1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 28 #include "xhci.h" 29 30 /* 31 * Allocates a generic ring segment from the ring pool, sets the dma address, 32 * initializes the segment to zero, and sets the private next pointer to NULL. 33 * 34 * Section 4.11.1.1: 35 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 36 */ 37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags) 38 { 39 struct xhci_segment *seg; 40 dma_addr_t dma; 41 42 seg = kzalloc(sizeof *seg, flags); 43 if (!seg) 44 return NULL; 45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg); 46 47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); 48 if (!seg->trbs) { 49 kfree(seg); 50 return NULL; 51 } 52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n", 53 seg->trbs, (unsigned long long)dma); 54 55 memset(seg->trbs, 0, SEGMENT_SIZE); 56 seg->dma = dma; 57 seg->next = NULL; 58 59 return seg; 60 } 61 62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 63 { 64 if (!seg) 65 return; 66 if (seg->trbs) { 67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n", 68 seg->trbs, (unsigned long long)seg->dma); 69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 70 seg->trbs = NULL; 71 } 72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg); 73 kfree(seg); 74 } 75 76 /* 77 * Make the prev segment point to the next segment. 78 * 79 * Change the last TRB in the prev segment to be a Link TRB which points to the 80 * DMA address of the next segment. The caller needs to set any Link TRB 81 * related flags, such as End TRB, Toggle Cycle, and no snoop. 82 */ 83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 84 struct xhci_segment *next, bool link_trbs) 85 { 86 u32 val; 87 88 if (!prev || !next) 89 return; 90 prev->next = next; 91 if (link_trbs) { 92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma; 93 94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 95 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control; 96 val &= ~TRB_TYPE_BITMASK; 97 val |= TRB_TYPE(TRB_LINK); 98 /* Always set the chain bit with 0.95 hardware */ 99 if (xhci_link_trb_quirk(xhci)) 100 val |= TRB_CHAIN; 101 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val; 102 } 103 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n", 104 (unsigned long long)prev->dma, 105 (unsigned long long)next->dma); 106 } 107 108 /* XXX: Do we need the hcd structure in all these functions? */ 109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 110 { 111 struct xhci_segment *seg; 112 struct xhci_segment *first_seg; 113 114 if (!ring || !ring->first_seg) 115 return; 116 first_seg = ring->first_seg; 117 seg = first_seg->next; 118 xhci_dbg(xhci, "Freeing ring at %p\n", ring); 119 while (seg != first_seg) { 120 struct xhci_segment *next = seg->next; 121 xhci_segment_free(xhci, seg); 122 seg = next; 123 } 124 xhci_segment_free(xhci, first_seg); 125 ring->first_seg = NULL; 126 kfree(ring); 127 } 128 129 static void xhci_initialize_ring_info(struct xhci_ring *ring) 130 { 131 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 132 ring->enqueue = ring->first_seg->trbs; 133 ring->enq_seg = ring->first_seg; 134 ring->dequeue = ring->enqueue; 135 ring->deq_seg = ring->first_seg; 136 /* The ring is initialized to 0. The producer must write 1 to the cycle 137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 138 * compare CCS to the cycle bit to check ownership, so CCS = 1. 139 */ 140 ring->cycle_state = 1; 141 /* Not necessary for new rings, but needed for re-initialized rings */ 142 ring->enq_updates = 0; 143 ring->deq_updates = 0; 144 } 145 146 /** 147 * Create a new ring with zero or more segments. 148 * 149 * Link each segment together into a ring. 150 * Set the end flag and the cycle toggle bit on the last segment. 151 * See section 4.9.1 and figures 15 and 16. 152 */ 153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 154 unsigned int num_segs, bool link_trbs, gfp_t flags) 155 { 156 struct xhci_ring *ring; 157 struct xhci_segment *prev; 158 159 ring = kzalloc(sizeof *(ring), flags); 160 xhci_dbg(xhci, "Allocating ring at %p\n", ring); 161 if (!ring) 162 return NULL; 163 164 INIT_LIST_HEAD(&ring->td_list); 165 if (num_segs == 0) 166 return ring; 167 168 ring->first_seg = xhci_segment_alloc(xhci, flags); 169 if (!ring->first_seg) 170 goto fail; 171 num_segs--; 172 173 prev = ring->first_seg; 174 while (num_segs > 0) { 175 struct xhci_segment *next; 176 177 next = xhci_segment_alloc(xhci, flags); 178 if (!next) 179 goto fail; 180 xhci_link_segments(xhci, prev, next, link_trbs); 181 182 prev = next; 183 num_segs--; 184 } 185 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs); 186 187 if (link_trbs) { 188 /* See section 4.9.2.1 and 6.4.4.1 */ 189 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE); 190 xhci_dbg(xhci, "Wrote link toggle flag to" 191 " segment %p (virtual), 0x%llx (DMA)\n", 192 prev, (unsigned long long)prev->dma); 193 } 194 xhci_initialize_ring_info(ring); 195 return ring; 196 197 fail: 198 xhci_ring_free(xhci, ring); 199 return NULL; 200 } 201 202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 203 struct xhci_virt_device *virt_dev, 204 unsigned int ep_index) 205 { 206 int rings_cached; 207 208 rings_cached = virt_dev->num_rings_cached; 209 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 210 virt_dev->num_rings_cached++; 211 rings_cached = virt_dev->num_rings_cached; 212 virt_dev->ring_cache[rings_cached] = 213 virt_dev->eps[ep_index].ring; 214 xhci_dbg(xhci, "Cached old ring, " 215 "%d ring%s cached\n", 216 rings_cached, 217 (rings_cached > 1) ? "s" : ""); 218 } else { 219 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 220 xhci_dbg(xhci, "Ring cache full (%d rings), " 221 "freeing ring\n", 222 virt_dev->num_rings_cached); 223 } 224 virt_dev->eps[ep_index].ring = NULL; 225 } 226 227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 228 * pointers to the beginning of the ring. 229 */ 230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 231 struct xhci_ring *ring) 232 { 233 struct xhci_segment *seg = ring->first_seg; 234 do { 235 memset(seg->trbs, 0, 236 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 237 /* All endpoint rings have link TRBs */ 238 xhci_link_segments(xhci, seg, seg->next, 1); 239 seg = seg->next; 240 } while (seg != ring->first_seg); 241 xhci_initialize_ring_info(ring); 242 /* td list should be empty since all URBs have been cancelled, 243 * but just in case... 244 */ 245 INIT_LIST_HEAD(&ring->td_list); 246 } 247 248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 249 250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 251 int type, gfp_t flags) 252 { 253 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags); 254 if (!ctx) 255 return NULL; 256 257 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); 258 ctx->type = type; 259 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 260 if (type == XHCI_CTX_TYPE_INPUT) 261 ctx->size += CTX_SIZE(xhci->hcc_params); 262 263 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); 264 memset(ctx->bytes, 0, ctx->size); 265 return ctx; 266 } 267 268 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 269 struct xhci_container_ctx *ctx) 270 { 271 if (!ctx) 272 return; 273 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 274 kfree(ctx); 275 } 276 277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, 278 struct xhci_container_ctx *ctx) 279 { 280 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); 281 return (struct xhci_input_control_ctx *)ctx->bytes; 282 } 283 284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 285 struct xhci_container_ctx *ctx) 286 { 287 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 288 return (struct xhci_slot_ctx *)ctx->bytes; 289 290 return (struct xhci_slot_ctx *) 291 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 292 } 293 294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 295 struct xhci_container_ctx *ctx, 296 unsigned int ep_index) 297 { 298 /* increment ep index by offset of start of ep ctx array */ 299 ep_index++; 300 if (ctx->type == XHCI_CTX_TYPE_INPUT) 301 ep_index++; 302 303 return (struct xhci_ep_ctx *) 304 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 305 } 306 307 308 /***************** Streams structures manipulation *************************/ 309 310 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 311 unsigned int num_stream_ctxs, 312 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 313 { 314 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 315 316 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 317 pci_free_consistent(pdev, 318 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 319 stream_ctx, dma); 320 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 321 return dma_pool_free(xhci->small_streams_pool, 322 stream_ctx, dma); 323 else 324 return dma_pool_free(xhci->medium_streams_pool, 325 stream_ctx, dma); 326 } 327 328 /* 329 * The stream context array for each endpoint with bulk streams enabled can 330 * vary in size, based on: 331 * - how many streams the endpoint supports, 332 * - the maximum primary stream array size the host controller supports, 333 * - and how many streams the device driver asks for. 334 * 335 * The stream context array must be a power of 2, and can be as small as 336 * 64 bytes or as large as 1MB. 337 */ 338 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 339 unsigned int num_stream_ctxs, dma_addr_t *dma, 340 gfp_t mem_flags) 341 { 342 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 343 344 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 345 return pci_alloc_consistent(pdev, 346 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 347 dma); 348 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 349 return dma_pool_alloc(xhci->small_streams_pool, 350 mem_flags, dma); 351 else 352 return dma_pool_alloc(xhci->medium_streams_pool, 353 mem_flags, dma); 354 } 355 356 struct xhci_ring *xhci_dma_to_transfer_ring( 357 struct xhci_virt_ep *ep, 358 u64 address) 359 { 360 if (ep->ep_state & EP_HAS_STREAMS) 361 return radix_tree_lookup(&ep->stream_info->trb_address_map, 362 address >> SEGMENT_SHIFT); 363 return ep->ring; 364 } 365 366 /* Only use this when you know stream_info is valid */ 367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 368 static struct xhci_ring *dma_to_stream_ring( 369 struct xhci_stream_info *stream_info, 370 u64 address) 371 { 372 return radix_tree_lookup(&stream_info->trb_address_map, 373 address >> SEGMENT_SHIFT); 374 } 375 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 376 377 struct xhci_ring *xhci_stream_id_to_ring( 378 struct xhci_virt_device *dev, 379 unsigned int ep_index, 380 unsigned int stream_id) 381 { 382 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 383 384 if (stream_id == 0) 385 return ep->ring; 386 if (!ep->stream_info) 387 return NULL; 388 389 if (stream_id > ep->stream_info->num_streams) 390 return NULL; 391 return ep->stream_info->stream_rings[stream_id]; 392 } 393 394 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 395 static int xhci_test_radix_tree(struct xhci_hcd *xhci, 396 unsigned int num_streams, 397 struct xhci_stream_info *stream_info) 398 { 399 u32 cur_stream; 400 struct xhci_ring *cur_ring; 401 u64 addr; 402 403 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 404 struct xhci_ring *mapped_ring; 405 int trb_size = sizeof(union xhci_trb); 406 407 cur_ring = stream_info->stream_rings[cur_stream]; 408 for (addr = cur_ring->first_seg->dma; 409 addr < cur_ring->first_seg->dma + SEGMENT_SIZE; 410 addr += trb_size) { 411 mapped_ring = dma_to_stream_ring(stream_info, addr); 412 if (cur_ring != mapped_ring) { 413 xhci_warn(xhci, "WARN: DMA address 0x%08llx " 414 "didn't map to stream ID %u; " 415 "mapped to ring %p\n", 416 (unsigned long long) addr, 417 cur_stream, 418 mapped_ring); 419 return -EINVAL; 420 } 421 } 422 /* One TRB after the end of the ring segment shouldn't return a 423 * pointer to the current ring (although it may be a part of a 424 * different ring). 425 */ 426 mapped_ring = dma_to_stream_ring(stream_info, addr); 427 if (mapped_ring != cur_ring) { 428 /* One TRB before should also fail */ 429 addr = cur_ring->first_seg->dma - trb_size; 430 mapped_ring = dma_to_stream_ring(stream_info, addr); 431 } 432 if (mapped_ring == cur_ring) { 433 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx " 434 "mapped to valid stream ID %u; " 435 "mapped ring = %p\n", 436 (unsigned long long) addr, 437 cur_stream, 438 mapped_ring); 439 return -EINVAL; 440 } 441 } 442 return 0; 443 } 444 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 445 446 /* 447 * Change an endpoint's internal structure so it supports stream IDs. The 448 * number of requested streams includes stream 0, which cannot be used by device 449 * drivers. 450 * 451 * The number of stream contexts in the stream context array may be bigger than 452 * the number of streams the driver wants to use. This is because the number of 453 * stream context array entries must be a power of two. 454 * 455 * We need a radix tree for mapping physical addresses of TRBs to which stream 456 * ID they belong to. We need to do this because the host controller won't tell 457 * us which stream ring the TRB came from. We could store the stream ID in an 458 * event data TRB, but that doesn't help us for the cancellation case, since the 459 * endpoint may stop before it reaches that event data TRB. 460 * 461 * The radix tree maps the upper portion of the TRB DMA address to a ring 462 * segment that has the same upper portion of DMA addresses. For example, say I 463 * have segments of size 1KB, that are always 64-byte aligned. A segment may 464 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 465 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 466 * pass the radix tree a key to get the right stream ID: 467 * 468 * 0x10c90fff >> 10 = 0x43243 469 * 0x10c912c0 >> 10 = 0x43244 470 * 0x10c91400 >> 10 = 0x43245 471 * 472 * Obviously, only those TRBs with DMA addresses that are within the segment 473 * will make the radix tree return the stream ID for that ring. 474 * 475 * Caveats for the radix tree: 476 * 477 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 478 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 479 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 480 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 481 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 482 * extended systems (where the DMA address can be bigger than 32-bits), 483 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 484 */ 485 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 486 unsigned int num_stream_ctxs, 487 unsigned int num_streams, gfp_t mem_flags) 488 { 489 struct xhci_stream_info *stream_info; 490 u32 cur_stream; 491 struct xhci_ring *cur_ring; 492 unsigned long key; 493 u64 addr; 494 int ret; 495 496 xhci_dbg(xhci, "Allocating %u streams and %u " 497 "stream context array entries.\n", 498 num_streams, num_stream_ctxs); 499 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 500 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 501 return NULL; 502 } 503 xhci->cmd_ring_reserved_trbs++; 504 505 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 506 if (!stream_info) 507 goto cleanup_trbs; 508 509 stream_info->num_streams = num_streams; 510 stream_info->num_stream_ctxs = num_stream_ctxs; 511 512 /* Initialize the array of virtual pointers to stream rings. */ 513 stream_info->stream_rings = kzalloc( 514 sizeof(struct xhci_ring *)*num_streams, 515 mem_flags); 516 if (!stream_info->stream_rings) 517 goto cleanup_info; 518 519 /* Initialize the array of DMA addresses for stream rings for the HW. */ 520 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 521 num_stream_ctxs, &stream_info->ctx_array_dma, 522 mem_flags); 523 if (!stream_info->stream_ctx_array) 524 goto cleanup_ctx; 525 memset(stream_info->stream_ctx_array, 0, 526 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 527 528 /* Allocate everything needed to free the stream rings later */ 529 stream_info->free_streams_command = 530 xhci_alloc_command(xhci, true, true, mem_flags); 531 if (!stream_info->free_streams_command) 532 goto cleanup_ctx; 533 534 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 535 536 /* Allocate rings for all the streams that the driver will use, 537 * and add their segment DMA addresses to the radix tree. 538 * Stream 0 is reserved. 539 */ 540 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 541 stream_info->stream_rings[cur_stream] = 542 xhci_ring_alloc(xhci, 1, true, mem_flags); 543 cur_ring = stream_info->stream_rings[cur_stream]; 544 if (!cur_ring) 545 goto cleanup_rings; 546 cur_ring->stream_id = cur_stream; 547 /* Set deq ptr, cycle bit, and stream context type */ 548 addr = cur_ring->first_seg->dma | 549 SCT_FOR_CTX(SCT_PRI_TR) | 550 cur_ring->cycle_state; 551 stream_info->stream_ctx_array[cur_stream].stream_ring = addr; 552 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 553 cur_stream, (unsigned long long) addr); 554 555 key = (unsigned long) 556 (cur_ring->first_seg->dma >> SEGMENT_SHIFT); 557 ret = radix_tree_insert(&stream_info->trb_address_map, 558 key, cur_ring); 559 if (ret) { 560 xhci_ring_free(xhci, cur_ring); 561 stream_info->stream_rings[cur_stream] = NULL; 562 goto cleanup_rings; 563 } 564 } 565 /* Leave the other unused stream ring pointers in the stream context 566 * array initialized to zero. This will cause the xHC to give us an 567 * error if the device asks for a stream ID we don't have setup (if it 568 * was any other way, the host controller would assume the ring is 569 * "empty" and wait forever for data to be queued to that stream ID). 570 */ 571 #if XHCI_DEBUG 572 /* Do a little test on the radix tree to make sure it returns the 573 * correct values. 574 */ 575 if (xhci_test_radix_tree(xhci, num_streams, stream_info)) 576 goto cleanup_rings; 577 #endif 578 579 return stream_info; 580 581 cleanup_rings: 582 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 583 cur_ring = stream_info->stream_rings[cur_stream]; 584 if (cur_ring) { 585 addr = cur_ring->first_seg->dma; 586 radix_tree_delete(&stream_info->trb_address_map, 587 addr >> SEGMENT_SHIFT); 588 xhci_ring_free(xhci, cur_ring); 589 stream_info->stream_rings[cur_stream] = NULL; 590 } 591 } 592 xhci_free_command(xhci, stream_info->free_streams_command); 593 cleanup_ctx: 594 kfree(stream_info->stream_rings); 595 cleanup_info: 596 kfree(stream_info); 597 cleanup_trbs: 598 xhci->cmd_ring_reserved_trbs--; 599 return NULL; 600 } 601 /* 602 * Sets the MaxPStreams field and the Linear Stream Array field. 603 * Sets the dequeue pointer to the stream context array. 604 */ 605 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 606 struct xhci_ep_ctx *ep_ctx, 607 struct xhci_stream_info *stream_info) 608 { 609 u32 max_primary_streams; 610 /* MaxPStreams is the number of stream context array entries, not the 611 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 612 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 613 */ 614 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 615 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", 616 1 << (max_primary_streams + 1)); 617 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK; 618 ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams); 619 ep_ctx->ep_info |= EP_HAS_LSA; 620 ep_ctx->deq = stream_info->ctx_array_dma; 621 } 622 623 /* 624 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 625 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 626 * not at the beginning of the ring). 627 */ 628 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, 629 struct xhci_ep_ctx *ep_ctx, 630 struct xhci_virt_ep *ep) 631 { 632 dma_addr_t addr; 633 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK; 634 ep_ctx->ep_info &= ~EP_HAS_LSA; 635 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 636 ep_ctx->deq = addr | ep->ring->cycle_state; 637 } 638 639 /* Frees all stream contexts associated with the endpoint, 640 * 641 * Caller should fix the endpoint context streams fields. 642 */ 643 void xhci_free_stream_info(struct xhci_hcd *xhci, 644 struct xhci_stream_info *stream_info) 645 { 646 int cur_stream; 647 struct xhci_ring *cur_ring; 648 dma_addr_t addr; 649 650 if (!stream_info) 651 return; 652 653 for (cur_stream = 1; cur_stream < stream_info->num_streams; 654 cur_stream++) { 655 cur_ring = stream_info->stream_rings[cur_stream]; 656 if (cur_ring) { 657 addr = cur_ring->first_seg->dma; 658 radix_tree_delete(&stream_info->trb_address_map, 659 addr >> SEGMENT_SHIFT); 660 xhci_ring_free(xhci, cur_ring); 661 stream_info->stream_rings[cur_stream] = NULL; 662 } 663 } 664 xhci_free_command(xhci, stream_info->free_streams_command); 665 xhci->cmd_ring_reserved_trbs--; 666 if (stream_info->stream_ctx_array) 667 xhci_free_stream_ctx(xhci, 668 stream_info->num_stream_ctxs, 669 stream_info->stream_ctx_array, 670 stream_info->ctx_array_dma); 671 672 if (stream_info) 673 kfree(stream_info->stream_rings); 674 kfree(stream_info); 675 } 676 677 678 /***************** Device context manipulation *************************/ 679 680 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 681 struct xhci_virt_ep *ep) 682 { 683 init_timer(&ep->stop_cmd_timer); 684 ep->stop_cmd_timer.data = (unsigned long) ep; 685 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; 686 ep->xhci = xhci; 687 } 688 689 /* All the xhci_tds in the ring's TD list should be freed at this point */ 690 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 691 { 692 struct xhci_virt_device *dev; 693 int i; 694 695 /* Slot ID 0 is reserved */ 696 if (slot_id == 0 || !xhci->devs[slot_id]) 697 return; 698 699 dev = xhci->devs[slot_id]; 700 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 701 if (!dev) 702 return; 703 704 for (i = 0; i < 31; ++i) { 705 if (dev->eps[i].ring) 706 xhci_ring_free(xhci, dev->eps[i].ring); 707 if (dev->eps[i].stream_info) 708 xhci_free_stream_info(xhci, 709 dev->eps[i].stream_info); 710 } 711 712 if (dev->ring_cache) { 713 for (i = 0; i < dev->num_rings_cached; i++) 714 xhci_ring_free(xhci, dev->ring_cache[i]); 715 kfree(dev->ring_cache); 716 } 717 718 if (dev->in_ctx) 719 xhci_free_container_ctx(xhci, dev->in_ctx); 720 if (dev->out_ctx) 721 xhci_free_container_ctx(xhci, dev->out_ctx); 722 723 kfree(xhci->devs[slot_id]); 724 xhci->devs[slot_id] = NULL; 725 } 726 727 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 728 struct usb_device *udev, gfp_t flags) 729 { 730 struct xhci_virt_device *dev; 731 int i; 732 733 /* Slot ID 0 is reserved */ 734 if (slot_id == 0 || xhci->devs[slot_id]) { 735 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 736 return 0; 737 } 738 739 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 740 if (!xhci->devs[slot_id]) 741 return 0; 742 dev = xhci->devs[slot_id]; 743 744 /* Allocate the (output) device context that will be used in the HC. */ 745 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 746 if (!dev->out_ctx) 747 goto fail; 748 749 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 750 (unsigned long long)dev->out_ctx->dma); 751 752 /* Allocate the (input) device context for address device command */ 753 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 754 if (!dev->in_ctx) 755 goto fail; 756 757 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 758 (unsigned long long)dev->in_ctx->dma); 759 760 /* Initialize the cancellation list and watchdog timers for each ep */ 761 for (i = 0; i < 31; i++) { 762 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 763 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 764 } 765 766 /* Allocate endpoint 0 ring */ 767 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags); 768 if (!dev->eps[0].ring) 769 goto fail; 770 771 /* Allocate pointers to the ring cache */ 772 dev->ring_cache = kzalloc( 773 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 774 flags); 775 if (!dev->ring_cache) 776 goto fail; 777 dev->num_rings_cached = 0; 778 779 init_completion(&dev->cmd_completion); 780 INIT_LIST_HEAD(&dev->cmd_list); 781 dev->udev = udev; 782 783 /* Point to output device context in dcbaa. */ 784 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma; 785 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 786 slot_id, 787 &xhci->dcbaa->dev_context_ptrs[slot_id], 788 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]); 789 790 return 1; 791 fail: 792 xhci_free_virt_device(xhci, slot_id); 793 return 0; 794 } 795 796 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 797 struct usb_device *udev) 798 { 799 struct xhci_virt_device *virt_dev; 800 struct xhci_ep_ctx *ep0_ctx; 801 struct xhci_ring *ep_ring; 802 803 virt_dev = xhci->devs[udev->slot_id]; 804 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 805 ep_ring = virt_dev->eps[0].ring; 806 /* 807 * FIXME we don't keep track of the dequeue pointer very well after a 808 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 809 * host to our enqueue pointer. This should only be called after a 810 * configured device has reset, so all control transfers should have 811 * been completed or cancelled before the reset. 812 */ 813 ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue); 814 ep0_ctx->deq |= ep_ring->cycle_state; 815 } 816 817 /* 818 * The xHCI roothub may have ports of differing speeds in any order in the port 819 * status registers. xhci->port_array provides an array of the port speed for 820 * each offset into the port status registers. 821 * 822 * The xHCI hardware wants to know the roothub port number that the USB device 823 * is attached to (or the roothub port its ancestor hub is attached to). All we 824 * know is the index of that port under either the USB 2.0 or the USB 3.0 825 * roothub, but that doesn't give us the real index into the HW port status 826 * registers. Scan through the xHCI roothub port array, looking for the Nth 827 * entry of the correct port speed. Return the port number of that entry. 828 */ 829 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 830 struct usb_device *udev) 831 { 832 struct usb_device *top_dev; 833 unsigned int num_similar_speed_ports; 834 unsigned int faked_port_num; 835 int i; 836 837 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 838 top_dev = top_dev->parent) 839 /* Found device below root hub */; 840 faked_port_num = top_dev->portnum; 841 for (i = 0, num_similar_speed_ports = 0; 842 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 843 u8 port_speed = xhci->port_array[i]; 844 845 /* 846 * Skip ports that don't have known speeds, or have duplicate 847 * Extended Capabilities port speed entries. 848 */ 849 if (port_speed == 0 || port_speed == -1) 850 continue; 851 852 /* 853 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and 854 * 1.1 ports are under the USB 2.0 hub. If the port speed 855 * matches the device speed, it's a similar speed port. 856 */ 857 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER)) 858 num_similar_speed_ports++; 859 if (num_similar_speed_ports == faked_port_num) 860 /* Roothub ports are numbered from 1 to N */ 861 return i+1; 862 } 863 return 0; 864 } 865 866 /* Setup an xHCI virtual device for a Set Address command */ 867 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 868 { 869 struct xhci_virt_device *dev; 870 struct xhci_ep_ctx *ep0_ctx; 871 struct xhci_slot_ctx *slot_ctx; 872 struct xhci_input_control_ctx *ctrl_ctx; 873 u32 port_num; 874 struct usb_device *top_dev; 875 876 dev = xhci->devs[udev->slot_id]; 877 /* Slot ID 0 is reserved */ 878 if (udev->slot_id == 0 || !dev) { 879 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 880 udev->slot_id); 881 return -EINVAL; 882 } 883 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 884 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx); 885 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 886 887 /* 2) New slot context and endpoint 0 context are valid*/ 888 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG; 889 890 /* 3) Only the control endpoint is valid - one endpoint context */ 891 slot_ctx->dev_info |= LAST_CTX(1); 892 893 slot_ctx->dev_info |= (u32) udev->route; 894 switch (udev->speed) { 895 case USB_SPEED_SUPER: 896 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS; 897 break; 898 case USB_SPEED_HIGH: 899 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS; 900 break; 901 case USB_SPEED_FULL: 902 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS; 903 break; 904 case USB_SPEED_LOW: 905 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS; 906 break; 907 case USB_SPEED_WIRELESS: 908 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 909 return -EINVAL; 910 break; 911 default: 912 /* Speed was set earlier, this shouldn't happen. */ 913 BUG(); 914 } 915 /* Find the root hub port this device is under */ 916 port_num = xhci_find_real_port_number(xhci, udev); 917 if (!port_num) 918 return -EINVAL; 919 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(port_num); 920 /* Set the port number in the virtual_device to the faked port number */ 921 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 922 top_dev = top_dev->parent) 923 /* Found device below root hub */; 924 dev->port = top_dev->portnum; 925 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 926 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port); 927 928 /* Is this a LS/FS device under an external HS hub? */ 929 if (udev->tt && udev->tt->hub->parent) { 930 slot_ctx->tt_info = udev->tt->hub->slot_id; 931 slot_ctx->tt_info |= udev->ttport << 8; 932 if (udev->tt->multi) 933 slot_ctx->dev_info |= DEV_MTT; 934 } 935 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 936 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 937 938 /* Step 4 - ring already allocated */ 939 /* Step 5 */ 940 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP); 941 /* 942 * XXX: Not sure about wireless USB devices. 943 */ 944 switch (udev->speed) { 945 case USB_SPEED_SUPER: 946 ep0_ctx->ep_info2 |= MAX_PACKET(512); 947 break; 948 case USB_SPEED_HIGH: 949 /* USB core guesses at a 64-byte max packet first for FS devices */ 950 case USB_SPEED_FULL: 951 ep0_ctx->ep_info2 |= MAX_PACKET(64); 952 break; 953 case USB_SPEED_LOW: 954 ep0_ctx->ep_info2 |= MAX_PACKET(8); 955 break; 956 case USB_SPEED_WIRELESS: 957 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 958 return -EINVAL; 959 break; 960 default: 961 /* New speed? */ 962 BUG(); 963 } 964 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 965 ep0_ctx->ep_info2 |= MAX_BURST(0); 966 ep0_ctx->ep_info2 |= ERROR_COUNT(3); 967 968 ep0_ctx->deq = 969 dev->eps[0].ring->first_seg->dma; 970 ep0_ctx->deq |= dev->eps[0].ring->cycle_state; 971 972 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 973 974 return 0; 975 } 976 977 /* Return the polling or NAK interval. 978 * 979 * The polling interval is expressed in "microframes". If xHCI's Interval field 980 * is set to N, it will service the endpoint every 2^(Interval)*125us. 981 * 982 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 983 * is set to 0. 984 */ 985 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 986 struct usb_host_endpoint *ep) 987 { 988 unsigned int interval = 0; 989 990 switch (udev->speed) { 991 case USB_SPEED_HIGH: 992 /* Max NAK rate */ 993 if (usb_endpoint_xfer_control(&ep->desc) || 994 usb_endpoint_xfer_bulk(&ep->desc)) 995 interval = ep->desc.bInterval; 996 /* Fall through - SS and HS isoc/int have same decoding */ 997 case USB_SPEED_SUPER: 998 if (usb_endpoint_xfer_int(&ep->desc) || 999 usb_endpoint_xfer_isoc(&ep->desc)) { 1000 if (ep->desc.bInterval == 0) 1001 interval = 0; 1002 else 1003 interval = ep->desc.bInterval - 1; 1004 if (interval > 15) 1005 interval = 15; 1006 if (interval != ep->desc.bInterval + 1) 1007 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n", 1008 ep->desc.bEndpointAddress, 1 << interval); 1009 } 1010 break; 1011 /* Convert bInterval (in 1-255 frames) to microframes and round down to 1012 * nearest power of 2. 1013 */ 1014 case USB_SPEED_FULL: 1015 case USB_SPEED_LOW: 1016 if (usb_endpoint_xfer_int(&ep->desc) || 1017 usb_endpoint_xfer_isoc(&ep->desc)) { 1018 interval = fls(8*ep->desc.bInterval) - 1; 1019 if (interval > 10) 1020 interval = 10; 1021 if (interval < 3) 1022 interval = 3; 1023 if ((1 << interval) != 8*ep->desc.bInterval) 1024 dev_warn(&udev->dev, 1025 "ep %#x - rounding interval" 1026 " to %d microframes, " 1027 "ep desc says %d microframes\n", 1028 ep->desc.bEndpointAddress, 1029 1 << interval, 1030 8*ep->desc.bInterval); 1031 } 1032 break; 1033 default: 1034 BUG(); 1035 } 1036 return EP_INTERVAL(interval); 1037 } 1038 1039 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1040 * High speed endpoint descriptors can define "the number of additional 1041 * transaction opportunities per microframe", but that goes in the Max Burst 1042 * endpoint context field. 1043 */ 1044 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev, 1045 struct usb_host_endpoint *ep) 1046 { 1047 if (udev->speed != USB_SPEED_SUPER || 1048 !usb_endpoint_xfer_isoc(&ep->desc)) 1049 return 0; 1050 return ep->ss_ep_comp.bmAttributes; 1051 } 1052 1053 static inline u32 xhci_get_endpoint_type(struct usb_device *udev, 1054 struct usb_host_endpoint *ep) 1055 { 1056 int in; 1057 u32 type; 1058 1059 in = usb_endpoint_dir_in(&ep->desc); 1060 if (usb_endpoint_xfer_control(&ep->desc)) { 1061 type = EP_TYPE(CTRL_EP); 1062 } else if (usb_endpoint_xfer_bulk(&ep->desc)) { 1063 if (in) 1064 type = EP_TYPE(BULK_IN_EP); 1065 else 1066 type = EP_TYPE(BULK_OUT_EP); 1067 } else if (usb_endpoint_xfer_isoc(&ep->desc)) { 1068 if (in) 1069 type = EP_TYPE(ISOC_IN_EP); 1070 else 1071 type = EP_TYPE(ISOC_OUT_EP); 1072 } else if (usb_endpoint_xfer_int(&ep->desc)) { 1073 if (in) 1074 type = EP_TYPE(INT_IN_EP); 1075 else 1076 type = EP_TYPE(INT_OUT_EP); 1077 } else { 1078 BUG(); 1079 } 1080 return type; 1081 } 1082 1083 /* Return the maximum endpoint service interval time (ESIT) payload. 1084 * Basically, this is the maxpacket size, multiplied by the burst size 1085 * and mult size. 1086 */ 1087 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, 1088 struct usb_device *udev, 1089 struct usb_host_endpoint *ep) 1090 { 1091 int max_burst; 1092 int max_packet; 1093 1094 /* Only applies for interrupt or isochronous endpoints */ 1095 if (usb_endpoint_xfer_control(&ep->desc) || 1096 usb_endpoint_xfer_bulk(&ep->desc)) 1097 return 0; 1098 1099 if (udev->speed == USB_SPEED_SUPER) 1100 return ep->ss_ep_comp.wBytesPerInterval; 1101 1102 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize); 1103 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11; 1104 /* A 0 in max burst means 1 transfer per ESIT */ 1105 return max_packet * (max_burst + 1); 1106 } 1107 1108 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1109 * Drivers will have to call usb_alloc_streams() to do that. 1110 */ 1111 int xhci_endpoint_init(struct xhci_hcd *xhci, 1112 struct xhci_virt_device *virt_dev, 1113 struct usb_device *udev, 1114 struct usb_host_endpoint *ep, 1115 gfp_t mem_flags) 1116 { 1117 unsigned int ep_index; 1118 struct xhci_ep_ctx *ep_ctx; 1119 struct xhci_ring *ep_ring; 1120 unsigned int max_packet; 1121 unsigned int max_burst; 1122 u32 max_esit_payload; 1123 1124 ep_index = xhci_get_endpoint_index(&ep->desc); 1125 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1126 1127 /* Set up the endpoint ring */ 1128 /* 1129 * Isochronous endpoint ring needs bigger size because one isoc URB 1130 * carries multiple packets and it will insert multiple tds to the 1131 * ring. 1132 * This should be replaced with dynamic ring resizing in the future. 1133 */ 1134 if (usb_endpoint_xfer_isoc(&ep->desc)) 1135 virt_dev->eps[ep_index].new_ring = 1136 xhci_ring_alloc(xhci, 8, true, mem_flags); 1137 else 1138 virt_dev->eps[ep_index].new_ring = 1139 xhci_ring_alloc(xhci, 1, true, mem_flags); 1140 if (!virt_dev->eps[ep_index].new_ring) { 1141 /* Attempt to use the ring cache */ 1142 if (virt_dev->num_rings_cached == 0) 1143 return -ENOMEM; 1144 virt_dev->eps[ep_index].new_ring = 1145 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1146 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1147 virt_dev->num_rings_cached--; 1148 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring); 1149 } 1150 virt_dev->eps[ep_index].skip = false; 1151 ep_ring = virt_dev->eps[ep_index].new_ring; 1152 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state; 1153 1154 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep); 1155 ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep)); 1156 1157 /* FIXME dig Mult and streams info out of ep companion desc */ 1158 1159 /* Allow 3 retries for everything but isoc; 1160 * error count = 0 means infinite retries. 1161 */ 1162 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1163 ep_ctx->ep_info2 = ERROR_COUNT(3); 1164 else 1165 ep_ctx->ep_info2 = ERROR_COUNT(1); 1166 1167 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep); 1168 1169 /* Set the max packet size and max burst */ 1170 switch (udev->speed) { 1171 case USB_SPEED_SUPER: 1172 max_packet = ep->desc.wMaxPacketSize; 1173 ep_ctx->ep_info2 |= MAX_PACKET(max_packet); 1174 /* dig out max burst from ep companion desc */ 1175 max_packet = ep->ss_ep_comp.bMaxBurst; 1176 if (!max_packet) 1177 xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n"); 1178 ep_ctx->ep_info2 |= MAX_BURST(max_packet); 1179 break; 1180 case USB_SPEED_HIGH: 1181 /* bits 11:12 specify the number of additional transaction 1182 * opportunities per microframe (USB 2.0, section 9.6.6) 1183 */ 1184 if (usb_endpoint_xfer_isoc(&ep->desc) || 1185 usb_endpoint_xfer_int(&ep->desc)) { 1186 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11; 1187 ep_ctx->ep_info2 |= MAX_BURST(max_burst); 1188 } 1189 /* Fall through */ 1190 case USB_SPEED_FULL: 1191 case USB_SPEED_LOW: 1192 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize); 1193 ep_ctx->ep_info2 |= MAX_PACKET(max_packet); 1194 break; 1195 default: 1196 BUG(); 1197 } 1198 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); 1199 ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload); 1200 1201 /* 1202 * XXX no idea how to calculate the average TRB buffer length for bulk 1203 * endpoints, as the driver gives us no clue how big each scatter gather 1204 * list entry (or buffer) is going to be. 1205 * 1206 * For isochronous and interrupt endpoints, we set it to the max 1207 * available, until we have new API in the USB core to allow drivers to 1208 * declare how much bandwidth they actually need. 1209 * 1210 * Normally, it would be calculated by taking the total of the buffer 1211 * lengths in the TD and then dividing by the number of TRBs in a TD, 1212 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't 1213 * use Event Data TRBs, and we don't chain in a link TRB on short 1214 * transfers, we're basically dividing by 1. 1215 */ 1216 ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload); 1217 1218 /* FIXME Debug endpoint context */ 1219 return 0; 1220 } 1221 1222 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1223 struct xhci_virt_device *virt_dev, 1224 struct usb_host_endpoint *ep) 1225 { 1226 unsigned int ep_index; 1227 struct xhci_ep_ctx *ep_ctx; 1228 1229 ep_index = xhci_get_endpoint_index(&ep->desc); 1230 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1231 1232 ep_ctx->ep_info = 0; 1233 ep_ctx->ep_info2 = 0; 1234 ep_ctx->deq = 0; 1235 ep_ctx->tx_info = 0; 1236 /* Don't free the endpoint ring until the set interface or configuration 1237 * request succeeds. 1238 */ 1239 } 1240 1241 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1242 * Useful when you want to change one particular aspect of the endpoint and then 1243 * issue a configure endpoint command. 1244 */ 1245 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1246 struct xhci_container_ctx *in_ctx, 1247 struct xhci_container_ctx *out_ctx, 1248 unsigned int ep_index) 1249 { 1250 struct xhci_ep_ctx *out_ep_ctx; 1251 struct xhci_ep_ctx *in_ep_ctx; 1252 1253 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1254 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1255 1256 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1257 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1258 in_ep_ctx->deq = out_ep_ctx->deq; 1259 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1260 } 1261 1262 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1263 * Useful when you want to change one particular aspect of the endpoint and then 1264 * issue a configure endpoint command. Only the context entries field matters, 1265 * but we'll copy the whole thing anyway. 1266 */ 1267 void xhci_slot_copy(struct xhci_hcd *xhci, 1268 struct xhci_container_ctx *in_ctx, 1269 struct xhci_container_ctx *out_ctx) 1270 { 1271 struct xhci_slot_ctx *in_slot_ctx; 1272 struct xhci_slot_ctx *out_slot_ctx; 1273 1274 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1275 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1276 1277 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1278 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1279 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1280 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1281 } 1282 1283 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1284 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1285 { 1286 int i; 1287 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1288 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1289 1290 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); 1291 1292 if (!num_sp) 1293 return 0; 1294 1295 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1296 if (!xhci->scratchpad) 1297 goto fail_sp; 1298 1299 xhci->scratchpad->sp_array = 1300 pci_alloc_consistent(to_pci_dev(dev), 1301 num_sp * sizeof(u64), 1302 &xhci->scratchpad->sp_dma); 1303 if (!xhci->scratchpad->sp_array) 1304 goto fail_sp2; 1305 1306 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1307 if (!xhci->scratchpad->sp_buffers) 1308 goto fail_sp3; 1309 1310 xhci->scratchpad->sp_dma_buffers = 1311 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1312 1313 if (!xhci->scratchpad->sp_dma_buffers) 1314 goto fail_sp4; 1315 1316 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma; 1317 for (i = 0; i < num_sp; i++) { 1318 dma_addr_t dma; 1319 void *buf = pci_alloc_consistent(to_pci_dev(dev), 1320 xhci->page_size, &dma); 1321 if (!buf) 1322 goto fail_sp5; 1323 1324 xhci->scratchpad->sp_array[i] = dma; 1325 xhci->scratchpad->sp_buffers[i] = buf; 1326 xhci->scratchpad->sp_dma_buffers[i] = dma; 1327 } 1328 1329 return 0; 1330 1331 fail_sp5: 1332 for (i = i - 1; i >= 0; i--) { 1333 pci_free_consistent(to_pci_dev(dev), xhci->page_size, 1334 xhci->scratchpad->sp_buffers[i], 1335 xhci->scratchpad->sp_dma_buffers[i]); 1336 } 1337 kfree(xhci->scratchpad->sp_dma_buffers); 1338 1339 fail_sp4: 1340 kfree(xhci->scratchpad->sp_buffers); 1341 1342 fail_sp3: 1343 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64), 1344 xhci->scratchpad->sp_array, 1345 xhci->scratchpad->sp_dma); 1346 1347 fail_sp2: 1348 kfree(xhci->scratchpad); 1349 xhci->scratchpad = NULL; 1350 1351 fail_sp: 1352 return -ENOMEM; 1353 } 1354 1355 static void scratchpad_free(struct xhci_hcd *xhci) 1356 { 1357 int num_sp; 1358 int i; 1359 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1360 1361 if (!xhci->scratchpad) 1362 return; 1363 1364 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1365 1366 for (i = 0; i < num_sp; i++) { 1367 pci_free_consistent(pdev, xhci->page_size, 1368 xhci->scratchpad->sp_buffers[i], 1369 xhci->scratchpad->sp_dma_buffers[i]); 1370 } 1371 kfree(xhci->scratchpad->sp_dma_buffers); 1372 kfree(xhci->scratchpad->sp_buffers); 1373 pci_free_consistent(pdev, num_sp * sizeof(u64), 1374 xhci->scratchpad->sp_array, 1375 xhci->scratchpad->sp_dma); 1376 kfree(xhci->scratchpad); 1377 xhci->scratchpad = NULL; 1378 } 1379 1380 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1381 bool allocate_in_ctx, bool allocate_completion, 1382 gfp_t mem_flags) 1383 { 1384 struct xhci_command *command; 1385 1386 command = kzalloc(sizeof(*command), mem_flags); 1387 if (!command) 1388 return NULL; 1389 1390 if (allocate_in_ctx) { 1391 command->in_ctx = 1392 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1393 mem_flags); 1394 if (!command->in_ctx) { 1395 kfree(command); 1396 return NULL; 1397 } 1398 } 1399 1400 if (allocate_completion) { 1401 command->completion = 1402 kzalloc(sizeof(struct completion), mem_flags); 1403 if (!command->completion) { 1404 xhci_free_container_ctx(xhci, command->in_ctx); 1405 kfree(command); 1406 return NULL; 1407 } 1408 init_completion(command->completion); 1409 } 1410 1411 command->status = 0; 1412 INIT_LIST_HEAD(&command->cmd_list); 1413 return command; 1414 } 1415 1416 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) 1417 { 1418 int last; 1419 1420 if (!urb_priv) 1421 return; 1422 1423 last = urb_priv->length - 1; 1424 if (last >= 0) { 1425 int i; 1426 for (i = 0; i <= last; i++) 1427 kfree(urb_priv->td[i]); 1428 } 1429 kfree(urb_priv); 1430 } 1431 1432 void xhci_free_command(struct xhci_hcd *xhci, 1433 struct xhci_command *command) 1434 { 1435 xhci_free_container_ctx(xhci, 1436 command->in_ctx); 1437 kfree(command->completion); 1438 kfree(command); 1439 } 1440 1441 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1442 { 1443 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1444 int size; 1445 int i; 1446 1447 /* Free the Event Ring Segment Table and the actual Event Ring */ 1448 if (xhci->ir_set) { 1449 xhci_writel(xhci, 0, &xhci->ir_set->erst_size); 1450 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base); 1451 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue); 1452 } 1453 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1454 if (xhci->erst.entries) 1455 pci_free_consistent(pdev, size, 1456 xhci->erst.entries, xhci->erst.erst_dma_addr); 1457 xhci->erst.entries = NULL; 1458 xhci_dbg(xhci, "Freed ERST\n"); 1459 if (xhci->event_ring) 1460 xhci_ring_free(xhci, xhci->event_ring); 1461 xhci->event_ring = NULL; 1462 xhci_dbg(xhci, "Freed event ring\n"); 1463 1464 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 1465 if (xhci->cmd_ring) 1466 xhci_ring_free(xhci, xhci->cmd_ring); 1467 xhci->cmd_ring = NULL; 1468 xhci_dbg(xhci, "Freed command ring\n"); 1469 1470 for (i = 1; i < MAX_HC_SLOTS; ++i) 1471 xhci_free_virt_device(xhci, i); 1472 1473 if (xhci->segment_pool) 1474 dma_pool_destroy(xhci->segment_pool); 1475 xhci->segment_pool = NULL; 1476 xhci_dbg(xhci, "Freed segment pool\n"); 1477 1478 if (xhci->device_pool) 1479 dma_pool_destroy(xhci->device_pool); 1480 xhci->device_pool = NULL; 1481 xhci_dbg(xhci, "Freed device context pool\n"); 1482 1483 if (xhci->small_streams_pool) 1484 dma_pool_destroy(xhci->small_streams_pool); 1485 xhci->small_streams_pool = NULL; 1486 xhci_dbg(xhci, "Freed small stream array pool\n"); 1487 1488 if (xhci->medium_streams_pool) 1489 dma_pool_destroy(xhci->medium_streams_pool); 1490 xhci->medium_streams_pool = NULL; 1491 xhci_dbg(xhci, "Freed medium stream array pool\n"); 1492 1493 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 1494 if (xhci->dcbaa) 1495 pci_free_consistent(pdev, sizeof(*xhci->dcbaa), 1496 xhci->dcbaa, xhci->dcbaa->dma); 1497 xhci->dcbaa = NULL; 1498 1499 scratchpad_free(xhci); 1500 1501 xhci->num_usb2_ports = 0; 1502 xhci->num_usb3_ports = 0; 1503 kfree(xhci->usb2_ports); 1504 kfree(xhci->usb3_ports); 1505 kfree(xhci->port_array); 1506 1507 xhci->page_size = 0; 1508 xhci->page_shift = 0; 1509 xhci->bus_state[0].bus_suspended = 0; 1510 xhci->bus_state[1].bus_suspended = 0; 1511 } 1512 1513 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1514 struct xhci_segment *input_seg, 1515 union xhci_trb *start_trb, 1516 union xhci_trb *end_trb, 1517 dma_addr_t input_dma, 1518 struct xhci_segment *result_seg, 1519 char *test_name, int test_number) 1520 { 1521 unsigned long long start_dma; 1522 unsigned long long end_dma; 1523 struct xhci_segment *seg; 1524 1525 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1526 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1527 1528 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); 1529 if (seg != result_seg) { 1530 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1531 test_name, test_number); 1532 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1533 "input DMA 0x%llx\n", 1534 input_seg, 1535 (unsigned long long) input_dma); 1536 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1537 "ending TRB %p (0x%llx DMA)\n", 1538 start_trb, start_dma, 1539 end_trb, end_dma); 1540 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1541 result_seg, seg); 1542 return -1; 1543 } 1544 return 0; 1545 } 1546 1547 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1548 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) 1549 { 1550 struct { 1551 dma_addr_t input_dma; 1552 struct xhci_segment *result_seg; 1553 } simple_test_vector [] = { 1554 /* A zeroed DMA field should fail */ 1555 { 0, NULL }, 1556 /* One TRB before the ring start should fail */ 1557 { xhci->event_ring->first_seg->dma - 16, NULL }, 1558 /* One byte before the ring start should fail */ 1559 { xhci->event_ring->first_seg->dma - 1, NULL }, 1560 /* Starting TRB should succeed */ 1561 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1562 /* Ending TRB should succeed */ 1563 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1564 xhci->event_ring->first_seg }, 1565 /* One byte after the ring end should fail */ 1566 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1567 /* One TRB after the ring end should fail */ 1568 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1569 /* An address of all ones should fail */ 1570 { (dma_addr_t) (~0), NULL }, 1571 }; 1572 struct { 1573 struct xhci_segment *input_seg; 1574 union xhci_trb *start_trb; 1575 union xhci_trb *end_trb; 1576 dma_addr_t input_dma; 1577 struct xhci_segment *result_seg; 1578 } complex_test_vector [] = { 1579 /* Test feeding a valid DMA address from a different ring */ 1580 { .input_seg = xhci->event_ring->first_seg, 1581 .start_trb = xhci->event_ring->first_seg->trbs, 1582 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1583 .input_dma = xhci->cmd_ring->first_seg->dma, 1584 .result_seg = NULL, 1585 }, 1586 /* Test feeding a valid end TRB from a different ring */ 1587 { .input_seg = xhci->event_ring->first_seg, 1588 .start_trb = xhci->event_ring->first_seg->trbs, 1589 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1590 .input_dma = xhci->cmd_ring->first_seg->dma, 1591 .result_seg = NULL, 1592 }, 1593 /* Test feeding a valid start and end TRB from a different ring */ 1594 { .input_seg = xhci->event_ring->first_seg, 1595 .start_trb = xhci->cmd_ring->first_seg->trbs, 1596 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1597 .input_dma = xhci->cmd_ring->first_seg->dma, 1598 .result_seg = NULL, 1599 }, 1600 /* TRB in this ring, but after this TD */ 1601 { .input_seg = xhci->event_ring->first_seg, 1602 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1603 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1604 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1605 .result_seg = NULL, 1606 }, 1607 /* TRB in this ring, but before this TD */ 1608 { .input_seg = xhci->event_ring->first_seg, 1609 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1610 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1611 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1612 .result_seg = NULL, 1613 }, 1614 /* TRB in this ring, but after this wrapped TD */ 1615 { .input_seg = xhci->event_ring->first_seg, 1616 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1617 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1618 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1619 .result_seg = NULL, 1620 }, 1621 /* TRB in this ring, but before this wrapped TD */ 1622 { .input_seg = xhci->event_ring->first_seg, 1623 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1624 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1625 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 1626 .result_seg = NULL, 1627 }, 1628 /* TRB not in this ring, and we have a wrapped TD */ 1629 { .input_seg = xhci->event_ring->first_seg, 1630 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1631 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1632 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 1633 .result_seg = NULL, 1634 }, 1635 }; 1636 1637 unsigned int num_tests; 1638 int i, ret; 1639 1640 num_tests = ARRAY_SIZE(simple_test_vector); 1641 for (i = 0; i < num_tests; i++) { 1642 ret = xhci_test_trb_in_td(xhci, 1643 xhci->event_ring->first_seg, 1644 xhci->event_ring->first_seg->trbs, 1645 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1646 simple_test_vector[i].input_dma, 1647 simple_test_vector[i].result_seg, 1648 "Simple", i); 1649 if (ret < 0) 1650 return ret; 1651 } 1652 1653 num_tests = ARRAY_SIZE(complex_test_vector); 1654 for (i = 0; i < num_tests; i++) { 1655 ret = xhci_test_trb_in_td(xhci, 1656 complex_test_vector[i].input_seg, 1657 complex_test_vector[i].start_trb, 1658 complex_test_vector[i].end_trb, 1659 complex_test_vector[i].input_dma, 1660 complex_test_vector[i].result_seg, 1661 "Complex", i); 1662 if (ret < 0) 1663 return ret; 1664 } 1665 xhci_dbg(xhci, "TRB math tests passed.\n"); 1666 return 0; 1667 } 1668 1669 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 1670 { 1671 u64 temp; 1672 dma_addr_t deq; 1673 1674 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 1675 xhci->event_ring->dequeue); 1676 if (deq == 0 && !in_interrupt()) 1677 xhci_warn(xhci, "WARN something wrong with SW event ring " 1678 "dequeue ptr.\n"); 1679 /* Update HC event ring dequeue pointer */ 1680 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 1681 temp &= ERST_PTR_MASK; 1682 /* Don't clear the EHB bit (which is RW1C) because 1683 * there might be more events to service. 1684 */ 1685 temp &= ~ERST_EHB; 1686 xhci_dbg(xhci, "// Write event ring dequeue pointer, " 1687 "preserving EHB bit\n"); 1688 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 1689 &xhci->ir_set->erst_dequeue); 1690 } 1691 1692 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 1693 u32 __iomem *addr, u8 major_revision) 1694 { 1695 u32 temp, port_offset, port_count; 1696 int i; 1697 1698 if (major_revision > 0x03) { 1699 xhci_warn(xhci, "Ignoring unknown port speed, " 1700 "Ext Cap %p, revision = 0x%x\n", 1701 addr, major_revision); 1702 /* Ignoring port protocol we can't understand. FIXME */ 1703 return; 1704 } 1705 1706 /* Port offset and count in the third dword, see section 7.2 */ 1707 temp = xhci_readl(xhci, addr + 2); 1708 port_offset = XHCI_EXT_PORT_OFF(temp); 1709 port_count = XHCI_EXT_PORT_COUNT(temp); 1710 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, " 1711 "count = %u, revision = 0x%x\n", 1712 addr, port_offset, port_count, major_revision); 1713 /* Port count includes the current port offset */ 1714 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 1715 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 1716 return; 1717 port_offset--; 1718 for (i = port_offset; i < (port_offset + port_count); i++) { 1719 /* Duplicate entry. Ignore the port if the revisions differ. */ 1720 if (xhci->port_array[i] != 0) { 1721 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 1722 " port %u\n", addr, i); 1723 xhci_warn(xhci, "Port was marked as USB %u, " 1724 "duplicated as USB %u\n", 1725 xhci->port_array[i], major_revision); 1726 /* Only adjust the roothub port counts if we haven't 1727 * found a similar duplicate. 1728 */ 1729 if (xhci->port_array[i] != major_revision && 1730 xhci->port_array[i] != (u8) -1) { 1731 if (xhci->port_array[i] == 0x03) 1732 xhci->num_usb3_ports--; 1733 else 1734 xhci->num_usb2_ports--; 1735 xhci->port_array[i] = (u8) -1; 1736 } 1737 /* FIXME: Should we disable the port? */ 1738 continue; 1739 } 1740 xhci->port_array[i] = major_revision; 1741 if (major_revision == 0x03) 1742 xhci->num_usb3_ports++; 1743 else 1744 xhci->num_usb2_ports++; 1745 } 1746 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 1747 } 1748 1749 /* 1750 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 1751 * specify what speeds each port is supposed to be. We can't count on the port 1752 * speed bits in the PORTSC register being correct until a device is connected, 1753 * but we need to set up the two fake roothubs with the correct number of USB 1754 * 3.0 and USB 2.0 ports at host controller initialization time. 1755 */ 1756 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 1757 { 1758 u32 __iomem *addr; 1759 u32 offset; 1760 unsigned int num_ports; 1761 int i, port_index; 1762 1763 addr = &xhci->cap_regs->hcc_params; 1764 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr)); 1765 if (offset == 0) { 1766 xhci_err(xhci, "No Extended Capability registers, " 1767 "unable to set up roothub.\n"); 1768 return -ENODEV; 1769 } 1770 1771 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1772 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 1773 if (!xhci->port_array) 1774 return -ENOMEM; 1775 1776 /* 1777 * For whatever reason, the first capability offset is from the 1778 * capability register base, not from the HCCPARAMS register. 1779 * See section 5.3.6 for offset calculation. 1780 */ 1781 addr = &xhci->cap_regs->hc_capbase + offset; 1782 while (1) { 1783 u32 cap_id; 1784 1785 cap_id = xhci_readl(xhci, addr); 1786 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 1787 xhci_add_in_port(xhci, num_ports, addr, 1788 (u8) XHCI_EXT_PORT_MAJOR(cap_id)); 1789 offset = XHCI_EXT_CAPS_NEXT(cap_id); 1790 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) 1791 == num_ports) 1792 break; 1793 /* 1794 * Once you're into the Extended Capabilities, the offset is 1795 * always relative to the register holding the offset. 1796 */ 1797 addr += offset; 1798 } 1799 1800 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 1801 xhci_warn(xhci, "No ports on the roothubs?\n"); 1802 return -ENODEV; 1803 } 1804 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n", 1805 xhci->num_usb2_ports, xhci->num_usb3_ports); 1806 1807 /* Place limits on the number of roothub ports so that the hub 1808 * descriptors aren't longer than the USB core will allocate. 1809 */ 1810 if (xhci->num_usb3_ports > 15) { 1811 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n"); 1812 xhci->num_usb3_ports = 15; 1813 } 1814 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 1815 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n", 1816 USB_MAXCHILDREN); 1817 xhci->num_usb2_ports = USB_MAXCHILDREN; 1818 } 1819 1820 /* 1821 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 1822 * Not sure how the USB core will handle a hub with no ports... 1823 */ 1824 if (xhci->num_usb2_ports) { 1825 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 1826 xhci->num_usb2_ports, flags); 1827 if (!xhci->usb2_ports) 1828 return -ENOMEM; 1829 1830 port_index = 0; 1831 for (i = 0; i < num_ports; i++) { 1832 if (xhci->port_array[i] == 0x03 || 1833 xhci->port_array[i] == 0 || 1834 xhci->port_array[i] == -1) 1835 continue; 1836 1837 xhci->usb2_ports[port_index] = 1838 &xhci->op_regs->port_status_base + 1839 NUM_PORT_REGS*i; 1840 xhci_dbg(xhci, "USB 2.0 port at index %u, " 1841 "addr = %p\n", i, 1842 xhci->usb2_ports[port_index]); 1843 port_index++; 1844 if (port_index == xhci->num_usb2_ports) 1845 break; 1846 } 1847 } 1848 if (xhci->num_usb3_ports) { 1849 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 1850 xhci->num_usb3_ports, flags); 1851 if (!xhci->usb3_ports) 1852 return -ENOMEM; 1853 1854 port_index = 0; 1855 for (i = 0; i < num_ports; i++) 1856 if (xhci->port_array[i] == 0x03) { 1857 xhci->usb3_ports[port_index] = 1858 &xhci->op_regs->port_status_base + 1859 NUM_PORT_REGS*i; 1860 xhci_dbg(xhci, "USB 3.0 port at index %u, " 1861 "addr = %p\n", i, 1862 xhci->usb3_ports[port_index]); 1863 port_index++; 1864 if (port_index == xhci->num_usb3_ports) 1865 break; 1866 } 1867 } 1868 return 0; 1869 } 1870 1871 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 1872 { 1873 dma_addr_t dma; 1874 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1875 unsigned int val, val2; 1876 u64 val_64; 1877 struct xhci_segment *seg; 1878 u32 page_size; 1879 int i; 1880 1881 page_size = xhci_readl(xhci, &xhci->op_regs->page_size); 1882 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); 1883 for (i = 0; i < 16; i++) { 1884 if ((0x1 & page_size) != 0) 1885 break; 1886 page_size = page_size >> 1; 1887 } 1888 if (i < 16) 1889 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); 1890 else 1891 xhci_warn(xhci, "WARN: no supported page size\n"); 1892 /* Use 4K pages, since that's common and the minimum the HC supports */ 1893 xhci->page_shift = 12; 1894 xhci->page_size = 1 << xhci->page_shift; 1895 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); 1896 1897 /* 1898 * Program the Number of Device Slots Enabled field in the CONFIG 1899 * register with the max value of slots the HC can handle. 1900 */ 1901 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); 1902 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", 1903 (unsigned int) val); 1904 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); 1905 val |= (val2 & ~HCS_SLOTS_MASK); 1906 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", 1907 (unsigned int) val); 1908 xhci_writel(xhci, val, &xhci->op_regs->config_reg); 1909 1910 /* 1911 * Section 5.4.8 - doorbell array must be 1912 * "physically contiguous and 64-byte (cache line) aligned". 1913 */ 1914 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev), 1915 sizeof(*xhci->dcbaa), &dma); 1916 if (!xhci->dcbaa) 1917 goto fail; 1918 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 1919 xhci->dcbaa->dma = dma; 1920 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", 1921 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 1922 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 1923 1924 /* 1925 * Initialize the ring segment pool. The ring must be a contiguous 1926 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 1927 * however, the command ring segment needs 64-byte aligned segments, 1928 * so we pick the greater alignment need. 1929 */ 1930 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 1931 SEGMENT_SIZE, 64, xhci->page_size); 1932 1933 /* See Table 46 and Note on Figure 55 */ 1934 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 1935 2112, 64, xhci->page_size); 1936 if (!xhci->segment_pool || !xhci->device_pool) 1937 goto fail; 1938 1939 /* Linear stream context arrays don't have any boundary restrictions, 1940 * and only need to be 16-byte aligned. 1941 */ 1942 xhci->small_streams_pool = 1943 dma_pool_create("xHCI 256 byte stream ctx arrays", 1944 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 1945 xhci->medium_streams_pool = 1946 dma_pool_create("xHCI 1KB stream ctx arrays", 1947 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 1948 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 1949 * will be allocated with pci_alloc_consistent() 1950 */ 1951 1952 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 1953 goto fail; 1954 1955 /* Set up the command ring to have one segments for now. */ 1956 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags); 1957 if (!xhci->cmd_ring) 1958 goto fail; 1959 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); 1960 xhci_dbg(xhci, "First segment DMA is 0x%llx\n", 1961 (unsigned long long)xhci->cmd_ring->first_seg->dma); 1962 1963 /* Set the address in the Command Ring Control register */ 1964 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 1965 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 1966 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 1967 xhci->cmd_ring->cycle_state; 1968 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); 1969 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 1970 xhci_dbg_cmd_ptrs(xhci); 1971 1972 val = xhci_readl(xhci, &xhci->cap_regs->db_off); 1973 val &= DBOFF_MASK; 1974 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" 1975 " from cap regs base addr\n", val); 1976 xhci->dba = (void __iomem *) xhci->cap_regs + val; 1977 xhci_dbg_regs(xhci); 1978 xhci_print_run_regs(xhci); 1979 /* Set ir_set to interrupt register set 0 */ 1980 xhci->ir_set = &xhci->run_regs->ir_set[0]; 1981 1982 /* 1983 * Event ring setup: Allocate a normal ring, but also setup 1984 * the event ring segment table (ERST). Section 4.9.3. 1985 */ 1986 xhci_dbg(xhci, "// Allocating event ring\n"); 1987 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags); 1988 if (!xhci->event_ring) 1989 goto fail; 1990 if (xhci_check_trb_in_td_math(xhci, flags) < 0) 1991 goto fail; 1992 1993 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev), 1994 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma); 1995 if (!xhci->erst.entries) 1996 goto fail; 1997 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", 1998 (unsigned long long)dma); 1999 2000 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2001 xhci->erst.num_entries = ERST_NUM_SEGS; 2002 xhci->erst.erst_dma_addr = dma; 2003 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", 2004 xhci->erst.num_entries, 2005 xhci->erst.entries, 2006 (unsigned long long)xhci->erst.erst_dma_addr); 2007 2008 /* set ring base address and size for each segment table entry */ 2009 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2010 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2011 entry->seg_addr = seg->dma; 2012 entry->seg_size = TRBS_PER_SEGMENT; 2013 entry->rsvd = 0; 2014 seg = seg->next; 2015 } 2016 2017 /* set ERST count with the number of entries in the segment table */ 2018 val = xhci_readl(xhci, &xhci->ir_set->erst_size); 2019 val &= ERST_SIZE_MASK; 2020 val |= ERST_NUM_SEGS; 2021 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", 2022 val); 2023 xhci_writel(xhci, val, &xhci->ir_set->erst_size); 2024 2025 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); 2026 /* set the segment table base address */ 2027 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", 2028 (unsigned long long)xhci->erst.erst_dma_addr); 2029 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2030 val_64 &= ERST_PTR_MASK; 2031 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2032 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2033 2034 /* Set the event ring dequeue address */ 2035 xhci_set_hc_event_deq(xhci); 2036 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); 2037 xhci_print_ir_set(xhci, 0); 2038 2039 /* 2040 * XXX: Might need to set the Interrupter Moderation Register to 2041 * something other than the default (~1ms minimum between interrupts). 2042 * See section 5.5.1.2. 2043 */ 2044 init_completion(&xhci->addr_dev); 2045 for (i = 0; i < MAX_HC_SLOTS; ++i) 2046 xhci->devs[i] = NULL; 2047 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2048 xhci->bus_state[0].resume_done[i] = 0; 2049 xhci->bus_state[1].resume_done[i] = 0; 2050 } 2051 2052 if (scratchpad_alloc(xhci, flags)) 2053 goto fail; 2054 if (xhci_setup_port_arrays(xhci, flags)) 2055 goto fail; 2056 2057 return 0; 2058 2059 fail: 2060 xhci_warn(xhci, "Couldn't initialize memory\n"); 2061 xhci_mem_cleanup(xhci); 2062 return -ENOMEM; 2063 } 2064