xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision 4800cd83)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39 	struct xhci_segment *seg;
40 	dma_addr_t	dma;
41 
42 	seg = kzalloc(sizeof *seg, flags);
43 	if (!seg)
44 		return NULL;
45 	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46 
47 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 	if (!seg->trbs) {
49 		kfree(seg);
50 		return NULL;
51 	}
52 	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 			seg->trbs, (unsigned long long)dma);
54 
55 	memset(seg->trbs, 0, SEGMENT_SIZE);
56 	seg->dma = dma;
57 	seg->next = NULL;
58 
59 	return seg;
60 }
61 
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64 	if (!seg)
65 		return;
66 	if (seg->trbs) {
67 		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 				seg->trbs, (unsigned long long)seg->dma);
69 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 		seg->trbs = NULL;
71 	}
72 	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 	kfree(seg);
74 }
75 
76 /*
77  * Make the prev segment point to the next segment.
78  *
79  * Change the last TRB in the prev segment to be a Link TRB which points to the
80  * DMA address of the next segment.  The caller needs to set any Link TRB
81  * related flags, such as End TRB, Toggle Cycle, and no snoop.
82  */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 		struct xhci_segment *next, bool link_trbs)
85 {
86 	u32 val;
87 
88 	if (!prev || !next)
89 		return;
90 	prev->next = next;
91 	if (link_trbs) {
92 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93 
94 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95 		val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96 		val &= ~TRB_TYPE_BITMASK;
97 		val |= TRB_TYPE(TRB_LINK);
98 		/* Always set the chain bit with 0.95 hardware */
99 		if (xhci_link_trb_quirk(xhci))
100 			val |= TRB_CHAIN;
101 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102 	}
103 	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104 			(unsigned long long)prev->dma,
105 			(unsigned long long)next->dma);
106 }
107 
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 {
111 	struct xhci_segment *seg;
112 	struct xhci_segment *first_seg;
113 
114 	if (!ring || !ring->first_seg)
115 		return;
116 	first_seg = ring->first_seg;
117 	seg = first_seg->next;
118 	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119 	while (seg != first_seg) {
120 		struct xhci_segment *next = seg->next;
121 		xhci_segment_free(xhci, seg);
122 		seg = next;
123 	}
124 	xhci_segment_free(xhci, first_seg);
125 	ring->first_seg = NULL;
126 	kfree(ring);
127 }
128 
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
130 {
131 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
132 	ring->enqueue = ring->first_seg->trbs;
133 	ring->enq_seg = ring->first_seg;
134 	ring->dequeue = ring->enqueue;
135 	ring->deq_seg = ring->first_seg;
136 	/* The ring is initialized to 0. The producer must write 1 to the cycle
137 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
138 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
139 	 */
140 	ring->cycle_state = 1;
141 	/* Not necessary for new rings, but needed for re-initialized rings */
142 	ring->enq_updates = 0;
143 	ring->deq_updates = 0;
144 }
145 
146 /**
147  * Create a new ring with zero or more segments.
148  *
149  * Link each segment together into a ring.
150  * Set the end flag and the cycle toggle bit on the last segment.
151  * See section 4.9.1 and figures 15 and 16.
152  */
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154 		unsigned int num_segs, bool link_trbs, gfp_t flags)
155 {
156 	struct xhci_ring	*ring;
157 	struct xhci_segment	*prev;
158 
159 	ring = kzalloc(sizeof *(ring), flags);
160 	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161 	if (!ring)
162 		return NULL;
163 
164 	INIT_LIST_HEAD(&ring->td_list);
165 	if (num_segs == 0)
166 		return ring;
167 
168 	ring->first_seg = xhci_segment_alloc(xhci, flags);
169 	if (!ring->first_seg)
170 		goto fail;
171 	num_segs--;
172 
173 	prev = ring->first_seg;
174 	while (num_segs > 0) {
175 		struct xhci_segment	*next;
176 
177 		next = xhci_segment_alloc(xhci, flags);
178 		if (!next)
179 			goto fail;
180 		xhci_link_segments(xhci, prev, next, link_trbs);
181 
182 		prev = next;
183 		num_segs--;
184 	}
185 	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186 
187 	if (link_trbs) {
188 		/* See section 4.9.2.1 and 6.4.4.1 */
189 		prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190 		xhci_dbg(xhci, "Wrote link toggle flag to"
191 				" segment %p (virtual), 0x%llx (DMA)\n",
192 				prev, (unsigned long long)prev->dma);
193 	}
194 	xhci_initialize_ring_info(ring);
195 	return ring;
196 
197 fail:
198 	xhci_ring_free(xhci, ring);
199 	return NULL;
200 }
201 
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203 		struct xhci_virt_device *virt_dev,
204 		unsigned int ep_index)
205 {
206 	int rings_cached;
207 
208 	rings_cached = virt_dev->num_rings_cached;
209 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210 		virt_dev->num_rings_cached++;
211 		rings_cached = virt_dev->num_rings_cached;
212 		virt_dev->ring_cache[rings_cached] =
213 			virt_dev->eps[ep_index].ring;
214 		xhci_dbg(xhci, "Cached old ring, "
215 				"%d ring%s cached\n",
216 				rings_cached,
217 				(rings_cached > 1) ? "s" : "");
218 	} else {
219 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220 		xhci_dbg(xhci, "Ring cache full (%d rings), "
221 				"freeing ring\n",
222 				virt_dev->num_rings_cached);
223 	}
224 	virt_dev->eps[ep_index].ring = NULL;
225 }
226 
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228  * pointers to the beginning of the ring.
229  */
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231 		struct xhci_ring *ring)
232 {
233 	struct xhci_segment	*seg = ring->first_seg;
234 	do {
235 		memset(seg->trbs, 0,
236 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237 		/* All endpoint rings have link TRBs */
238 		xhci_link_segments(xhci, seg, seg->next, 1);
239 		seg = seg->next;
240 	} while (seg != ring->first_seg);
241 	xhci_initialize_ring_info(ring);
242 	/* td list should be empty since all URBs have been cancelled,
243 	 * but just in case...
244 	 */
245 	INIT_LIST_HEAD(&ring->td_list);
246 }
247 
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249 
250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251 						    int type, gfp_t flags)
252 {
253 	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254 	if (!ctx)
255 		return NULL;
256 
257 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258 	ctx->type = type;
259 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260 	if (type == XHCI_CTX_TYPE_INPUT)
261 		ctx->size += CTX_SIZE(xhci->hcc_params);
262 
263 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264 	memset(ctx->bytes, 0, ctx->size);
265 	return ctx;
266 }
267 
268 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269 			     struct xhci_container_ctx *ctx)
270 {
271 	if (!ctx)
272 		return;
273 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274 	kfree(ctx);
275 }
276 
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278 					      struct xhci_container_ctx *ctx)
279 {
280 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281 	return (struct xhci_input_control_ctx *)ctx->bytes;
282 }
283 
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285 					struct xhci_container_ctx *ctx)
286 {
287 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288 		return (struct xhci_slot_ctx *)ctx->bytes;
289 
290 	return (struct xhci_slot_ctx *)
291 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
292 }
293 
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295 				    struct xhci_container_ctx *ctx,
296 				    unsigned int ep_index)
297 {
298 	/* increment ep index by offset of start of ep ctx array */
299 	ep_index++;
300 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
301 		ep_index++;
302 
303 	return (struct xhci_ep_ctx *)
304 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305 }
306 
307 
308 /***************** Streams structures manipulation *************************/
309 
310 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311 		unsigned int num_stream_ctxs,
312 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313 {
314 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315 
316 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317 		pci_free_consistent(pdev,
318 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319 				stream_ctx, dma);
320 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321 		return dma_pool_free(xhci->small_streams_pool,
322 				stream_ctx, dma);
323 	else
324 		return dma_pool_free(xhci->medium_streams_pool,
325 				stream_ctx, dma);
326 }
327 
328 /*
329  * The stream context array for each endpoint with bulk streams enabled can
330  * vary in size, based on:
331  *  - how many streams the endpoint supports,
332  *  - the maximum primary stream array size the host controller supports,
333  *  - and how many streams the device driver asks for.
334  *
335  * The stream context array must be a power of 2, and can be as small as
336  * 64 bytes or as large as 1MB.
337  */
338 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339 		unsigned int num_stream_ctxs, dma_addr_t *dma,
340 		gfp_t mem_flags)
341 {
342 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343 
344 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345 		return pci_alloc_consistent(pdev,
346 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347 				dma);
348 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349 		return dma_pool_alloc(xhci->small_streams_pool,
350 				mem_flags, dma);
351 	else
352 		return dma_pool_alloc(xhci->medium_streams_pool,
353 				mem_flags, dma);
354 }
355 
356 struct xhci_ring *xhci_dma_to_transfer_ring(
357 		struct xhci_virt_ep *ep,
358 		u64 address)
359 {
360 	if (ep->ep_state & EP_HAS_STREAMS)
361 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
362 				address >> SEGMENT_SHIFT);
363 	return ep->ring;
364 }
365 
366 /* Only use this when you know stream_info is valid */
367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368 static struct xhci_ring *dma_to_stream_ring(
369 		struct xhci_stream_info *stream_info,
370 		u64 address)
371 {
372 	return radix_tree_lookup(&stream_info->trb_address_map,
373 			address >> SEGMENT_SHIFT);
374 }
375 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
376 
377 struct xhci_ring *xhci_stream_id_to_ring(
378 		struct xhci_virt_device *dev,
379 		unsigned int ep_index,
380 		unsigned int stream_id)
381 {
382 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
383 
384 	if (stream_id == 0)
385 		return ep->ring;
386 	if (!ep->stream_info)
387 		return NULL;
388 
389 	if (stream_id > ep->stream_info->num_streams)
390 		return NULL;
391 	return ep->stream_info->stream_rings[stream_id];
392 }
393 
394 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
395 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
396 		unsigned int num_streams,
397 		struct xhci_stream_info *stream_info)
398 {
399 	u32 cur_stream;
400 	struct xhci_ring *cur_ring;
401 	u64 addr;
402 
403 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
404 		struct xhci_ring *mapped_ring;
405 		int trb_size = sizeof(union xhci_trb);
406 
407 		cur_ring = stream_info->stream_rings[cur_stream];
408 		for (addr = cur_ring->first_seg->dma;
409 				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
410 				addr += trb_size) {
411 			mapped_ring = dma_to_stream_ring(stream_info, addr);
412 			if (cur_ring != mapped_ring) {
413 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
414 						"didn't map to stream ID %u; "
415 						"mapped to ring %p\n",
416 						(unsigned long long) addr,
417 						cur_stream,
418 						mapped_ring);
419 				return -EINVAL;
420 			}
421 		}
422 		/* One TRB after the end of the ring segment shouldn't return a
423 		 * pointer to the current ring (although it may be a part of a
424 		 * different ring).
425 		 */
426 		mapped_ring = dma_to_stream_ring(stream_info, addr);
427 		if (mapped_ring != cur_ring) {
428 			/* One TRB before should also fail */
429 			addr = cur_ring->first_seg->dma - trb_size;
430 			mapped_ring = dma_to_stream_ring(stream_info, addr);
431 		}
432 		if (mapped_ring == cur_ring) {
433 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
434 					"mapped to valid stream ID %u; "
435 					"mapped ring = %p\n",
436 					(unsigned long long) addr,
437 					cur_stream,
438 					mapped_ring);
439 			return -EINVAL;
440 		}
441 	}
442 	return 0;
443 }
444 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
445 
446 /*
447  * Change an endpoint's internal structure so it supports stream IDs.  The
448  * number of requested streams includes stream 0, which cannot be used by device
449  * drivers.
450  *
451  * The number of stream contexts in the stream context array may be bigger than
452  * the number of streams the driver wants to use.  This is because the number of
453  * stream context array entries must be a power of two.
454  *
455  * We need a radix tree for mapping physical addresses of TRBs to which stream
456  * ID they belong to.  We need to do this because the host controller won't tell
457  * us which stream ring the TRB came from.  We could store the stream ID in an
458  * event data TRB, but that doesn't help us for the cancellation case, since the
459  * endpoint may stop before it reaches that event data TRB.
460  *
461  * The radix tree maps the upper portion of the TRB DMA address to a ring
462  * segment that has the same upper portion of DMA addresses.  For example, say I
463  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
464  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
465  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
466  * pass the radix tree a key to get the right stream ID:
467  *
468  * 	0x10c90fff >> 10 = 0x43243
469  * 	0x10c912c0 >> 10 = 0x43244
470  * 	0x10c91400 >> 10 = 0x43245
471  *
472  * Obviously, only those TRBs with DMA addresses that are within the segment
473  * will make the radix tree return the stream ID for that ring.
474  *
475  * Caveats for the radix tree:
476  *
477  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
478  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
479  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
480  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
481  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
482  * extended systems (where the DMA address can be bigger than 32-bits),
483  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
484  */
485 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
486 		unsigned int num_stream_ctxs,
487 		unsigned int num_streams, gfp_t mem_flags)
488 {
489 	struct xhci_stream_info *stream_info;
490 	u32 cur_stream;
491 	struct xhci_ring *cur_ring;
492 	unsigned long key;
493 	u64 addr;
494 	int ret;
495 
496 	xhci_dbg(xhci, "Allocating %u streams and %u "
497 			"stream context array entries.\n",
498 			num_streams, num_stream_ctxs);
499 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
500 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
501 		return NULL;
502 	}
503 	xhci->cmd_ring_reserved_trbs++;
504 
505 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
506 	if (!stream_info)
507 		goto cleanup_trbs;
508 
509 	stream_info->num_streams = num_streams;
510 	stream_info->num_stream_ctxs = num_stream_ctxs;
511 
512 	/* Initialize the array of virtual pointers to stream rings. */
513 	stream_info->stream_rings = kzalloc(
514 			sizeof(struct xhci_ring *)*num_streams,
515 			mem_flags);
516 	if (!stream_info->stream_rings)
517 		goto cleanup_info;
518 
519 	/* Initialize the array of DMA addresses for stream rings for the HW. */
520 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
521 			num_stream_ctxs, &stream_info->ctx_array_dma,
522 			mem_flags);
523 	if (!stream_info->stream_ctx_array)
524 		goto cleanup_ctx;
525 	memset(stream_info->stream_ctx_array, 0,
526 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
527 
528 	/* Allocate everything needed to free the stream rings later */
529 	stream_info->free_streams_command =
530 		xhci_alloc_command(xhci, true, true, mem_flags);
531 	if (!stream_info->free_streams_command)
532 		goto cleanup_ctx;
533 
534 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
535 
536 	/* Allocate rings for all the streams that the driver will use,
537 	 * and add their segment DMA addresses to the radix tree.
538 	 * Stream 0 is reserved.
539 	 */
540 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
541 		stream_info->stream_rings[cur_stream] =
542 			xhci_ring_alloc(xhci, 1, true, mem_flags);
543 		cur_ring = stream_info->stream_rings[cur_stream];
544 		if (!cur_ring)
545 			goto cleanup_rings;
546 		cur_ring->stream_id = cur_stream;
547 		/* Set deq ptr, cycle bit, and stream context type */
548 		addr = cur_ring->first_seg->dma |
549 			SCT_FOR_CTX(SCT_PRI_TR) |
550 			cur_ring->cycle_state;
551 		stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
552 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
553 				cur_stream, (unsigned long long) addr);
554 
555 		key = (unsigned long)
556 			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
557 		ret = radix_tree_insert(&stream_info->trb_address_map,
558 				key, cur_ring);
559 		if (ret) {
560 			xhci_ring_free(xhci, cur_ring);
561 			stream_info->stream_rings[cur_stream] = NULL;
562 			goto cleanup_rings;
563 		}
564 	}
565 	/* Leave the other unused stream ring pointers in the stream context
566 	 * array initialized to zero.  This will cause the xHC to give us an
567 	 * error if the device asks for a stream ID we don't have setup (if it
568 	 * was any other way, the host controller would assume the ring is
569 	 * "empty" and wait forever for data to be queued to that stream ID).
570 	 */
571 #if XHCI_DEBUG
572 	/* Do a little test on the radix tree to make sure it returns the
573 	 * correct values.
574 	 */
575 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
576 		goto cleanup_rings;
577 #endif
578 
579 	return stream_info;
580 
581 cleanup_rings:
582 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
583 		cur_ring = stream_info->stream_rings[cur_stream];
584 		if (cur_ring) {
585 			addr = cur_ring->first_seg->dma;
586 			radix_tree_delete(&stream_info->trb_address_map,
587 					addr >> SEGMENT_SHIFT);
588 			xhci_ring_free(xhci, cur_ring);
589 			stream_info->stream_rings[cur_stream] = NULL;
590 		}
591 	}
592 	xhci_free_command(xhci, stream_info->free_streams_command);
593 cleanup_ctx:
594 	kfree(stream_info->stream_rings);
595 cleanup_info:
596 	kfree(stream_info);
597 cleanup_trbs:
598 	xhci->cmd_ring_reserved_trbs--;
599 	return NULL;
600 }
601 /*
602  * Sets the MaxPStreams field and the Linear Stream Array field.
603  * Sets the dequeue pointer to the stream context array.
604  */
605 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
606 		struct xhci_ep_ctx *ep_ctx,
607 		struct xhci_stream_info *stream_info)
608 {
609 	u32 max_primary_streams;
610 	/* MaxPStreams is the number of stream context array entries, not the
611 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
612 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
613 	 */
614 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
615 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
616 			1 << (max_primary_streams + 1));
617 	ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
618 	ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
619 	ep_ctx->ep_info |= EP_HAS_LSA;
620 	ep_ctx->deq  = stream_info->ctx_array_dma;
621 }
622 
623 /*
624  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
625  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
626  * not at the beginning of the ring).
627  */
628 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
629 		struct xhci_ep_ctx *ep_ctx,
630 		struct xhci_virt_ep *ep)
631 {
632 	dma_addr_t addr;
633 	ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
634 	ep_ctx->ep_info &= ~EP_HAS_LSA;
635 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
636 	ep_ctx->deq  = addr | ep->ring->cycle_state;
637 }
638 
639 /* Frees all stream contexts associated with the endpoint,
640  *
641  * Caller should fix the endpoint context streams fields.
642  */
643 void xhci_free_stream_info(struct xhci_hcd *xhci,
644 		struct xhci_stream_info *stream_info)
645 {
646 	int cur_stream;
647 	struct xhci_ring *cur_ring;
648 	dma_addr_t addr;
649 
650 	if (!stream_info)
651 		return;
652 
653 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
654 			cur_stream++) {
655 		cur_ring = stream_info->stream_rings[cur_stream];
656 		if (cur_ring) {
657 			addr = cur_ring->first_seg->dma;
658 			radix_tree_delete(&stream_info->trb_address_map,
659 					addr >> SEGMENT_SHIFT);
660 			xhci_ring_free(xhci, cur_ring);
661 			stream_info->stream_rings[cur_stream] = NULL;
662 		}
663 	}
664 	xhci_free_command(xhci, stream_info->free_streams_command);
665 	xhci->cmd_ring_reserved_trbs--;
666 	if (stream_info->stream_ctx_array)
667 		xhci_free_stream_ctx(xhci,
668 				stream_info->num_stream_ctxs,
669 				stream_info->stream_ctx_array,
670 				stream_info->ctx_array_dma);
671 
672 	if (stream_info)
673 		kfree(stream_info->stream_rings);
674 	kfree(stream_info);
675 }
676 
677 
678 /***************** Device context manipulation *************************/
679 
680 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
681 		struct xhci_virt_ep *ep)
682 {
683 	init_timer(&ep->stop_cmd_timer);
684 	ep->stop_cmd_timer.data = (unsigned long) ep;
685 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
686 	ep->xhci = xhci;
687 }
688 
689 /* All the xhci_tds in the ring's TD list should be freed at this point */
690 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
691 {
692 	struct xhci_virt_device *dev;
693 	int i;
694 
695 	/* Slot ID 0 is reserved */
696 	if (slot_id == 0 || !xhci->devs[slot_id])
697 		return;
698 
699 	dev = xhci->devs[slot_id];
700 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
701 	if (!dev)
702 		return;
703 
704 	for (i = 0; i < 31; ++i) {
705 		if (dev->eps[i].ring)
706 			xhci_ring_free(xhci, dev->eps[i].ring);
707 		if (dev->eps[i].stream_info)
708 			xhci_free_stream_info(xhci,
709 					dev->eps[i].stream_info);
710 	}
711 
712 	if (dev->ring_cache) {
713 		for (i = 0; i < dev->num_rings_cached; i++)
714 			xhci_ring_free(xhci, dev->ring_cache[i]);
715 		kfree(dev->ring_cache);
716 	}
717 
718 	if (dev->in_ctx)
719 		xhci_free_container_ctx(xhci, dev->in_ctx);
720 	if (dev->out_ctx)
721 		xhci_free_container_ctx(xhci, dev->out_ctx);
722 
723 	kfree(xhci->devs[slot_id]);
724 	xhci->devs[slot_id] = NULL;
725 }
726 
727 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
728 		struct usb_device *udev, gfp_t flags)
729 {
730 	struct xhci_virt_device *dev;
731 	int i;
732 
733 	/* Slot ID 0 is reserved */
734 	if (slot_id == 0 || xhci->devs[slot_id]) {
735 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
736 		return 0;
737 	}
738 
739 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
740 	if (!xhci->devs[slot_id])
741 		return 0;
742 	dev = xhci->devs[slot_id];
743 
744 	/* Allocate the (output) device context that will be used in the HC. */
745 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
746 	if (!dev->out_ctx)
747 		goto fail;
748 
749 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
750 			(unsigned long long)dev->out_ctx->dma);
751 
752 	/* Allocate the (input) device context for address device command */
753 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
754 	if (!dev->in_ctx)
755 		goto fail;
756 
757 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
758 			(unsigned long long)dev->in_ctx->dma);
759 
760 	/* Initialize the cancellation list and watchdog timers for each ep */
761 	for (i = 0; i < 31; i++) {
762 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
763 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
764 	}
765 
766 	/* Allocate endpoint 0 ring */
767 	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
768 	if (!dev->eps[0].ring)
769 		goto fail;
770 
771 	/* Allocate pointers to the ring cache */
772 	dev->ring_cache = kzalloc(
773 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
774 			flags);
775 	if (!dev->ring_cache)
776 		goto fail;
777 	dev->num_rings_cached = 0;
778 
779 	init_completion(&dev->cmd_completion);
780 	INIT_LIST_HEAD(&dev->cmd_list);
781 	dev->udev = udev;
782 
783 	/* Point to output device context in dcbaa. */
784 	xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
785 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
786 			slot_id,
787 			&xhci->dcbaa->dev_context_ptrs[slot_id],
788 			(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
789 
790 	return 1;
791 fail:
792 	xhci_free_virt_device(xhci, slot_id);
793 	return 0;
794 }
795 
796 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
797 		struct usb_device *udev)
798 {
799 	struct xhci_virt_device *virt_dev;
800 	struct xhci_ep_ctx	*ep0_ctx;
801 	struct xhci_ring	*ep_ring;
802 
803 	virt_dev = xhci->devs[udev->slot_id];
804 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
805 	ep_ring = virt_dev->eps[0].ring;
806 	/*
807 	 * FIXME we don't keep track of the dequeue pointer very well after a
808 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
809 	 * host to our enqueue pointer.  This should only be called after a
810 	 * configured device has reset, so all control transfers should have
811 	 * been completed or cancelled before the reset.
812 	 */
813 	ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
814 	ep0_ctx->deq |= ep_ring->cycle_state;
815 }
816 
817 /* Setup an xHCI virtual device for a Set Address command */
818 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
819 {
820 	struct xhci_virt_device *dev;
821 	struct xhci_ep_ctx	*ep0_ctx;
822 	struct usb_device	*top_dev;
823 	struct xhci_slot_ctx    *slot_ctx;
824 	struct xhci_input_control_ctx *ctrl_ctx;
825 
826 	dev = xhci->devs[udev->slot_id];
827 	/* Slot ID 0 is reserved */
828 	if (udev->slot_id == 0 || !dev) {
829 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
830 				udev->slot_id);
831 		return -EINVAL;
832 	}
833 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
834 	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
835 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
836 
837 	/* 2) New slot context and endpoint 0 context are valid*/
838 	ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
839 
840 	/* 3) Only the control endpoint is valid - one endpoint context */
841 	slot_ctx->dev_info |= LAST_CTX(1);
842 
843 	slot_ctx->dev_info |= (u32) udev->route;
844 	switch (udev->speed) {
845 	case USB_SPEED_SUPER:
846 		slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
847 		break;
848 	case USB_SPEED_HIGH:
849 		slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
850 		break;
851 	case USB_SPEED_FULL:
852 		slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
853 		break;
854 	case USB_SPEED_LOW:
855 		slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
856 		break;
857 	case USB_SPEED_WIRELESS:
858 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
859 		return -EINVAL;
860 		break;
861 	default:
862 		/* Speed was set earlier, this shouldn't happen. */
863 		BUG();
864 	}
865 	/* Find the root hub port this device is under */
866 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
867 			top_dev = top_dev->parent)
868 		/* Found device below root hub */;
869 	slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
870 	dev->port = top_dev->portnum;
871 	xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
872 
873 	/* Is this a LS/FS device under a HS hub? */
874 	if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
875 			udev->tt) {
876 		slot_ctx->tt_info = udev->tt->hub->slot_id;
877 		slot_ctx->tt_info |= udev->ttport << 8;
878 		if (udev->tt->multi)
879 			slot_ctx->dev_info |= DEV_MTT;
880 	}
881 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
882 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
883 
884 	/* Step 4 - ring already allocated */
885 	/* Step 5 */
886 	ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
887 	/*
888 	 * XXX: Not sure about wireless USB devices.
889 	 */
890 	switch (udev->speed) {
891 	case USB_SPEED_SUPER:
892 		ep0_ctx->ep_info2 |= MAX_PACKET(512);
893 		break;
894 	case USB_SPEED_HIGH:
895 	/* USB core guesses at a 64-byte max packet first for FS devices */
896 	case USB_SPEED_FULL:
897 		ep0_ctx->ep_info2 |= MAX_PACKET(64);
898 		break;
899 	case USB_SPEED_LOW:
900 		ep0_ctx->ep_info2 |= MAX_PACKET(8);
901 		break;
902 	case USB_SPEED_WIRELESS:
903 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
904 		return -EINVAL;
905 		break;
906 	default:
907 		/* New speed? */
908 		BUG();
909 	}
910 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
911 	ep0_ctx->ep_info2 |= MAX_BURST(0);
912 	ep0_ctx->ep_info2 |= ERROR_COUNT(3);
913 
914 	ep0_ctx->deq =
915 		dev->eps[0].ring->first_seg->dma;
916 	ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
917 
918 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
919 
920 	return 0;
921 }
922 
923 /* Return the polling or NAK interval.
924  *
925  * The polling interval is expressed in "microframes".  If xHCI's Interval field
926  * is set to N, it will service the endpoint every 2^(Interval)*125us.
927  *
928  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
929  * is set to 0.
930  */
931 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
932 		struct usb_host_endpoint *ep)
933 {
934 	unsigned int interval = 0;
935 
936 	switch (udev->speed) {
937 	case USB_SPEED_HIGH:
938 		/* Max NAK rate */
939 		if (usb_endpoint_xfer_control(&ep->desc) ||
940 				usb_endpoint_xfer_bulk(&ep->desc))
941 			interval = ep->desc.bInterval;
942 		/* Fall through - SS and HS isoc/int have same decoding */
943 	case USB_SPEED_SUPER:
944 		if (usb_endpoint_xfer_int(&ep->desc) ||
945 				usb_endpoint_xfer_isoc(&ep->desc)) {
946 			if (ep->desc.bInterval == 0)
947 				interval = 0;
948 			else
949 				interval = ep->desc.bInterval - 1;
950 			if (interval > 15)
951 				interval = 15;
952 			if (interval != ep->desc.bInterval + 1)
953 				dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
954 						ep->desc.bEndpointAddress, 1 << interval);
955 		}
956 		break;
957 	/* Convert bInterval (in 1-255 frames) to microframes and round down to
958 	 * nearest power of 2.
959 	 */
960 	case USB_SPEED_FULL:
961 	case USB_SPEED_LOW:
962 		if (usb_endpoint_xfer_int(&ep->desc) ||
963 				usb_endpoint_xfer_isoc(&ep->desc)) {
964 			interval = fls(8*ep->desc.bInterval) - 1;
965 			if (interval > 10)
966 				interval = 10;
967 			if (interval < 3)
968 				interval = 3;
969 			if ((1 << interval) != 8*ep->desc.bInterval)
970 				dev_warn(&udev->dev,
971 						"ep %#x - rounding interval"
972 						" to %d microframes, "
973 						"ep desc says %d microframes\n",
974 						ep->desc.bEndpointAddress,
975 						1 << interval,
976 						8*ep->desc.bInterval);
977 		}
978 		break;
979 	default:
980 		BUG();
981 	}
982 	return EP_INTERVAL(interval);
983 }
984 
985 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
986  * High speed endpoint descriptors can define "the number of additional
987  * transaction opportunities per microframe", but that goes in the Max Burst
988  * endpoint context field.
989  */
990 static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
991 		struct usb_host_endpoint *ep)
992 {
993 	if (udev->speed != USB_SPEED_SUPER ||
994 			!usb_endpoint_xfer_isoc(&ep->desc))
995 		return 0;
996 	return ep->ss_ep_comp.bmAttributes;
997 }
998 
999 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1000 		struct usb_host_endpoint *ep)
1001 {
1002 	int in;
1003 	u32 type;
1004 
1005 	in = usb_endpoint_dir_in(&ep->desc);
1006 	if (usb_endpoint_xfer_control(&ep->desc)) {
1007 		type = EP_TYPE(CTRL_EP);
1008 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1009 		if (in)
1010 			type = EP_TYPE(BULK_IN_EP);
1011 		else
1012 			type = EP_TYPE(BULK_OUT_EP);
1013 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1014 		if (in)
1015 			type = EP_TYPE(ISOC_IN_EP);
1016 		else
1017 			type = EP_TYPE(ISOC_OUT_EP);
1018 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1019 		if (in)
1020 			type = EP_TYPE(INT_IN_EP);
1021 		else
1022 			type = EP_TYPE(INT_OUT_EP);
1023 	} else {
1024 		BUG();
1025 	}
1026 	return type;
1027 }
1028 
1029 /* Return the maximum endpoint service interval time (ESIT) payload.
1030  * Basically, this is the maxpacket size, multiplied by the burst size
1031  * and mult size.
1032  */
1033 static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1034 		struct usb_device *udev,
1035 		struct usb_host_endpoint *ep)
1036 {
1037 	int max_burst;
1038 	int max_packet;
1039 
1040 	/* Only applies for interrupt or isochronous endpoints */
1041 	if (usb_endpoint_xfer_control(&ep->desc) ||
1042 			usb_endpoint_xfer_bulk(&ep->desc))
1043 		return 0;
1044 
1045 	if (udev->speed == USB_SPEED_SUPER)
1046 		return ep->ss_ep_comp.wBytesPerInterval;
1047 
1048 	max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1049 	max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1050 	/* A 0 in max burst means 1 transfer per ESIT */
1051 	return max_packet * (max_burst + 1);
1052 }
1053 
1054 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1055  * Drivers will have to call usb_alloc_streams() to do that.
1056  */
1057 int xhci_endpoint_init(struct xhci_hcd *xhci,
1058 		struct xhci_virt_device *virt_dev,
1059 		struct usb_device *udev,
1060 		struct usb_host_endpoint *ep,
1061 		gfp_t mem_flags)
1062 {
1063 	unsigned int ep_index;
1064 	struct xhci_ep_ctx *ep_ctx;
1065 	struct xhci_ring *ep_ring;
1066 	unsigned int max_packet;
1067 	unsigned int max_burst;
1068 	u32 max_esit_payload;
1069 
1070 	ep_index = xhci_get_endpoint_index(&ep->desc);
1071 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1072 
1073 	/* Set up the endpoint ring */
1074 	/*
1075 	 * Isochronous endpoint ring needs bigger size because one isoc URB
1076 	 * carries multiple packets and it will insert multiple tds to the
1077 	 * ring.
1078 	 * This should be replaced with dynamic ring resizing in the future.
1079 	 */
1080 	if (usb_endpoint_xfer_isoc(&ep->desc))
1081 		virt_dev->eps[ep_index].new_ring =
1082 			xhci_ring_alloc(xhci, 8, true, mem_flags);
1083 	else
1084 		virt_dev->eps[ep_index].new_ring =
1085 			xhci_ring_alloc(xhci, 1, true, mem_flags);
1086 	if (!virt_dev->eps[ep_index].new_ring) {
1087 		/* Attempt to use the ring cache */
1088 		if (virt_dev->num_rings_cached == 0)
1089 			return -ENOMEM;
1090 		virt_dev->eps[ep_index].new_ring =
1091 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1092 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1093 		virt_dev->num_rings_cached--;
1094 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1095 	}
1096 	virt_dev->eps[ep_index].skip = false;
1097 	ep_ring = virt_dev->eps[ep_index].new_ring;
1098 	ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1099 
1100 	ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1101 	ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1102 
1103 	/* FIXME dig Mult and streams info out of ep companion desc */
1104 
1105 	/* Allow 3 retries for everything but isoc;
1106 	 * error count = 0 means infinite retries.
1107 	 */
1108 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1109 		ep_ctx->ep_info2 = ERROR_COUNT(3);
1110 	else
1111 		ep_ctx->ep_info2 = ERROR_COUNT(1);
1112 
1113 	ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1114 
1115 	/* Set the max packet size and max burst */
1116 	switch (udev->speed) {
1117 	case USB_SPEED_SUPER:
1118 		max_packet = ep->desc.wMaxPacketSize;
1119 		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1120 		/* dig out max burst from ep companion desc */
1121 		max_packet = ep->ss_ep_comp.bMaxBurst;
1122 		if (!max_packet)
1123 			xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1124 		ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1125 		break;
1126 	case USB_SPEED_HIGH:
1127 		/* bits 11:12 specify the number of additional transaction
1128 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1129 		 */
1130 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1131 				usb_endpoint_xfer_int(&ep->desc)) {
1132 			max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1133 			ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1134 		}
1135 		/* Fall through */
1136 	case USB_SPEED_FULL:
1137 	case USB_SPEED_LOW:
1138 		max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1139 		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1140 		break;
1141 	default:
1142 		BUG();
1143 	}
1144 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1145 	ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1146 
1147 	/*
1148 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1149 	 * endpoints, as the driver gives us no clue how big each scatter gather
1150 	 * list entry (or buffer) is going to be.
1151 	 *
1152 	 * For isochronous and interrupt endpoints, we set it to the max
1153 	 * available, until we have new API in the USB core to allow drivers to
1154 	 * declare how much bandwidth they actually need.
1155 	 *
1156 	 * Normally, it would be calculated by taking the total of the buffer
1157 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1158 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1159 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1160 	 * transfers, we're basically dividing by 1.
1161 	 */
1162 	ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1163 
1164 	/* FIXME Debug endpoint context */
1165 	return 0;
1166 }
1167 
1168 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1169 		struct xhci_virt_device *virt_dev,
1170 		struct usb_host_endpoint *ep)
1171 {
1172 	unsigned int ep_index;
1173 	struct xhci_ep_ctx *ep_ctx;
1174 
1175 	ep_index = xhci_get_endpoint_index(&ep->desc);
1176 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1177 
1178 	ep_ctx->ep_info = 0;
1179 	ep_ctx->ep_info2 = 0;
1180 	ep_ctx->deq = 0;
1181 	ep_ctx->tx_info = 0;
1182 	/* Don't free the endpoint ring until the set interface or configuration
1183 	 * request succeeds.
1184 	 */
1185 }
1186 
1187 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1188  * Useful when you want to change one particular aspect of the endpoint and then
1189  * issue a configure endpoint command.
1190  */
1191 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1192 		struct xhci_container_ctx *in_ctx,
1193 		struct xhci_container_ctx *out_ctx,
1194 		unsigned int ep_index)
1195 {
1196 	struct xhci_ep_ctx *out_ep_ctx;
1197 	struct xhci_ep_ctx *in_ep_ctx;
1198 
1199 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1201 
1202 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1203 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1204 	in_ep_ctx->deq = out_ep_ctx->deq;
1205 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1206 }
1207 
1208 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1209  * Useful when you want to change one particular aspect of the endpoint and then
1210  * issue a configure endpoint command.  Only the context entries field matters,
1211  * but we'll copy the whole thing anyway.
1212  */
1213 void xhci_slot_copy(struct xhci_hcd *xhci,
1214 		struct xhci_container_ctx *in_ctx,
1215 		struct xhci_container_ctx *out_ctx)
1216 {
1217 	struct xhci_slot_ctx *in_slot_ctx;
1218 	struct xhci_slot_ctx *out_slot_ctx;
1219 
1220 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1221 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1222 
1223 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1224 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1225 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1226 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1227 }
1228 
1229 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1230 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1231 {
1232 	int i;
1233 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1234 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1235 
1236 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1237 
1238 	if (!num_sp)
1239 		return 0;
1240 
1241 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1242 	if (!xhci->scratchpad)
1243 		goto fail_sp;
1244 
1245 	xhci->scratchpad->sp_array =
1246 		pci_alloc_consistent(to_pci_dev(dev),
1247 				     num_sp * sizeof(u64),
1248 				     &xhci->scratchpad->sp_dma);
1249 	if (!xhci->scratchpad->sp_array)
1250 		goto fail_sp2;
1251 
1252 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1253 	if (!xhci->scratchpad->sp_buffers)
1254 		goto fail_sp3;
1255 
1256 	xhci->scratchpad->sp_dma_buffers =
1257 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1258 
1259 	if (!xhci->scratchpad->sp_dma_buffers)
1260 		goto fail_sp4;
1261 
1262 	xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1263 	for (i = 0; i < num_sp; i++) {
1264 		dma_addr_t dma;
1265 		void *buf = pci_alloc_consistent(to_pci_dev(dev),
1266 						 xhci->page_size, &dma);
1267 		if (!buf)
1268 			goto fail_sp5;
1269 
1270 		xhci->scratchpad->sp_array[i] = dma;
1271 		xhci->scratchpad->sp_buffers[i] = buf;
1272 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1273 	}
1274 
1275 	return 0;
1276 
1277  fail_sp5:
1278 	for (i = i - 1; i >= 0; i--) {
1279 		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1280 				    xhci->scratchpad->sp_buffers[i],
1281 				    xhci->scratchpad->sp_dma_buffers[i]);
1282 	}
1283 	kfree(xhci->scratchpad->sp_dma_buffers);
1284 
1285  fail_sp4:
1286 	kfree(xhci->scratchpad->sp_buffers);
1287 
1288  fail_sp3:
1289 	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1290 			    xhci->scratchpad->sp_array,
1291 			    xhci->scratchpad->sp_dma);
1292 
1293  fail_sp2:
1294 	kfree(xhci->scratchpad);
1295 	xhci->scratchpad = NULL;
1296 
1297  fail_sp:
1298 	return -ENOMEM;
1299 }
1300 
1301 static void scratchpad_free(struct xhci_hcd *xhci)
1302 {
1303 	int num_sp;
1304 	int i;
1305 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1306 
1307 	if (!xhci->scratchpad)
1308 		return;
1309 
1310 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1311 
1312 	for (i = 0; i < num_sp; i++) {
1313 		pci_free_consistent(pdev, xhci->page_size,
1314 				    xhci->scratchpad->sp_buffers[i],
1315 				    xhci->scratchpad->sp_dma_buffers[i]);
1316 	}
1317 	kfree(xhci->scratchpad->sp_dma_buffers);
1318 	kfree(xhci->scratchpad->sp_buffers);
1319 	pci_free_consistent(pdev, num_sp * sizeof(u64),
1320 			    xhci->scratchpad->sp_array,
1321 			    xhci->scratchpad->sp_dma);
1322 	kfree(xhci->scratchpad);
1323 	xhci->scratchpad = NULL;
1324 }
1325 
1326 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1327 		bool allocate_in_ctx, bool allocate_completion,
1328 		gfp_t mem_flags)
1329 {
1330 	struct xhci_command *command;
1331 
1332 	command = kzalloc(sizeof(*command), mem_flags);
1333 	if (!command)
1334 		return NULL;
1335 
1336 	if (allocate_in_ctx) {
1337 		command->in_ctx =
1338 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1339 					mem_flags);
1340 		if (!command->in_ctx) {
1341 			kfree(command);
1342 			return NULL;
1343 		}
1344 	}
1345 
1346 	if (allocate_completion) {
1347 		command->completion =
1348 			kzalloc(sizeof(struct completion), mem_flags);
1349 		if (!command->completion) {
1350 			xhci_free_container_ctx(xhci, command->in_ctx);
1351 			kfree(command);
1352 			return NULL;
1353 		}
1354 		init_completion(command->completion);
1355 	}
1356 
1357 	command->status = 0;
1358 	INIT_LIST_HEAD(&command->cmd_list);
1359 	return command;
1360 }
1361 
1362 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1363 {
1364 	int last;
1365 
1366 	if (!urb_priv)
1367 		return;
1368 
1369 	last = urb_priv->length - 1;
1370 	if (last >= 0) {
1371 		int	i;
1372 		for (i = 0; i <= last; i++)
1373 			kfree(urb_priv->td[i]);
1374 	}
1375 	kfree(urb_priv);
1376 }
1377 
1378 void xhci_free_command(struct xhci_hcd *xhci,
1379 		struct xhci_command *command)
1380 {
1381 	xhci_free_container_ctx(xhci,
1382 			command->in_ctx);
1383 	kfree(command->completion);
1384 	kfree(command);
1385 }
1386 
1387 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1388 {
1389 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1390 	int size;
1391 	int i;
1392 
1393 	/* Free the Event Ring Segment Table and the actual Event Ring */
1394 	if (xhci->ir_set) {
1395 		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1396 		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1397 		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1398 	}
1399 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1400 	if (xhci->erst.entries)
1401 		pci_free_consistent(pdev, size,
1402 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1403 	xhci->erst.entries = NULL;
1404 	xhci_dbg(xhci, "Freed ERST\n");
1405 	if (xhci->event_ring)
1406 		xhci_ring_free(xhci, xhci->event_ring);
1407 	xhci->event_ring = NULL;
1408 	xhci_dbg(xhci, "Freed event ring\n");
1409 
1410 	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1411 	if (xhci->cmd_ring)
1412 		xhci_ring_free(xhci, xhci->cmd_ring);
1413 	xhci->cmd_ring = NULL;
1414 	xhci_dbg(xhci, "Freed command ring\n");
1415 
1416 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1417 		xhci_free_virt_device(xhci, i);
1418 
1419 	if (xhci->segment_pool)
1420 		dma_pool_destroy(xhci->segment_pool);
1421 	xhci->segment_pool = NULL;
1422 	xhci_dbg(xhci, "Freed segment pool\n");
1423 
1424 	if (xhci->device_pool)
1425 		dma_pool_destroy(xhci->device_pool);
1426 	xhci->device_pool = NULL;
1427 	xhci_dbg(xhci, "Freed device context pool\n");
1428 
1429 	if (xhci->small_streams_pool)
1430 		dma_pool_destroy(xhci->small_streams_pool);
1431 	xhci->small_streams_pool = NULL;
1432 	xhci_dbg(xhci, "Freed small stream array pool\n");
1433 
1434 	if (xhci->medium_streams_pool)
1435 		dma_pool_destroy(xhci->medium_streams_pool);
1436 	xhci->medium_streams_pool = NULL;
1437 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1438 
1439 	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1440 	if (xhci->dcbaa)
1441 		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1442 				xhci->dcbaa, xhci->dcbaa->dma);
1443 	xhci->dcbaa = NULL;
1444 
1445 	scratchpad_free(xhci);
1446 
1447 	xhci->num_usb2_ports = 0;
1448 	xhci->num_usb3_ports = 0;
1449 	kfree(xhci->usb2_ports);
1450 	kfree(xhci->usb3_ports);
1451 	kfree(xhci->port_array);
1452 
1453 	xhci->page_size = 0;
1454 	xhci->page_shift = 0;
1455 	xhci->bus_suspended = 0;
1456 }
1457 
1458 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1459 		struct xhci_segment *input_seg,
1460 		union xhci_trb *start_trb,
1461 		union xhci_trb *end_trb,
1462 		dma_addr_t input_dma,
1463 		struct xhci_segment *result_seg,
1464 		char *test_name, int test_number)
1465 {
1466 	unsigned long long start_dma;
1467 	unsigned long long end_dma;
1468 	struct xhci_segment *seg;
1469 
1470 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1471 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1472 
1473 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1474 	if (seg != result_seg) {
1475 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1476 				test_name, test_number);
1477 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1478 				"input DMA 0x%llx\n",
1479 				input_seg,
1480 				(unsigned long long) input_dma);
1481 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1482 				"ending TRB %p (0x%llx DMA)\n",
1483 				start_trb, start_dma,
1484 				end_trb, end_dma);
1485 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1486 				result_seg, seg);
1487 		return -1;
1488 	}
1489 	return 0;
1490 }
1491 
1492 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1493 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1494 {
1495 	struct {
1496 		dma_addr_t		input_dma;
1497 		struct xhci_segment	*result_seg;
1498 	} simple_test_vector [] = {
1499 		/* A zeroed DMA field should fail */
1500 		{ 0, NULL },
1501 		/* One TRB before the ring start should fail */
1502 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1503 		/* One byte before the ring start should fail */
1504 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1505 		/* Starting TRB should succeed */
1506 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1507 		/* Ending TRB should succeed */
1508 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1509 			xhci->event_ring->first_seg },
1510 		/* One byte after the ring end should fail */
1511 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1512 		/* One TRB after the ring end should fail */
1513 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1514 		/* An address of all ones should fail */
1515 		{ (dma_addr_t) (~0), NULL },
1516 	};
1517 	struct {
1518 		struct xhci_segment	*input_seg;
1519 		union xhci_trb		*start_trb;
1520 		union xhci_trb		*end_trb;
1521 		dma_addr_t		input_dma;
1522 		struct xhci_segment	*result_seg;
1523 	} complex_test_vector [] = {
1524 		/* Test feeding a valid DMA address from a different ring */
1525 		{	.input_seg = xhci->event_ring->first_seg,
1526 			.start_trb = xhci->event_ring->first_seg->trbs,
1527 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1528 			.input_dma = xhci->cmd_ring->first_seg->dma,
1529 			.result_seg = NULL,
1530 		},
1531 		/* Test feeding a valid end TRB from a different ring */
1532 		{	.input_seg = xhci->event_ring->first_seg,
1533 			.start_trb = xhci->event_ring->first_seg->trbs,
1534 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1535 			.input_dma = xhci->cmd_ring->first_seg->dma,
1536 			.result_seg = NULL,
1537 		},
1538 		/* Test feeding a valid start and end TRB from a different ring */
1539 		{	.input_seg = xhci->event_ring->first_seg,
1540 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1541 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1542 			.input_dma = xhci->cmd_ring->first_seg->dma,
1543 			.result_seg = NULL,
1544 		},
1545 		/* TRB in this ring, but after this TD */
1546 		{	.input_seg = xhci->event_ring->first_seg,
1547 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1548 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1549 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1550 			.result_seg = NULL,
1551 		},
1552 		/* TRB in this ring, but before this TD */
1553 		{	.input_seg = xhci->event_ring->first_seg,
1554 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1555 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1556 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1557 			.result_seg = NULL,
1558 		},
1559 		/* TRB in this ring, but after this wrapped TD */
1560 		{	.input_seg = xhci->event_ring->first_seg,
1561 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1562 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1563 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1564 			.result_seg = NULL,
1565 		},
1566 		/* TRB in this ring, but before this wrapped TD */
1567 		{	.input_seg = xhci->event_ring->first_seg,
1568 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1569 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1570 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1571 			.result_seg = NULL,
1572 		},
1573 		/* TRB not in this ring, and we have a wrapped TD */
1574 		{	.input_seg = xhci->event_ring->first_seg,
1575 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1576 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1577 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1578 			.result_seg = NULL,
1579 		},
1580 	};
1581 
1582 	unsigned int num_tests;
1583 	int i, ret;
1584 
1585 	num_tests = ARRAY_SIZE(simple_test_vector);
1586 	for (i = 0; i < num_tests; i++) {
1587 		ret = xhci_test_trb_in_td(xhci,
1588 				xhci->event_ring->first_seg,
1589 				xhci->event_ring->first_seg->trbs,
1590 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1591 				simple_test_vector[i].input_dma,
1592 				simple_test_vector[i].result_seg,
1593 				"Simple", i);
1594 		if (ret < 0)
1595 			return ret;
1596 	}
1597 
1598 	num_tests = ARRAY_SIZE(complex_test_vector);
1599 	for (i = 0; i < num_tests; i++) {
1600 		ret = xhci_test_trb_in_td(xhci,
1601 				complex_test_vector[i].input_seg,
1602 				complex_test_vector[i].start_trb,
1603 				complex_test_vector[i].end_trb,
1604 				complex_test_vector[i].input_dma,
1605 				complex_test_vector[i].result_seg,
1606 				"Complex", i);
1607 		if (ret < 0)
1608 			return ret;
1609 	}
1610 	xhci_dbg(xhci, "TRB math tests passed.\n");
1611 	return 0;
1612 }
1613 
1614 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1615 {
1616 	u64 temp;
1617 	dma_addr_t deq;
1618 
1619 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1620 			xhci->event_ring->dequeue);
1621 	if (deq == 0 && !in_interrupt())
1622 		xhci_warn(xhci, "WARN something wrong with SW event ring "
1623 				"dequeue ptr.\n");
1624 	/* Update HC event ring dequeue pointer */
1625 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1626 	temp &= ERST_PTR_MASK;
1627 	/* Don't clear the EHB bit (which is RW1C) because
1628 	 * there might be more events to service.
1629 	 */
1630 	temp &= ~ERST_EHB;
1631 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1632 			"preserving EHB bit\n");
1633 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1634 			&xhci->ir_set->erst_dequeue);
1635 }
1636 
1637 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1638 		u32 __iomem *addr, u8 major_revision)
1639 {
1640 	u32 temp, port_offset, port_count;
1641 	int i;
1642 
1643 	if (major_revision > 0x03) {
1644 		xhci_warn(xhci, "Ignoring unknown port speed, "
1645 				"Ext Cap %p, revision = 0x%x\n",
1646 				addr, major_revision);
1647 		/* Ignoring port protocol we can't understand. FIXME */
1648 		return;
1649 	}
1650 
1651 	/* Port offset and count in the third dword, see section 7.2 */
1652 	temp = xhci_readl(xhci, addr + 2);
1653 	port_offset = XHCI_EXT_PORT_OFF(temp);
1654 	port_count = XHCI_EXT_PORT_COUNT(temp);
1655 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1656 			"count = %u, revision = 0x%x\n",
1657 			addr, port_offset, port_count, major_revision);
1658 	/* Port count includes the current port offset */
1659 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1660 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
1661 		return;
1662 	port_offset--;
1663 	for (i = port_offset; i < (port_offset + port_count); i++) {
1664 		/* Duplicate entry.  Ignore the port if the revisions differ. */
1665 		if (xhci->port_array[i] != 0) {
1666 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1667 					" port %u\n", addr, i);
1668 			xhci_warn(xhci, "Port was marked as USB %u, "
1669 					"duplicated as USB %u\n",
1670 					xhci->port_array[i], major_revision);
1671 			/* Only adjust the roothub port counts if we haven't
1672 			 * found a similar duplicate.
1673 			 */
1674 			if (xhci->port_array[i] != major_revision &&
1675 				xhci->port_array[i] != (u8) -1) {
1676 				if (xhci->port_array[i] == 0x03)
1677 					xhci->num_usb3_ports--;
1678 				else
1679 					xhci->num_usb2_ports--;
1680 				xhci->port_array[i] = (u8) -1;
1681 			}
1682 			/* FIXME: Should we disable the port? */
1683 			continue;
1684 		}
1685 		xhci->port_array[i] = major_revision;
1686 		if (major_revision == 0x03)
1687 			xhci->num_usb3_ports++;
1688 		else
1689 			xhci->num_usb2_ports++;
1690 	}
1691 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
1692 }
1693 
1694 /*
1695  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1696  * specify what speeds each port is supposed to be.  We can't count on the port
1697  * speed bits in the PORTSC register being correct until a device is connected,
1698  * but we need to set up the two fake roothubs with the correct number of USB
1699  * 3.0 and USB 2.0 ports at host controller initialization time.
1700  */
1701 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1702 {
1703 	u32 __iomem *addr;
1704 	u32 offset;
1705 	unsigned int num_ports;
1706 	int i, port_index;
1707 
1708 	addr = &xhci->cap_regs->hcc_params;
1709 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1710 	if (offset == 0) {
1711 		xhci_err(xhci, "No Extended Capability registers, "
1712 				"unable to set up roothub.\n");
1713 		return -ENODEV;
1714 	}
1715 
1716 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1717 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1718 	if (!xhci->port_array)
1719 		return -ENOMEM;
1720 
1721 	/*
1722 	 * For whatever reason, the first capability offset is from the
1723 	 * capability register base, not from the HCCPARAMS register.
1724 	 * See section 5.3.6 for offset calculation.
1725 	 */
1726 	addr = &xhci->cap_regs->hc_capbase + offset;
1727 	while (1) {
1728 		u32 cap_id;
1729 
1730 		cap_id = xhci_readl(xhci, addr);
1731 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1732 			xhci_add_in_port(xhci, num_ports, addr,
1733 					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
1734 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
1735 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1736 				== num_ports)
1737 			break;
1738 		/*
1739 		 * Once you're into the Extended Capabilities, the offset is
1740 		 * always relative to the register holding the offset.
1741 		 */
1742 		addr += offset;
1743 	}
1744 
1745 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1746 		xhci_warn(xhci, "No ports on the roothubs?\n");
1747 		return -ENODEV;
1748 	}
1749 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1750 			xhci->num_usb2_ports, xhci->num_usb3_ports);
1751 	/*
1752 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1753 	 * Not sure how the USB core will handle a hub with no ports...
1754 	 */
1755 	if (xhci->num_usb2_ports) {
1756 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1757 				xhci->num_usb2_ports, flags);
1758 		if (!xhci->usb2_ports)
1759 			return -ENOMEM;
1760 
1761 		port_index = 0;
1762 		for (i = 0; i < num_ports; i++) {
1763 			if (xhci->port_array[i] == 0x03 ||
1764 					xhci->port_array[i] == 0 ||
1765 					xhci->port_array[i] == -1)
1766 				continue;
1767 
1768 			xhci->usb2_ports[port_index] =
1769 				&xhci->op_regs->port_status_base +
1770 				NUM_PORT_REGS*i;
1771 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
1772 					"addr = %p\n", i,
1773 					xhci->usb2_ports[port_index]);
1774 			port_index++;
1775 		}
1776 	}
1777 	if (xhci->num_usb3_ports) {
1778 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1779 				xhci->num_usb3_ports, flags);
1780 		if (!xhci->usb3_ports)
1781 			return -ENOMEM;
1782 
1783 		port_index = 0;
1784 		for (i = 0; i < num_ports; i++)
1785 			if (xhci->port_array[i] == 0x03) {
1786 				xhci->usb3_ports[port_index] =
1787 					&xhci->op_regs->port_status_base +
1788 					NUM_PORT_REGS*i;
1789 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
1790 						"addr = %p\n", i,
1791 						xhci->usb3_ports[port_index]);
1792 				port_index++;
1793 			}
1794 	}
1795 	return 0;
1796 }
1797 
1798 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1799 {
1800 	dma_addr_t	dma;
1801 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1802 	unsigned int	val, val2;
1803 	u64		val_64;
1804 	struct xhci_segment	*seg;
1805 	u32 page_size;
1806 	int i;
1807 
1808 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1809 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1810 	for (i = 0; i < 16; i++) {
1811 		if ((0x1 & page_size) != 0)
1812 			break;
1813 		page_size = page_size >> 1;
1814 	}
1815 	if (i < 16)
1816 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1817 	else
1818 		xhci_warn(xhci, "WARN: no supported page size\n");
1819 	/* Use 4K pages, since that's common and the minimum the HC supports */
1820 	xhci->page_shift = 12;
1821 	xhci->page_size = 1 << xhci->page_shift;
1822 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1823 
1824 	/*
1825 	 * Program the Number of Device Slots Enabled field in the CONFIG
1826 	 * register with the max value of slots the HC can handle.
1827 	 */
1828 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1829 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1830 			(unsigned int) val);
1831 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1832 	val |= (val2 & ~HCS_SLOTS_MASK);
1833 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1834 			(unsigned int) val);
1835 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1836 
1837 	/*
1838 	 * Section 5.4.8 - doorbell array must be
1839 	 * "physically contiguous and 64-byte (cache line) aligned".
1840 	 */
1841 	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1842 			sizeof(*xhci->dcbaa), &dma);
1843 	if (!xhci->dcbaa)
1844 		goto fail;
1845 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1846 	xhci->dcbaa->dma = dma;
1847 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1848 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1849 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1850 
1851 	/*
1852 	 * Initialize the ring segment pool.  The ring must be a contiguous
1853 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1854 	 * however, the command ring segment needs 64-byte aligned segments,
1855 	 * so we pick the greater alignment need.
1856 	 */
1857 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1858 			SEGMENT_SIZE, 64, xhci->page_size);
1859 
1860 	/* See Table 46 and Note on Figure 55 */
1861 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1862 			2112, 64, xhci->page_size);
1863 	if (!xhci->segment_pool || !xhci->device_pool)
1864 		goto fail;
1865 
1866 	/* Linear stream context arrays don't have any boundary restrictions,
1867 	 * and only need to be 16-byte aligned.
1868 	 */
1869 	xhci->small_streams_pool =
1870 		dma_pool_create("xHCI 256 byte stream ctx arrays",
1871 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1872 	xhci->medium_streams_pool =
1873 		dma_pool_create("xHCI 1KB stream ctx arrays",
1874 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1875 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1876 	 * will be allocated with pci_alloc_consistent()
1877 	 */
1878 
1879 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1880 		goto fail;
1881 
1882 	/* Set up the command ring to have one segments for now. */
1883 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1884 	if (!xhci->cmd_ring)
1885 		goto fail;
1886 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1887 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1888 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
1889 
1890 	/* Set the address in the Command Ring Control register */
1891 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1892 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1893 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1894 		xhci->cmd_ring->cycle_state;
1895 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1896 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1897 	xhci_dbg_cmd_ptrs(xhci);
1898 
1899 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1900 	val &= DBOFF_MASK;
1901 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1902 			" from cap regs base addr\n", val);
1903 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
1904 	xhci_dbg_regs(xhci);
1905 	xhci_print_run_regs(xhci);
1906 	/* Set ir_set to interrupt register set 0 */
1907 	xhci->ir_set = &xhci->run_regs->ir_set[0];
1908 
1909 	/*
1910 	 * Event ring setup: Allocate a normal ring, but also setup
1911 	 * the event ring segment table (ERST).  Section 4.9.3.
1912 	 */
1913 	xhci_dbg(xhci, "// Allocating event ring\n");
1914 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1915 	if (!xhci->event_ring)
1916 		goto fail;
1917 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1918 		goto fail;
1919 
1920 	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1921 			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1922 	if (!xhci->erst.entries)
1923 		goto fail;
1924 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1925 			(unsigned long long)dma);
1926 
1927 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1928 	xhci->erst.num_entries = ERST_NUM_SEGS;
1929 	xhci->erst.erst_dma_addr = dma;
1930 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1931 			xhci->erst.num_entries,
1932 			xhci->erst.entries,
1933 			(unsigned long long)xhci->erst.erst_dma_addr);
1934 
1935 	/* set ring base address and size for each segment table entry */
1936 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1937 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1938 		entry->seg_addr = seg->dma;
1939 		entry->seg_size = TRBS_PER_SEGMENT;
1940 		entry->rsvd = 0;
1941 		seg = seg->next;
1942 	}
1943 
1944 	/* set ERST count with the number of entries in the segment table */
1945 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1946 	val &= ERST_SIZE_MASK;
1947 	val |= ERST_NUM_SEGS;
1948 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1949 			val);
1950 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1951 
1952 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1953 	/* set the segment table base address */
1954 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1955 			(unsigned long long)xhci->erst.erst_dma_addr);
1956 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1957 	val_64 &= ERST_PTR_MASK;
1958 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1959 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1960 
1961 	/* Set the event ring dequeue address */
1962 	xhci_set_hc_event_deq(xhci);
1963 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1964 	xhci_print_ir_set(xhci, 0);
1965 
1966 	/*
1967 	 * XXX: Might need to set the Interrupter Moderation Register to
1968 	 * something other than the default (~1ms minimum between interrupts).
1969 	 * See section 5.5.1.2.
1970 	 */
1971 	init_completion(&xhci->addr_dev);
1972 	for (i = 0; i < MAX_HC_SLOTS; ++i)
1973 		xhci->devs[i] = NULL;
1974 	for (i = 0; i < MAX_HC_PORTS; ++i)
1975 		xhci->resume_done[i] = 0;
1976 
1977 	if (scratchpad_alloc(xhci, flags))
1978 		goto fail;
1979 	if (xhci_setup_port_arrays(xhci, flags))
1980 		goto fail;
1981 
1982 	return 0;
1983 
1984 fail:
1985 	xhci_warn(xhci, "Couldn't initialize memory\n");
1986 	xhci_mem_cleanup(xhci);
1987 	return -ENOMEM;
1988 }
1989