xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision 63dc02bd)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 					unsigned int cycle_state, gfp_t flags)
39 {
40 	struct xhci_segment *seg;
41 	dma_addr_t	dma;
42 	int		i;
43 
44 	seg = kzalloc(sizeof *seg, flags);
45 	if (!seg)
46 		return NULL;
47 
48 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 	if (!seg->trbs) {
50 		kfree(seg);
51 		return NULL;
52 	}
53 
54 	memset(seg->trbs, 0, SEGMENT_SIZE);
55 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 	if (cycle_state == 0) {
57 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 			seg->trbs[i].link.control |= TRB_CYCLE;
59 	}
60 	seg->dma = dma;
61 	seg->next = NULL;
62 
63 	return seg;
64 }
65 
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 	if (seg->trbs) {
69 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 		seg->trbs = NULL;
71 	}
72 	kfree(seg);
73 }
74 
75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 				struct xhci_segment *first)
77 {
78 	struct xhci_segment *seg;
79 
80 	seg = first->next;
81 	while (seg != first) {
82 		struct xhci_segment *next = seg->next;
83 		xhci_segment_free(xhci, seg);
84 		seg = next;
85 	}
86 	xhci_segment_free(xhci, first);
87 }
88 
89 /*
90  * Make the prev segment point to the next segment.
91  *
92  * Change the last TRB in the prev segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97 		struct xhci_segment *next, enum xhci_ring_type type)
98 {
99 	u32 val;
100 
101 	if (!prev || !next)
102 		return;
103 	prev->next = next;
104 	if (type != TYPE_EVENT) {
105 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 			cpu_to_le64(next->dma);
107 
108 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 		val &= ~TRB_TYPE_BITMASK;
111 		val |= TRB_TYPE(TRB_LINK);
112 		/* Always set the chain bit with 0.95 hardware */
113 		/* Set chain bit for isoc rings on AMD 0.96 host */
114 		if (xhci_link_trb_quirk(xhci) ||
115 				(type == TYPE_ISOC &&
116 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 
132 	if (!ring || !first || !last)
133 		return;
134 
135 	next = ring->enq_seg->next;
136 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 	xhci_link_segments(xhci, last, next, ring->type);
138 	ring->num_segs += num_segs;
139 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140 
141 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 			&= ~cpu_to_le32(LINK_TOGGLE);
144 		last->trbs[TRBS_PER_SEGMENT-1].link.control
145 			|= cpu_to_le32(LINK_TOGGLE);
146 		ring->last_seg = last;
147 	}
148 }
149 
150 /* XXX: Do we need the hcd structure in all these functions? */
151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153 	if (!ring)
154 		return;
155 
156 	if (ring->first_seg)
157 		xhci_free_segments_for_ring(xhci, ring->first_seg);
158 
159 	kfree(ring);
160 }
161 
162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 					unsigned int cycle_state)
164 {
165 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
166 	ring->enqueue = ring->first_seg->trbs;
167 	ring->enq_seg = ring->first_seg;
168 	ring->dequeue = ring->enqueue;
169 	ring->deq_seg = ring->first_seg;
170 	/* The ring is initialized to 0. The producer must write 1 to the cycle
171 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
172 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 	 *
174 	 * New rings are initialized with cycle state equal to 1; if we are
175 	 * handling ring expansion, set the cycle state equal to the old ring.
176 	 */
177 	ring->cycle_state = cycle_state;
178 	/* Not necessary for new rings, but needed for re-initialized rings */
179 	ring->enq_updates = 0;
180 	ring->deq_updates = 0;
181 
182 	/*
183 	 * Each segment has a link TRB, and leave an extra TRB for SW
184 	 * accounting purpose
185 	 */
186 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188 
189 /* Allocate segments and link them for a ring */
190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 		struct xhci_segment **first, struct xhci_segment **last,
192 		unsigned int num_segs, unsigned int cycle_state,
193 		enum xhci_ring_type type, gfp_t flags)
194 {
195 	struct xhci_segment *prev;
196 
197 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 	if (!prev)
199 		return -ENOMEM;
200 	num_segs--;
201 
202 	*first = prev;
203 	while (num_segs > 0) {
204 		struct xhci_segment	*next;
205 
206 		next = xhci_segment_alloc(xhci, cycle_state, flags);
207 		if (!next) {
208 			xhci_free_segments_for_ring(xhci, *first);
209 			return -ENOMEM;
210 		}
211 		xhci_link_segments(xhci, prev, next, type);
212 
213 		prev = next;
214 		num_segs--;
215 	}
216 	xhci_link_segments(xhci, prev, *first, type);
217 	*last = prev;
218 
219 	return 0;
220 }
221 
222 /**
223  * Create a new ring with zero or more segments.
224  *
225  * Link each segment together into a ring.
226  * Set the end flag and the cycle toggle bit on the last segment.
227  * See section 4.9.1 and figures 15 and 16.
228  */
229 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
230 		unsigned int num_segs, unsigned int cycle_state,
231 		enum xhci_ring_type type, gfp_t flags)
232 {
233 	struct xhci_ring	*ring;
234 	int ret;
235 
236 	ring = kzalloc(sizeof *(ring), flags);
237 	if (!ring)
238 		return NULL;
239 
240 	ring->num_segs = num_segs;
241 	INIT_LIST_HEAD(&ring->td_list);
242 	ring->type = type;
243 	if (num_segs == 0)
244 		return ring;
245 
246 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
247 			&ring->last_seg, num_segs, cycle_state, type, flags);
248 	if (ret)
249 		goto fail;
250 
251 	/* Only event ring does not use link TRB */
252 	if (type != TYPE_EVENT) {
253 		/* See section 4.9.2.1 and 6.4.4.1 */
254 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
255 			cpu_to_le32(LINK_TOGGLE);
256 	}
257 	xhci_initialize_ring_info(ring, cycle_state);
258 	return ring;
259 
260 fail:
261 	xhci_ring_free(xhci, ring);
262 	return NULL;
263 }
264 
265 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
266 		struct xhci_virt_device *virt_dev,
267 		unsigned int ep_index)
268 {
269 	int rings_cached;
270 
271 	rings_cached = virt_dev->num_rings_cached;
272 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
273 		virt_dev->ring_cache[rings_cached] =
274 			virt_dev->eps[ep_index].ring;
275 		virt_dev->num_rings_cached++;
276 		xhci_dbg(xhci, "Cached old ring, "
277 				"%d ring%s cached\n",
278 				virt_dev->num_rings_cached,
279 				(virt_dev->num_rings_cached > 1) ? "s" : "");
280 	} else {
281 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
282 		xhci_dbg(xhci, "Ring cache full (%d rings), "
283 				"freeing ring\n",
284 				virt_dev->num_rings_cached);
285 	}
286 	virt_dev->eps[ep_index].ring = NULL;
287 }
288 
289 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
290  * pointers to the beginning of the ring.
291  */
292 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
293 			struct xhci_ring *ring, unsigned int cycle_state,
294 			enum xhci_ring_type type)
295 {
296 	struct xhci_segment	*seg = ring->first_seg;
297 	int i;
298 
299 	do {
300 		memset(seg->trbs, 0,
301 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
302 		if (cycle_state == 0) {
303 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
304 				seg->trbs[i].link.control |= TRB_CYCLE;
305 		}
306 		/* All endpoint rings have link TRBs */
307 		xhci_link_segments(xhci, seg, seg->next, type);
308 		seg = seg->next;
309 	} while (seg != ring->first_seg);
310 	ring->type = type;
311 	xhci_initialize_ring_info(ring, cycle_state);
312 	/* td list should be empty since all URBs have been cancelled,
313 	 * but just in case...
314 	 */
315 	INIT_LIST_HEAD(&ring->td_list);
316 }
317 
318 /*
319  * Expand an existing ring.
320  * Look for a cached ring or allocate a new ring which has same segment numbers
321  * and link the two rings.
322  */
323 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
324 				unsigned int num_trbs, gfp_t flags)
325 {
326 	struct xhci_segment	*first;
327 	struct xhci_segment	*last;
328 	unsigned int		num_segs;
329 	unsigned int		num_segs_needed;
330 	int			ret;
331 
332 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
333 				(TRBS_PER_SEGMENT - 1);
334 
335 	/* Allocate number of segments we needed, or double the ring size */
336 	num_segs = ring->num_segs > num_segs_needed ?
337 			ring->num_segs : num_segs_needed;
338 
339 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
340 			num_segs, ring->cycle_state, ring->type, flags);
341 	if (ret)
342 		return -ENOMEM;
343 
344 	xhci_link_rings(xhci, ring, first, last, num_segs);
345 	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
346 			ring->num_segs);
347 
348 	return 0;
349 }
350 
351 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
352 
353 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
354 						    int type, gfp_t flags)
355 {
356 	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
357 	if (!ctx)
358 		return NULL;
359 
360 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
361 	ctx->type = type;
362 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
363 	if (type == XHCI_CTX_TYPE_INPUT)
364 		ctx->size += CTX_SIZE(xhci->hcc_params);
365 
366 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
367 	memset(ctx->bytes, 0, ctx->size);
368 	return ctx;
369 }
370 
371 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
372 			     struct xhci_container_ctx *ctx)
373 {
374 	if (!ctx)
375 		return;
376 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
377 	kfree(ctx);
378 }
379 
380 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
381 					      struct xhci_container_ctx *ctx)
382 {
383 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
384 	return (struct xhci_input_control_ctx *)ctx->bytes;
385 }
386 
387 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
388 					struct xhci_container_ctx *ctx)
389 {
390 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
391 		return (struct xhci_slot_ctx *)ctx->bytes;
392 
393 	return (struct xhci_slot_ctx *)
394 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
395 }
396 
397 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
398 				    struct xhci_container_ctx *ctx,
399 				    unsigned int ep_index)
400 {
401 	/* increment ep index by offset of start of ep ctx array */
402 	ep_index++;
403 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
404 		ep_index++;
405 
406 	return (struct xhci_ep_ctx *)
407 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
408 }
409 
410 
411 /***************** Streams structures manipulation *************************/
412 
413 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
414 		unsigned int num_stream_ctxs,
415 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
416 {
417 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 
419 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
420 		dma_free_coherent(&pdev->dev,
421 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
422 				stream_ctx, dma);
423 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
424 		return dma_pool_free(xhci->small_streams_pool,
425 				stream_ctx, dma);
426 	else
427 		return dma_pool_free(xhci->medium_streams_pool,
428 				stream_ctx, dma);
429 }
430 
431 /*
432  * The stream context array for each endpoint with bulk streams enabled can
433  * vary in size, based on:
434  *  - how many streams the endpoint supports,
435  *  - the maximum primary stream array size the host controller supports,
436  *  - and how many streams the device driver asks for.
437  *
438  * The stream context array must be a power of 2, and can be as small as
439  * 64 bytes or as large as 1MB.
440  */
441 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
442 		unsigned int num_stream_ctxs, dma_addr_t *dma,
443 		gfp_t mem_flags)
444 {
445 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
446 
447 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
448 		return dma_alloc_coherent(&pdev->dev,
449 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
450 				dma, mem_flags);
451 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
452 		return dma_pool_alloc(xhci->small_streams_pool,
453 				mem_flags, dma);
454 	else
455 		return dma_pool_alloc(xhci->medium_streams_pool,
456 				mem_flags, dma);
457 }
458 
459 struct xhci_ring *xhci_dma_to_transfer_ring(
460 		struct xhci_virt_ep *ep,
461 		u64 address)
462 {
463 	if (ep->ep_state & EP_HAS_STREAMS)
464 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
465 				address >> SEGMENT_SHIFT);
466 	return ep->ring;
467 }
468 
469 /* Only use this when you know stream_info is valid */
470 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
471 static struct xhci_ring *dma_to_stream_ring(
472 		struct xhci_stream_info *stream_info,
473 		u64 address)
474 {
475 	return radix_tree_lookup(&stream_info->trb_address_map,
476 			address >> SEGMENT_SHIFT);
477 }
478 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
479 
480 struct xhci_ring *xhci_stream_id_to_ring(
481 		struct xhci_virt_device *dev,
482 		unsigned int ep_index,
483 		unsigned int stream_id)
484 {
485 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
486 
487 	if (stream_id == 0)
488 		return ep->ring;
489 	if (!ep->stream_info)
490 		return NULL;
491 
492 	if (stream_id > ep->stream_info->num_streams)
493 		return NULL;
494 	return ep->stream_info->stream_rings[stream_id];
495 }
496 
497 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
498 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
499 		unsigned int num_streams,
500 		struct xhci_stream_info *stream_info)
501 {
502 	u32 cur_stream;
503 	struct xhci_ring *cur_ring;
504 	u64 addr;
505 
506 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
507 		struct xhci_ring *mapped_ring;
508 		int trb_size = sizeof(union xhci_trb);
509 
510 		cur_ring = stream_info->stream_rings[cur_stream];
511 		for (addr = cur_ring->first_seg->dma;
512 				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
513 				addr += trb_size) {
514 			mapped_ring = dma_to_stream_ring(stream_info, addr);
515 			if (cur_ring != mapped_ring) {
516 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
517 						"didn't map to stream ID %u; "
518 						"mapped to ring %p\n",
519 						(unsigned long long) addr,
520 						cur_stream,
521 						mapped_ring);
522 				return -EINVAL;
523 			}
524 		}
525 		/* One TRB after the end of the ring segment shouldn't return a
526 		 * pointer to the current ring (although it may be a part of a
527 		 * different ring).
528 		 */
529 		mapped_ring = dma_to_stream_ring(stream_info, addr);
530 		if (mapped_ring != cur_ring) {
531 			/* One TRB before should also fail */
532 			addr = cur_ring->first_seg->dma - trb_size;
533 			mapped_ring = dma_to_stream_ring(stream_info, addr);
534 		}
535 		if (mapped_ring == cur_ring) {
536 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
537 					"mapped to valid stream ID %u; "
538 					"mapped ring = %p\n",
539 					(unsigned long long) addr,
540 					cur_stream,
541 					mapped_ring);
542 			return -EINVAL;
543 		}
544 	}
545 	return 0;
546 }
547 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
548 
549 /*
550  * Change an endpoint's internal structure so it supports stream IDs.  The
551  * number of requested streams includes stream 0, which cannot be used by device
552  * drivers.
553  *
554  * The number of stream contexts in the stream context array may be bigger than
555  * the number of streams the driver wants to use.  This is because the number of
556  * stream context array entries must be a power of two.
557  *
558  * We need a radix tree for mapping physical addresses of TRBs to which stream
559  * ID they belong to.  We need to do this because the host controller won't tell
560  * us which stream ring the TRB came from.  We could store the stream ID in an
561  * event data TRB, but that doesn't help us for the cancellation case, since the
562  * endpoint may stop before it reaches that event data TRB.
563  *
564  * The radix tree maps the upper portion of the TRB DMA address to a ring
565  * segment that has the same upper portion of DMA addresses.  For example, say I
566  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
567  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
568  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
569  * pass the radix tree a key to get the right stream ID:
570  *
571  * 	0x10c90fff >> 10 = 0x43243
572  * 	0x10c912c0 >> 10 = 0x43244
573  * 	0x10c91400 >> 10 = 0x43245
574  *
575  * Obviously, only those TRBs with DMA addresses that are within the segment
576  * will make the radix tree return the stream ID for that ring.
577  *
578  * Caveats for the radix tree:
579  *
580  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
581  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
582  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
583  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
584  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
585  * extended systems (where the DMA address can be bigger than 32-bits),
586  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
587  */
588 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
589 		unsigned int num_stream_ctxs,
590 		unsigned int num_streams, gfp_t mem_flags)
591 {
592 	struct xhci_stream_info *stream_info;
593 	u32 cur_stream;
594 	struct xhci_ring *cur_ring;
595 	unsigned long key;
596 	u64 addr;
597 	int ret;
598 
599 	xhci_dbg(xhci, "Allocating %u streams and %u "
600 			"stream context array entries.\n",
601 			num_streams, num_stream_ctxs);
602 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
603 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
604 		return NULL;
605 	}
606 	xhci->cmd_ring_reserved_trbs++;
607 
608 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
609 	if (!stream_info)
610 		goto cleanup_trbs;
611 
612 	stream_info->num_streams = num_streams;
613 	stream_info->num_stream_ctxs = num_stream_ctxs;
614 
615 	/* Initialize the array of virtual pointers to stream rings. */
616 	stream_info->stream_rings = kzalloc(
617 			sizeof(struct xhci_ring *)*num_streams,
618 			mem_flags);
619 	if (!stream_info->stream_rings)
620 		goto cleanup_info;
621 
622 	/* Initialize the array of DMA addresses for stream rings for the HW. */
623 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
624 			num_stream_ctxs, &stream_info->ctx_array_dma,
625 			mem_flags);
626 	if (!stream_info->stream_ctx_array)
627 		goto cleanup_ctx;
628 	memset(stream_info->stream_ctx_array, 0,
629 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
630 
631 	/* Allocate everything needed to free the stream rings later */
632 	stream_info->free_streams_command =
633 		xhci_alloc_command(xhci, true, true, mem_flags);
634 	if (!stream_info->free_streams_command)
635 		goto cleanup_ctx;
636 
637 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
638 
639 	/* Allocate rings for all the streams that the driver will use,
640 	 * and add their segment DMA addresses to the radix tree.
641 	 * Stream 0 is reserved.
642 	 */
643 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
644 		stream_info->stream_rings[cur_stream] =
645 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
646 		cur_ring = stream_info->stream_rings[cur_stream];
647 		if (!cur_ring)
648 			goto cleanup_rings;
649 		cur_ring->stream_id = cur_stream;
650 		/* Set deq ptr, cycle bit, and stream context type */
651 		addr = cur_ring->first_seg->dma |
652 			SCT_FOR_CTX(SCT_PRI_TR) |
653 			cur_ring->cycle_state;
654 		stream_info->stream_ctx_array[cur_stream].stream_ring =
655 			cpu_to_le64(addr);
656 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
657 				cur_stream, (unsigned long long) addr);
658 
659 		key = (unsigned long)
660 			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
661 		ret = radix_tree_insert(&stream_info->trb_address_map,
662 				key, cur_ring);
663 		if (ret) {
664 			xhci_ring_free(xhci, cur_ring);
665 			stream_info->stream_rings[cur_stream] = NULL;
666 			goto cleanup_rings;
667 		}
668 	}
669 	/* Leave the other unused stream ring pointers in the stream context
670 	 * array initialized to zero.  This will cause the xHC to give us an
671 	 * error if the device asks for a stream ID we don't have setup (if it
672 	 * was any other way, the host controller would assume the ring is
673 	 * "empty" and wait forever for data to be queued to that stream ID).
674 	 */
675 #if XHCI_DEBUG
676 	/* Do a little test on the radix tree to make sure it returns the
677 	 * correct values.
678 	 */
679 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
680 		goto cleanup_rings;
681 #endif
682 
683 	return stream_info;
684 
685 cleanup_rings:
686 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
687 		cur_ring = stream_info->stream_rings[cur_stream];
688 		if (cur_ring) {
689 			addr = cur_ring->first_seg->dma;
690 			radix_tree_delete(&stream_info->trb_address_map,
691 					addr >> SEGMENT_SHIFT);
692 			xhci_ring_free(xhci, cur_ring);
693 			stream_info->stream_rings[cur_stream] = NULL;
694 		}
695 	}
696 	xhci_free_command(xhci, stream_info->free_streams_command);
697 cleanup_ctx:
698 	kfree(stream_info->stream_rings);
699 cleanup_info:
700 	kfree(stream_info);
701 cleanup_trbs:
702 	xhci->cmd_ring_reserved_trbs--;
703 	return NULL;
704 }
705 /*
706  * Sets the MaxPStreams field and the Linear Stream Array field.
707  * Sets the dequeue pointer to the stream context array.
708  */
709 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
710 		struct xhci_ep_ctx *ep_ctx,
711 		struct xhci_stream_info *stream_info)
712 {
713 	u32 max_primary_streams;
714 	/* MaxPStreams is the number of stream context array entries, not the
715 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
716 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
717 	 */
718 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
719 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
720 			1 << (max_primary_streams + 1));
721 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
722 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
723 				       | EP_HAS_LSA);
724 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
725 }
726 
727 /*
728  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
729  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
730  * not at the beginning of the ring).
731  */
732 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
733 		struct xhci_ep_ctx *ep_ctx,
734 		struct xhci_virt_ep *ep)
735 {
736 	dma_addr_t addr;
737 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
738 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
739 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
740 }
741 
742 /* Frees all stream contexts associated with the endpoint,
743  *
744  * Caller should fix the endpoint context streams fields.
745  */
746 void xhci_free_stream_info(struct xhci_hcd *xhci,
747 		struct xhci_stream_info *stream_info)
748 {
749 	int cur_stream;
750 	struct xhci_ring *cur_ring;
751 	dma_addr_t addr;
752 
753 	if (!stream_info)
754 		return;
755 
756 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
757 			cur_stream++) {
758 		cur_ring = stream_info->stream_rings[cur_stream];
759 		if (cur_ring) {
760 			addr = cur_ring->first_seg->dma;
761 			radix_tree_delete(&stream_info->trb_address_map,
762 					addr >> SEGMENT_SHIFT);
763 			xhci_ring_free(xhci, cur_ring);
764 			stream_info->stream_rings[cur_stream] = NULL;
765 		}
766 	}
767 	xhci_free_command(xhci, stream_info->free_streams_command);
768 	xhci->cmd_ring_reserved_trbs--;
769 	if (stream_info->stream_ctx_array)
770 		xhci_free_stream_ctx(xhci,
771 				stream_info->num_stream_ctxs,
772 				stream_info->stream_ctx_array,
773 				stream_info->ctx_array_dma);
774 
775 	if (stream_info)
776 		kfree(stream_info->stream_rings);
777 	kfree(stream_info);
778 }
779 
780 
781 /***************** Device context manipulation *************************/
782 
783 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
784 		struct xhci_virt_ep *ep)
785 {
786 	init_timer(&ep->stop_cmd_timer);
787 	ep->stop_cmd_timer.data = (unsigned long) ep;
788 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
789 	ep->xhci = xhci;
790 }
791 
792 static void xhci_free_tt_info(struct xhci_hcd *xhci,
793 		struct xhci_virt_device *virt_dev,
794 		int slot_id)
795 {
796 	struct list_head *tt;
797 	struct list_head *tt_list_head;
798 	struct list_head *tt_next;
799 	struct xhci_tt_bw_info *tt_info;
800 
801 	/* If the device never made it past the Set Address stage,
802 	 * it may not have the real_port set correctly.
803 	 */
804 	if (virt_dev->real_port == 0 ||
805 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
806 		xhci_dbg(xhci, "Bad real port.\n");
807 		return;
808 	}
809 
810 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
811 	if (list_empty(tt_list_head))
812 		return;
813 
814 	list_for_each(tt, tt_list_head) {
815 		tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
816 		if (tt_info->slot_id == slot_id)
817 			break;
818 	}
819 	/* Cautionary measure in case the hub was disconnected before we
820 	 * stored the TT information.
821 	 */
822 	if (tt_info->slot_id != slot_id)
823 		return;
824 
825 	tt_next = tt->next;
826 	tt_info = list_entry(tt, struct xhci_tt_bw_info,
827 			tt_list);
828 	/* Multi-TT hubs will have more than one entry */
829 	do {
830 		list_del(tt);
831 		kfree(tt_info);
832 		tt = tt_next;
833 		if (list_empty(tt_list_head))
834 			break;
835 		tt_next = tt->next;
836 		tt_info = list_entry(tt, struct xhci_tt_bw_info,
837 				tt_list);
838 	} while (tt_info->slot_id == slot_id);
839 }
840 
841 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842 		struct xhci_virt_device *virt_dev,
843 		struct usb_device *hdev,
844 		struct usb_tt *tt, gfp_t mem_flags)
845 {
846 	struct xhci_tt_bw_info		*tt_info;
847 	unsigned int			num_ports;
848 	int				i, j;
849 
850 	if (!tt->multi)
851 		num_ports = 1;
852 	else
853 		num_ports = hdev->maxchild;
854 
855 	for (i = 0; i < num_ports; i++, tt_info++) {
856 		struct xhci_interval_bw_table *bw_table;
857 
858 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
859 		if (!tt_info)
860 			goto free_tts;
861 		INIT_LIST_HEAD(&tt_info->tt_list);
862 		list_add(&tt_info->tt_list,
863 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
864 		tt_info->slot_id = virt_dev->udev->slot_id;
865 		if (tt->multi)
866 			tt_info->ttport = i+1;
867 		bw_table = &tt_info->bw_table;
868 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
869 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
870 	}
871 	return 0;
872 
873 free_tts:
874 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
875 	return -ENOMEM;
876 }
877 
878 
879 /* All the xhci_tds in the ring's TD list should be freed at this point.
880  * Should be called with xhci->lock held if there is any chance the TT lists
881  * will be manipulated by the configure endpoint, allocate device, or update
882  * hub functions while this function is removing the TT entries from the list.
883  */
884 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
885 {
886 	struct xhci_virt_device *dev;
887 	int i;
888 	int old_active_eps = 0;
889 
890 	/* Slot ID 0 is reserved */
891 	if (slot_id == 0 || !xhci->devs[slot_id])
892 		return;
893 
894 	dev = xhci->devs[slot_id];
895 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
896 	if (!dev)
897 		return;
898 
899 	if (dev->tt_info)
900 		old_active_eps = dev->tt_info->active_eps;
901 
902 	for (i = 0; i < 31; ++i) {
903 		if (dev->eps[i].ring)
904 			xhci_ring_free(xhci, dev->eps[i].ring);
905 		if (dev->eps[i].stream_info)
906 			xhci_free_stream_info(xhci,
907 					dev->eps[i].stream_info);
908 		/* Endpoints on the TT/root port lists should have been removed
909 		 * when usb_disable_device() was called for the device.
910 		 * We can't drop them anyway, because the udev might have gone
911 		 * away by this point, and we can't tell what speed it was.
912 		 */
913 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
914 			xhci_warn(xhci, "Slot %u endpoint %u "
915 					"not removed from BW list!\n",
916 					slot_id, i);
917 	}
918 	/* If this is a hub, free the TT(s) from the TT list */
919 	xhci_free_tt_info(xhci, dev, slot_id);
920 	/* If necessary, update the number of active TTs on this root port */
921 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
922 
923 	if (dev->ring_cache) {
924 		for (i = 0; i < dev->num_rings_cached; i++)
925 			xhci_ring_free(xhci, dev->ring_cache[i]);
926 		kfree(dev->ring_cache);
927 	}
928 
929 	if (dev->in_ctx)
930 		xhci_free_container_ctx(xhci, dev->in_ctx);
931 	if (dev->out_ctx)
932 		xhci_free_container_ctx(xhci, dev->out_ctx);
933 
934 	kfree(xhci->devs[slot_id]);
935 	xhci->devs[slot_id] = NULL;
936 }
937 
938 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
939 		struct usb_device *udev, gfp_t flags)
940 {
941 	struct xhci_virt_device *dev;
942 	int i;
943 
944 	/* Slot ID 0 is reserved */
945 	if (slot_id == 0 || xhci->devs[slot_id]) {
946 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
947 		return 0;
948 	}
949 
950 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
951 	if (!xhci->devs[slot_id])
952 		return 0;
953 	dev = xhci->devs[slot_id];
954 
955 	/* Allocate the (output) device context that will be used in the HC. */
956 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
957 	if (!dev->out_ctx)
958 		goto fail;
959 
960 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
961 			(unsigned long long)dev->out_ctx->dma);
962 
963 	/* Allocate the (input) device context for address device command */
964 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
965 	if (!dev->in_ctx)
966 		goto fail;
967 
968 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
969 			(unsigned long long)dev->in_ctx->dma);
970 
971 	/* Initialize the cancellation list and watchdog timers for each ep */
972 	for (i = 0; i < 31; i++) {
973 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
974 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
975 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
976 	}
977 
978 	/* Allocate endpoint 0 ring */
979 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
980 	if (!dev->eps[0].ring)
981 		goto fail;
982 
983 	/* Allocate pointers to the ring cache */
984 	dev->ring_cache = kzalloc(
985 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
986 			flags);
987 	if (!dev->ring_cache)
988 		goto fail;
989 	dev->num_rings_cached = 0;
990 
991 	init_completion(&dev->cmd_completion);
992 	INIT_LIST_HEAD(&dev->cmd_list);
993 	dev->udev = udev;
994 
995 	/* Point to output device context in dcbaa. */
996 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
997 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
998 		 slot_id,
999 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1000 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1001 
1002 	return 1;
1003 fail:
1004 	xhci_free_virt_device(xhci, slot_id);
1005 	return 0;
1006 }
1007 
1008 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1009 		struct usb_device *udev)
1010 {
1011 	struct xhci_virt_device *virt_dev;
1012 	struct xhci_ep_ctx	*ep0_ctx;
1013 	struct xhci_ring	*ep_ring;
1014 
1015 	virt_dev = xhci->devs[udev->slot_id];
1016 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1017 	ep_ring = virt_dev->eps[0].ring;
1018 	/*
1019 	 * FIXME we don't keep track of the dequeue pointer very well after a
1020 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1021 	 * host to our enqueue pointer.  This should only be called after a
1022 	 * configured device has reset, so all control transfers should have
1023 	 * been completed or cancelled before the reset.
1024 	 */
1025 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1026 							ep_ring->enqueue)
1027 				   | ep_ring->cycle_state);
1028 }
1029 
1030 /*
1031  * The xHCI roothub may have ports of differing speeds in any order in the port
1032  * status registers.  xhci->port_array provides an array of the port speed for
1033  * each offset into the port status registers.
1034  *
1035  * The xHCI hardware wants to know the roothub port number that the USB device
1036  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1037  * know is the index of that port under either the USB 2.0 or the USB 3.0
1038  * roothub, but that doesn't give us the real index into the HW port status
1039  * registers.  Scan through the xHCI roothub port array, looking for the Nth
1040  * entry of the correct port speed.  Return the port number of that entry.
1041  */
1042 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1043 		struct usb_device *udev)
1044 {
1045 	struct usb_device *top_dev;
1046 	unsigned int num_similar_speed_ports;
1047 	unsigned int faked_port_num;
1048 	int i;
1049 
1050 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1051 			top_dev = top_dev->parent)
1052 		/* Found device below root hub */;
1053 	faked_port_num = top_dev->portnum;
1054 	for (i = 0, num_similar_speed_ports = 0;
1055 			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1056 		u8 port_speed = xhci->port_array[i];
1057 
1058 		/*
1059 		 * Skip ports that don't have known speeds, or have duplicate
1060 		 * Extended Capabilities port speed entries.
1061 		 */
1062 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1063 			continue;
1064 
1065 		/*
1066 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1067 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1068 		 * matches the device speed, it's a similar speed port.
1069 		 */
1070 		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1071 			num_similar_speed_ports++;
1072 		if (num_similar_speed_ports == faked_port_num)
1073 			/* Roothub ports are numbered from 1 to N */
1074 			return i+1;
1075 	}
1076 	return 0;
1077 }
1078 
1079 /* Setup an xHCI virtual device for a Set Address command */
1080 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1081 {
1082 	struct xhci_virt_device *dev;
1083 	struct xhci_ep_ctx	*ep0_ctx;
1084 	struct xhci_slot_ctx    *slot_ctx;
1085 	u32			port_num;
1086 	struct usb_device *top_dev;
1087 
1088 	dev = xhci->devs[udev->slot_id];
1089 	/* Slot ID 0 is reserved */
1090 	if (udev->slot_id == 0 || !dev) {
1091 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092 				udev->slot_id);
1093 		return -EINVAL;
1094 	}
1095 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097 
1098 	/* 3) Only the control endpoint is valid - one endpoint context */
1099 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100 	switch (udev->speed) {
1101 	case USB_SPEED_SUPER:
1102 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1103 		break;
1104 	case USB_SPEED_HIGH:
1105 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1106 		break;
1107 	case USB_SPEED_FULL:
1108 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1109 		break;
1110 	case USB_SPEED_LOW:
1111 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1112 		break;
1113 	case USB_SPEED_WIRELESS:
1114 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1115 		return -EINVAL;
1116 		break;
1117 	default:
1118 		/* Speed was set earlier, this shouldn't happen. */
1119 		BUG();
1120 	}
1121 	/* Find the root hub port this device is under */
1122 	port_num = xhci_find_real_port_number(xhci, udev);
1123 	if (!port_num)
1124 		return -EINVAL;
1125 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1126 	/* Set the port number in the virtual_device to the faked port number */
1127 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1128 			top_dev = top_dev->parent)
1129 		/* Found device below root hub */;
1130 	dev->fake_port = top_dev->portnum;
1131 	dev->real_port = port_num;
1132 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1133 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1134 
1135 	/* Find the right bandwidth table that this device will be a part of.
1136 	 * If this is a full speed device attached directly to a root port (or a
1137 	 * decendent of one), it counts as a primary bandwidth domain, not a
1138 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1139 	 * will never be created for the HS root hub.
1140 	 */
1141 	if (!udev->tt || !udev->tt->hub->parent) {
1142 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1143 	} else {
1144 		struct xhci_root_port_bw_info *rh_bw;
1145 		struct xhci_tt_bw_info *tt_bw;
1146 
1147 		rh_bw = &xhci->rh_bw[port_num - 1];
1148 		/* Find the right TT. */
1149 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1150 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1151 				continue;
1152 
1153 			if (!dev->udev->tt->multi ||
1154 					(udev->tt->multi &&
1155 					 tt_bw->ttport == dev->udev->ttport)) {
1156 				dev->bw_table = &tt_bw->bw_table;
1157 				dev->tt_info = tt_bw;
1158 				break;
1159 			}
1160 		}
1161 		if (!dev->tt_info)
1162 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1163 	}
1164 
1165 	/* Is this a LS/FS device under an external HS hub? */
1166 	if (udev->tt && udev->tt->hub->parent) {
1167 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1168 						(udev->ttport << 8));
1169 		if (udev->tt->multi)
1170 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1171 	}
1172 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1173 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1174 
1175 	/* Step 4 - ring already allocated */
1176 	/* Step 5 */
1177 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1178 	/*
1179 	 * XXX: Not sure about wireless USB devices.
1180 	 */
1181 	switch (udev->speed) {
1182 	case USB_SPEED_SUPER:
1183 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1184 		break;
1185 	case USB_SPEED_HIGH:
1186 	/* USB core guesses at a 64-byte max packet first for FS devices */
1187 	case USB_SPEED_FULL:
1188 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1189 		break;
1190 	case USB_SPEED_LOW:
1191 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1192 		break;
1193 	case USB_SPEED_WIRELESS:
1194 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1195 		return -EINVAL;
1196 		break;
1197 	default:
1198 		/* New speed? */
1199 		BUG();
1200 	}
1201 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1202 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1203 
1204 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1205 				   dev->eps[0].ring->cycle_state);
1206 
1207 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1208 
1209 	return 0;
1210 }
1211 
1212 /*
1213  * Convert interval expressed as 2^(bInterval - 1) == interval into
1214  * straight exponent value 2^n == interval.
1215  *
1216  */
1217 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1218 		struct usb_host_endpoint *ep)
1219 {
1220 	unsigned int interval;
1221 
1222 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1223 	if (interval != ep->desc.bInterval - 1)
1224 		dev_warn(&udev->dev,
1225 			 "ep %#x - rounding interval to %d %sframes\n",
1226 			 ep->desc.bEndpointAddress,
1227 			 1 << interval,
1228 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1229 
1230 	if (udev->speed == USB_SPEED_FULL) {
1231 		/*
1232 		 * Full speed isoc endpoints specify interval in frames,
1233 		 * not microframes. We are using microframes everywhere,
1234 		 * so adjust accordingly.
1235 		 */
1236 		interval += 3;	/* 1 frame = 2^3 uframes */
1237 	}
1238 
1239 	return interval;
1240 }
1241 
1242 /*
1243  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1244  * microframes, rounded down to nearest power of 2.
1245  */
1246 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1247 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1248 		unsigned int min_exponent, unsigned int max_exponent)
1249 {
1250 	unsigned int interval;
1251 
1252 	interval = fls(desc_interval) - 1;
1253 	interval = clamp_val(interval, min_exponent, max_exponent);
1254 	if ((1 << interval) != desc_interval)
1255 		dev_warn(&udev->dev,
1256 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1257 			 ep->desc.bEndpointAddress,
1258 			 1 << interval,
1259 			 desc_interval);
1260 
1261 	return interval;
1262 }
1263 
1264 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1265 		struct usb_host_endpoint *ep)
1266 {
1267 	return xhci_microframes_to_exponent(udev, ep,
1268 			ep->desc.bInterval, 0, 15);
1269 }
1270 
1271 
1272 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273 		struct usb_host_endpoint *ep)
1274 {
1275 	return xhci_microframes_to_exponent(udev, ep,
1276 			ep->desc.bInterval * 8, 3, 10);
1277 }
1278 
1279 /* Return the polling or NAK interval.
1280  *
1281  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1282  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1283  *
1284  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1285  * is set to 0.
1286  */
1287 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288 		struct usb_host_endpoint *ep)
1289 {
1290 	unsigned int interval = 0;
1291 
1292 	switch (udev->speed) {
1293 	case USB_SPEED_HIGH:
1294 		/* Max NAK rate */
1295 		if (usb_endpoint_xfer_control(&ep->desc) ||
1296 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1297 			interval = xhci_parse_microframe_interval(udev, ep);
1298 			break;
1299 		}
1300 		/* Fall through - SS and HS isoc/int have same decoding */
1301 
1302 	case USB_SPEED_SUPER:
1303 		if (usb_endpoint_xfer_int(&ep->desc) ||
1304 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1305 			interval = xhci_parse_exponent_interval(udev, ep);
1306 		}
1307 		break;
1308 
1309 	case USB_SPEED_FULL:
1310 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1311 			interval = xhci_parse_exponent_interval(udev, ep);
1312 			break;
1313 		}
1314 		/*
1315 		 * Fall through for interrupt endpoint interval decoding
1316 		 * since it uses the same rules as low speed interrupt
1317 		 * endpoints.
1318 		 */
1319 
1320 	case USB_SPEED_LOW:
1321 		if (usb_endpoint_xfer_int(&ep->desc) ||
1322 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1323 
1324 			interval = xhci_parse_frame_interval(udev, ep);
1325 		}
1326 		break;
1327 
1328 	default:
1329 		BUG();
1330 	}
1331 	return EP_INTERVAL(interval);
1332 }
1333 
1334 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1335  * High speed endpoint descriptors can define "the number of additional
1336  * transaction opportunities per microframe", but that goes in the Max Burst
1337  * endpoint context field.
1338  */
1339 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1340 		struct usb_host_endpoint *ep)
1341 {
1342 	if (udev->speed != USB_SPEED_SUPER ||
1343 			!usb_endpoint_xfer_isoc(&ep->desc))
1344 		return 0;
1345 	return ep->ss_ep_comp.bmAttributes;
1346 }
1347 
1348 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1349 		struct usb_host_endpoint *ep)
1350 {
1351 	int in;
1352 	u32 type;
1353 
1354 	in = usb_endpoint_dir_in(&ep->desc);
1355 	if (usb_endpoint_xfer_control(&ep->desc)) {
1356 		type = EP_TYPE(CTRL_EP);
1357 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1358 		if (in)
1359 			type = EP_TYPE(BULK_IN_EP);
1360 		else
1361 			type = EP_TYPE(BULK_OUT_EP);
1362 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1363 		if (in)
1364 			type = EP_TYPE(ISOC_IN_EP);
1365 		else
1366 			type = EP_TYPE(ISOC_OUT_EP);
1367 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1368 		if (in)
1369 			type = EP_TYPE(INT_IN_EP);
1370 		else
1371 			type = EP_TYPE(INT_OUT_EP);
1372 	} else {
1373 		BUG();
1374 	}
1375 	return type;
1376 }
1377 
1378 /* Return the maximum endpoint service interval time (ESIT) payload.
1379  * Basically, this is the maxpacket size, multiplied by the burst size
1380  * and mult size.
1381  */
1382 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1383 		struct usb_device *udev,
1384 		struct usb_host_endpoint *ep)
1385 {
1386 	int max_burst;
1387 	int max_packet;
1388 
1389 	/* Only applies for interrupt or isochronous endpoints */
1390 	if (usb_endpoint_xfer_control(&ep->desc) ||
1391 			usb_endpoint_xfer_bulk(&ep->desc))
1392 		return 0;
1393 
1394 	if (udev->speed == USB_SPEED_SUPER)
1395 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1396 
1397 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1398 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1399 	/* A 0 in max burst means 1 transfer per ESIT */
1400 	return max_packet * (max_burst + 1);
1401 }
1402 
1403 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1404  * Drivers will have to call usb_alloc_streams() to do that.
1405  */
1406 int xhci_endpoint_init(struct xhci_hcd *xhci,
1407 		struct xhci_virt_device *virt_dev,
1408 		struct usb_device *udev,
1409 		struct usb_host_endpoint *ep,
1410 		gfp_t mem_flags)
1411 {
1412 	unsigned int ep_index;
1413 	struct xhci_ep_ctx *ep_ctx;
1414 	struct xhci_ring *ep_ring;
1415 	unsigned int max_packet;
1416 	unsigned int max_burst;
1417 	enum xhci_ring_type type;
1418 	u32 max_esit_payload;
1419 
1420 	ep_index = xhci_get_endpoint_index(&ep->desc);
1421 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1422 
1423 	type = usb_endpoint_type(&ep->desc);
1424 	/* Set up the endpoint ring */
1425 	virt_dev->eps[ep_index].new_ring =
1426 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1427 	if (!virt_dev->eps[ep_index].new_ring) {
1428 		/* Attempt to use the ring cache */
1429 		if (virt_dev->num_rings_cached == 0)
1430 			return -ENOMEM;
1431 		virt_dev->eps[ep_index].new_ring =
1432 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1433 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1434 		virt_dev->num_rings_cached--;
1435 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1436 					1, type);
1437 	}
1438 	virt_dev->eps[ep_index].skip = false;
1439 	ep_ring = virt_dev->eps[ep_index].new_ring;
1440 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1441 
1442 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1443 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1444 
1445 	/* FIXME dig Mult and streams info out of ep companion desc */
1446 
1447 	/* Allow 3 retries for everything but isoc;
1448 	 * CErr shall be set to 0 for Isoch endpoints.
1449 	 */
1450 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1451 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1452 	else
1453 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1454 
1455 	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1456 
1457 	/* Set the max packet size and max burst */
1458 	switch (udev->speed) {
1459 	case USB_SPEED_SUPER:
1460 		max_packet = usb_endpoint_maxp(&ep->desc);
1461 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1462 		/* dig out max burst from ep companion desc */
1463 		max_packet = ep->ss_ep_comp.bMaxBurst;
1464 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1465 		break;
1466 	case USB_SPEED_HIGH:
1467 		/* bits 11:12 specify the number of additional transaction
1468 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1469 		 */
1470 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1471 				usb_endpoint_xfer_int(&ep->desc)) {
1472 			max_burst = (usb_endpoint_maxp(&ep->desc)
1473 				     & 0x1800) >> 11;
1474 			ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1475 		}
1476 		/* Fall through */
1477 	case USB_SPEED_FULL:
1478 	case USB_SPEED_LOW:
1479 		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1480 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1481 		break;
1482 	default:
1483 		BUG();
1484 	}
1485 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1486 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1487 
1488 	/*
1489 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1490 	 * endpoints, as the driver gives us no clue how big each scatter gather
1491 	 * list entry (or buffer) is going to be.
1492 	 *
1493 	 * For isochronous and interrupt endpoints, we set it to the max
1494 	 * available, until we have new API in the USB core to allow drivers to
1495 	 * declare how much bandwidth they actually need.
1496 	 *
1497 	 * Normally, it would be calculated by taking the total of the buffer
1498 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1499 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1500 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1501 	 * transfers, we're basically dividing by 1.
1502 	 *
1503 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1504 	 * be set to 8 for control endpoints.
1505 	 */
1506 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1507 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1508 	else
1509 		ep_ctx->tx_info |=
1510 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1511 
1512 	/* FIXME Debug endpoint context */
1513 	return 0;
1514 }
1515 
1516 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1517 		struct xhci_virt_device *virt_dev,
1518 		struct usb_host_endpoint *ep)
1519 {
1520 	unsigned int ep_index;
1521 	struct xhci_ep_ctx *ep_ctx;
1522 
1523 	ep_index = xhci_get_endpoint_index(&ep->desc);
1524 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1525 
1526 	ep_ctx->ep_info = 0;
1527 	ep_ctx->ep_info2 = 0;
1528 	ep_ctx->deq = 0;
1529 	ep_ctx->tx_info = 0;
1530 	/* Don't free the endpoint ring until the set interface or configuration
1531 	 * request succeeds.
1532 	 */
1533 }
1534 
1535 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1536 {
1537 	bw_info->ep_interval = 0;
1538 	bw_info->mult = 0;
1539 	bw_info->num_packets = 0;
1540 	bw_info->max_packet_size = 0;
1541 	bw_info->type = 0;
1542 	bw_info->max_esit_payload = 0;
1543 }
1544 
1545 void xhci_update_bw_info(struct xhci_hcd *xhci,
1546 		struct xhci_container_ctx *in_ctx,
1547 		struct xhci_input_control_ctx *ctrl_ctx,
1548 		struct xhci_virt_device *virt_dev)
1549 {
1550 	struct xhci_bw_info *bw_info;
1551 	struct xhci_ep_ctx *ep_ctx;
1552 	unsigned int ep_type;
1553 	int i;
1554 
1555 	for (i = 1; i < 31; ++i) {
1556 		bw_info = &virt_dev->eps[i].bw_info;
1557 
1558 		/* We can't tell what endpoint type is being dropped, but
1559 		 * unconditionally clearing the bandwidth info for non-periodic
1560 		 * endpoints should be harmless because the info will never be
1561 		 * set in the first place.
1562 		 */
1563 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1564 			/* Dropped endpoint */
1565 			xhci_clear_endpoint_bw_info(bw_info);
1566 			continue;
1567 		}
1568 
1569 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1570 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1571 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1572 
1573 			/* Ignore non-periodic endpoints */
1574 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1575 					ep_type != ISOC_IN_EP &&
1576 					ep_type != INT_IN_EP)
1577 				continue;
1578 
1579 			/* Added or changed endpoint */
1580 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1581 					le32_to_cpu(ep_ctx->ep_info));
1582 			/* Number of packets and mult are zero-based in the
1583 			 * input context, but we want one-based for the
1584 			 * interval table.
1585 			 */
1586 			bw_info->mult = CTX_TO_EP_MULT(
1587 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1588 			bw_info->num_packets = CTX_TO_MAX_BURST(
1589 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1590 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1591 					le32_to_cpu(ep_ctx->ep_info2));
1592 			bw_info->type = ep_type;
1593 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1594 					le32_to_cpu(ep_ctx->tx_info));
1595 		}
1596 	}
1597 }
1598 
1599 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1600  * Useful when you want to change one particular aspect of the endpoint and then
1601  * issue a configure endpoint command.
1602  */
1603 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1604 		struct xhci_container_ctx *in_ctx,
1605 		struct xhci_container_ctx *out_ctx,
1606 		unsigned int ep_index)
1607 {
1608 	struct xhci_ep_ctx *out_ep_ctx;
1609 	struct xhci_ep_ctx *in_ep_ctx;
1610 
1611 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1612 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1613 
1614 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1615 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1616 	in_ep_ctx->deq = out_ep_ctx->deq;
1617 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1618 }
1619 
1620 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1621  * Useful when you want to change one particular aspect of the endpoint and then
1622  * issue a configure endpoint command.  Only the context entries field matters,
1623  * but we'll copy the whole thing anyway.
1624  */
1625 void xhci_slot_copy(struct xhci_hcd *xhci,
1626 		struct xhci_container_ctx *in_ctx,
1627 		struct xhci_container_ctx *out_ctx)
1628 {
1629 	struct xhci_slot_ctx *in_slot_ctx;
1630 	struct xhci_slot_ctx *out_slot_ctx;
1631 
1632 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1633 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1634 
1635 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1636 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1637 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1638 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1639 }
1640 
1641 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1642 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1643 {
1644 	int i;
1645 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1646 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1647 
1648 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1649 
1650 	if (!num_sp)
1651 		return 0;
1652 
1653 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1654 	if (!xhci->scratchpad)
1655 		goto fail_sp;
1656 
1657 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1658 				     num_sp * sizeof(u64),
1659 				     &xhci->scratchpad->sp_dma, flags);
1660 	if (!xhci->scratchpad->sp_array)
1661 		goto fail_sp2;
1662 
1663 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1664 	if (!xhci->scratchpad->sp_buffers)
1665 		goto fail_sp3;
1666 
1667 	xhci->scratchpad->sp_dma_buffers =
1668 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1669 
1670 	if (!xhci->scratchpad->sp_dma_buffers)
1671 		goto fail_sp4;
1672 
1673 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674 	for (i = 0; i < num_sp; i++) {
1675 		dma_addr_t dma;
1676 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1677 				flags);
1678 		if (!buf)
1679 			goto fail_sp5;
1680 
1681 		xhci->scratchpad->sp_array[i] = dma;
1682 		xhci->scratchpad->sp_buffers[i] = buf;
1683 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1684 	}
1685 
1686 	return 0;
1687 
1688  fail_sp5:
1689 	for (i = i - 1; i >= 0; i--) {
1690 		dma_free_coherent(dev, xhci->page_size,
1691 				    xhci->scratchpad->sp_buffers[i],
1692 				    xhci->scratchpad->sp_dma_buffers[i]);
1693 	}
1694 	kfree(xhci->scratchpad->sp_dma_buffers);
1695 
1696  fail_sp4:
1697 	kfree(xhci->scratchpad->sp_buffers);
1698 
1699  fail_sp3:
1700 	dma_free_coherent(dev, num_sp * sizeof(u64),
1701 			    xhci->scratchpad->sp_array,
1702 			    xhci->scratchpad->sp_dma);
1703 
1704  fail_sp2:
1705 	kfree(xhci->scratchpad);
1706 	xhci->scratchpad = NULL;
1707 
1708  fail_sp:
1709 	return -ENOMEM;
1710 }
1711 
1712 static void scratchpad_free(struct xhci_hcd *xhci)
1713 {
1714 	int num_sp;
1715 	int i;
1716 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1717 
1718 	if (!xhci->scratchpad)
1719 		return;
1720 
1721 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1722 
1723 	for (i = 0; i < num_sp; i++) {
1724 		dma_free_coherent(&pdev->dev, xhci->page_size,
1725 				    xhci->scratchpad->sp_buffers[i],
1726 				    xhci->scratchpad->sp_dma_buffers[i]);
1727 	}
1728 	kfree(xhci->scratchpad->sp_dma_buffers);
1729 	kfree(xhci->scratchpad->sp_buffers);
1730 	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1731 			    xhci->scratchpad->sp_array,
1732 			    xhci->scratchpad->sp_dma);
1733 	kfree(xhci->scratchpad);
1734 	xhci->scratchpad = NULL;
1735 }
1736 
1737 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1738 		bool allocate_in_ctx, bool allocate_completion,
1739 		gfp_t mem_flags)
1740 {
1741 	struct xhci_command *command;
1742 
1743 	command = kzalloc(sizeof(*command), mem_flags);
1744 	if (!command)
1745 		return NULL;
1746 
1747 	if (allocate_in_ctx) {
1748 		command->in_ctx =
1749 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1750 					mem_flags);
1751 		if (!command->in_ctx) {
1752 			kfree(command);
1753 			return NULL;
1754 		}
1755 	}
1756 
1757 	if (allocate_completion) {
1758 		command->completion =
1759 			kzalloc(sizeof(struct completion), mem_flags);
1760 		if (!command->completion) {
1761 			xhci_free_container_ctx(xhci, command->in_ctx);
1762 			kfree(command);
1763 			return NULL;
1764 		}
1765 		init_completion(command->completion);
1766 	}
1767 
1768 	command->status = 0;
1769 	INIT_LIST_HEAD(&command->cmd_list);
1770 	return command;
1771 }
1772 
1773 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1774 {
1775 	if (urb_priv) {
1776 		kfree(urb_priv->td[0]);
1777 		kfree(urb_priv);
1778 	}
1779 }
1780 
1781 void xhci_free_command(struct xhci_hcd *xhci,
1782 		struct xhci_command *command)
1783 {
1784 	xhci_free_container_ctx(xhci,
1785 			command->in_ctx);
1786 	kfree(command->completion);
1787 	kfree(command);
1788 }
1789 
1790 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1791 {
1792 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1793 	struct dev_info	*dev_info, *next;
1794 	unsigned long	flags;
1795 	int size;
1796 	int i;
1797 
1798 	/* Free the Event Ring Segment Table and the actual Event Ring */
1799 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1800 	if (xhci->erst.entries)
1801 		dma_free_coherent(&pdev->dev, size,
1802 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1803 	xhci->erst.entries = NULL;
1804 	xhci_dbg(xhci, "Freed ERST\n");
1805 	if (xhci->event_ring)
1806 		xhci_ring_free(xhci, xhci->event_ring);
1807 	xhci->event_ring = NULL;
1808 	xhci_dbg(xhci, "Freed event ring\n");
1809 
1810 	if (xhci->cmd_ring)
1811 		xhci_ring_free(xhci, xhci->cmd_ring);
1812 	xhci->cmd_ring = NULL;
1813 	xhci_dbg(xhci, "Freed command ring\n");
1814 
1815 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1816 		xhci_free_virt_device(xhci, i);
1817 
1818 	if (xhci->segment_pool)
1819 		dma_pool_destroy(xhci->segment_pool);
1820 	xhci->segment_pool = NULL;
1821 	xhci_dbg(xhci, "Freed segment pool\n");
1822 
1823 	if (xhci->device_pool)
1824 		dma_pool_destroy(xhci->device_pool);
1825 	xhci->device_pool = NULL;
1826 	xhci_dbg(xhci, "Freed device context pool\n");
1827 
1828 	if (xhci->small_streams_pool)
1829 		dma_pool_destroy(xhci->small_streams_pool);
1830 	xhci->small_streams_pool = NULL;
1831 	xhci_dbg(xhci, "Freed small stream array pool\n");
1832 
1833 	if (xhci->medium_streams_pool)
1834 		dma_pool_destroy(xhci->medium_streams_pool);
1835 	xhci->medium_streams_pool = NULL;
1836 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1837 
1838 	if (xhci->dcbaa)
1839 		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1840 				xhci->dcbaa, xhci->dcbaa->dma);
1841 	xhci->dcbaa = NULL;
1842 
1843 	scratchpad_free(xhci);
1844 
1845 	spin_lock_irqsave(&xhci->lock, flags);
1846 	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1847 		list_del(&dev_info->list);
1848 		kfree(dev_info);
1849 	}
1850 	spin_unlock_irqrestore(&xhci->lock, flags);
1851 
1852 	xhci->num_usb2_ports = 0;
1853 	xhci->num_usb3_ports = 0;
1854 	kfree(xhci->usb2_ports);
1855 	kfree(xhci->usb3_ports);
1856 	kfree(xhci->port_array);
1857 	kfree(xhci->rh_bw);
1858 
1859 	xhci->page_size = 0;
1860 	xhci->page_shift = 0;
1861 	xhci->bus_state[0].bus_suspended = 0;
1862 	xhci->bus_state[1].bus_suspended = 0;
1863 }
1864 
1865 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1866 		struct xhci_segment *input_seg,
1867 		union xhci_trb *start_trb,
1868 		union xhci_trb *end_trb,
1869 		dma_addr_t input_dma,
1870 		struct xhci_segment *result_seg,
1871 		char *test_name, int test_number)
1872 {
1873 	unsigned long long start_dma;
1874 	unsigned long long end_dma;
1875 	struct xhci_segment *seg;
1876 
1877 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1878 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1879 
1880 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1881 	if (seg != result_seg) {
1882 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1883 				test_name, test_number);
1884 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1885 				"input DMA 0x%llx\n",
1886 				input_seg,
1887 				(unsigned long long) input_dma);
1888 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1889 				"ending TRB %p (0x%llx DMA)\n",
1890 				start_trb, start_dma,
1891 				end_trb, end_dma);
1892 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1893 				result_seg, seg);
1894 		return -1;
1895 	}
1896 	return 0;
1897 }
1898 
1899 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1900 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1901 {
1902 	struct {
1903 		dma_addr_t		input_dma;
1904 		struct xhci_segment	*result_seg;
1905 	} simple_test_vector [] = {
1906 		/* A zeroed DMA field should fail */
1907 		{ 0, NULL },
1908 		/* One TRB before the ring start should fail */
1909 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1910 		/* One byte before the ring start should fail */
1911 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1912 		/* Starting TRB should succeed */
1913 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1914 		/* Ending TRB should succeed */
1915 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1916 			xhci->event_ring->first_seg },
1917 		/* One byte after the ring end should fail */
1918 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1919 		/* One TRB after the ring end should fail */
1920 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1921 		/* An address of all ones should fail */
1922 		{ (dma_addr_t) (~0), NULL },
1923 	};
1924 	struct {
1925 		struct xhci_segment	*input_seg;
1926 		union xhci_trb		*start_trb;
1927 		union xhci_trb		*end_trb;
1928 		dma_addr_t		input_dma;
1929 		struct xhci_segment	*result_seg;
1930 	} complex_test_vector [] = {
1931 		/* Test feeding a valid DMA address from a different ring */
1932 		{	.input_seg = xhci->event_ring->first_seg,
1933 			.start_trb = xhci->event_ring->first_seg->trbs,
1934 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1935 			.input_dma = xhci->cmd_ring->first_seg->dma,
1936 			.result_seg = NULL,
1937 		},
1938 		/* Test feeding a valid end TRB from a different ring */
1939 		{	.input_seg = xhci->event_ring->first_seg,
1940 			.start_trb = xhci->event_ring->first_seg->trbs,
1941 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1942 			.input_dma = xhci->cmd_ring->first_seg->dma,
1943 			.result_seg = NULL,
1944 		},
1945 		/* Test feeding a valid start and end TRB from a different ring */
1946 		{	.input_seg = xhci->event_ring->first_seg,
1947 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1948 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1949 			.input_dma = xhci->cmd_ring->first_seg->dma,
1950 			.result_seg = NULL,
1951 		},
1952 		/* TRB in this ring, but after this TD */
1953 		{	.input_seg = xhci->event_ring->first_seg,
1954 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1955 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1956 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1957 			.result_seg = NULL,
1958 		},
1959 		/* TRB in this ring, but before this TD */
1960 		{	.input_seg = xhci->event_ring->first_seg,
1961 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1962 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1963 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1964 			.result_seg = NULL,
1965 		},
1966 		/* TRB in this ring, but after this wrapped TD */
1967 		{	.input_seg = xhci->event_ring->first_seg,
1968 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1969 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1970 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1971 			.result_seg = NULL,
1972 		},
1973 		/* TRB in this ring, but before this wrapped TD */
1974 		{	.input_seg = xhci->event_ring->first_seg,
1975 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1976 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1977 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1978 			.result_seg = NULL,
1979 		},
1980 		/* TRB not in this ring, and we have a wrapped TD */
1981 		{	.input_seg = xhci->event_ring->first_seg,
1982 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1983 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1984 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1985 			.result_seg = NULL,
1986 		},
1987 	};
1988 
1989 	unsigned int num_tests;
1990 	int i, ret;
1991 
1992 	num_tests = ARRAY_SIZE(simple_test_vector);
1993 	for (i = 0; i < num_tests; i++) {
1994 		ret = xhci_test_trb_in_td(xhci,
1995 				xhci->event_ring->first_seg,
1996 				xhci->event_ring->first_seg->trbs,
1997 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1998 				simple_test_vector[i].input_dma,
1999 				simple_test_vector[i].result_seg,
2000 				"Simple", i);
2001 		if (ret < 0)
2002 			return ret;
2003 	}
2004 
2005 	num_tests = ARRAY_SIZE(complex_test_vector);
2006 	for (i = 0; i < num_tests; i++) {
2007 		ret = xhci_test_trb_in_td(xhci,
2008 				complex_test_vector[i].input_seg,
2009 				complex_test_vector[i].start_trb,
2010 				complex_test_vector[i].end_trb,
2011 				complex_test_vector[i].input_dma,
2012 				complex_test_vector[i].result_seg,
2013 				"Complex", i);
2014 		if (ret < 0)
2015 			return ret;
2016 	}
2017 	xhci_dbg(xhci, "TRB math tests passed.\n");
2018 	return 0;
2019 }
2020 
2021 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2022 {
2023 	u64 temp;
2024 	dma_addr_t deq;
2025 
2026 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2027 			xhci->event_ring->dequeue);
2028 	if (deq == 0 && !in_interrupt())
2029 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2030 				"dequeue ptr.\n");
2031 	/* Update HC event ring dequeue pointer */
2032 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2033 	temp &= ERST_PTR_MASK;
2034 	/* Don't clear the EHB bit (which is RW1C) because
2035 	 * there might be more events to service.
2036 	 */
2037 	temp &= ~ERST_EHB;
2038 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2039 			"preserving EHB bit\n");
2040 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2041 			&xhci->ir_set->erst_dequeue);
2042 }
2043 
2044 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2045 		__le32 __iomem *addr, u8 major_revision)
2046 {
2047 	u32 temp, port_offset, port_count;
2048 	int i;
2049 
2050 	if (major_revision > 0x03) {
2051 		xhci_warn(xhci, "Ignoring unknown port speed, "
2052 				"Ext Cap %p, revision = 0x%x\n",
2053 				addr, major_revision);
2054 		/* Ignoring port protocol we can't understand. FIXME */
2055 		return;
2056 	}
2057 
2058 	/* Port offset and count in the third dword, see section 7.2 */
2059 	temp = xhci_readl(xhci, addr + 2);
2060 	port_offset = XHCI_EXT_PORT_OFF(temp);
2061 	port_count = XHCI_EXT_PORT_COUNT(temp);
2062 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2063 			"count = %u, revision = 0x%x\n",
2064 			addr, port_offset, port_count, major_revision);
2065 	/* Port count includes the current port offset */
2066 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2067 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2068 		return;
2069 
2070 	/* Check the host's USB2 LPM capability */
2071 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2072 			(temp & XHCI_L1C)) {
2073 		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2074 		xhci->sw_lpm_support = 1;
2075 	}
2076 
2077 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2078 		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2079 		xhci->sw_lpm_support = 1;
2080 		if (temp & XHCI_HLC) {
2081 			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2082 			xhci->hw_lpm_support = 1;
2083 		}
2084 	}
2085 
2086 	port_offset--;
2087 	for (i = port_offset; i < (port_offset + port_count); i++) {
2088 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2089 		if (xhci->port_array[i] != 0) {
2090 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2091 					" port %u\n", addr, i);
2092 			xhci_warn(xhci, "Port was marked as USB %u, "
2093 					"duplicated as USB %u\n",
2094 					xhci->port_array[i], major_revision);
2095 			/* Only adjust the roothub port counts if we haven't
2096 			 * found a similar duplicate.
2097 			 */
2098 			if (xhci->port_array[i] != major_revision &&
2099 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2100 				if (xhci->port_array[i] == 0x03)
2101 					xhci->num_usb3_ports--;
2102 				else
2103 					xhci->num_usb2_ports--;
2104 				xhci->port_array[i] = DUPLICATE_ENTRY;
2105 			}
2106 			/* FIXME: Should we disable the port? */
2107 			continue;
2108 		}
2109 		xhci->port_array[i] = major_revision;
2110 		if (major_revision == 0x03)
2111 			xhci->num_usb3_ports++;
2112 		else
2113 			xhci->num_usb2_ports++;
2114 	}
2115 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2116 }
2117 
2118 /*
2119  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2120  * specify what speeds each port is supposed to be.  We can't count on the port
2121  * speed bits in the PORTSC register being correct until a device is connected,
2122  * but we need to set up the two fake roothubs with the correct number of USB
2123  * 3.0 and USB 2.0 ports at host controller initialization time.
2124  */
2125 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2126 {
2127 	__le32 __iomem *addr;
2128 	u32 offset;
2129 	unsigned int num_ports;
2130 	int i, j, port_index;
2131 
2132 	addr = &xhci->cap_regs->hcc_params;
2133 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2134 	if (offset == 0) {
2135 		xhci_err(xhci, "No Extended Capability registers, "
2136 				"unable to set up roothub.\n");
2137 		return -ENODEV;
2138 	}
2139 
2140 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2141 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2142 	if (!xhci->port_array)
2143 		return -ENOMEM;
2144 
2145 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2146 	if (!xhci->rh_bw)
2147 		return -ENOMEM;
2148 	for (i = 0; i < num_ports; i++) {
2149 		struct xhci_interval_bw_table *bw_table;
2150 
2151 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2152 		bw_table = &xhci->rh_bw[i].bw_table;
2153 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2154 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2155 	}
2156 
2157 	/*
2158 	 * For whatever reason, the first capability offset is from the
2159 	 * capability register base, not from the HCCPARAMS register.
2160 	 * See section 5.3.6 for offset calculation.
2161 	 */
2162 	addr = &xhci->cap_regs->hc_capbase + offset;
2163 	while (1) {
2164 		u32 cap_id;
2165 
2166 		cap_id = xhci_readl(xhci, addr);
2167 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2168 			xhci_add_in_port(xhci, num_ports, addr,
2169 					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
2170 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2171 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2172 				== num_ports)
2173 			break;
2174 		/*
2175 		 * Once you're into the Extended Capabilities, the offset is
2176 		 * always relative to the register holding the offset.
2177 		 */
2178 		addr += offset;
2179 	}
2180 
2181 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2182 		xhci_warn(xhci, "No ports on the roothubs?\n");
2183 		return -ENODEV;
2184 	}
2185 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2186 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2187 
2188 	/* Place limits on the number of roothub ports so that the hub
2189 	 * descriptors aren't longer than the USB core will allocate.
2190 	 */
2191 	if (xhci->num_usb3_ports > 15) {
2192 		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2193 		xhci->num_usb3_ports = 15;
2194 	}
2195 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2196 		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2197 				USB_MAXCHILDREN);
2198 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2199 	}
2200 
2201 	/*
2202 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2203 	 * Not sure how the USB core will handle a hub with no ports...
2204 	 */
2205 	if (xhci->num_usb2_ports) {
2206 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2207 				xhci->num_usb2_ports, flags);
2208 		if (!xhci->usb2_ports)
2209 			return -ENOMEM;
2210 
2211 		port_index = 0;
2212 		for (i = 0; i < num_ports; i++) {
2213 			if (xhci->port_array[i] == 0x03 ||
2214 					xhci->port_array[i] == 0 ||
2215 					xhci->port_array[i] == DUPLICATE_ENTRY)
2216 				continue;
2217 
2218 			xhci->usb2_ports[port_index] =
2219 				&xhci->op_regs->port_status_base +
2220 				NUM_PORT_REGS*i;
2221 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2222 					"addr = %p\n", i,
2223 					xhci->usb2_ports[port_index]);
2224 			port_index++;
2225 			if (port_index == xhci->num_usb2_ports)
2226 				break;
2227 		}
2228 	}
2229 	if (xhci->num_usb3_ports) {
2230 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2231 				xhci->num_usb3_ports, flags);
2232 		if (!xhci->usb3_ports)
2233 			return -ENOMEM;
2234 
2235 		port_index = 0;
2236 		for (i = 0; i < num_ports; i++)
2237 			if (xhci->port_array[i] == 0x03) {
2238 				xhci->usb3_ports[port_index] =
2239 					&xhci->op_regs->port_status_base +
2240 					NUM_PORT_REGS*i;
2241 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2242 						"addr = %p\n", i,
2243 						xhci->usb3_ports[port_index]);
2244 				port_index++;
2245 				if (port_index == xhci->num_usb3_ports)
2246 					break;
2247 			}
2248 	}
2249 	return 0;
2250 }
2251 
2252 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2253 {
2254 	dma_addr_t	dma;
2255 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2256 	unsigned int	val, val2;
2257 	u64		val_64;
2258 	struct xhci_segment	*seg;
2259 	u32 page_size, temp;
2260 	int i;
2261 
2262 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2263 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2264 	for (i = 0; i < 16; i++) {
2265 		if ((0x1 & page_size) != 0)
2266 			break;
2267 		page_size = page_size >> 1;
2268 	}
2269 	if (i < 16)
2270 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2271 	else
2272 		xhci_warn(xhci, "WARN: no supported page size\n");
2273 	/* Use 4K pages, since that's common and the minimum the HC supports */
2274 	xhci->page_shift = 12;
2275 	xhci->page_size = 1 << xhci->page_shift;
2276 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2277 
2278 	/*
2279 	 * Program the Number of Device Slots Enabled field in the CONFIG
2280 	 * register with the max value of slots the HC can handle.
2281 	 */
2282 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2283 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2284 			(unsigned int) val);
2285 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2286 	val |= (val2 & ~HCS_SLOTS_MASK);
2287 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2288 			(unsigned int) val);
2289 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2290 
2291 	/*
2292 	 * Section 5.4.8 - doorbell array must be
2293 	 * "physically contiguous and 64-byte (cache line) aligned".
2294 	 */
2295 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2296 			GFP_KERNEL);
2297 	if (!xhci->dcbaa)
2298 		goto fail;
2299 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2300 	xhci->dcbaa->dma = dma;
2301 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2302 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2303 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2304 
2305 	/*
2306 	 * Initialize the ring segment pool.  The ring must be a contiguous
2307 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2308 	 * however, the command ring segment needs 64-byte aligned segments,
2309 	 * so we pick the greater alignment need.
2310 	 */
2311 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2312 			SEGMENT_SIZE, 64, xhci->page_size);
2313 
2314 	/* See Table 46 and Note on Figure 55 */
2315 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2316 			2112, 64, xhci->page_size);
2317 	if (!xhci->segment_pool || !xhci->device_pool)
2318 		goto fail;
2319 
2320 	/* Linear stream context arrays don't have any boundary restrictions,
2321 	 * and only need to be 16-byte aligned.
2322 	 */
2323 	xhci->small_streams_pool =
2324 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2325 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2326 	xhci->medium_streams_pool =
2327 		dma_pool_create("xHCI 1KB stream ctx arrays",
2328 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2329 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2330 	 * will be allocated with dma_alloc_coherent()
2331 	 */
2332 
2333 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2334 		goto fail;
2335 
2336 	/* Set up the command ring to have one segments for now. */
2337 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2338 	if (!xhci->cmd_ring)
2339 		goto fail;
2340 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2341 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2342 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2343 
2344 	/* Set the address in the Command Ring Control register */
2345 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2346 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2347 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2348 		xhci->cmd_ring->cycle_state;
2349 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2350 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2351 	xhci_dbg_cmd_ptrs(xhci);
2352 
2353 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2354 	val &= DBOFF_MASK;
2355 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2356 			" from cap regs base addr\n", val);
2357 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2358 	xhci_dbg_regs(xhci);
2359 	xhci_print_run_regs(xhci);
2360 	/* Set ir_set to interrupt register set 0 */
2361 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2362 
2363 	/*
2364 	 * Event ring setup: Allocate a normal ring, but also setup
2365 	 * the event ring segment table (ERST).  Section 4.9.3.
2366 	 */
2367 	xhci_dbg(xhci, "// Allocating event ring\n");
2368 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2369 						flags);
2370 	if (!xhci->event_ring)
2371 		goto fail;
2372 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2373 		goto fail;
2374 
2375 	xhci->erst.entries = dma_alloc_coherent(dev,
2376 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2377 			GFP_KERNEL);
2378 	if (!xhci->erst.entries)
2379 		goto fail;
2380 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2381 			(unsigned long long)dma);
2382 
2383 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2384 	xhci->erst.num_entries = ERST_NUM_SEGS;
2385 	xhci->erst.erst_dma_addr = dma;
2386 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2387 			xhci->erst.num_entries,
2388 			xhci->erst.entries,
2389 			(unsigned long long)xhci->erst.erst_dma_addr);
2390 
2391 	/* set ring base address and size for each segment table entry */
2392 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2393 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2394 		entry->seg_addr = cpu_to_le64(seg->dma);
2395 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2396 		entry->rsvd = 0;
2397 		seg = seg->next;
2398 	}
2399 
2400 	/* set ERST count with the number of entries in the segment table */
2401 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2402 	val &= ERST_SIZE_MASK;
2403 	val |= ERST_NUM_SEGS;
2404 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2405 			val);
2406 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2407 
2408 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2409 	/* set the segment table base address */
2410 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2411 			(unsigned long long)xhci->erst.erst_dma_addr);
2412 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2413 	val_64 &= ERST_PTR_MASK;
2414 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2415 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2416 
2417 	/* Set the event ring dequeue address */
2418 	xhci_set_hc_event_deq(xhci);
2419 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2420 	xhci_print_ir_set(xhci, 0);
2421 
2422 	/*
2423 	 * XXX: Might need to set the Interrupter Moderation Register to
2424 	 * something other than the default (~1ms minimum between interrupts).
2425 	 * See section 5.5.1.2.
2426 	 */
2427 	init_completion(&xhci->addr_dev);
2428 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2429 		xhci->devs[i] = NULL;
2430 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2431 		xhci->bus_state[0].resume_done[i] = 0;
2432 		xhci->bus_state[1].resume_done[i] = 0;
2433 	}
2434 
2435 	if (scratchpad_alloc(xhci, flags))
2436 		goto fail;
2437 	if (xhci_setup_port_arrays(xhci, flags))
2438 		goto fail;
2439 
2440 	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2441 
2442 	/* Enable USB 3.0 device notifications for function remote wake, which
2443 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2444 	 * U3 (device suspend).
2445 	 */
2446 	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2447 	temp &= ~DEV_NOTE_MASK;
2448 	temp |= DEV_NOTE_FWAKE;
2449 	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2450 
2451 	return 0;
2452 
2453 fail:
2454 	xhci_warn(xhci, "Couldn't initialize memory\n");
2455 	xhci_halt(xhci);
2456 	xhci_reset(xhci);
2457 	xhci_mem_cleanup(xhci);
2458 	return -ENOMEM;
2459 }
2460