xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					       unsigned int cycle_state,
41 					       unsigned int max_packet,
42 					       gfp_t flags)
43 {
44 	struct xhci_segment *seg;
45 	dma_addr_t	dma;
46 	int		i;
47 
48 	seg = kzalloc(sizeof *seg, flags);
49 	if (!seg)
50 		return NULL;
51 
52 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 	if (!seg->trbs) {
54 		kfree(seg);
55 		return NULL;
56 	}
57 
58 	if (max_packet) {
59 		seg->bounce_buf = kzalloc(max_packet, flags);
60 		if (!seg->bounce_buf) {
61 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62 			kfree(seg);
63 			return NULL;
64 		}
65 	}
66 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 	if (cycle_state == 0) {
68 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
69 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70 	}
71 	seg->dma = dma;
72 	seg->next = NULL;
73 
74 	return seg;
75 }
76 
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79 	if (seg->trbs) {
80 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81 		seg->trbs = NULL;
82 	}
83 	kfree(seg->bounce_buf);
84 	kfree(seg);
85 }
86 
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88 				struct xhci_segment *first)
89 {
90 	struct xhci_segment *seg;
91 
92 	seg = first->next;
93 	while (seg != first) {
94 		struct xhci_segment *next = seg->next;
95 		xhci_segment_free(xhci, seg);
96 		seg = next;
97 	}
98 	xhci_segment_free(xhci, first);
99 }
100 
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109 		struct xhci_segment *next, enum xhci_ring_type type)
110 {
111 	u32 val;
112 
113 	if (!prev || !next)
114 		return;
115 	prev->next = next;
116 	if (type != TYPE_EVENT) {
117 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118 			cpu_to_le64(next->dma);
119 
120 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 		val &= ~TRB_TYPE_BITMASK;
123 		val |= TRB_TYPE(TRB_LINK);
124 		/* Always set the chain bit with 0.95 hardware */
125 		/* Set chain bit for isoc rings on AMD 0.96 host */
126 		if (xhci_link_trb_quirk(xhci) ||
127 				(type == TYPE_ISOC &&
128 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129 			val |= TRB_CHAIN;
130 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131 	}
132 }
133 
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139 		struct xhci_segment *first, struct xhci_segment *last,
140 		unsigned int num_segs)
141 {
142 	struct xhci_segment *next;
143 
144 	if (!ring || !first || !last)
145 		return;
146 
147 	next = ring->enq_seg->next;
148 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149 	xhci_link_segments(xhci, last, next, ring->type);
150 	ring->num_segs += num_segs;
151 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152 
153 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155 			&= ~cpu_to_le32(LINK_TOGGLE);
156 		last->trbs[TRBS_PER_SEGMENT-1].link.control
157 			|= cpu_to_le32(LINK_TOGGLE);
158 		ring->last_seg = last;
159 	}
160 }
161 
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *	0x10c90fff >> 10 = 0x43243
177  *	0x10c912c0 >> 10 = 0x43244
178  *	0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194 		struct xhci_ring *ring,
195 		struct xhci_segment *seg,
196 		gfp_t mem_flags)
197 {
198 	unsigned long key;
199 	int ret;
200 
201 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202 	/* Skip any segments that were already added. */
203 	if (radix_tree_lookup(trb_address_map, key))
204 		return 0;
205 
206 	ret = radix_tree_maybe_preload(mem_flags);
207 	if (ret)
208 		return ret;
209 	ret = radix_tree_insert(trb_address_map,
210 			key, ring);
211 	radix_tree_preload_end();
212 	return ret;
213 }
214 
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216 		struct xhci_segment *seg)
217 {
218 	unsigned long key;
219 
220 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221 	if (radix_tree_lookup(trb_address_map, key))
222 		radix_tree_delete(trb_address_map, key);
223 }
224 
225 static int xhci_update_stream_segment_mapping(
226 		struct radix_tree_root *trb_address_map,
227 		struct xhci_ring *ring,
228 		struct xhci_segment *first_seg,
229 		struct xhci_segment *last_seg,
230 		gfp_t mem_flags)
231 {
232 	struct xhci_segment *seg;
233 	struct xhci_segment *failed_seg;
234 	int ret;
235 
236 	if (WARN_ON_ONCE(trb_address_map == NULL))
237 		return 0;
238 
239 	seg = first_seg;
240 	do {
241 		ret = xhci_insert_segment_mapping(trb_address_map,
242 				ring, seg, mem_flags);
243 		if (ret)
244 			goto remove_streams;
245 		if (seg == last_seg)
246 			return 0;
247 		seg = seg->next;
248 	} while (seg != first_seg);
249 
250 	return 0;
251 
252 remove_streams:
253 	failed_seg = seg;
254 	seg = first_seg;
255 	do {
256 		xhci_remove_segment_mapping(trb_address_map, seg);
257 		if (seg == failed_seg)
258 			return ret;
259 		seg = seg->next;
260 	} while (seg != first_seg);
261 
262 	return ret;
263 }
264 
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267 	struct xhci_segment *seg;
268 
269 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270 		return;
271 
272 	seg = ring->first_seg;
273 	do {
274 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
275 		seg = seg->next;
276 	} while (seg != ring->first_seg);
277 }
278 
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282 			ring->first_seg, ring->last_seg, mem_flags);
283 }
284 
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288 	if (!ring)
289 		return;
290 
291 	trace_xhci_ring_free(ring);
292 
293 	if (ring->first_seg) {
294 		if (ring->type == TYPE_STREAM)
295 			xhci_remove_stream_mapping(ring);
296 		xhci_free_segments_for_ring(xhci, ring->first_seg);
297 	}
298 
299 	kfree(ring);
300 }
301 
302 static void xhci_initialize_ring_info(struct xhci_ring *ring,
303 					unsigned int cycle_state)
304 {
305 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
306 	ring->enqueue = ring->first_seg->trbs;
307 	ring->enq_seg = ring->first_seg;
308 	ring->dequeue = ring->enqueue;
309 	ring->deq_seg = ring->first_seg;
310 	/* The ring is initialized to 0. The producer must write 1 to the cycle
311 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
312 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
313 	 *
314 	 * New rings are initialized with cycle state equal to 1; if we are
315 	 * handling ring expansion, set the cycle state equal to the old ring.
316 	 */
317 	ring->cycle_state = cycle_state;
318 
319 	/*
320 	 * Each segment has a link TRB, and leave an extra TRB for SW
321 	 * accounting purpose
322 	 */
323 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
324 }
325 
326 /* Allocate segments and link them for a ring */
327 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
328 		struct xhci_segment **first, struct xhci_segment **last,
329 		unsigned int num_segs, unsigned int cycle_state,
330 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
331 {
332 	struct xhci_segment *prev;
333 
334 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 	if (!prev)
336 		return -ENOMEM;
337 	num_segs--;
338 
339 	*first = prev;
340 	while (num_segs > 0) {
341 		struct xhci_segment	*next;
342 
343 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 		if (!next) {
345 			prev = *first;
346 			while (prev) {
347 				next = prev->next;
348 				xhci_segment_free(xhci, prev);
349 				prev = next;
350 			}
351 			return -ENOMEM;
352 		}
353 		xhci_link_segments(xhci, prev, next, type);
354 
355 		prev = next;
356 		num_segs--;
357 	}
358 	xhci_link_segments(xhci, prev, *first, type);
359 	*last = prev;
360 
361 	return 0;
362 }
363 
364 /**
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 		unsigned int num_segs, unsigned int cycle_state,
373 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375 	struct xhci_ring	*ring;
376 	int ret;
377 
378 	ring = kzalloc(sizeof *(ring), flags);
379 	if (!ring)
380 		return NULL;
381 
382 	ring->num_segs = num_segs;
383 	ring->bounce_buf_len = max_packet;
384 	INIT_LIST_HEAD(&ring->td_list);
385 	ring->type = type;
386 	if (num_segs == 0)
387 		return ring;
388 
389 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
390 			&ring->last_seg, num_segs, cycle_state, type,
391 			max_packet, flags);
392 	if (ret)
393 		goto fail;
394 
395 	/* Only event ring does not use link TRB */
396 	if (type != TYPE_EVENT) {
397 		/* See section 4.9.2.1 and 6.4.4.1 */
398 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
399 			cpu_to_le32(LINK_TOGGLE);
400 	}
401 	xhci_initialize_ring_info(ring, cycle_state);
402 	trace_xhci_ring_alloc(ring);
403 	return ring;
404 
405 fail:
406 	kfree(ring);
407 	return NULL;
408 }
409 
410 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
411 		struct xhci_virt_device *virt_dev,
412 		unsigned int ep_index)
413 {
414 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415 	virt_dev->eps[ep_index].ring = NULL;
416 }
417 
418 /*
419  * Expand an existing ring.
420  * Allocate a new ring which has same segment numbers and link the two rings.
421  */
422 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
423 				unsigned int num_trbs, gfp_t flags)
424 {
425 	struct xhci_segment	*first;
426 	struct xhci_segment	*last;
427 	unsigned int		num_segs;
428 	unsigned int		num_segs_needed;
429 	int			ret;
430 
431 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
432 				(TRBS_PER_SEGMENT - 1);
433 
434 	/* Allocate number of segments we needed, or double the ring size */
435 	num_segs = ring->num_segs > num_segs_needed ?
436 			ring->num_segs : num_segs_needed;
437 
438 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439 			num_segs, ring->cycle_state, ring->type,
440 			ring->bounce_buf_len, flags);
441 	if (ret)
442 		return -ENOMEM;
443 
444 	if (ring->type == TYPE_STREAM)
445 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446 						ring, first, last, flags);
447 	if (ret) {
448 		struct xhci_segment *next;
449 		do {
450 			next = first->next;
451 			xhci_segment_free(xhci, first);
452 			if (first == last)
453 				break;
454 			first = next;
455 		} while (true);
456 		return ret;
457 	}
458 
459 	xhci_link_rings(xhci, ring, first, last, num_segs);
460 	trace_xhci_ring_expansion(ring);
461 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462 			"ring expansion succeed, now has %d segments",
463 			ring->num_segs);
464 
465 	return 0;
466 }
467 
468 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
469 
470 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
471 						    int type, gfp_t flags)
472 {
473 	struct xhci_container_ctx *ctx;
474 
475 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 		return NULL;
477 
478 	ctx = kzalloc(sizeof(*ctx), flags);
479 	if (!ctx)
480 		return NULL;
481 
482 	ctx->type = type;
483 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 	if (type == XHCI_CTX_TYPE_INPUT)
485 		ctx->size += CTX_SIZE(xhci->hcc_params);
486 
487 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 	if (!ctx->bytes) {
489 		kfree(ctx);
490 		return NULL;
491 	}
492 	return ctx;
493 }
494 
495 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 			     struct xhci_container_ctx *ctx)
497 {
498 	if (!ctx)
499 		return;
500 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 	kfree(ctx);
502 }
503 
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 					      struct xhci_container_ctx *ctx)
506 {
507 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 		return NULL;
509 
510 	return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512 
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 					struct xhci_container_ctx *ctx)
515 {
516 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 		return (struct xhci_slot_ctx *)ctx->bytes;
518 
519 	return (struct xhci_slot_ctx *)
520 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522 
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 				    struct xhci_container_ctx *ctx,
525 				    unsigned int ep_index)
526 {
527 	/* increment ep index by offset of start of ep ctx array */
528 	ep_index++;
529 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 		ep_index++;
531 
532 	return (struct xhci_ep_ctx *)
533 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535 
536 
537 /***************** Streams structures manipulation *************************/
538 
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 		unsigned int num_stream_ctxs,
541 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545 
546 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 		dma_free_coherent(dev, size,
548 				stream_ctx, dma);
549 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 		return dma_pool_free(xhci->small_streams_pool,
551 				stream_ctx, dma);
552 	else
553 		return dma_pool_free(xhci->medium_streams_pool,
554 				stream_ctx, dma);
555 }
556 
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 		unsigned int num_stream_ctxs, dma_addr_t *dma,
569 		gfp_t mem_flags)
570 {
571 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573 
574 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 		return dma_alloc_coherent(dev, size,
576 				dma, mem_flags);
577 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 		return dma_pool_alloc(xhci->small_streams_pool,
579 				mem_flags, dma);
580 	else
581 		return dma_pool_alloc(xhci->medium_streams_pool,
582 				mem_flags, dma);
583 }
584 
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586 		struct xhci_virt_ep *ep,
587 		u64 address)
588 {
589 	if (ep->ep_state & EP_HAS_STREAMS)
590 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 				address >> TRB_SEGMENT_SHIFT);
592 	return ep->ring;
593 }
594 
595 struct xhci_ring *xhci_stream_id_to_ring(
596 		struct xhci_virt_device *dev,
597 		unsigned int ep_index,
598 		unsigned int stream_id)
599 {
600 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
601 
602 	if (stream_id == 0)
603 		return ep->ring;
604 	if (!ep->stream_info)
605 		return NULL;
606 
607 	if (stream_id > ep->stream_info->num_streams)
608 		return NULL;
609 	return ep->stream_info->stream_rings[stream_id];
610 }
611 
612 /*
613  * Change an endpoint's internal structure so it supports stream IDs.  The
614  * number of requested streams includes stream 0, which cannot be used by device
615  * drivers.
616  *
617  * The number of stream contexts in the stream context array may be bigger than
618  * the number of streams the driver wants to use.  This is because the number of
619  * stream context array entries must be a power of two.
620  */
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 		unsigned int num_stream_ctxs,
623 		unsigned int num_streams,
624 		unsigned int max_packet, gfp_t mem_flags)
625 {
626 	struct xhci_stream_info *stream_info;
627 	u32 cur_stream;
628 	struct xhci_ring *cur_ring;
629 	u64 addr;
630 	int ret;
631 
632 	xhci_dbg(xhci, "Allocating %u streams and %u "
633 			"stream context array entries.\n",
634 			num_streams, num_stream_ctxs);
635 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
636 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
637 		return NULL;
638 	}
639 	xhci->cmd_ring_reserved_trbs++;
640 
641 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
642 	if (!stream_info)
643 		goto cleanup_trbs;
644 
645 	stream_info->num_streams = num_streams;
646 	stream_info->num_stream_ctxs = num_stream_ctxs;
647 
648 	/* Initialize the array of virtual pointers to stream rings. */
649 	stream_info->stream_rings = kzalloc(
650 			sizeof(struct xhci_ring *)*num_streams,
651 			mem_flags);
652 	if (!stream_info->stream_rings)
653 		goto cleanup_info;
654 
655 	/* Initialize the array of DMA addresses for stream rings for the HW. */
656 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
657 			num_stream_ctxs, &stream_info->ctx_array_dma,
658 			mem_flags);
659 	if (!stream_info->stream_ctx_array)
660 		goto cleanup_ctx;
661 	memset(stream_info->stream_ctx_array, 0,
662 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
663 
664 	/* Allocate everything needed to free the stream rings later */
665 	stream_info->free_streams_command =
666 		xhci_alloc_command(xhci, true, true, mem_flags);
667 	if (!stream_info->free_streams_command)
668 		goto cleanup_ctx;
669 
670 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
671 
672 	/* Allocate rings for all the streams that the driver will use,
673 	 * and add their segment DMA addresses to the radix tree.
674 	 * Stream 0 is reserved.
675 	 */
676 
677 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678 		stream_info->stream_rings[cur_stream] =
679 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
680 					mem_flags);
681 		cur_ring = stream_info->stream_rings[cur_stream];
682 		if (!cur_ring)
683 			goto cleanup_rings;
684 		cur_ring->stream_id = cur_stream;
685 		cur_ring->trb_address_map = &stream_info->trb_address_map;
686 		/* Set deq ptr, cycle bit, and stream context type */
687 		addr = cur_ring->first_seg->dma |
688 			SCT_FOR_CTX(SCT_PRI_TR) |
689 			cur_ring->cycle_state;
690 		stream_info->stream_ctx_array[cur_stream].stream_ring =
691 			cpu_to_le64(addr);
692 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
693 				cur_stream, (unsigned long long) addr);
694 
695 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
696 		if (ret) {
697 			xhci_ring_free(xhci, cur_ring);
698 			stream_info->stream_rings[cur_stream] = NULL;
699 			goto cleanup_rings;
700 		}
701 	}
702 	/* Leave the other unused stream ring pointers in the stream context
703 	 * array initialized to zero.  This will cause the xHC to give us an
704 	 * error if the device asks for a stream ID we don't have setup (if it
705 	 * was any other way, the host controller would assume the ring is
706 	 * "empty" and wait forever for data to be queued to that stream ID).
707 	 */
708 
709 	return stream_info;
710 
711 cleanup_rings:
712 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
713 		cur_ring = stream_info->stream_rings[cur_stream];
714 		if (cur_ring) {
715 			xhci_ring_free(xhci, cur_ring);
716 			stream_info->stream_rings[cur_stream] = NULL;
717 		}
718 	}
719 	xhci_free_command(xhci, stream_info->free_streams_command);
720 cleanup_ctx:
721 	kfree(stream_info->stream_rings);
722 cleanup_info:
723 	kfree(stream_info);
724 cleanup_trbs:
725 	xhci->cmd_ring_reserved_trbs--;
726 	return NULL;
727 }
728 /*
729  * Sets the MaxPStreams field and the Linear Stream Array field.
730  * Sets the dequeue pointer to the stream context array.
731  */
732 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
733 		struct xhci_ep_ctx *ep_ctx,
734 		struct xhci_stream_info *stream_info)
735 {
736 	u32 max_primary_streams;
737 	/* MaxPStreams is the number of stream context array entries, not the
738 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
739 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
740 	 */
741 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
742 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
743 			"Setting number of stream ctx array entries to %u",
744 			1 << (max_primary_streams + 1));
745 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
746 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
747 				       | EP_HAS_LSA);
748 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
749 }
750 
751 /*
752  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
753  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
754  * not at the beginning of the ring).
755  */
756 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
757 		struct xhci_virt_ep *ep)
758 {
759 	dma_addr_t addr;
760 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
761 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
762 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
763 }
764 
765 /* Frees all stream contexts associated with the endpoint,
766  *
767  * Caller should fix the endpoint context streams fields.
768  */
769 void xhci_free_stream_info(struct xhci_hcd *xhci,
770 		struct xhci_stream_info *stream_info)
771 {
772 	int cur_stream;
773 	struct xhci_ring *cur_ring;
774 
775 	if (!stream_info)
776 		return;
777 
778 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
779 			cur_stream++) {
780 		cur_ring = stream_info->stream_rings[cur_stream];
781 		if (cur_ring) {
782 			xhci_ring_free(xhci, cur_ring);
783 			stream_info->stream_rings[cur_stream] = NULL;
784 		}
785 	}
786 	xhci_free_command(xhci, stream_info->free_streams_command);
787 	xhci->cmd_ring_reserved_trbs--;
788 	if (stream_info->stream_ctx_array)
789 		xhci_free_stream_ctx(xhci,
790 				stream_info->num_stream_ctxs,
791 				stream_info->stream_ctx_array,
792 				stream_info->ctx_array_dma);
793 
794 	kfree(stream_info->stream_rings);
795 	kfree(stream_info);
796 }
797 
798 
799 /***************** Device context manipulation *************************/
800 
801 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
802 		struct xhci_virt_ep *ep)
803 {
804 	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
805 		    (unsigned long)ep);
806 	ep->xhci = xhci;
807 }
808 
809 static void xhci_free_tt_info(struct xhci_hcd *xhci,
810 		struct xhci_virt_device *virt_dev,
811 		int slot_id)
812 {
813 	struct list_head *tt_list_head;
814 	struct xhci_tt_bw_info *tt_info, *next;
815 	bool slot_found = false;
816 
817 	/* If the device never made it past the Set Address stage,
818 	 * it may not have the real_port set correctly.
819 	 */
820 	if (virt_dev->real_port == 0 ||
821 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
822 		xhci_dbg(xhci, "Bad real port.\n");
823 		return;
824 	}
825 
826 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
827 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
828 		/* Multi-TT hubs will have more than one entry */
829 		if (tt_info->slot_id == slot_id) {
830 			slot_found = true;
831 			list_del(&tt_info->tt_list);
832 			kfree(tt_info);
833 		} else if (slot_found) {
834 			break;
835 		}
836 	}
837 }
838 
839 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
840 		struct xhci_virt_device *virt_dev,
841 		struct usb_device *hdev,
842 		struct usb_tt *tt, gfp_t mem_flags)
843 {
844 	struct xhci_tt_bw_info		*tt_info;
845 	unsigned int			num_ports;
846 	int				i, j;
847 
848 	if (!tt->multi)
849 		num_ports = 1;
850 	else
851 		num_ports = hdev->maxchild;
852 
853 	for (i = 0; i < num_ports; i++, tt_info++) {
854 		struct xhci_interval_bw_table *bw_table;
855 
856 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
857 		if (!tt_info)
858 			goto free_tts;
859 		INIT_LIST_HEAD(&tt_info->tt_list);
860 		list_add(&tt_info->tt_list,
861 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
862 		tt_info->slot_id = virt_dev->udev->slot_id;
863 		if (tt->multi)
864 			tt_info->ttport = i+1;
865 		bw_table = &tt_info->bw_table;
866 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
867 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
868 	}
869 	return 0;
870 
871 free_tts:
872 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
873 	return -ENOMEM;
874 }
875 
876 
877 /* All the xhci_tds in the ring's TD list should be freed at this point.
878  * Should be called with xhci->lock held if there is any chance the TT lists
879  * will be manipulated by the configure endpoint, allocate device, or update
880  * hub functions while this function is removing the TT entries from the list.
881  */
882 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
883 {
884 	struct xhci_virt_device *dev;
885 	int i;
886 	int old_active_eps = 0;
887 
888 	/* Slot ID 0 is reserved */
889 	if (slot_id == 0 || !xhci->devs[slot_id])
890 		return;
891 
892 	dev = xhci->devs[slot_id];
893 
894 	trace_xhci_free_virt_device(dev);
895 
896 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
897 	if (!dev)
898 		return;
899 
900 	if (dev->tt_info)
901 		old_active_eps = dev->tt_info->active_eps;
902 
903 	for (i = 0; i < 31; i++) {
904 		if (dev->eps[i].ring)
905 			xhci_ring_free(xhci, dev->eps[i].ring);
906 		if (dev->eps[i].stream_info)
907 			xhci_free_stream_info(xhci,
908 					dev->eps[i].stream_info);
909 		/* Endpoints on the TT/root port lists should have been removed
910 		 * when usb_disable_device() was called for the device.
911 		 * We can't drop them anyway, because the udev might have gone
912 		 * away by this point, and we can't tell what speed it was.
913 		 */
914 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
915 			xhci_warn(xhci, "Slot %u endpoint %u "
916 					"not removed from BW list!\n",
917 					slot_id, i);
918 	}
919 	/* If this is a hub, free the TT(s) from the TT list */
920 	xhci_free_tt_info(xhci, dev, slot_id);
921 	/* If necessary, update the number of active TTs on this root port */
922 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
923 
924 	if (dev->in_ctx)
925 		xhci_free_container_ctx(xhci, dev->in_ctx);
926 	if (dev->out_ctx)
927 		xhci_free_container_ctx(xhci, dev->out_ctx);
928 
929 	kfree(xhci->devs[slot_id]);
930 	xhci->devs[slot_id] = NULL;
931 }
932 
933 /*
934  * Free a virt_device structure.
935  * If the virt_device added a tt_info (a hub) and has children pointing to
936  * that tt_info, then free the child first. Recursive.
937  * We can't rely on udev at this point to find child-parent relationships.
938  */
939 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
940 {
941 	struct xhci_virt_device *vdev;
942 	struct list_head *tt_list_head;
943 	struct xhci_tt_bw_info *tt_info, *next;
944 	int i;
945 
946 	vdev = xhci->devs[slot_id];
947 	if (!vdev)
948 		return;
949 
950 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
951 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
952 		/* is this a hub device that added a tt_info to the tts list */
953 		if (tt_info->slot_id == slot_id) {
954 			/* are any devices using this tt_info? */
955 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
956 				vdev = xhci->devs[i];
957 				if (vdev && (vdev->tt_info == tt_info))
958 					xhci_free_virt_devices_depth_first(
959 						xhci, i);
960 			}
961 		}
962 	}
963 	/* we are now at a leaf device */
964 	xhci_free_virt_device(xhci, slot_id);
965 }
966 
967 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
968 		struct usb_device *udev, gfp_t flags)
969 {
970 	struct xhci_virt_device *dev;
971 	int i;
972 
973 	/* Slot ID 0 is reserved */
974 	if (slot_id == 0 || xhci->devs[slot_id]) {
975 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
976 		return 0;
977 	}
978 
979 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
980 	if (!xhci->devs[slot_id])
981 		return 0;
982 	dev = xhci->devs[slot_id];
983 
984 	/* Allocate the (output) device context that will be used in the HC. */
985 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
986 	if (!dev->out_ctx)
987 		goto fail;
988 
989 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
990 			(unsigned long long)dev->out_ctx->dma);
991 
992 	/* Allocate the (input) device context for address device command */
993 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
994 	if (!dev->in_ctx)
995 		goto fail;
996 
997 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
998 			(unsigned long long)dev->in_ctx->dma);
999 
1000 	/* Initialize the cancellation list and watchdog timers for each ep */
1001 	for (i = 0; i < 31; i++) {
1002 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1003 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005 	}
1006 
1007 	/* Allocate endpoint 0 ring */
1008 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009 	if (!dev->eps[0].ring)
1010 		goto fail;
1011 
1012 	dev->udev = udev;
1013 
1014 	/* Point to output device context in dcbaa. */
1015 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1017 		 slot_id,
1018 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1020 
1021 	trace_xhci_alloc_virt_device(dev);
1022 
1023 	return 1;
1024 fail:
1025 	xhci_free_virt_device(xhci, slot_id);
1026 	return 0;
1027 }
1028 
1029 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1030 		struct usb_device *udev)
1031 {
1032 	struct xhci_virt_device *virt_dev;
1033 	struct xhci_ep_ctx	*ep0_ctx;
1034 	struct xhci_ring	*ep_ring;
1035 
1036 	virt_dev = xhci->devs[udev->slot_id];
1037 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1038 	ep_ring = virt_dev->eps[0].ring;
1039 	/*
1040 	 * FIXME we don't keep track of the dequeue pointer very well after a
1041 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1042 	 * host to our enqueue pointer.  This should only be called after a
1043 	 * configured device has reset, so all control transfers should have
1044 	 * been completed or cancelled before the reset.
1045 	 */
1046 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1047 							ep_ring->enqueue)
1048 				   | ep_ring->cycle_state);
1049 }
1050 
1051 /*
1052  * The xHCI roothub may have ports of differing speeds in any order in the port
1053  * status registers.  xhci->port_array provides an array of the port speed for
1054  * each offset into the port status registers.
1055  *
1056  * The xHCI hardware wants to know the roothub port number that the USB device
1057  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1058  * know is the index of that port under either the USB 2.0 or the USB 3.0
1059  * roothub, but that doesn't give us the real index into the HW port status
1060  * registers. Call xhci_find_raw_port_number() to get real index.
1061  */
1062 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1063 		struct usb_device *udev)
1064 {
1065 	struct usb_device *top_dev;
1066 	struct usb_hcd *hcd;
1067 
1068 	if (udev->speed >= USB_SPEED_SUPER)
1069 		hcd = xhci->shared_hcd;
1070 	else
1071 		hcd = xhci->main_hcd;
1072 
1073 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1074 			top_dev = top_dev->parent)
1075 		/* Found device below root hub */;
1076 
1077 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1078 }
1079 
1080 /* Setup an xHCI virtual device for a Set Address command */
1081 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1082 {
1083 	struct xhci_virt_device *dev;
1084 	struct xhci_ep_ctx	*ep0_ctx;
1085 	struct xhci_slot_ctx    *slot_ctx;
1086 	u32			port_num;
1087 	u32			max_packets;
1088 	struct usb_device *top_dev;
1089 
1090 	dev = xhci->devs[udev->slot_id];
1091 	/* Slot ID 0 is reserved */
1092 	if (udev->slot_id == 0 || !dev) {
1093 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1094 				udev->slot_id);
1095 		return -EINVAL;
1096 	}
1097 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1098 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1099 
1100 	/* 3) Only the control endpoint is valid - one endpoint context */
1101 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1102 	switch (udev->speed) {
1103 	case USB_SPEED_SUPER_PLUS:
1104 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1105 		max_packets = MAX_PACKET(512);
1106 		break;
1107 	case USB_SPEED_SUPER:
1108 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1109 		max_packets = MAX_PACKET(512);
1110 		break;
1111 	case USB_SPEED_HIGH:
1112 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1113 		max_packets = MAX_PACKET(64);
1114 		break;
1115 	/* USB core guesses at a 64-byte max packet first for FS devices */
1116 	case USB_SPEED_FULL:
1117 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1118 		max_packets = MAX_PACKET(64);
1119 		break;
1120 	case USB_SPEED_LOW:
1121 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1122 		max_packets = MAX_PACKET(8);
1123 		break;
1124 	case USB_SPEED_WIRELESS:
1125 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1126 		return -EINVAL;
1127 		break;
1128 	default:
1129 		/* Speed was set earlier, this shouldn't happen. */
1130 		return -EINVAL;
1131 	}
1132 	/* Find the root hub port this device is under */
1133 	port_num = xhci_find_real_port_number(xhci, udev);
1134 	if (!port_num)
1135 		return -EINVAL;
1136 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1137 	/* Set the port number in the virtual_device to the faked port number */
1138 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1139 			top_dev = top_dev->parent)
1140 		/* Found device below root hub */;
1141 	dev->fake_port = top_dev->portnum;
1142 	dev->real_port = port_num;
1143 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1144 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1145 
1146 	/* Find the right bandwidth table that this device will be a part of.
1147 	 * If this is a full speed device attached directly to a root port (or a
1148 	 * decendent of one), it counts as a primary bandwidth domain, not a
1149 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1150 	 * will never be created for the HS root hub.
1151 	 */
1152 	if (!udev->tt || !udev->tt->hub->parent) {
1153 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1154 	} else {
1155 		struct xhci_root_port_bw_info *rh_bw;
1156 		struct xhci_tt_bw_info *tt_bw;
1157 
1158 		rh_bw = &xhci->rh_bw[port_num - 1];
1159 		/* Find the right TT. */
1160 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1161 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1162 				continue;
1163 
1164 			if (!dev->udev->tt->multi ||
1165 					(udev->tt->multi &&
1166 					 tt_bw->ttport == dev->udev->ttport)) {
1167 				dev->bw_table = &tt_bw->bw_table;
1168 				dev->tt_info = tt_bw;
1169 				break;
1170 			}
1171 		}
1172 		if (!dev->tt_info)
1173 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1174 	}
1175 
1176 	/* Is this a LS/FS device under an external HS hub? */
1177 	if (udev->tt && udev->tt->hub->parent) {
1178 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1179 						(udev->ttport << 8));
1180 		if (udev->tt->multi)
1181 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1182 	}
1183 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1184 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1185 
1186 	/* Step 4 - ring already allocated */
1187 	/* Step 5 */
1188 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1189 
1190 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1191 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1192 					 max_packets);
1193 
1194 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1195 				   dev->eps[0].ring->cycle_state);
1196 
1197 	trace_xhci_setup_addressable_virt_device(dev);
1198 
1199 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Convert interval expressed as 2^(bInterval - 1) == interval into
1206  * straight exponent value 2^n == interval.
1207  *
1208  */
1209 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1210 		struct usb_host_endpoint *ep)
1211 {
1212 	unsigned int interval;
1213 
1214 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1215 	if (interval != ep->desc.bInterval - 1)
1216 		dev_warn(&udev->dev,
1217 			 "ep %#x - rounding interval to %d %sframes\n",
1218 			 ep->desc.bEndpointAddress,
1219 			 1 << interval,
1220 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1221 
1222 	if (udev->speed == USB_SPEED_FULL) {
1223 		/*
1224 		 * Full speed isoc endpoints specify interval in frames,
1225 		 * not microframes. We are using microframes everywhere,
1226 		 * so adjust accordingly.
1227 		 */
1228 		interval += 3;	/* 1 frame = 2^3 uframes */
1229 	}
1230 
1231 	return interval;
1232 }
1233 
1234 /*
1235  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1236  * microframes, rounded down to nearest power of 2.
1237  */
1238 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1239 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1240 		unsigned int min_exponent, unsigned int max_exponent)
1241 {
1242 	unsigned int interval;
1243 
1244 	interval = fls(desc_interval) - 1;
1245 	interval = clamp_val(interval, min_exponent, max_exponent);
1246 	if ((1 << interval) != desc_interval)
1247 		dev_dbg(&udev->dev,
1248 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1249 			 ep->desc.bEndpointAddress,
1250 			 1 << interval,
1251 			 desc_interval);
1252 
1253 	return interval;
1254 }
1255 
1256 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1257 		struct usb_host_endpoint *ep)
1258 {
1259 	if (ep->desc.bInterval == 0)
1260 		return 0;
1261 	return xhci_microframes_to_exponent(udev, ep,
1262 			ep->desc.bInterval, 0, 15);
1263 }
1264 
1265 
1266 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1267 		struct usb_host_endpoint *ep)
1268 {
1269 	return xhci_microframes_to_exponent(udev, ep,
1270 			ep->desc.bInterval * 8, 3, 10);
1271 }
1272 
1273 /* Return the polling or NAK interval.
1274  *
1275  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1276  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1277  *
1278  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1279  * is set to 0.
1280  */
1281 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1282 		struct usb_host_endpoint *ep)
1283 {
1284 	unsigned int interval = 0;
1285 
1286 	switch (udev->speed) {
1287 	case USB_SPEED_HIGH:
1288 		/* Max NAK rate */
1289 		if (usb_endpoint_xfer_control(&ep->desc) ||
1290 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1291 			interval = xhci_parse_microframe_interval(udev, ep);
1292 			break;
1293 		}
1294 		/* Fall through - SS and HS isoc/int have same decoding */
1295 
1296 	case USB_SPEED_SUPER_PLUS:
1297 	case USB_SPEED_SUPER:
1298 		if (usb_endpoint_xfer_int(&ep->desc) ||
1299 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1300 			interval = xhci_parse_exponent_interval(udev, ep);
1301 		}
1302 		break;
1303 
1304 	case USB_SPEED_FULL:
1305 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1306 			interval = xhci_parse_exponent_interval(udev, ep);
1307 			break;
1308 		}
1309 		/*
1310 		 * Fall through for interrupt endpoint interval decoding
1311 		 * since it uses the same rules as low speed interrupt
1312 		 * endpoints.
1313 		 */
1314 
1315 	case USB_SPEED_LOW:
1316 		if (usb_endpoint_xfer_int(&ep->desc) ||
1317 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1318 
1319 			interval = xhci_parse_frame_interval(udev, ep);
1320 		}
1321 		break;
1322 
1323 	default:
1324 		BUG();
1325 	}
1326 	return interval;
1327 }
1328 
1329 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1330  * High speed endpoint descriptors can define "the number of additional
1331  * transaction opportunities per microframe", but that goes in the Max Burst
1332  * endpoint context field.
1333  */
1334 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1335 		struct usb_host_endpoint *ep)
1336 {
1337 	if (udev->speed < USB_SPEED_SUPER ||
1338 			!usb_endpoint_xfer_isoc(&ep->desc))
1339 		return 0;
1340 	return ep->ss_ep_comp.bmAttributes;
1341 }
1342 
1343 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1344 				       struct usb_host_endpoint *ep)
1345 {
1346 	/* Super speed and Plus have max burst in ep companion desc */
1347 	if (udev->speed >= USB_SPEED_SUPER)
1348 		return ep->ss_ep_comp.bMaxBurst;
1349 
1350 	if (udev->speed == USB_SPEED_HIGH &&
1351 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1352 	     usb_endpoint_xfer_int(&ep->desc)))
1353 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1354 
1355 	return 0;
1356 }
1357 
1358 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1359 {
1360 	int in;
1361 
1362 	in = usb_endpoint_dir_in(&ep->desc);
1363 
1364 	switch (usb_endpoint_type(&ep->desc)) {
1365 	case USB_ENDPOINT_XFER_CONTROL:
1366 		return CTRL_EP;
1367 	case USB_ENDPOINT_XFER_BULK:
1368 		return in ? BULK_IN_EP : BULK_OUT_EP;
1369 	case USB_ENDPOINT_XFER_ISOC:
1370 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1371 	case USB_ENDPOINT_XFER_INT:
1372 		return in ? INT_IN_EP : INT_OUT_EP;
1373 	}
1374 	return 0;
1375 }
1376 
1377 /* Return the maximum endpoint service interval time (ESIT) payload.
1378  * Basically, this is the maxpacket size, multiplied by the burst size
1379  * and mult size.
1380  */
1381 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1382 		struct usb_host_endpoint *ep)
1383 {
1384 	int max_burst;
1385 	int max_packet;
1386 
1387 	/* Only applies for interrupt or isochronous endpoints */
1388 	if (usb_endpoint_xfer_control(&ep->desc) ||
1389 			usb_endpoint_xfer_bulk(&ep->desc))
1390 		return 0;
1391 
1392 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1393 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1394 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1395 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1396 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1397 	else if (udev->speed >= USB_SPEED_SUPER)
1398 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1399 
1400 	max_packet = usb_endpoint_maxp(&ep->desc);
1401 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1402 	/* A 0 in max burst means 1 transfer per ESIT */
1403 	return max_packet * max_burst;
1404 }
1405 
1406 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1407  * Drivers will have to call usb_alloc_streams() to do that.
1408  */
1409 int xhci_endpoint_init(struct xhci_hcd *xhci,
1410 		struct xhci_virt_device *virt_dev,
1411 		struct usb_device *udev,
1412 		struct usb_host_endpoint *ep,
1413 		gfp_t mem_flags)
1414 {
1415 	unsigned int ep_index;
1416 	struct xhci_ep_ctx *ep_ctx;
1417 	struct xhci_ring *ep_ring;
1418 	unsigned int max_packet;
1419 	enum xhci_ring_type ring_type;
1420 	u32 max_esit_payload;
1421 	u32 endpoint_type;
1422 	unsigned int max_burst;
1423 	unsigned int interval;
1424 	unsigned int mult;
1425 	unsigned int avg_trb_len;
1426 	unsigned int err_count = 0;
1427 
1428 	ep_index = xhci_get_endpoint_index(&ep->desc);
1429 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1430 
1431 	endpoint_type = xhci_get_endpoint_type(ep);
1432 	if (!endpoint_type)
1433 		return -EINVAL;
1434 
1435 	ring_type = usb_endpoint_type(&ep->desc);
1436 
1437 	/*
1438 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1439 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1440 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1441 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1442 	 */
1443 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1444 	interval = xhci_get_endpoint_interval(udev, ep);
1445 
1446 	/* Periodic endpoint bInterval limit quirk */
1447 	if (usb_endpoint_xfer_int(&ep->desc) ||
1448 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1449 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1450 		    udev->speed >= USB_SPEED_HIGH &&
1451 		    interval >= 7) {
1452 			interval = 6;
1453 		}
1454 	}
1455 
1456 	mult = xhci_get_endpoint_mult(udev, ep);
1457 	max_packet = usb_endpoint_maxp(&ep->desc);
1458 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1459 	avg_trb_len = max_esit_payload;
1460 
1461 	/* FIXME dig Mult and streams info out of ep companion desc */
1462 
1463 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1464 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1465 		err_count = 3;
1466 	/* Some devices get this wrong */
1467 	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1468 		max_packet = 512;
1469 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1470 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1471 		avg_trb_len = 8;
1472 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1473 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1474 		mult = 0;
1475 
1476 	/* Set up the endpoint ring */
1477 	virt_dev->eps[ep_index].new_ring =
1478 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1479 	if (!virt_dev->eps[ep_index].new_ring)
1480 		return -ENOMEM;
1481 
1482 	virt_dev->eps[ep_index].skip = false;
1483 	ep_ring = virt_dev->eps[ep_index].new_ring;
1484 
1485 	/* Fill the endpoint context */
1486 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1487 				      EP_INTERVAL(interval) |
1488 				      EP_MULT(mult));
1489 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1490 				       MAX_PACKET(max_packet) |
1491 				       MAX_BURST(max_burst) |
1492 				       ERROR_COUNT(err_count));
1493 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1494 				  ep_ring->cycle_state);
1495 
1496 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1497 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1498 
1499 	/* FIXME Debug endpoint context */
1500 	return 0;
1501 }
1502 
1503 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1504 		struct xhci_virt_device *virt_dev,
1505 		struct usb_host_endpoint *ep)
1506 {
1507 	unsigned int ep_index;
1508 	struct xhci_ep_ctx *ep_ctx;
1509 
1510 	ep_index = xhci_get_endpoint_index(&ep->desc);
1511 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1512 
1513 	ep_ctx->ep_info = 0;
1514 	ep_ctx->ep_info2 = 0;
1515 	ep_ctx->deq = 0;
1516 	ep_ctx->tx_info = 0;
1517 	/* Don't free the endpoint ring until the set interface or configuration
1518 	 * request succeeds.
1519 	 */
1520 }
1521 
1522 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1523 {
1524 	bw_info->ep_interval = 0;
1525 	bw_info->mult = 0;
1526 	bw_info->num_packets = 0;
1527 	bw_info->max_packet_size = 0;
1528 	bw_info->type = 0;
1529 	bw_info->max_esit_payload = 0;
1530 }
1531 
1532 void xhci_update_bw_info(struct xhci_hcd *xhci,
1533 		struct xhci_container_ctx *in_ctx,
1534 		struct xhci_input_control_ctx *ctrl_ctx,
1535 		struct xhci_virt_device *virt_dev)
1536 {
1537 	struct xhci_bw_info *bw_info;
1538 	struct xhci_ep_ctx *ep_ctx;
1539 	unsigned int ep_type;
1540 	int i;
1541 
1542 	for (i = 1; i < 31; i++) {
1543 		bw_info = &virt_dev->eps[i].bw_info;
1544 
1545 		/* We can't tell what endpoint type is being dropped, but
1546 		 * unconditionally clearing the bandwidth info for non-periodic
1547 		 * endpoints should be harmless because the info will never be
1548 		 * set in the first place.
1549 		 */
1550 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1551 			/* Dropped endpoint */
1552 			xhci_clear_endpoint_bw_info(bw_info);
1553 			continue;
1554 		}
1555 
1556 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1557 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1558 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1559 
1560 			/* Ignore non-periodic endpoints */
1561 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1562 					ep_type != ISOC_IN_EP &&
1563 					ep_type != INT_IN_EP)
1564 				continue;
1565 
1566 			/* Added or changed endpoint */
1567 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1568 					le32_to_cpu(ep_ctx->ep_info));
1569 			/* Number of packets and mult are zero-based in the
1570 			 * input context, but we want one-based for the
1571 			 * interval table.
1572 			 */
1573 			bw_info->mult = CTX_TO_EP_MULT(
1574 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1575 			bw_info->num_packets = CTX_TO_MAX_BURST(
1576 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1577 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1578 					le32_to_cpu(ep_ctx->ep_info2));
1579 			bw_info->type = ep_type;
1580 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1581 					le32_to_cpu(ep_ctx->tx_info));
1582 		}
1583 	}
1584 }
1585 
1586 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1587  * Useful when you want to change one particular aspect of the endpoint and then
1588  * issue a configure endpoint command.
1589  */
1590 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1591 		struct xhci_container_ctx *in_ctx,
1592 		struct xhci_container_ctx *out_ctx,
1593 		unsigned int ep_index)
1594 {
1595 	struct xhci_ep_ctx *out_ep_ctx;
1596 	struct xhci_ep_ctx *in_ep_ctx;
1597 
1598 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1599 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1600 
1601 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1602 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1603 	in_ep_ctx->deq = out_ep_ctx->deq;
1604 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1605 }
1606 
1607 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1608  * Useful when you want to change one particular aspect of the endpoint and then
1609  * issue a configure endpoint command.  Only the context entries field matters,
1610  * but we'll copy the whole thing anyway.
1611  */
1612 void xhci_slot_copy(struct xhci_hcd *xhci,
1613 		struct xhci_container_ctx *in_ctx,
1614 		struct xhci_container_ctx *out_ctx)
1615 {
1616 	struct xhci_slot_ctx *in_slot_ctx;
1617 	struct xhci_slot_ctx *out_slot_ctx;
1618 
1619 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1620 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1621 
1622 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1623 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1624 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1625 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1626 }
1627 
1628 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1629 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1630 {
1631 	int i;
1632 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1633 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1634 
1635 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1636 			"Allocating %d scratchpad buffers", num_sp);
1637 
1638 	if (!num_sp)
1639 		return 0;
1640 
1641 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1642 	if (!xhci->scratchpad)
1643 		goto fail_sp;
1644 
1645 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1646 				     num_sp * sizeof(u64),
1647 				     &xhci->scratchpad->sp_dma, flags);
1648 	if (!xhci->scratchpad->sp_array)
1649 		goto fail_sp2;
1650 
1651 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1652 	if (!xhci->scratchpad->sp_buffers)
1653 		goto fail_sp3;
1654 
1655 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1656 	for (i = 0; i < num_sp; i++) {
1657 		dma_addr_t dma;
1658 		void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1659 				flags);
1660 		if (!buf)
1661 			goto fail_sp4;
1662 
1663 		xhci->scratchpad->sp_array[i] = dma;
1664 		xhci->scratchpad->sp_buffers[i] = buf;
1665 	}
1666 
1667 	return 0;
1668 
1669  fail_sp4:
1670 	for (i = i - 1; i >= 0; i--) {
1671 		dma_free_coherent(dev, xhci->page_size,
1672 				    xhci->scratchpad->sp_buffers[i],
1673 				    xhci->scratchpad->sp_array[i]);
1674 	}
1675 
1676 	kfree(xhci->scratchpad->sp_buffers);
1677 
1678  fail_sp3:
1679 	dma_free_coherent(dev, num_sp * sizeof(u64),
1680 			    xhci->scratchpad->sp_array,
1681 			    xhci->scratchpad->sp_dma);
1682 
1683  fail_sp2:
1684 	kfree(xhci->scratchpad);
1685 	xhci->scratchpad = NULL;
1686 
1687  fail_sp:
1688 	return -ENOMEM;
1689 }
1690 
1691 static void scratchpad_free(struct xhci_hcd *xhci)
1692 {
1693 	int num_sp;
1694 	int i;
1695 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1696 
1697 	if (!xhci->scratchpad)
1698 		return;
1699 
1700 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1701 
1702 	for (i = 0; i < num_sp; i++) {
1703 		dma_free_coherent(dev, xhci->page_size,
1704 				    xhci->scratchpad->sp_buffers[i],
1705 				    xhci->scratchpad->sp_array[i]);
1706 	}
1707 	kfree(xhci->scratchpad->sp_buffers);
1708 	dma_free_coherent(dev, num_sp * sizeof(u64),
1709 			    xhci->scratchpad->sp_array,
1710 			    xhci->scratchpad->sp_dma);
1711 	kfree(xhci->scratchpad);
1712 	xhci->scratchpad = NULL;
1713 }
1714 
1715 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1716 		bool allocate_in_ctx, bool allocate_completion,
1717 		gfp_t mem_flags)
1718 {
1719 	struct xhci_command *command;
1720 
1721 	command = kzalloc(sizeof(*command), mem_flags);
1722 	if (!command)
1723 		return NULL;
1724 
1725 	if (allocate_in_ctx) {
1726 		command->in_ctx =
1727 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1728 					mem_flags);
1729 		if (!command->in_ctx) {
1730 			kfree(command);
1731 			return NULL;
1732 		}
1733 	}
1734 
1735 	if (allocate_completion) {
1736 		command->completion =
1737 			kzalloc(sizeof(struct completion), mem_flags);
1738 		if (!command->completion) {
1739 			xhci_free_container_ctx(xhci, command->in_ctx);
1740 			kfree(command);
1741 			return NULL;
1742 		}
1743 		init_completion(command->completion);
1744 	}
1745 
1746 	command->status = 0;
1747 	INIT_LIST_HEAD(&command->cmd_list);
1748 	return command;
1749 }
1750 
1751 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1752 {
1753 	kfree(urb_priv);
1754 }
1755 
1756 void xhci_free_command(struct xhci_hcd *xhci,
1757 		struct xhci_command *command)
1758 {
1759 	xhci_free_container_ctx(xhci,
1760 			command->in_ctx);
1761 	kfree(command->completion);
1762 	kfree(command);
1763 }
1764 
1765 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1766 {
1767 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1768 	int size;
1769 	int i, j, num_ports;
1770 
1771 	cancel_delayed_work_sync(&xhci->cmd_timer);
1772 
1773 	/* Free the Event Ring Segment Table and the actual Event Ring */
1774 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1775 	if (xhci->erst.entries)
1776 		dma_free_coherent(dev, size,
1777 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1778 	xhci->erst.entries = NULL;
1779 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1780 	if (xhci->event_ring)
1781 		xhci_ring_free(xhci, xhci->event_ring);
1782 	xhci->event_ring = NULL;
1783 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1784 
1785 	if (xhci->lpm_command)
1786 		xhci_free_command(xhci, xhci->lpm_command);
1787 	xhci->lpm_command = NULL;
1788 	if (xhci->cmd_ring)
1789 		xhci_ring_free(xhci, xhci->cmd_ring);
1790 	xhci->cmd_ring = NULL;
1791 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1792 	xhci_cleanup_command_queue(xhci);
1793 
1794 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1795 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1796 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1797 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1798 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1799 			while (!list_empty(ep))
1800 				list_del_init(ep->next);
1801 		}
1802 	}
1803 
1804 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1805 		xhci_free_virt_devices_depth_first(xhci, i);
1806 
1807 	dma_pool_destroy(xhci->segment_pool);
1808 	xhci->segment_pool = NULL;
1809 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1810 
1811 	dma_pool_destroy(xhci->device_pool);
1812 	xhci->device_pool = NULL;
1813 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1814 
1815 	dma_pool_destroy(xhci->small_streams_pool);
1816 	xhci->small_streams_pool = NULL;
1817 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1818 			"Freed small stream array pool");
1819 
1820 	dma_pool_destroy(xhci->medium_streams_pool);
1821 	xhci->medium_streams_pool = NULL;
1822 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1823 			"Freed medium stream array pool");
1824 
1825 	if (xhci->dcbaa)
1826 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1827 				xhci->dcbaa, xhci->dcbaa->dma);
1828 	xhci->dcbaa = NULL;
1829 
1830 	scratchpad_free(xhci);
1831 
1832 	if (!xhci->rh_bw)
1833 		goto no_bw;
1834 
1835 	for (i = 0; i < num_ports; i++) {
1836 		struct xhci_tt_bw_info *tt, *n;
1837 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1838 			list_del(&tt->tt_list);
1839 			kfree(tt);
1840 		}
1841 	}
1842 
1843 no_bw:
1844 	xhci->cmd_ring_reserved_trbs = 0;
1845 	xhci->num_usb2_ports = 0;
1846 	xhci->num_usb3_ports = 0;
1847 	xhci->num_active_eps = 0;
1848 	kfree(xhci->usb2_ports);
1849 	kfree(xhci->usb3_ports);
1850 	kfree(xhci->port_array);
1851 	kfree(xhci->rh_bw);
1852 	kfree(xhci->ext_caps);
1853 
1854 	xhci->usb2_ports = NULL;
1855 	xhci->usb3_ports = NULL;
1856 	xhci->port_array = NULL;
1857 	xhci->rh_bw = NULL;
1858 	xhci->ext_caps = NULL;
1859 
1860 	xhci->page_size = 0;
1861 	xhci->page_shift = 0;
1862 	xhci->bus_state[0].bus_suspended = 0;
1863 	xhci->bus_state[1].bus_suspended = 0;
1864 }
1865 
1866 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1867 		struct xhci_segment *input_seg,
1868 		union xhci_trb *start_trb,
1869 		union xhci_trb *end_trb,
1870 		dma_addr_t input_dma,
1871 		struct xhci_segment *result_seg,
1872 		char *test_name, int test_number)
1873 {
1874 	unsigned long long start_dma;
1875 	unsigned long long end_dma;
1876 	struct xhci_segment *seg;
1877 
1878 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1879 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1880 
1881 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1882 	if (seg != result_seg) {
1883 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1884 				test_name, test_number);
1885 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1886 				"input DMA 0x%llx\n",
1887 				input_seg,
1888 				(unsigned long long) input_dma);
1889 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1890 				"ending TRB %p (0x%llx DMA)\n",
1891 				start_trb, start_dma,
1892 				end_trb, end_dma);
1893 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1894 				result_seg, seg);
1895 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1896 			  true);
1897 		return -1;
1898 	}
1899 	return 0;
1900 }
1901 
1902 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1903 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1904 {
1905 	struct {
1906 		dma_addr_t		input_dma;
1907 		struct xhci_segment	*result_seg;
1908 	} simple_test_vector [] = {
1909 		/* A zeroed DMA field should fail */
1910 		{ 0, NULL },
1911 		/* One TRB before the ring start should fail */
1912 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1913 		/* One byte before the ring start should fail */
1914 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1915 		/* Starting TRB should succeed */
1916 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1917 		/* Ending TRB should succeed */
1918 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1919 			xhci->event_ring->first_seg },
1920 		/* One byte after the ring end should fail */
1921 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1922 		/* One TRB after the ring end should fail */
1923 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1924 		/* An address of all ones should fail */
1925 		{ (dma_addr_t) (~0), NULL },
1926 	};
1927 	struct {
1928 		struct xhci_segment	*input_seg;
1929 		union xhci_trb		*start_trb;
1930 		union xhci_trb		*end_trb;
1931 		dma_addr_t		input_dma;
1932 		struct xhci_segment	*result_seg;
1933 	} complex_test_vector [] = {
1934 		/* Test feeding a valid DMA address from a different ring */
1935 		{	.input_seg = xhci->event_ring->first_seg,
1936 			.start_trb = xhci->event_ring->first_seg->trbs,
1937 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1938 			.input_dma = xhci->cmd_ring->first_seg->dma,
1939 			.result_seg = NULL,
1940 		},
1941 		/* Test feeding a valid end TRB from a different ring */
1942 		{	.input_seg = xhci->event_ring->first_seg,
1943 			.start_trb = xhci->event_ring->first_seg->trbs,
1944 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1945 			.input_dma = xhci->cmd_ring->first_seg->dma,
1946 			.result_seg = NULL,
1947 		},
1948 		/* Test feeding a valid start and end TRB from a different ring */
1949 		{	.input_seg = xhci->event_ring->first_seg,
1950 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1951 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1952 			.input_dma = xhci->cmd_ring->first_seg->dma,
1953 			.result_seg = NULL,
1954 		},
1955 		/* TRB in this ring, but after this TD */
1956 		{	.input_seg = xhci->event_ring->first_seg,
1957 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1958 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1959 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1960 			.result_seg = NULL,
1961 		},
1962 		/* TRB in this ring, but before this TD */
1963 		{	.input_seg = xhci->event_ring->first_seg,
1964 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1965 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1966 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1967 			.result_seg = NULL,
1968 		},
1969 		/* TRB in this ring, but after this wrapped TD */
1970 		{	.input_seg = xhci->event_ring->first_seg,
1971 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1972 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1973 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1974 			.result_seg = NULL,
1975 		},
1976 		/* TRB in this ring, but before this wrapped TD */
1977 		{	.input_seg = xhci->event_ring->first_seg,
1978 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1979 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1980 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1981 			.result_seg = NULL,
1982 		},
1983 		/* TRB not in this ring, and we have a wrapped TD */
1984 		{	.input_seg = xhci->event_ring->first_seg,
1985 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1986 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1987 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1988 			.result_seg = NULL,
1989 		},
1990 	};
1991 
1992 	unsigned int num_tests;
1993 	int i, ret;
1994 
1995 	num_tests = ARRAY_SIZE(simple_test_vector);
1996 	for (i = 0; i < num_tests; i++) {
1997 		ret = xhci_test_trb_in_td(xhci,
1998 				xhci->event_ring->first_seg,
1999 				xhci->event_ring->first_seg->trbs,
2000 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2001 				simple_test_vector[i].input_dma,
2002 				simple_test_vector[i].result_seg,
2003 				"Simple", i);
2004 		if (ret < 0)
2005 			return ret;
2006 	}
2007 
2008 	num_tests = ARRAY_SIZE(complex_test_vector);
2009 	for (i = 0; i < num_tests; i++) {
2010 		ret = xhci_test_trb_in_td(xhci,
2011 				complex_test_vector[i].input_seg,
2012 				complex_test_vector[i].start_trb,
2013 				complex_test_vector[i].end_trb,
2014 				complex_test_vector[i].input_dma,
2015 				complex_test_vector[i].result_seg,
2016 				"Complex", i);
2017 		if (ret < 0)
2018 			return ret;
2019 	}
2020 	xhci_dbg(xhci, "TRB math tests passed.\n");
2021 	return 0;
2022 }
2023 
2024 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2025 {
2026 	u64 temp;
2027 	dma_addr_t deq;
2028 
2029 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2030 			xhci->event_ring->dequeue);
2031 	if (deq == 0 && !in_interrupt())
2032 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2033 				"dequeue ptr.\n");
2034 	/* Update HC event ring dequeue pointer */
2035 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2036 	temp &= ERST_PTR_MASK;
2037 	/* Don't clear the EHB bit (which is RW1C) because
2038 	 * there might be more events to service.
2039 	 */
2040 	temp &= ~ERST_EHB;
2041 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2042 			"// Write event ring dequeue pointer, "
2043 			"preserving EHB bit");
2044 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2045 			&xhci->ir_set->erst_dequeue);
2046 }
2047 
2048 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2049 		__le32 __iomem *addr, int max_caps)
2050 {
2051 	u32 temp, port_offset, port_count;
2052 	int i;
2053 	u8 major_revision, minor_revision;
2054 	struct xhci_hub *rhub;
2055 
2056 	temp = readl(addr);
2057 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2058 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2059 
2060 	if (major_revision == 0x03) {
2061 		rhub = &xhci->usb3_rhub;
2062 	} else if (major_revision <= 0x02) {
2063 		rhub = &xhci->usb2_rhub;
2064 	} else {
2065 		xhci_warn(xhci, "Ignoring unknown port speed, "
2066 				"Ext Cap %p, revision = 0x%x\n",
2067 				addr, major_revision);
2068 		/* Ignoring port protocol we can't understand. FIXME */
2069 		return;
2070 	}
2071 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2072 
2073 	if (rhub->min_rev < minor_revision)
2074 		rhub->min_rev = minor_revision;
2075 
2076 	/* Port offset and count in the third dword, see section 7.2 */
2077 	temp = readl(addr + 2);
2078 	port_offset = XHCI_EXT_PORT_OFF(temp);
2079 	port_count = XHCI_EXT_PORT_COUNT(temp);
2080 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2081 			"Ext Cap %p, port offset = %u, "
2082 			"count = %u, revision = 0x%x",
2083 			addr, port_offset, port_count, major_revision);
2084 	/* Port count includes the current port offset */
2085 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2086 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2087 		return;
2088 
2089 	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2090 	if (rhub->psi_count) {
2091 		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2092 				    GFP_KERNEL);
2093 		if (!rhub->psi)
2094 			rhub->psi_count = 0;
2095 
2096 		rhub->psi_uid_count++;
2097 		for (i = 0; i < rhub->psi_count; i++) {
2098 			rhub->psi[i] = readl(addr + 4 + i);
2099 
2100 			/* count unique ID values, two consecutive entries can
2101 			 * have the same ID if link is assymetric
2102 			 */
2103 			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2104 				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2105 				rhub->psi_uid_count++;
2106 
2107 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2108 				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2109 				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2110 				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2111 				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2112 				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2113 				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2114 		}
2115 	}
2116 	/* cache usb2 port capabilities */
2117 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2118 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2119 
2120 	/* Check the host's USB2 LPM capability */
2121 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2122 			(temp & XHCI_L1C)) {
2123 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124 				"xHCI 0.96: support USB2 software lpm");
2125 		xhci->sw_lpm_support = 1;
2126 	}
2127 
2128 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2129 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2130 				"xHCI 1.0: support USB2 software lpm");
2131 		xhci->sw_lpm_support = 1;
2132 		if (temp & XHCI_HLC) {
2133 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2134 					"xHCI 1.0: support USB2 hardware lpm");
2135 			xhci->hw_lpm_support = 1;
2136 		}
2137 	}
2138 
2139 	port_offset--;
2140 	for (i = port_offset; i < (port_offset + port_count); i++) {
2141 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2142 		if (xhci->port_array[i] != 0) {
2143 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2144 					" port %u\n", addr, i);
2145 			xhci_warn(xhci, "Port was marked as USB %u, "
2146 					"duplicated as USB %u\n",
2147 					xhci->port_array[i], major_revision);
2148 			/* Only adjust the roothub port counts if we haven't
2149 			 * found a similar duplicate.
2150 			 */
2151 			if (xhci->port_array[i] != major_revision &&
2152 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2153 				if (xhci->port_array[i] == 0x03)
2154 					xhci->num_usb3_ports--;
2155 				else
2156 					xhci->num_usb2_ports--;
2157 				xhci->port_array[i] = DUPLICATE_ENTRY;
2158 			}
2159 			/* FIXME: Should we disable the port? */
2160 			continue;
2161 		}
2162 		xhci->port_array[i] = major_revision;
2163 		if (major_revision == 0x03)
2164 			xhci->num_usb3_ports++;
2165 		else
2166 			xhci->num_usb2_ports++;
2167 	}
2168 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2169 }
2170 
2171 /*
2172  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2173  * specify what speeds each port is supposed to be.  We can't count on the port
2174  * speed bits in the PORTSC register being correct until a device is connected,
2175  * but we need to set up the two fake roothubs with the correct number of USB
2176  * 3.0 and USB 2.0 ports at host controller initialization time.
2177  */
2178 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2179 {
2180 	void __iomem *base;
2181 	u32 offset;
2182 	unsigned int num_ports;
2183 	int i, j, port_index;
2184 	int cap_count = 0;
2185 	u32 cap_start;
2186 
2187 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2188 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2189 	if (!xhci->port_array)
2190 		return -ENOMEM;
2191 
2192 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2193 	if (!xhci->rh_bw)
2194 		return -ENOMEM;
2195 	for (i = 0; i < num_ports; i++) {
2196 		struct xhci_interval_bw_table *bw_table;
2197 
2198 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2199 		bw_table = &xhci->rh_bw[i].bw_table;
2200 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2201 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2202 	}
2203 	base = &xhci->cap_regs->hc_capbase;
2204 
2205 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2206 	if (!cap_start) {
2207 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2208 		return -ENODEV;
2209 	}
2210 
2211 	offset = cap_start;
2212 	/* count extended protocol capability entries for later caching */
2213 	while (offset) {
2214 		cap_count++;
2215 		offset = xhci_find_next_ext_cap(base, offset,
2216 						      XHCI_EXT_CAPS_PROTOCOL);
2217 	}
2218 
2219 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2220 	if (!xhci->ext_caps)
2221 		return -ENOMEM;
2222 
2223 	offset = cap_start;
2224 
2225 	while (offset) {
2226 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2227 		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2228 			break;
2229 		offset = xhci_find_next_ext_cap(base, offset,
2230 						XHCI_EXT_CAPS_PROTOCOL);
2231 	}
2232 
2233 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2234 		xhci_warn(xhci, "No ports on the roothubs?\n");
2235 		return -ENODEV;
2236 	}
2237 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2238 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2239 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2240 
2241 	/* Place limits on the number of roothub ports so that the hub
2242 	 * descriptors aren't longer than the USB core will allocate.
2243 	 */
2244 	if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2245 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2246 				"Limiting USB 3.0 roothub ports to %u.",
2247 				USB_SS_MAXPORTS);
2248 		xhci->num_usb3_ports = USB_SS_MAXPORTS;
2249 	}
2250 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2251 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2252 				"Limiting USB 2.0 roothub ports to %u.",
2253 				USB_MAXCHILDREN);
2254 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2255 	}
2256 
2257 	/*
2258 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2259 	 * Not sure how the USB core will handle a hub with no ports...
2260 	 */
2261 	if (xhci->num_usb2_ports) {
2262 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2263 				xhci->num_usb2_ports, flags);
2264 		if (!xhci->usb2_ports)
2265 			return -ENOMEM;
2266 
2267 		port_index = 0;
2268 		for (i = 0; i < num_ports; i++) {
2269 			if (xhci->port_array[i] == 0x03 ||
2270 					xhci->port_array[i] == 0 ||
2271 					xhci->port_array[i] == DUPLICATE_ENTRY)
2272 				continue;
2273 
2274 			xhci->usb2_ports[port_index] =
2275 				&xhci->op_regs->port_status_base +
2276 				NUM_PORT_REGS*i;
2277 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2278 					"USB 2.0 port at index %u, "
2279 					"addr = %p", i,
2280 					xhci->usb2_ports[port_index]);
2281 			port_index++;
2282 			if (port_index == xhci->num_usb2_ports)
2283 				break;
2284 		}
2285 	}
2286 	if (xhci->num_usb3_ports) {
2287 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2288 				xhci->num_usb3_ports, flags);
2289 		if (!xhci->usb3_ports)
2290 			return -ENOMEM;
2291 
2292 		port_index = 0;
2293 		for (i = 0; i < num_ports; i++)
2294 			if (xhci->port_array[i] == 0x03) {
2295 				xhci->usb3_ports[port_index] =
2296 					&xhci->op_regs->port_status_base +
2297 					NUM_PORT_REGS*i;
2298 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2299 						"USB 3.0 port at index %u, "
2300 						"addr = %p", i,
2301 						xhci->usb3_ports[port_index]);
2302 				port_index++;
2303 				if (port_index == xhci->num_usb3_ports)
2304 					break;
2305 			}
2306 	}
2307 	return 0;
2308 }
2309 
2310 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2311 {
2312 	dma_addr_t	dma;
2313 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2314 	unsigned int	val, val2;
2315 	u64		val_64;
2316 	struct xhci_segment	*seg;
2317 	u32 page_size, temp;
2318 	int i;
2319 
2320 	INIT_LIST_HEAD(&xhci->cmd_list);
2321 
2322 	/* init command timeout work */
2323 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2324 	init_completion(&xhci->cmd_ring_stop_completion);
2325 
2326 	page_size = readl(&xhci->op_regs->page_size);
2327 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2328 			"Supported page size register = 0x%x", page_size);
2329 	for (i = 0; i < 16; i++) {
2330 		if ((0x1 & page_size) != 0)
2331 			break;
2332 		page_size = page_size >> 1;
2333 	}
2334 	if (i < 16)
2335 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2337 	else
2338 		xhci_warn(xhci, "WARN: no supported page size\n");
2339 	/* Use 4K pages, since that's common and the minimum the HC supports */
2340 	xhci->page_shift = 12;
2341 	xhci->page_size = 1 << xhci->page_shift;
2342 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2343 			"HCD page size set to %iK", xhci->page_size / 1024);
2344 
2345 	/*
2346 	 * Program the Number of Device Slots Enabled field in the CONFIG
2347 	 * register with the max value of slots the HC can handle.
2348 	 */
2349 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2350 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351 			"// xHC can handle at most %d device slots.", val);
2352 	val2 = readl(&xhci->op_regs->config_reg);
2353 	val |= (val2 & ~HCS_SLOTS_MASK);
2354 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355 			"// Setting Max device slots reg = 0x%x.", val);
2356 	writel(val, &xhci->op_regs->config_reg);
2357 
2358 	/*
2359 	 * xHCI section 5.4.6 - doorbell array must be
2360 	 * "physically contiguous and 64-byte (cache line) aligned".
2361 	 */
2362 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2363 			flags);
2364 	if (!xhci->dcbaa)
2365 		goto fail;
2366 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2367 	xhci->dcbaa->dma = dma;
2368 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2369 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2370 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2371 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2372 
2373 	/*
2374 	 * Initialize the ring segment pool.  The ring must be a contiguous
2375 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2376 	 * however, the command ring segment needs 64-byte aligned segments
2377 	 * and our use of dma addresses in the trb_address_map radix tree needs
2378 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2379 	 */
2380 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2381 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2382 
2383 	/* See Table 46 and Note on Figure 55 */
2384 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2385 			2112, 64, xhci->page_size);
2386 	if (!xhci->segment_pool || !xhci->device_pool)
2387 		goto fail;
2388 
2389 	/* Linear stream context arrays don't have any boundary restrictions,
2390 	 * and only need to be 16-byte aligned.
2391 	 */
2392 	xhci->small_streams_pool =
2393 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2394 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2395 	xhci->medium_streams_pool =
2396 		dma_pool_create("xHCI 1KB stream ctx arrays",
2397 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2398 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2399 	 * will be allocated with dma_alloc_coherent()
2400 	 */
2401 
2402 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2403 		goto fail;
2404 
2405 	/* Set up the command ring to have one segments for now. */
2406 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2407 	if (!xhci->cmd_ring)
2408 		goto fail;
2409 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2410 			"Allocated command ring at %p", xhci->cmd_ring);
2411 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2412 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2413 
2414 	/* Set the address in the Command Ring Control register */
2415 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2416 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2417 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2418 		xhci->cmd_ring->cycle_state;
2419 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 			"// Setting command ring address to 0x%016llx", val_64);
2421 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2422 	xhci_dbg_cmd_ptrs(xhci);
2423 
2424 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2425 	if (!xhci->lpm_command)
2426 		goto fail;
2427 
2428 	/* Reserve one command ring TRB for disabling LPM.
2429 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2430 	 * disabling LPM, we only need to reserve one TRB for all devices.
2431 	 */
2432 	xhci->cmd_ring_reserved_trbs++;
2433 
2434 	val = readl(&xhci->cap_regs->db_off);
2435 	val &= DBOFF_MASK;
2436 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 			"// Doorbell array is located at offset 0x%x"
2438 			" from cap regs base addr", val);
2439 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2440 	xhci_dbg_regs(xhci);
2441 	xhci_print_run_regs(xhci);
2442 	/* Set ir_set to interrupt register set 0 */
2443 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2444 
2445 	/*
2446 	 * Event ring setup: Allocate a normal ring, but also setup
2447 	 * the event ring segment table (ERST).  Section 4.9.3.
2448 	 */
2449 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2450 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2451 					0, flags);
2452 	if (!xhci->event_ring)
2453 		goto fail;
2454 	if (xhci_check_trb_in_td_math(xhci) < 0)
2455 		goto fail;
2456 
2457 	xhci->erst.entries = dma_alloc_coherent(dev,
2458 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2459 			flags);
2460 	if (!xhci->erst.entries)
2461 		goto fail;
2462 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2463 			"// Allocated event ring segment table at 0x%llx",
2464 			(unsigned long long)dma);
2465 
2466 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2467 	xhci->erst.num_entries = ERST_NUM_SEGS;
2468 	xhci->erst.erst_dma_addr = dma;
2469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2470 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2471 			xhci->erst.num_entries,
2472 			xhci->erst.entries,
2473 			(unsigned long long)xhci->erst.erst_dma_addr);
2474 
2475 	/* set ring base address and size for each segment table entry */
2476 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2477 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2478 		entry->seg_addr = cpu_to_le64(seg->dma);
2479 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2480 		entry->rsvd = 0;
2481 		seg = seg->next;
2482 	}
2483 
2484 	/* set ERST count with the number of entries in the segment table */
2485 	val = readl(&xhci->ir_set->erst_size);
2486 	val &= ERST_SIZE_MASK;
2487 	val |= ERST_NUM_SEGS;
2488 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2490 			val);
2491 	writel(val, &xhci->ir_set->erst_size);
2492 
2493 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 			"// Set ERST entries to point to event ring.");
2495 	/* set the segment table base address */
2496 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497 			"// Set ERST base address for ir_set 0 = 0x%llx",
2498 			(unsigned long long)xhci->erst.erst_dma_addr);
2499 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2500 	val_64 &= ERST_PTR_MASK;
2501 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2502 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2503 
2504 	/* Set the event ring dequeue address */
2505 	xhci_set_hc_event_deq(xhci);
2506 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 			"Wrote ERST address to ir_set 0.");
2508 	xhci_print_ir_set(xhci, 0);
2509 
2510 	/*
2511 	 * XXX: Might need to set the Interrupter Moderation Register to
2512 	 * something other than the default (~1ms minimum between interrupts).
2513 	 * See section 5.5.1.2.
2514 	 */
2515 	for (i = 0; i < MAX_HC_SLOTS; i++)
2516 		xhci->devs[i] = NULL;
2517 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2518 		xhci->bus_state[0].resume_done[i] = 0;
2519 		xhci->bus_state[1].resume_done[i] = 0;
2520 		/* Only the USB 2.0 completions will ever be used. */
2521 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2522 	}
2523 
2524 	if (scratchpad_alloc(xhci, flags))
2525 		goto fail;
2526 	if (xhci_setup_port_arrays(xhci, flags))
2527 		goto fail;
2528 
2529 	/* Enable USB 3.0 device notifications for function remote wake, which
2530 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2531 	 * U3 (device suspend).
2532 	 */
2533 	temp = readl(&xhci->op_regs->dev_notification);
2534 	temp &= ~DEV_NOTE_MASK;
2535 	temp |= DEV_NOTE_FWAKE;
2536 	writel(temp, &xhci->op_regs->dev_notification);
2537 
2538 	return 0;
2539 
2540 fail:
2541 	xhci_halt(xhci);
2542 	xhci_reset(xhci);
2543 	xhci_mem_cleanup(xhci);
2544 	return -ENOMEM;
2545 }
2546