1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 #include <linux/dma-mapping.h> 28 29 #include "xhci.h" 30 #include "xhci-trace.h" 31 32 /* 33 * Allocates a generic ring segment from the ring pool, sets the dma address, 34 * initializes the segment to zero, and sets the private next pointer to NULL. 35 * 36 * Section 4.11.1.1: 37 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 38 */ 39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 40 unsigned int cycle_state, 41 unsigned int max_packet, 42 gfp_t flags) 43 { 44 struct xhci_segment *seg; 45 dma_addr_t dma; 46 int i; 47 48 seg = kzalloc(sizeof *seg, flags); 49 if (!seg) 50 return NULL; 51 52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 53 if (!seg->trbs) { 54 kfree(seg); 55 return NULL; 56 } 57 58 if (max_packet) { 59 seg->bounce_buf = kzalloc(max_packet, flags); 60 if (!seg->bounce_buf) { 61 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 62 kfree(seg); 63 return NULL; 64 } 65 } 66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 67 if (cycle_state == 0) { 68 for (i = 0; i < TRBS_PER_SEGMENT; i++) 69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 70 } 71 seg->dma = dma; 72 seg->next = NULL; 73 74 return seg; 75 } 76 77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 78 { 79 if (seg->trbs) { 80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 81 seg->trbs = NULL; 82 } 83 kfree(seg->bounce_buf); 84 kfree(seg); 85 } 86 87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 88 struct xhci_segment *first) 89 { 90 struct xhci_segment *seg; 91 92 seg = first->next; 93 while (seg != first) { 94 struct xhci_segment *next = seg->next; 95 xhci_segment_free(xhci, seg); 96 seg = next; 97 } 98 xhci_segment_free(xhci, first); 99 } 100 101 /* 102 * Make the prev segment point to the next segment. 103 * 104 * Change the last TRB in the prev segment to be a Link TRB which points to the 105 * DMA address of the next segment. The caller needs to set any Link TRB 106 * related flags, such as End TRB, Toggle Cycle, and no snoop. 107 */ 108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 109 struct xhci_segment *next, enum xhci_ring_type type) 110 { 111 u32 val; 112 113 if (!prev || !next) 114 return; 115 prev->next = next; 116 if (type != TYPE_EVENT) { 117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 118 cpu_to_le64(next->dma); 119 120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 122 val &= ~TRB_TYPE_BITMASK; 123 val |= TRB_TYPE(TRB_LINK); 124 /* Always set the chain bit with 0.95 hardware */ 125 /* Set chain bit for isoc rings on AMD 0.96 host */ 126 if (xhci_link_trb_quirk(xhci) || 127 (type == TYPE_ISOC && 128 (xhci->quirks & XHCI_AMD_0x96_HOST))) 129 val |= TRB_CHAIN; 130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 131 } 132 } 133 134 /* 135 * Link the ring to the new segments. 136 * Set Toggle Cycle for the new ring if needed. 137 */ 138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 139 struct xhci_segment *first, struct xhci_segment *last, 140 unsigned int num_segs) 141 { 142 struct xhci_segment *next; 143 144 if (!ring || !first || !last) 145 return; 146 147 next = ring->enq_seg->next; 148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 149 xhci_link_segments(xhci, last, next, ring->type); 150 ring->num_segs += num_segs; 151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 152 153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 155 &= ~cpu_to_le32(LINK_TOGGLE); 156 last->trbs[TRBS_PER_SEGMENT-1].link.control 157 |= cpu_to_le32(LINK_TOGGLE); 158 ring->last_seg = last; 159 } 160 } 161 162 /* 163 * We need a radix tree for mapping physical addresses of TRBs to which stream 164 * ID they belong to. We need to do this because the host controller won't tell 165 * us which stream ring the TRB came from. We could store the stream ID in an 166 * event data TRB, but that doesn't help us for the cancellation case, since the 167 * endpoint may stop before it reaches that event data TRB. 168 * 169 * The radix tree maps the upper portion of the TRB DMA address to a ring 170 * segment that has the same upper portion of DMA addresses. For example, say I 171 * have segments of size 1KB, that are always 1KB aligned. A segment may 172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 174 * pass the radix tree a key to get the right stream ID: 175 * 176 * 0x10c90fff >> 10 = 0x43243 177 * 0x10c912c0 >> 10 = 0x43244 178 * 0x10c91400 >> 10 = 0x43245 179 * 180 * Obviously, only those TRBs with DMA addresses that are within the segment 181 * will make the radix tree return the stream ID for that ring. 182 * 183 * Caveats for the radix tree: 184 * 185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 190 * extended systems (where the DMA address can be bigger than 32-bits), 191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 192 */ 193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 194 struct xhci_ring *ring, 195 struct xhci_segment *seg, 196 gfp_t mem_flags) 197 { 198 unsigned long key; 199 int ret; 200 201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 202 /* Skip any segments that were already added. */ 203 if (radix_tree_lookup(trb_address_map, key)) 204 return 0; 205 206 ret = radix_tree_maybe_preload(mem_flags); 207 if (ret) 208 return ret; 209 ret = radix_tree_insert(trb_address_map, 210 key, ring); 211 radix_tree_preload_end(); 212 return ret; 213 } 214 215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 216 struct xhci_segment *seg) 217 { 218 unsigned long key; 219 220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 221 if (radix_tree_lookup(trb_address_map, key)) 222 radix_tree_delete(trb_address_map, key); 223 } 224 225 static int xhci_update_stream_segment_mapping( 226 struct radix_tree_root *trb_address_map, 227 struct xhci_ring *ring, 228 struct xhci_segment *first_seg, 229 struct xhci_segment *last_seg, 230 gfp_t mem_flags) 231 { 232 struct xhci_segment *seg; 233 struct xhci_segment *failed_seg; 234 int ret; 235 236 if (WARN_ON_ONCE(trb_address_map == NULL)) 237 return 0; 238 239 seg = first_seg; 240 do { 241 ret = xhci_insert_segment_mapping(trb_address_map, 242 ring, seg, mem_flags); 243 if (ret) 244 goto remove_streams; 245 if (seg == last_seg) 246 return 0; 247 seg = seg->next; 248 } while (seg != first_seg); 249 250 return 0; 251 252 remove_streams: 253 failed_seg = seg; 254 seg = first_seg; 255 do { 256 xhci_remove_segment_mapping(trb_address_map, seg); 257 if (seg == failed_seg) 258 return ret; 259 seg = seg->next; 260 } while (seg != first_seg); 261 262 return ret; 263 } 264 265 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 266 { 267 struct xhci_segment *seg; 268 269 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 270 return; 271 272 seg = ring->first_seg; 273 do { 274 xhci_remove_segment_mapping(ring->trb_address_map, seg); 275 seg = seg->next; 276 } while (seg != ring->first_seg); 277 } 278 279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 280 { 281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 282 ring->first_seg, ring->last_seg, mem_flags); 283 } 284 285 /* XXX: Do we need the hcd structure in all these functions? */ 286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 287 { 288 if (!ring) 289 return; 290 291 trace_xhci_ring_free(ring); 292 293 if (ring->first_seg) { 294 if (ring->type == TYPE_STREAM) 295 xhci_remove_stream_mapping(ring); 296 xhci_free_segments_for_ring(xhci, ring->first_seg); 297 } 298 299 kfree(ring); 300 } 301 302 static void xhci_initialize_ring_info(struct xhci_ring *ring, 303 unsigned int cycle_state) 304 { 305 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 306 ring->enqueue = ring->first_seg->trbs; 307 ring->enq_seg = ring->first_seg; 308 ring->dequeue = ring->enqueue; 309 ring->deq_seg = ring->first_seg; 310 /* The ring is initialized to 0. The producer must write 1 to the cycle 311 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 312 * compare CCS to the cycle bit to check ownership, so CCS = 1. 313 * 314 * New rings are initialized with cycle state equal to 1; if we are 315 * handling ring expansion, set the cycle state equal to the old ring. 316 */ 317 ring->cycle_state = cycle_state; 318 319 /* 320 * Each segment has a link TRB, and leave an extra TRB for SW 321 * accounting purpose 322 */ 323 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 324 } 325 326 /* Allocate segments and link them for a ring */ 327 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 328 struct xhci_segment **first, struct xhci_segment **last, 329 unsigned int num_segs, unsigned int cycle_state, 330 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 331 { 332 struct xhci_segment *prev; 333 334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 335 if (!prev) 336 return -ENOMEM; 337 num_segs--; 338 339 *first = prev; 340 while (num_segs > 0) { 341 struct xhci_segment *next; 342 343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 344 if (!next) { 345 prev = *first; 346 while (prev) { 347 next = prev->next; 348 xhci_segment_free(xhci, prev); 349 prev = next; 350 } 351 return -ENOMEM; 352 } 353 xhci_link_segments(xhci, prev, next, type); 354 355 prev = next; 356 num_segs--; 357 } 358 xhci_link_segments(xhci, prev, *first, type); 359 *last = prev; 360 361 return 0; 362 } 363 364 /** 365 * Create a new ring with zero or more segments. 366 * 367 * Link each segment together into a ring. 368 * Set the end flag and the cycle toggle bit on the last segment. 369 * See section 4.9.1 and figures 15 and 16. 370 */ 371 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 372 unsigned int num_segs, unsigned int cycle_state, 373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 374 { 375 struct xhci_ring *ring; 376 int ret; 377 378 ring = kzalloc(sizeof *(ring), flags); 379 if (!ring) 380 return NULL; 381 382 ring->num_segs = num_segs; 383 ring->bounce_buf_len = max_packet; 384 INIT_LIST_HEAD(&ring->td_list); 385 ring->type = type; 386 if (num_segs == 0) 387 return ring; 388 389 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 390 &ring->last_seg, num_segs, cycle_state, type, 391 max_packet, flags); 392 if (ret) 393 goto fail; 394 395 /* Only event ring does not use link TRB */ 396 if (type != TYPE_EVENT) { 397 /* See section 4.9.2.1 and 6.4.4.1 */ 398 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 399 cpu_to_le32(LINK_TOGGLE); 400 } 401 xhci_initialize_ring_info(ring, cycle_state); 402 trace_xhci_ring_alloc(ring); 403 return ring; 404 405 fail: 406 kfree(ring); 407 return NULL; 408 } 409 410 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 411 struct xhci_virt_device *virt_dev, 412 unsigned int ep_index) 413 { 414 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 415 virt_dev->eps[ep_index].ring = NULL; 416 } 417 418 /* 419 * Expand an existing ring. 420 * Allocate a new ring which has same segment numbers and link the two rings. 421 */ 422 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 423 unsigned int num_trbs, gfp_t flags) 424 { 425 struct xhci_segment *first; 426 struct xhci_segment *last; 427 unsigned int num_segs; 428 unsigned int num_segs_needed; 429 int ret; 430 431 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 432 (TRBS_PER_SEGMENT - 1); 433 434 /* Allocate number of segments we needed, or double the ring size */ 435 num_segs = ring->num_segs > num_segs_needed ? 436 ring->num_segs : num_segs_needed; 437 438 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 439 num_segs, ring->cycle_state, ring->type, 440 ring->bounce_buf_len, flags); 441 if (ret) 442 return -ENOMEM; 443 444 if (ring->type == TYPE_STREAM) 445 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 446 ring, first, last, flags); 447 if (ret) { 448 struct xhci_segment *next; 449 do { 450 next = first->next; 451 xhci_segment_free(xhci, first); 452 if (first == last) 453 break; 454 first = next; 455 } while (true); 456 return ret; 457 } 458 459 xhci_link_rings(xhci, ring, first, last, num_segs); 460 trace_xhci_ring_expansion(ring); 461 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 462 "ring expansion succeed, now has %d segments", 463 ring->num_segs); 464 465 return 0; 466 } 467 468 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 469 470 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 471 int type, gfp_t flags) 472 { 473 struct xhci_container_ctx *ctx; 474 475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 476 return NULL; 477 478 ctx = kzalloc(sizeof(*ctx), flags); 479 if (!ctx) 480 return NULL; 481 482 ctx->type = type; 483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 484 if (type == XHCI_CTX_TYPE_INPUT) 485 ctx->size += CTX_SIZE(xhci->hcc_params); 486 487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 488 if (!ctx->bytes) { 489 kfree(ctx); 490 return NULL; 491 } 492 return ctx; 493 } 494 495 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 496 struct xhci_container_ctx *ctx) 497 { 498 if (!ctx) 499 return; 500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 501 kfree(ctx); 502 } 503 504 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 505 struct xhci_container_ctx *ctx) 506 { 507 if (ctx->type != XHCI_CTX_TYPE_INPUT) 508 return NULL; 509 510 return (struct xhci_input_control_ctx *)ctx->bytes; 511 } 512 513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 514 struct xhci_container_ctx *ctx) 515 { 516 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 517 return (struct xhci_slot_ctx *)ctx->bytes; 518 519 return (struct xhci_slot_ctx *) 520 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 521 } 522 523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 524 struct xhci_container_ctx *ctx, 525 unsigned int ep_index) 526 { 527 /* increment ep index by offset of start of ep ctx array */ 528 ep_index++; 529 if (ctx->type == XHCI_CTX_TYPE_INPUT) 530 ep_index++; 531 532 return (struct xhci_ep_ctx *) 533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 534 } 535 536 537 /***************** Streams structures manipulation *************************/ 538 539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 540 unsigned int num_stream_ctxs, 541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 542 { 543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 545 546 if (size > MEDIUM_STREAM_ARRAY_SIZE) 547 dma_free_coherent(dev, size, 548 stream_ctx, dma); 549 else if (size <= SMALL_STREAM_ARRAY_SIZE) 550 return dma_pool_free(xhci->small_streams_pool, 551 stream_ctx, dma); 552 else 553 return dma_pool_free(xhci->medium_streams_pool, 554 stream_ctx, dma); 555 } 556 557 /* 558 * The stream context array for each endpoint with bulk streams enabled can 559 * vary in size, based on: 560 * - how many streams the endpoint supports, 561 * - the maximum primary stream array size the host controller supports, 562 * - and how many streams the device driver asks for. 563 * 564 * The stream context array must be a power of 2, and can be as small as 565 * 64 bytes or as large as 1MB. 566 */ 567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 568 unsigned int num_stream_ctxs, dma_addr_t *dma, 569 gfp_t mem_flags) 570 { 571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 573 574 if (size > MEDIUM_STREAM_ARRAY_SIZE) 575 return dma_alloc_coherent(dev, size, 576 dma, mem_flags); 577 else if (size <= SMALL_STREAM_ARRAY_SIZE) 578 return dma_pool_alloc(xhci->small_streams_pool, 579 mem_flags, dma); 580 else 581 return dma_pool_alloc(xhci->medium_streams_pool, 582 mem_flags, dma); 583 } 584 585 struct xhci_ring *xhci_dma_to_transfer_ring( 586 struct xhci_virt_ep *ep, 587 u64 address) 588 { 589 if (ep->ep_state & EP_HAS_STREAMS) 590 return radix_tree_lookup(&ep->stream_info->trb_address_map, 591 address >> TRB_SEGMENT_SHIFT); 592 return ep->ring; 593 } 594 595 struct xhci_ring *xhci_stream_id_to_ring( 596 struct xhci_virt_device *dev, 597 unsigned int ep_index, 598 unsigned int stream_id) 599 { 600 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 601 602 if (stream_id == 0) 603 return ep->ring; 604 if (!ep->stream_info) 605 return NULL; 606 607 if (stream_id > ep->stream_info->num_streams) 608 return NULL; 609 return ep->stream_info->stream_rings[stream_id]; 610 } 611 612 /* 613 * Change an endpoint's internal structure so it supports stream IDs. The 614 * number of requested streams includes stream 0, which cannot be used by device 615 * drivers. 616 * 617 * The number of stream contexts in the stream context array may be bigger than 618 * the number of streams the driver wants to use. This is because the number of 619 * stream context array entries must be a power of two. 620 */ 621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 622 unsigned int num_stream_ctxs, 623 unsigned int num_streams, 624 unsigned int max_packet, gfp_t mem_flags) 625 { 626 struct xhci_stream_info *stream_info; 627 u32 cur_stream; 628 struct xhci_ring *cur_ring; 629 u64 addr; 630 int ret; 631 632 xhci_dbg(xhci, "Allocating %u streams and %u " 633 "stream context array entries.\n", 634 num_streams, num_stream_ctxs); 635 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 636 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 637 return NULL; 638 } 639 xhci->cmd_ring_reserved_trbs++; 640 641 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 642 if (!stream_info) 643 goto cleanup_trbs; 644 645 stream_info->num_streams = num_streams; 646 stream_info->num_stream_ctxs = num_stream_ctxs; 647 648 /* Initialize the array of virtual pointers to stream rings. */ 649 stream_info->stream_rings = kzalloc( 650 sizeof(struct xhci_ring *)*num_streams, 651 mem_flags); 652 if (!stream_info->stream_rings) 653 goto cleanup_info; 654 655 /* Initialize the array of DMA addresses for stream rings for the HW. */ 656 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 657 num_stream_ctxs, &stream_info->ctx_array_dma, 658 mem_flags); 659 if (!stream_info->stream_ctx_array) 660 goto cleanup_ctx; 661 memset(stream_info->stream_ctx_array, 0, 662 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 663 664 /* Allocate everything needed to free the stream rings later */ 665 stream_info->free_streams_command = 666 xhci_alloc_command(xhci, true, true, mem_flags); 667 if (!stream_info->free_streams_command) 668 goto cleanup_ctx; 669 670 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 671 672 /* Allocate rings for all the streams that the driver will use, 673 * and add their segment DMA addresses to the radix tree. 674 * Stream 0 is reserved. 675 */ 676 677 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 678 stream_info->stream_rings[cur_stream] = 679 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 680 mem_flags); 681 cur_ring = stream_info->stream_rings[cur_stream]; 682 if (!cur_ring) 683 goto cleanup_rings; 684 cur_ring->stream_id = cur_stream; 685 cur_ring->trb_address_map = &stream_info->trb_address_map; 686 /* Set deq ptr, cycle bit, and stream context type */ 687 addr = cur_ring->first_seg->dma | 688 SCT_FOR_CTX(SCT_PRI_TR) | 689 cur_ring->cycle_state; 690 stream_info->stream_ctx_array[cur_stream].stream_ring = 691 cpu_to_le64(addr); 692 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 693 cur_stream, (unsigned long long) addr); 694 695 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 696 if (ret) { 697 xhci_ring_free(xhci, cur_ring); 698 stream_info->stream_rings[cur_stream] = NULL; 699 goto cleanup_rings; 700 } 701 } 702 /* Leave the other unused stream ring pointers in the stream context 703 * array initialized to zero. This will cause the xHC to give us an 704 * error if the device asks for a stream ID we don't have setup (if it 705 * was any other way, the host controller would assume the ring is 706 * "empty" and wait forever for data to be queued to that stream ID). 707 */ 708 709 return stream_info; 710 711 cleanup_rings: 712 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 713 cur_ring = stream_info->stream_rings[cur_stream]; 714 if (cur_ring) { 715 xhci_ring_free(xhci, cur_ring); 716 stream_info->stream_rings[cur_stream] = NULL; 717 } 718 } 719 xhci_free_command(xhci, stream_info->free_streams_command); 720 cleanup_ctx: 721 kfree(stream_info->stream_rings); 722 cleanup_info: 723 kfree(stream_info); 724 cleanup_trbs: 725 xhci->cmd_ring_reserved_trbs--; 726 return NULL; 727 } 728 /* 729 * Sets the MaxPStreams field and the Linear Stream Array field. 730 * Sets the dequeue pointer to the stream context array. 731 */ 732 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 733 struct xhci_ep_ctx *ep_ctx, 734 struct xhci_stream_info *stream_info) 735 { 736 u32 max_primary_streams; 737 /* MaxPStreams is the number of stream context array entries, not the 738 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 739 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 740 */ 741 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 742 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 743 "Setting number of stream ctx array entries to %u", 744 1 << (max_primary_streams + 1)); 745 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 746 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 747 | EP_HAS_LSA); 748 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 749 } 750 751 /* 752 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 753 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 754 * not at the beginning of the ring). 755 */ 756 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 757 struct xhci_virt_ep *ep) 758 { 759 dma_addr_t addr; 760 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 761 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 762 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 763 } 764 765 /* Frees all stream contexts associated with the endpoint, 766 * 767 * Caller should fix the endpoint context streams fields. 768 */ 769 void xhci_free_stream_info(struct xhci_hcd *xhci, 770 struct xhci_stream_info *stream_info) 771 { 772 int cur_stream; 773 struct xhci_ring *cur_ring; 774 775 if (!stream_info) 776 return; 777 778 for (cur_stream = 1; cur_stream < stream_info->num_streams; 779 cur_stream++) { 780 cur_ring = stream_info->stream_rings[cur_stream]; 781 if (cur_ring) { 782 xhci_ring_free(xhci, cur_ring); 783 stream_info->stream_rings[cur_stream] = NULL; 784 } 785 } 786 xhci_free_command(xhci, stream_info->free_streams_command); 787 xhci->cmd_ring_reserved_trbs--; 788 if (stream_info->stream_ctx_array) 789 xhci_free_stream_ctx(xhci, 790 stream_info->num_stream_ctxs, 791 stream_info->stream_ctx_array, 792 stream_info->ctx_array_dma); 793 794 kfree(stream_info->stream_rings); 795 kfree(stream_info); 796 } 797 798 799 /***************** Device context manipulation *************************/ 800 801 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 802 struct xhci_virt_ep *ep) 803 { 804 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 805 (unsigned long)ep); 806 ep->xhci = xhci; 807 } 808 809 static void xhci_free_tt_info(struct xhci_hcd *xhci, 810 struct xhci_virt_device *virt_dev, 811 int slot_id) 812 { 813 struct list_head *tt_list_head; 814 struct xhci_tt_bw_info *tt_info, *next; 815 bool slot_found = false; 816 817 /* If the device never made it past the Set Address stage, 818 * it may not have the real_port set correctly. 819 */ 820 if (virt_dev->real_port == 0 || 821 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 822 xhci_dbg(xhci, "Bad real port.\n"); 823 return; 824 } 825 826 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 827 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 828 /* Multi-TT hubs will have more than one entry */ 829 if (tt_info->slot_id == slot_id) { 830 slot_found = true; 831 list_del(&tt_info->tt_list); 832 kfree(tt_info); 833 } else if (slot_found) { 834 break; 835 } 836 } 837 } 838 839 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 840 struct xhci_virt_device *virt_dev, 841 struct usb_device *hdev, 842 struct usb_tt *tt, gfp_t mem_flags) 843 { 844 struct xhci_tt_bw_info *tt_info; 845 unsigned int num_ports; 846 int i, j; 847 848 if (!tt->multi) 849 num_ports = 1; 850 else 851 num_ports = hdev->maxchild; 852 853 for (i = 0; i < num_ports; i++, tt_info++) { 854 struct xhci_interval_bw_table *bw_table; 855 856 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 857 if (!tt_info) 858 goto free_tts; 859 INIT_LIST_HEAD(&tt_info->tt_list); 860 list_add(&tt_info->tt_list, 861 &xhci->rh_bw[virt_dev->real_port - 1].tts); 862 tt_info->slot_id = virt_dev->udev->slot_id; 863 if (tt->multi) 864 tt_info->ttport = i+1; 865 bw_table = &tt_info->bw_table; 866 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 867 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 868 } 869 return 0; 870 871 free_tts: 872 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 873 return -ENOMEM; 874 } 875 876 877 /* All the xhci_tds in the ring's TD list should be freed at this point. 878 * Should be called with xhci->lock held if there is any chance the TT lists 879 * will be manipulated by the configure endpoint, allocate device, or update 880 * hub functions while this function is removing the TT entries from the list. 881 */ 882 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 883 { 884 struct xhci_virt_device *dev; 885 int i; 886 int old_active_eps = 0; 887 888 /* Slot ID 0 is reserved */ 889 if (slot_id == 0 || !xhci->devs[slot_id]) 890 return; 891 892 dev = xhci->devs[slot_id]; 893 894 trace_xhci_free_virt_device(dev); 895 896 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 897 if (!dev) 898 return; 899 900 if (dev->tt_info) 901 old_active_eps = dev->tt_info->active_eps; 902 903 for (i = 0; i < 31; i++) { 904 if (dev->eps[i].ring) 905 xhci_ring_free(xhci, dev->eps[i].ring); 906 if (dev->eps[i].stream_info) 907 xhci_free_stream_info(xhci, 908 dev->eps[i].stream_info); 909 /* Endpoints on the TT/root port lists should have been removed 910 * when usb_disable_device() was called for the device. 911 * We can't drop them anyway, because the udev might have gone 912 * away by this point, and we can't tell what speed it was. 913 */ 914 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 915 xhci_warn(xhci, "Slot %u endpoint %u " 916 "not removed from BW list!\n", 917 slot_id, i); 918 } 919 /* If this is a hub, free the TT(s) from the TT list */ 920 xhci_free_tt_info(xhci, dev, slot_id); 921 /* If necessary, update the number of active TTs on this root port */ 922 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 923 924 if (dev->in_ctx) 925 xhci_free_container_ctx(xhci, dev->in_ctx); 926 if (dev->out_ctx) 927 xhci_free_container_ctx(xhci, dev->out_ctx); 928 929 kfree(xhci->devs[slot_id]); 930 xhci->devs[slot_id] = NULL; 931 } 932 933 /* 934 * Free a virt_device structure. 935 * If the virt_device added a tt_info (a hub) and has children pointing to 936 * that tt_info, then free the child first. Recursive. 937 * We can't rely on udev at this point to find child-parent relationships. 938 */ 939 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 940 { 941 struct xhci_virt_device *vdev; 942 struct list_head *tt_list_head; 943 struct xhci_tt_bw_info *tt_info, *next; 944 int i; 945 946 vdev = xhci->devs[slot_id]; 947 if (!vdev) 948 return; 949 950 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 951 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 952 /* is this a hub device that added a tt_info to the tts list */ 953 if (tt_info->slot_id == slot_id) { 954 /* are any devices using this tt_info? */ 955 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 956 vdev = xhci->devs[i]; 957 if (vdev && (vdev->tt_info == tt_info)) 958 xhci_free_virt_devices_depth_first( 959 xhci, i); 960 } 961 } 962 } 963 /* we are now at a leaf device */ 964 xhci_free_virt_device(xhci, slot_id); 965 } 966 967 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 968 struct usb_device *udev, gfp_t flags) 969 { 970 struct xhci_virt_device *dev; 971 int i; 972 973 /* Slot ID 0 is reserved */ 974 if (slot_id == 0 || xhci->devs[slot_id]) { 975 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 976 return 0; 977 } 978 979 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 980 if (!xhci->devs[slot_id]) 981 return 0; 982 dev = xhci->devs[slot_id]; 983 984 /* Allocate the (output) device context that will be used in the HC. */ 985 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 986 if (!dev->out_ctx) 987 goto fail; 988 989 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 990 (unsigned long long)dev->out_ctx->dma); 991 992 /* Allocate the (input) device context for address device command */ 993 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 994 if (!dev->in_ctx) 995 goto fail; 996 997 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 998 (unsigned long long)dev->in_ctx->dma); 999 1000 /* Initialize the cancellation list and watchdog timers for each ep */ 1001 for (i = 0; i < 31; i++) { 1002 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1003 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1004 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1005 } 1006 1007 /* Allocate endpoint 0 ring */ 1008 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1009 if (!dev->eps[0].ring) 1010 goto fail; 1011 1012 dev->udev = udev; 1013 1014 /* Point to output device context in dcbaa. */ 1015 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1016 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1017 slot_id, 1018 &xhci->dcbaa->dev_context_ptrs[slot_id], 1019 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1020 1021 trace_xhci_alloc_virt_device(dev); 1022 1023 return 1; 1024 fail: 1025 xhci_free_virt_device(xhci, slot_id); 1026 return 0; 1027 } 1028 1029 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1030 struct usb_device *udev) 1031 { 1032 struct xhci_virt_device *virt_dev; 1033 struct xhci_ep_ctx *ep0_ctx; 1034 struct xhci_ring *ep_ring; 1035 1036 virt_dev = xhci->devs[udev->slot_id]; 1037 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1038 ep_ring = virt_dev->eps[0].ring; 1039 /* 1040 * FIXME we don't keep track of the dequeue pointer very well after a 1041 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1042 * host to our enqueue pointer. This should only be called after a 1043 * configured device has reset, so all control transfers should have 1044 * been completed or cancelled before the reset. 1045 */ 1046 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1047 ep_ring->enqueue) 1048 | ep_ring->cycle_state); 1049 } 1050 1051 /* 1052 * The xHCI roothub may have ports of differing speeds in any order in the port 1053 * status registers. xhci->port_array provides an array of the port speed for 1054 * each offset into the port status registers. 1055 * 1056 * The xHCI hardware wants to know the roothub port number that the USB device 1057 * is attached to (or the roothub port its ancestor hub is attached to). All we 1058 * know is the index of that port under either the USB 2.0 or the USB 3.0 1059 * roothub, but that doesn't give us the real index into the HW port status 1060 * registers. Call xhci_find_raw_port_number() to get real index. 1061 */ 1062 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1063 struct usb_device *udev) 1064 { 1065 struct usb_device *top_dev; 1066 struct usb_hcd *hcd; 1067 1068 if (udev->speed >= USB_SPEED_SUPER) 1069 hcd = xhci->shared_hcd; 1070 else 1071 hcd = xhci->main_hcd; 1072 1073 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1074 top_dev = top_dev->parent) 1075 /* Found device below root hub */; 1076 1077 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1078 } 1079 1080 /* Setup an xHCI virtual device for a Set Address command */ 1081 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1082 { 1083 struct xhci_virt_device *dev; 1084 struct xhci_ep_ctx *ep0_ctx; 1085 struct xhci_slot_ctx *slot_ctx; 1086 u32 port_num; 1087 u32 max_packets; 1088 struct usb_device *top_dev; 1089 1090 dev = xhci->devs[udev->slot_id]; 1091 /* Slot ID 0 is reserved */ 1092 if (udev->slot_id == 0 || !dev) { 1093 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1094 udev->slot_id); 1095 return -EINVAL; 1096 } 1097 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1098 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1099 1100 /* 3) Only the control endpoint is valid - one endpoint context */ 1101 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1102 switch (udev->speed) { 1103 case USB_SPEED_SUPER_PLUS: 1104 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1105 max_packets = MAX_PACKET(512); 1106 break; 1107 case USB_SPEED_SUPER: 1108 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1109 max_packets = MAX_PACKET(512); 1110 break; 1111 case USB_SPEED_HIGH: 1112 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1113 max_packets = MAX_PACKET(64); 1114 break; 1115 /* USB core guesses at a 64-byte max packet first for FS devices */ 1116 case USB_SPEED_FULL: 1117 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1118 max_packets = MAX_PACKET(64); 1119 break; 1120 case USB_SPEED_LOW: 1121 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1122 max_packets = MAX_PACKET(8); 1123 break; 1124 case USB_SPEED_WIRELESS: 1125 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1126 return -EINVAL; 1127 break; 1128 default: 1129 /* Speed was set earlier, this shouldn't happen. */ 1130 return -EINVAL; 1131 } 1132 /* Find the root hub port this device is under */ 1133 port_num = xhci_find_real_port_number(xhci, udev); 1134 if (!port_num) 1135 return -EINVAL; 1136 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1137 /* Set the port number in the virtual_device to the faked port number */ 1138 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1139 top_dev = top_dev->parent) 1140 /* Found device below root hub */; 1141 dev->fake_port = top_dev->portnum; 1142 dev->real_port = port_num; 1143 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1144 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1145 1146 /* Find the right bandwidth table that this device will be a part of. 1147 * If this is a full speed device attached directly to a root port (or a 1148 * decendent of one), it counts as a primary bandwidth domain, not a 1149 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1150 * will never be created for the HS root hub. 1151 */ 1152 if (!udev->tt || !udev->tt->hub->parent) { 1153 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1154 } else { 1155 struct xhci_root_port_bw_info *rh_bw; 1156 struct xhci_tt_bw_info *tt_bw; 1157 1158 rh_bw = &xhci->rh_bw[port_num - 1]; 1159 /* Find the right TT. */ 1160 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1161 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1162 continue; 1163 1164 if (!dev->udev->tt->multi || 1165 (udev->tt->multi && 1166 tt_bw->ttport == dev->udev->ttport)) { 1167 dev->bw_table = &tt_bw->bw_table; 1168 dev->tt_info = tt_bw; 1169 break; 1170 } 1171 } 1172 if (!dev->tt_info) 1173 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1174 } 1175 1176 /* Is this a LS/FS device under an external HS hub? */ 1177 if (udev->tt && udev->tt->hub->parent) { 1178 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1179 (udev->ttport << 8)); 1180 if (udev->tt->multi) 1181 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1182 } 1183 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1184 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1185 1186 /* Step 4 - ring already allocated */ 1187 /* Step 5 */ 1188 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1189 1190 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1191 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1192 max_packets); 1193 1194 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1195 dev->eps[0].ring->cycle_state); 1196 1197 trace_xhci_setup_addressable_virt_device(dev); 1198 1199 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1200 1201 return 0; 1202 } 1203 1204 /* 1205 * Convert interval expressed as 2^(bInterval - 1) == interval into 1206 * straight exponent value 2^n == interval. 1207 * 1208 */ 1209 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1210 struct usb_host_endpoint *ep) 1211 { 1212 unsigned int interval; 1213 1214 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1215 if (interval != ep->desc.bInterval - 1) 1216 dev_warn(&udev->dev, 1217 "ep %#x - rounding interval to %d %sframes\n", 1218 ep->desc.bEndpointAddress, 1219 1 << interval, 1220 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1221 1222 if (udev->speed == USB_SPEED_FULL) { 1223 /* 1224 * Full speed isoc endpoints specify interval in frames, 1225 * not microframes. We are using microframes everywhere, 1226 * so adjust accordingly. 1227 */ 1228 interval += 3; /* 1 frame = 2^3 uframes */ 1229 } 1230 1231 return interval; 1232 } 1233 1234 /* 1235 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1236 * microframes, rounded down to nearest power of 2. 1237 */ 1238 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1239 struct usb_host_endpoint *ep, unsigned int desc_interval, 1240 unsigned int min_exponent, unsigned int max_exponent) 1241 { 1242 unsigned int interval; 1243 1244 interval = fls(desc_interval) - 1; 1245 interval = clamp_val(interval, min_exponent, max_exponent); 1246 if ((1 << interval) != desc_interval) 1247 dev_dbg(&udev->dev, 1248 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1249 ep->desc.bEndpointAddress, 1250 1 << interval, 1251 desc_interval); 1252 1253 return interval; 1254 } 1255 1256 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1257 struct usb_host_endpoint *ep) 1258 { 1259 if (ep->desc.bInterval == 0) 1260 return 0; 1261 return xhci_microframes_to_exponent(udev, ep, 1262 ep->desc.bInterval, 0, 15); 1263 } 1264 1265 1266 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1267 struct usb_host_endpoint *ep) 1268 { 1269 return xhci_microframes_to_exponent(udev, ep, 1270 ep->desc.bInterval * 8, 3, 10); 1271 } 1272 1273 /* Return the polling or NAK interval. 1274 * 1275 * The polling interval is expressed in "microframes". If xHCI's Interval field 1276 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1277 * 1278 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1279 * is set to 0. 1280 */ 1281 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1282 struct usb_host_endpoint *ep) 1283 { 1284 unsigned int interval = 0; 1285 1286 switch (udev->speed) { 1287 case USB_SPEED_HIGH: 1288 /* Max NAK rate */ 1289 if (usb_endpoint_xfer_control(&ep->desc) || 1290 usb_endpoint_xfer_bulk(&ep->desc)) { 1291 interval = xhci_parse_microframe_interval(udev, ep); 1292 break; 1293 } 1294 /* Fall through - SS and HS isoc/int have same decoding */ 1295 1296 case USB_SPEED_SUPER_PLUS: 1297 case USB_SPEED_SUPER: 1298 if (usb_endpoint_xfer_int(&ep->desc) || 1299 usb_endpoint_xfer_isoc(&ep->desc)) { 1300 interval = xhci_parse_exponent_interval(udev, ep); 1301 } 1302 break; 1303 1304 case USB_SPEED_FULL: 1305 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1306 interval = xhci_parse_exponent_interval(udev, ep); 1307 break; 1308 } 1309 /* 1310 * Fall through for interrupt endpoint interval decoding 1311 * since it uses the same rules as low speed interrupt 1312 * endpoints. 1313 */ 1314 1315 case USB_SPEED_LOW: 1316 if (usb_endpoint_xfer_int(&ep->desc) || 1317 usb_endpoint_xfer_isoc(&ep->desc)) { 1318 1319 interval = xhci_parse_frame_interval(udev, ep); 1320 } 1321 break; 1322 1323 default: 1324 BUG(); 1325 } 1326 return interval; 1327 } 1328 1329 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1330 * High speed endpoint descriptors can define "the number of additional 1331 * transaction opportunities per microframe", but that goes in the Max Burst 1332 * endpoint context field. 1333 */ 1334 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1335 struct usb_host_endpoint *ep) 1336 { 1337 if (udev->speed < USB_SPEED_SUPER || 1338 !usb_endpoint_xfer_isoc(&ep->desc)) 1339 return 0; 1340 return ep->ss_ep_comp.bmAttributes; 1341 } 1342 1343 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1344 struct usb_host_endpoint *ep) 1345 { 1346 /* Super speed and Plus have max burst in ep companion desc */ 1347 if (udev->speed >= USB_SPEED_SUPER) 1348 return ep->ss_ep_comp.bMaxBurst; 1349 1350 if (udev->speed == USB_SPEED_HIGH && 1351 (usb_endpoint_xfer_isoc(&ep->desc) || 1352 usb_endpoint_xfer_int(&ep->desc))) 1353 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1354 1355 return 0; 1356 } 1357 1358 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1359 { 1360 int in; 1361 1362 in = usb_endpoint_dir_in(&ep->desc); 1363 1364 switch (usb_endpoint_type(&ep->desc)) { 1365 case USB_ENDPOINT_XFER_CONTROL: 1366 return CTRL_EP; 1367 case USB_ENDPOINT_XFER_BULK: 1368 return in ? BULK_IN_EP : BULK_OUT_EP; 1369 case USB_ENDPOINT_XFER_ISOC: 1370 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1371 case USB_ENDPOINT_XFER_INT: 1372 return in ? INT_IN_EP : INT_OUT_EP; 1373 } 1374 return 0; 1375 } 1376 1377 /* Return the maximum endpoint service interval time (ESIT) payload. 1378 * Basically, this is the maxpacket size, multiplied by the burst size 1379 * and mult size. 1380 */ 1381 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1382 struct usb_host_endpoint *ep) 1383 { 1384 int max_burst; 1385 int max_packet; 1386 1387 /* Only applies for interrupt or isochronous endpoints */ 1388 if (usb_endpoint_xfer_control(&ep->desc) || 1389 usb_endpoint_xfer_bulk(&ep->desc)) 1390 return 0; 1391 1392 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1393 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1394 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1395 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1396 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1397 else if (udev->speed >= USB_SPEED_SUPER) 1398 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1399 1400 max_packet = usb_endpoint_maxp(&ep->desc); 1401 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1402 /* A 0 in max burst means 1 transfer per ESIT */ 1403 return max_packet * max_burst; 1404 } 1405 1406 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1407 * Drivers will have to call usb_alloc_streams() to do that. 1408 */ 1409 int xhci_endpoint_init(struct xhci_hcd *xhci, 1410 struct xhci_virt_device *virt_dev, 1411 struct usb_device *udev, 1412 struct usb_host_endpoint *ep, 1413 gfp_t mem_flags) 1414 { 1415 unsigned int ep_index; 1416 struct xhci_ep_ctx *ep_ctx; 1417 struct xhci_ring *ep_ring; 1418 unsigned int max_packet; 1419 enum xhci_ring_type ring_type; 1420 u32 max_esit_payload; 1421 u32 endpoint_type; 1422 unsigned int max_burst; 1423 unsigned int interval; 1424 unsigned int mult; 1425 unsigned int avg_trb_len; 1426 unsigned int err_count = 0; 1427 1428 ep_index = xhci_get_endpoint_index(&ep->desc); 1429 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1430 1431 endpoint_type = xhci_get_endpoint_type(ep); 1432 if (!endpoint_type) 1433 return -EINVAL; 1434 1435 ring_type = usb_endpoint_type(&ep->desc); 1436 1437 /* 1438 * Get values to fill the endpoint context, mostly from ep descriptor. 1439 * The average TRB buffer lengt for bulk endpoints is unclear as we 1440 * have no clue on scatter gather list entry size. For Isoc and Int, 1441 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1442 */ 1443 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1444 interval = xhci_get_endpoint_interval(udev, ep); 1445 1446 /* Periodic endpoint bInterval limit quirk */ 1447 if (usb_endpoint_xfer_int(&ep->desc) || 1448 usb_endpoint_xfer_isoc(&ep->desc)) { 1449 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1450 udev->speed >= USB_SPEED_HIGH && 1451 interval >= 7) { 1452 interval = 6; 1453 } 1454 } 1455 1456 mult = xhci_get_endpoint_mult(udev, ep); 1457 max_packet = usb_endpoint_maxp(&ep->desc); 1458 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1459 avg_trb_len = max_esit_payload; 1460 1461 /* FIXME dig Mult and streams info out of ep companion desc */ 1462 1463 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1464 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1465 err_count = 3; 1466 /* Some devices get this wrong */ 1467 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH) 1468 max_packet = 512; 1469 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1470 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1471 avg_trb_len = 8; 1472 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1473 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1474 mult = 0; 1475 1476 /* Set up the endpoint ring */ 1477 virt_dev->eps[ep_index].new_ring = 1478 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1479 if (!virt_dev->eps[ep_index].new_ring) 1480 return -ENOMEM; 1481 1482 virt_dev->eps[ep_index].skip = false; 1483 ep_ring = virt_dev->eps[ep_index].new_ring; 1484 1485 /* Fill the endpoint context */ 1486 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1487 EP_INTERVAL(interval) | 1488 EP_MULT(mult)); 1489 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1490 MAX_PACKET(max_packet) | 1491 MAX_BURST(max_burst) | 1492 ERROR_COUNT(err_count)); 1493 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1494 ep_ring->cycle_state); 1495 1496 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1497 EP_AVG_TRB_LENGTH(avg_trb_len)); 1498 1499 /* FIXME Debug endpoint context */ 1500 return 0; 1501 } 1502 1503 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1504 struct xhci_virt_device *virt_dev, 1505 struct usb_host_endpoint *ep) 1506 { 1507 unsigned int ep_index; 1508 struct xhci_ep_ctx *ep_ctx; 1509 1510 ep_index = xhci_get_endpoint_index(&ep->desc); 1511 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1512 1513 ep_ctx->ep_info = 0; 1514 ep_ctx->ep_info2 = 0; 1515 ep_ctx->deq = 0; 1516 ep_ctx->tx_info = 0; 1517 /* Don't free the endpoint ring until the set interface or configuration 1518 * request succeeds. 1519 */ 1520 } 1521 1522 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1523 { 1524 bw_info->ep_interval = 0; 1525 bw_info->mult = 0; 1526 bw_info->num_packets = 0; 1527 bw_info->max_packet_size = 0; 1528 bw_info->type = 0; 1529 bw_info->max_esit_payload = 0; 1530 } 1531 1532 void xhci_update_bw_info(struct xhci_hcd *xhci, 1533 struct xhci_container_ctx *in_ctx, 1534 struct xhci_input_control_ctx *ctrl_ctx, 1535 struct xhci_virt_device *virt_dev) 1536 { 1537 struct xhci_bw_info *bw_info; 1538 struct xhci_ep_ctx *ep_ctx; 1539 unsigned int ep_type; 1540 int i; 1541 1542 for (i = 1; i < 31; i++) { 1543 bw_info = &virt_dev->eps[i].bw_info; 1544 1545 /* We can't tell what endpoint type is being dropped, but 1546 * unconditionally clearing the bandwidth info for non-periodic 1547 * endpoints should be harmless because the info will never be 1548 * set in the first place. 1549 */ 1550 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1551 /* Dropped endpoint */ 1552 xhci_clear_endpoint_bw_info(bw_info); 1553 continue; 1554 } 1555 1556 if (EP_IS_ADDED(ctrl_ctx, i)) { 1557 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1558 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1559 1560 /* Ignore non-periodic endpoints */ 1561 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1562 ep_type != ISOC_IN_EP && 1563 ep_type != INT_IN_EP) 1564 continue; 1565 1566 /* Added or changed endpoint */ 1567 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1568 le32_to_cpu(ep_ctx->ep_info)); 1569 /* Number of packets and mult are zero-based in the 1570 * input context, but we want one-based for the 1571 * interval table. 1572 */ 1573 bw_info->mult = CTX_TO_EP_MULT( 1574 le32_to_cpu(ep_ctx->ep_info)) + 1; 1575 bw_info->num_packets = CTX_TO_MAX_BURST( 1576 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1577 bw_info->max_packet_size = MAX_PACKET_DECODED( 1578 le32_to_cpu(ep_ctx->ep_info2)); 1579 bw_info->type = ep_type; 1580 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1581 le32_to_cpu(ep_ctx->tx_info)); 1582 } 1583 } 1584 } 1585 1586 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1587 * Useful when you want to change one particular aspect of the endpoint and then 1588 * issue a configure endpoint command. 1589 */ 1590 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1591 struct xhci_container_ctx *in_ctx, 1592 struct xhci_container_ctx *out_ctx, 1593 unsigned int ep_index) 1594 { 1595 struct xhci_ep_ctx *out_ep_ctx; 1596 struct xhci_ep_ctx *in_ep_ctx; 1597 1598 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1599 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1600 1601 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1602 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1603 in_ep_ctx->deq = out_ep_ctx->deq; 1604 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1605 } 1606 1607 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1608 * Useful when you want to change one particular aspect of the endpoint and then 1609 * issue a configure endpoint command. Only the context entries field matters, 1610 * but we'll copy the whole thing anyway. 1611 */ 1612 void xhci_slot_copy(struct xhci_hcd *xhci, 1613 struct xhci_container_ctx *in_ctx, 1614 struct xhci_container_ctx *out_ctx) 1615 { 1616 struct xhci_slot_ctx *in_slot_ctx; 1617 struct xhci_slot_ctx *out_slot_ctx; 1618 1619 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1620 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1621 1622 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1623 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1624 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1625 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1626 } 1627 1628 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1629 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1630 { 1631 int i; 1632 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1633 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1634 1635 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1636 "Allocating %d scratchpad buffers", num_sp); 1637 1638 if (!num_sp) 1639 return 0; 1640 1641 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1642 if (!xhci->scratchpad) 1643 goto fail_sp; 1644 1645 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1646 num_sp * sizeof(u64), 1647 &xhci->scratchpad->sp_dma, flags); 1648 if (!xhci->scratchpad->sp_array) 1649 goto fail_sp2; 1650 1651 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1652 if (!xhci->scratchpad->sp_buffers) 1653 goto fail_sp3; 1654 1655 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1656 for (i = 0; i < num_sp; i++) { 1657 dma_addr_t dma; 1658 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma, 1659 flags); 1660 if (!buf) 1661 goto fail_sp4; 1662 1663 xhci->scratchpad->sp_array[i] = dma; 1664 xhci->scratchpad->sp_buffers[i] = buf; 1665 } 1666 1667 return 0; 1668 1669 fail_sp4: 1670 for (i = i - 1; i >= 0; i--) { 1671 dma_free_coherent(dev, xhci->page_size, 1672 xhci->scratchpad->sp_buffers[i], 1673 xhci->scratchpad->sp_array[i]); 1674 } 1675 1676 kfree(xhci->scratchpad->sp_buffers); 1677 1678 fail_sp3: 1679 dma_free_coherent(dev, num_sp * sizeof(u64), 1680 xhci->scratchpad->sp_array, 1681 xhci->scratchpad->sp_dma); 1682 1683 fail_sp2: 1684 kfree(xhci->scratchpad); 1685 xhci->scratchpad = NULL; 1686 1687 fail_sp: 1688 return -ENOMEM; 1689 } 1690 1691 static void scratchpad_free(struct xhci_hcd *xhci) 1692 { 1693 int num_sp; 1694 int i; 1695 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1696 1697 if (!xhci->scratchpad) 1698 return; 1699 1700 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1701 1702 for (i = 0; i < num_sp; i++) { 1703 dma_free_coherent(dev, xhci->page_size, 1704 xhci->scratchpad->sp_buffers[i], 1705 xhci->scratchpad->sp_array[i]); 1706 } 1707 kfree(xhci->scratchpad->sp_buffers); 1708 dma_free_coherent(dev, num_sp * sizeof(u64), 1709 xhci->scratchpad->sp_array, 1710 xhci->scratchpad->sp_dma); 1711 kfree(xhci->scratchpad); 1712 xhci->scratchpad = NULL; 1713 } 1714 1715 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1716 bool allocate_in_ctx, bool allocate_completion, 1717 gfp_t mem_flags) 1718 { 1719 struct xhci_command *command; 1720 1721 command = kzalloc(sizeof(*command), mem_flags); 1722 if (!command) 1723 return NULL; 1724 1725 if (allocate_in_ctx) { 1726 command->in_ctx = 1727 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1728 mem_flags); 1729 if (!command->in_ctx) { 1730 kfree(command); 1731 return NULL; 1732 } 1733 } 1734 1735 if (allocate_completion) { 1736 command->completion = 1737 kzalloc(sizeof(struct completion), mem_flags); 1738 if (!command->completion) { 1739 xhci_free_container_ctx(xhci, command->in_ctx); 1740 kfree(command); 1741 return NULL; 1742 } 1743 init_completion(command->completion); 1744 } 1745 1746 command->status = 0; 1747 INIT_LIST_HEAD(&command->cmd_list); 1748 return command; 1749 } 1750 1751 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1752 { 1753 kfree(urb_priv); 1754 } 1755 1756 void xhci_free_command(struct xhci_hcd *xhci, 1757 struct xhci_command *command) 1758 { 1759 xhci_free_container_ctx(xhci, 1760 command->in_ctx); 1761 kfree(command->completion); 1762 kfree(command); 1763 } 1764 1765 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1766 { 1767 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1768 int size; 1769 int i, j, num_ports; 1770 1771 cancel_delayed_work_sync(&xhci->cmd_timer); 1772 1773 /* Free the Event Ring Segment Table and the actual Event Ring */ 1774 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1775 if (xhci->erst.entries) 1776 dma_free_coherent(dev, size, 1777 xhci->erst.entries, xhci->erst.erst_dma_addr); 1778 xhci->erst.entries = NULL; 1779 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); 1780 if (xhci->event_ring) 1781 xhci_ring_free(xhci, xhci->event_ring); 1782 xhci->event_ring = NULL; 1783 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1784 1785 if (xhci->lpm_command) 1786 xhci_free_command(xhci, xhci->lpm_command); 1787 xhci->lpm_command = NULL; 1788 if (xhci->cmd_ring) 1789 xhci_ring_free(xhci, xhci->cmd_ring); 1790 xhci->cmd_ring = NULL; 1791 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1792 xhci_cleanup_command_queue(xhci); 1793 1794 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1795 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1796 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1797 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1798 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1799 while (!list_empty(ep)) 1800 list_del_init(ep->next); 1801 } 1802 } 1803 1804 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1805 xhci_free_virt_devices_depth_first(xhci, i); 1806 1807 dma_pool_destroy(xhci->segment_pool); 1808 xhci->segment_pool = NULL; 1809 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1810 1811 dma_pool_destroy(xhci->device_pool); 1812 xhci->device_pool = NULL; 1813 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1814 1815 dma_pool_destroy(xhci->small_streams_pool); 1816 xhci->small_streams_pool = NULL; 1817 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1818 "Freed small stream array pool"); 1819 1820 dma_pool_destroy(xhci->medium_streams_pool); 1821 xhci->medium_streams_pool = NULL; 1822 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1823 "Freed medium stream array pool"); 1824 1825 if (xhci->dcbaa) 1826 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1827 xhci->dcbaa, xhci->dcbaa->dma); 1828 xhci->dcbaa = NULL; 1829 1830 scratchpad_free(xhci); 1831 1832 if (!xhci->rh_bw) 1833 goto no_bw; 1834 1835 for (i = 0; i < num_ports; i++) { 1836 struct xhci_tt_bw_info *tt, *n; 1837 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1838 list_del(&tt->tt_list); 1839 kfree(tt); 1840 } 1841 } 1842 1843 no_bw: 1844 xhci->cmd_ring_reserved_trbs = 0; 1845 xhci->num_usb2_ports = 0; 1846 xhci->num_usb3_ports = 0; 1847 xhci->num_active_eps = 0; 1848 kfree(xhci->usb2_ports); 1849 kfree(xhci->usb3_ports); 1850 kfree(xhci->port_array); 1851 kfree(xhci->rh_bw); 1852 kfree(xhci->ext_caps); 1853 1854 xhci->usb2_ports = NULL; 1855 xhci->usb3_ports = NULL; 1856 xhci->port_array = NULL; 1857 xhci->rh_bw = NULL; 1858 xhci->ext_caps = NULL; 1859 1860 xhci->page_size = 0; 1861 xhci->page_shift = 0; 1862 xhci->bus_state[0].bus_suspended = 0; 1863 xhci->bus_state[1].bus_suspended = 0; 1864 } 1865 1866 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1867 struct xhci_segment *input_seg, 1868 union xhci_trb *start_trb, 1869 union xhci_trb *end_trb, 1870 dma_addr_t input_dma, 1871 struct xhci_segment *result_seg, 1872 char *test_name, int test_number) 1873 { 1874 unsigned long long start_dma; 1875 unsigned long long end_dma; 1876 struct xhci_segment *seg; 1877 1878 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1879 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1880 1881 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1882 if (seg != result_seg) { 1883 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1884 test_name, test_number); 1885 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1886 "input DMA 0x%llx\n", 1887 input_seg, 1888 (unsigned long long) input_dma); 1889 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1890 "ending TRB %p (0x%llx DMA)\n", 1891 start_trb, start_dma, 1892 end_trb, end_dma); 1893 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1894 result_seg, seg); 1895 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1896 true); 1897 return -1; 1898 } 1899 return 0; 1900 } 1901 1902 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1903 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1904 { 1905 struct { 1906 dma_addr_t input_dma; 1907 struct xhci_segment *result_seg; 1908 } simple_test_vector [] = { 1909 /* A zeroed DMA field should fail */ 1910 { 0, NULL }, 1911 /* One TRB before the ring start should fail */ 1912 { xhci->event_ring->first_seg->dma - 16, NULL }, 1913 /* One byte before the ring start should fail */ 1914 { xhci->event_ring->first_seg->dma - 1, NULL }, 1915 /* Starting TRB should succeed */ 1916 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1917 /* Ending TRB should succeed */ 1918 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1919 xhci->event_ring->first_seg }, 1920 /* One byte after the ring end should fail */ 1921 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1922 /* One TRB after the ring end should fail */ 1923 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1924 /* An address of all ones should fail */ 1925 { (dma_addr_t) (~0), NULL }, 1926 }; 1927 struct { 1928 struct xhci_segment *input_seg; 1929 union xhci_trb *start_trb; 1930 union xhci_trb *end_trb; 1931 dma_addr_t input_dma; 1932 struct xhci_segment *result_seg; 1933 } complex_test_vector [] = { 1934 /* Test feeding a valid DMA address from a different ring */ 1935 { .input_seg = xhci->event_ring->first_seg, 1936 .start_trb = xhci->event_ring->first_seg->trbs, 1937 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1938 .input_dma = xhci->cmd_ring->first_seg->dma, 1939 .result_seg = NULL, 1940 }, 1941 /* Test feeding a valid end TRB from a different ring */ 1942 { .input_seg = xhci->event_ring->first_seg, 1943 .start_trb = xhci->event_ring->first_seg->trbs, 1944 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1945 .input_dma = xhci->cmd_ring->first_seg->dma, 1946 .result_seg = NULL, 1947 }, 1948 /* Test feeding a valid start and end TRB from a different ring */ 1949 { .input_seg = xhci->event_ring->first_seg, 1950 .start_trb = xhci->cmd_ring->first_seg->trbs, 1951 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1952 .input_dma = xhci->cmd_ring->first_seg->dma, 1953 .result_seg = NULL, 1954 }, 1955 /* TRB in this ring, but after this TD */ 1956 { .input_seg = xhci->event_ring->first_seg, 1957 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1958 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1959 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1960 .result_seg = NULL, 1961 }, 1962 /* TRB in this ring, but before this TD */ 1963 { .input_seg = xhci->event_ring->first_seg, 1964 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1965 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1966 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1967 .result_seg = NULL, 1968 }, 1969 /* TRB in this ring, but after this wrapped TD */ 1970 { .input_seg = xhci->event_ring->first_seg, 1971 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1972 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1973 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1974 .result_seg = NULL, 1975 }, 1976 /* TRB in this ring, but before this wrapped TD */ 1977 { .input_seg = xhci->event_ring->first_seg, 1978 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1979 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1980 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 1981 .result_seg = NULL, 1982 }, 1983 /* TRB not in this ring, and we have a wrapped TD */ 1984 { .input_seg = xhci->event_ring->first_seg, 1985 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1986 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1987 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 1988 .result_seg = NULL, 1989 }, 1990 }; 1991 1992 unsigned int num_tests; 1993 int i, ret; 1994 1995 num_tests = ARRAY_SIZE(simple_test_vector); 1996 for (i = 0; i < num_tests; i++) { 1997 ret = xhci_test_trb_in_td(xhci, 1998 xhci->event_ring->first_seg, 1999 xhci->event_ring->first_seg->trbs, 2000 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2001 simple_test_vector[i].input_dma, 2002 simple_test_vector[i].result_seg, 2003 "Simple", i); 2004 if (ret < 0) 2005 return ret; 2006 } 2007 2008 num_tests = ARRAY_SIZE(complex_test_vector); 2009 for (i = 0; i < num_tests; i++) { 2010 ret = xhci_test_trb_in_td(xhci, 2011 complex_test_vector[i].input_seg, 2012 complex_test_vector[i].start_trb, 2013 complex_test_vector[i].end_trb, 2014 complex_test_vector[i].input_dma, 2015 complex_test_vector[i].result_seg, 2016 "Complex", i); 2017 if (ret < 0) 2018 return ret; 2019 } 2020 xhci_dbg(xhci, "TRB math tests passed.\n"); 2021 return 0; 2022 } 2023 2024 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2025 { 2026 u64 temp; 2027 dma_addr_t deq; 2028 2029 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2030 xhci->event_ring->dequeue); 2031 if (deq == 0 && !in_interrupt()) 2032 xhci_warn(xhci, "WARN something wrong with SW event ring " 2033 "dequeue ptr.\n"); 2034 /* Update HC event ring dequeue pointer */ 2035 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2036 temp &= ERST_PTR_MASK; 2037 /* Don't clear the EHB bit (which is RW1C) because 2038 * there might be more events to service. 2039 */ 2040 temp &= ~ERST_EHB; 2041 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2042 "// Write event ring dequeue pointer, " 2043 "preserving EHB bit"); 2044 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2045 &xhci->ir_set->erst_dequeue); 2046 } 2047 2048 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2049 __le32 __iomem *addr, int max_caps) 2050 { 2051 u32 temp, port_offset, port_count; 2052 int i; 2053 u8 major_revision, minor_revision; 2054 struct xhci_hub *rhub; 2055 2056 temp = readl(addr); 2057 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2058 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2059 2060 if (major_revision == 0x03) { 2061 rhub = &xhci->usb3_rhub; 2062 } else if (major_revision <= 0x02) { 2063 rhub = &xhci->usb2_rhub; 2064 } else { 2065 xhci_warn(xhci, "Ignoring unknown port speed, " 2066 "Ext Cap %p, revision = 0x%x\n", 2067 addr, major_revision); 2068 /* Ignoring port protocol we can't understand. FIXME */ 2069 return; 2070 } 2071 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2072 2073 if (rhub->min_rev < minor_revision) 2074 rhub->min_rev = minor_revision; 2075 2076 /* Port offset and count in the third dword, see section 7.2 */ 2077 temp = readl(addr + 2); 2078 port_offset = XHCI_EXT_PORT_OFF(temp); 2079 port_count = XHCI_EXT_PORT_COUNT(temp); 2080 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2081 "Ext Cap %p, port offset = %u, " 2082 "count = %u, revision = 0x%x", 2083 addr, port_offset, port_count, major_revision); 2084 /* Port count includes the current port offset */ 2085 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2086 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2087 return; 2088 2089 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp); 2090 if (rhub->psi_count) { 2091 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi), 2092 GFP_KERNEL); 2093 if (!rhub->psi) 2094 rhub->psi_count = 0; 2095 2096 rhub->psi_uid_count++; 2097 for (i = 0; i < rhub->psi_count; i++) { 2098 rhub->psi[i] = readl(addr + 4 + i); 2099 2100 /* count unique ID values, two consecutive entries can 2101 * have the same ID if link is assymetric 2102 */ 2103 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) != 2104 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1]))) 2105 rhub->psi_uid_count++; 2106 2107 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2108 XHCI_EXT_PORT_PSIV(rhub->psi[i]), 2109 XHCI_EXT_PORT_PSIE(rhub->psi[i]), 2110 XHCI_EXT_PORT_PLT(rhub->psi[i]), 2111 XHCI_EXT_PORT_PFD(rhub->psi[i]), 2112 XHCI_EXT_PORT_LP(rhub->psi[i]), 2113 XHCI_EXT_PORT_PSIM(rhub->psi[i])); 2114 } 2115 } 2116 /* cache usb2 port capabilities */ 2117 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2118 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2119 2120 /* Check the host's USB2 LPM capability */ 2121 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2122 (temp & XHCI_L1C)) { 2123 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2124 "xHCI 0.96: support USB2 software lpm"); 2125 xhci->sw_lpm_support = 1; 2126 } 2127 2128 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2129 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2130 "xHCI 1.0: support USB2 software lpm"); 2131 xhci->sw_lpm_support = 1; 2132 if (temp & XHCI_HLC) { 2133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2134 "xHCI 1.0: support USB2 hardware lpm"); 2135 xhci->hw_lpm_support = 1; 2136 } 2137 } 2138 2139 port_offset--; 2140 for (i = port_offset; i < (port_offset + port_count); i++) { 2141 /* Duplicate entry. Ignore the port if the revisions differ. */ 2142 if (xhci->port_array[i] != 0) { 2143 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2144 " port %u\n", addr, i); 2145 xhci_warn(xhci, "Port was marked as USB %u, " 2146 "duplicated as USB %u\n", 2147 xhci->port_array[i], major_revision); 2148 /* Only adjust the roothub port counts if we haven't 2149 * found a similar duplicate. 2150 */ 2151 if (xhci->port_array[i] != major_revision && 2152 xhci->port_array[i] != DUPLICATE_ENTRY) { 2153 if (xhci->port_array[i] == 0x03) 2154 xhci->num_usb3_ports--; 2155 else 2156 xhci->num_usb2_ports--; 2157 xhci->port_array[i] = DUPLICATE_ENTRY; 2158 } 2159 /* FIXME: Should we disable the port? */ 2160 continue; 2161 } 2162 xhci->port_array[i] = major_revision; 2163 if (major_revision == 0x03) 2164 xhci->num_usb3_ports++; 2165 else 2166 xhci->num_usb2_ports++; 2167 } 2168 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2169 } 2170 2171 /* 2172 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2173 * specify what speeds each port is supposed to be. We can't count on the port 2174 * speed bits in the PORTSC register being correct until a device is connected, 2175 * but we need to set up the two fake roothubs with the correct number of USB 2176 * 3.0 and USB 2.0 ports at host controller initialization time. 2177 */ 2178 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2179 { 2180 void __iomem *base; 2181 u32 offset; 2182 unsigned int num_ports; 2183 int i, j, port_index; 2184 int cap_count = 0; 2185 u32 cap_start; 2186 2187 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2188 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2189 if (!xhci->port_array) 2190 return -ENOMEM; 2191 2192 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2193 if (!xhci->rh_bw) 2194 return -ENOMEM; 2195 for (i = 0; i < num_ports; i++) { 2196 struct xhci_interval_bw_table *bw_table; 2197 2198 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2199 bw_table = &xhci->rh_bw[i].bw_table; 2200 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2201 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2202 } 2203 base = &xhci->cap_regs->hc_capbase; 2204 2205 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2206 if (!cap_start) { 2207 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2208 return -ENODEV; 2209 } 2210 2211 offset = cap_start; 2212 /* count extended protocol capability entries for later caching */ 2213 while (offset) { 2214 cap_count++; 2215 offset = xhci_find_next_ext_cap(base, offset, 2216 XHCI_EXT_CAPS_PROTOCOL); 2217 } 2218 2219 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2220 if (!xhci->ext_caps) 2221 return -ENOMEM; 2222 2223 offset = cap_start; 2224 2225 while (offset) { 2226 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2227 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports) 2228 break; 2229 offset = xhci_find_next_ext_cap(base, offset, 2230 XHCI_EXT_CAPS_PROTOCOL); 2231 } 2232 2233 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2234 xhci_warn(xhci, "No ports on the roothubs?\n"); 2235 return -ENODEV; 2236 } 2237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2238 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2239 xhci->num_usb2_ports, xhci->num_usb3_ports); 2240 2241 /* Place limits on the number of roothub ports so that the hub 2242 * descriptors aren't longer than the USB core will allocate. 2243 */ 2244 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) { 2245 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2246 "Limiting USB 3.0 roothub ports to %u.", 2247 USB_SS_MAXPORTS); 2248 xhci->num_usb3_ports = USB_SS_MAXPORTS; 2249 } 2250 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2251 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2252 "Limiting USB 2.0 roothub ports to %u.", 2253 USB_MAXCHILDREN); 2254 xhci->num_usb2_ports = USB_MAXCHILDREN; 2255 } 2256 2257 /* 2258 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2259 * Not sure how the USB core will handle a hub with no ports... 2260 */ 2261 if (xhci->num_usb2_ports) { 2262 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2263 xhci->num_usb2_ports, flags); 2264 if (!xhci->usb2_ports) 2265 return -ENOMEM; 2266 2267 port_index = 0; 2268 for (i = 0; i < num_ports; i++) { 2269 if (xhci->port_array[i] == 0x03 || 2270 xhci->port_array[i] == 0 || 2271 xhci->port_array[i] == DUPLICATE_ENTRY) 2272 continue; 2273 2274 xhci->usb2_ports[port_index] = 2275 &xhci->op_regs->port_status_base + 2276 NUM_PORT_REGS*i; 2277 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2278 "USB 2.0 port at index %u, " 2279 "addr = %p", i, 2280 xhci->usb2_ports[port_index]); 2281 port_index++; 2282 if (port_index == xhci->num_usb2_ports) 2283 break; 2284 } 2285 } 2286 if (xhci->num_usb3_ports) { 2287 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2288 xhci->num_usb3_ports, flags); 2289 if (!xhci->usb3_ports) 2290 return -ENOMEM; 2291 2292 port_index = 0; 2293 for (i = 0; i < num_ports; i++) 2294 if (xhci->port_array[i] == 0x03) { 2295 xhci->usb3_ports[port_index] = 2296 &xhci->op_regs->port_status_base + 2297 NUM_PORT_REGS*i; 2298 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2299 "USB 3.0 port at index %u, " 2300 "addr = %p", i, 2301 xhci->usb3_ports[port_index]); 2302 port_index++; 2303 if (port_index == xhci->num_usb3_ports) 2304 break; 2305 } 2306 } 2307 return 0; 2308 } 2309 2310 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2311 { 2312 dma_addr_t dma; 2313 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2314 unsigned int val, val2; 2315 u64 val_64; 2316 struct xhci_segment *seg; 2317 u32 page_size, temp; 2318 int i; 2319 2320 INIT_LIST_HEAD(&xhci->cmd_list); 2321 2322 /* init command timeout work */ 2323 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2324 init_completion(&xhci->cmd_ring_stop_completion); 2325 2326 page_size = readl(&xhci->op_regs->page_size); 2327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2328 "Supported page size register = 0x%x", page_size); 2329 for (i = 0; i < 16; i++) { 2330 if ((0x1 & page_size) != 0) 2331 break; 2332 page_size = page_size >> 1; 2333 } 2334 if (i < 16) 2335 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2336 "Supported page size of %iK", (1 << (i+12)) / 1024); 2337 else 2338 xhci_warn(xhci, "WARN: no supported page size\n"); 2339 /* Use 4K pages, since that's common and the minimum the HC supports */ 2340 xhci->page_shift = 12; 2341 xhci->page_size = 1 << xhci->page_shift; 2342 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2343 "HCD page size set to %iK", xhci->page_size / 1024); 2344 2345 /* 2346 * Program the Number of Device Slots Enabled field in the CONFIG 2347 * register with the max value of slots the HC can handle. 2348 */ 2349 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2350 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2351 "// xHC can handle at most %d device slots.", val); 2352 val2 = readl(&xhci->op_regs->config_reg); 2353 val |= (val2 & ~HCS_SLOTS_MASK); 2354 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2355 "// Setting Max device slots reg = 0x%x.", val); 2356 writel(val, &xhci->op_regs->config_reg); 2357 2358 /* 2359 * xHCI section 5.4.6 - doorbell array must be 2360 * "physically contiguous and 64-byte (cache line) aligned". 2361 */ 2362 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2363 flags); 2364 if (!xhci->dcbaa) 2365 goto fail; 2366 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2367 xhci->dcbaa->dma = dma; 2368 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2369 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2370 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2371 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2372 2373 /* 2374 * Initialize the ring segment pool. The ring must be a contiguous 2375 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2376 * however, the command ring segment needs 64-byte aligned segments 2377 * and our use of dma addresses in the trb_address_map radix tree needs 2378 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2379 */ 2380 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2381 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2382 2383 /* See Table 46 and Note on Figure 55 */ 2384 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2385 2112, 64, xhci->page_size); 2386 if (!xhci->segment_pool || !xhci->device_pool) 2387 goto fail; 2388 2389 /* Linear stream context arrays don't have any boundary restrictions, 2390 * and only need to be 16-byte aligned. 2391 */ 2392 xhci->small_streams_pool = 2393 dma_pool_create("xHCI 256 byte stream ctx arrays", 2394 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2395 xhci->medium_streams_pool = 2396 dma_pool_create("xHCI 1KB stream ctx arrays", 2397 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2398 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2399 * will be allocated with dma_alloc_coherent() 2400 */ 2401 2402 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2403 goto fail; 2404 2405 /* Set up the command ring to have one segments for now. */ 2406 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2407 if (!xhci->cmd_ring) 2408 goto fail; 2409 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2410 "Allocated command ring at %p", xhci->cmd_ring); 2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2412 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2413 2414 /* Set the address in the Command Ring Control register */ 2415 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2416 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2417 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2418 xhci->cmd_ring->cycle_state; 2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2420 "// Setting command ring address to 0x%016llx", val_64); 2421 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2422 xhci_dbg_cmd_ptrs(xhci); 2423 2424 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2425 if (!xhci->lpm_command) 2426 goto fail; 2427 2428 /* Reserve one command ring TRB for disabling LPM. 2429 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2430 * disabling LPM, we only need to reserve one TRB for all devices. 2431 */ 2432 xhci->cmd_ring_reserved_trbs++; 2433 2434 val = readl(&xhci->cap_regs->db_off); 2435 val &= DBOFF_MASK; 2436 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2437 "// Doorbell array is located at offset 0x%x" 2438 " from cap regs base addr", val); 2439 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2440 xhci_dbg_regs(xhci); 2441 xhci_print_run_regs(xhci); 2442 /* Set ir_set to interrupt register set 0 */ 2443 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2444 2445 /* 2446 * Event ring setup: Allocate a normal ring, but also setup 2447 * the event ring segment table (ERST). Section 4.9.3. 2448 */ 2449 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2450 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2451 0, flags); 2452 if (!xhci->event_ring) 2453 goto fail; 2454 if (xhci_check_trb_in_td_math(xhci) < 0) 2455 goto fail; 2456 2457 xhci->erst.entries = dma_alloc_coherent(dev, 2458 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2459 flags); 2460 if (!xhci->erst.entries) 2461 goto fail; 2462 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2463 "// Allocated event ring segment table at 0x%llx", 2464 (unsigned long long)dma); 2465 2466 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2467 xhci->erst.num_entries = ERST_NUM_SEGS; 2468 xhci->erst.erst_dma_addr = dma; 2469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2470 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", 2471 xhci->erst.num_entries, 2472 xhci->erst.entries, 2473 (unsigned long long)xhci->erst.erst_dma_addr); 2474 2475 /* set ring base address and size for each segment table entry */ 2476 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2477 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2478 entry->seg_addr = cpu_to_le64(seg->dma); 2479 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2480 entry->rsvd = 0; 2481 seg = seg->next; 2482 } 2483 2484 /* set ERST count with the number of entries in the segment table */ 2485 val = readl(&xhci->ir_set->erst_size); 2486 val &= ERST_SIZE_MASK; 2487 val |= ERST_NUM_SEGS; 2488 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2489 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2490 val); 2491 writel(val, &xhci->ir_set->erst_size); 2492 2493 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2494 "// Set ERST entries to point to event ring."); 2495 /* set the segment table base address */ 2496 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2497 "// Set ERST base address for ir_set 0 = 0x%llx", 2498 (unsigned long long)xhci->erst.erst_dma_addr); 2499 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2500 val_64 &= ERST_PTR_MASK; 2501 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2502 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2503 2504 /* Set the event ring dequeue address */ 2505 xhci_set_hc_event_deq(xhci); 2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2507 "Wrote ERST address to ir_set 0."); 2508 xhci_print_ir_set(xhci, 0); 2509 2510 /* 2511 * XXX: Might need to set the Interrupter Moderation Register to 2512 * something other than the default (~1ms minimum between interrupts). 2513 * See section 5.5.1.2. 2514 */ 2515 for (i = 0; i < MAX_HC_SLOTS; i++) 2516 xhci->devs[i] = NULL; 2517 for (i = 0; i < USB_MAXCHILDREN; i++) { 2518 xhci->bus_state[0].resume_done[i] = 0; 2519 xhci->bus_state[1].resume_done[i] = 0; 2520 /* Only the USB 2.0 completions will ever be used. */ 2521 init_completion(&xhci->bus_state[1].rexit_done[i]); 2522 } 2523 2524 if (scratchpad_alloc(xhci, flags)) 2525 goto fail; 2526 if (xhci_setup_port_arrays(xhci, flags)) 2527 goto fail; 2528 2529 /* Enable USB 3.0 device notifications for function remote wake, which 2530 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2531 * U3 (device suspend). 2532 */ 2533 temp = readl(&xhci->op_regs->dev_notification); 2534 temp &= ~DEV_NOTE_MASK; 2535 temp |= DEV_NOTE_FWAKE; 2536 writel(temp, &xhci->op_regs->dev_notification); 2537 2538 return 0; 2539 2540 fail: 2541 xhci_halt(xhci); 2542 xhci_reset(xhci); 2543 xhci_mem_cleanup(xhci); 2544 return -ENOMEM; 2545 } 2546