1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 28 #include "xhci.h" 29 30 /* 31 * Allocates a generic ring segment from the ring pool, sets the dma address, 32 * initializes the segment to zero, and sets the private next pointer to NULL. 33 * 34 * Section 4.11.1.1: 35 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 36 */ 37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 38 unsigned int cycle_state, gfp_t flags) 39 { 40 struct xhci_segment *seg; 41 dma_addr_t dma; 42 int i; 43 44 seg = kzalloc(sizeof *seg, flags); 45 if (!seg) 46 return NULL; 47 48 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); 49 if (!seg->trbs) { 50 kfree(seg); 51 return NULL; 52 } 53 54 memset(seg->trbs, 0, SEGMENT_SIZE); 55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 56 if (cycle_state == 0) { 57 for (i = 0; i < TRBS_PER_SEGMENT; i++) 58 seg->trbs[i].link.control |= TRB_CYCLE; 59 } 60 seg->dma = dma; 61 seg->next = NULL; 62 63 return seg; 64 } 65 66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 67 { 68 if (seg->trbs) { 69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 70 seg->trbs = NULL; 71 } 72 kfree(seg); 73 } 74 75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 76 struct xhci_segment *first) 77 { 78 struct xhci_segment *seg; 79 80 seg = first->next; 81 while (seg != first) { 82 struct xhci_segment *next = seg->next; 83 xhci_segment_free(xhci, seg); 84 seg = next; 85 } 86 xhci_segment_free(xhci, first); 87 } 88 89 /* 90 * Make the prev segment point to the next segment. 91 * 92 * Change the last TRB in the prev segment to be a Link TRB which points to the 93 * DMA address of the next segment. The caller needs to set any Link TRB 94 * related flags, such as End TRB, Toggle Cycle, and no snoop. 95 */ 96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 97 struct xhci_segment *next, enum xhci_ring_type type) 98 { 99 u32 val; 100 101 if (!prev || !next) 102 return; 103 prev->next = next; 104 if (type != TYPE_EVENT) { 105 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 106 cpu_to_le64(next->dma); 107 108 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 109 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 110 val &= ~TRB_TYPE_BITMASK; 111 val |= TRB_TYPE(TRB_LINK); 112 /* Always set the chain bit with 0.95 hardware */ 113 /* Set chain bit for isoc rings on AMD 0.96 host */ 114 if (xhci_link_trb_quirk(xhci) || 115 (type == TYPE_ISOC && 116 (xhci->quirks & XHCI_AMD_0x96_HOST))) 117 val |= TRB_CHAIN; 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 119 } 120 } 121 122 /* 123 * Link the ring to the new segments. 124 * Set Toggle Cycle for the new ring if needed. 125 */ 126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 127 struct xhci_segment *first, struct xhci_segment *last, 128 unsigned int num_segs) 129 { 130 struct xhci_segment *next; 131 132 if (!ring || !first || !last) 133 return; 134 135 next = ring->enq_seg->next; 136 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 137 xhci_link_segments(xhci, last, next, ring->type); 138 ring->num_segs += num_segs; 139 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 140 141 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 142 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 143 &= ~cpu_to_le32(LINK_TOGGLE); 144 last->trbs[TRBS_PER_SEGMENT-1].link.control 145 |= cpu_to_le32(LINK_TOGGLE); 146 ring->last_seg = last; 147 } 148 } 149 150 /* XXX: Do we need the hcd structure in all these functions? */ 151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 152 { 153 if (!ring) 154 return; 155 156 if (ring->first_seg) 157 xhci_free_segments_for_ring(xhci, ring->first_seg); 158 159 kfree(ring); 160 } 161 162 static void xhci_initialize_ring_info(struct xhci_ring *ring, 163 unsigned int cycle_state) 164 { 165 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 166 ring->enqueue = ring->first_seg->trbs; 167 ring->enq_seg = ring->first_seg; 168 ring->dequeue = ring->enqueue; 169 ring->deq_seg = ring->first_seg; 170 /* The ring is initialized to 0. The producer must write 1 to the cycle 171 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 172 * compare CCS to the cycle bit to check ownership, so CCS = 1. 173 * 174 * New rings are initialized with cycle state equal to 1; if we are 175 * handling ring expansion, set the cycle state equal to the old ring. 176 */ 177 ring->cycle_state = cycle_state; 178 /* Not necessary for new rings, but needed for re-initialized rings */ 179 ring->enq_updates = 0; 180 ring->deq_updates = 0; 181 182 /* 183 * Each segment has a link TRB, and leave an extra TRB for SW 184 * accounting purpose 185 */ 186 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 187 } 188 189 /* Allocate segments and link them for a ring */ 190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 191 struct xhci_segment **first, struct xhci_segment **last, 192 unsigned int num_segs, unsigned int cycle_state, 193 enum xhci_ring_type type, gfp_t flags) 194 { 195 struct xhci_segment *prev; 196 197 prev = xhci_segment_alloc(xhci, cycle_state, flags); 198 if (!prev) 199 return -ENOMEM; 200 num_segs--; 201 202 *first = prev; 203 while (num_segs > 0) { 204 struct xhci_segment *next; 205 206 next = xhci_segment_alloc(xhci, cycle_state, flags); 207 if (!next) { 208 xhci_free_segments_for_ring(xhci, *first); 209 return -ENOMEM; 210 } 211 xhci_link_segments(xhci, prev, next, type); 212 213 prev = next; 214 num_segs--; 215 } 216 xhci_link_segments(xhci, prev, *first, type); 217 *last = prev; 218 219 return 0; 220 } 221 222 /** 223 * Create a new ring with zero or more segments. 224 * 225 * Link each segment together into a ring. 226 * Set the end flag and the cycle toggle bit on the last segment. 227 * See section 4.9.1 and figures 15 and 16. 228 */ 229 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 230 unsigned int num_segs, unsigned int cycle_state, 231 enum xhci_ring_type type, gfp_t flags) 232 { 233 struct xhci_ring *ring; 234 int ret; 235 236 ring = kzalloc(sizeof *(ring), flags); 237 if (!ring) 238 return NULL; 239 240 ring->num_segs = num_segs; 241 INIT_LIST_HEAD(&ring->td_list); 242 ring->type = type; 243 if (num_segs == 0) 244 return ring; 245 246 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 247 &ring->last_seg, num_segs, cycle_state, type, flags); 248 if (ret) 249 goto fail; 250 251 /* Only event ring does not use link TRB */ 252 if (type != TYPE_EVENT) { 253 /* See section 4.9.2.1 and 6.4.4.1 */ 254 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 255 cpu_to_le32(LINK_TOGGLE); 256 } 257 xhci_initialize_ring_info(ring, cycle_state); 258 return ring; 259 260 fail: 261 xhci_ring_free(xhci, ring); 262 return NULL; 263 } 264 265 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 266 struct xhci_virt_device *virt_dev, 267 unsigned int ep_index) 268 { 269 int rings_cached; 270 271 rings_cached = virt_dev->num_rings_cached; 272 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 273 virt_dev->ring_cache[rings_cached] = 274 virt_dev->eps[ep_index].ring; 275 virt_dev->num_rings_cached++; 276 xhci_dbg(xhci, "Cached old ring, " 277 "%d ring%s cached\n", 278 virt_dev->num_rings_cached, 279 (virt_dev->num_rings_cached > 1) ? "s" : ""); 280 } else { 281 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 282 xhci_dbg(xhci, "Ring cache full (%d rings), " 283 "freeing ring\n", 284 virt_dev->num_rings_cached); 285 } 286 virt_dev->eps[ep_index].ring = NULL; 287 } 288 289 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 290 * pointers to the beginning of the ring. 291 */ 292 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 293 struct xhci_ring *ring, unsigned int cycle_state, 294 enum xhci_ring_type type) 295 { 296 struct xhci_segment *seg = ring->first_seg; 297 int i; 298 299 do { 300 memset(seg->trbs, 0, 301 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 302 if (cycle_state == 0) { 303 for (i = 0; i < TRBS_PER_SEGMENT; i++) 304 seg->trbs[i].link.control |= TRB_CYCLE; 305 } 306 /* All endpoint rings have link TRBs */ 307 xhci_link_segments(xhci, seg, seg->next, type); 308 seg = seg->next; 309 } while (seg != ring->first_seg); 310 ring->type = type; 311 xhci_initialize_ring_info(ring, cycle_state); 312 /* td list should be empty since all URBs have been cancelled, 313 * but just in case... 314 */ 315 INIT_LIST_HEAD(&ring->td_list); 316 } 317 318 /* 319 * Expand an existing ring. 320 * Look for a cached ring or allocate a new ring which has same segment numbers 321 * and link the two rings. 322 */ 323 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 324 unsigned int num_trbs, gfp_t flags) 325 { 326 struct xhci_segment *first; 327 struct xhci_segment *last; 328 unsigned int num_segs; 329 unsigned int num_segs_needed; 330 int ret; 331 332 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 333 (TRBS_PER_SEGMENT - 1); 334 335 /* Allocate number of segments we needed, or double the ring size */ 336 num_segs = ring->num_segs > num_segs_needed ? 337 ring->num_segs : num_segs_needed; 338 339 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 340 num_segs, ring->cycle_state, ring->type, flags); 341 if (ret) 342 return -ENOMEM; 343 344 xhci_link_rings(xhci, ring, first, last, num_segs); 345 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n", 346 ring->num_segs); 347 348 return 0; 349 } 350 351 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 352 353 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 354 int type, gfp_t flags) 355 { 356 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags); 357 if (!ctx) 358 return NULL; 359 360 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); 361 ctx->type = type; 362 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 363 if (type == XHCI_CTX_TYPE_INPUT) 364 ctx->size += CTX_SIZE(xhci->hcc_params); 365 366 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); 367 memset(ctx->bytes, 0, ctx->size); 368 return ctx; 369 } 370 371 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 372 struct xhci_container_ctx *ctx) 373 { 374 if (!ctx) 375 return; 376 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 377 kfree(ctx); 378 } 379 380 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, 381 struct xhci_container_ctx *ctx) 382 { 383 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); 384 return (struct xhci_input_control_ctx *)ctx->bytes; 385 } 386 387 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 388 struct xhci_container_ctx *ctx) 389 { 390 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 391 return (struct xhci_slot_ctx *)ctx->bytes; 392 393 return (struct xhci_slot_ctx *) 394 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 395 } 396 397 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 398 struct xhci_container_ctx *ctx, 399 unsigned int ep_index) 400 { 401 /* increment ep index by offset of start of ep ctx array */ 402 ep_index++; 403 if (ctx->type == XHCI_CTX_TYPE_INPUT) 404 ep_index++; 405 406 return (struct xhci_ep_ctx *) 407 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 408 } 409 410 411 /***************** Streams structures manipulation *************************/ 412 413 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 414 unsigned int num_stream_ctxs, 415 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 416 { 417 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 418 419 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 420 dma_free_coherent(&pdev->dev, 421 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 422 stream_ctx, dma); 423 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 424 return dma_pool_free(xhci->small_streams_pool, 425 stream_ctx, dma); 426 else 427 return dma_pool_free(xhci->medium_streams_pool, 428 stream_ctx, dma); 429 } 430 431 /* 432 * The stream context array for each endpoint with bulk streams enabled can 433 * vary in size, based on: 434 * - how many streams the endpoint supports, 435 * - the maximum primary stream array size the host controller supports, 436 * - and how many streams the device driver asks for. 437 * 438 * The stream context array must be a power of 2, and can be as small as 439 * 64 bytes or as large as 1MB. 440 */ 441 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 442 unsigned int num_stream_ctxs, dma_addr_t *dma, 443 gfp_t mem_flags) 444 { 445 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 446 447 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 448 return dma_alloc_coherent(&pdev->dev, 449 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 450 dma, mem_flags); 451 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 452 return dma_pool_alloc(xhci->small_streams_pool, 453 mem_flags, dma); 454 else 455 return dma_pool_alloc(xhci->medium_streams_pool, 456 mem_flags, dma); 457 } 458 459 struct xhci_ring *xhci_dma_to_transfer_ring( 460 struct xhci_virt_ep *ep, 461 u64 address) 462 { 463 if (ep->ep_state & EP_HAS_STREAMS) 464 return radix_tree_lookup(&ep->stream_info->trb_address_map, 465 address >> SEGMENT_SHIFT); 466 return ep->ring; 467 } 468 469 /* Only use this when you know stream_info is valid */ 470 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 471 static struct xhci_ring *dma_to_stream_ring( 472 struct xhci_stream_info *stream_info, 473 u64 address) 474 { 475 return radix_tree_lookup(&stream_info->trb_address_map, 476 address >> SEGMENT_SHIFT); 477 } 478 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 479 480 struct xhci_ring *xhci_stream_id_to_ring( 481 struct xhci_virt_device *dev, 482 unsigned int ep_index, 483 unsigned int stream_id) 484 { 485 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 486 487 if (stream_id == 0) 488 return ep->ring; 489 if (!ep->stream_info) 490 return NULL; 491 492 if (stream_id > ep->stream_info->num_streams) 493 return NULL; 494 return ep->stream_info->stream_rings[stream_id]; 495 } 496 497 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 498 static int xhci_test_radix_tree(struct xhci_hcd *xhci, 499 unsigned int num_streams, 500 struct xhci_stream_info *stream_info) 501 { 502 u32 cur_stream; 503 struct xhci_ring *cur_ring; 504 u64 addr; 505 506 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 507 struct xhci_ring *mapped_ring; 508 int trb_size = sizeof(union xhci_trb); 509 510 cur_ring = stream_info->stream_rings[cur_stream]; 511 for (addr = cur_ring->first_seg->dma; 512 addr < cur_ring->first_seg->dma + SEGMENT_SIZE; 513 addr += trb_size) { 514 mapped_ring = dma_to_stream_ring(stream_info, addr); 515 if (cur_ring != mapped_ring) { 516 xhci_warn(xhci, "WARN: DMA address 0x%08llx " 517 "didn't map to stream ID %u; " 518 "mapped to ring %p\n", 519 (unsigned long long) addr, 520 cur_stream, 521 mapped_ring); 522 return -EINVAL; 523 } 524 } 525 /* One TRB after the end of the ring segment shouldn't return a 526 * pointer to the current ring (although it may be a part of a 527 * different ring). 528 */ 529 mapped_ring = dma_to_stream_ring(stream_info, addr); 530 if (mapped_ring != cur_ring) { 531 /* One TRB before should also fail */ 532 addr = cur_ring->first_seg->dma - trb_size; 533 mapped_ring = dma_to_stream_ring(stream_info, addr); 534 } 535 if (mapped_ring == cur_ring) { 536 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx " 537 "mapped to valid stream ID %u; " 538 "mapped ring = %p\n", 539 (unsigned long long) addr, 540 cur_stream, 541 mapped_ring); 542 return -EINVAL; 543 } 544 } 545 return 0; 546 } 547 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 548 549 /* 550 * Change an endpoint's internal structure so it supports stream IDs. The 551 * number of requested streams includes stream 0, which cannot be used by device 552 * drivers. 553 * 554 * The number of stream contexts in the stream context array may be bigger than 555 * the number of streams the driver wants to use. This is because the number of 556 * stream context array entries must be a power of two. 557 * 558 * We need a radix tree for mapping physical addresses of TRBs to which stream 559 * ID they belong to. We need to do this because the host controller won't tell 560 * us which stream ring the TRB came from. We could store the stream ID in an 561 * event data TRB, but that doesn't help us for the cancellation case, since the 562 * endpoint may stop before it reaches that event data TRB. 563 * 564 * The radix tree maps the upper portion of the TRB DMA address to a ring 565 * segment that has the same upper portion of DMA addresses. For example, say I 566 * have segments of size 1KB, that are always 64-byte aligned. A segment may 567 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 568 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 569 * pass the radix tree a key to get the right stream ID: 570 * 571 * 0x10c90fff >> 10 = 0x43243 572 * 0x10c912c0 >> 10 = 0x43244 573 * 0x10c91400 >> 10 = 0x43245 574 * 575 * Obviously, only those TRBs with DMA addresses that are within the segment 576 * will make the radix tree return the stream ID for that ring. 577 * 578 * Caveats for the radix tree: 579 * 580 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 581 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 582 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 583 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 584 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 585 * extended systems (where the DMA address can be bigger than 32-bits), 586 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 587 */ 588 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 589 unsigned int num_stream_ctxs, 590 unsigned int num_streams, gfp_t mem_flags) 591 { 592 struct xhci_stream_info *stream_info; 593 u32 cur_stream; 594 struct xhci_ring *cur_ring; 595 unsigned long key; 596 u64 addr; 597 int ret; 598 599 xhci_dbg(xhci, "Allocating %u streams and %u " 600 "stream context array entries.\n", 601 num_streams, num_stream_ctxs); 602 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 603 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 604 return NULL; 605 } 606 xhci->cmd_ring_reserved_trbs++; 607 608 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 609 if (!stream_info) 610 goto cleanup_trbs; 611 612 stream_info->num_streams = num_streams; 613 stream_info->num_stream_ctxs = num_stream_ctxs; 614 615 /* Initialize the array of virtual pointers to stream rings. */ 616 stream_info->stream_rings = kzalloc( 617 sizeof(struct xhci_ring *)*num_streams, 618 mem_flags); 619 if (!stream_info->stream_rings) 620 goto cleanup_info; 621 622 /* Initialize the array of DMA addresses for stream rings for the HW. */ 623 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 624 num_stream_ctxs, &stream_info->ctx_array_dma, 625 mem_flags); 626 if (!stream_info->stream_ctx_array) 627 goto cleanup_ctx; 628 memset(stream_info->stream_ctx_array, 0, 629 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 630 631 /* Allocate everything needed to free the stream rings later */ 632 stream_info->free_streams_command = 633 xhci_alloc_command(xhci, true, true, mem_flags); 634 if (!stream_info->free_streams_command) 635 goto cleanup_ctx; 636 637 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 638 639 /* Allocate rings for all the streams that the driver will use, 640 * and add their segment DMA addresses to the radix tree. 641 * Stream 0 is reserved. 642 */ 643 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 644 stream_info->stream_rings[cur_stream] = 645 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags); 646 cur_ring = stream_info->stream_rings[cur_stream]; 647 if (!cur_ring) 648 goto cleanup_rings; 649 cur_ring->stream_id = cur_stream; 650 /* Set deq ptr, cycle bit, and stream context type */ 651 addr = cur_ring->first_seg->dma | 652 SCT_FOR_CTX(SCT_PRI_TR) | 653 cur_ring->cycle_state; 654 stream_info->stream_ctx_array[cur_stream].stream_ring = 655 cpu_to_le64(addr); 656 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 657 cur_stream, (unsigned long long) addr); 658 659 key = (unsigned long) 660 (cur_ring->first_seg->dma >> SEGMENT_SHIFT); 661 ret = radix_tree_insert(&stream_info->trb_address_map, 662 key, cur_ring); 663 if (ret) { 664 xhci_ring_free(xhci, cur_ring); 665 stream_info->stream_rings[cur_stream] = NULL; 666 goto cleanup_rings; 667 } 668 } 669 /* Leave the other unused stream ring pointers in the stream context 670 * array initialized to zero. This will cause the xHC to give us an 671 * error if the device asks for a stream ID we don't have setup (if it 672 * was any other way, the host controller would assume the ring is 673 * "empty" and wait forever for data to be queued to that stream ID). 674 */ 675 #if XHCI_DEBUG 676 /* Do a little test on the radix tree to make sure it returns the 677 * correct values. 678 */ 679 if (xhci_test_radix_tree(xhci, num_streams, stream_info)) 680 goto cleanup_rings; 681 #endif 682 683 return stream_info; 684 685 cleanup_rings: 686 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 687 cur_ring = stream_info->stream_rings[cur_stream]; 688 if (cur_ring) { 689 addr = cur_ring->first_seg->dma; 690 radix_tree_delete(&stream_info->trb_address_map, 691 addr >> SEGMENT_SHIFT); 692 xhci_ring_free(xhci, cur_ring); 693 stream_info->stream_rings[cur_stream] = NULL; 694 } 695 } 696 xhci_free_command(xhci, stream_info->free_streams_command); 697 cleanup_ctx: 698 kfree(stream_info->stream_rings); 699 cleanup_info: 700 kfree(stream_info); 701 cleanup_trbs: 702 xhci->cmd_ring_reserved_trbs--; 703 return NULL; 704 } 705 /* 706 * Sets the MaxPStreams field and the Linear Stream Array field. 707 * Sets the dequeue pointer to the stream context array. 708 */ 709 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 710 struct xhci_ep_ctx *ep_ctx, 711 struct xhci_stream_info *stream_info) 712 { 713 u32 max_primary_streams; 714 /* MaxPStreams is the number of stream context array entries, not the 715 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 716 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 717 */ 718 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 719 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", 720 1 << (max_primary_streams + 1)); 721 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 722 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 723 | EP_HAS_LSA); 724 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 725 } 726 727 /* 728 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 729 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 730 * not at the beginning of the ring). 731 */ 732 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, 733 struct xhci_ep_ctx *ep_ctx, 734 struct xhci_virt_ep *ep) 735 { 736 dma_addr_t addr; 737 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 738 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 739 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 740 } 741 742 /* Frees all stream contexts associated with the endpoint, 743 * 744 * Caller should fix the endpoint context streams fields. 745 */ 746 void xhci_free_stream_info(struct xhci_hcd *xhci, 747 struct xhci_stream_info *stream_info) 748 { 749 int cur_stream; 750 struct xhci_ring *cur_ring; 751 dma_addr_t addr; 752 753 if (!stream_info) 754 return; 755 756 for (cur_stream = 1; cur_stream < stream_info->num_streams; 757 cur_stream++) { 758 cur_ring = stream_info->stream_rings[cur_stream]; 759 if (cur_ring) { 760 addr = cur_ring->first_seg->dma; 761 radix_tree_delete(&stream_info->trb_address_map, 762 addr >> SEGMENT_SHIFT); 763 xhci_ring_free(xhci, cur_ring); 764 stream_info->stream_rings[cur_stream] = NULL; 765 } 766 } 767 xhci_free_command(xhci, stream_info->free_streams_command); 768 xhci->cmd_ring_reserved_trbs--; 769 if (stream_info->stream_ctx_array) 770 xhci_free_stream_ctx(xhci, 771 stream_info->num_stream_ctxs, 772 stream_info->stream_ctx_array, 773 stream_info->ctx_array_dma); 774 775 if (stream_info) 776 kfree(stream_info->stream_rings); 777 kfree(stream_info); 778 } 779 780 781 /***************** Device context manipulation *************************/ 782 783 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 784 struct xhci_virt_ep *ep) 785 { 786 init_timer(&ep->stop_cmd_timer); 787 ep->stop_cmd_timer.data = (unsigned long) ep; 788 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; 789 ep->xhci = xhci; 790 } 791 792 static void xhci_free_tt_info(struct xhci_hcd *xhci, 793 struct xhci_virt_device *virt_dev, 794 int slot_id) 795 { 796 struct list_head *tt; 797 struct list_head *tt_list_head; 798 struct list_head *tt_next; 799 struct xhci_tt_bw_info *tt_info; 800 801 /* If the device never made it past the Set Address stage, 802 * it may not have the real_port set correctly. 803 */ 804 if (virt_dev->real_port == 0 || 805 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 806 xhci_dbg(xhci, "Bad real port.\n"); 807 return; 808 } 809 810 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 811 if (list_empty(tt_list_head)) 812 return; 813 814 list_for_each(tt, tt_list_head) { 815 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list); 816 if (tt_info->slot_id == slot_id) 817 break; 818 } 819 /* Cautionary measure in case the hub was disconnected before we 820 * stored the TT information. 821 */ 822 if (tt_info->slot_id != slot_id) 823 return; 824 825 tt_next = tt->next; 826 tt_info = list_entry(tt, struct xhci_tt_bw_info, 827 tt_list); 828 /* Multi-TT hubs will have more than one entry */ 829 do { 830 list_del(tt); 831 kfree(tt_info); 832 tt = tt_next; 833 if (list_empty(tt_list_head)) 834 break; 835 tt_next = tt->next; 836 tt_info = list_entry(tt, struct xhci_tt_bw_info, 837 tt_list); 838 } while (tt_info->slot_id == slot_id); 839 } 840 841 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 842 struct xhci_virt_device *virt_dev, 843 struct usb_device *hdev, 844 struct usb_tt *tt, gfp_t mem_flags) 845 { 846 struct xhci_tt_bw_info *tt_info; 847 unsigned int num_ports; 848 int i, j; 849 850 if (!tt->multi) 851 num_ports = 1; 852 else 853 num_ports = hdev->maxchild; 854 855 for (i = 0; i < num_ports; i++, tt_info++) { 856 struct xhci_interval_bw_table *bw_table; 857 858 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 859 if (!tt_info) 860 goto free_tts; 861 INIT_LIST_HEAD(&tt_info->tt_list); 862 list_add(&tt_info->tt_list, 863 &xhci->rh_bw[virt_dev->real_port - 1].tts); 864 tt_info->slot_id = virt_dev->udev->slot_id; 865 if (tt->multi) 866 tt_info->ttport = i+1; 867 bw_table = &tt_info->bw_table; 868 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 869 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 870 } 871 return 0; 872 873 free_tts: 874 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 875 return -ENOMEM; 876 } 877 878 879 /* All the xhci_tds in the ring's TD list should be freed at this point. 880 * Should be called with xhci->lock held if there is any chance the TT lists 881 * will be manipulated by the configure endpoint, allocate device, or update 882 * hub functions while this function is removing the TT entries from the list. 883 */ 884 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 885 { 886 struct xhci_virt_device *dev; 887 int i; 888 int old_active_eps = 0; 889 890 /* Slot ID 0 is reserved */ 891 if (slot_id == 0 || !xhci->devs[slot_id]) 892 return; 893 894 dev = xhci->devs[slot_id]; 895 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 896 if (!dev) 897 return; 898 899 if (dev->tt_info) 900 old_active_eps = dev->tt_info->active_eps; 901 902 for (i = 0; i < 31; ++i) { 903 if (dev->eps[i].ring) 904 xhci_ring_free(xhci, dev->eps[i].ring); 905 if (dev->eps[i].stream_info) 906 xhci_free_stream_info(xhci, 907 dev->eps[i].stream_info); 908 /* Endpoints on the TT/root port lists should have been removed 909 * when usb_disable_device() was called for the device. 910 * We can't drop them anyway, because the udev might have gone 911 * away by this point, and we can't tell what speed it was. 912 */ 913 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 914 xhci_warn(xhci, "Slot %u endpoint %u " 915 "not removed from BW list!\n", 916 slot_id, i); 917 } 918 /* If this is a hub, free the TT(s) from the TT list */ 919 xhci_free_tt_info(xhci, dev, slot_id); 920 /* If necessary, update the number of active TTs on this root port */ 921 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 922 923 if (dev->ring_cache) { 924 for (i = 0; i < dev->num_rings_cached; i++) 925 xhci_ring_free(xhci, dev->ring_cache[i]); 926 kfree(dev->ring_cache); 927 } 928 929 if (dev->in_ctx) 930 xhci_free_container_ctx(xhci, dev->in_ctx); 931 if (dev->out_ctx) 932 xhci_free_container_ctx(xhci, dev->out_ctx); 933 934 kfree(xhci->devs[slot_id]); 935 xhci->devs[slot_id] = NULL; 936 } 937 938 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 939 struct usb_device *udev, gfp_t flags) 940 { 941 struct xhci_virt_device *dev; 942 int i; 943 944 /* Slot ID 0 is reserved */ 945 if (slot_id == 0 || xhci->devs[slot_id]) { 946 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 947 return 0; 948 } 949 950 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 951 if (!xhci->devs[slot_id]) 952 return 0; 953 dev = xhci->devs[slot_id]; 954 955 /* Allocate the (output) device context that will be used in the HC. */ 956 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 957 if (!dev->out_ctx) 958 goto fail; 959 960 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 961 (unsigned long long)dev->out_ctx->dma); 962 963 /* Allocate the (input) device context for address device command */ 964 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 965 if (!dev->in_ctx) 966 goto fail; 967 968 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 969 (unsigned long long)dev->in_ctx->dma); 970 971 /* Initialize the cancellation list and watchdog timers for each ep */ 972 for (i = 0; i < 31; i++) { 973 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 974 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 975 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 976 } 977 978 /* Allocate endpoint 0 ring */ 979 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags); 980 if (!dev->eps[0].ring) 981 goto fail; 982 983 /* Allocate pointers to the ring cache */ 984 dev->ring_cache = kzalloc( 985 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 986 flags); 987 if (!dev->ring_cache) 988 goto fail; 989 dev->num_rings_cached = 0; 990 991 init_completion(&dev->cmd_completion); 992 INIT_LIST_HEAD(&dev->cmd_list); 993 dev->udev = udev; 994 995 /* Point to output device context in dcbaa. */ 996 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 997 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 998 slot_id, 999 &xhci->dcbaa->dev_context_ptrs[slot_id], 1000 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1001 1002 return 1; 1003 fail: 1004 xhci_free_virt_device(xhci, slot_id); 1005 return 0; 1006 } 1007 1008 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1009 struct usb_device *udev) 1010 { 1011 struct xhci_virt_device *virt_dev; 1012 struct xhci_ep_ctx *ep0_ctx; 1013 struct xhci_ring *ep_ring; 1014 1015 virt_dev = xhci->devs[udev->slot_id]; 1016 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1017 ep_ring = virt_dev->eps[0].ring; 1018 /* 1019 * FIXME we don't keep track of the dequeue pointer very well after a 1020 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1021 * host to our enqueue pointer. This should only be called after a 1022 * configured device has reset, so all control transfers should have 1023 * been completed or cancelled before the reset. 1024 */ 1025 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1026 ep_ring->enqueue) 1027 | ep_ring->cycle_state); 1028 } 1029 1030 /* 1031 * The xHCI roothub may have ports of differing speeds in any order in the port 1032 * status registers. xhci->port_array provides an array of the port speed for 1033 * each offset into the port status registers. 1034 * 1035 * The xHCI hardware wants to know the roothub port number that the USB device 1036 * is attached to (or the roothub port its ancestor hub is attached to). All we 1037 * know is the index of that port under either the USB 2.0 or the USB 3.0 1038 * roothub, but that doesn't give us the real index into the HW port status 1039 * registers. Scan through the xHCI roothub port array, looking for the Nth 1040 * entry of the correct port speed. Return the port number of that entry. 1041 */ 1042 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1043 struct usb_device *udev) 1044 { 1045 struct usb_device *top_dev; 1046 unsigned int num_similar_speed_ports; 1047 unsigned int faked_port_num; 1048 int i; 1049 1050 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1051 top_dev = top_dev->parent) 1052 /* Found device below root hub */; 1053 faked_port_num = top_dev->portnum; 1054 for (i = 0, num_similar_speed_ports = 0; 1055 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 1056 u8 port_speed = xhci->port_array[i]; 1057 1058 /* 1059 * Skip ports that don't have known speeds, or have duplicate 1060 * Extended Capabilities port speed entries. 1061 */ 1062 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) 1063 continue; 1064 1065 /* 1066 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 1067 * 1.1 ports are under the USB 2.0 hub. If the port speed 1068 * matches the device speed, it's a similar speed port. 1069 */ 1070 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER)) 1071 num_similar_speed_ports++; 1072 if (num_similar_speed_ports == faked_port_num) 1073 /* Roothub ports are numbered from 1 to N */ 1074 return i+1; 1075 } 1076 return 0; 1077 } 1078 1079 /* Setup an xHCI virtual device for a Set Address command */ 1080 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1081 { 1082 struct xhci_virt_device *dev; 1083 struct xhci_ep_ctx *ep0_ctx; 1084 struct xhci_slot_ctx *slot_ctx; 1085 u32 port_num; 1086 struct usb_device *top_dev; 1087 1088 dev = xhci->devs[udev->slot_id]; 1089 /* Slot ID 0 is reserved */ 1090 if (udev->slot_id == 0 || !dev) { 1091 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1092 udev->slot_id); 1093 return -EINVAL; 1094 } 1095 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1096 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1097 1098 /* 3) Only the control endpoint is valid - one endpoint context */ 1099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1100 switch (udev->speed) { 1101 case USB_SPEED_SUPER: 1102 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1103 break; 1104 case USB_SPEED_HIGH: 1105 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1106 break; 1107 case USB_SPEED_FULL: 1108 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1109 break; 1110 case USB_SPEED_LOW: 1111 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1112 break; 1113 case USB_SPEED_WIRELESS: 1114 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1115 return -EINVAL; 1116 break; 1117 default: 1118 /* Speed was set earlier, this shouldn't happen. */ 1119 BUG(); 1120 } 1121 /* Find the root hub port this device is under */ 1122 port_num = xhci_find_real_port_number(xhci, udev); 1123 if (!port_num) 1124 return -EINVAL; 1125 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1126 /* Set the port number in the virtual_device to the faked port number */ 1127 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1128 top_dev = top_dev->parent) 1129 /* Found device below root hub */; 1130 dev->fake_port = top_dev->portnum; 1131 dev->real_port = port_num; 1132 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1133 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1134 1135 /* Find the right bandwidth table that this device will be a part of. 1136 * If this is a full speed device attached directly to a root port (or a 1137 * decendent of one), it counts as a primary bandwidth domain, not a 1138 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1139 * will never be created for the HS root hub. 1140 */ 1141 if (!udev->tt || !udev->tt->hub->parent) { 1142 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1143 } else { 1144 struct xhci_root_port_bw_info *rh_bw; 1145 struct xhci_tt_bw_info *tt_bw; 1146 1147 rh_bw = &xhci->rh_bw[port_num - 1]; 1148 /* Find the right TT. */ 1149 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1150 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1151 continue; 1152 1153 if (!dev->udev->tt->multi || 1154 (udev->tt->multi && 1155 tt_bw->ttport == dev->udev->ttport)) { 1156 dev->bw_table = &tt_bw->bw_table; 1157 dev->tt_info = tt_bw; 1158 break; 1159 } 1160 } 1161 if (!dev->tt_info) 1162 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1163 } 1164 1165 /* Is this a LS/FS device under an external HS hub? */ 1166 if (udev->tt && udev->tt->hub->parent) { 1167 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1168 (udev->ttport << 8)); 1169 if (udev->tt->multi) 1170 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1171 } 1172 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1173 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1174 1175 /* Step 4 - ring already allocated */ 1176 /* Step 5 */ 1177 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1178 /* 1179 * XXX: Not sure about wireless USB devices. 1180 */ 1181 switch (udev->speed) { 1182 case USB_SPEED_SUPER: 1183 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512)); 1184 break; 1185 case USB_SPEED_HIGH: 1186 /* USB core guesses at a 64-byte max packet first for FS devices */ 1187 case USB_SPEED_FULL: 1188 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64)); 1189 break; 1190 case USB_SPEED_LOW: 1191 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8)); 1192 break; 1193 case USB_SPEED_WIRELESS: 1194 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1195 return -EINVAL; 1196 break; 1197 default: 1198 /* New speed? */ 1199 BUG(); 1200 } 1201 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1202 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3)); 1203 1204 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1205 dev->eps[0].ring->cycle_state); 1206 1207 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1208 1209 return 0; 1210 } 1211 1212 /* 1213 * Convert interval expressed as 2^(bInterval - 1) == interval into 1214 * straight exponent value 2^n == interval. 1215 * 1216 */ 1217 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1218 struct usb_host_endpoint *ep) 1219 { 1220 unsigned int interval; 1221 1222 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1223 if (interval != ep->desc.bInterval - 1) 1224 dev_warn(&udev->dev, 1225 "ep %#x - rounding interval to %d %sframes\n", 1226 ep->desc.bEndpointAddress, 1227 1 << interval, 1228 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1229 1230 if (udev->speed == USB_SPEED_FULL) { 1231 /* 1232 * Full speed isoc endpoints specify interval in frames, 1233 * not microframes. We are using microframes everywhere, 1234 * so adjust accordingly. 1235 */ 1236 interval += 3; /* 1 frame = 2^3 uframes */ 1237 } 1238 1239 return interval; 1240 } 1241 1242 /* 1243 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1244 * microframes, rounded down to nearest power of 2. 1245 */ 1246 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1247 struct usb_host_endpoint *ep, unsigned int desc_interval, 1248 unsigned int min_exponent, unsigned int max_exponent) 1249 { 1250 unsigned int interval; 1251 1252 interval = fls(desc_interval) - 1; 1253 interval = clamp_val(interval, min_exponent, max_exponent); 1254 if ((1 << interval) != desc_interval) 1255 dev_warn(&udev->dev, 1256 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1257 ep->desc.bEndpointAddress, 1258 1 << interval, 1259 desc_interval); 1260 1261 return interval; 1262 } 1263 1264 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1265 struct usb_host_endpoint *ep) 1266 { 1267 return xhci_microframes_to_exponent(udev, ep, 1268 ep->desc.bInterval, 0, 15); 1269 } 1270 1271 1272 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1273 struct usb_host_endpoint *ep) 1274 { 1275 return xhci_microframes_to_exponent(udev, ep, 1276 ep->desc.bInterval * 8, 3, 10); 1277 } 1278 1279 /* Return the polling or NAK interval. 1280 * 1281 * The polling interval is expressed in "microframes". If xHCI's Interval field 1282 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1283 * 1284 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1285 * is set to 0. 1286 */ 1287 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1288 struct usb_host_endpoint *ep) 1289 { 1290 unsigned int interval = 0; 1291 1292 switch (udev->speed) { 1293 case USB_SPEED_HIGH: 1294 /* Max NAK rate */ 1295 if (usb_endpoint_xfer_control(&ep->desc) || 1296 usb_endpoint_xfer_bulk(&ep->desc)) { 1297 interval = xhci_parse_microframe_interval(udev, ep); 1298 break; 1299 } 1300 /* Fall through - SS and HS isoc/int have same decoding */ 1301 1302 case USB_SPEED_SUPER: 1303 if (usb_endpoint_xfer_int(&ep->desc) || 1304 usb_endpoint_xfer_isoc(&ep->desc)) { 1305 interval = xhci_parse_exponent_interval(udev, ep); 1306 } 1307 break; 1308 1309 case USB_SPEED_FULL: 1310 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1311 interval = xhci_parse_exponent_interval(udev, ep); 1312 break; 1313 } 1314 /* 1315 * Fall through for interrupt endpoint interval decoding 1316 * since it uses the same rules as low speed interrupt 1317 * endpoints. 1318 */ 1319 1320 case USB_SPEED_LOW: 1321 if (usb_endpoint_xfer_int(&ep->desc) || 1322 usb_endpoint_xfer_isoc(&ep->desc)) { 1323 1324 interval = xhci_parse_frame_interval(udev, ep); 1325 } 1326 break; 1327 1328 default: 1329 BUG(); 1330 } 1331 return EP_INTERVAL(interval); 1332 } 1333 1334 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1335 * High speed endpoint descriptors can define "the number of additional 1336 * transaction opportunities per microframe", but that goes in the Max Burst 1337 * endpoint context field. 1338 */ 1339 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1340 struct usb_host_endpoint *ep) 1341 { 1342 if (udev->speed != USB_SPEED_SUPER || 1343 !usb_endpoint_xfer_isoc(&ep->desc)) 1344 return 0; 1345 return ep->ss_ep_comp.bmAttributes; 1346 } 1347 1348 static u32 xhci_get_endpoint_type(struct usb_device *udev, 1349 struct usb_host_endpoint *ep) 1350 { 1351 int in; 1352 u32 type; 1353 1354 in = usb_endpoint_dir_in(&ep->desc); 1355 if (usb_endpoint_xfer_control(&ep->desc)) { 1356 type = EP_TYPE(CTRL_EP); 1357 } else if (usb_endpoint_xfer_bulk(&ep->desc)) { 1358 if (in) 1359 type = EP_TYPE(BULK_IN_EP); 1360 else 1361 type = EP_TYPE(BULK_OUT_EP); 1362 } else if (usb_endpoint_xfer_isoc(&ep->desc)) { 1363 if (in) 1364 type = EP_TYPE(ISOC_IN_EP); 1365 else 1366 type = EP_TYPE(ISOC_OUT_EP); 1367 } else if (usb_endpoint_xfer_int(&ep->desc)) { 1368 if (in) 1369 type = EP_TYPE(INT_IN_EP); 1370 else 1371 type = EP_TYPE(INT_OUT_EP); 1372 } else { 1373 BUG(); 1374 } 1375 return type; 1376 } 1377 1378 /* Return the maximum endpoint service interval time (ESIT) payload. 1379 * Basically, this is the maxpacket size, multiplied by the burst size 1380 * and mult size. 1381 */ 1382 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, 1383 struct usb_device *udev, 1384 struct usb_host_endpoint *ep) 1385 { 1386 int max_burst; 1387 int max_packet; 1388 1389 /* Only applies for interrupt or isochronous endpoints */ 1390 if (usb_endpoint_xfer_control(&ep->desc) || 1391 usb_endpoint_xfer_bulk(&ep->desc)) 1392 return 0; 1393 1394 if (udev->speed == USB_SPEED_SUPER) 1395 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1396 1397 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1398 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; 1399 /* A 0 in max burst means 1 transfer per ESIT */ 1400 return max_packet * (max_burst + 1); 1401 } 1402 1403 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1404 * Drivers will have to call usb_alloc_streams() to do that. 1405 */ 1406 int xhci_endpoint_init(struct xhci_hcd *xhci, 1407 struct xhci_virt_device *virt_dev, 1408 struct usb_device *udev, 1409 struct usb_host_endpoint *ep, 1410 gfp_t mem_flags) 1411 { 1412 unsigned int ep_index; 1413 struct xhci_ep_ctx *ep_ctx; 1414 struct xhci_ring *ep_ring; 1415 unsigned int max_packet; 1416 unsigned int max_burst; 1417 enum xhci_ring_type type; 1418 u32 max_esit_payload; 1419 1420 ep_index = xhci_get_endpoint_index(&ep->desc); 1421 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1422 1423 type = usb_endpoint_type(&ep->desc); 1424 /* Set up the endpoint ring */ 1425 virt_dev->eps[ep_index].new_ring = 1426 xhci_ring_alloc(xhci, 2, 1, type, mem_flags); 1427 if (!virt_dev->eps[ep_index].new_ring) { 1428 /* Attempt to use the ring cache */ 1429 if (virt_dev->num_rings_cached == 0) 1430 return -ENOMEM; 1431 virt_dev->eps[ep_index].new_ring = 1432 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1433 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1434 virt_dev->num_rings_cached--; 1435 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1436 1, type); 1437 } 1438 virt_dev->eps[ep_index].skip = false; 1439 ep_ring = virt_dev->eps[ep_index].new_ring; 1440 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); 1441 1442 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) 1443 | EP_MULT(xhci_get_endpoint_mult(udev, ep))); 1444 1445 /* FIXME dig Mult and streams info out of ep companion desc */ 1446 1447 /* Allow 3 retries for everything but isoc; 1448 * CErr shall be set to 0 for Isoch endpoints. 1449 */ 1450 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1451 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3)); 1452 else 1453 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0)); 1454 1455 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep)); 1456 1457 /* Set the max packet size and max burst */ 1458 switch (udev->speed) { 1459 case USB_SPEED_SUPER: 1460 max_packet = usb_endpoint_maxp(&ep->desc); 1461 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet)); 1462 /* dig out max burst from ep companion desc */ 1463 max_packet = ep->ss_ep_comp.bMaxBurst; 1464 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet)); 1465 break; 1466 case USB_SPEED_HIGH: 1467 /* bits 11:12 specify the number of additional transaction 1468 * opportunities per microframe (USB 2.0, section 9.6.6) 1469 */ 1470 if (usb_endpoint_xfer_isoc(&ep->desc) || 1471 usb_endpoint_xfer_int(&ep->desc)) { 1472 max_burst = (usb_endpoint_maxp(&ep->desc) 1473 & 0x1800) >> 11; 1474 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst)); 1475 } 1476 /* Fall through */ 1477 case USB_SPEED_FULL: 1478 case USB_SPEED_LOW: 1479 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1480 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet)); 1481 break; 1482 default: 1483 BUG(); 1484 } 1485 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); 1486 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); 1487 1488 /* 1489 * XXX no idea how to calculate the average TRB buffer length for bulk 1490 * endpoints, as the driver gives us no clue how big each scatter gather 1491 * list entry (or buffer) is going to be. 1492 * 1493 * For isochronous and interrupt endpoints, we set it to the max 1494 * available, until we have new API in the USB core to allow drivers to 1495 * declare how much bandwidth they actually need. 1496 * 1497 * Normally, it would be calculated by taking the total of the buffer 1498 * lengths in the TD and then dividing by the number of TRBs in a TD, 1499 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't 1500 * use Event Data TRBs, and we don't chain in a link TRB on short 1501 * transfers, we're basically dividing by 1. 1502 * 1503 * xHCI 1.0 specification indicates that the Average TRB Length should 1504 * be set to 8 for control endpoints. 1505 */ 1506 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100) 1507 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); 1508 else 1509 ep_ctx->tx_info |= 1510 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); 1511 1512 /* FIXME Debug endpoint context */ 1513 return 0; 1514 } 1515 1516 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1517 struct xhci_virt_device *virt_dev, 1518 struct usb_host_endpoint *ep) 1519 { 1520 unsigned int ep_index; 1521 struct xhci_ep_ctx *ep_ctx; 1522 1523 ep_index = xhci_get_endpoint_index(&ep->desc); 1524 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1525 1526 ep_ctx->ep_info = 0; 1527 ep_ctx->ep_info2 = 0; 1528 ep_ctx->deq = 0; 1529 ep_ctx->tx_info = 0; 1530 /* Don't free the endpoint ring until the set interface or configuration 1531 * request succeeds. 1532 */ 1533 } 1534 1535 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1536 { 1537 bw_info->ep_interval = 0; 1538 bw_info->mult = 0; 1539 bw_info->num_packets = 0; 1540 bw_info->max_packet_size = 0; 1541 bw_info->type = 0; 1542 bw_info->max_esit_payload = 0; 1543 } 1544 1545 void xhci_update_bw_info(struct xhci_hcd *xhci, 1546 struct xhci_container_ctx *in_ctx, 1547 struct xhci_input_control_ctx *ctrl_ctx, 1548 struct xhci_virt_device *virt_dev) 1549 { 1550 struct xhci_bw_info *bw_info; 1551 struct xhci_ep_ctx *ep_ctx; 1552 unsigned int ep_type; 1553 int i; 1554 1555 for (i = 1; i < 31; ++i) { 1556 bw_info = &virt_dev->eps[i].bw_info; 1557 1558 /* We can't tell what endpoint type is being dropped, but 1559 * unconditionally clearing the bandwidth info for non-periodic 1560 * endpoints should be harmless because the info will never be 1561 * set in the first place. 1562 */ 1563 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1564 /* Dropped endpoint */ 1565 xhci_clear_endpoint_bw_info(bw_info); 1566 continue; 1567 } 1568 1569 if (EP_IS_ADDED(ctrl_ctx, i)) { 1570 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1571 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1572 1573 /* Ignore non-periodic endpoints */ 1574 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1575 ep_type != ISOC_IN_EP && 1576 ep_type != INT_IN_EP) 1577 continue; 1578 1579 /* Added or changed endpoint */ 1580 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1581 le32_to_cpu(ep_ctx->ep_info)); 1582 /* Number of packets and mult are zero-based in the 1583 * input context, but we want one-based for the 1584 * interval table. 1585 */ 1586 bw_info->mult = CTX_TO_EP_MULT( 1587 le32_to_cpu(ep_ctx->ep_info)) + 1; 1588 bw_info->num_packets = CTX_TO_MAX_BURST( 1589 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1590 bw_info->max_packet_size = MAX_PACKET_DECODED( 1591 le32_to_cpu(ep_ctx->ep_info2)); 1592 bw_info->type = ep_type; 1593 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1594 le32_to_cpu(ep_ctx->tx_info)); 1595 } 1596 } 1597 } 1598 1599 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1600 * Useful when you want to change one particular aspect of the endpoint and then 1601 * issue a configure endpoint command. 1602 */ 1603 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1604 struct xhci_container_ctx *in_ctx, 1605 struct xhci_container_ctx *out_ctx, 1606 unsigned int ep_index) 1607 { 1608 struct xhci_ep_ctx *out_ep_ctx; 1609 struct xhci_ep_ctx *in_ep_ctx; 1610 1611 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1612 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1613 1614 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1615 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1616 in_ep_ctx->deq = out_ep_ctx->deq; 1617 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1618 } 1619 1620 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1621 * Useful when you want to change one particular aspect of the endpoint and then 1622 * issue a configure endpoint command. Only the context entries field matters, 1623 * but we'll copy the whole thing anyway. 1624 */ 1625 void xhci_slot_copy(struct xhci_hcd *xhci, 1626 struct xhci_container_ctx *in_ctx, 1627 struct xhci_container_ctx *out_ctx) 1628 { 1629 struct xhci_slot_ctx *in_slot_ctx; 1630 struct xhci_slot_ctx *out_slot_ctx; 1631 1632 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1633 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1634 1635 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1636 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1637 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1638 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1639 } 1640 1641 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1642 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1643 { 1644 int i; 1645 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1646 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1647 1648 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); 1649 1650 if (!num_sp) 1651 return 0; 1652 1653 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1654 if (!xhci->scratchpad) 1655 goto fail_sp; 1656 1657 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1658 num_sp * sizeof(u64), 1659 &xhci->scratchpad->sp_dma, flags); 1660 if (!xhci->scratchpad->sp_array) 1661 goto fail_sp2; 1662 1663 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1664 if (!xhci->scratchpad->sp_buffers) 1665 goto fail_sp3; 1666 1667 xhci->scratchpad->sp_dma_buffers = 1668 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1669 1670 if (!xhci->scratchpad->sp_dma_buffers) 1671 goto fail_sp4; 1672 1673 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1674 for (i = 0; i < num_sp; i++) { 1675 dma_addr_t dma; 1676 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1677 flags); 1678 if (!buf) 1679 goto fail_sp5; 1680 1681 xhci->scratchpad->sp_array[i] = dma; 1682 xhci->scratchpad->sp_buffers[i] = buf; 1683 xhci->scratchpad->sp_dma_buffers[i] = dma; 1684 } 1685 1686 return 0; 1687 1688 fail_sp5: 1689 for (i = i - 1; i >= 0; i--) { 1690 dma_free_coherent(dev, xhci->page_size, 1691 xhci->scratchpad->sp_buffers[i], 1692 xhci->scratchpad->sp_dma_buffers[i]); 1693 } 1694 kfree(xhci->scratchpad->sp_dma_buffers); 1695 1696 fail_sp4: 1697 kfree(xhci->scratchpad->sp_buffers); 1698 1699 fail_sp3: 1700 dma_free_coherent(dev, num_sp * sizeof(u64), 1701 xhci->scratchpad->sp_array, 1702 xhci->scratchpad->sp_dma); 1703 1704 fail_sp2: 1705 kfree(xhci->scratchpad); 1706 xhci->scratchpad = NULL; 1707 1708 fail_sp: 1709 return -ENOMEM; 1710 } 1711 1712 static void scratchpad_free(struct xhci_hcd *xhci) 1713 { 1714 int num_sp; 1715 int i; 1716 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1717 1718 if (!xhci->scratchpad) 1719 return; 1720 1721 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1722 1723 for (i = 0; i < num_sp; i++) { 1724 dma_free_coherent(&pdev->dev, xhci->page_size, 1725 xhci->scratchpad->sp_buffers[i], 1726 xhci->scratchpad->sp_dma_buffers[i]); 1727 } 1728 kfree(xhci->scratchpad->sp_dma_buffers); 1729 kfree(xhci->scratchpad->sp_buffers); 1730 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64), 1731 xhci->scratchpad->sp_array, 1732 xhci->scratchpad->sp_dma); 1733 kfree(xhci->scratchpad); 1734 xhci->scratchpad = NULL; 1735 } 1736 1737 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1738 bool allocate_in_ctx, bool allocate_completion, 1739 gfp_t mem_flags) 1740 { 1741 struct xhci_command *command; 1742 1743 command = kzalloc(sizeof(*command), mem_flags); 1744 if (!command) 1745 return NULL; 1746 1747 if (allocate_in_ctx) { 1748 command->in_ctx = 1749 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1750 mem_flags); 1751 if (!command->in_ctx) { 1752 kfree(command); 1753 return NULL; 1754 } 1755 } 1756 1757 if (allocate_completion) { 1758 command->completion = 1759 kzalloc(sizeof(struct completion), mem_flags); 1760 if (!command->completion) { 1761 xhci_free_container_ctx(xhci, command->in_ctx); 1762 kfree(command); 1763 return NULL; 1764 } 1765 init_completion(command->completion); 1766 } 1767 1768 command->status = 0; 1769 INIT_LIST_HEAD(&command->cmd_list); 1770 return command; 1771 } 1772 1773 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) 1774 { 1775 if (urb_priv) { 1776 kfree(urb_priv->td[0]); 1777 kfree(urb_priv); 1778 } 1779 } 1780 1781 void xhci_free_command(struct xhci_hcd *xhci, 1782 struct xhci_command *command) 1783 { 1784 xhci_free_container_ctx(xhci, 1785 command->in_ctx); 1786 kfree(command->completion); 1787 kfree(command); 1788 } 1789 1790 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1791 { 1792 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1793 struct dev_info *dev_info, *next; 1794 unsigned long flags; 1795 int size; 1796 int i; 1797 1798 /* Free the Event Ring Segment Table and the actual Event Ring */ 1799 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1800 if (xhci->erst.entries) 1801 dma_free_coherent(&pdev->dev, size, 1802 xhci->erst.entries, xhci->erst.erst_dma_addr); 1803 xhci->erst.entries = NULL; 1804 xhci_dbg(xhci, "Freed ERST\n"); 1805 if (xhci->event_ring) 1806 xhci_ring_free(xhci, xhci->event_ring); 1807 xhci->event_ring = NULL; 1808 xhci_dbg(xhci, "Freed event ring\n"); 1809 1810 if (xhci->cmd_ring) 1811 xhci_ring_free(xhci, xhci->cmd_ring); 1812 xhci->cmd_ring = NULL; 1813 xhci_dbg(xhci, "Freed command ring\n"); 1814 1815 for (i = 1; i < MAX_HC_SLOTS; ++i) 1816 xhci_free_virt_device(xhci, i); 1817 1818 if (xhci->segment_pool) 1819 dma_pool_destroy(xhci->segment_pool); 1820 xhci->segment_pool = NULL; 1821 xhci_dbg(xhci, "Freed segment pool\n"); 1822 1823 if (xhci->device_pool) 1824 dma_pool_destroy(xhci->device_pool); 1825 xhci->device_pool = NULL; 1826 xhci_dbg(xhci, "Freed device context pool\n"); 1827 1828 if (xhci->small_streams_pool) 1829 dma_pool_destroy(xhci->small_streams_pool); 1830 xhci->small_streams_pool = NULL; 1831 xhci_dbg(xhci, "Freed small stream array pool\n"); 1832 1833 if (xhci->medium_streams_pool) 1834 dma_pool_destroy(xhci->medium_streams_pool); 1835 xhci->medium_streams_pool = NULL; 1836 xhci_dbg(xhci, "Freed medium stream array pool\n"); 1837 1838 if (xhci->dcbaa) 1839 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa), 1840 xhci->dcbaa, xhci->dcbaa->dma); 1841 xhci->dcbaa = NULL; 1842 1843 scratchpad_free(xhci); 1844 1845 spin_lock_irqsave(&xhci->lock, flags); 1846 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) { 1847 list_del(&dev_info->list); 1848 kfree(dev_info); 1849 } 1850 spin_unlock_irqrestore(&xhci->lock, flags); 1851 1852 xhci->num_usb2_ports = 0; 1853 xhci->num_usb3_ports = 0; 1854 kfree(xhci->usb2_ports); 1855 kfree(xhci->usb3_ports); 1856 kfree(xhci->port_array); 1857 kfree(xhci->rh_bw); 1858 1859 xhci->page_size = 0; 1860 xhci->page_shift = 0; 1861 xhci->bus_state[0].bus_suspended = 0; 1862 xhci->bus_state[1].bus_suspended = 0; 1863 } 1864 1865 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1866 struct xhci_segment *input_seg, 1867 union xhci_trb *start_trb, 1868 union xhci_trb *end_trb, 1869 dma_addr_t input_dma, 1870 struct xhci_segment *result_seg, 1871 char *test_name, int test_number) 1872 { 1873 unsigned long long start_dma; 1874 unsigned long long end_dma; 1875 struct xhci_segment *seg; 1876 1877 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1878 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1879 1880 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); 1881 if (seg != result_seg) { 1882 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1883 test_name, test_number); 1884 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1885 "input DMA 0x%llx\n", 1886 input_seg, 1887 (unsigned long long) input_dma); 1888 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1889 "ending TRB %p (0x%llx DMA)\n", 1890 start_trb, start_dma, 1891 end_trb, end_dma); 1892 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1893 result_seg, seg); 1894 return -1; 1895 } 1896 return 0; 1897 } 1898 1899 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1900 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) 1901 { 1902 struct { 1903 dma_addr_t input_dma; 1904 struct xhci_segment *result_seg; 1905 } simple_test_vector [] = { 1906 /* A zeroed DMA field should fail */ 1907 { 0, NULL }, 1908 /* One TRB before the ring start should fail */ 1909 { xhci->event_ring->first_seg->dma - 16, NULL }, 1910 /* One byte before the ring start should fail */ 1911 { xhci->event_ring->first_seg->dma - 1, NULL }, 1912 /* Starting TRB should succeed */ 1913 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1914 /* Ending TRB should succeed */ 1915 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1916 xhci->event_ring->first_seg }, 1917 /* One byte after the ring end should fail */ 1918 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1919 /* One TRB after the ring end should fail */ 1920 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1921 /* An address of all ones should fail */ 1922 { (dma_addr_t) (~0), NULL }, 1923 }; 1924 struct { 1925 struct xhci_segment *input_seg; 1926 union xhci_trb *start_trb; 1927 union xhci_trb *end_trb; 1928 dma_addr_t input_dma; 1929 struct xhci_segment *result_seg; 1930 } complex_test_vector [] = { 1931 /* Test feeding a valid DMA address from a different ring */ 1932 { .input_seg = xhci->event_ring->first_seg, 1933 .start_trb = xhci->event_ring->first_seg->trbs, 1934 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1935 .input_dma = xhci->cmd_ring->first_seg->dma, 1936 .result_seg = NULL, 1937 }, 1938 /* Test feeding a valid end TRB from a different ring */ 1939 { .input_seg = xhci->event_ring->first_seg, 1940 .start_trb = xhci->event_ring->first_seg->trbs, 1941 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1942 .input_dma = xhci->cmd_ring->first_seg->dma, 1943 .result_seg = NULL, 1944 }, 1945 /* Test feeding a valid start and end TRB from a different ring */ 1946 { .input_seg = xhci->event_ring->first_seg, 1947 .start_trb = xhci->cmd_ring->first_seg->trbs, 1948 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1949 .input_dma = xhci->cmd_ring->first_seg->dma, 1950 .result_seg = NULL, 1951 }, 1952 /* TRB in this ring, but after this TD */ 1953 { .input_seg = xhci->event_ring->first_seg, 1954 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1955 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1956 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1957 .result_seg = NULL, 1958 }, 1959 /* TRB in this ring, but before this TD */ 1960 { .input_seg = xhci->event_ring->first_seg, 1961 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1962 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1963 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1964 .result_seg = NULL, 1965 }, 1966 /* TRB in this ring, but after this wrapped TD */ 1967 { .input_seg = xhci->event_ring->first_seg, 1968 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1969 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1970 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1971 .result_seg = NULL, 1972 }, 1973 /* TRB in this ring, but before this wrapped TD */ 1974 { .input_seg = xhci->event_ring->first_seg, 1975 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1976 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1977 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 1978 .result_seg = NULL, 1979 }, 1980 /* TRB not in this ring, and we have a wrapped TD */ 1981 { .input_seg = xhci->event_ring->first_seg, 1982 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1983 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1984 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 1985 .result_seg = NULL, 1986 }, 1987 }; 1988 1989 unsigned int num_tests; 1990 int i, ret; 1991 1992 num_tests = ARRAY_SIZE(simple_test_vector); 1993 for (i = 0; i < num_tests; i++) { 1994 ret = xhci_test_trb_in_td(xhci, 1995 xhci->event_ring->first_seg, 1996 xhci->event_ring->first_seg->trbs, 1997 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1998 simple_test_vector[i].input_dma, 1999 simple_test_vector[i].result_seg, 2000 "Simple", i); 2001 if (ret < 0) 2002 return ret; 2003 } 2004 2005 num_tests = ARRAY_SIZE(complex_test_vector); 2006 for (i = 0; i < num_tests; i++) { 2007 ret = xhci_test_trb_in_td(xhci, 2008 complex_test_vector[i].input_seg, 2009 complex_test_vector[i].start_trb, 2010 complex_test_vector[i].end_trb, 2011 complex_test_vector[i].input_dma, 2012 complex_test_vector[i].result_seg, 2013 "Complex", i); 2014 if (ret < 0) 2015 return ret; 2016 } 2017 xhci_dbg(xhci, "TRB math tests passed.\n"); 2018 return 0; 2019 } 2020 2021 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2022 { 2023 u64 temp; 2024 dma_addr_t deq; 2025 2026 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2027 xhci->event_ring->dequeue); 2028 if (deq == 0 && !in_interrupt()) 2029 xhci_warn(xhci, "WARN something wrong with SW event ring " 2030 "dequeue ptr.\n"); 2031 /* Update HC event ring dequeue pointer */ 2032 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2033 temp &= ERST_PTR_MASK; 2034 /* Don't clear the EHB bit (which is RW1C) because 2035 * there might be more events to service. 2036 */ 2037 temp &= ~ERST_EHB; 2038 xhci_dbg(xhci, "// Write event ring dequeue pointer, " 2039 "preserving EHB bit\n"); 2040 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2041 &xhci->ir_set->erst_dequeue); 2042 } 2043 2044 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2045 __le32 __iomem *addr, u8 major_revision) 2046 { 2047 u32 temp, port_offset, port_count; 2048 int i; 2049 2050 if (major_revision > 0x03) { 2051 xhci_warn(xhci, "Ignoring unknown port speed, " 2052 "Ext Cap %p, revision = 0x%x\n", 2053 addr, major_revision); 2054 /* Ignoring port protocol we can't understand. FIXME */ 2055 return; 2056 } 2057 2058 /* Port offset and count in the third dword, see section 7.2 */ 2059 temp = xhci_readl(xhci, addr + 2); 2060 port_offset = XHCI_EXT_PORT_OFF(temp); 2061 port_count = XHCI_EXT_PORT_COUNT(temp); 2062 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, " 2063 "count = %u, revision = 0x%x\n", 2064 addr, port_offset, port_count, major_revision); 2065 /* Port count includes the current port offset */ 2066 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2067 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2068 return; 2069 2070 /* Check the host's USB2 LPM capability */ 2071 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2072 (temp & XHCI_L1C)) { 2073 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n"); 2074 xhci->sw_lpm_support = 1; 2075 } 2076 2077 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2078 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n"); 2079 xhci->sw_lpm_support = 1; 2080 if (temp & XHCI_HLC) { 2081 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n"); 2082 xhci->hw_lpm_support = 1; 2083 } 2084 } 2085 2086 port_offset--; 2087 for (i = port_offset; i < (port_offset + port_count); i++) { 2088 /* Duplicate entry. Ignore the port if the revisions differ. */ 2089 if (xhci->port_array[i] != 0) { 2090 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2091 " port %u\n", addr, i); 2092 xhci_warn(xhci, "Port was marked as USB %u, " 2093 "duplicated as USB %u\n", 2094 xhci->port_array[i], major_revision); 2095 /* Only adjust the roothub port counts if we haven't 2096 * found a similar duplicate. 2097 */ 2098 if (xhci->port_array[i] != major_revision && 2099 xhci->port_array[i] != DUPLICATE_ENTRY) { 2100 if (xhci->port_array[i] == 0x03) 2101 xhci->num_usb3_ports--; 2102 else 2103 xhci->num_usb2_ports--; 2104 xhci->port_array[i] = DUPLICATE_ENTRY; 2105 } 2106 /* FIXME: Should we disable the port? */ 2107 continue; 2108 } 2109 xhci->port_array[i] = major_revision; 2110 if (major_revision == 0x03) 2111 xhci->num_usb3_ports++; 2112 else 2113 xhci->num_usb2_ports++; 2114 } 2115 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2116 } 2117 2118 /* 2119 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2120 * specify what speeds each port is supposed to be. We can't count on the port 2121 * speed bits in the PORTSC register being correct until a device is connected, 2122 * but we need to set up the two fake roothubs with the correct number of USB 2123 * 3.0 and USB 2.0 ports at host controller initialization time. 2124 */ 2125 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2126 { 2127 __le32 __iomem *addr; 2128 u32 offset; 2129 unsigned int num_ports; 2130 int i, j, port_index; 2131 2132 addr = &xhci->cap_regs->hcc_params; 2133 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr)); 2134 if (offset == 0) { 2135 xhci_err(xhci, "No Extended Capability registers, " 2136 "unable to set up roothub.\n"); 2137 return -ENODEV; 2138 } 2139 2140 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2141 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2142 if (!xhci->port_array) 2143 return -ENOMEM; 2144 2145 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2146 if (!xhci->rh_bw) 2147 return -ENOMEM; 2148 for (i = 0; i < num_ports; i++) { 2149 struct xhci_interval_bw_table *bw_table; 2150 2151 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2152 bw_table = &xhci->rh_bw[i].bw_table; 2153 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2154 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2155 } 2156 2157 /* 2158 * For whatever reason, the first capability offset is from the 2159 * capability register base, not from the HCCPARAMS register. 2160 * See section 5.3.6 for offset calculation. 2161 */ 2162 addr = &xhci->cap_regs->hc_capbase + offset; 2163 while (1) { 2164 u32 cap_id; 2165 2166 cap_id = xhci_readl(xhci, addr); 2167 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2168 xhci_add_in_port(xhci, num_ports, addr, 2169 (u8) XHCI_EXT_PORT_MAJOR(cap_id)); 2170 offset = XHCI_EXT_CAPS_NEXT(cap_id); 2171 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) 2172 == num_ports) 2173 break; 2174 /* 2175 * Once you're into the Extended Capabilities, the offset is 2176 * always relative to the register holding the offset. 2177 */ 2178 addr += offset; 2179 } 2180 2181 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2182 xhci_warn(xhci, "No ports on the roothubs?\n"); 2183 return -ENODEV; 2184 } 2185 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n", 2186 xhci->num_usb2_ports, xhci->num_usb3_ports); 2187 2188 /* Place limits on the number of roothub ports so that the hub 2189 * descriptors aren't longer than the USB core will allocate. 2190 */ 2191 if (xhci->num_usb3_ports > 15) { 2192 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n"); 2193 xhci->num_usb3_ports = 15; 2194 } 2195 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2196 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n", 2197 USB_MAXCHILDREN); 2198 xhci->num_usb2_ports = USB_MAXCHILDREN; 2199 } 2200 2201 /* 2202 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2203 * Not sure how the USB core will handle a hub with no ports... 2204 */ 2205 if (xhci->num_usb2_ports) { 2206 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2207 xhci->num_usb2_ports, flags); 2208 if (!xhci->usb2_ports) 2209 return -ENOMEM; 2210 2211 port_index = 0; 2212 for (i = 0; i < num_ports; i++) { 2213 if (xhci->port_array[i] == 0x03 || 2214 xhci->port_array[i] == 0 || 2215 xhci->port_array[i] == DUPLICATE_ENTRY) 2216 continue; 2217 2218 xhci->usb2_ports[port_index] = 2219 &xhci->op_regs->port_status_base + 2220 NUM_PORT_REGS*i; 2221 xhci_dbg(xhci, "USB 2.0 port at index %u, " 2222 "addr = %p\n", i, 2223 xhci->usb2_ports[port_index]); 2224 port_index++; 2225 if (port_index == xhci->num_usb2_ports) 2226 break; 2227 } 2228 } 2229 if (xhci->num_usb3_ports) { 2230 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2231 xhci->num_usb3_ports, flags); 2232 if (!xhci->usb3_ports) 2233 return -ENOMEM; 2234 2235 port_index = 0; 2236 for (i = 0; i < num_ports; i++) 2237 if (xhci->port_array[i] == 0x03) { 2238 xhci->usb3_ports[port_index] = 2239 &xhci->op_regs->port_status_base + 2240 NUM_PORT_REGS*i; 2241 xhci_dbg(xhci, "USB 3.0 port at index %u, " 2242 "addr = %p\n", i, 2243 xhci->usb3_ports[port_index]); 2244 port_index++; 2245 if (port_index == xhci->num_usb3_ports) 2246 break; 2247 } 2248 } 2249 return 0; 2250 } 2251 2252 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2253 { 2254 dma_addr_t dma; 2255 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2256 unsigned int val, val2; 2257 u64 val_64; 2258 struct xhci_segment *seg; 2259 u32 page_size, temp; 2260 int i; 2261 2262 page_size = xhci_readl(xhci, &xhci->op_regs->page_size); 2263 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); 2264 for (i = 0; i < 16; i++) { 2265 if ((0x1 & page_size) != 0) 2266 break; 2267 page_size = page_size >> 1; 2268 } 2269 if (i < 16) 2270 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); 2271 else 2272 xhci_warn(xhci, "WARN: no supported page size\n"); 2273 /* Use 4K pages, since that's common and the minimum the HC supports */ 2274 xhci->page_shift = 12; 2275 xhci->page_size = 1 << xhci->page_shift; 2276 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); 2277 2278 /* 2279 * Program the Number of Device Slots Enabled field in the CONFIG 2280 * register with the max value of slots the HC can handle. 2281 */ 2282 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); 2283 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", 2284 (unsigned int) val); 2285 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); 2286 val |= (val2 & ~HCS_SLOTS_MASK); 2287 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", 2288 (unsigned int) val); 2289 xhci_writel(xhci, val, &xhci->op_regs->config_reg); 2290 2291 /* 2292 * Section 5.4.8 - doorbell array must be 2293 * "physically contiguous and 64-byte (cache line) aligned". 2294 */ 2295 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2296 GFP_KERNEL); 2297 if (!xhci->dcbaa) 2298 goto fail; 2299 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2300 xhci->dcbaa->dma = dma; 2301 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", 2302 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2303 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2304 2305 /* 2306 * Initialize the ring segment pool. The ring must be a contiguous 2307 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2308 * however, the command ring segment needs 64-byte aligned segments, 2309 * so we pick the greater alignment need. 2310 */ 2311 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2312 SEGMENT_SIZE, 64, xhci->page_size); 2313 2314 /* See Table 46 and Note on Figure 55 */ 2315 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2316 2112, 64, xhci->page_size); 2317 if (!xhci->segment_pool || !xhci->device_pool) 2318 goto fail; 2319 2320 /* Linear stream context arrays don't have any boundary restrictions, 2321 * and only need to be 16-byte aligned. 2322 */ 2323 xhci->small_streams_pool = 2324 dma_pool_create("xHCI 256 byte stream ctx arrays", 2325 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2326 xhci->medium_streams_pool = 2327 dma_pool_create("xHCI 1KB stream ctx arrays", 2328 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2329 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2330 * will be allocated with dma_alloc_coherent() 2331 */ 2332 2333 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2334 goto fail; 2335 2336 /* Set up the command ring to have one segments for now. */ 2337 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags); 2338 if (!xhci->cmd_ring) 2339 goto fail; 2340 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); 2341 xhci_dbg(xhci, "First segment DMA is 0x%llx\n", 2342 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2343 2344 /* Set the address in the Command Ring Control register */ 2345 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2346 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2347 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2348 xhci->cmd_ring->cycle_state; 2349 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); 2350 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2351 xhci_dbg_cmd_ptrs(xhci); 2352 2353 val = xhci_readl(xhci, &xhci->cap_regs->db_off); 2354 val &= DBOFF_MASK; 2355 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" 2356 " from cap regs base addr\n", val); 2357 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2358 xhci_dbg_regs(xhci); 2359 xhci_print_run_regs(xhci); 2360 /* Set ir_set to interrupt register set 0 */ 2361 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2362 2363 /* 2364 * Event ring setup: Allocate a normal ring, but also setup 2365 * the event ring segment table (ERST). Section 4.9.3. 2366 */ 2367 xhci_dbg(xhci, "// Allocating event ring\n"); 2368 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2369 flags); 2370 if (!xhci->event_ring) 2371 goto fail; 2372 if (xhci_check_trb_in_td_math(xhci, flags) < 0) 2373 goto fail; 2374 2375 xhci->erst.entries = dma_alloc_coherent(dev, 2376 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2377 GFP_KERNEL); 2378 if (!xhci->erst.entries) 2379 goto fail; 2380 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", 2381 (unsigned long long)dma); 2382 2383 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2384 xhci->erst.num_entries = ERST_NUM_SEGS; 2385 xhci->erst.erst_dma_addr = dma; 2386 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", 2387 xhci->erst.num_entries, 2388 xhci->erst.entries, 2389 (unsigned long long)xhci->erst.erst_dma_addr); 2390 2391 /* set ring base address and size for each segment table entry */ 2392 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2393 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2394 entry->seg_addr = cpu_to_le64(seg->dma); 2395 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2396 entry->rsvd = 0; 2397 seg = seg->next; 2398 } 2399 2400 /* set ERST count with the number of entries in the segment table */ 2401 val = xhci_readl(xhci, &xhci->ir_set->erst_size); 2402 val &= ERST_SIZE_MASK; 2403 val |= ERST_NUM_SEGS; 2404 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", 2405 val); 2406 xhci_writel(xhci, val, &xhci->ir_set->erst_size); 2407 2408 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); 2409 /* set the segment table base address */ 2410 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", 2411 (unsigned long long)xhci->erst.erst_dma_addr); 2412 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2413 val_64 &= ERST_PTR_MASK; 2414 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2415 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2416 2417 /* Set the event ring dequeue address */ 2418 xhci_set_hc_event_deq(xhci); 2419 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); 2420 xhci_print_ir_set(xhci, 0); 2421 2422 /* 2423 * XXX: Might need to set the Interrupter Moderation Register to 2424 * something other than the default (~1ms minimum between interrupts). 2425 * See section 5.5.1.2. 2426 */ 2427 init_completion(&xhci->addr_dev); 2428 for (i = 0; i < MAX_HC_SLOTS; ++i) 2429 xhci->devs[i] = NULL; 2430 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2431 xhci->bus_state[0].resume_done[i] = 0; 2432 xhci->bus_state[1].resume_done[i] = 0; 2433 } 2434 2435 if (scratchpad_alloc(xhci, flags)) 2436 goto fail; 2437 if (xhci_setup_port_arrays(xhci, flags)) 2438 goto fail; 2439 2440 INIT_LIST_HEAD(&xhci->lpm_failed_devs); 2441 2442 /* Enable USB 3.0 device notifications for function remote wake, which 2443 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2444 * U3 (device suspend). 2445 */ 2446 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification); 2447 temp &= ~DEV_NOTE_MASK; 2448 temp |= DEV_NOTE_FWAKE; 2449 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification); 2450 2451 return 0; 2452 2453 fail: 2454 xhci_warn(xhci, "Couldn't initialize memory\n"); 2455 xhci_halt(xhci); 2456 xhci_reset(xhci); 2457 xhci_mem_cleanup(xhci); 2458 return -ENOMEM; 2459 } 2460