1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 #include <linux/dma-mapping.h> 28 29 #include "xhci.h" 30 #include "xhci-trace.h" 31 32 /* 33 * Allocates a generic ring segment from the ring pool, sets the dma address, 34 * initializes the segment to zero, and sets the private next pointer to NULL. 35 * 36 * Section 4.11.1.1: 37 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 38 */ 39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 40 unsigned int cycle_state, 41 unsigned int max_packet, 42 gfp_t flags) 43 { 44 struct xhci_segment *seg; 45 dma_addr_t dma; 46 int i; 47 48 seg = kzalloc(sizeof *seg, flags); 49 if (!seg) 50 return NULL; 51 52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 53 if (!seg->trbs) { 54 kfree(seg); 55 return NULL; 56 } 57 58 if (max_packet) { 59 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA); 60 if (!seg->bounce_buf) { 61 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 62 kfree(seg); 63 return NULL; 64 } 65 } 66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 67 if (cycle_state == 0) { 68 for (i = 0; i < TRBS_PER_SEGMENT; i++) 69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 70 } 71 seg->dma = dma; 72 seg->next = NULL; 73 74 return seg; 75 } 76 77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 78 { 79 if (seg->trbs) { 80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 81 seg->trbs = NULL; 82 } 83 kfree(seg->bounce_buf); 84 kfree(seg); 85 } 86 87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 88 struct xhci_segment *first) 89 { 90 struct xhci_segment *seg; 91 92 seg = first->next; 93 while (seg != first) { 94 struct xhci_segment *next = seg->next; 95 xhci_segment_free(xhci, seg); 96 seg = next; 97 } 98 xhci_segment_free(xhci, first); 99 } 100 101 /* 102 * Make the prev segment point to the next segment. 103 * 104 * Change the last TRB in the prev segment to be a Link TRB which points to the 105 * DMA address of the next segment. The caller needs to set any Link TRB 106 * related flags, such as End TRB, Toggle Cycle, and no snoop. 107 */ 108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 109 struct xhci_segment *next, enum xhci_ring_type type) 110 { 111 u32 val; 112 113 if (!prev || !next) 114 return; 115 prev->next = next; 116 if (type != TYPE_EVENT) { 117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 118 cpu_to_le64(next->dma); 119 120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 122 val &= ~TRB_TYPE_BITMASK; 123 val |= TRB_TYPE(TRB_LINK); 124 /* Always set the chain bit with 0.95 hardware */ 125 /* Set chain bit for isoc rings on AMD 0.96 host */ 126 if (xhci_link_trb_quirk(xhci) || 127 (type == TYPE_ISOC && 128 (xhci->quirks & XHCI_AMD_0x96_HOST))) 129 val |= TRB_CHAIN; 130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 131 } 132 } 133 134 /* 135 * Link the ring to the new segments. 136 * Set Toggle Cycle for the new ring if needed. 137 */ 138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 139 struct xhci_segment *first, struct xhci_segment *last, 140 unsigned int num_segs) 141 { 142 struct xhci_segment *next; 143 144 if (!ring || !first || !last) 145 return; 146 147 next = ring->enq_seg->next; 148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 149 xhci_link_segments(xhci, last, next, ring->type); 150 ring->num_segs += num_segs; 151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 152 153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 155 &= ~cpu_to_le32(LINK_TOGGLE); 156 last->trbs[TRBS_PER_SEGMENT-1].link.control 157 |= cpu_to_le32(LINK_TOGGLE); 158 ring->last_seg = last; 159 } 160 } 161 162 /* 163 * We need a radix tree for mapping physical addresses of TRBs to which stream 164 * ID they belong to. We need to do this because the host controller won't tell 165 * us which stream ring the TRB came from. We could store the stream ID in an 166 * event data TRB, but that doesn't help us for the cancellation case, since the 167 * endpoint may stop before it reaches that event data TRB. 168 * 169 * The radix tree maps the upper portion of the TRB DMA address to a ring 170 * segment that has the same upper portion of DMA addresses. For example, say I 171 * have segments of size 1KB, that are always 1KB aligned. A segment may 172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 174 * pass the radix tree a key to get the right stream ID: 175 * 176 * 0x10c90fff >> 10 = 0x43243 177 * 0x10c912c0 >> 10 = 0x43244 178 * 0x10c91400 >> 10 = 0x43245 179 * 180 * Obviously, only those TRBs with DMA addresses that are within the segment 181 * will make the radix tree return the stream ID for that ring. 182 * 183 * Caveats for the radix tree: 184 * 185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 190 * extended systems (where the DMA address can be bigger than 32-bits), 191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 192 */ 193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 194 struct xhci_ring *ring, 195 struct xhci_segment *seg, 196 gfp_t mem_flags) 197 { 198 unsigned long key; 199 int ret; 200 201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 202 /* Skip any segments that were already added. */ 203 if (radix_tree_lookup(trb_address_map, key)) 204 return 0; 205 206 ret = radix_tree_maybe_preload(mem_flags); 207 if (ret) 208 return ret; 209 ret = radix_tree_insert(trb_address_map, 210 key, ring); 211 radix_tree_preload_end(); 212 return ret; 213 } 214 215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 216 struct xhci_segment *seg) 217 { 218 unsigned long key; 219 220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 221 if (radix_tree_lookup(trb_address_map, key)) 222 radix_tree_delete(trb_address_map, key); 223 } 224 225 static int xhci_update_stream_segment_mapping( 226 struct radix_tree_root *trb_address_map, 227 struct xhci_ring *ring, 228 struct xhci_segment *first_seg, 229 struct xhci_segment *last_seg, 230 gfp_t mem_flags) 231 { 232 struct xhci_segment *seg; 233 struct xhci_segment *failed_seg; 234 int ret; 235 236 if (WARN_ON_ONCE(trb_address_map == NULL)) 237 return 0; 238 239 seg = first_seg; 240 do { 241 ret = xhci_insert_segment_mapping(trb_address_map, 242 ring, seg, mem_flags); 243 if (ret) 244 goto remove_streams; 245 if (seg == last_seg) 246 return 0; 247 seg = seg->next; 248 } while (seg != first_seg); 249 250 return 0; 251 252 remove_streams: 253 failed_seg = seg; 254 seg = first_seg; 255 do { 256 xhci_remove_segment_mapping(trb_address_map, seg); 257 if (seg == failed_seg) 258 return ret; 259 seg = seg->next; 260 } while (seg != first_seg); 261 262 return ret; 263 } 264 265 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 266 { 267 struct xhci_segment *seg; 268 269 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 270 return; 271 272 seg = ring->first_seg; 273 do { 274 xhci_remove_segment_mapping(ring->trb_address_map, seg); 275 seg = seg->next; 276 } while (seg != ring->first_seg); 277 } 278 279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 280 { 281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 282 ring->first_seg, ring->last_seg, mem_flags); 283 } 284 285 /* XXX: Do we need the hcd structure in all these functions? */ 286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 287 { 288 if (!ring) 289 return; 290 291 if (ring->first_seg) { 292 if (ring->type == TYPE_STREAM) 293 xhci_remove_stream_mapping(ring); 294 xhci_free_segments_for_ring(xhci, ring->first_seg); 295 } 296 297 kfree(ring); 298 } 299 300 static void xhci_initialize_ring_info(struct xhci_ring *ring, 301 unsigned int cycle_state) 302 { 303 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 304 ring->enqueue = ring->first_seg->trbs; 305 ring->enq_seg = ring->first_seg; 306 ring->dequeue = ring->enqueue; 307 ring->deq_seg = ring->first_seg; 308 /* The ring is initialized to 0. The producer must write 1 to the cycle 309 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 310 * compare CCS to the cycle bit to check ownership, so CCS = 1. 311 * 312 * New rings are initialized with cycle state equal to 1; if we are 313 * handling ring expansion, set the cycle state equal to the old ring. 314 */ 315 ring->cycle_state = cycle_state; 316 /* Not necessary for new rings, but needed for re-initialized rings */ 317 ring->enq_updates = 0; 318 ring->deq_updates = 0; 319 320 /* 321 * Each segment has a link TRB, and leave an extra TRB for SW 322 * accounting purpose 323 */ 324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 325 } 326 327 /* Allocate segments and link them for a ring */ 328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 329 struct xhci_segment **first, struct xhci_segment **last, 330 unsigned int num_segs, unsigned int cycle_state, 331 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 332 { 333 struct xhci_segment *prev; 334 335 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 336 if (!prev) 337 return -ENOMEM; 338 num_segs--; 339 340 *first = prev; 341 while (num_segs > 0) { 342 struct xhci_segment *next; 343 344 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 345 if (!next) { 346 prev = *first; 347 while (prev) { 348 next = prev->next; 349 xhci_segment_free(xhci, prev); 350 prev = next; 351 } 352 return -ENOMEM; 353 } 354 xhci_link_segments(xhci, prev, next, type); 355 356 prev = next; 357 num_segs--; 358 } 359 xhci_link_segments(xhci, prev, *first, type); 360 *last = prev; 361 362 return 0; 363 } 364 365 /** 366 * Create a new ring with zero or more segments. 367 * 368 * Link each segment together into a ring. 369 * Set the end flag and the cycle toggle bit on the last segment. 370 * See section 4.9.1 and figures 15 and 16. 371 */ 372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 373 unsigned int num_segs, unsigned int cycle_state, 374 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 375 { 376 struct xhci_ring *ring; 377 int ret; 378 379 ring = kzalloc(sizeof *(ring), flags); 380 if (!ring) 381 return NULL; 382 383 ring->num_segs = num_segs; 384 ring->bounce_buf_len = max_packet; 385 INIT_LIST_HEAD(&ring->td_list); 386 ring->type = type; 387 if (num_segs == 0) 388 return ring; 389 390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 391 &ring->last_seg, num_segs, cycle_state, type, 392 max_packet, flags); 393 if (ret) 394 goto fail; 395 396 /* Only event ring does not use link TRB */ 397 if (type != TYPE_EVENT) { 398 /* See section 4.9.2.1 and 6.4.4.1 */ 399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 400 cpu_to_le32(LINK_TOGGLE); 401 } 402 xhci_initialize_ring_info(ring, cycle_state); 403 return ring; 404 405 fail: 406 kfree(ring); 407 return NULL; 408 } 409 410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 411 struct xhci_virt_device *virt_dev, 412 unsigned int ep_index) 413 { 414 int rings_cached; 415 416 rings_cached = virt_dev->num_rings_cached; 417 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 418 virt_dev->ring_cache[rings_cached] = 419 virt_dev->eps[ep_index].ring; 420 virt_dev->num_rings_cached++; 421 xhci_dbg(xhci, "Cached old ring, " 422 "%d ring%s cached\n", 423 virt_dev->num_rings_cached, 424 (virt_dev->num_rings_cached > 1) ? "s" : ""); 425 } else { 426 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 427 xhci_dbg(xhci, "Ring cache full (%d rings), " 428 "freeing ring\n", 429 virt_dev->num_rings_cached); 430 } 431 virt_dev->eps[ep_index].ring = NULL; 432 } 433 434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 435 * pointers to the beginning of the ring. 436 */ 437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 438 struct xhci_ring *ring, unsigned int cycle_state, 439 enum xhci_ring_type type) 440 { 441 struct xhci_segment *seg = ring->first_seg; 442 int i; 443 444 do { 445 memset(seg->trbs, 0, 446 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 447 if (cycle_state == 0) { 448 for (i = 0; i < TRBS_PER_SEGMENT; i++) 449 seg->trbs[i].link.control |= 450 cpu_to_le32(TRB_CYCLE); 451 } 452 /* All endpoint rings have link TRBs */ 453 xhci_link_segments(xhci, seg, seg->next, type); 454 seg = seg->next; 455 } while (seg != ring->first_seg); 456 ring->type = type; 457 xhci_initialize_ring_info(ring, cycle_state); 458 /* td list should be empty since all URBs have been cancelled, 459 * but just in case... 460 */ 461 INIT_LIST_HEAD(&ring->td_list); 462 } 463 464 /* 465 * Expand an existing ring. 466 * Look for a cached ring or allocate a new ring which has same segment numbers 467 * and link the two rings. 468 */ 469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 470 unsigned int num_trbs, gfp_t flags) 471 { 472 struct xhci_segment *first; 473 struct xhci_segment *last; 474 unsigned int num_segs; 475 unsigned int num_segs_needed; 476 int ret; 477 478 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 479 (TRBS_PER_SEGMENT - 1); 480 481 /* Allocate number of segments we needed, or double the ring size */ 482 num_segs = ring->num_segs > num_segs_needed ? 483 ring->num_segs : num_segs_needed; 484 485 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 486 num_segs, ring->cycle_state, ring->type, 487 ring->bounce_buf_len, flags); 488 if (ret) 489 return -ENOMEM; 490 491 if (ring->type == TYPE_STREAM) 492 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 493 ring, first, last, flags); 494 if (ret) { 495 struct xhci_segment *next; 496 do { 497 next = first->next; 498 xhci_segment_free(xhci, first); 499 if (first == last) 500 break; 501 first = next; 502 } while (true); 503 return ret; 504 } 505 506 xhci_link_rings(xhci, ring, first, last, num_segs); 507 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 508 "ring expansion succeed, now has %d segments", 509 ring->num_segs); 510 511 return 0; 512 } 513 514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 515 516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 517 int type, gfp_t flags) 518 { 519 struct xhci_container_ctx *ctx; 520 521 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 522 return NULL; 523 524 ctx = kzalloc(sizeof(*ctx), flags); 525 if (!ctx) 526 return NULL; 527 528 ctx->type = type; 529 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 530 if (type == XHCI_CTX_TYPE_INPUT) 531 ctx->size += CTX_SIZE(xhci->hcc_params); 532 533 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 534 if (!ctx->bytes) { 535 kfree(ctx); 536 return NULL; 537 } 538 return ctx; 539 } 540 541 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 542 struct xhci_container_ctx *ctx) 543 { 544 if (!ctx) 545 return; 546 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 547 kfree(ctx); 548 } 549 550 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 551 struct xhci_container_ctx *ctx) 552 { 553 if (ctx->type != XHCI_CTX_TYPE_INPUT) 554 return NULL; 555 556 return (struct xhci_input_control_ctx *)ctx->bytes; 557 } 558 559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 560 struct xhci_container_ctx *ctx) 561 { 562 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 563 return (struct xhci_slot_ctx *)ctx->bytes; 564 565 return (struct xhci_slot_ctx *) 566 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 567 } 568 569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 570 struct xhci_container_ctx *ctx, 571 unsigned int ep_index) 572 { 573 /* increment ep index by offset of start of ep ctx array */ 574 ep_index++; 575 if (ctx->type == XHCI_CTX_TYPE_INPUT) 576 ep_index++; 577 578 return (struct xhci_ep_ctx *) 579 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 580 } 581 582 583 /***************** Streams structures manipulation *************************/ 584 585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 586 unsigned int num_stream_ctxs, 587 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 588 { 589 struct device *dev = xhci_to_hcd(xhci)->self.controller; 590 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 591 592 if (size > MEDIUM_STREAM_ARRAY_SIZE) 593 dma_free_coherent(dev, size, 594 stream_ctx, dma); 595 else if (size <= SMALL_STREAM_ARRAY_SIZE) 596 return dma_pool_free(xhci->small_streams_pool, 597 stream_ctx, dma); 598 else 599 return dma_pool_free(xhci->medium_streams_pool, 600 stream_ctx, dma); 601 } 602 603 /* 604 * The stream context array for each endpoint with bulk streams enabled can 605 * vary in size, based on: 606 * - how many streams the endpoint supports, 607 * - the maximum primary stream array size the host controller supports, 608 * - and how many streams the device driver asks for. 609 * 610 * The stream context array must be a power of 2, and can be as small as 611 * 64 bytes or as large as 1MB. 612 */ 613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 614 unsigned int num_stream_ctxs, dma_addr_t *dma, 615 gfp_t mem_flags) 616 { 617 struct device *dev = xhci_to_hcd(xhci)->self.controller; 618 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 619 620 if (size > MEDIUM_STREAM_ARRAY_SIZE) 621 return dma_alloc_coherent(dev, size, 622 dma, mem_flags); 623 else if (size <= SMALL_STREAM_ARRAY_SIZE) 624 return dma_pool_alloc(xhci->small_streams_pool, 625 mem_flags, dma); 626 else 627 return dma_pool_alloc(xhci->medium_streams_pool, 628 mem_flags, dma); 629 } 630 631 struct xhci_ring *xhci_dma_to_transfer_ring( 632 struct xhci_virt_ep *ep, 633 u64 address) 634 { 635 if (ep->ep_state & EP_HAS_STREAMS) 636 return radix_tree_lookup(&ep->stream_info->trb_address_map, 637 address >> TRB_SEGMENT_SHIFT); 638 return ep->ring; 639 } 640 641 struct xhci_ring *xhci_stream_id_to_ring( 642 struct xhci_virt_device *dev, 643 unsigned int ep_index, 644 unsigned int stream_id) 645 { 646 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 647 648 if (stream_id == 0) 649 return ep->ring; 650 if (!ep->stream_info) 651 return NULL; 652 653 if (stream_id > ep->stream_info->num_streams) 654 return NULL; 655 return ep->stream_info->stream_rings[stream_id]; 656 } 657 658 /* 659 * Change an endpoint's internal structure so it supports stream IDs. The 660 * number of requested streams includes stream 0, which cannot be used by device 661 * drivers. 662 * 663 * The number of stream contexts in the stream context array may be bigger than 664 * the number of streams the driver wants to use. This is because the number of 665 * stream context array entries must be a power of two. 666 */ 667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 668 unsigned int num_stream_ctxs, 669 unsigned int num_streams, 670 unsigned int max_packet, gfp_t mem_flags) 671 { 672 struct xhci_stream_info *stream_info; 673 u32 cur_stream; 674 struct xhci_ring *cur_ring; 675 u64 addr; 676 int ret; 677 678 xhci_dbg(xhci, "Allocating %u streams and %u " 679 "stream context array entries.\n", 680 num_streams, num_stream_ctxs); 681 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 682 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 683 return NULL; 684 } 685 xhci->cmd_ring_reserved_trbs++; 686 687 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 688 if (!stream_info) 689 goto cleanup_trbs; 690 691 stream_info->num_streams = num_streams; 692 stream_info->num_stream_ctxs = num_stream_ctxs; 693 694 /* Initialize the array of virtual pointers to stream rings. */ 695 stream_info->stream_rings = kzalloc( 696 sizeof(struct xhci_ring *)*num_streams, 697 mem_flags); 698 if (!stream_info->stream_rings) 699 goto cleanup_info; 700 701 /* Initialize the array of DMA addresses for stream rings for the HW. */ 702 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 703 num_stream_ctxs, &stream_info->ctx_array_dma, 704 mem_flags); 705 if (!stream_info->stream_ctx_array) 706 goto cleanup_ctx; 707 memset(stream_info->stream_ctx_array, 0, 708 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 709 710 /* Allocate everything needed to free the stream rings later */ 711 stream_info->free_streams_command = 712 xhci_alloc_command(xhci, true, true, mem_flags); 713 if (!stream_info->free_streams_command) 714 goto cleanup_ctx; 715 716 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 717 718 /* Allocate rings for all the streams that the driver will use, 719 * and add their segment DMA addresses to the radix tree. 720 * Stream 0 is reserved. 721 */ 722 723 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 724 stream_info->stream_rings[cur_stream] = 725 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 726 mem_flags); 727 cur_ring = stream_info->stream_rings[cur_stream]; 728 if (!cur_ring) 729 goto cleanup_rings; 730 cur_ring->stream_id = cur_stream; 731 cur_ring->trb_address_map = &stream_info->trb_address_map; 732 /* Set deq ptr, cycle bit, and stream context type */ 733 addr = cur_ring->first_seg->dma | 734 SCT_FOR_CTX(SCT_PRI_TR) | 735 cur_ring->cycle_state; 736 stream_info->stream_ctx_array[cur_stream].stream_ring = 737 cpu_to_le64(addr); 738 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 739 cur_stream, (unsigned long long) addr); 740 741 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 742 if (ret) { 743 xhci_ring_free(xhci, cur_ring); 744 stream_info->stream_rings[cur_stream] = NULL; 745 goto cleanup_rings; 746 } 747 } 748 /* Leave the other unused stream ring pointers in the stream context 749 * array initialized to zero. This will cause the xHC to give us an 750 * error if the device asks for a stream ID we don't have setup (if it 751 * was any other way, the host controller would assume the ring is 752 * "empty" and wait forever for data to be queued to that stream ID). 753 */ 754 755 return stream_info; 756 757 cleanup_rings: 758 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 759 cur_ring = stream_info->stream_rings[cur_stream]; 760 if (cur_ring) { 761 xhci_ring_free(xhci, cur_ring); 762 stream_info->stream_rings[cur_stream] = NULL; 763 } 764 } 765 xhci_free_command(xhci, stream_info->free_streams_command); 766 cleanup_ctx: 767 kfree(stream_info->stream_rings); 768 cleanup_info: 769 kfree(stream_info); 770 cleanup_trbs: 771 xhci->cmd_ring_reserved_trbs--; 772 return NULL; 773 } 774 /* 775 * Sets the MaxPStreams field and the Linear Stream Array field. 776 * Sets the dequeue pointer to the stream context array. 777 */ 778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 779 struct xhci_ep_ctx *ep_ctx, 780 struct xhci_stream_info *stream_info) 781 { 782 u32 max_primary_streams; 783 /* MaxPStreams is the number of stream context array entries, not the 784 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 785 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 786 */ 787 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 788 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 789 "Setting number of stream ctx array entries to %u", 790 1 << (max_primary_streams + 1)); 791 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 792 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 793 | EP_HAS_LSA); 794 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 795 } 796 797 /* 798 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 799 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 800 * not at the beginning of the ring). 801 */ 802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 803 struct xhci_virt_ep *ep) 804 { 805 dma_addr_t addr; 806 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 807 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 808 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 809 } 810 811 /* Frees all stream contexts associated with the endpoint, 812 * 813 * Caller should fix the endpoint context streams fields. 814 */ 815 void xhci_free_stream_info(struct xhci_hcd *xhci, 816 struct xhci_stream_info *stream_info) 817 { 818 int cur_stream; 819 struct xhci_ring *cur_ring; 820 821 if (!stream_info) 822 return; 823 824 for (cur_stream = 1; cur_stream < stream_info->num_streams; 825 cur_stream++) { 826 cur_ring = stream_info->stream_rings[cur_stream]; 827 if (cur_ring) { 828 xhci_ring_free(xhci, cur_ring); 829 stream_info->stream_rings[cur_stream] = NULL; 830 } 831 } 832 xhci_free_command(xhci, stream_info->free_streams_command); 833 xhci->cmd_ring_reserved_trbs--; 834 if (stream_info->stream_ctx_array) 835 xhci_free_stream_ctx(xhci, 836 stream_info->num_stream_ctxs, 837 stream_info->stream_ctx_array, 838 stream_info->ctx_array_dma); 839 840 kfree(stream_info->stream_rings); 841 kfree(stream_info); 842 } 843 844 845 /***************** Device context manipulation *************************/ 846 847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 848 struct xhci_virt_ep *ep) 849 { 850 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 851 (unsigned long)ep); 852 ep->xhci = xhci; 853 } 854 855 static void xhci_free_tt_info(struct xhci_hcd *xhci, 856 struct xhci_virt_device *virt_dev, 857 int slot_id) 858 { 859 struct list_head *tt_list_head; 860 struct xhci_tt_bw_info *tt_info, *next; 861 bool slot_found = false; 862 863 /* If the device never made it past the Set Address stage, 864 * it may not have the real_port set correctly. 865 */ 866 if (virt_dev->real_port == 0 || 867 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 868 xhci_dbg(xhci, "Bad real port.\n"); 869 return; 870 } 871 872 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 873 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 874 /* Multi-TT hubs will have more than one entry */ 875 if (tt_info->slot_id == slot_id) { 876 slot_found = true; 877 list_del(&tt_info->tt_list); 878 kfree(tt_info); 879 } else if (slot_found) { 880 break; 881 } 882 } 883 } 884 885 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 886 struct xhci_virt_device *virt_dev, 887 struct usb_device *hdev, 888 struct usb_tt *tt, gfp_t mem_flags) 889 { 890 struct xhci_tt_bw_info *tt_info; 891 unsigned int num_ports; 892 int i, j; 893 894 if (!tt->multi) 895 num_ports = 1; 896 else 897 num_ports = hdev->maxchild; 898 899 for (i = 0; i < num_ports; i++, tt_info++) { 900 struct xhci_interval_bw_table *bw_table; 901 902 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 903 if (!tt_info) 904 goto free_tts; 905 INIT_LIST_HEAD(&tt_info->tt_list); 906 list_add(&tt_info->tt_list, 907 &xhci->rh_bw[virt_dev->real_port - 1].tts); 908 tt_info->slot_id = virt_dev->udev->slot_id; 909 if (tt->multi) 910 tt_info->ttport = i+1; 911 bw_table = &tt_info->bw_table; 912 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 913 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 914 } 915 return 0; 916 917 free_tts: 918 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 919 return -ENOMEM; 920 } 921 922 923 /* All the xhci_tds in the ring's TD list should be freed at this point. 924 * Should be called with xhci->lock held if there is any chance the TT lists 925 * will be manipulated by the configure endpoint, allocate device, or update 926 * hub functions while this function is removing the TT entries from the list. 927 */ 928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 929 { 930 struct xhci_virt_device *dev; 931 int i; 932 int old_active_eps = 0; 933 934 /* Slot ID 0 is reserved */ 935 if (slot_id == 0 || !xhci->devs[slot_id]) 936 return; 937 938 dev = xhci->devs[slot_id]; 939 940 trace_xhci_free_virt_device(dev); 941 942 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 943 if (!dev) 944 return; 945 946 if (dev->tt_info) 947 old_active_eps = dev->tt_info->active_eps; 948 949 for (i = 0; i < 31; i++) { 950 if (dev->eps[i].ring) 951 xhci_ring_free(xhci, dev->eps[i].ring); 952 if (dev->eps[i].stream_info) 953 xhci_free_stream_info(xhci, 954 dev->eps[i].stream_info); 955 /* Endpoints on the TT/root port lists should have been removed 956 * when usb_disable_device() was called for the device. 957 * We can't drop them anyway, because the udev might have gone 958 * away by this point, and we can't tell what speed it was. 959 */ 960 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 961 xhci_warn(xhci, "Slot %u endpoint %u " 962 "not removed from BW list!\n", 963 slot_id, i); 964 } 965 /* If this is a hub, free the TT(s) from the TT list */ 966 xhci_free_tt_info(xhci, dev, slot_id); 967 /* If necessary, update the number of active TTs on this root port */ 968 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 969 970 if (dev->ring_cache) { 971 for (i = 0; i < dev->num_rings_cached; i++) 972 xhci_ring_free(xhci, dev->ring_cache[i]); 973 kfree(dev->ring_cache); 974 } 975 976 if (dev->in_ctx) 977 xhci_free_container_ctx(xhci, dev->in_ctx); 978 if (dev->out_ctx) 979 xhci_free_container_ctx(xhci, dev->out_ctx); 980 981 kfree(xhci->devs[slot_id]); 982 xhci->devs[slot_id] = NULL; 983 } 984 985 /* 986 * Free a virt_device structure. 987 * If the virt_device added a tt_info (a hub) and has children pointing to 988 * that tt_info, then free the child first. Recursive. 989 * We can't rely on udev at this point to find child-parent relationships. 990 */ 991 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 992 { 993 struct xhci_virt_device *vdev; 994 struct list_head *tt_list_head; 995 struct xhci_tt_bw_info *tt_info, *next; 996 int i; 997 998 vdev = xhci->devs[slot_id]; 999 if (!vdev) 1000 return; 1001 1002 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 1003 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 1004 /* is this a hub device that added a tt_info to the tts list */ 1005 if (tt_info->slot_id == slot_id) { 1006 /* are any devices using this tt_info? */ 1007 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 1008 vdev = xhci->devs[i]; 1009 if (vdev && (vdev->tt_info == tt_info)) 1010 xhci_free_virt_devices_depth_first( 1011 xhci, i); 1012 } 1013 } 1014 } 1015 /* we are now at a leaf device */ 1016 xhci_free_virt_device(xhci, slot_id); 1017 } 1018 1019 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 1020 struct usb_device *udev, gfp_t flags) 1021 { 1022 struct xhci_virt_device *dev; 1023 int i; 1024 1025 /* Slot ID 0 is reserved */ 1026 if (slot_id == 0 || xhci->devs[slot_id]) { 1027 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 1028 return 0; 1029 } 1030 1031 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 1032 if (!xhci->devs[slot_id]) 1033 return 0; 1034 dev = xhci->devs[slot_id]; 1035 1036 /* Allocate the (output) device context that will be used in the HC. */ 1037 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 1038 if (!dev->out_ctx) 1039 goto fail; 1040 1041 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 1042 (unsigned long long)dev->out_ctx->dma); 1043 1044 /* Allocate the (input) device context for address device command */ 1045 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 1046 if (!dev->in_ctx) 1047 goto fail; 1048 1049 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 1050 (unsigned long long)dev->in_ctx->dma); 1051 1052 /* Initialize the cancellation list and watchdog timers for each ep */ 1053 for (i = 0; i < 31; i++) { 1054 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1055 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1056 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1057 } 1058 1059 /* Allocate endpoint 0 ring */ 1060 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1061 if (!dev->eps[0].ring) 1062 goto fail; 1063 1064 /* Allocate pointers to the ring cache */ 1065 dev->ring_cache = kzalloc( 1066 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 1067 flags); 1068 if (!dev->ring_cache) 1069 goto fail; 1070 dev->num_rings_cached = 0; 1071 1072 dev->udev = udev; 1073 1074 /* Point to output device context in dcbaa. */ 1075 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1076 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1077 slot_id, 1078 &xhci->dcbaa->dev_context_ptrs[slot_id], 1079 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1080 1081 trace_xhci_alloc_virt_device(dev); 1082 1083 return 1; 1084 fail: 1085 xhci_free_virt_device(xhci, slot_id); 1086 return 0; 1087 } 1088 1089 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1090 struct usb_device *udev) 1091 { 1092 struct xhci_virt_device *virt_dev; 1093 struct xhci_ep_ctx *ep0_ctx; 1094 struct xhci_ring *ep_ring; 1095 1096 virt_dev = xhci->devs[udev->slot_id]; 1097 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1098 ep_ring = virt_dev->eps[0].ring; 1099 /* 1100 * FIXME we don't keep track of the dequeue pointer very well after a 1101 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1102 * host to our enqueue pointer. This should only be called after a 1103 * configured device has reset, so all control transfers should have 1104 * been completed or cancelled before the reset. 1105 */ 1106 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1107 ep_ring->enqueue) 1108 | ep_ring->cycle_state); 1109 } 1110 1111 /* 1112 * The xHCI roothub may have ports of differing speeds in any order in the port 1113 * status registers. xhci->port_array provides an array of the port speed for 1114 * each offset into the port status registers. 1115 * 1116 * The xHCI hardware wants to know the roothub port number that the USB device 1117 * is attached to (or the roothub port its ancestor hub is attached to). All we 1118 * know is the index of that port under either the USB 2.0 or the USB 3.0 1119 * roothub, but that doesn't give us the real index into the HW port status 1120 * registers. Call xhci_find_raw_port_number() to get real index. 1121 */ 1122 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1123 struct usb_device *udev) 1124 { 1125 struct usb_device *top_dev; 1126 struct usb_hcd *hcd; 1127 1128 if (udev->speed >= USB_SPEED_SUPER) 1129 hcd = xhci->shared_hcd; 1130 else 1131 hcd = xhci->main_hcd; 1132 1133 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1134 top_dev = top_dev->parent) 1135 /* Found device below root hub */; 1136 1137 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1138 } 1139 1140 /* Setup an xHCI virtual device for a Set Address command */ 1141 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1142 { 1143 struct xhci_virt_device *dev; 1144 struct xhci_ep_ctx *ep0_ctx; 1145 struct xhci_slot_ctx *slot_ctx; 1146 u32 port_num; 1147 u32 max_packets; 1148 struct usb_device *top_dev; 1149 1150 dev = xhci->devs[udev->slot_id]; 1151 /* Slot ID 0 is reserved */ 1152 if (udev->slot_id == 0 || !dev) { 1153 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1154 udev->slot_id); 1155 return -EINVAL; 1156 } 1157 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1158 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1159 1160 /* 3) Only the control endpoint is valid - one endpoint context */ 1161 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1162 switch (udev->speed) { 1163 case USB_SPEED_SUPER_PLUS: 1164 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1165 max_packets = MAX_PACKET(512); 1166 break; 1167 case USB_SPEED_SUPER: 1168 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1169 max_packets = MAX_PACKET(512); 1170 break; 1171 case USB_SPEED_HIGH: 1172 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1173 max_packets = MAX_PACKET(64); 1174 break; 1175 /* USB core guesses at a 64-byte max packet first for FS devices */ 1176 case USB_SPEED_FULL: 1177 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1178 max_packets = MAX_PACKET(64); 1179 break; 1180 case USB_SPEED_LOW: 1181 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1182 max_packets = MAX_PACKET(8); 1183 break; 1184 case USB_SPEED_WIRELESS: 1185 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1186 return -EINVAL; 1187 break; 1188 default: 1189 /* Speed was set earlier, this shouldn't happen. */ 1190 return -EINVAL; 1191 } 1192 /* Find the root hub port this device is under */ 1193 port_num = xhci_find_real_port_number(xhci, udev); 1194 if (!port_num) 1195 return -EINVAL; 1196 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1197 /* Set the port number in the virtual_device to the faked port number */ 1198 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1199 top_dev = top_dev->parent) 1200 /* Found device below root hub */; 1201 dev->fake_port = top_dev->portnum; 1202 dev->real_port = port_num; 1203 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1204 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1205 1206 /* Find the right bandwidth table that this device will be a part of. 1207 * If this is a full speed device attached directly to a root port (or a 1208 * decendent of one), it counts as a primary bandwidth domain, not a 1209 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1210 * will never be created for the HS root hub. 1211 */ 1212 if (!udev->tt || !udev->tt->hub->parent) { 1213 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1214 } else { 1215 struct xhci_root_port_bw_info *rh_bw; 1216 struct xhci_tt_bw_info *tt_bw; 1217 1218 rh_bw = &xhci->rh_bw[port_num - 1]; 1219 /* Find the right TT. */ 1220 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1221 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1222 continue; 1223 1224 if (!dev->udev->tt->multi || 1225 (udev->tt->multi && 1226 tt_bw->ttport == dev->udev->ttport)) { 1227 dev->bw_table = &tt_bw->bw_table; 1228 dev->tt_info = tt_bw; 1229 break; 1230 } 1231 } 1232 if (!dev->tt_info) 1233 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1234 } 1235 1236 /* Is this a LS/FS device under an external HS hub? */ 1237 if (udev->tt && udev->tt->hub->parent) { 1238 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1239 (udev->ttport << 8)); 1240 if (udev->tt->multi) 1241 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1242 } 1243 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1244 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1245 1246 /* Step 4 - ring already allocated */ 1247 /* Step 5 */ 1248 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1249 1250 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1251 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1252 max_packets); 1253 1254 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1255 dev->eps[0].ring->cycle_state); 1256 1257 trace_xhci_setup_addressable_virt_device(dev); 1258 1259 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1260 1261 return 0; 1262 } 1263 1264 /* 1265 * Convert interval expressed as 2^(bInterval - 1) == interval into 1266 * straight exponent value 2^n == interval. 1267 * 1268 */ 1269 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1270 struct usb_host_endpoint *ep) 1271 { 1272 unsigned int interval; 1273 1274 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1275 if (interval != ep->desc.bInterval - 1) 1276 dev_warn(&udev->dev, 1277 "ep %#x - rounding interval to %d %sframes\n", 1278 ep->desc.bEndpointAddress, 1279 1 << interval, 1280 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1281 1282 if (udev->speed == USB_SPEED_FULL) { 1283 /* 1284 * Full speed isoc endpoints specify interval in frames, 1285 * not microframes. We are using microframes everywhere, 1286 * so adjust accordingly. 1287 */ 1288 interval += 3; /* 1 frame = 2^3 uframes */ 1289 } 1290 1291 return interval; 1292 } 1293 1294 /* 1295 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1296 * microframes, rounded down to nearest power of 2. 1297 */ 1298 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1299 struct usb_host_endpoint *ep, unsigned int desc_interval, 1300 unsigned int min_exponent, unsigned int max_exponent) 1301 { 1302 unsigned int interval; 1303 1304 interval = fls(desc_interval) - 1; 1305 interval = clamp_val(interval, min_exponent, max_exponent); 1306 if ((1 << interval) != desc_interval) 1307 dev_dbg(&udev->dev, 1308 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1309 ep->desc.bEndpointAddress, 1310 1 << interval, 1311 desc_interval); 1312 1313 return interval; 1314 } 1315 1316 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1317 struct usb_host_endpoint *ep) 1318 { 1319 if (ep->desc.bInterval == 0) 1320 return 0; 1321 return xhci_microframes_to_exponent(udev, ep, 1322 ep->desc.bInterval, 0, 15); 1323 } 1324 1325 1326 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1327 struct usb_host_endpoint *ep) 1328 { 1329 return xhci_microframes_to_exponent(udev, ep, 1330 ep->desc.bInterval * 8, 3, 10); 1331 } 1332 1333 /* Return the polling or NAK interval. 1334 * 1335 * The polling interval is expressed in "microframes". If xHCI's Interval field 1336 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1337 * 1338 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1339 * is set to 0. 1340 */ 1341 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1342 struct usb_host_endpoint *ep) 1343 { 1344 unsigned int interval = 0; 1345 1346 switch (udev->speed) { 1347 case USB_SPEED_HIGH: 1348 /* Max NAK rate */ 1349 if (usb_endpoint_xfer_control(&ep->desc) || 1350 usb_endpoint_xfer_bulk(&ep->desc)) { 1351 interval = xhci_parse_microframe_interval(udev, ep); 1352 break; 1353 } 1354 /* Fall through - SS and HS isoc/int have same decoding */ 1355 1356 case USB_SPEED_SUPER_PLUS: 1357 case USB_SPEED_SUPER: 1358 if (usb_endpoint_xfer_int(&ep->desc) || 1359 usb_endpoint_xfer_isoc(&ep->desc)) { 1360 interval = xhci_parse_exponent_interval(udev, ep); 1361 } 1362 break; 1363 1364 case USB_SPEED_FULL: 1365 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1366 interval = xhci_parse_exponent_interval(udev, ep); 1367 break; 1368 } 1369 /* 1370 * Fall through for interrupt endpoint interval decoding 1371 * since it uses the same rules as low speed interrupt 1372 * endpoints. 1373 */ 1374 1375 case USB_SPEED_LOW: 1376 if (usb_endpoint_xfer_int(&ep->desc) || 1377 usb_endpoint_xfer_isoc(&ep->desc)) { 1378 1379 interval = xhci_parse_frame_interval(udev, ep); 1380 } 1381 break; 1382 1383 default: 1384 BUG(); 1385 } 1386 return interval; 1387 } 1388 1389 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1390 * High speed endpoint descriptors can define "the number of additional 1391 * transaction opportunities per microframe", but that goes in the Max Burst 1392 * endpoint context field. 1393 */ 1394 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1395 struct usb_host_endpoint *ep) 1396 { 1397 if (udev->speed < USB_SPEED_SUPER || 1398 !usb_endpoint_xfer_isoc(&ep->desc)) 1399 return 0; 1400 return ep->ss_ep_comp.bmAttributes; 1401 } 1402 1403 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1404 struct usb_host_endpoint *ep) 1405 { 1406 /* Super speed and Plus have max burst in ep companion desc */ 1407 if (udev->speed >= USB_SPEED_SUPER) 1408 return ep->ss_ep_comp.bMaxBurst; 1409 1410 if (udev->speed == USB_SPEED_HIGH && 1411 (usb_endpoint_xfer_isoc(&ep->desc) || 1412 usb_endpoint_xfer_int(&ep->desc))) 1413 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1414 1415 return 0; 1416 } 1417 1418 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1419 { 1420 int in; 1421 1422 in = usb_endpoint_dir_in(&ep->desc); 1423 1424 switch (usb_endpoint_type(&ep->desc)) { 1425 case USB_ENDPOINT_XFER_CONTROL: 1426 return CTRL_EP; 1427 case USB_ENDPOINT_XFER_BULK: 1428 return in ? BULK_IN_EP : BULK_OUT_EP; 1429 case USB_ENDPOINT_XFER_ISOC: 1430 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1431 case USB_ENDPOINT_XFER_INT: 1432 return in ? INT_IN_EP : INT_OUT_EP; 1433 } 1434 return 0; 1435 } 1436 1437 /* Return the maximum endpoint service interval time (ESIT) payload. 1438 * Basically, this is the maxpacket size, multiplied by the burst size 1439 * and mult size. 1440 */ 1441 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1442 struct usb_host_endpoint *ep) 1443 { 1444 int max_burst; 1445 int max_packet; 1446 1447 /* Only applies for interrupt or isochronous endpoints */ 1448 if (usb_endpoint_xfer_control(&ep->desc) || 1449 usb_endpoint_xfer_bulk(&ep->desc)) 1450 return 0; 1451 1452 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1453 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1454 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1455 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1456 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1457 else if (udev->speed >= USB_SPEED_SUPER) 1458 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1459 1460 max_packet = usb_endpoint_maxp(&ep->desc); 1461 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1462 /* A 0 in max burst means 1 transfer per ESIT */ 1463 return max_packet * max_burst; 1464 } 1465 1466 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1467 * Drivers will have to call usb_alloc_streams() to do that. 1468 */ 1469 int xhci_endpoint_init(struct xhci_hcd *xhci, 1470 struct xhci_virt_device *virt_dev, 1471 struct usb_device *udev, 1472 struct usb_host_endpoint *ep, 1473 gfp_t mem_flags) 1474 { 1475 unsigned int ep_index; 1476 struct xhci_ep_ctx *ep_ctx; 1477 struct xhci_ring *ep_ring; 1478 unsigned int max_packet; 1479 enum xhci_ring_type ring_type; 1480 u32 max_esit_payload; 1481 u32 endpoint_type; 1482 unsigned int max_burst; 1483 unsigned int interval; 1484 unsigned int mult; 1485 unsigned int avg_trb_len; 1486 unsigned int err_count = 0; 1487 1488 ep_index = xhci_get_endpoint_index(&ep->desc); 1489 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1490 1491 endpoint_type = xhci_get_endpoint_type(ep); 1492 if (!endpoint_type) 1493 return -EINVAL; 1494 1495 ring_type = usb_endpoint_type(&ep->desc); 1496 1497 /* 1498 * Get values to fill the endpoint context, mostly from ep descriptor. 1499 * The average TRB buffer lengt for bulk endpoints is unclear as we 1500 * have no clue on scatter gather list entry size. For Isoc and Int, 1501 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1502 */ 1503 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1504 interval = xhci_get_endpoint_interval(udev, ep); 1505 mult = xhci_get_endpoint_mult(udev, ep); 1506 max_packet = usb_endpoint_maxp(&ep->desc); 1507 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1508 avg_trb_len = max_esit_payload; 1509 1510 /* FIXME dig Mult and streams info out of ep companion desc */ 1511 1512 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1513 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1514 err_count = 3; 1515 /* Some devices get this wrong */ 1516 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH) 1517 max_packet = 512; 1518 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1519 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1520 avg_trb_len = 8; 1521 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1522 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1523 mult = 0; 1524 1525 /* Set up the endpoint ring */ 1526 virt_dev->eps[ep_index].new_ring = 1527 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1528 if (!virt_dev->eps[ep_index].new_ring) { 1529 /* Attempt to use the ring cache */ 1530 if (virt_dev->num_rings_cached == 0) 1531 return -ENOMEM; 1532 virt_dev->num_rings_cached--; 1533 virt_dev->eps[ep_index].new_ring = 1534 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1535 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1536 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1537 1, ring_type); 1538 } 1539 virt_dev->eps[ep_index].skip = false; 1540 ep_ring = virt_dev->eps[ep_index].new_ring; 1541 1542 /* Fill the endpoint context */ 1543 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1544 EP_INTERVAL(interval) | 1545 EP_MULT(mult)); 1546 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1547 MAX_PACKET(max_packet) | 1548 MAX_BURST(max_burst) | 1549 ERROR_COUNT(err_count)); 1550 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1551 ep_ring->cycle_state); 1552 1553 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1554 EP_AVG_TRB_LENGTH(avg_trb_len)); 1555 1556 /* FIXME Debug endpoint context */ 1557 return 0; 1558 } 1559 1560 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1561 struct xhci_virt_device *virt_dev, 1562 struct usb_host_endpoint *ep) 1563 { 1564 unsigned int ep_index; 1565 struct xhci_ep_ctx *ep_ctx; 1566 1567 ep_index = xhci_get_endpoint_index(&ep->desc); 1568 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1569 1570 ep_ctx->ep_info = 0; 1571 ep_ctx->ep_info2 = 0; 1572 ep_ctx->deq = 0; 1573 ep_ctx->tx_info = 0; 1574 /* Don't free the endpoint ring until the set interface or configuration 1575 * request succeeds. 1576 */ 1577 } 1578 1579 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1580 { 1581 bw_info->ep_interval = 0; 1582 bw_info->mult = 0; 1583 bw_info->num_packets = 0; 1584 bw_info->max_packet_size = 0; 1585 bw_info->type = 0; 1586 bw_info->max_esit_payload = 0; 1587 } 1588 1589 void xhci_update_bw_info(struct xhci_hcd *xhci, 1590 struct xhci_container_ctx *in_ctx, 1591 struct xhci_input_control_ctx *ctrl_ctx, 1592 struct xhci_virt_device *virt_dev) 1593 { 1594 struct xhci_bw_info *bw_info; 1595 struct xhci_ep_ctx *ep_ctx; 1596 unsigned int ep_type; 1597 int i; 1598 1599 for (i = 1; i < 31; i++) { 1600 bw_info = &virt_dev->eps[i].bw_info; 1601 1602 /* We can't tell what endpoint type is being dropped, but 1603 * unconditionally clearing the bandwidth info for non-periodic 1604 * endpoints should be harmless because the info will never be 1605 * set in the first place. 1606 */ 1607 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1608 /* Dropped endpoint */ 1609 xhci_clear_endpoint_bw_info(bw_info); 1610 continue; 1611 } 1612 1613 if (EP_IS_ADDED(ctrl_ctx, i)) { 1614 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1615 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1616 1617 /* Ignore non-periodic endpoints */ 1618 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1619 ep_type != ISOC_IN_EP && 1620 ep_type != INT_IN_EP) 1621 continue; 1622 1623 /* Added or changed endpoint */ 1624 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1625 le32_to_cpu(ep_ctx->ep_info)); 1626 /* Number of packets and mult are zero-based in the 1627 * input context, but we want one-based for the 1628 * interval table. 1629 */ 1630 bw_info->mult = CTX_TO_EP_MULT( 1631 le32_to_cpu(ep_ctx->ep_info)) + 1; 1632 bw_info->num_packets = CTX_TO_MAX_BURST( 1633 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1634 bw_info->max_packet_size = MAX_PACKET_DECODED( 1635 le32_to_cpu(ep_ctx->ep_info2)); 1636 bw_info->type = ep_type; 1637 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1638 le32_to_cpu(ep_ctx->tx_info)); 1639 } 1640 } 1641 } 1642 1643 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1644 * Useful when you want to change one particular aspect of the endpoint and then 1645 * issue a configure endpoint command. 1646 */ 1647 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1648 struct xhci_container_ctx *in_ctx, 1649 struct xhci_container_ctx *out_ctx, 1650 unsigned int ep_index) 1651 { 1652 struct xhci_ep_ctx *out_ep_ctx; 1653 struct xhci_ep_ctx *in_ep_ctx; 1654 1655 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1656 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1657 1658 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1659 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1660 in_ep_ctx->deq = out_ep_ctx->deq; 1661 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1662 } 1663 1664 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1665 * Useful when you want to change one particular aspect of the endpoint and then 1666 * issue a configure endpoint command. Only the context entries field matters, 1667 * but we'll copy the whole thing anyway. 1668 */ 1669 void xhci_slot_copy(struct xhci_hcd *xhci, 1670 struct xhci_container_ctx *in_ctx, 1671 struct xhci_container_ctx *out_ctx) 1672 { 1673 struct xhci_slot_ctx *in_slot_ctx; 1674 struct xhci_slot_ctx *out_slot_ctx; 1675 1676 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1677 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1678 1679 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1680 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1681 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1682 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1683 } 1684 1685 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1686 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1687 { 1688 int i; 1689 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1690 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1691 1692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1693 "Allocating %d scratchpad buffers", num_sp); 1694 1695 if (!num_sp) 1696 return 0; 1697 1698 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1699 if (!xhci->scratchpad) 1700 goto fail_sp; 1701 1702 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1703 num_sp * sizeof(u64), 1704 &xhci->scratchpad->sp_dma, flags); 1705 if (!xhci->scratchpad->sp_array) 1706 goto fail_sp2; 1707 1708 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1709 if (!xhci->scratchpad->sp_buffers) 1710 goto fail_sp3; 1711 1712 xhci->scratchpad->sp_dma_buffers = 1713 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1714 1715 if (!xhci->scratchpad->sp_dma_buffers) 1716 goto fail_sp4; 1717 1718 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1719 for (i = 0; i < num_sp; i++) { 1720 dma_addr_t dma; 1721 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1722 flags); 1723 if (!buf) 1724 goto fail_sp5; 1725 1726 xhci->scratchpad->sp_array[i] = dma; 1727 xhci->scratchpad->sp_buffers[i] = buf; 1728 xhci->scratchpad->sp_dma_buffers[i] = dma; 1729 } 1730 1731 return 0; 1732 1733 fail_sp5: 1734 for (i = i - 1; i >= 0; i--) { 1735 dma_free_coherent(dev, xhci->page_size, 1736 xhci->scratchpad->sp_buffers[i], 1737 xhci->scratchpad->sp_dma_buffers[i]); 1738 } 1739 kfree(xhci->scratchpad->sp_dma_buffers); 1740 1741 fail_sp4: 1742 kfree(xhci->scratchpad->sp_buffers); 1743 1744 fail_sp3: 1745 dma_free_coherent(dev, num_sp * sizeof(u64), 1746 xhci->scratchpad->sp_array, 1747 xhci->scratchpad->sp_dma); 1748 1749 fail_sp2: 1750 kfree(xhci->scratchpad); 1751 xhci->scratchpad = NULL; 1752 1753 fail_sp: 1754 return -ENOMEM; 1755 } 1756 1757 static void scratchpad_free(struct xhci_hcd *xhci) 1758 { 1759 int num_sp; 1760 int i; 1761 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1762 1763 if (!xhci->scratchpad) 1764 return; 1765 1766 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1767 1768 for (i = 0; i < num_sp; i++) { 1769 dma_free_coherent(dev, xhci->page_size, 1770 xhci->scratchpad->sp_buffers[i], 1771 xhci->scratchpad->sp_dma_buffers[i]); 1772 } 1773 kfree(xhci->scratchpad->sp_dma_buffers); 1774 kfree(xhci->scratchpad->sp_buffers); 1775 dma_free_coherent(dev, num_sp * sizeof(u64), 1776 xhci->scratchpad->sp_array, 1777 xhci->scratchpad->sp_dma); 1778 kfree(xhci->scratchpad); 1779 xhci->scratchpad = NULL; 1780 } 1781 1782 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1783 bool allocate_in_ctx, bool allocate_completion, 1784 gfp_t mem_flags) 1785 { 1786 struct xhci_command *command; 1787 1788 command = kzalloc(sizeof(*command), mem_flags); 1789 if (!command) 1790 return NULL; 1791 1792 if (allocate_in_ctx) { 1793 command->in_ctx = 1794 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1795 mem_flags); 1796 if (!command->in_ctx) { 1797 kfree(command); 1798 return NULL; 1799 } 1800 } 1801 1802 if (allocate_completion) { 1803 command->completion = 1804 kzalloc(sizeof(struct completion), mem_flags); 1805 if (!command->completion) { 1806 xhci_free_container_ctx(xhci, command->in_ctx); 1807 kfree(command); 1808 return NULL; 1809 } 1810 init_completion(command->completion); 1811 } 1812 1813 command->status = 0; 1814 INIT_LIST_HEAD(&command->cmd_list); 1815 return command; 1816 } 1817 1818 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1819 { 1820 kfree(urb_priv); 1821 } 1822 1823 void xhci_free_command(struct xhci_hcd *xhci, 1824 struct xhci_command *command) 1825 { 1826 xhci_free_container_ctx(xhci, 1827 command->in_ctx); 1828 kfree(command->completion); 1829 kfree(command); 1830 } 1831 1832 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1833 { 1834 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1835 int size; 1836 int i, j, num_ports; 1837 1838 cancel_delayed_work_sync(&xhci->cmd_timer); 1839 1840 /* Free the Event Ring Segment Table and the actual Event Ring */ 1841 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1842 if (xhci->erst.entries) 1843 dma_free_coherent(dev, size, 1844 xhci->erst.entries, xhci->erst.erst_dma_addr); 1845 xhci->erst.entries = NULL; 1846 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); 1847 if (xhci->event_ring) 1848 xhci_ring_free(xhci, xhci->event_ring); 1849 xhci->event_ring = NULL; 1850 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1851 1852 if (xhci->lpm_command) 1853 xhci_free_command(xhci, xhci->lpm_command); 1854 xhci->lpm_command = NULL; 1855 if (xhci->cmd_ring) 1856 xhci_ring_free(xhci, xhci->cmd_ring); 1857 xhci->cmd_ring = NULL; 1858 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1859 xhci_cleanup_command_queue(xhci); 1860 1861 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1862 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1863 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1864 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1865 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1866 while (!list_empty(ep)) 1867 list_del_init(ep->next); 1868 } 1869 } 1870 1871 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1872 xhci_free_virt_devices_depth_first(xhci, i); 1873 1874 dma_pool_destroy(xhci->segment_pool); 1875 xhci->segment_pool = NULL; 1876 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1877 1878 dma_pool_destroy(xhci->device_pool); 1879 xhci->device_pool = NULL; 1880 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1881 1882 dma_pool_destroy(xhci->small_streams_pool); 1883 xhci->small_streams_pool = NULL; 1884 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1885 "Freed small stream array pool"); 1886 1887 dma_pool_destroy(xhci->medium_streams_pool); 1888 xhci->medium_streams_pool = NULL; 1889 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1890 "Freed medium stream array pool"); 1891 1892 if (xhci->dcbaa) 1893 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1894 xhci->dcbaa, xhci->dcbaa->dma); 1895 xhci->dcbaa = NULL; 1896 1897 scratchpad_free(xhci); 1898 1899 if (!xhci->rh_bw) 1900 goto no_bw; 1901 1902 for (i = 0; i < num_ports; i++) { 1903 struct xhci_tt_bw_info *tt, *n; 1904 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1905 list_del(&tt->tt_list); 1906 kfree(tt); 1907 } 1908 } 1909 1910 no_bw: 1911 xhci->cmd_ring_reserved_trbs = 0; 1912 xhci->num_usb2_ports = 0; 1913 xhci->num_usb3_ports = 0; 1914 xhci->num_active_eps = 0; 1915 kfree(xhci->usb2_ports); 1916 kfree(xhci->usb3_ports); 1917 kfree(xhci->port_array); 1918 kfree(xhci->rh_bw); 1919 kfree(xhci->ext_caps); 1920 1921 xhci->usb2_ports = NULL; 1922 xhci->usb3_ports = NULL; 1923 xhci->port_array = NULL; 1924 xhci->rh_bw = NULL; 1925 xhci->ext_caps = NULL; 1926 1927 xhci->page_size = 0; 1928 xhci->page_shift = 0; 1929 xhci->bus_state[0].bus_suspended = 0; 1930 xhci->bus_state[1].bus_suspended = 0; 1931 } 1932 1933 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1934 struct xhci_segment *input_seg, 1935 union xhci_trb *start_trb, 1936 union xhci_trb *end_trb, 1937 dma_addr_t input_dma, 1938 struct xhci_segment *result_seg, 1939 char *test_name, int test_number) 1940 { 1941 unsigned long long start_dma; 1942 unsigned long long end_dma; 1943 struct xhci_segment *seg; 1944 1945 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1946 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1947 1948 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1949 if (seg != result_seg) { 1950 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1951 test_name, test_number); 1952 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1953 "input DMA 0x%llx\n", 1954 input_seg, 1955 (unsigned long long) input_dma); 1956 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1957 "ending TRB %p (0x%llx DMA)\n", 1958 start_trb, start_dma, 1959 end_trb, end_dma); 1960 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1961 result_seg, seg); 1962 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1963 true); 1964 return -1; 1965 } 1966 return 0; 1967 } 1968 1969 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1970 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1971 { 1972 struct { 1973 dma_addr_t input_dma; 1974 struct xhci_segment *result_seg; 1975 } simple_test_vector [] = { 1976 /* A zeroed DMA field should fail */ 1977 { 0, NULL }, 1978 /* One TRB before the ring start should fail */ 1979 { xhci->event_ring->first_seg->dma - 16, NULL }, 1980 /* One byte before the ring start should fail */ 1981 { xhci->event_ring->first_seg->dma - 1, NULL }, 1982 /* Starting TRB should succeed */ 1983 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1984 /* Ending TRB should succeed */ 1985 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1986 xhci->event_ring->first_seg }, 1987 /* One byte after the ring end should fail */ 1988 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1989 /* One TRB after the ring end should fail */ 1990 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1991 /* An address of all ones should fail */ 1992 { (dma_addr_t) (~0), NULL }, 1993 }; 1994 struct { 1995 struct xhci_segment *input_seg; 1996 union xhci_trb *start_trb; 1997 union xhci_trb *end_trb; 1998 dma_addr_t input_dma; 1999 struct xhci_segment *result_seg; 2000 } complex_test_vector [] = { 2001 /* Test feeding a valid DMA address from a different ring */ 2002 { .input_seg = xhci->event_ring->first_seg, 2003 .start_trb = xhci->event_ring->first_seg->trbs, 2004 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2005 .input_dma = xhci->cmd_ring->first_seg->dma, 2006 .result_seg = NULL, 2007 }, 2008 /* Test feeding a valid end TRB from a different ring */ 2009 { .input_seg = xhci->event_ring->first_seg, 2010 .start_trb = xhci->event_ring->first_seg->trbs, 2011 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2012 .input_dma = xhci->cmd_ring->first_seg->dma, 2013 .result_seg = NULL, 2014 }, 2015 /* Test feeding a valid start and end TRB from a different ring */ 2016 { .input_seg = xhci->event_ring->first_seg, 2017 .start_trb = xhci->cmd_ring->first_seg->trbs, 2018 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2019 .input_dma = xhci->cmd_ring->first_seg->dma, 2020 .result_seg = NULL, 2021 }, 2022 /* TRB in this ring, but after this TD */ 2023 { .input_seg = xhci->event_ring->first_seg, 2024 .start_trb = &xhci->event_ring->first_seg->trbs[0], 2025 .end_trb = &xhci->event_ring->first_seg->trbs[3], 2026 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 2027 .result_seg = NULL, 2028 }, 2029 /* TRB in this ring, but before this TD */ 2030 { .input_seg = xhci->event_ring->first_seg, 2031 .start_trb = &xhci->event_ring->first_seg->trbs[3], 2032 .end_trb = &xhci->event_ring->first_seg->trbs[6], 2033 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2034 .result_seg = NULL, 2035 }, 2036 /* TRB in this ring, but after this wrapped TD */ 2037 { .input_seg = xhci->event_ring->first_seg, 2038 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2039 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2040 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2041 .result_seg = NULL, 2042 }, 2043 /* TRB in this ring, but before this wrapped TD */ 2044 { .input_seg = xhci->event_ring->first_seg, 2045 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2046 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2047 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2048 .result_seg = NULL, 2049 }, 2050 /* TRB not in this ring, and we have a wrapped TD */ 2051 { .input_seg = xhci->event_ring->first_seg, 2052 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2053 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2054 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2055 .result_seg = NULL, 2056 }, 2057 }; 2058 2059 unsigned int num_tests; 2060 int i, ret; 2061 2062 num_tests = ARRAY_SIZE(simple_test_vector); 2063 for (i = 0; i < num_tests; i++) { 2064 ret = xhci_test_trb_in_td(xhci, 2065 xhci->event_ring->first_seg, 2066 xhci->event_ring->first_seg->trbs, 2067 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2068 simple_test_vector[i].input_dma, 2069 simple_test_vector[i].result_seg, 2070 "Simple", i); 2071 if (ret < 0) 2072 return ret; 2073 } 2074 2075 num_tests = ARRAY_SIZE(complex_test_vector); 2076 for (i = 0; i < num_tests; i++) { 2077 ret = xhci_test_trb_in_td(xhci, 2078 complex_test_vector[i].input_seg, 2079 complex_test_vector[i].start_trb, 2080 complex_test_vector[i].end_trb, 2081 complex_test_vector[i].input_dma, 2082 complex_test_vector[i].result_seg, 2083 "Complex", i); 2084 if (ret < 0) 2085 return ret; 2086 } 2087 xhci_dbg(xhci, "TRB math tests passed.\n"); 2088 return 0; 2089 } 2090 2091 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2092 { 2093 u64 temp; 2094 dma_addr_t deq; 2095 2096 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2097 xhci->event_ring->dequeue); 2098 if (deq == 0 && !in_interrupt()) 2099 xhci_warn(xhci, "WARN something wrong with SW event ring " 2100 "dequeue ptr.\n"); 2101 /* Update HC event ring dequeue pointer */ 2102 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2103 temp &= ERST_PTR_MASK; 2104 /* Don't clear the EHB bit (which is RW1C) because 2105 * there might be more events to service. 2106 */ 2107 temp &= ~ERST_EHB; 2108 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2109 "// Write event ring dequeue pointer, " 2110 "preserving EHB bit"); 2111 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2112 &xhci->ir_set->erst_dequeue); 2113 } 2114 2115 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2116 __le32 __iomem *addr, int max_caps) 2117 { 2118 u32 temp, port_offset, port_count; 2119 int i; 2120 u8 major_revision; 2121 struct xhci_hub *rhub; 2122 2123 temp = readl(addr); 2124 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2125 2126 if (major_revision == 0x03) { 2127 rhub = &xhci->usb3_rhub; 2128 } else if (major_revision <= 0x02) { 2129 rhub = &xhci->usb2_rhub; 2130 } else { 2131 xhci_warn(xhci, "Ignoring unknown port speed, " 2132 "Ext Cap %p, revision = 0x%x\n", 2133 addr, major_revision); 2134 /* Ignoring port protocol we can't understand. FIXME */ 2135 return; 2136 } 2137 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2138 rhub->min_rev = XHCI_EXT_PORT_MINOR(temp); 2139 2140 /* Port offset and count in the third dword, see section 7.2 */ 2141 temp = readl(addr + 2); 2142 port_offset = XHCI_EXT_PORT_OFF(temp); 2143 port_count = XHCI_EXT_PORT_COUNT(temp); 2144 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2145 "Ext Cap %p, port offset = %u, " 2146 "count = %u, revision = 0x%x", 2147 addr, port_offset, port_count, major_revision); 2148 /* Port count includes the current port offset */ 2149 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2150 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2151 return; 2152 2153 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp); 2154 if (rhub->psi_count) { 2155 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi), 2156 GFP_KERNEL); 2157 if (!rhub->psi) 2158 rhub->psi_count = 0; 2159 2160 rhub->psi_uid_count++; 2161 for (i = 0; i < rhub->psi_count; i++) { 2162 rhub->psi[i] = readl(addr + 4 + i); 2163 2164 /* count unique ID values, two consecutive entries can 2165 * have the same ID if link is assymetric 2166 */ 2167 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) != 2168 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1]))) 2169 rhub->psi_uid_count++; 2170 2171 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2172 XHCI_EXT_PORT_PSIV(rhub->psi[i]), 2173 XHCI_EXT_PORT_PSIE(rhub->psi[i]), 2174 XHCI_EXT_PORT_PLT(rhub->psi[i]), 2175 XHCI_EXT_PORT_PFD(rhub->psi[i]), 2176 XHCI_EXT_PORT_LP(rhub->psi[i]), 2177 XHCI_EXT_PORT_PSIM(rhub->psi[i])); 2178 } 2179 } 2180 /* cache usb2 port capabilities */ 2181 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2182 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2183 2184 /* Check the host's USB2 LPM capability */ 2185 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2186 (temp & XHCI_L1C)) { 2187 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2188 "xHCI 0.96: support USB2 software lpm"); 2189 xhci->sw_lpm_support = 1; 2190 } 2191 2192 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2193 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2194 "xHCI 1.0: support USB2 software lpm"); 2195 xhci->sw_lpm_support = 1; 2196 if (temp & XHCI_HLC) { 2197 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2198 "xHCI 1.0: support USB2 hardware lpm"); 2199 xhci->hw_lpm_support = 1; 2200 } 2201 } 2202 2203 port_offset--; 2204 for (i = port_offset; i < (port_offset + port_count); i++) { 2205 /* Duplicate entry. Ignore the port if the revisions differ. */ 2206 if (xhci->port_array[i] != 0) { 2207 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2208 " port %u\n", addr, i); 2209 xhci_warn(xhci, "Port was marked as USB %u, " 2210 "duplicated as USB %u\n", 2211 xhci->port_array[i], major_revision); 2212 /* Only adjust the roothub port counts if we haven't 2213 * found a similar duplicate. 2214 */ 2215 if (xhci->port_array[i] != major_revision && 2216 xhci->port_array[i] != DUPLICATE_ENTRY) { 2217 if (xhci->port_array[i] == 0x03) 2218 xhci->num_usb3_ports--; 2219 else 2220 xhci->num_usb2_ports--; 2221 xhci->port_array[i] = DUPLICATE_ENTRY; 2222 } 2223 /* FIXME: Should we disable the port? */ 2224 continue; 2225 } 2226 xhci->port_array[i] = major_revision; 2227 if (major_revision == 0x03) 2228 xhci->num_usb3_ports++; 2229 else 2230 xhci->num_usb2_ports++; 2231 } 2232 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2233 } 2234 2235 /* 2236 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2237 * specify what speeds each port is supposed to be. We can't count on the port 2238 * speed bits in the PORTSC register being correct until a device is connected, 2239 * but we need to set up the two fake roothubs with the correct number of USB 2240 * 3.0 and USB 2.0 ports at host controller initialization time. 2241 */ 2242 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2243 { 2244 void __iomem *base; 2245 u32 offset; 2246 unsigned int num_ports; 2247 int i, j, port_index; 2248 int cap_count = 0; 2249 u32 cap_start; 2250 2251 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2252 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2253 if (!xhci->port_array) 2254 return -ENOMEM; 2255 2256 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2257 if (!xhci->rh_bw) 2258 return -ENOMEM; 2259 for (i = 0; i < num_ports; i++) { 2260 struct xhci_interval_bw_table *bw_table; 2261 2262 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2263 bw_table = &xhci->rh_bw[i].bw_table; 2264 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2265 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2266 } 2267 base = &xhci->cap_regs->hc_capbase; 2268 2269 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2270 if (!cap_start) { 2271 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2272 return -ENODEV; 2273 } 2274 2275 offset = cap_start; 2276 /* count extended protocol capability entries for later caching */ 2277 while (offset) { 2278 cap_count++; 2279 offset = xhci_find_next_ext_cap(base, offset, 2280 XHCI_EXT_CAPS_PROTOCOL); 2281 } 2282 2283 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2284 if (!xhci->ext_caps) 2285 return -ENOMEM; 2286 2287 offset = cap_start; 2288 2289 while (offset) { 2290 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2291 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports) 2292 break; 2293 offset = xhci_find_next_ext_cap(base, offset, 2294 XHCI_EXT_CAPS_PROTOCOL); 2295 } 2296 2297 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2298 xhci_warn(xhci, "No ports on the roothubs?\n"); 2299 return -ENODEV; 2300 } 2301 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2302 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2303 xhci->num_usb2_ports, xhci->num_usb3_ports); 2304 2305 /* Place limits on the number of roothub ports so that the hub 2306 * descriptors aren't longer than the USB core will allocate. 2307 */ 2308 if (xhci->num_usb3_ports > 15) { 2309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2310 "Limiting USB 3.0 roothub ports to 15."); 2311 xhci->num_usb3_ports = 15; 2312 } 2313 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2315 "Limiting USB 2.0 roothub ports to %u.", 2316 USB_MAXCHILDREN); 2317 xhci->num_usb2_ports = USB_MAXCHILDREN; 2318 } 2319 2320 /* 2321 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2322 * Not sure how the USB core will handle a hub with no ports... 2323 */ 2324 if (xhci->num_usb2_ports) { 2325 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2326 xhci->num_usb2_ports, flags); 2327 if (!xhci->usb2_ports) 2328 return -ENOMEM; 2329 2330 port_index = 0; 2331 for (i = 0; i < num_ports; i++) { 2332 if (xhci->port_array[i] == 0x03 || 2333 xhci->port_array[i] == 0 || 2334 xhci->port_array[i] == DUPLICATE_ENTRY) 2335 continue; 2336 2337 xhci->usb2_ports[port_index] = 2338 &xhci->op_regs->port_status_base + 2339 NUM_PORT_REGS*i; 2340 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2341 "USB 2.0 port at index %u, " 2342 "addr = %p", i, 2343 xhci->usb2_ports[port_index]); 2344 port_index++; 2345 if (port_index == xhci->num_usb2_ports) 2346 break; 2347 } 2348 } 2349 if (xhci->num_usb3_ports) { 2350 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2351 xhci->num_usb3_ports, flags); 2352 if (!xhci->usb3_ports) 2353 return -ENOMEM; 2354 2355 port_index = 0; 2356 for (i = 0; i < num_ports; i++) 2357 if (xhci->port_array[i] == 0x03) { 2358 xhci->usb3_ports[port_index] = 2359 &xhci->op_regs->port_status_base + 2360 NUM_PORT_REGS*i; 2361 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2362 "USB 3.0 port at index %u, " 2363 "addr = %p", i, 2364 xhci->usb3_ports[port_index]); 2365 port_index++; 2366 if (port_index == xhci->num_usb3_ports) 2367 break; 2368 } 2369 } 2370 return 0; 2371 } 2372 2373 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2374 { 2375 dma_addr_t dma; 2376 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2377 unsigned int val, val2; 2378 u64 val_64; 2379 struct xhci_segment *seg; 2380 u32 page_size, temp; 2381 int i; 2382 2383 INIT_LIST_HEAD(&xhci->cmd_list); 2384 2385 /* init command timeout work */ 2386 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2387 init_completion(&xhci->cmd_ring_stop_completion); 2388 2389 page_size = readl(&xhci->op_regs->page_size); 2390 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2391 "Supported page size register = 0x%x", page_size); 2392 for (i = 0; i < 16; i++) { 2393 if ((0x1 & page_size) != 0) 2394 break; 2395 page_size = page_size >> 1; 2396 } 2397 if (i < 16) 2398 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2399 "Supported page size of %iK", (1 << (i+12)) / 1024); 2400 else 2401 xhci_warn(xhci, "WARN: no supported page size\n"); 2402 /* Use 4K pages, since that's common and the minimum the HC supports */ 2403 xhci->page_shift = 12; 2404 xhci->page_size = 1 << xhci->page_shift; 2405 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2406 "HCD page size set to %iK", xhci->page_size / 1024); 2407 2408 /* 2409 * Program the Number of Device Slots Enabled field in the CONFIG 2410 * register with the max value of slots the HC can handle. 2411 */ 2412 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2413 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2414 "// xHC can handle at most %d device slots.", val); 2415 val2 = readl(&xhci->op_regs->config_reg); 2416 val |= (val2 & ~HCS_SLOTS_MASK); 2417 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2418 "// Setting Max device slots reg = 0x%x.", val); 2419 writel(val, &xhci->op_regs->config_reg); 2420 2421 /* 2422 * Section 5.4.8 - doorbell array must be 2423 * "physically contiguous and 64-byte (cache line) aligned". 2424 */ 2425 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2426 flags); 2427 if (!xhci->dcbaa) 2428 goto fail; 2429 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2430 xhci->dcbaa->dma = dma; 2431 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2432 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2433 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2434 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2435 2436 /* 2437 * Initialize the ring segment pool. The ring must be a contiguous 2438 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2439 * however, the command ring segment needs 64-byte aligned segments 2440 * and our use of dma addresses in the trb_address_map radix tree needs 2441 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2442 */ 2443 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2444 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2445 2446 /* See Table 46 and Note on Figure 55 */ 2447 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2448 2112, 64, xhci->page_size); 2449 if (!xhci->segment_pool || !xhci->device_pool) 2450 goto fail; 2451 2452 /* Linear stream context arrays don't have any boundary restrictions, 2453 * and only need to be 16-byte aligned. 2454 */ 2455 xhci->small_streams_pool = 2456 dma_pool_create("xHCI 256 byte stream ctx arrays", 2457 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2458 xhci->medium_streams_pool = 2459 dma_pool_create("xHCI 1KB stream ctx arrays", 2460 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2461 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2462 * will be allocated with dma_alloc_coherent() 2463 */ 2464 2465 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2466 goto fail; 2467 2468 /* Set up the command ring to have one segments for now. */ 2469 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2470 if (!xhci->cmd_ring) 2471 goto fail; 2472 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2473 "Allocated command ring at %p", xhci->cmd_ring); 2474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2475 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2476 2477 /* Set the address in the Command Ring Control register */ 2478 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2479 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2480 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2481 xhci->cmd_ring->cycle_state; 2482 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2483 "// Setting command ring address to 0x%x", val); 2484 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2485 xhci_dbg_cmd_ptrs(xhci); 2486 2487 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2488 if (!xhci->lpm_command) 2489 goto fail; 2490 2491 /* Reserve one command ring TRB for disabling LPM. 2492 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2493 * disabling LPM, we only need to reserve one TRB for all devices. 2494 */ 2495 xhci->cmd_ring_reserved_trbs++; 2496 2497 val = readl(&xhci->cap_regs->db_off); 2498 val &= DBOFF_MASK; 2499 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2500 "// Doorbell array is located at offset 0x%x" 2501 " from cap regs base addr", val); 2502 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2503 xhci_dbg_regs(xhci); 2504 xhci_print_run_regs(xhci); 2505 /* Set ir_set to interrupt register set 0 */ 2506 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2507 2508 /* 2509 * Event ring setup: Allocate a normal ring, but also setup 2510 * the event ring segment table (ERST). Section 4.9.3. 2511 */ 2512 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2513 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2514 0, flags); 2515 if (!xhci->event_ring) 2516 goto fail; 2517 if (xhci_check_trb_in_td_math(xhci) < 0) 2518 goto fail; 2519 2520 xhci->erst.entries = dma_alloc_coherent(dev, 2521 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2522 flags); 2523 if (!xhci->erst.entries) 2524 goto fail; 2525 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2526 "// Allocated event ring segment table at 0x%llx", 2527 (unsigned long long)dma); 2528 2529 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2530 xhci->erst.num_entries = ERST_NUM_SEGS; 2531 xhci->erst.erst_dma_addr = dma; 2532 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2533 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", 2534 xhci->erst.num_entries, 2535 xhci->erst.entries, 2536 (unsigned long long)xhci->erst.erst_dma_addr); 2537 2538 /* set ring base address and size for each segment table entry */ 2539 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2540 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2541 entry->seg_addr = cpu_to_le64(seg->dma); 2542 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2543 entry->rsvd = 0; 2544 seg = seg->next; 2545 } 2546 2547 /* set ERST count with the number of entries in the segment table */ 2548 val = readl(&xhci->ir_set->erst_size); 2549 val &= ERST_SIZE_MASK; 2550 val |= ERST_NUM_SEGS; 2551 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2552 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2553 val); 2554 writel(val, &xhci->ir_set->erst_size); 2555 2556 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2557 "// Set ERST entries to point to event ring."); 2558 /* set the segment table base address */ 2559 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2560 "// Set ERST base address for ir_set 0 = 0x%llx", 2561 (unsigned long long)xhci->erst.erst_dma_addr); 2562 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2563 val_64 &= ERST_PTR_MASK; 2564 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2565 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2566 2567 /* Set the event ring dequeue address */ 2568 xhci_set_hc_event_deq(xhci); 2569 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2570 "Wrote ERST address to ir_set 0."); 2571 xhci_print_ir_set(xhci, 0); 2572 2573 /* 2574 * XXX: Might need to set the Interrupter Moderation Register to 2575 * something other than the default (~1ms minimum between interrupts). 2576 * See section 5.5.1.2. 2577 */ 2578 for (i = 0; i < MAX_HC_SLOTS; i++) 2579 xhci->devs[i] = NULL; 2580 for (i = 0; i < USB_MAXCHILDREN; i++) { 2581 xhci->bus_state[0].resume_done[i] = 0; 2582 xhci->bus_state[1].resume_done[i] = 0; 2583 /* Only the USB 2.0 completions will ever be used. */ 2584 init_completion(&xhci->bus_state[1].rexit_done[i]); 2585 } 2586 2587 if (scratchpad_alloc(xhci, flags)) 2588 goto fail; 2589 if (xhci_setup_port_arrays(xhci, flags)) 2590 goto fail; 2591 2592 /* Enable USB 3.0 device notifications for function remote wake, which 2593 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2594 * U3 (device suspend). 2595 */ 2596 temp = readl(&xhci->op_regs->dev_notification); 2597 temp &= ~DEV_NOTE_MASK; 2598 temp |= DEV_NOTE_FWAKE; 2599 writel(temp, &xhci->op_regs->dev_notification); 2600 2601 return 0; 2602 2603 fail: 2604 xhci_warn(xhci, "Couldn't initialize memory\n"); 2605 xhci_halt(xhci); 2606 xhci_reset(xhci); 2607 xhci_mem_cleanup(xhci); 2608 return -ENOMEM; 2609 } 2610