1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/pci.h> 13 #include <linux/slab.h> 14 #include <linux/dmapool.h> 15 #include <linux/dma-mapping.h> 16 17 #include "xhci.h" 18 #include "xhci-trace.h" 19 #include "xhci-debugfs.h" 20 21 /* 22 * Allocates a generic ring segment from the ring pool, sets the dma address, 23 * initializes the segment to zero, and sets the private next pointer to NULL. 24 * 25 * Section 4.11.1.1: 26 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 27 */ 28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 29 unsigned int cycle_state, 30 unsigned int max_packet, 31 gfp_t flags) 32 { 33 struct xhci_segment *seg; 34 dma_addr_t dma; 35 int i; 36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 37 38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 39 if (!seg) 40 return NULL; 41 42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 43 if (!seg->trbs) { 44 kfree(seg); 45 return NULL; 46 } 47 48 if (max_packet) { 49 seg->bounce_buf = kzalloc_node(max_packet, flags, 50 dev_to_node(dev)); 51 if (!seg->bounce_buf) { 52 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 53 kfree(seg); 54 return NULL; 55 } 56 } 57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 58 if (cycle_state == 0) { 59 for (i = 0; i < TRBS_PER_SEGMENT; i++) 60 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); 61 } 62 seg->dma = dma; 63 seg->next = NULL; 64 65 return seg; 66 } 67 68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 69 { 70 if (seg->trbs) { 71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 72 seg->trbs = NULL; 73 } 74 kfree(seg->bounce_buf); 75 kfree(seg); 76 } 77 78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 79 struct xhci_segment *first) 80 { 81 struct xhci_segment *seg; 82 83 seg = first->next; 84 while (seg != first) { 85 struct xhci_segment *next = seg->next; 86 xhci_segment_free(xhci, seg); 87 seg = next; 88 } 89 xhci_segment_free(xhci, first); 90 } 91 92 /* 93 * Make the prev segment point to the next segment. 94 * 95 * Change the last TRB in the prev segment to be a Link TRB which points to the 96 * DMA address of the next segment. The caller needs to set any Link TRB 97 * related flags, such as End TRB, Toggle Cycle, and no snoop. 98 */ 99 static void xhci_link_segments(struct xhci_segment *prev, 100 struct xhci_segment *next, 101 enum xhci_ring_type type, bool chain_links) 102 { 103 u32 val; 104 105 if (!prev || !next) 106 return; 107 prev->next = next; 108 if (type != TYPE_EVENT) { 109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 110 cpu_to_le64(next->dma); 111 112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 114 val &= ~TRB_TYPE_BITMASK; 115 val |= TRB_TYPE(TRB_LINK); 116 if (chain_links) 117 val |= TRB_CHAIN; 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 119 } 120 } 121 122 /* 123 * Link the ring to the new segments. 124 * Set Toggle Cycle for the new ring if needed. 125 */ 126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 127 struct xhci_segment *first, struct xhci_segment *last, 128 unsigned int num_segs) 129 { 130 struct xhci_segment *next; 131 bool chain_links; 132 133 if (!ring || !first || !last) 134 return; 135 136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 137 chain_links = !!(xhci_link_trb_quirk(xhci) || 138 (ring->type == TYPE_ISOC && 139 (xhci->quirks & XHCI_AMD_0x96_HOST))); 140 141 next = ring->enq_seg->next; 142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 143 xhci_link_segments(last, next, ring->type, chain_links); 144 ring->num_segs += num_segs; 145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 146 147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 149 &= ~cpu_to_le32(LINK_TOGGLE); 150 last->trbs[TRBS_PER_SEGMENT-1].link.control 151 |= cpu_to_le32(LINK_TOGGLE); 152 ring->last_seg = last; 153 } 154 } 155 156 /* 157 * We need a radix tree for mapping physical addresses of TRBs to which stream 158 * ID they belong to. We need to do this because the host controller won't tell 159 * us which stream ring the TRB came from. We could store the stream ID in an 160 * event data TRB, but that doesn't help us for the cancellation case, since the 161 * endpoint may stop before it reaches that event data TRB. 162 * 163 * The radix tree maps the upper portion of the TRB DMA address to a ring 164 * segment that has the same upper portion of DMA addresses. For example, say I 165 * have segments of size 1KB, that are always 1KB aligned. A segment may 166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 168 * pass the radix tree a key to get the right stream ID: 169 * 170 * 0x10c90fff >> 10 = 0x43243 171 * 0x10c912c0 >> 10 = 0x43244 172 * 0x10c91400 >> 10 = 0x43245 173 * 174 * Obviously, only those TRBs with DMA addresses that are within the segment 175 * will make the radix tree return the stream ID for that ring. 176 * 177 * Caveats for the radix tree: 178 * 179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 184 * extended systems (where the DMA address can be bigger than 32-bits), 185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 186 */ 187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 188 struct xhci_ring *ring, 189 struct xhci_segment *seg, 190 gfp_t mem_flags) 191 { 192 unsigned long key; 193 int ret; 194 195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 196 /* Skip any segments that were already added. */ 197 if (radix_tree_lookup(trb_address_map, key)) 198 return 0; 199 200 ret = radix_tree_maybe_preload(mem_flags); 201 if (ret) 202 return ret; 203 ret = radix_tree_insert(trb_address_map, 204 key, ring); 205 radix_tree_preload_end(); 206 return ret; 207 } 208 209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 210 struct xhci_segment *seg) 211 { 212 unsigned long key; 213 214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 215 if (radix_tree_lookup(trb_address_map, key)) 216 radix_tree_delete(trb_address_map, key); 217 } 218 219 static int xhci_update_stream_segment_mapping( 220 struct radix_tree_root *trb_address_map, 221 struct xhci_ring *ring, 222 struct xhci_segment *first_seg, 223 struct xhci_segment *last_seg, 224 gfp_t mem_flags) 225 { 226 struct xhci_segment *seg; 227 struct xhci_segment *failed_seg; 228 int ret; 229 230 if (WARN_ON_ONCE(trb_address_map == NULL)) 231 return 0; 232 233 seg = first_seg; 234 do { 235 ret = xhci_insert_segment_mapping(trb_address_map, 236 ring, seg, mem_flags); 237 if (ret) 238 goto remove_streams; 239 if (seg == last_seg) 240 return 0; 241 seg = seg->next; 242 } while (seg != first_seg); 243 244 return 0; 245 246 remove_streams: 247 failed_seg = seg; 248 seg = first_seg; 249 do { 250 xhci_remove_segment_mapping(trb_address_map, seg); 251 if (seg == failed_seg) 252 return ret; 253 seg = seg->next; 254 } while (seg != first_seg); 255 256 return ret; 257 } 258 259 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 260 { 261 struct xhci_segment *seg; 262 263 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 264 return; 265 266 seg = ring->first_seg; 267 do { 268 xhci_remove_segment_mapping(ring->trb_address_map, seg); 269 seg = seg->next; 270 } while (seg != ring->first_seg); 271 } 272 273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 274 { 275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 276 ring->first_seg, ring->last_seg, mem_flags); 277 } 278 279 /* XXX: Do we need the hcd structure in all these functions? */ 280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281 { 282 if (!ring) 283 return; 284 285 trace_xhci_ring_free(ring); 286 287 if (ring->first_seg) { 288 if (ring->type == TYPE_STREAM) 289 xhci_remove_stream_mapping(ring); 290 xhci_free_segments_for_ring(xhci, ring->first_seg); 291 } 292 293 kfree(ring); 294 } 295 296 void xhci_initialize_ring_info(struct xhci_ring *ring, 297 unsigned int cycle_state) 298 { 299 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 300 ring->enqueue = ring->first_seg->trbs; 301 ring->enq_seg = ring->first_seg; 302 ring->dequeue = ring->enqueue; 303 ring->deq_seg = ring->first_seg; 304 /* The ring is initialized to 0. The producer must write 1 to the cycle 305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 306 * compare CCS to the cycle bit to check ownership, so CCS = 1. 307 * 308 * New rings are initialized with cycle state equal to 1; if we are 309 * handling ring expansion, set the cycle state equal to the old ring. 310 */ 311 ring->cycle_state = cycle_state; 312 313 /* 314 * Each segment has a link TRB, and leave an extra TRB for SW 315 * accounting purpose 316 */ 317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 318 } 319 320 /* Allocate segments and link them for a ring */ 321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 322 struct xhci_segment **first, struct xhci_segment **last, 323 unsigned int num_segs, unsigned int cycle_state, 324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 325 { 326 struct xhci_segment *prev; 327 bool chain_links; 328 329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 330 chain_links = !!(xhci_link_trb_quirk(xhci) || 331 (type == TYPE_ISOC && 332 (xhci->quirks & XHCI_AMD_0x96_HOST))); 333 334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 335 if (!prev) 336 return -ENOMEM; 337 num_segs--; 338 339 *first = prev; 340 while (num_segs > 0) { 341 struct xhci_segment *next; 342 343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 344 if (!next) { 345 prev = *first; 346 while (prev) { 347 next = prev->next; 348 xhci_segment_free(xhci, prev); 349 prev = next; 350 } 351 return -ENOMEM; 352 } 353 xhci_link_segments(prev, next, type, chain_links); 354 355 prev = next; 356 num_segs--; 357 } 358 xhci_link_segments(prev, *first, type, chain_links); 359 *last = prev; 360 361 return 0; 362 } 363 364 /* 365 * Create a new ring with zero or more segments. 366 * 367 * Link each segment together into a ring. 368 * Set the end flag and the cycle toggle bit on the last segment. 369 * See section 4.9.1 and figures 15 and 16. 370 */ 371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 372 unsigned int num_segs, unsigned int cycle_state, 373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 374 { 375 struct xhci_ring *ring; 376 int ret; 377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 378 379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 380 if (!ring) 381 return NULL; 382 383 ring->num_segs = num_segs; 384 ring->bounce_buf_len = max_packet; 385 INIT_LIST_HEAD(&ring->td_list); 386 ring->type = type; 387 if (num_segs == 0) 388 return ring; 389 390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 391 &ring->last_seg, num_segs, cycle_state, type, 392 max_packet, flags); 393 if (ret) 394 goto fail; 395 396 /* Only event ring does not use link TRB */ 397 if (type != TYPE_EVENT) { 398 /* See section 4.9.2.1 and 6.4.4.1 */ 399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 400 cpu_to_le32(LINK_TOGGLE); 401 } 402 xhci_initialize_ring_info(ring, cycle_state); 403 trace_xhci_ring_alloc(ring); 404 return ring; 405 406 fail: 407 kfree(ring); 408 return NULL; 409 } 410 411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 412 struct xhci_virt_device *virt_dev, 413 unsigned int ep_index) 414 { 415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 416 virt_dev->eps[ep_index].ring = NULL; 417 } 418 419 /* 420 * Expand an existing ring. 421 * Allocate a new ring which has same segment numbers and link the two rings. 422 */ 423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 424 unsigned int num_trbs, gfp_t flags) 425 { 426 struct xhci_segment *first; 427 struct xhci_segment *last; 428 unsigned int num_segs; 429 unsigned int num_segs_needed; 430 int ret; 431 432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 433 (TRBS_PER_SEGMENT - 1); 434 435 /* Allocate number of segments we needed, or double the ring size */ 436 num_segs = max(ring->num_segs, num_segs_needed); 437 438 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 439 num_segs, ring->cycle_state, ring->type, 440 ring->bounce_buf_len, flags); 441 if (ret) 442 return -ENOMEM; 443 444 if (ring->type == TYPE_STREAM) 445 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 446 ring, first, last, flags); 447 if (ret) { 448 struct xhci_segment *next; 449 do { 450 next = first->next; 451 xhci_segment_free(xhci, first); 452 if (first == last) 453 break; 454 first = next; 455 } while (true); 456 return ret; 457 } 458 459 xhci_link_rings(xhci, ring, first, last, num_segs); 460 trace_xhci_ring_expansion(ring); 461 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 462 "ring expansion succeed, now has %d segments", 463 ring->num_segs); 464 465 return 0; 466 } 467 468 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 469 int type, gfp_t flags) 470 { 471 struct xhci_container_ctx *ctx; 472 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 473 474 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 475 return NULL; 476 477 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 478 if (!ctx) 479 return NULL; 480 481 ctx->type = type; 482 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 483 if (type == XHCI_CTX_TYPE_INPUT) 484 ctx->size += CTX_SIZE(xhci->hcc_params); 485 486 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 487 if (!ctx->bytes) { 488 kfree(ctx); 489 return NULL; 490 } 491 return ctx; 492 } 493 494 void xhci_free_container_ctx(struct xhci_hcd *xhci, 495 struct xhci_container_ctx *ctx) 496 { 497 if (!ctx) 498 return; 499 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 500 kfree(ctx); 501 } 502 503 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 504 struct xhci_container_ctx *ctx) 505 { 506 if (ctx->type != XHCI_CTX_TYPE_INPUT) 507 return NULL; 508 509 return (struct xhci_input_control_ctx *)ctx->bytes; 510 } 511 512 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 513 struct xhci_container_ctx *ctx) 514 { 515 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 516 return (struct xhci_slot_ctx *)ctx->bytes; 517 518 return (struct xhci_slot_ctx *) 519 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 520 } 521 522 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 523 struct xhci_container_ctx *ctx, 524 unsigned int ep_index) 525 { 526 /* increment ep index by offset of start of ep ctx array */ 527 ep_index++; 528 if (ctx->type == XHCI_CTX_TYPE_INPUT) 529 ep_index++; 530 531 return (struct xhci_ep_ctx *) 532 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 533 } 534 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 535 536 /***************** Streams structures manipulation *************************/ 537 538 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 539 unsigned int num_stream_ctxs, 540 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 541 { 542 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 543 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 544 545 if (size > MEDIUM_STREAM_ARRAY_SIZE) 546 dma_free_coherent(dev, size, 547 stream_ctx, dma); 548 else if (size <= SMALL_STREAM_ARRAY_SIZE) 549 return dma_pool_free(xhci->small_streams_pool, 550 stream_ctx, dma); 551 else 552 return dma_pool_free(xhci->medium_streams_pool, 553 stream_ctx, dma); 554 } 555 556 /* 557 * The stream context array for each endpoint with bulk streams enabled can 558 * vary in size, based on: 559 * - how many streams the endpoint supports, 560 * - the maximum primary stream array size the host controller supports, 561 * - and how many streams the device driver asks for. 562 * 563 * The stream context array must be a power of 2, and can be as small as 564 * 64 bytes or as large as 1MB. 565 */ 566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 567 unsigned int num_stream_ctxs, dma_addr_t *dma, 568 gfp_t mem_flags) 569 { 570 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 571 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 572 573 if (size > MEDIUM_STREAM_ARRAY_SIZE) 574 return dma_alloc_coherent(dev, size, 575 dma, mem_flags); 576 else if (size <= SMALL_STREAM_ARRAY_SIZE) 577 return dma_pool_alloc(xhci->small_streams_pool, 578 mem_flags, dma); 579 else 580 return dma_pool_alloc(xhci->medium_streams_pool, 581 mem_flags, dma); 582 } 583 584 struct xhci_ring *xhci_dma_to_transfer_ring( 585 struct xhci_virt_ep *ep, 586 u64 address) 587 { 588 if (ep->ep_state & EP_HAS_STREAMS) 589 return radix_tree_lookup(&ep->stream_info->trb_address_map, 590 address >> TRB_SEGMENT_SHIFT); 591 return ep->ring; 592 } 593 594 /* 595 * Change an endpoint's internal structure so it supports stream IDs. The 596 * number of requested streams includes stream 0, which cannot be used by device 597 * drivers. 598 * 599 * The number of stream contexts in the stream context array may be bigger than 600 * the number of streams the driver wants to use. This is because the number of 601 * stream context array entries must be a power of two. 602 */ 603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 604 unsigned int num_stream_ctxs, 605 unsigned int num_streams, 606 unsigned int max_packet, gfp_t mem_flags) 607 { 608 struct xhci_stream_info *stream_info; 609 u32 cur_stream; 610 struct xhci_ring *cur_ring; 611 u64 addr; 612 int ret; 613 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 614 615 xhci_dbg(xhci, "Allocating %u streams and %u " 616 "stream context array entries.\n", 617 num_streams, num_stream_ctxs); 618 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 619 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 620 return NULL; 621 } 622 xhci->cmd_ring_reserved_trbs++; 623 624 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 625 dev_to_node(dev)); 626 if (!stream_info) 627 goto cleanup_trbs; 628 629 stream_info->num_streams = num_streams; 630 stream_info->num_stream_ctxs = num_stream_ctxs; 631 632 /* Initialize the array of virtual pointers to stream rings. */ 633 stream_info->stream_rings = kcalloc_node( 634 num_streams, sizeof(struct xhci_ring *), mem_flags, 635 dev_to_node(dev)); 636 if (!stream_info->stream_rings) 637 goto cleanup_info; 638 639 /* Initialize the array of DMA addresses for stream rings for the HW. */ 640 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 641 num_stream_ctxs, &stream_info->ctx_array_dma, 642 mem_flags); 643 if (!stream_info->stream_ctx_array) 644 goto cleanup_ctx; 645 memset(stream_info->stream_ctx_array, 0, 646 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 647 648 /* Allocate everything needed to free the stream rings later */ 649 stream_info->free_streams_command = 650 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 651 if (!stream_info->free_streams_command) 652 goto cleanup_ctx; 653 654 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 655 656 /* Allocate rings for all the streams that the driver will use, 657 * and add their segment DMA addresses to the radix tree. 658 * Stream 0 is reserved. 659 */ 660 661 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 662 stream_info->stream_rings[cur_stream] = 663 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 664 mem_flags); 665 cur_ring = stream_info->stream_rings[cur_stream]; 666 if (!cur_ring) 667 goto cleanup_rings; 668 cur_ring->stream_id = cur_stream; 669 cur_ring->trb_address_map = &stream_info->trb_address_map; 670 /* Set deq ptr, cycle bit, and stream context type */ 671 addr = cur_ring->first_seg->dma | 672 SCT_FOR_CTX(SCT_PRI_TR) | 673 cur_ring->cycle_state; 674 stream_info->stream_ctx_array[cur_stream].stream_ring = 675 cpu_to_le64(addr); 676 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 677 cur_stream, (unsigned long long) addr); 678 679 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 680 if (ret) { 681 xhci_ring_free(xhci, cur_ring); 682 stream_info->stream_rings[cur_stream] = NULL; 683 goto cleanup_rings; 684 } 685 } 686 /* Leave the other unused stream ring pointers in the stream context 687 * array initialized to zero. This will cause the xHC to give us an 688 * error if the device asks for a stream ID we don't have setup (if it 689 * was any other way, the host controller would assume the ring is 690 * "empty" and wait forever for data to be queued to that stream ID). 691 */ 692 693 return stream_info; 694 695 cleanup_rings: 696 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 697 cur_ring = stream_info->stream_rings[cur_stream]; 698 if (cur_ring) { 699 xhci_ring_free(xhci, cur_ring); 700 stream_info->stream_rings[cur_stream] = NULL; 701 } 702 } 703 xhci_free_command(xhci, stream_info->free_streams_command); 704 cleanup_ctx: 705 kfree(stream_info->stream_rings); 706 cleanup_info: 707 kfree(stream_info); 708 cleanup_trbs: 709 xhci->cmd_ring_reserved_trbs--; 710 return NULL; 711 } 712 /* 713 * Sets the MaxPStreams field and the Linear Stream Array field. 714 * Sets the dequeue pointer to the stream context array. 715 */ 716 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 717 struct xhci_ep_ctx *ep_ctx, 718 struct xhci_stream_info *stream_info) 719 { 720 u32 max_primary_streams; 721 /* MaxPStreams is the number of stream context array entries, not the 722 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 723 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 724 */ 725 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 726 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 727 "Setting number of stream ctx array entries to %u", 728 1 << (max_primary_streams + 1)); 729 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 730 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 731 | EP_HAS_LSA); 732 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 733 } 734 735 /* 736 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 737 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 738 * not at the beginning of the ring). 739 */ 740 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 741 struct xhci_virt_ep *ep) 742 { 743 dma_addr_t addr; 744 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 745 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 746 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 747 } 748 749 /* Frees all stream contexts associated with the endpoint, 750 * 751 * Caller should fix the endpoint context streams fields. 752 */ 753 void xhci_free_stream_info(struct xhci_hcd *xhci, 754 struct xhci_stream_info *stream_info) 755 { 756 int cur_stream; 757 struct xhci_ring *cur_ring; 758 759 if (!stream_info) 760 return; 761 762 for (cur_stream = 1; cur_stream < stream_info->num_streams; 763 cur_stream++) { 764 cur_ring = stream_info->stream_rings[cur_stream]; 765 if (cur_ring) { 766 xhci_ring_free(xhci, cur_ring); 767 stream_info->stream_rings[cur_stream] = NULL; 768 } 769 } 770 xhci_free_command(xhci, stream_info->free_streams_command); 771 xhci->cmd_ring_reserved_trbs--; 772 if (stream_info->stream_ctx_array) 773 xhci_free_stream_ctx(xhci, 774 stream_info->num_stream_ctxs, 775 stream_info->stream_ctx_array, 776 stream_info->ctx_array_dma); 777 778 kfree(stream_info->stream_rings); 779 kfree(stream_info); 780 } 781 782 783 /***************** Device context manipulation *************************/ 784 785 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 786 struct xhci_virt_ep *ep) 787 { 788 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 789 0); 790 ep->xhci = xhci; 791 } 792 793 static void xhci_free_tt_info(struct xhci_hcd *xhci, 794 struct xhci_virt_device *virt_dev, 795 int slot_id) 796 { 797 struct list_head *tt_list_head; 798 struct xhci_tt_bw_info *tt_info, *next; 799 bool slot_found = false; 800 801 /* If the device never made it past the Set Address stage, 802 * it may not have the real_port set correctly. 803 */ 804 if (virt_dev->real_port == 0 || 805 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 806 xhci_dbg(xhci, "Bad real port.\n"); 807 return; 808 } 809 810 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 811 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 812 /* Multi-TT hubs will have more than one entry */ 813 if (tt_info->slot_id == slot_id) { 814 slot_found = true; 815 list_del(&tt_info->tt_list); 816 kfree(tt_info); 817 } else if (slot_found) { 818 break; 819 } 820 } 821 } 822 823 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 824 struct xhci_virt_device *virt_dev, 825 struct usb_device *hdev, 826 struct usb_tt *tt, gfp_t mem_flags) 827 { 828 struct xhci_tt_bw_info *tt_info; 829 unsigned int num_ports; 830 int i, j; 831 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 832 833 if (!tt->multi) 834 num_ports = 1; 835 else 836 num_ports = hdev->maxchild; 837 838 for (i = 0; i < num_ports; i++, tt_info++) { 839 struct xhci_interval_bw_table *bw_table; 840 841 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 842 dev_to_node(dev)); 843 if (!tt_info) 844 goto free_tts; 845 INIT_LIST_HEAD(&tt_info->tt_list); 846 list_add(&tt_info->tt_list, 847 &xhci->rh_bw[virt_dev->real_port - 1].tts); 848 tt_info->slot_id = virt_dev->udev->slot_id; 849 if (tt->multi) 850 tt_info->ttport = i+1; 851 bw_table = &tt_info->bw_table; 852 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 853 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 854 } 855 return 0; 856 857 free_tts: 858 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 859 return -ENOMEM; 860 } 861 862 863 /* All the xhci_tds in the ring's TD list should be freed at this point. 864 * Should be called with xhci->lock held if there is any chance the TT lists 865 * will be manipulated by the configure endpoint, allocate device, or update 866 * hub functions while this function is removing the TT entries from the list. 867 */ 868 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 869 { 870 struct xhci_virt_device *dev; 871 int i; 872 int old_active_eps = 0; 873 874 /* Slot ID 0 is reserved */ 875 if (slot_id == 0 || !xhci->devs[slot_id]) 876 return; 877 878 dev = xhci->devs[slot_id]; 879 880 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 881 if (!dev) 882 return; 883 884 trace_xhci_free_virt_device(dev); 885 886 if (dev->tt_info) 887 old_active_eps = dev->tt_info->active_eps; 888 889 for (i = 0; i < 31; i++) { 890 if (dev->eps[i].ring) 891 xhci_ring_free(xhci, dev->eps[i].ring); 892 if (dev->eps[i].stream_info) 893 xhci_free_stream_info(xhci, 894 dev->eps[i].stream_info); 895 /* Endpoints on the TT/root port lists should have been removed 896 * when usb_disable_device() was called for the device. 897 * We can't drop them anyway, because the udev might have gone 898 * away by this point, and we can't tell what speed it was. 899 */ 900 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 901 xhci_warn(xhci, "Slot %u endpoint %u " 902 "not removed from BW list!\n", 903 slot_id, i); 904 } 905 /* If this is a hub, free the TT(s) from the TT list */ 906 xhci_free_tt_info(xhci, dev, slot_id); 907 /* If necessary, update the number of active TTs on this root port */ 908 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 909 910 if (dev->in_ctx) 911 xhci_free_container_ctx(xhci, dev->in_ctx); 912 if (dev->out_ctx) 913 xhci_free_container_ctx(xhci, dev->out_ctx); 914 915 if (dev->udev && dev->udev->slot_id) 916 dev->udev->slot_id = 0; 917 kfree(xhci->devs[slot_id]); 918 xhci->devs[slot_id] = NULL; 919 } 920 921 /* 922 * Free a virt_device structure. 923 * If the virt_device added a tt_info (a hub) and has children pointing to 924 * that tt_info, then free the child first. Recursive. 925 * We can't rely on udev at this point to find child-parent relationships. 926 */ 927 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 928 { 929 struct xhci_virt_device *vdev; 930 struct list_head *tt_list_head; 931 struct xhci_tt_bw_info *tt_info, *next; 932 int i; 933 934 vdev = xhci->devs[slot_id]; 935 if (!vdev) 936 return; 937 938 if (vdev->real_port == 0 || 939 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 940 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 941 goto out; 942 } 943 944 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 945 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 946 /* is this a hub device that added a tt_info to the tts list */ 947 if (tt_info->slot_id == slot_id) { 948 /* are any devices using this tt_info? */ 949 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 950 vdev = xhci->devs[i]; 951 if (vdev && (vdev->tt_info == tt_info)) 952 xhci_free_virt_devices_depth_first( 953 xhci, i); 954 } 955 } 956 } 957 out: 958 /* we are now at a leaf device */ 959 xhci_debugfs_remove_slot(xhci, slot_id); 960 xhci_free_virt_device(xhci, slot_id); 961 } 962 963 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 964 struct usb_device *udev, gfp_t flags) 965 { 966 struct xhci_virt_device *dev; 967 int i; 968 969 /* Slot ID 0 is reserved */ 970 if (slot_id == 0 || xhci->devs[slot_id]) { 971 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 972 return 0; 973 } 974 975 dev = kzalloc(sizeof(*dev), flags); 976 if (!dev) 977 return 0; 978 979 dev->slot_id = slot_id; 980 981 /* Allocate the (output) device context that will be used in the HC. */ 982 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 983 if (!dev->out_ctx) 984 goto fail; 985 986 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 987 (unsigned long long)dev->out_ctx->dma); 988 989 /* Allocate the (input) device context for address device command */ 990 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 991 if (!dev->in_ctx) 992 goto fail; 993 994 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 995 (unsigned long long)dev->in_ctx->dma); 996 997 /* Initialize the cancellation list and watchdog timers for each ep */ 998 for (i = 0; i < 31; i++) { 999 dev->eps[i].ep_index = i; 1000 dev->eps[i].vdev = dev; 1001 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1002 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1003 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1004 } 1005 1006 /* Allocate endpoint 0 ring */ 1007 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1008 if (!dev->eps[0].ring) 1009 goto fail; 1010 1011 dev->udev = udev; 1012 1013 /* Point to output device context in dcbaa. */ 1014 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1015 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1016 slot_id, 1017 &xhci->dcbaa->dev_context_ptrs[slot_id], 1018 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1019 1020 trace_xhci_alloc_virt_device(dev); 1021 1022 xhci->devs[slot_id] = dev; 1023 1024 return 1; 1025 fail: 1026 1027 if (dev->in_ctx) 1028 xhci_free_container_ctx(xhci, dev->in_ctx); 1029 if (dev->out_ctx) 1030 xhci_free_container_ctx(xhci, dev->out_ctx); 1031 kfree(dev); 1032 1033 return 0; 1034 } 1035 1036 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1037 struct usb_device *udev) 1038 { 1039 struct xhci_virt_device *virt_dev; 1040 struct xhci_ep_ctx *ep0_ctx; 1041 struct xhci_ring *ep_ring; 1042 1043 virt_dev = xhci->devs[udev->slot_id]; 1044 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1045 ep_ring = virt_dev->eps[0].ring; 1046 /* 1047 * FIXME we don't keep track of the dequeue pointer very well after a 1048 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1049 * host to our enqueue pointer. This should only be called after a 1050 * configured device has reset, so all control transfers should have 1051 * been completed or cancelled before the reset. 1052 */ 1053 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1054 ep_ring->enqueue) 1055 | ep_ring->cycle_state); 1056 } 1057 1058 /* 1059 * The xHCI roothub may have ports of differing speeds in any order in the port 1060 * status registers. 1061 * 1062 * The xHCI hardware wants to know the roothub port number that the USB device 1063 * is attached to (or the roothub port its ancestor hub is attached to). All we 1064 * know is the index of that port under either the USB 2.0 or the USB 3.0 1065 * roothub, but that doesn't give us the real index into the HW port status 1066 * registers. Call xhci_find_raw_port_number() to get real index. 1067 */ 1068 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1069 struct usb_device *udev) 1070 { 1071 struct usb_device *top_dev; 1072 struct usb_hcd *hcd; 1073 1074 if (udev->speed >= USB_SPEED_SUPER) 1075 hcd = xhci->shared_hcd; 1076 else 1077 hcd = xhci->main_hcd; 1078 1079 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1080 top_dev = top_dev->parent) 1081 /* Found device below root hub */; 1082 1083 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1084 } 1085 1086 /* Setup an xHCI virtual device for a Set Address command */ 1087 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1088 { 1089 struct xhci_virt_device *dev; 1090 struct xhci_ep_ctx *ep0_ctx; 1091 struct xhci_slot_ctx *slot_ctx; 1092 u32 port_num; 1093 u32 max_packets; 1094 struct usb_device *top_dev; 1095 1096 dev = xhci->devs[udev->slot_id]; 1097 /* Slot ID 0 is reserved */ 1098 if (udev->slot_id == 0 || !dev) { 1099 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1100 udev->slot_id); 1101 return -EINVAL; 1102 } 1103 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1104 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1105 1106 /* 3) Only the control endpoint is valid - one endpoint context */ 1107 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1108 switch (udev->speed) { 1109 case USB_SPEED_SUPER_PLUS: 1110 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1111 max_packets = MAX_PACKET(512); 1112 break; 1113 case USB_SPEED_SUPER: 1114 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1115 max_packets = MAX_PACKET(512); 1116 break; 1117 case USB_SPEED_HIGH: 1118 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1119 max_packets = MAX_PACKET(64); 1120 break; 1121 /* USB core guesses at a 64-byte max packet first for FS devices */ 1122 case USB_SPEED_FULL: 1123 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1124 max_packets = MAX_PACKET(64); 1125 break; 1126 case USB_SPEED_LOW: 1127 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1128 max_packets = MAX_PACKET(8); 1129 break; 1130 case USB_SPEED_WIRELESS: 1131 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1132 return -EINVAL; 1133 default: 1134 /* Speed was set earlier, this shouldn't happen. */ 1135 return -EINVAL; 1136 } 1137 /* Find the root hub port this device is under */ 1138 port_num = xhci_find_real_port_number(xhci, udev); 1139 if (!port_num) 1140 return -EINVAL; 1141 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1142 /* Set the port number in the virtual_device to the faked port number */ 1143 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1144 top_dev = top_dev->parent) 1145 /* Found device below root hub */; 1146 dev->fake_port = top_dev->portnum; 1147 dev->real_port = port_num; 1148 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1149 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1150 1151 /* Find the right bandwidth table that this device will be a part of. 1152 * If this is a full speed device attached directly to a root port (or a 1153 * decendent of one), it counts as a primary bandwidth domain, not a 1154 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1155 * will never be created for the HS root hub. 1156 */ 1157 if (!udev->tt || !udev->tt->hub->parent) { 1158 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1159 } else { 1160 struct xhci_root_port_bw_info *rh_bw; 1161 struct xhci_tt_bw_info *tt_bw; 1162 1163 rh_bw = &xhci->rh_bw[port_num - 1]; 1164 /* Find the right TT. */ 1165 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1166 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1167 continue; 1168 1169 if (!dev->udev->tt->multi || 1170 (udev->tt->multi && 1171 tt_bw->ttport == dev->udev->ttport)) { 1172 dev->bw_table = &tt_bw->bw_table; 1173 dev->tt_info = tt_bw; 1174 break; 1175 } 1176 } 1177 if (!dev->tt_info) 1178 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1179 } 1180 1181 /* Is this a LS/FS device under an external HS hub? */ 1182 if (udev->tt && udev->tt->hub->parent) { 1183 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1184 (udev->ttport << 8)); 1185 if (udev->tt->multi) 1186 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1187 } 1188 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1189 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1190 1191 /* Step 4 - ring already allocated */ 1192 /* Step 5 */ 1193 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1194 1195 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1196 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1197 max_packets); 1198 1199 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1200 dev->eps[0].ring->cycle_state); 1201 1202 trace_xhci_setup_addressable_virt_device(dev); 1203 1204 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * Convert interval expressed as 2^(bInterval - 1) == interval into 1211 * straight exponent value 2^n == interval. 1212 * 1213 */ 1214 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1215 struct usb_host_endpoint *ep) 1216 { 1217 unsigned int interval; 1218 1219 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1220 if (interval != ep->desc.bInterval - 1) 1221 dev_warn(&udev->dev, 1222 "ep %#x - rounding interval to %d %sframes\n", 1223 ep->desc.bEndpointAddress, 1224 1 << interval, 1225 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1226 1227 if (udev->speed == USB_SPEED_FULL) { 1228 /* 1229 * Full speed isoc endpoints specify interval in frames, 1230 * not microframes. We are using microframes everywhere, 1231 * so adjust accordingly. 1232 */ 1233 interval += 3; /* 1 frame = 2^3 uframes */ 1234 } 1235 1236 return interval; 1237 } 1238 1239 /* 1240 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1241 * microframes, rounded down to nearest power of 2. 1242 */ 1243 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1244 struct usb_host_endpoint *ep, unsigned int desc_interval, 1245 unsigned int min_exponent, unsigned int max_exponent) 1246 { 1247 unsigned int interval; 1248 1249 interval = fls(desc_interval) - 1; 1250 interval = clamp_val(interval, min_exponent, max_exponent); 1251 if ((1 << interval) != desc_interval) 1252 dev_dbg(&udev->dev, 1253 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1254 ep->desc.bEndpointAddress, 1255 1 << interval, 1256 desc_interval); 1257 1258 return interval; 1259 } 1260 1261 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1262 struct usb_host_endpoint *ep) 1263 { 1264 if (ep->desc.bInterval == 0) 1265 return 0; 1266 return xhci_microframes_to_exponent(udev, ep, 1267 ep->desc.bInterval, 0, 15); 1268 } 1269 1270 1271 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1272 struct usb_host_endpoint *ep) 1273 { 1274 return xhci_microframes_to_exponent(udev, ep, 1275 ep->desc.bInterval * 8, 3, 10); 1276 } 1277 1278 /* Return the polling or NAK interval. 1279 * 1280 * The polling interval is expressed in "microframes". If xHCI's Interval field 1281 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1282 * 1283 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1284 * is set to 0. 1285 */ 1286 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1287 struct usb_host_endpoint *ep) 1288 { 1289 unsigned int interval = 0; 1290 1291 switch (udev->speed) { 1292 case USB_SPEED_HIGH: 1293 /* Max NAK rate */ 1294 if (usb_endpoint_xfer_control(&ep->desc) || 1295 usb_endpoint_xfer_bulk(&ep->desc)) { 1296 interval = xhci_parse_microframe_interval(udev, ep); 1297 break; 1298 } 1299 fallthrough; /* SS and HS isoc/int have same decoding */ 1300 1301 case USB_SPEED_SUPER_PLUS: 1302 case USB_SPEED_SUPER: 1303 if (usb_endpoint_xfer_int(&ep->desc) || 1304 usb_endpoint_xfer_isoc(&ep->desc)) { 1305 interval = xhci_parse_exponent_interval(udev, ep); 1306 } 1307 break; 1308 1309 case USB_SPEED_FULL: 1310 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1311 interval = xhci_parse_exponent_interval(udev, ep); 1312 break; 1313 } 1314 /* 1315 * Fall through for interrupt endpoint interval decoding 1316 * since it uses the same rules as low speed interrupt 1317 * endpoints. 1318 */ 1319 fallthrough; 1320 1321 case USB_SPEED_LOW: 1322 if (usb_endpoint_xfer_int(&ep->desc) || 1323 usb_endpoint_xfer_isoc(&ep->desc)) { 1324 1325 interval = xhci_parse_frame_interval(udev, ep); 1326 } 1327 break; 1328 1329 default: 1330 BUG(); 1331 } 1332 return interval; 1333 } 1334 1335 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1336 * High speed endpoint descriptors can define "the number of additional 1337 * transaction opportunities per microframe", but that goes in the Max Burst 1338 * endpoint context field. 1339 */ 1340 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1341 struct usb_host_endpoint *ep) 1342 { 1343 if (udev->speed < USB_SPEED_SUPER || 1344 !usb_endpoint_xfer_isoc(&ep->desc)) 1345 return 0; 1346 return ep->ss_ep_comp.bmAttributes; 1347 } 1348 1349 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1350 struct usb_host_endpoint *ep) 1351 { 1352 /* Super speed and Plus have max burst in ep companion desc */ 1353 if (udev->speed >= USB_SPEED_SUPER) 1354 return ep->ss_ep_comp.bMaxBurst; 1355 1356 if (udev->speed == USB_SPEED_HIGH && 1357 (usb_endpoint_xfer_isoc(&ep->desc) || 1358 usb_endpoint_xfer_int(&ep->desc))) 1359 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1360 1361 return 0; 1362 } 1363 1364 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1365 { 1366 int in; 1367 1368 in = usb_endpoint_dir_in(&ep->desc); 1369 1370 switch (usb_endpoint_type(&ep->desc)) { 1371 case USB_ENDPOINT_XFER_CONTROL: 1372 return CTRL_EP; 1373 case USB_ENDPOINT_XFER_BULK: 1374 return in ? BULK_IN_EP : BULK_OUT_EP; 1375 case USB_ENDPOINT_XFER_ISOC: 1376 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1377 case USB_ENDPOINT_XFER_INT: 1378 return in ? INT_IN_EP : INT_OUT_EP; 1379 } 1380 return 0; 1381 } 1382 1383 /* Return the maximum endpoint service interval time (ESIT) payload. 1384 * Basically, this is the maxpacket size, multiplied by the burst size 1385 * and mult size. 1386 */ 1387 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1388 struct usb_host_endpoint *ep) 1389 { 1390 int max_burst; 1391 int max_packet; 1392 1393 /* Only applies for interrupt or isochronous endpoints */ 1394 if (usb_endpoint_xfer_control(&ep->desc) || 1395 usb_endpoint_xfer_bulk(&ep->desc)) 1396 return 0; 1397 1398 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1399 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1400 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1401 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1402 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1403 else if (udev->speed >= USB_SPEED_SUPER) 1404 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1405 1406 max_packet = usb_endpoint_maxp(&ep->desc); 1407 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1408 /* A 0 in max burst means 1 transfer per ESIT */ 1409 return max_packet * max_burst; 1410 } 1411 1412 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1413 * Drivers will have to call usb_alloc_streams() to do that. 1414 */ 1415 int xhci_endpoint_init(struct xhci_hcd *xhci, 1416 struct xhci_virt_device *virt_dev, 1417 struct usb_device *udev, 1418 struct usb_host_endpoint *ep, 1419 gfp_t mem_flags) 1420 { 1421 unsigned int ep_index; 1422 struct xhci_ep_ctx *ep_ctx; 1423 struct xhci_ring *ep_ring; 1424 unsigned int max_packet; 1425 enum xhci_ring_type ring_type; 1426 u32 max_esit_payload; 1427 u32 endpoint_type; 1428 unsigned int max_burst; 1429 unsigned int interval; 1430 unsigned int mult; 1431 unsigned int avg_trb_len; 1432 unsigned int err_count = 0; 1433 1434 ep_index = xhci_get_endpoint_index(&ep->desc); 1435 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1436 1437 endpoint_type = xhci_get_endpoint_type(ep); 1438 if (!endpoint_type) 1439 return -EINVAL; 1440 1441 ring_type = usb_endpoint_type(&ep->desc); 1442 1443 /* 1444 * Get values to fill the endpoint context, mostly from ep descriptor. 1445 * The average TRB buffer lengt for bulk endpoints is unclear as we 1446 * have no clue on scatter gather list entry size. For Isoc and Int, 1447 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1448 */ 1449 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1450 interval = xhci_get_endpoint_interval(udev, ep); 1451 1452 /* Periodic endpoint bInterval limit quirk */ 1453 if (usb_endpoint_xfer_int(&ep->desc) || 1454 usb_endpoint_xfer_isoc(&ep->desc)) { 1455 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1456 udev->speed >= USB_SPEED_HIGH && 1457 interval >= 7) { 1458 interval = 6; 1459 } 1460 } 1461 1462 mult = xhci_get_endpoint_mult(udev, ep); 1463 max_packet = usb_endpoint_maxp(&ep->desc); 1464 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1465 avg_trb_len = max_esit_payload; 1466 1467 /* FIXME dig Mult and streams info out of ep companion desc */ 1468 1469 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1470 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1471 err_count = 3; 1472 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1473 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1474 if (udev->speed == USB_SPEED_HIGH) 1475 max_packet = 512; 1476 if (udev->speed == USB_SPEED_FULL) { 1477 max_packet = rounddown_pow_of_two(max_packet); 1478 max_packet = clamp_val(max_packet, 8, 64); 1479 } 1480 } 1481 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1482 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1483 avg_trb_len = 8; 1484 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1485 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1486 mult = 0; 1487 1488 /* Set up the endpoint ring */ 1489 virt_dev->eps[ep_index].new_ring = 1490 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1491 if (!virt_dev->eps[ep_index].new_ring) 1492 return -ENOMEM; 1493 1494 virt_dev->eps[ep_index].skip = false; 1495 ep_ring = virt_dev->eps[ep_index].new_ring; 1496 1497 /* Fill the endpoint context */ 1498 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1499 EP_INTERVAL(interval) | 1500 EP_MULT(mult)); 1501 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1502 MAX_PACKET(max_packet) | 1503 MAX_BURST(max_burst) | 1504 ERROR_COUNT(err_count)); 1505 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1506 ep_ring->cycle_state); 1507 1508 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1509 EP_AVG_TRB_LENGTH(avg_trb_len)); 1510 1511 return 0; 1512 } 1513 1514 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1515 struct xhci_virt_device *virt_dev, 1516 struct usb_host_endpoint *ep) 1517 { 1518 unsigned int ep_index; 1519 struct xhci_ep_ctx *ep_ctx; 1520 1521 ep_index = xhci_get_endpoint_index(&ep->desc); 1522 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1523 1524 ep_ctx->ep_info = 0; 1525 ep_ctx->ep_info2 = 0; 1526 ep_ctx->deq = 0; 1527 ep_ctx->tx_info = 0; 1528 /* Don't free the endpoint ring until the set interface or configuration 1529 * request succeeds. 1530 */ 1531 } 1532 1533 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1534 { 1535 bw_info->ep_interval = 0; 1536 bw_info->mult = 0; 1537 bw_info->num_packets = 0; 1538 bw_info->max_packet_size = 0; 1539 bw_info->type = 0; 1540 bw_info->max_esit_payload = 0; 1541 } 1542 1543 void xhci_update_bw_info(struct xhci_hcd *xhci, 1544 struct xhci_container_ctx *in_ctx, 1545 struct xhci_input_control_ctx *ctrl_ctx, 1546 struct xhci_virt_device *virt_dev) 1547 { 1548 struct xhci_bw_info *bw_info; 1549 struct xhci_ep_ctx *ep_ctx; 1550 unsigned int ep_type; 1551 int i; 1552 1553 for (i = 1; i < 31; i++) { 1554 bw_info = &virt_dev->eps[i].bw_info; 1555 1556 /* We can't tell what endpoint type is being dropped, but 1557 * unconditionally clearing the bandwidth info for non-periodic 1558 * endpoints should be harmless because the info will never be 1559 * set in the first place. 1560 */ 1561 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1562 /* Dropped endpoint */ 1563 xhci_clear_endpoint_bw_info(bw_info); 1564 continue; 1565 } 1566 1567 if (EP_IS_ADDED(ctrl_ctx, i)) { 1568 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1569 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1570 1571 /* Ignore non-periodic endpoints */ 1572 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1573 ep_type != ISOC_IN_EP && 1574 ep_type != INT_IN_EP) 1575 continue; 1576 1577 /* Added or changed endpoint */ 1578 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1579 le32_to_cpu(ep_ctx->ep_info)); 1580 /* Number of packets and mult are zero-based in the 1581 * input context, but we want one-based for the 1582 * interval table. 1583 */ 1584 bw_info->mult = CTX_TO_EP_MULT( 1585 le32_to_cpu(ep_ctx->ep_info)) + 1; 1586 bw_info->num_packets = CTX_TO_MAX_BURST( 1587 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1588 bw_info->max_packet_size = MAX_PACKET_DECODED( 1589 le32_to_cpu(ep_ctx->ep_info2)); 1590 bw_info->type = ep_type; 1591 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1592 le32_to_cpu(ep_ctx->tx_info)); 1593 } 1594 } 1595 } 1596 1597 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1598 * Useful when you want to change one particular aspect of the endpoint and then 1599 * issue a configure endpoint command. 1600 */ 1601 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1602 struct xhci_container_ctx *in_ctx, 1603 struct xhci_container_ctx *out_ctx, 1604 unsigned int ep_index) 1605 { 1606 struct xhci_ep_ctx *out_ep_ctx; 1607 struct xhci_ep_ctx *in_ep_ctx; 1608 1609 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1610 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1611 1612 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1613 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1614 in_ep_ctx->deq = out_ep_ctx->deq; 1615 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1616 if (xhci->quirks & XHCI_MTK_HOST) { 1617 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1618 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1619 } 1620 } 1621 1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1623 * Useful when you want to change one particular aspect of the endpoint and then 1624 * issue a configure endpoint command. Only the context entries field matters, 1625 * but we'll copy the whole thing anyway. 1626 */ 1627 void xhci_slot_copy(struct xhci_hcd *xhci, 1628 struct xhci_container_ctx *in_ctx, 1629 struct xhci_container_ctx *out_ctx) 1630 { 1631 struct xhci_slot_ctx *in_slot_ctx; 1632 struct xhci_slot_ctx *out_slot_ctx; 1633 1634 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1635 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1636 1637 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1638 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1639 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1640 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1641 } 1642 1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1644 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1645 { 1646 int i; 1647 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1648 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1649 1650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1651 "Allocating %d scratchpad buffers", num_sp); 1652 1653 if (!num_sp) 1654 return 0; 1655 1656 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1657 dev_to_node(dev)); 1658 if (!xhci->scratchpad) 1659 goto fail_sp; 1660 1661 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1662 num_sp * sizeof(u64), 1663 &xhci->scratchpad->sp_dma, flags); 1664 if (!xhci->scratchpad->sp_array) 1665 goto fail_sp2; 1666 1667 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1668 flags, dev_to_node(dev)); 1669 if (!xhci->scratchpad->sp_buffers) 1670 goto fail_sp3; 1671 1672 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1673 for (i = 0; i < num_sp; i++) { 1674 dma_addr_t dma; 1675 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1676 flags); 1677 if (!buf) 1678 goto fail_sp4; 1679 1680 xhci->scratchpad->sp_array[i] = dma; 1681 xhci->scratchpad->sp_buffers[i] = buf; 1682 } 1683 1684 return 0; 1685 1686 fail_sp4: 1687 for (i = i - 1; i >= 0; i--) { 1688 dma_free_coherent(dev, xhci->page_size, 1689 xhci->scratchpad->sp_buffers[i], 1690 xhci->scratchpad->sp_array[i]); 1691 } 1692 1693 kfree(xhci->scratchpad->sp_buffers); 1694 1695 fail_sp3: 1696 dma_free_coherent(dev, num_sp * sizeof(u64), 1697 xhci->scratchpad->sp_array, 1698 xhci->scratchpad->sp_dma); 1699 1700 fail_sp2: 1701 kfree(xhci->scratchpad); 1702 xhci->scratchpad = NULL; 1703 1704 fail_sp: 1705 return -ENOMEM; 1706 } 1707 1708 static void scratchpad_free(struct xhci_hcd *xhci) 1709 { 1710 int num_sp; 1711 int i; 1712 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1713 1714 if (!xhci->scratchpad) 1715 return; 1716 1717 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1718 1719 for (i = 0; i < num_sp; i++) { 1720 dma_free_coherent(dev, xhci->page_size, 1721 xhci->scratchpad->sp_buffers[i], 1722 xhci->scratchpad->sp_array[i]); 1723 } 1724 kfree(xhci->scratchpad->sp_buffers); 1725 dma_free_coherent(dev, num_sp * sizeof(u64), 1726 xhci->scratchpad->sp_array, 1727 xhci->scratchpad->sp_dma); 1728 kfree(xhci->scratchpad); 1729 xhci->scratchpad = NULL; 1730 } 1731 1732 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1733 bool allocate_completion, gfp_t mem_flags) 1734 { 1735 struct xhci_command *command; 1736 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1737 1738 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1739 if (!command) 1740 return NULL; 1741 1742 if (allocate_completion) { 1743 command->completion = 1744 kzalloc_node(sizeof(struct completion), mem_flags, 1745 dev_to_node(dev)); 1746 if (!command->completion) { 1747 kfree(command); 1748 return NULL; 1749 } 1750 init_completion(command->completion); 1751 } 1752 1753 command->status = 0; 1754 INIT_LIST_HEAD(&command->cmd_list); 1755 return command; 1756 } 1757 1758 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1759 bool allocate_completion, gfp_t mem_flags) 1760 { 1761 struct xhci_command *command; 1762 1763 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1764 if (!command) 1765 return NULL; 1766 1767 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1768 mem_flags); 1769 if (!command->in_ctx) { 1770 kfree(command->completion); 1771 kfree(command); 1772 return NULL; 1773 } 1774 return command; 1775 } 1776 1777 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1778 { 1779 kfree(urb_priv); 1780 } 1781 1782 void xhci_free_command(struct xhci_hcd *xhci, 1783 struct xhci_command *command) 1784 { 1785 xhci_free_container_ctx(xhci, 1786 command->in_ctx); 1787 kfree(command->completion); 1788 kfree(command); 1789 } 1790 1791 int xhci_alloc_erst(struct xhci_hcd *xhci, 1792 struct xhci_ring *evt_ring, 1793 struct xhci_erst *erst, 1794 gfp_t flags) 1795 { 1796 size_t size; 1797 unsigned int val; 1798 struct xhci_segment *seg; 1799 struct xhci_erst_entry *entry; 1800 1801 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs; 1802 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1803 size, &erst->erst_dma_addr, flags); 1804 if (!erst->entries) 1805 return -ENOMEM; 1806 1807 erst->num_entries = evt_ring->num_segs; 1808 1809 seg = evt_ring->first_seg; 1810 for (val = 0; val < evt_ring->num_segs; val++) { 1811 entry = &erst->entries[val]; 1812 entry->seg_addr = cpu_to_le64(seg->dma); 1813 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1814 entry->rsvd = 0; 1815 seg = seg->next; 1816 } 1817 1818 return 0; 1819 } 1820 1821 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst) 1822 { 1823 size_t size; 1824 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1825 1826 size = sizeof(struct xhci_erst_entry) * (erst->num_entries); 1827 if (erst->entries) 1828 dma_free_coherent(dev, size, 1829 erst->entries, 1830 erst->erst_dma_addr); 1831 erst->entries = NULL; 1832 } 1833 1834 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1835 { 1836 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1837 int i, j, num_ports; 1838 1839 cancel_delayed_work_sync(&xhci->cmd_timer); 1840 1841 xhci_free_erst(xhci, &xhci->erst); 1842 1843 if (xhci->event_ring) 1844 xhci_ring_free(xhci, xhci->event_ring); 1845 xhci->event_ring = NULL; 1846 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1847 1848 if (xhci->cmd_ring) 1849 xhci_ring_free(xhci, xhci->cmd_ring); 1850 xhci->cmd_ring = NULL; 1851 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1852 xhci_cleanup_command_queue(xhci); 1853 1854 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1855 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1856 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1857 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1858 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1859 while (!list_empty(ep)) 1860 list_del_init(ep->next); 1861 } 1862 } 1863 1864 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1865 xhci_free_virt_devices_depth_first(xhci, i); 1866 1867 dma_pool_destroy(xhci->segment_pool); 1868 xhci->segment_pool = NULL; 1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1870 1871 dma_pool_destroy(xhci->device_pool); 1872 xhci->device_pool = NULL; 1873 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1874 1875 dma_pool_destroy(xhci->small_streams_pool); 1876 xhci->small_streams_pool = NULL; 1877 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1878 "Freed small stream array pool"); 1879 1880 dma_pool_destroy(xhci->medium_streams_pool); 1881 xhci->medium_streams_pool = NULL; 1882 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1883 "Freed medium stream array pool"); 1884 1885 if (xhci->dcbaa) 1886 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1887 xhci->dcbaa, xhci->dcbaa->dma); 1888 xhci->dcbaa = NULL; 1889 1890 scratchpad_free(xhci); 1891 1892 if (!xhci->rh_bw) 1893 goto no_bw; 1894 1895 for (i = 0; i < num_ports; i++) { 1896 struct xhci_tt_bw_info *tt, *n; 1897 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1898 list_del(&tt->tt_list); 1899 kfree(tt); 1900 } 1901 } 1902 1903 no_bw: 1904 xhci->cmd_ring_reserved_trbs = 0; 1905 xhci->usb2_rhub.num_ports = 0; 1906 xhci->usb3_rhub.num_ports = 0; 1907 xhci->num_active_eps = 0; 1908 kfree(xhci->usb2_rhub.ports); 1909 kfree(xhci->usb3_rhub.ports); 1910 kfree(xhci->hw_ports); 1911 kfree(xhci->rh_bw); 1912 kfree(xhci->ext_caps); 1913 for (i = 0; i < xhci->num_port_caps; i++) 1914 kfree(xhci->port_caps[i].psi); 1915 kfree(xhci->port_caps); 1916 xhci->num_port_caps = 0; 1917 1918 xhci->usb2_rhub.ports = NULL; 1919 xhci->usb3_rhub.ports = NULL; 1920 xhci->hw_ports = NULL; 1921 xhci->rh_bw = NULL; 1922 xhci->ext_caps = NULL; 1923 xhci->port_caps = NULL; 1924 1925 xhci->page_size = 0; 1926 xhci->page_shift = 0; 1927 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1928 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1929 } 1930 1931 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1932 struct xhci_segment *input_seg, 1933 union xhci_trb *start_trb, 1934 union xhci_trb *end_trb, 1935 dma_addr_t input_dma, 1936 struct xhci_segment *result_seg, 1937 char *test_name, int test_number) 1938 { 1939 unsigned long long start_dma; 1940 unsigned long long end_dma; 1941 struct xhci_segment *seg; 1942 1943 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1944 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1945 1946 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1947 if (seg != result_seg) { 1948 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1949 test_name, test_number); 1950 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1951 "input DMA 0x%llx\n", 1952 input_seg, 1953 (unsigned long long) input_dma); 1954 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1955 "ending TRB %p (0x%llx DMA)\n", 1956 start_trb, start_dma, 1957 end_trb, end_dma); 1958 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1959 result_seg, seg); 1960 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1961 true); 1962 return -1; 1963 } 1964 return 0; 1965 } 1966 1967 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1968 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1969 { 1970 struct { 1971 dma_addr_t input_dma; 1972 struct xhci_segment *result_seg; 1973 } simple_test_vector [] = { 1974 /* A zeroed DMA field should fail */ 1975 { 0, NULL }, 1976 /* One TRB before the ring start should fail */ 1977 { xhci->event_ring->first_seg->dma - 16, NULL }, 1978 /* One byte before the ring start should fail */ 1979 { xhci->event_ring->first_seg->dma - 1, NULL }, 1980 /* Starting TRB should succeed */ 1981 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1982 /* Ending TRB should succeed */ 1983 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1984 xhci->event_ring->first_seg }, 1985 /* One byte after the ring end should fail */ 1986 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1987 /* One TRB after the ring end should fail */ 1988 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1989 /* An address of all ones should fail */ 1990 { (dma_addr_t) (~0), NULL }, 1991 }; 1992 struct { 1993 struct xhci_segment *input_seg; 1994 union xhci_trb *start_trb; 1995 union xhci_trb *end_trb; 1996 dma_addr_t input_dma; 1997 struct xhci_segment *result_seg; 1998 } complex_test_vector [] = { 1999 /* Test feeding a valid DMA address from a different ring */ 2000 { .input_seg = xhci->event_ring->first_seg, 2001 .start_trb = xhci->event_ring->first_seg->trbs, 2002 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2003 .input_dma = xhci->cmd_ring->first_seg->dma, 2004 .result_seg = NULL, 2005 }, 2006 /* Test feeding a valid end TRB from a different ring */ 2007 { .input_seg = xhci->event_ring->first_seg, 2008 .start_trb = xhci->event_ring->first_seg->trbs, 2009 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2010 .input_dma = xhci->cmd_ring->first_seg->dma, 2011 .result_seg = NULL, 2012 }, 2013 /* Test feeding a valid start and end TRB from a different ring */ 2014 { .input_seg = xhci->event_ring->first_seg, 2015 .start_trb = xhci->cmd_ring->first_seg->trbs, 2016 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2017 .input_dma = xhci->cmd_ring->first_seg->dma, 2018 .result_seg = NULL, 2019 }, 2020 /* TRB in this ring, but after this TD */ 2021 { .input_seg = xhci->event_ring->first_seg, 2022 .start_trb = &xhci->event_ring->first_seg->trbs[0], 2023 .end_trb = &xhci->event_ring->first_seg->trbs[3], 2024 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 2025 .result_seg = NULL, 2026 }, 2027 /* TRB in this ring, but before this TD */ 2028 { .input_seg = xhci->event_ring->first_seg, 2029 .start_trb = &xhci->event_ring->first_seg->trbs[3], 2030 .end_trb = &xhci->event_ring->first_seg->trbs[6], 2031 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2032 .result_seg = NULL, 2033 }, 2034 /* TRB in this ring, but after this wrapped TD */ 2035 { .input_seg = xhci->event_ring->first_seg, 2036 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2037 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2038 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2039 .result_seg = NULL, 2040 }, 2041 /* TRB in this ring, but before this wrapped TD */ 2042 { .input_seg = xhci->event_ring->first_seg, 2043 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2044 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2045 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2046 .result_seg = NULL, 2047 }, 2048 /* TRB not in this ring, and we have a wrapped TD */ 2049 { .input_seg = xhci->event_ring->first_seg, 2050 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2051 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2052 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2053 .result_seg = NULL, 2054 }, 2055 }; 2056 2057 unsigned int num_tests; 2058 int i, ret; 2059 2060 num_tests = ARRAY_SIZE(simple_test_vector); 2061 for (i = 0; i < num_tests; i++) { 2062 ret = xhci_test_trb_in_td(xhci, 2063 xhci->event_ring->first_seg, 2064 xhci->event_ring->first_seg->trbs, 2065 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2066 simple_test_vector[i].input_dma, 2067 simple_test_vector[i].result_seg, 2068 "Simple", i); 2069 if (ret < 0) 2070 return ret; 2071 } 2072 2073 num_tests = ARRAY_SIZE(complex_test_vector); 2074 for (i = 0; i < num_tests; i++) { 2075 ret = xhci_test_trb_in_td(xhci, 2076 complex_test_vector[i].input_seg, 2077 complex_test_vector[i].start_trb, 2078 complex_test_vector[i].end_trb, 2079 complex_test_vector[i].input_dma, 2080 complex_test_vector[i].result_seg, 2081 "Complex", i); 2082 if (ret < 0) 2083 return ret; 2084 } 2085 xhci_dbg(xhci, "TRB math tests passed.\n"); 2086 return 0; 2087 } 2088 2089 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2090 { 2091 u64 temp; 2092 dma_addr_t deq; 2093 2094 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2095 xhci->event_ring->dequeue); 2096 if (!deq) 2097 xhci_warn(xhci, "WARN something wrong with SW event ring " 2098 "dequeue ptr.\n"); 2099 /* Update HC event ring dequeue pointer */ 2100 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2101 temp &= ERST_PTR_MASK; 2102 /* Don't clear the EHB bit (which is RW1C) because 2103 * there might be more events to service. 2104 */ 2105 temp &= ~ERST_EHB; 2106 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2107 "// Write event ring dequeue pointer, " 2108 "preserving EHB bit"); 2109 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2110 &xhci->ir_set->erst_dequeue); 2111 } 2112 2113 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2114 __le32 __iomem *addr, int max_caps) 2115 { 2116 u32 temp, port_offset, port_count; 2117 int i; 2118 u8 major_revision, minor_revision; 2119 struct xhci_hub *rhub; 2120 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2121 struct xhci_port_cap *port_cap; 2122 2123 temp = readl(addr); 2124 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2125 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2126 2127 if (major_revision == 0x03) { 2128 rhub = &xhci->usb3_rhub; 2129 /* 2130 * Some hosts incorrectly use sub-minor version for minor 2131 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 2132 * for bcdUSB 0x310). Since there is no USB release with sub 2133 * minor version 0x301 to 0x309, we can assume that they are 2134 * incorrect and fix it here. 2135 */ 2136 if (minor_revision > 0x00 && minor_revision < 0x10) 2137 minor_revision <<= 4; 2138 } else if (major_revision <= 0x02) { 2139 rhub = &xhci->usb2_rhub; 2140 } else { 2141 xhci_warn(xhci, "Ignoring unknown port speed, " 2142 "Ext Cap %p, revision = 0x%x\n", 2143 addr, major_revision); 2144 /* Ignoring port protocol we can't understand. FIXME */ 2145 return; 2146 } 2147 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2148 2149 if (rhub->min_rev < minor_revision) 2150 rhub->min_rev = minor_revision; 2151 2152 /* Port offset and count in the third dword, see section 7.2 */ 2153 temp = readl(addr + 2); 2154 port_offset = XHCI_EXT_PORT_OFF(temp); 2155 port_count = XHCI_EXT_PORT_COUNT(temp); 2156 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2157 "Ext Cap %p, port offset = %u, " 2158 "count = %u, revision = 0x%x", 2159 addr, port_offset, port_count, major_revision); 2160 /* Port count includes the current port offset */ 2161 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2162 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2163 return; 2164 2165 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2166 if (xhci->num_port_caps > max_caps) 2167 return; 2168 2169 port_cap->maj_rev = major_revision; 2170 port_cap->min_rev = minor_revision; 2171 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2172 2173 if (port_cap->psi_count) { 2174 port_cap->psi = kcalloc_node(port_cap->psi_count, 2175 sizeof(*port_cap->psi), 2176 GFP_KERNEL, dev_to_node(dev)); 2177 if (!port_cap->psi) 2178 port_cap->psi_count = 0; 2179 2180 port_cap->psi_uid_count++; 2181 for (i = 0; i < port_cap->psi_count; i++) { 2182 port_cap->psi[i] = readl(addr + 4 + i); 2183 2184 /* count unique ID values, two consecutive entries can 2185 * have the same ID if link is assymetric 2186 */ 2187 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2188 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2189 port_cap->psi_uid_count++; 2190 2191 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2192 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2193 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2194 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2195 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2196 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2197 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2198 } 2199 } 2200 /* cache usb2 port capabilities */ 2201 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2202 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2203 2204 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2205 (temp & XHCI_HLC)) { 2206 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2207 "xHCI 1.0: support USB2 hardware lpm"); 2208 xhci->hw_lpm_support = 1; 2209 } 2210 2211 port_offset--; 2212 for (i = port_offset; i < (port_offset + port_count); i++) { 2213 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2214 /* Duplicate entry. Ignore the port if the revisions differ. */ 2215 if (hw_port->rhub) { 2216 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2217 " port %u\n", addr, i); 2218 xhci_warn(xhci, "Port was marked as USB %u, " 2219 "duplicated as USB %u\n", 2220 hw_port->rhub->maj_rev, major_revision); 2221 /* Only adjust the roothub port counts if we haven't 2222 * found a similar duplicate. 2223 */ 2224 if (hw_port->rhub != rhub && 2225 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2226 hw_port->rhub->num_ports--; 2227 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2228 } 2229 continue; 2230 } 2231 hw_port->rhub = rhub; 2232 hw_port->port_cap = port_cap; 2233 rhub->num_ports++; 2234 } 2235 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2236 } 2237 2238 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2239 struct xhci_hub *rhub, gfp_t flags) 2240 { 2241 int port_index = 0; 2242 int i; 2243 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2244 2245 if (!rhub->num_ports) 2246 return; 2247 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2248 flags, dev_to_node(dev)); 2249 if (!rhub->ports) 2250 return; 2251 2252 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2253 if (xhci->hw_ports[i].rhub != rhub || 2254 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2255 continue; 2256 xhci->hw_ports[i].hcd_portnum = port_index; 2257 rhub->ports[port_index] = &xhci->hw_ports[i]; 2258 port_index++; 2259 if (port_index == rhub->num_ports) 2260 break; 2261 } 2262 } 2263 2264 /* 2265 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2266 * specify what speeds each port is supposed to be. We can't count on the port 2267 * speed bits in the PORTSC register being correct until a device is connected, 2268 * but we need to set up the two fake roothubs with the correct number of USB 2269 * 3.0 and USB 2.0 ports at host controller initialization time. 2270 */ 2271 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2272 { 2273 void __iomem *base; 2274 u32 offset; 2275 unsigned int num_ports; 2276 int i, j; 2277 int cap_count = 0; 2278 u32 cap_start; 2279 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2280 2281 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2282 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2283 flags, dev_to_node(dev)); 2284 if (!xhci->hw_ports) 2285 return -ENOMEM; 2286 2287 for (i = 0; i < num_ports; i++) { 2288 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2289 NUM_PORT_REGS * i; 2290 xhci->hw_ports[i].hw_portnum = i; 2291 } 2292 2293 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2294 dev_to_node(dev)); 2295 if (!xhci->rh_bw) 2296 return -ENOMEM; 2297 for (i = 0; i < num_ports; i++) { 2298 struct xhci_interval_bw_table *bw_table; 2299 2300 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2301 bw_table = &xhci->rh_bw[i].bw_table; 2302 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2303 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2304 } 2305 base = &xhci->cap_regs->hc_capbase; 2306 2307 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2308 if (!cap_start) { 2309 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2310 return -ENODEV; 2311 } 2312 2313 offset = cap_start; 2314 /* count extended protocol capability entries for later caching */ 2315 while (offset) { 2316 cap_count++; 2317 offset = xhci_find_next_ext_cap(base, offset, 2318 XHCI_EXT_CAPS_PROTOCOL); 2319 } 2320 2321 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2322 flags, dev_to_node(dev)); 2323 if (!xhci->ext_caps) 2324 return -ENOMEM; 2325 2326 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2327 flags, dev_to_node(dev)); 2328 if (!xhci->port_caps) 2329 return -ENOMEM; 2330 2331 offset = cap_start; 2332 2333 while (offset) { 2334 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2335 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2336 num_ports) 2337 break; 2338 offset = xhci_find_next_ext_cap(base, offset, 2339 XHCI_EXT_CAPS_PROTOCOL); 2340 } 2341 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2342 xhci_warn(xhci, "No ports on the roothubs?\n"); 2343 return -ENODEV; 2344 } 2345 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2346 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2347 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2348 2349 /* Place limits on the number of roothub ports so that the hub 2350 * descriptors aren't longer than the USB core will allocate. 2351 */ 2352 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2353 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2354 "Limiting USB 3.0 roothub ports to %u.", 2355 USB_SS_MAXPORTS); 2356 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2357 } 2358 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2359 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2360 "Limiting USB 2.0 roothub ports to %u.", 2361 USB_MAXCHILDREN); 2362 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2363 } 2364 2365 /* 2366 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2367 * Not sure how the USB core will handle a hub with no ports... 2368 */ 2369 2370 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2371 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2372 2373 return 0; 2374 } 2375 2376 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2377 { 2378 dma_addr_t dma; 2379 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2380 unsigned int val, val2; 2381 u64 val_64; 2382 u32 page_size, temp; 2383 int i, ret; 2384 2385 INIT_LIST_HEAD(&xhci->cmd_list); 2386 2387 /* init command timeout work */ 2388 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2389 init_completion(&xhci->cmd_ring_stop_completion); 2390 2391 page_size = readl(&xhci->op_regs->page_size); 2392 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2393 "Supported page size register = 0x%x", page_size); 2394 i = ffs(page_size); 2395 if (i < 16) 2396 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2397 "Supported page size of %iK", (1 << (i+12)) / 1024); 2398 else 2399 xhci_warn(xhci, "WARN: no supported page size\n"); 2400 /* Use 4K pages, since that's common and the minimum the HC supports */ 2401 xhci->page_shift = 12; 2402 xhci->page_size = 1 << xhci->page_shift; 2403 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2404 "HCD page size set to %iK", xhci->page_size / 1024); 2405 2406 /* 2407 * Program the Number of Device Slots Enabled field in the CONFIG 2408 * register with the max value of slots the HC can handle. 2409 */ 2410 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2412 "// xHC can handle at most %d device slots.", val); 2413 val2 = readl(&xhci->op_regs->config_reg); 2414 val |= (val2 & ~HCS_SLOTS_MASK); 2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2416 "// Setting Max device slots reg = 0x%x.", val); 2417 writel(val, &xhci->op_regs->config_reg); 2418 2419 /* 2420 * xHCI section 5.4.6 - Device Context array must be 2421 * "physically contiguous and 64-byte (cache line) aligned". 2422 */ 2423 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2424 flags); 2425 if (!xhci->dcbaa) 2426 goto fail; 2427 xhci->dcbaa->dma = dma; 2428 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2429 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2430 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2431 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2432 2433 /* 2434 * Initialize the ring segment pool. The ring must be a contiguous 2435 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2436 * however, the command ring segment needs 64-byte aligned segments 2437 * and our use of dma addresses in the trb_address_map radix tree needs 2438 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2439 */ 2440 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2441 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2442 2443 /* See Table 46 and Note on Figure 55 */ 2444 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2445 2112, 64, xhci->page_size); 2446 if (!xhci->segment_pool || !xhci->device_pool) 2447 goto fail; 2448 2449 /* Linear stream context arrays don't have any boundary restrictions, 2450 * and only need to be 16-byte aligned. 2451 */ 2452 xhci->small_streams_pool = 2453 dma_pool_create("xHCI 256 byte stream ctx arrays", 2454 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2455 xhci->medium_streams_pool = 2456 dma_pool_create("xHCI 1KB stream ctx arrays", 2457 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2458 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2459 * will be allocated with dma_alloc_coherent() 2460 */ 2461 2462 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2463 goto fail; 2464 2465 /* Set up the command ring to have one segments for now. */ 2466 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2467 if (!xhci->cmd_ring) 2468 goto fail; 2469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2470 "Allocated command ring at %p", xhci->cmd_ring); 2471 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2472 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2473 2474 /* Set the address in the Command Ring Control register */ 2475 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2476 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2477 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2478 xhci->cmd_ring->cycle_state; 2479 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2480 "// Setting command ring address to 0x%016llx", val_64); 2481 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2482 2483 /* Reserve one command ring TRB for disabling LPM. 2484 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2485 * disabling LPM, we only need to reserve one TRB for all devices. 2486 */ 2487 xhci->cmd_ring_reserved_trbs++; 2488 2489 val = readl(&xhci->cap_regs->db_off); 2490 val &= DBOFF_MASK; 2491 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2492 "// Doorbell array is located at offset 0x%x" 2493 " from cap regs base addr", val); 2494 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2495 /* Set ir_set to interrupt register set 0 */ 2496 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2497 2498 /* 2499 * Event ring setup: Allocate a normal ring, but also setup 2500 * the event ring segment table (ERST). Section 4.9.3. 2501 */ 2502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2503 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2504 0, flags); 2505 if (!xhci->event_ring) 2506 goto fail; 2507 if (xhci_check_trb_in_td_math(xhci) < 0) 2508 goto fail; 2509 2510 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags); 2511 if (ret) 2512 goto fail; 2513 2514 /* set ERST count with the number of entries in the segment table */ 2515 val = readl(&xhci->ir_set->erst_size); 2516 val &= ERST_SIZE_MASK; 2517 val |= ERST_NUM_SEGS; 2518 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2519 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2520 val); 2521 writel(val, &xhci->ir_set->erst_size); 2522 2523 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2524 "// Set ERST entries to point to event ring."); 2525 /* set the segment table base address */ 2526 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2527 "// Set ERST base address for ir_set 0 = 0x%llx", 2528 (unsigned long long)xhci->erst.erst_dma_addr); 2529 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2530 val_64 &= ERST_PTR_MASK; 2531 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2532 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2533 2534 /* Set the event ring dequeue address */ 2535 xhci_set_hc_event_deq(xhci); 2536 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2537 "Wrote ERST address to ir_set 0."); 2538 2539 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 2540 2541 /* 2542 * XXX: Might need to set the Interrupter Moderation Register to 2543 * something other than the default (~1ms minimum between interrupts). 2544 * See section 5.5.1.2. 2545 */ 2546 for (i = 0; i < MAX_HC_SLOTS; i++) 2547 xhci->devs[i] = NULL; 2548 for (i = 0; i < USB_MAXCHILDREN; i++) { 2549 xhci->usb2_rhub.bus_state.resume_done[i] = 0; 2550 xhci->usb3_rhub.bus_state.resume_done[i] = 0; 2551 /* Only the USB 2.0 completions will ever be used. */ 2552 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]); 2553 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]); 2554 } 2555 2556 if (scratchpad_alloc(xhci, flags)) 2557 goto fail; 2558 if (xhci_setup_port_arrays(xhci, flags)) 2559 goto fail; 2560 2561 /* Enable USB 3.0 device notifications for function remote wake, which 2562 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2563 * U3 (device suspend). 2564 */ 2565 temp = readl(&xhci->op_regs->dev_notification); 2566 temp &= ~DEV_NOTE_MASK; 2567 temp |= DEV_NOTE_FWAKE; 2568 writel(temp, &xhci->op_regs->dev_notification); 2569 2570 return 0; 2571 2572 fail: 2573 xhci_halt(xhci); 2574 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2575 xhci_mem_cleanup(xhci); 2576 return -ENOMEM; 2577 } 2578