 584 585 struct xhci_ring *xhci_dma_to_transfer_ring( 586 struct xhci_virt_ep *ep, 587 u64 address) 588 { 589 if (ep->ep_state & EP_HAS_STREAMS) 590 return radix_tree_lookup(&ep->stream_info->trb_address_map, 591 address >> TRB_SEGMENT_SHIFT); 592 return ep->ring; 593 } 594 595 /* 596 * Change an endpoint's internal structure so it supports stream IDs. The 597 * number of requested streams includes stream 0, which cannot be used by device 598 * drivers. 599 * 600 * The number of stream contexts in the stream context array may be bigger than 601 * the number of streams the driver wants to use. This is because the number of 602 * stream context array entries must be a power of two. 603 */ 604 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 605 unsigned int num_stream_ctxs, 606 unsigned int num_streams, 607 unsigned int max_packet, gfp_t mem_flags) 608 { 609 struct xhci_stream_info *stream_info; 610 u32 cur_stream; 611 struct xhci_ring *cur_ring; 612 u64 addr; 613 int ret; 614 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 615 616 xhci_dbg(xhci, "Allocating %u streams and %u " 617 "stream context array entries.\n", 618 num_streams, num_stream_ctxs); 619 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 620 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 621 return NULL; 622 } 623 xhci->cmd_ring_reserved_trbs++; 624 625 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 626 dev_to_node(dev)); 627 if (!stream_info) 628 goto cleanup_trbs; 629 630 stream_info->num_streams = num_streams; 631 stream_info->num_stream_ctxs = num_stream_ctxs; 632 633 /* Initialize the array of virtual pointers to stream rings. */ 634 stream_info->stream_rings = kcalloc_node( 635 num_streams, sizeof(struct xhci_ring *), mem_flags, 636 dev_to_node(dev)); 637 if (!stream_info->stream_rings) 638 goto cleanup_info; 639 640 /* Initialize the array of DMA addresses for stream rings for the HW. */ 641 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 642 num_stream_ctxs, &stream_info->ctx_array_dma, 643 mem_flags); 644 if (!stream_info->stream_ctx_array) 645 goto cleanup_ctx; 646 memset(stream_info->stream_ctx_array, 0, 647 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 648 649 /* Allocate everything needed to free the stream rings later */ 650 stream_info->free_streams_command = 651 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 652 if (!stream_info->free_streams_command) 653 goto cleanup_ctx; 654 655 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 656 657 /* Allocate rings for all the streams that the driver will use, 658 * and add their segment DMA addresses to the radix tree. 659 * Stream 0 is reserved. 660 */ 661 662 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 663 stream_info->stream_rings[cur_stream] = 664 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 665 mem_flags); 666 cur_ring = stream_info->stream_rings[cur_stream]; 667 if (!cur_ring) 668 goto cleanup_rings; 669 cur_ring->stream_id = cur_stream; 670 cur_ring->trb_address_map = &stream_info->trb_address_map; 671 /* Set deq ptr, cycle bit, and stream context type */ 672 addr = cur_ring->first_seg->dma | 673 SCT_FOR_CTX(SCT_PRI_TR) | 674 cur_ring->cycle_state; 675 stream_info->stream_ctx_array[cur_stream].stream_ring = 676 cpu_to_le64(addr); 677 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 678 cur_stream, (unsigned long long) addr); 679 680 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 681 if (ret) { 682 xhci_ring_free(xhci, cur_ring); 683 stream_info->stream_rings[cur_stream] = NULL; 684 goto cleanup_rings; 685 } 686 } 687 /* Leave the other unused stream ring pointers in the stream context 688 * array initialized to zero. This will cause the xHC to give us an 689 * error if the device asks for a stream ID we don't have setup (if it 690 * was any other way, the host controller would assume the ring is 691 * "empty" and wait forever for data to be queued to that stream ID). 692 */ 693 694 return stream_info; 695 696 cleanup_rings: 697 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 698 cur_ring = stream_info->stream_rings[cur_stream]; 699 if (cur_ring) { 700 xhci_ring_free(xhci, cur_ring); 701 stream_info->stream_rings[cur_stream] = NULL; 702 } 703 } 704 xhci_free_command(xhci, stream_info->free_streams_command); 705 cleanup_ctx: 706 kfree(stream_info->stream_rings); 707 cleanup_info: 708 kfree(stream_info); 709 cleanup_trbs: 710 xhci->cmd_ring_reserved_trbs--; 711 return NULL; 712 } 713 /* 714 * Sets the MaxPStreams field and the Linear Stream Array field. 715 * Sets the dequeue pointer to the stream context array. 716 */ 717 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 718 struct xhci_ep_ctx *ep_ctx, 719 struct xhci_stream_info *stream_info) 720 { 721 u32 max_primary_streams; 722 /* MaxPStreams is the number of stream context array entries, not the 723 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 724 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 725 */ 726 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 727 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 728 "Setting number of stream ctx array entries to %u", 729 1 << (max_primary_streams + 1)); 730 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 731 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 732 | EP_HAS_LSA); 733 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 734 } 735 736 /* 737 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 738 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 739 * not at the beginning of the ring). 740 */ 741 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 742 struct xhci_virt_ep *ep) 743 { 744 dma_addr_t addr; 745 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 746 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 747 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 748 } 749 750 /* Frees all stream contexts associated with the endpoint, 751 * 752 * Caller should fix the endpoint context streams fields. 753 */ 754 void xhci_free_stream_info(struct xhci_hcd *xhci, 755 struct xhci_stream_info *stream_info) 756 { 757 int cur_stream; 758 struct xhci_ring *cur_ring; 759 760 if (!stream_info) 761 return; 762 763 for (cur_stream = 1; cur_stream < stream_info->num_streams; 764 cur_stream++) { 765 cur_ring = stream_info->stream_rings[cur_stream]; 766 if (cur_ring) { 767 xhci_ring_free(xhci, cur_ring); 768 stream_info->stream_rings[cur_stream] = NULL; 769 } 770 } 771 xhci_free_command(xhci, stream_info->free_streams_command); 772 xhci->cmd_ring_reserved_trbs--; 773 if (stream_info->stream_ctx_array) 774 xhci_free_stream_ctx(xhci, 775 stream_info->num_stream_ctxs, 776 stream_info->stream_ctx_array, 777 stream_info->ctx_array_dma); 778 779 kfree(stream_info->stream_rings); 780 kfree(stream_info); 781 } 782 783 784 /***************** Device context manipulation *************************/ 785 786 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 787 struct xhci_virt_ep *ep) 788 { 789 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 790 0); 791 ep->xhci = xhci; 792 } 793 794 static void xhci_free_tt_info(struct xhci_hcd *xhci, 795 struct xhci_virt_device *virt_dev, 796 int slot_id) 797 { 798 struct list_head *tt_list_head; 799 struct xhci_tt_bw_info *tt_info, *next; 800 bool slot_found = false; 801 802 /* If the device never made it past the Set Address stage, 803 * it may not have the real_port set correctly. 804 */ 805 if (virt_dev->real_port == 0 || 806 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 807 xhci_dbg(xhci, "Bad real port.\n"); 808 return; 809 } 810 811 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 812 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 813 /* Multi-TT hubs will have more than one entry */ 814 if (tt_info->slot_id == slot_id) { 815 slot_found = true; 816 list_del(&tt_info->tt_list); 817 kfree(tt_info); 818 } else if (slot_found) { 819 break; 820 } 821 } 822 } 823 824 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 825 struct xhci_virt_device *virt_dev, 826 struct usb_device *hdev, 827 struct usb_tt *tt, gfp_t mem_flags) 828 { 829 struct xhci_tt_bw_info *tt_info; 830 unsigned int num_ports; 831 int i, j; 832 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 833 834 if (!tt->multi) 835 num_ports = 1; 836 else 837 num_ports = hdev->maxchild; 838 839 for (i = 0; i < num_ports; i++, tt_info++) { 840 struct xhci_interval_bw_table *bw_table; 841 842 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 843 dev_to_node(dev)); 844 if (!tt_info) 845 goto free_tts; 846 INIT_LIST_HEAD(&tt_info->tt_list); 847 list_add(&tt_info->tt_list, 848 &xhci->rh_bw[virt_dev->real_port - 1].tts); 849 tt_info->slot_id = virt_dev->udev->slot_id; 850 if (tt->multi) 851 tt_info->ttport = i+1; 852 bw_table = &tt_info->bw_table; 853 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 854 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 855 } 856 return 0; 857 858 free_tts: 859 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 860 return -ENOMEM; 861 } 862 863 864 /* All the xhci_tds in the ring's TD list should be freed at this point. 865 * Should be called with xhci->lock held if there is any chance the TT lists 866 * will be manipulated by the configure endpoint, allocate device, or update 867 * hub functions while this function is removing the TT entries from the list. 868 */ 869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 870 { 871 struct xhci_virt_device *dev; 872 int i; 873 int old_active_eps = 0; 874 875 /* Slot ID 0 is reserved */ 876 if (slot_id == 0 || !xhci->devs[slot_id]) 877 return; 878 879 dev = xhci->devs[slot_id]; 880 881 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 882 if (!dev) 883 return; 884 885 trace_xhci_free_virt_device(dev); 886 887 if (dev->tt_info) 888 old_active_eps = dev->tt_info->active_eps; 889 890 for (i = 0; i < 31; i++) { 891 if (dev->eps[i].ring) 892 xhci_ring_free(xhci, dev->eps[i].ring); 893 if (dev->eps[i].stream_info) 894 xhci_free_stream_info(xhci, 895 dev->eps[i].stream_info); 896 /* Endpoints on the TT/root port lists should have been removed 897 * when usb_disable_device() was called for the device. 898 * We can't drop them anyway, because the udev might have gone 899 * away by this point, and we can't tell what speed it was. 900 */ 901 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 902 xhci_warn(xhci, "Slot %u endpoint %u " 903 "not removed from BW list!\n", 904 slot_id, i); 905 } 906 /* If this is a hub, free the TT(s) from the TT list */ 907 xhci_free_tt_info(xhci, dev, slot_id); 908 /* If necessary, update the number of active TTs on this root port */ 909 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 910 911 if (dev->in_ctx) 912 xhci_free_container_ctx(xhci, dev->in_ctx); 913 if (dev->out_ctx) 914 xhci_free_container_ctx(xhci, dev->out_ctx); 915 916 if (dev->udev && dev->udev->slot_id) 917 dev->udev->slot_id = 0; 918 kfree(xhci->devs[slot_id]); 919 xhci->devs[slot_id] = NULL; 920 } 921 922 /* 923 * Free a virt_device structure. 924 * If the virt_device added a tt_info (a hub) and has children pointing to 925 * that tt_info, then free the child first. Recursive. 926 * We can't rely on udev at this point to find child-parent relationships. 927 */ 928 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 929 { 930 struct xhci_virt_device *vdev; 931 struct list_head *tt_list_head; 932 struct xhci_tt_bw_info *tt_info, *next; 933 int i; 934 935 vdev = xhci->devs[slot_id]; 936 if (!vdev) 937 return; 938 939 if (vdev->real_port == 0 || 940 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 941 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 942 goto out; 943 } 944 945 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 946 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 947 /* is this a hub device that added a tt_info to the tts list */ 948 if (tt_info->slot_id == slot_id) { 949 /* are any devices using this tt_info? */ 950 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 951 vdev = xhci->devs[i]; 952 if (vdev && (vdev->tt_info == tt_info)) 953 xhci_free_virt_devices_depth_first( 954 xhci, i); 955 } 956 } 957 } 958 out: 959 /* we are now at a leaf device */ 960 xhci_debugfs_remove_slot(xhci, slot_id); 961 xhci_free_virt_device(xhci, slot_id); 962 } 963 964 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 965 struct usb_device *udev, gfp_t flags) 966 { 967 struct xhci_virt_device *dev; 968 int i; 969 970 /* Slot ID 0 is reserved */ 971 if (slot_id == 0 || xhci->devs[slot_id]) { 972 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 973 return 0; 974 } 975 976 dev = kzalloc(sizeof(*dev), flags); 977 if (!dev) 978 return 0; 979 980 dev->slot_id = slot_id; 981 982 /* Allocate the (output) device context that will be used in the HC. */ 983 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 984 if (!dev->out_ctx) 985 goto fail; 986 987 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 988 (unsigned long long)dev->out_ctx->dma); 989 990 /* Allocate the (input) device context for address device command */ 991 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 992 if (!dev->in_ctx) 993 goto fail; 994 995 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 996 (unsigned long long)dev->in_ctx->dma); 997 998 /* Initialize the cancellation list and watchdog timers for each ep */ 999 for (i = 0; i < 31; i++) { 1000 dev->eps[i].ep_index = i; 1001 dev->eps[i].vdev = dev; 1002 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1003 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1004 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1005 } 1006 1007 /* Allocate endpoint 0 ring */ 1008 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1009 if (!dev->eps[0].ring) 1010 goto fail; 1011 1012 dev->udev = udev; 1013 1014 /* Point to output device context in dcbaa. */ 1015 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1016 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1017 slot_id, 1018 &xhci->dcbaa->dev_context_ptrs[slot_id], 1019 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1020 1021 trace_xhci_alloc_virt_device(dev); 1022 1023 xhci->devs[slot_id] = dev; 1024 1025 return 1; 1026 fail: 1027 1028 if (dev->in_ctx) 1029 xhci_free_container_ctx(xhci, dev->in_ctx); 1030 if (dev->out_ctx) 1031 xhci_free_container_ctx(xhci, dev->out_ctx); 1032 kfree(dev); 1033 1034 return 0; 1035 } 1036 1037 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1038 struct usb_device *udev) 1039 { 1040 struct xhci_virt_device *virt_dev; 1041 struct xhci_ep_ctx *ep0_ctx; 1042 struct xhci_ring *ep_ring; 1043 1044 virt_dev = xhci->devs[udev->slot_id]; 1045 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1046 ep_ring = virt_dev->eps[0].ring; 1047 /* 1048 * FIXME we don't keep track of the dequeue pointer very well after a 1049 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1050 * host to our enqueue pointer. This should only be called after a 1051 * configured device has reset, so all control transfers should have 1052 * been completed or cancelled before the reset. 1053 */ 1054 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1055 ep_ring->enqueue) 1056 | ep_ring->cycle_state); 1057 } 1058 1059 /* 1060 * The xHCI roothub may have ports of differing speeds in any order in the port 1061 * status registers. 1062 * 1063 * The xHCI hardware wants to know the roothub port number that the USB device 1064 * is attached to (or the roothub port its ancestor hub is attached to). All we 1065 * know is the index of that port under either the USB 2.0 or the USB 3.0 1066 * roothub, but that doesn't give us the real index into the HW port status 1067 * registers. Call xhci_find_raw_port_number() to get real index. 1068 */ 1069 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1070 struct usb_device *udev) 1071 { 1072 struct usb_device *top_dev; 1073 struct usb_hcd *hcd; 1074 1075 if (udev->speed >= USB_SPEED_SUPER) 1076 hcd = xhci->shared_hcd; 1077 else 1078 hcd = xhci->main_hcd; 1079 1080 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1081 top_dev = top_dev->parent) 1082 /* Found device below root hub */; 1083 1084 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1085 } 1086 1087 /* Setup an xHCI virtual device for a Set Address command */ 1088 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1089 { 1090 struct xhci_virt_device *dev; 1091 struct xhci_ep_ctx *ep0_ctx; 1092 struct xhci_slot_ctx *slot_ctx; 1093 u32 port_num; 1094 u32 max_packets; 1095 struct usb_device *top_dev; 1096 1097 dev = xhci->devs[udev->slot_id]; 1098 /* Slot ID 0 is reserved */ 1099 if (udev->slot_id == 0 || !dev) { 1100 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1101 udev->slot_id); 1102 return -EINVAL; 1103 } 1104 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1105 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1106 1107 /* 3) Only the control endpoint is valid - one endpoint context */ 1108 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1109 switch (udev->speed) { 1110 case USB_SPEED_SUPER_PLUS: 1111 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1112 max_packets = MAX_PACKET(512); 1113 break; 1114 case USB_SPEED_SUPER: 1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1116 max_packets = MAX_PACKET(512); 1117 break; 1118 case USB_SPEED_HIGH: 1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1120 max_packets = MAX_PACKET(64); 1121 break; 1122 /* USB core guesses at a 64-byte max packet first for FS devices */ 1123 case USB_SPEED_FULL: 1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1125 max_packets = MAX_PACKET(64); 1126 break; 1127 case USB_SPEED_LOW: 1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1129 max_packets = MAX_PACKET(8); 1130 break; 1131 case USB_SPEED_WIRELESS: 1132 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1133 return -EINVAL; 1134 default: 1135 /* Speed was set earlier, this shouldn't happen. */ 1136 return -EINVAL; 1137 } 1138 /* Find the root hub port this device is under */ 1139 port_num = xhci_find_real_port_number(xhci, udev); 1140 if (!port_num) 1141 return -EINVAL; 1142 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1143 /* Set the port number in the virtual_device to the faked port number */ 1144 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1145 top_dev = top_dev->parent) 1146 /* Found device below root hub */; 1147 dev->fake_port = top_dev->portnum; 1148 dev->real_port = port_num; 1149 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1150 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1151 1152 /* Find the right bandwidth table that this device will be a part of. 1153 * If this is a full speed device attached directly to a root port (or a 1154 * decendent of one), it counts as a primary bandwidth domain, not a 1155 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1156 * will never be created for the HS root hub. 1157 */ 1158 if (!udev->tt || !udev->tt->hub->parent) { 1159 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1160 } else { 1161 struct xhci_root_port_bw_info *rh_bw; 1162 struct xhci_tt_bw_info *tt_bw; 1163 1164 rh_bw = &xhci->rh_bw[port_num - 1]; 1165 /* Find the right TT. */ 1166 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1167 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1168 continue; 1169 1170 if (!dev->udev->tt->multi || 1171 (udev->tt->multi && 1172 tt_bw->ttport == dev->udev->ttport)) { 1173 dev->bw_table = &tt_bw->bw_table; 1174 dev->tt_info = tt_bw; 1175 break; 1176 } 1177 } 1178 if (!dev->tt_info) 1179 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1180 } 1181 1182 /* Is this a LS/FS device under an external HS hub? */ 1183 if (udev->tt && udev->tt->hub->parent) { 1184 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1185 (udev->ttport << 8)); 1186 if (udev->tt->multi) 1187 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1188 } 1189 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1190 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1191 1192 /* Step 4 - ring already allocated */ 1193 /* Step 5 */ 1194 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1195 1196 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1197 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1198 max_packets); 1199 1200 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1201 dev->eps[0].ring->cycle_state); 1202 1203 trace_xhci_setup_addressable_virt_device(dev); 1204 1205 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1206 1207 return 0; 1208 } 1209 1210 /* 1211 * Convert interval expressed as 2^(bInterval - 1) == interval into 1212 * straight exponent value 2^n == interval. 1213 * 1214 */ 1215 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1216 struct usb_host_endpoint *ep) 1217 { 1218 unsigned int interval; 1219 1220 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1221 if (interval != ep->desc.bInterval - 1) 1222 dev_warn(&udev->dev, 1223 "ep %#x - rounding interval to %d %sframes\n", 1224 ep->desc.bEndpointAddress, 1225 1 << interval, 1226 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1227 1228 if (udev->speed == USB_SPEED_FULL) { 1229 /* 1230 * Full speed isoc endpoints specify interval in frames, 1231 * not microframes. We are using microframes everywhere, 1232 * so adjust accordingly. 1233 */ 1234 interval += 3; /* 1 frame = 2^3 uframes */ 1235 } 1236 1237 return interval; 1238 } 1239 1240 /* 1241 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1242 * microframes, rounded down to nearest power of 2. 1243 */ 1244 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1245 struct usb_host_endpoint *ep, unsigned int desc_interval, 1246 unsigned int min_exponent, unsigned int max_exponent) 1247 { 1248 unsigned int interval; 1249 1250 interval = fls(desc_interval) - 1; 1251 interval = clamp_val(interval, min_exponent, max_exponent); 1252 if ((1 << interval) != desc_interval) 1253 dev_dbg(&udev->dev, 1254 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1255 ep->desc.bEndpointAddress, 1256 1 << interval, 1257 desc_interval); 1258 1259 return interval; 1260 } 1261 1262 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1263 struct usb_host_endpoint *ep) 1264 { 1265 if (ep->desc.bInterval == 0) 1266 return 0; 1267 return xhci_microframes_to_exponent(udev, ep, 1268 ep->desc.bInterval, 0, 15); 1269 } 1270 1271 1272 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1273 struct usb_host_endpoint *ep) 1274 { 1275 return xhci_microframes_to_exponent(udev, ep, 1276 ep->desc.bInterval * 8, 3, 10); 1277 } 1278 1279 /* Return the polling or NAK interval. 1280 * 1281 * The polling interval is expressed in "microframes". If xHCI's Interval field 1282 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1283 * 1284 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1285 * is set to 0. 1286 */ 1287 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1288 struct usb_host_endpoint *ep) 1289 { 1290 unsigned int interval = 0; 1291 1292 switch (udev->speed) { 1293 case USB_SPEED_HIGH: 1294 /* Max NAK rate */ 1295 if (usb_endpoint_xfer_control(&ep->desc) || 1296 usb_endpoint_xfer_bulk(&ep->desc)) { 1297 interval = xhci_parse_microframe_interval(udev, ep); 1298 break; 1299 } 1300 fallthrough; /* SS and HS isoc/int have same decoding */ 1301 1302 case USB_SPEED_SUPER_PLUS: 1303 case USB_SPEED_SUPER: 1304 if (usb_endpoint_xfer_int(&ep->desc) || 1305 usb_endpoint_xfer_isoc(&ep->desc)) { 1306 interval = xhci_parse_exponent_interval(udev, ep); 1307 } 1308 break; 1309 1310 case USB_SPEED_FULL: 1311 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1312 interval = xhci_parse_exponent_interval(udev, ep); 1313 break; 1314 } 1315 /* 1316 * Fall through for interrupt endpoint interval decoding 1317 * since it uses the same rules as low speed interrupt 1318 * endpoints. 1319 */ 1320 fallthrough; 1321 1322 case USB_SPEED_LOW: 1323 if (usb_endpoint_xfer_int(&ep->desc) || 1324 usb_endpoint_xfer_isoc(&ep->desc)) { 1325 1326 interval = xhci_parse_frame_interval(udev, ep); 1327 } 1328 break; 1329 1330 default: 1331 BUG(); 1332 } 1333 return interval; 1334 } 1335 1336 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1337 * High speed endpoint descriptors can define "the number of additional 1338 * transaction opportunities per microframe", but that goes in the Max Burst 1339 * endpoint context field. 1340 */ 1341 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1342 struct usb_host_endpoint *ep) 1343 { 1344 if (udev->speed < USB_SPEED_SUPER || 1345 !usb_endpoint_xfer_isoc(&ep->desc)) 1346 return 0; 1347 return ep->ss_ep_comp.bmAttributes; 1348 } 1349 1350 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1351 struct usb_host_endpoint *ep) 1352 { 1353 /* Super speed and Plus have max burst in ep companion desc */ 1354 if (udev->speed >= USB_SPEED_SUPER) 1355 return ep->ss_ep_comp.bMaxBurst; 1356 1357 if (udev->speed == USB_SPEED_HIGH && 1358 (usb_endpoint_xfer_isoc(&ep->desc) || 1359 usb_endpoint_xfer_int(&ep->desc))) 1360 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1361 1362 return 0; 1363 } 1364 1365 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1366 { 1367 int in; 1368 1369 in = usb_endpoint_dir_in(&ep->desc); 1370 1371 switch (usb_endpoint_type(&ep->desc)) { 1372 case USB_ENDPOINT_XFER_CONTROL: 1373 return CTRL_EP; 1374 case USB_ENDPOINT_XFER_BULK: 1375 return in ? BULK_IN_EP : BULK_OUT_EP; 1376 case USB_ENDPOINT_XFER_ISOC: 1377 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1378 case USB_ENDPOINT_XFER_INT: 1379 return in ? INT_IN_EP : INT_OUT_EP; 1380 } 1381 return 0; 1382 } 1383 1384 /* Return the maximum endpoint service interval time (ESIT) payload. 1385 * Basically, this is the maxpacket size, multiplied by the burst size 1386 * and mult size. 1387 */ 1388 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1389 struct usb_host_endpoint *ep) 1390 { 1391 int max_burst; 1392 int max_packet; 1393 1394 /* Only applies for interrupt or isochronous endpoints */ 1395 if (usb_endpoint_xfer_control(&ep->desc) || 1396 usb_endpoint_xfer_bulk(&ep->desc)) 1397 return 0; 1398 1399 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1400 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1401 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1402 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1403 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1404 else if (udev->speed >= USB_SPEED_SUPER) 1405 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1406 1407 max_packet = usb_endpoint_maxp(&ep->desc); 1408 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1409 /* A 0 in max burst means 1 transfer per ESIT */ 1410 return max_packet * max_burst; 1411 } 1412 1413 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1414 * Drivers will have to call usb_alloc_streams() to do that. 1415 */ 1416 int xhci_endpoint_init(struct xhci_hcd *xhci, 1417 struct xhci_virt_device *virt_dev, 1418 struct usb_device *udev, 1419 struct usb_host_endpoint *ep, 1420 gfp_t mem_flags) 1421 { 1422 unsigned int ep_index; 1423 struct xhci_ep_ctx *ep_ctx; 1424 struct xhci_ring *ep_ring; 1425 unsigned int max_packet; 1426 enum xhci_ring_type ring_type; 1427 u32 max_esit_payload; 1428 u32 endpoint_type; 1429 unsigned int max_burst; 1430 unsigned int interval; 1431 unsigned int mult; 1432 unsigned int avg_trb_len; 1433 unsigned int err_count = 0; 1434 1435 ep_index = xhci_get_endpoint_index(&ep->desc); 1436 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1437 1438 endpoint_type = xhci_get_endpoint_type(ep); 1439 if (!endpoint_type) 1440 return -EINVAL; 1441 1442 ring_type = usb_endpoint_type(&ep->desc); 1443 1444 /* 1445 * Get values to fill the endpoint context, mostly from ep descriptor. 1446 * The average TRB buffer lengt for bulk endpoints is unclear as we 1447 * have no clue on scatter gather list entry size. For Isoc and Int, 1448 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1449 */ 1450 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1451 interval = xhci_get_endpoint_interval(udev, ep); 1452 1453 /* Periodic endpoint bInterval limit quirk */ 1454 if (usb_endpoint_xfer_int(&ep->desc) || 1455 usb_endpoint_xfer_isoc(&ep->desc)) { 1456 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1457 udev->speed >= USB_SPEED_HIGH && 1458 interval >= 7) { 1459 interval = 6; 1460 } 1461 } 1462 1463 mult = xhci_get_endpoint_mult(udev, ep); 1464 max_packet = usb_endpoint_maxp(&ep->desc); 1465 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1466 avg_trb_len = max_esit_payload; 1467 1468 /* FIXME dig Mult and streams info out of ep companion desc */ 1469 1470 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1471 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1472 err_count = 3; 1473 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1474 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1475 if (udev->speed == USB_SPEED_HIGH) 1476 max_packet = 512; 1477 if (udev->speed == USB_SPEED_FULL) { 1478 max_packet = rounddown_pow_of_two(max_packet); 1479 max_packet = clamp_val(max_packet, 8, 64); 1480 } 1481 } 1482 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1483 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1484 avg_trb_len = 8; 1485 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1486 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1487 mult = 0; 1488 1489 /* Set up the endpoint ring */ 1490 virt_dev->eps[ep_index].new_ring = 1491 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1492 if (!virt_dev->eps[ep_index].new_ring) 1493 return -ENOMEM; 1494 1495 virt_dev->eps[ep_index].skip = false; 1496 ep_ring = virt_dev->eps[ep_index].new_ring; 1497 1498 /* Fill the endpoint context */ 1499 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1500 EP_INTERVAL(interval) | 1501 EP_MULT(mult)); 1502 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1503 MAX_PACKET(max_packet) | 1504 MAX_BURST(max_burst) | 1505 ERROR_COUNT(err_count)); 1506 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1507 ep_ring->cycle_state); 1508 1509 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1510 EP_AVG_TRB_LENGTH(avg_trb_len)); 1511 1512 return 0; 1513 } 1514 1515 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1516 struct xhci_virt_device *virt_dev, 1517 struct usb_host_endpoint *ep) 1518 { 1519 unsigned int ep_index; 1520 struct xhci_ep_ctx *ep_ctx; 1521 1522 ep_index = xhci_get_endpoint_index(&ep->desc); 1523 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1524 1525 ep_ctx->ep_info = 0; 1526 ep_ctx->ep_info2 = 0; 1527 ep_ctx->deq = 0; 1528 ep_ctx->tx_info = 0; 1529 /* Don't free the endpoint ring until the set interface or configuration 1530 * request succeeds. 1531 */ 1532 } 1533 1534 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1535 { 1536 bw_info->ep_interval = 0; 1537 bw_info->mult = 0; 1538 bw_info->num_packets = 0; 1539 bw_info->max_packet_size = 0; 1540 bw_info->type = 0; 1541 bw_info->max_esit_payload = 0; 1542 } 1543 1544 void xhci_update_bw_info(struct xhci_hcd *xhci, 1545 struct xhci_container_ctx *in_ctx, 1546 struct xhci_input_control_ctx *ctrl_ctx, 1547 struct xhci_virt_device *virt_dev) 1548 { 1549 struct xhci_bw_info *bw_info; 1550 struct xhci_ep_ctx *ep_ctx; 1551 unsigned int ep_type; 1552 int i; 1553 1554 for (i = 1; i < 31; i++) { 1555 bw_info = &virt_dev->eps[i].bw_info; 1556 1557 /* We can't tell what endpoint type is being dropped, but 1558 * unconditionally clearing the bandwidth info for non-periodic 1559 * endpoints should be harmless because the info will never be 1560 * set in the first place. 1561 */ 1562 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1563 /* Dropped endpoint */ 1564 xhci_clear_endpoint_bw_info(bw_info); 1565 continue; 1566 } 1567 1568 if (EP_IS_ADDED(ctrl_ctx, i)) { 1569 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1570 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1571 1572 /* Ignore non-periodic endpoints */ 1573 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1574 ep_type != ISOC_IN_EP && 1575 ep_type != INT_IN_EP) 1576 continue; 1577 1578 /* Added or changed endpoint */ 1579 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1580 le32_to_cpu(ep_ctx->ep_info)); 1581 /* Number of packets and mult are zero-based in the 1582 * input context, but we want one-based for the 1583 * interval table. 1584 */ 1585 bw_info->mult = CTX_TO_EP_MULT( 1586 le32_to_cpu(ep_ctx->ep_info)) + 1; 1587 bw_info->num_packets = CTX_TO_MAX_BURST( 1588 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1589 bw_info->max_packet_size = MAX_PACKET_DECODED( 1590 le32_to_cpu(ep_ctx->ep_info2)); 1591 bw_info->type = ep_type; 1592 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1593 le32_to_cpu(ep_ctx->tx_info)); 1594 } 1595 } 1596 } 1597 1598 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1599 * Useful when you want to change one particular aspect of the endpoint and then 1600 * issue a configure endpoint command. 1601 */ 1602 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1603 struct xhci_container_ctx *in_ctx, 1604 struct xhci_container_ctx *out_ctx, 1605 unsigned int ep_index) 1606 { 1607 struct xhci_ep_ctx *out_ep_ctx; 1608 struct xhci_ep_ctx *in_ep_ctx; 1609 1610 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1611 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1612 1613 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1614 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1615 in_ep_ctx->deq = out_ep_ctx->deq; 1616 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1617 if (xhci->quirks & XHCI_MTK_HOST) { 1618 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1619 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1620 } 1621 } 1622 1623 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1624 * Useful when you want to change one particular aspect of the endpoint and then 1625 * issue a configure endpoint command. Only the context entries field matters, 1626 * but we'll copy the whole thing anyway. 1627 */ 1628 void xhci_slot_copy(struct xhci_hcd *xhci, 1629 struct xhci_container_ctx *in_ctx, 1630 struct xhci_container_ctx *out_ctx) 1631 { 1632 struct xhci_slot_ctx *in_slot_ctx; 1633 struct xhci_slot_ctx *out_slot_ctx; 1634 1635 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1636 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1637 1638 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1639 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1640 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1641 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1642 } 1643 1644 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1645 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1646 { 1647 int i; 1648 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1649 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1650 1651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1652 "Allocating %d scratchpad buffers", num_sp); 1653 1654 if (!num_sp) 1655 return 0; 1656 1657 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1658 dev_to_node(dev)); 1659 if (!xhci->scratchpad) 1660 goto fail_sp; 1661 1662 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1663 num_sp * sizeof(u64), 1664 &xhci->scratchpad->sp_dma, flags); 1665 if (!xhci->scratchpad->sp_array) 1666 goto fail_sp2; 1667 1668 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1669 flags, dev_to_node(dev)); 1670 if (!xhci->scratchpad->sp_buffers) 1671 goto fail_sp3; 1672 1673 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1674 for (i = 0; i < num_sp; i++) { 1675 dma_addr_t dma; 1676 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1677 flags); 1678 if (!buf) 1679 goto fail_sp4; 1680 1681 xhci->scratchpad->sp_array[i] = dma; 1682 xhci->scratchpad->sp_buffers[i] = buf; 1683 } 1684 1685 return 0; 1686 1687 fail_sp4: 1688 for (i = i - 1; i >= 0; i--) { 1689 dma_free_coherent(dev, xhci->page_size, 1690 xhci->scratchpad->sp_buffers[i], 1691 xhci->scratchpad->sp_array[i]); 1692 } 1693 1694 kfree(xhci->scratchpad->sp_buffers); 1695 1696 fail_sp3: 1697 dma_free_coherent(dev, num_sp * sizeof(u64), 1698 xhci->scratchpad->sp_array, 1699 xhci->scratchpad->sp_dma); 1700 1701 fail_sp2: 1702 kfree(xhci->scratchpad); 1703 xhci->scratchpad = NULL; 1704 1705 fail_sp: 1706 return -ENOMEM; 1707 } 1708 1709 static void scratchpad_free(struct xhci_hcd *xhci) 1710 { 1711 int num_sp; 1712 int i; 1713 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1714 1715 if (!xhci->scratchpad) 1716 return; 1717 1718 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1719 1720 for (i = 0; i < num_sp; i++) { 1721 dma_free_coherent(dev, xhci->page_size, 1722 xhci->scratchpad->sp_buffers[i], 1723 xhci->scratchpad->sp_array[i]); 1724 } 1725 kfree(xhci->scratchpad->sp_buffers); 1726 dma_free_coherent(dev, num_sp * sizeof(u64), 1727 xhci->scratchpad->sp_array, 1728 xhci->scratchpad->sp_dma); 1729 kfree(xhci->scratchpad); 1730 xhci->scratchpad = NULL; 1731 } 1732 1733 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1734 bool allocate_completion, gfp_t mem_flags) 1735 { 1736 struct xhci_command *command; 1737 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1738 1739 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1740 if (!command) 1741 return NULL; 1742 1743 if (allocate_completion) { 1744 command->completion = 1745 kzalloc_node(sizeof(struct completion), mem_flags, 1746 dev_to_node(dev)); 1747 if (!command->completion) { 1748 kfree(command); 1749 return NULL; 1750 } 1751 init_completion(command->completion); 1752 } 1753 1754 command->status = 0; 1755 INIT_LIST_HEAD(&command->cmd_list); 1756 return command; 1757 } 1758 1759 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1760 bool allocate_completion, gfp_t mem_flags) 1761 { 1762 struct xhci_command *command; 1763 1764 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1765 if (!command) 1766 return NULL; 1767 1768 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1769 mem_flags); 1770 if (!command->in_ctx) { 1771 kfree(command->completion); 1772 kfree(command); 1773 return NULL; 1774 } 1775 return command; 1776 } 1777 1778 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1779 { 1780 kfree(urb_priv); 1781 } 1782 1783 void xhci_free_command(struct xhci_hcd *xhci, 1784 struct xhci_command *command) 1785 { 1786 xhci_free_container_ctx(xhci, 1787 command->in_ctx); 1788 kfree(command->completion); 1789 kfree(command); 1790 } 1791 1792 int xhci_alloc_erst(struct xhci_hcd *xhci, 1793 struct xhci_ring *evt_ring, 1794 struct xhci_erst *erst, 1795 gfp_t flags) 1796 { 1797 size_t size; 1798 unsigned int val; 1799 struct xhci_segment *seg; 1800 struct xhci_erst_entry *entry; 1801 1802 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs; 1803 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1804 size, &erst->erst_dma_addr, flags); 1805 if (!erst->entries) 1806 return -ENOMEM; 1807 1808 erst->num_entries = evt_ring->num_segs; 1809 1810 seg = evt_ring->first_seg; 1811 for (val = 0; val < evt_ring->num_segs; val++) { 1812 entry = &erst->entries[val]; 1813 entry->seg_addr = cpu_to_le64(seg->dma); 1814 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1815 entry->rsvd = 0; 1816 seg = seg->next; 1817 } 1818 1819 return 0; 1820 } 1821 1822 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst) 1823 { 1824 size_t size; 1825 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1826 1827 size = sizeof(struct xhci_erst_entry) * (erst->num_entries); 1828 if (erst->entries) 1829 dma_free_coherent(dev, size, 1830 erst->entries, 1831 erst->erst_dma_addr); 1832 erst->entries = NULL; 1833 } 1834 1835 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1836 { 1837 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1838 int i, j, num_ports; 1839 1840 cancel_delayed_work_sync(&xhci->cmd_timer); 1841 1842 xhci_free_erst(xhci, &xhci->erst); 1843 1844 if (xhci->event_ring) 1845 xhci_ring_free(xhci, xhci->event_ring); 1846 xhci->event_ring = NULL; 1847 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1848 1849 if (xhci->lpm_command) 1850 xhci_free_command(xhci, xhci->lpm_command); 1851 xhci->lpm_command = NULL; 1852 if (xhci->cmd_ring) 1853 xhci_ring_free(xhci, xhci->cmd_ring); 1854 xhci->cmd_ring = NULL; 1855 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1856 xhci_cleanup_command_queue(xhci); 1857 1858 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1859 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1860 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1861 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1862 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1863 while (!list_empty(ep)) 1864 list_del_init(ep->next); 1865 } 1866 } 1867 1868 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1869 xhci_free_virt_devices_depth_first(xhci, i); 1870 1871 dma_pool_destroy(xhci->segment_pool); 1872 xhci->segment_pool = NULL; 1873 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1874 1875 dma_pool_destroy(xhci->device_pool); 1876 xhci->device_pool = NULL; 1877 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1878 1879 dma_pool_destroy(xhci->small_streams_pool); 1880 xhci->small_streams_pool = NULL; 1881 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1882 "Freed small stream array pool"); 1883 1884 dma_pool_destroy(xhci->medium_streams_pool); 1885 xhci->medium_streams_pool = NULL; 1886 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1887 "Freed medium stream array pool"); 1888 1889 if (xhci->dcbaa) 1890 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1891 xhci->dcbaa, xhci->dcbaa->dma); 1892 xhci->dcbaa = NULL; 1893 1894 scratchpad_free(xhci); 1895 1896 if (!xhci->rh_bw) 1897 goto no_bw; 1898 1899 for (i = 0; i < num_ports; i++) { 1900 struct xhci_tt_bw_info *tt, *n; 1901 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1902 list_del(&tt->tt_list); 1903 kfree(tt); 1904 } 1905 } 1906 1907 no_bw: 1908 xhci->cmd_ring_reserved_trbs = 0; 1909 xhci->usb2_rhub.num_ports = 0; 1910 xhci->usb3_rhub.num_ports = 0; 1911 xhci->num_active_eps = 0; 1912 kfree(xhci->usb2_rhub.ports); 1913 kfree(xhci->usb3_rhub.ports); 1914 kfree(xhci->hw_ports); 1915 kfree(xhci->rh_bw); 1916 kfree(xhci->ext_caps); 1917 for (i = 0; i < xhci->num_port_caps; i++) 1918 kfree(xhci->port_caps[i].psi); 1919 kfree(xhci->port_caps); 1920 xhci->num_port_caps = 0; 1921 1922 xhci->usb2_rhub.ports = NULL; 1923 xhci->usb3_rhub.ports = NULL; 1924 xhci->hw_ports = NULL; 1925 xhci->rh_bw = NULL; 1926 xhci->ext_caps = NULL; 1927 1928 xhci->page_size = 0; 1929 xhci->page_shift = 0; 1930 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1931 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1932 } 1933 1934 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1935 struct xhci_segment *input_seg, 1936 union xhci_trb *start_trb, 1937 union xhci_trb *end_trb, 1938 dma_addr_t input_dma, 1939 struct xhci_segment *result_seg, 1940 char *test_name, int test_number) 1941 { 1942 unsigned long long start_dma; 1943 unsigned long long end_dma; 1944 struct xhci_segment *seg; 1945 1946 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1947 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1948 1949 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1950 if (seg != result_seg) { 1951 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1952 test_name, test_number); 1953 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1954 "input DMA 0x%llx\n", 1955 input_seg, 1956 (unsigned long long) input_dma); 1957 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1958 "ending TRB %p (0x%llx DMA)\n", 1959 start_trb, start_dma, 1960 end_trb, end_dma); 1961 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1962 result_seg, seg); 1963 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1964 true); 1965 return -1; 1966 } 1967 return 0; 1968 } 1969 1970 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1971 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1972 { 1973 struct { 1974 dma_addr_t input_dma; 1975 struct xhci_segment *result_seg; 1976 } simple_test_vector [] = { 1977 /* A zeroed DMA field should fail */ 1978 { 0, NULL }, 1979 /* One TRB before the ring start should fail */ 1980 { xhci->event_ring->first_seg->dma - 16, NULL }, 1981 /* One byte before the ring start should fail */ 1982 { xhci->event_ring->first_seg->dma - 1, NULL }, 1983 /* Starting TRB should succeed */ 1984 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1985 /* Ending TRB should succeed */ 1986 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1987 xhci->event_ring->first_seg }, 1988 /* One byte after the ring end should fail */ 1989 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1990 /* One TRB after the ring end should fail */ 1991 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1992 /* An address of all ones should fail */ 1993 { (dma_addr_t) (~0), NULL }, 1994 }; 1995 struct { 1996 struct xhci_segment *input_seg; 1997 union xhci_trb *start_trb; 1998 union xhci_trb *end_trb; 1999 dma_addr_t input_dma; 2000 struct xhci_segment *result_seg; 2001 } complex_test_vector [] = { 2002 /* Test feeding a valid DMA address from a different ring */ 2003 { .input_seg = xhci->event_ring->first_seg, 2004 .start_trb = xhci->event_ring->first_seg->trbs, 2005 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2006 .input_dma = xhci->cmd_ring->first_seg->dma, 2007 .result_seg = NULL, 2008 }, 2009 /* Test feeding a valid end TRB from a different ring */ 2010 { .input_seg = xhci->event_ring->first_seg, 2011 .start_trb = xhci->event_ring->first_seg->trbs, 2012 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2013 .input_dma = xhci->cmd_ring->first_seg->dma, 2014 .result_seg = NULL, 2015 }, 2016 /* Test feeding a valid start and end TRB from a different ring */ 2017 { .input_seg = xhci->event_ring->first_seg, 2018 .start_trb = xhci->cmd_ring->first_seg->trbs, 2019 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2020 .input_dma = xhci->cmd_ring->first_seg->dma, 2021 .result_seg = NULL, 2022 }, 2023 /* TRB in this ring, but after this TD */ 2024 { .input_seg = xhci->event_ring->first_seg, 2025 .start_trb = &xhci->event_ring->first_seg->trbs[0], 2026 .end_trb = &xhci->event_ring->first_seg->trbs[3], 2027 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 2028 .result_seg = NULL, 2029 }, 2030 /* TRB in this ring, but before this TD */ 2031 { .input_seg = xhci->event_ring->first_seg, 2032 .start_trb = &xhci->event_ring->first_seg->trbs[3], 2033 .end_trb = &xhci->event_ring->first_seg->trbs[6], 2034 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2035 .result_seg = NULL, 2036 }, 2037 /* TRB in this ring, but after this wrapped TD */ 2038 { .input_seg = xhci->event_ring->first_seg, 2039 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2040 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2041 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2042 .result_seg = NULL, 2043 }, 2044 /* TRB in this ring, but before this wrapped TD */ 2045 { .input_seg = xhci->event_ring->first_seg, 2046 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2047 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2048 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2049 .result_seg = NULL, 2050 }, 2051 /* TRB not in this ring, and we have a wrapped TD */ 2052 { .input_seg = xhci->event_ring->first_seg, 2053 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2054 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2055 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2056 .result_seg = NULL, 2057 }, 2058 }; 2059 2060 unsigned int num_tests; 2061 int i, ret; 2062 2063 num_tests = ARRAY_SIZE(simple_test_vector); 2064 for (i = 0; i < num_tests; i++) { 2065 ret = xhci_test_trb_in_td(xhci, 2066 xhci->event_ring->first_seg, 2067 xhci->event_ring->first_seg->trbs, 2068 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2069 simple_test_vector[i].input_dma, 2070 simple_test_vector[i].result_seg, 2071 "Simple", i); 2072 if (ret < 0) 2073 return ret; 2074 } 2075 2076 num_tests = ARRAY_SIZE(complex_test_vector); 2077 for (i = 0; i < num_tests; i++) { 2078 ret = xhci_test_trb_in_td(xhci, 2079 complex_test_vector[i].input_seg, 2080 complex_test_vector[i].start_trb, 2081 complex_test_vector[i].end_trb, 2082 complex_test_vector[i].input_dma, 2083 complex_test_vector[i].result_seg, 2084 "Complex", i); 2085 if (ret < 0) 2086 return ret; 2087 } 2088 xhci_dbg(xhci, "TRB math tests passed.\n"); 2089 return 0; 2090 } 2091 2092 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2093 { 2094 u64 temp; 2095 dma_addr_t deq; 2096 2097 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2098 xhci->event_ring->dequeue); 2099 if (!deq) 2100 xhci_warn(xhci, "WARN something wrong with SW event ring " 2101 "dequeue ptr.\n"); 2102 /* Update HC event ring dequeue pointer */ 2103 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2104 temp &= ERST_PTR_MASK; 2105 /* Don't clear the EHB bit (which is RW1C) because 2106 * there might be more events to service. 2107 */ 2108 temp &= ~ERST_EHB; 2109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2110 "// Write event ring dequeue pointer, " 2111 "preserving EHB bit"); 2112 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2113 &xhci->ir_set->erst_dequeue); 2114 } 2115 2116 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2117 __le32 __iomem *addr, int max_caps) 2118 { 2119 u32 temp, port_offset, port_count; 2120 int i; 2121 u8 major_revision, minor_revision; 2122 struct xhci_hub *rhub; 2123 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2124 struct xhci_port_cap *port_cap; 2125 2126 temp = readl(addr); 2127 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2128 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2129 2130 if (major_revision == 0x03) { 2131 rhub = &xhci->usb3_rhub; 2132 /* 2133 * Some hosts incorrectly use sub-minor version for minor 2134 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 2135 * for bcdUSB 0x310). Since there is no USB release with sub 2136 * minor version 0x301 to 0x309, we can assume that they are 2137 * incorrect and fix it here. 2138 */ 2139 if (minor_revision > 0x00 && minor_revision < 0x10) 2140 minor_revision <<= 4; 2141 } else if (major_revision <= 0x02) { 2142 rhub = &xhci->usb2_rhub; 2143 } else { 2144 xhci_warn(xhci, "Ignoring unknown port speed, " 2145 "Ext Cap %p, revision = 0x%x\n", 2146 addr, major_revision); 2147 /* Ignoring port protocol we can't understand. FIXME */ 2148 return; 2149 } 2150 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2151 2152 if (rhub->min_rev < minor_revision) 2153 rhub->min_rev = minor_revision; 2154 2155 /* Port offset and count in the third dword, see section 7.2 */ 2156 temp = readl(addr + 2); 2157 port_offset = XHCI_EXT_PORT_OFF(temp); 2158 port_count = XHCI_EXT_PORT_COUNT(temp); 2159 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2160 "Ext Cap %p, port offset = %u, " 2161 "count = %u, revision = 0x%x", 2162 addr, port_offset, port_count, major_revision); 2163 /* Port count includes the current port offset */ 2164 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2165 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2166 return; 2167 2168 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2169 if (xhci->num_port_caps > max_caps) 2170 return; 2171 2172 port_cap->maj_rev = major_revision; 2173 port_cap->min_rev = minor_revision; 2174 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2175 2176 if (port_cap->psi_count) { 2177 port_cap->psi = kcalloc_node(port_cap->psi_count, 2178 sizeof(*port_cap->psi), 2179 GFP_KERNEL, dev_to_node(dev)); 2180 if (!port_cap->psi) 2181 port_cap->psi_count = 0; 2182 2183 port_cap->psi_uid_count++; 2184 for (i = 0; i < port_cap->psi_count; i++) { 2185 port_cap->psi[i] = readl(addr + 4 + i); 2186 2187 /* count unique ID values, two consecutive entries can 2188 * have the same ID if link is assymetric 2189 */ 2190 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2191 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2192 port_cap->psi_uid_count++; 2193 2194 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2195 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2196 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2197 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2198 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2199 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2200 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2201 } 2202 } 2203 /* cache usb2 port capabilities */ 2204 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2205 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2206 2207 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2208 (temp & XHCI_HLC)) { 2209 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2210 "xHCI 1.0: support USB2 hardware lpm"); 2211 xhci->hw_lpm_support = 1; 2212 } 2213 2214 port_offset--; 2215 for (i = port_offset; i < (port_offset + port_count); i++) { 2216 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2217 /* Duplicate entry. Ignore the port if the revisions differ. */ 2218 if (hw_port->rhub) { 2219 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2220 " port %u\n", addr, i); 2221 xhci_warn(xhci, "Port was marked as USB %u, " 2222 "duplicated as USB %u\n", 2223 hw_port->rhub->maj_rev, major_revision); 2224 /* Only adjust the roothub port counts if we haven't 2225 * found a similar duplicate. 2226 */ 2227 if (hw_port->rhub != rhub && 2228 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2229 hw_port->rhub->num_ports--; 2230 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2231 } 2232 continue; 2233 } 2234 hw_port->rhub = rhub; 2235 hw_port->port_cap = port_cap; 2236 rhub->num_ports++; 2237 } 2238 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2239 } 2240 2241 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2242 struct xhci_hub *rhub, gfp_t flags) 2243 { 2244 int port_index = 0; 2245 int i; 2246 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2247 2248 if (!rhub->num_ports) 2249 return; 2250 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2251 flags, dev_to_node(dev)); 2252 if (!rhub->ports) 2253 return; 2254 2255 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2256 if (xhci->hw_ports[i].rhub != rhub || 2257 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2258 continue; 2259 xhci->hw_ports[i].hcd_portnum = port_index; 2260 rhub->ports[port_index] = &xhci->hw_ports[i]; 2261 port_index++; 2262 if (port_index == rhub->num_ports) 2263 break; 2264 } 2265 } 2266 2267 /* 2268 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2269 * specify what speeds each port is supposed to be. We can't count on the port 2270 * speed bits in the PORTSC register being correct until a device is connected, 2271 * but we need to set up the two fake roothubs with the correct number of USB 2272 * 3.0 and USB 2.0 ports at host controller initialization time. 2273 */ 2274 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2275 { 2276 void __iomem *base; 2277 u32 offset; 2278 unsigned int num_ports; 2279 int i, j; 2280 int cap_count = 0; 2281 u32 cap_start; 2282 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2283 2284 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2285 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2286 flags, dev_to_node(dev)); 2287 if (!xhci->hw_ports) 2288 return -ENOMEM; 2289 2290 for (i = 0; i < num_ports; i++) { 2291 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2292 NUM_PORT_REGS * i; 2293 xhci->hw_ports[i].hw_portnum = i; 2294 } 2295 2296 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2297 dev_to_node(dev)); 2298 if (!xhci->rh_bw) 2299 return -ENOMEM; 2300 for (i = 0; i < num_ports; i++) { 2301 struct xhci_interval_bw_table *bw_table; 2302 2303 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2304 bw_table = &xhci->rh_bw[i].bw_table; 2305 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2306 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2307 } 2308 base = &xhci->cap_regs->hc_capbase; 2309 2310 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2311 if (!cap_start) { 2312 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2313 return -ENODEV; 2314 } 2315 2316 offset = cap_start; 2317 /* count extended protocol capability entries for later caching */ 2318 while (offset) { 2319 cap_count++; 2320 offset = xhci_find_next_ext_cap(base, offset, 2321 XHCI_EXT_CAPS_PROTOCOL); 2322 } 2323 2324 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2325 flags, dev_to_node(dev)); 2326 if (!xhci->ext_caps) 2327 return -ENOMEM; 2328 2329 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2330 flags, dev_to_node(dev)); 2331 if (!xhci->port_caps) 2332 return -ENOMEM; 2333 2334 offset = cap_start; 2335 2336 while (offset) { 2337 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2338 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2339 num_ports) 2340 break; 2341 offset = xhci_find_next_ext_cap(base, offset, 2342 XHCI_EXT_CAPS_PROTOCOL); 2343 } 2344 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2345 xhci_warn(xhci, "No ports on the roothubs?\n"); 2346 return -ENODEV; 2347 } 2348 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2349 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2350 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2351 2352 /* Place limits on the number of roothub ports so that the hub 2353 * descriptors aren't longer than the USB core will allocate. 2354 */ 2355 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2356 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2357 "Limiting USB 3.0 roothub ports to %u.", 2358 USB_SS_MAXPORTS); 2359 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2360 } 2361 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2362 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2363 "Limiting USB 2.0 roothub ports to %u.", 2364 USB_MAXCHILDREN); 2365 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2366 } 2367 2368 /* 2369 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2370 * Not sure how the USB core will handle a hub with no ports... 2371 */ 2372 2373 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2374 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2375 2376 return 0; 2377 } 2378 2379 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2380 { 2381 dma_addr_t dma; 2382 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2383 unsigned int val, val2; 2384 u64 val_64; 2385 u32 page_size, temp; 2386 int i, ret; 2387 2388 INIT_LIST_HEAD(&xhci->cmd_list); 2389 2390 /* init command timeout work */ 2391 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2392 init_completion(&xhci->cmd_ring_stop_completion); 2393 2394 page_size = readl(&xhci->op_regs->page_size); 2395 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2396 "Supported page size register = 0x%x", page_size); 2397 for (i = 0; i < 16; i++) { 2398 if ((0x1 & page_size) != 0) 2399 break; 2400 page_size = page_size >> 1; 2401 } 2402 if (i < 16) 2403 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2404 "Supported page size of %iK", (1 << (i+12)) / 1024); 2405 else 2406 xhci_warn(xhci, "WARN: no supported page size\n"); 2407 /* Use 4K pages, since that's common and the minimum the HC supports */ 2408 xhci->page_shift = 12; 2409 xhci->page_size = 1 << xhci->page_shift; 2410 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2411 "HCD page size set to %iK", xhci->page_size / 1024); 2412 2413 /* 2414 * Program the Number of Device Slots Enabled field in the CONFIG 2415 * register with the max value of slots the HC can handle. 2416 */ 2417 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2418 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2419 "// xHC can handle at most %d device slots.", val); 2420 val2 = readl(&xhci->op_regs->config_reg); 2421 val |= (val2 & ~HCS_SLOTS_MASK); 2422 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2423 "// Setting Max device slots reg = 0x%x.", val); 2424 writel(val, &xhci->op_regs->config_reg); 2425 2426 /* 2427 * xHCI section 5.4.6 - doorbell array must be 2428 * "physically contiguous and 64-byte (cache line) aligned". 2429 */ 2430 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2431 flags); 2432 if (!xhci->dcbaa) 2433 goto fail; 2434 xhci->dcbaa->dma = dma; 2435 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2436 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2437 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2438 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2439 2440 /* 2441 * Initialize the ring segment pool. The ring must be a contiguous 2442 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2443 * however, the command ring segment needs 64-byte aligned segments 2444 * and our use of dma addresses in the trb_address_map radix tree needs 2445 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2446 */ 2447 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2448 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2449 2450 /* See Table 46 and Note on Figure 55 */ 2451 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2452 2112, 64, xhci->page_size); 2453 if (!xhci->segment_pool || !xhci->device_pool) 2454 goto fail; 2455 2456 /* Linear stream context arrays don't have any boundary restrictions, 2457 * and only need to be 16-byte aligned. 2458 */ 2459 xhci->small_streams_pool = 2460 dma_pool_create("xHCI 256 byte stream ctx arrays", 2461 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2462 xhci->medium_streams_pool = 2463 dma_pool_create("xHCI 1KB stream ctx arrays", 2464 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2465 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2466 * will be allocated with dma_alloc_coherent() 2467 */ 2468 2469 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2470 goto fail; 2471 2472 /* Set up the command ring to have one segments for now. */ 2473 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2474 if (!xhci->cmd_ring) 2475 goto fail; 2476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2477 "Allocated command ring at %p", xhci->cmd_ring); 2478 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2479 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2480 2481 /* Set the address in the Command Ring Control register */ 2482 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2483 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2484 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2485 xhci->cmd_ring->cycle_state; 2486 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2487 "// Setting command ring address to 0x%016llx", val_64); 2488 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2489 2490 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags); 2491 if (!xhci->lpm_command) 2492 goto fail; 2493 2494 /* Reserve one command ring TRB for disabling LPM. 2495 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2496 * disabling LPM, we only need to reserve one TRB for all devices. 2497 */ 2498 xhci->cmd_ring_reserved_trbs++; 2499 2500 val = readl(&xhci->cap_regs->db_off); 2501 val &= DBOFF_MASK; 2502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2503 "// Doorbell array is located at offset 0x%x" 2504 " from cap regs base addr", val); 2505 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2506 /* Set ir_set to interrupt register set 0 */ 2507 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2508 2509 /* 2510 * Event ring setup: Allocate a normal ring, but also setup 2511 * the event ring segment table (ERST). Section 4.9.3. 2512 */ 2513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2514 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2515 0, flags); 2516 if (!xhci->event_ring) 2517 goto fail; 2518 if (xhci_check_trb_in_td_math(xhci) < 0) 2519 goto fail; 2520 2521 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags); 2522 if (ret) 2523 goto fail; 2524 2525 /* set ERST count with the number of entries in the segment table */ 2526 val = readl(&xhci->ir_set->erst_size); 2527 val &= ERST_SIZE_MASK; 2528 val |= ERST_NUM_SEGS; 2529 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2530 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2531 val); 2532 writel(val, &xhci->ir_set->erst_size); 2533 2534 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2535 "// Set ERST entries to point to event ring."); 2536 /* set the segment table base address */ 2537 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2538 "// Set ERST base address for ir_set 0 = 0x%llx", 2539 (unsigned long long)xhci->erst.erst_dma_addr); 2540 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2541 val_64 &= ERST_PTR_MASK; 2542 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2543 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2544 2545 /* Set the event ring dequeue address */ 2546 xhci_set_hc_event_deq(xhci); 2547 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2548 "Wrote ERST address to ir_set 0."); 2549 2550 /* 2551 * XXX: Might need to set the Interrupter Moderation Register to 2552 * something other than the default (~1ms minimum between interrupts). 2553 * See section 5.5.1.2. 2554 */ 2555 for (i = 0; i < MAX_HC_SLOTS; i++) 2556 xhci->devs[i] = NULL; 2557 for (i = 0; i < USB_MAXCHILDREN; i++) { 2558 xhci->usb2_rhub.bus_state.resume_done[i] = 0; 2559 xhci->usb3_rhub.bus_state.resume_done[i] = 0; 2560 /* Only the USB 2.0 completions will ever be used. */ 2561 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]); 2562 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]); 2563 } 2564 2565 if (scratchpad_alloc(xhci, flags)) 2566 goto fail; 2567 if (xhci_setup_port_arrays(xhci, flags)) 2568 goto fail; 2569 2570 /* Enable USB 3.0 device notifications for function remote wake, which 2571 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2572 * U3 (device suspend). 2573 */ 2574 temp = readl(&xhci->op_regs->dev_notification); 2575 temp &= ~DEV_NOTE_MASK; 2576 temp |= DEV_NOTE_FWAKE; 2577 writel(temp, &xhci->op_regs->dev_notification); 2578 2579 return 0; 2580 2581 fail: 2582 xhci_halt(xhci); 2583 xhci_reset(xhci); 2584 xhci_mem_cleanup(xhci); 2585 return -ENOMEM; 2586 } 2587