1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 #include <linux/dma-mapping.h> 28 29 #include "xhci.h" 30 31 /* 32 * Allocates a generic ring segment from the ring pool, sets the dma address, 33 * initializes the segment to zero, and sets the private next pointer to NULL. 34 * 35 * Section 4.11.1.1: 36 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 37 */ 38 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 39 unsigned int cycle_state, gfp_t flags) 40 { 41 struct xhci_segment *seg; 42 dma_addr_t dma; 43 int i; 44 45 seg = kzalloc(sizeof *seg, flags); 46 if (!seg) 47 return NULL; 48 49 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); 50 if (!seg->trbs) { 51 kfree(seg); 52 return NULL; 53 } 54 55 memset(seg->trbs, 0, TRB_SEGMENT_SIZE); 56 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 57 if (cycle_state == 0) { 58 for (i = 0; i < TRBS_PER_SEGMENT; i++) 59 seg->trbs[i].link.control |= TRB_CYCLE; 60 } 61 seg->dma = dma; 62 seg->next = NULL; 63 64 return seg; 65 } 66 67 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 68 { 69 if (seg->trbs) { 70 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 71 seg->trbs = NULL; 72 } 73 kfree(seg); 74 } 75 76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 77 struct xhci_segment *first) 78 { 79 struct xhci_segment *seg; 80 81 seg = first->next; 82 while (seg != first) { 83 struct xhci_segment *next = seg->next; 84 xhci_segment_free(xhci, seg); 85 seg = next; 86 } 87 xhci_segment_free(xhci, first); 88 } 89 90 /* 91 * Make the prev segment point to the next segment. 92 * 93 * Change the last TRB in the prev segment to be a Link TRB which points to the 94 * DMA address of the next segment. The caller needs to set any Link TRB 95 * related flags, such as End TRB, Toggle Cycle, and no snoop. 96 */ 97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 98 struct xhci_segment *next, enum xhci_ring_type type) 99 { 100 u32 val; 101 102 if (!prev || !next) 103 return; 104 prev->next = next; 105 if (type != TYPE_EVENT) { 106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 107 cpu_to_le64(next->dma); 108 109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 111 val &= ~TRB_TYPE_BITMASK; 112 val |= TRB_TYPE(TRB_LINK); 113 /* Always set the chain bit with 0.95 hardware */ 114 /* Set chain bit for isoc rings on AMD 0.96 host */ 115 if (xhci_link_trb_quirk(xhci) || 116 (type == TYPE_ISOC && 117 (xhci->quirks & XHCI_AMD_0x96_HOST))) 118 val |= TRB_CHAIN; 119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 120 } 121 } 122 123 /* 124 * Link the ring to the new segments. 125 * Set Toggle Cycle for the new ring if needed. 126 */ 127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 128 struct xhci_segment *first, struct xhci_segment *last, 129 unsigned int num_segs) 130 { 131 struct xhci_segment *next; 132 133 if (!ring || !first || !last) 134 return; 135 136 next = ring->enq_seg->next; 137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 138 xhci_link_segments(xhci, last, next, ring->type); 139 ring->num_segs += num_segs; 140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 141 142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 144 &= ~cpu_to_le32(LINK_TOGGLE); 145 last->trbs[TRBS_PER_SEGMENT-1].link.control 146 |= cpu_to_le32(LINK_TOGGLE); 147 ring->last_seg = last; 148 } 149 } 150 151 /* XXX: Do we need the hcd structure in all these functions? */ 152 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 153 { 154 if (!ring) 155 return; 156 157 if (ring->first_seg) 158 xhci_free_segments_for_ring(xhci, ring->first_seg); 159 160 kfree(ring); 161 } 162 163 static void xhci_initialize_ring_info(struct xhci_ring *ring, 164 unsigned int cycle_state) 165 { 166 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 167 ring->enqueue = ring->first_seg->trbs; 168 ring->enq_seg = ring->first_seg; 169 ring->dequeue = ring->enqueue; 170 ring->deq_seg = ring->first_seg; 171 /* The ring is initialized to 0. The producer must write 1 to the cycle 172 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 173 * compare CCS to the cycle bit to check ownership, so CCS = 1. 174 * 175 * New rings are initialized with cycle state equal to 1; if we are 176 * handling ring expansion, set the cycle state equal to the old ring. 177 */ 178 ring->cycle_state = cycle_state; 179 /* Not necessary for new rings, but needed for re-initialized rings */ 180 ring->enq_updates = 0; 181 ring->deq_updates = 0; 182 183 /* 184 * Each segment has a link TRB, and leave an extra TRB for SW 185 * accounting purpose 186 */ 187 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 188 } 189 190 /* Allocate segments and link them for a ring */ 191 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 192 struct xhci_segment **first, struct xhci_segment **last, 193 unsigned int num_segs, unsigned int cycle_state, 194 enum xhci_ring_type type, gfp_t flags) 195 { 196 struct xhci_segment *prev; 197 198 prev = xhci_segment_alloc(xhci, cycle_state, flags); 199 if (!prev) 200 return -ENOMEM; 201 num_segs--; 202 203 *first = prev; 204 while (num_segs > 0) { 205 struct xhci_segment *next; 206 207 next = xhci_segment_alloc(xhci, cycle_state, flags); 208 if (!next) { 209 prev = *first; 210 while (prev) { 211 next = prev->next; 212 xhci_segment_free(xhci, prev); 213 prev = next; 214 } 215 return -ENOMEM; 216 } 217 xhci_link_segments(xhci, prev, next, type); 218 219 prev = next; 220 num_segs--; 221 } 222 xhci_link_segments(xhci, prev, *first, type); 223 *last = prev; 224 225 return 0; 226 } 227 228 /** 229 * Create a new ring with zero or more segments. 230 * 231 * Link each segment together into a ring. 232 * Set the end flag and the cycle toggle bit on the last segment. 233 * See section 4.9.1 and figures 15 and 16. 234 */ 235 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 236 unsigned int num_segs, unsigned int cycle_state, 237 enum xhci_ring_type type, gfp_t flags) 238 { 239 struct xhci_ring *ring; 240 int ret; 241 242 ring = kzalloc(sizeof *(ring), flags); 243 if (!ring) 244 return NULL; 245 246 ring->num_segs = num_segs; 247 INIT_LIST_HEAD(&ring->td_list); 248 ring->type = type; 249 if (num_segs == 0) 250 return ring; 251 252 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 253 &ring->last_seg, num_segs, cycle_state, type, flags); 254 if (ret) 255 goto fail; 256 257 /* Only event ring does not use link TRB */ 258 if (type != TYPE_EVENT) { 259 /* See section 4.9.2.1 and 6.4.4.1 */ 260 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 261 cpu_to_le32(LINK_TOGGLE); 262 } 263 xhci_initialize_ring_info(ring, cycle_state); 264 return ring; 265 266 fail: 267 kfree(ring); 268 return NULL; 269 } 270 271 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 272 struct xhci_virt_device *virt_dev, 273 unsigned int ep_index) 274 { 275 int rings_cached; 276 277 rings_cached = virt_dev->num_rings_cached; 278 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 279 virt_dev->ring_cache[rings_cached] = 280 virt_dev->eps[ep_index].ring; 281 virt_dev->num_rings_cached++; 282 xhci_dbg(xhci, "Cached old ring, " 283 "%d ring%s cached\n", 284 virt_dev->num_rings_cached, 285 (virt_dev->num_rings_cached > 1) ? "s" : ""); 286 } else { 287 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 288 xhci_dbg(xhci, "Ring cache full (%d rings), " 289 "freeing ring\n", 290 virt_dev->num_rings_cached); 291 } 292 virt_dev->eps[ep_index].ring = NULL; 293 } 294 295 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 296 * pointers to the beginning of the ring. 297 */ 298 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 299 struct xhci_ring *ring, unsigned int cycle_state, 300 enum xhci_ring_type type) 301 { 302 struct xhci_segment *seg = ring->first_seg; 303 int i; 304 305 do { 306 memset(seg->trbs, 0, 307 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 308 if (cycle_state == 0) { 309 for (i = 0; i < TRBS_PER_SEGMENT; i++) 310 seg->trbs[i].link.control |= TRB_CYCLE; 311 } 312 /* All endpoint rings have link TRBs */ 313 xhci_link_segments(xhci, seg, seg->next, type); 314 seg = seg->next; 315 } while (seg != ring->first_seg); 316 ring->type = type; 317 xhci_initialize_ring_info(ring, cycle_state); 318 /* td list should be empty since all URBs have been cancelled, 319 * but just in case... 320 */ 321 INIT_LIST_HEAD(&ring->td_list); 322 } 323 324 /* 325 * Expand an existing ring. 326 * Look for a cached ring or allocate a new ring which has same segment numbers 327 * and link the two rings. 328 */ 329 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 330 unsigned int num_trbs, gfp_t flags) 331 { 332 struct xhci_segment *first; 333 struct xhci_segment *last; 334 unsigned int num_segs; 335 unsigned int num_segs_needed; 336 int ret; 337 338 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 339 (TRBS_PER_SEGMENT - 1); 340 341 /* Allocate number of segments we needed, or double the ring size */ 342 num_segs = ring->num_segs > num_segs_needed ? 343 ring->num_segs : num_segs_needed; 344 345 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 346 num_segs, ring->cycle_state, ring->type, flags); 347 if (ret) 348 return -ENOMEM; 349 350 xhci_link_rings(xhci, ring, first, last, num_segs); 351 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n", 352 ring->num_segs); 353 354 return 0; 355 } 356 357 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 358 359 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 360 int type, gfp_t flags) 361 { 362 struct xhci_container_ctx *ctx; 363 364 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 365 return NULL; 366 367 ctx = kzalloc(sizeof(*ctx), flags); 368 if (!ctx) 369 return NULL; 370 371 ctx->type = type; 372 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 373 if (type == XHCI_CTX_TYPE_INPUT) 374 ctx->size += CTX_SIZE(xhci->hcc_params); 375 376 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); 377 if (!ctx->bytes) { 378 kfree(ctx); 379 return NULL; 380 } 381 memset(ctx->bytes, 0, ctx->size); 382 return ctx; 383 } 384 385 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 386 struct xhci_container_ctx *ctx) 387 { 388 if (!ctx) 389 return; 390 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 391 kfree(ctx); 392 } 393 394 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, 395 struct xhci_container_ctx *ctx) 396 { 397 if (ctx->type != XHCI_CTX_TYPE_INPUT) 398 return NULL; 399 400 return (struct xhci_input_control_ctx *)ctx->bytes; 401 } 402 403 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 404 struct xhci_container_ctx *ctx) 405 { 406 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 407 return (struct xhci_slot_ctx *)ctx->bytes; 408 409 return (struct xhci_slot_ctx *) 410 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 411 } 412 413 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 414 struct xhci_container_ctx *ctx, 415 unsigned int ep_index) 416 { 417 /* increment ep index by offset of start of ep ctx array */ 418 ep_index++; 419 if (ctx->type == XHCI_CTX_TYPE_INPUT) 420 ep_index++; 421 422 return (struct xhci_ep_ctx *) 423 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 424 } 425 426 427 /***************** Streams structures manipulation *************************/ 428 429 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 430 unsigned int num_stream_ctxs, 431 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 432 { 433 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 434 435 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 436 dma_free_coherent(&pdev->dev, 437 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 438 stream_ctx, dma); 439 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 440 return dma_pool_free(xhci->small_streams_pool, 441 stream_ctx, dma); 442 else 443 return dma_pool_free(xhci->medium_streams_pool, 444 stream_ctx, dma); 445 } 446 447 /* 448 * The stream context array for each endpoint with bulk streams enabled can 449 * vary in size, based on: 450 * - how many streams the endpoint supports, 451 * - the maximum primary stream array size the host controller supports, 452 * - and how many streams the device driver asks for. 453 * 454 * The stream context array must be a power of 2, and can be as small as 455 * 64 bytes or as large as 1MB. 456 */ 457 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 458 unsigned int num_stream_ctxs, dma_addr_t *dma, 459 gfp_t mem_flags) 460 { 461 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 462 463 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE) 464 return dma_alloc_coherent(&pdev->dev, 465 sizeof(struct xhci_stream_ctx)*num_stream_ctxs, 466 dma, mem_flags); 467 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE) 468 return dma_pool_alloc(xhci->small_streams_pool, 469 mem_flags, dma); 470 else 471 return dma_pool_alloc(xhci->medium_streams_pool, 472 mem_flags, dma); 473 } 474 475 struct xhci_ring *xhci_dma_to_transfer_ring( 476 struct xhci_virt_ep *ep, 477 u64 address) 478 { 479 if (ep->ep_state & EP_HAS_STREAMS) 480 return radix_tree_lookup(&ep->stream_info->trb_address_map, 481 address >> TRB_SEGMENT_SHIFT); 482 return ep->ring; 483 } 484 485 /* Only use this when you know stream_info is valid */ 486 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 487 static struct xhci_ring *dma_to_stream_ring( 488 struct xhci_stream_info *stream_info, 489 u64 address) 490 { 491 return radix_tree_lookup(&stream_info->trb_address_map, 492 address >> TRB_SEGMENT_SHIFT); 493 } 494 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 495 496 struct xhci_ring *xhci_stream_id_to_ring( 497 struct xhci_virt_device *dev, 498 unsigned int ep_index, 499 unsigned int stream_id) 500 { 501 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 502 503 if (stream_id == 0) 504 return ep->ring; 505 if (!ep->stream_info) 506 return NULL; 507 508 if (stream_id > ep->stream_info->num_streams) 509 return NULL; 510 return ep->stream_info->stream_rings[stream_id]; 511 } 512 513 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 514 static int xhci_test_radix_tree(struct xhci_hcd *xhci, 515 unsigned int num_streams, 516 struct xhci_stream_info *stream_info) 517 { 518 u32 cur_stream; 519 struct xhci_ring *cur_ring; 520 u64 addr; 521 522 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 523 struct xhci_ring *mapped_ring; 524 int trb_size = sizeof(union xhci_trb); 525 526 cur_ring = stream_info->stream_rings[cur_stream]; 527 for (addr = cur_ring->first_seg->dma; 528 addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE; 529 addr += trb_size) { 530 mapped_ring = dma_to_stream_ring(stream_info, addr); 531 if (cur_ring != mapped_ring) { 532 xhci_warn(xhci, "WARN: DMA address 0x%08llx " 533 "didn't map to stream ID %u; " 534 "mapped to ring %p\n", 535 (unsigned long long) addr, 536 cur_stream, 537 mapped_ring); 538 return -EINVAL; 539 } 540 } 541 /* One TRB after the end of the ring segment shouldn't return a 542 * pointer to the current ring (although it may be a part of a 543 * different ring). 544 */ 545 mapped_ring = dma_to_stream_ring(stream_info, addr); 546 if (mapped_ring != cur_ring) { 547 /* One TRB before should also fail */ 548 addr = cur_ring->first_seg->dma - trb_size; 549 mapped_ring = dma_to_stream_ring(stream_info, addr); 550 } 551 if (mapped_ring == cur_ring) { 552 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx " 553 "mapped to valid stream ID %u; " 554 "mapped ring = %p\n", 555 (unsigned long long) addr, 556 cur_stream, 557 mapped_ring); 558 return -EINVAL; 559 } 560 } 561 return 0; 562 } 563 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */ 564 565 /* 566 * Change an endpoint's internal structure so it supports stream IDs. The 567 * number of requested streams includes stream 0, which cannot be used by device 568 * drivers. 569 * 570 * The number of stream contexts in the stream context array may be bigger than 571 * the number of streams the driver wants to use. This is because the number of 572 * stream context array entries must be a power of two. 573 * 574 * We need a radix tree for mapping physical addresses of TRBs to which stream 575 * ID they belong to. We need to do this because the host controller won't tell 576 * us which stream ring the TRB came from. We could store the stream ID in an 577 * event data TRB, but that doesn't help us for the cancellation case, since the 578 * endpoint may stop before it reaches that event data TRB. 579 * 580 * The radix tree maps the upper portion of the TRB DMA address to a ring 581 * segment that has the same upper portion of DMA addresses. For example, say I 582 * have segments of size 1KB, that are always 64-byte aligned. A segment may 583 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 584 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 585 * pass the radix tree a key to get the right stream ID: 586 * 587 * 0x10c90fff >> 10 = 0x43243 588 * 0x10c912c0 >> 10 = 0x43244 589 * 0x10c91400 >> 10 = 0x43245 590 * 591 * Obviously, only those TRBs with DMA addresses that are within the segment 592 * will make the radix tree return the stream ID for that ring. 593 * 594 * Caveats for the radix tree: 595 * 596 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 597 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 598 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 599 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 600 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 601 * extended systems (where the DMA address can be bigger than 32-bits), 602 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 603 */ 604 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 605 unsigned int num_stream_ctxs, 606 unsigned int num_streams, gfp_t mem_flags) 607 { 608 struct xhci_stream_info *stream_info; 609 u32 cur_stream; 610 struct xhci_ring *cur_ring; 611 unsigned long key; 612 u64 addr; 613 int ret; 614 615 xhci_dbg(xhci, "Allocating %u streams and %u " 616 "stream context array entries.\n", 617 num_streams, num_stream_ctxs); 618 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 619 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 620 return NULL; 621 } 622 xhci->cmd_ring_reserved_trbs++; 623 624 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 625 if (!stream_info) 626 goto cleanup_trbs; 627 628 stream_info->num_streams = num_streams; 629 stream_info->num_stream_ctxs = num_stream_ctxs; 630 631 /* Initialize the array of virtual pointers to stream rings. */ 632 stream_info->stream_rings = kzalloc( 633 sizeof(struct xhci_ring *)*num_streams, 634 mem_flags); 635 if (!stream_info->stream_rings) 636 goto cleanup_info; 637 638 /* Initialize the array of DMA addresses for stream rings for the HW. */ 639 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 640 num_stream_ctxs, &stream_info->ctx_array_dma, 641 mem_flags); 642 if (!stream_info->stream_ctx_array) 643 goto cleanup_ctx; 644 memset(stream_info->stream_ctx_array, 0, 645 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 646 647 /* Allocate everything needed to free the stream rings later */ 648 stream_info->free_streams_command = 649 xhci_alloc_command(xhci, true, true, mem_flags); 650 if (!stream_info->free_streams_command) 651 goto cleanup_ctx; 652 653 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 654 655 /* Allocate rings for all the streams that the driver will use, 656 * and add their segment DMA addresses to the radix tree. 657 * Stream 0 is reserved. 658 */ 659 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 660 stream_info->stream_rings[cur_stream] = 661 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags); 662 cur_ring = stream_info->stream_rings[cur_stream]; 663 if (!cur_ring) 664 goto cleanup_rings; 665 cur_ring->stream_id = cur_stream; 666 /* Set deq ptr, cycle bit, and stream context type */ 667 addr = cur_ring->first_seg->dma | 668 SCT_FOR_CTX(SCT_PRI_TR) | 669 cur_ring->cycle_state; 670 stream_info->stream_ctx_array[cur_stream].stream_ring = 671 cpu_to_le64(addr); 672 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 673 cur_stream, (unsigned long long) addr); 674 675 key = (unsigned long) 676 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT); 677 ret = radix_tree_insert(&stream_info->trb_address_map, 678 key, cur_ring); 679 if (ret) { 680 xhci_ring_free(xhci, cur_ring); 681 stream_info->stream_rings[cur_stream] = NULL; 682 goto cleanup_rings; 683 } 684 } 685 /* Leave the other unused stream ring pointers in the stream context 686 * array initialized to zero. This will cause the xHC to give us an 687 * error if the device asks for a stream ID we don't have setup (if it 688 * was any other way, the host controller would assume the ring is 689 * "empty" and wait forever for data to be queued to that stream ID). 690 */ 691 #if XHCI_DEBUG 692 /* Do a little test on the radix tree to make sure it returns the 693 * correct values. 694 */ 695 if (xhci_test_radix_tree(xhci, num_streams, stream_info)) 696 goto cleanup_rings; 697 #endif 698 699 return stream_info; 700 701 cleanup_rings: 702 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 703 cur_ring = stream_info->stream_rings[cur_stream]; 704 if (cur_ring) { 705 addr = cur_ring->first_seg->dma; 706 radix_tree_delete(&stream_info->trb_address_map, 707 addr >> TRB_SEGMENT_SHIFT); 708 xhci_ring_free(xhci, cur_ring); 709 stream_info->stream_rings[cur_stream] = NULL; 710 } 711 } 712 xhci_free_command(xhci, stream_info->free_streams_command); 713 cleanup_ctx: 714 kfree(stream_info->stream_rings); 715 cleanup_info: 716 kfree(stream_info); 717 cleanup_trbs: 718 xhci->cmd_ring_reserved_trbs--; 719 return NULL; 720 } 721 /* 722 * Sets the MaxPStreams field and the Linear Stream Array field. 723 * Sets the dequeue pointer to the stream context array. 724 */ 725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 726 struct xhci_ep_ctx *ep_ctx, 727 struct xhci_stream_info *stream_info) 728 { 729 u32 max_primary_streams; 730 /* MaxPStreams is the number of stream context array entries, not the 731 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 732 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 733 */ 734 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 735 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", 736 1 << (max_primary_streams + 1)); 737 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 738 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 739 | EP_HAS_LSA); 740 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 741 } 742 743 /* 744 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 745 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 746 * not at the beginning of the ring). 747 */ 748 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, 749 struct xhci_ep_ctx *ep_ctx, 750 struct xhci_virt_ep *ep) 751 { 752 dma_addr_t addr; 753 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 754 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 755 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 756 } 757 758 /* Frees all stream contexts associated with the endpoint, 759 * 760 * Caller should fix the endpoint context streams fields. 761 */ 762 void xhci_free_stream_info(struct xhci_hcd *xhci, 763 struct xhci_stream_info *stream_info) 764 { 765 int cur_stream; 766 struct xhci_ring *cur_ring; 767 dma_addr_t addr; 768 769 if (!stream_info) 770 return; 771 772 for (cur_stream = 1; cur_stream < stream_info->num_streams; 773 cur_stream++) { 774 cur_ring = stream_info->stream_rings[cur_stream]; 775 if (cur_ring) { 776 addr = cur_ring->first_seg->dma; 777 radix_tree_delete(&stream_info->trb_address_map, 778 addr >> TRB_SEGMENT_SHIFT); 779 xhci_ring_free(xhci, cur_ring); 780 stream_info->stream_rings[cur_stream] = NULL; 781 } 782 } 783 xhci_free_command(xhci, stream_info->free_streams_command); 784 xhci->cmd_ring_reserved_trbs--; 785 if (stream_info->stream_ctx_array) 786 xhci_free_stream_ctx(xhci, 787 stream_info->num_stream_ctxs, 788 stream_info->stream_ctx_array, 789 stream_info->ctx_array_dma); 790 791 if (stream_info) 792 kfree(stream_info->stream_rings); 793 kfree(stream_info); 794 } 795 796 797 /***************** Device context manipulation *************************/ 798 799 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 800 struct xhci_virt_ep *ep) 801 { 802 init_timer(&ep->stop_cmd_timer); 803 ep->stop_cmd_timer.data = (unsigned long) ep; 804 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog; 805 ep->xhci = xhci; 806 } 807 808 static void xhci_free_tt_info(struct xhci_hcd *xhci, 809 struct xhci_virt_device *virt_dev, 810 int slot_id) 811 { 812 struct list_head *tt_list_head; 813 struct xhci_tt_bw_info *tt_info, *next; 814 bool slot_found = false; 815 816 /* If the device never made it past the Set Address stage, 817 * it may not have the real_port set correctly. 818 */ 819 if (virt_dev->real_port == 0 || 820 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 821 xhci_dbg(xhci, "Bad real port.\n"); 822 return; 823 } 824 825 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 826 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 827 /* Multi-TT hubs will have more than one entry */ 828 if (tt_info->slot_id == slot_id) { 829 slot_found = true; 830 list_del(&tt_info->tt_list); 831 kfree(tt_info); 832 } else if (slot_found) { 833 break; 834 } 835 } 836 } 837 838 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 839 struct xhci_virt_device *virt_dev, 840 struct usb_device *hdev, 841 struct usb_tt *tt, gfp_t mem_flags) 842 { 843 struct xhci_tt_bw_info *tt_info; 844 unsigned int num_ports; 845 int i, j; 846 847 if (!tt->multi) 848 num_ports = 1; 849 else 850 num_ports = hdev->maxchild; 851 852 for (i = 0; i < num_ports; i++, tt_info++) { 853 struct xhci_interval_bw_table *bw_table; 854 855 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 856 if (!tt_info) 857 goto free_tts; 858 INIT_LIST_HEAD(&tt_info->tt_list); 859 list_add(&tt_info->tt_list, 860 &xhci->rh_bw[virt_dev->real_port - 1].tts); 861 tt_info->slot_id = virt_dev->udev->slot_id; 862 if (tt->multi) 863 tt_info->ttport = i+1; 864 bw_table = &tt_info->bw_table; 865 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 866 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 867 } 868 return 0; 869 870 free_tts: 871 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 872 return -ENOMEM; 873 } 874 875 876 /* All the xhci_tds in the ring's TD list should be freed at this point. 877 * Should be called with xhci->lock held if there is any chance the TT lists 878 * will be manipulated by the configure endpoint, allocate device, or update 879 * hub functions while this function is removing the TT entries from the list. 880 */ 881 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 882 { 883 struct xhci_virt_device *dev; 884 int i; 885 int old_active_eps = 0; 886 887 /* Slot ID 0 is reserved */ 888 if (slot_id == 0 || !xhci->devs[slot_id]) 889 return; 890 891 dev = xhci->devs[slot_id]; 892 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 893 if (!dev) 894 return; 895 896 if (dev->tt_info) 897 old_active_eps = dev->tt_info->active_eps; 898 899 for (i = 0; i < 31; ++i) { 900 if (dev->eps[i].ring) 901 xhci_ring_free(xhci, dev->eps[i].ring); 902 if (dev->eps[i].stream_info) 903 xhci_free_stream_info(xhci, 904 dev->eps[i].stream_info); 905 /* Endpoints on the TT/root port lists should have been removed 906 * when usb_disable_device() was called for the device. 907 * We can't drop them anyway, because the udev might have gone 908 * away by this point, and we can't tell what speed it was. 909 */ 910 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 911 xhci_warn(xhci, "Slot %u endpoint %u " 912 "not removed from BW list!\n", 913 slot_id, i); 914 } 915 /* If this is a hub, free the TT(s) from the TT list */ 916 xhci_free_tt_info(xhci, dev, slot_id); 917 /* If necessary, update the number of active TTs on this root port */ 918 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 919 920 if (dev->ring_cache) { 921 for (i = 0; i < dev->num_rings_cached; i++) 922 xhci_ring_free(xhci, dev->ring_cache[i]); 923 kfree(dev->ring_cache); 924 } 925 926 if (dev->in_ctx) 927 xhci_free_container_ctx(xhci, dev->in_ctx); 928 if (dev->out_ctx) 929 xhci_free_container_ctx(xhci, dev->out_ctx); 930 931 kfree(xhci->devs[slot_id]); 932 xhci->devs[slot_id] = NULL; 933 } 934 935 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 936 struct usb_device *udev, gfp_t flags) 937 { 938 struct xhci_virt_device *dev; 939 int i; 940 941 /* Slot ID 0 is reserved */ 942 if (slot_id == 0 || xhci->devs[slot_id]) { 943 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 944 return 0; 945 } 946 947 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 948 if (!xhci->devs[slot_id]) 949 return 0; 950 dev = xhci->devs[slot_id]; 951 952 /* Allocate the (output) device context that will be used in the HC. */ 953 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 954 if (!dev->out_ctx) 955 goto fail; 956 957 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 958 (unsigned long long)dev->out_ctx->dma); 959 960 /* Allocate the (input) device context for address device command */ 961 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 962 if (!dev->in_ctx) 963 goto fail; 964 965 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 966 (unsigned long long)dev->in_ctx->dma); 967 968 /* Initialize the cancellation list and watchdog timers for each ep */ 969 for (i = 0; i < 31; i++) { 970 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 971 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 972 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 973 } 974 975 /* Allocate endpoint 0 ring */ 976 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags); 977 if (!dev->eps[0].ring) 978 goto fail; 979 980 /* Allocate pointers to the ring cache */ 981 dev->ring_cache = kzalloc( 982 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 983 flags); 984 if (!dev->ring_cache) 985 goto fail; 986 dev->num_rings_cached = 0; 987 988 init_completion(&dev->cmd_completion); 989 INIT_LIST_HEAD(&dev->cmd_list); 990 dev->udev = udev; 991 992 /* Point to output device context in dcbaa. */ 993 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 994 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 995 slot_id, 996 &xhci->dcbaa->dev_context_ptrs[slot_id], 997 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 998 999 return 1; 1000 fail: 1001 xhci_free_virt_device(xhci, slot_id); 1002 return 0; 1003 } 1004 1005 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1006 struct usb_device *udev) 1007 { 1008 struct xhci_virt_device *virt_dev; 1009 struct xhci_ep_ctx *ep0_ctx; 1010 struct xhci_ring *ep_ring; 1011 1012 virt_dev = xhci->devs[udev->slot_id]; 1013 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1014 ep_ring = virt_dev->eps[0].ring; 1015 /* 1016 * FIXME we don't keep track of the dequeue pointer very well after a 1017 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1018 * host to our enqueue pointer. This should only be called after a 1019 * configured device has reset, so all control transfers should have 1020 * been completed or cancelled before the reset. 1021 */ 1022 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1023 ep_ring->enqueue) 1024 | ep_ring->cycle_state); 1025 } 1026 1027 /* 1028 * The xHCI roothub may have ports of differing speeds in any order in the port 1029 * status registers. xhci->port_array provides an array of the port speed for 1030 * each offset into the port status registers. 1031 * 1032 * The xHCI hardware wants to know the roothub port number that the USB device 1033 * is attached to (or the roothub port its ancestor hub is attached to). All we 1034 * know is the index of that port under either the USB 2.0 or the USB 3.0 1035 * roothub, but that doesn't give us the real index into the HW port status 1036 * registers. Call xhci_find_raw_port_number() to get real index. 1037 */ 1038 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1039 struct usb_device *udev) 1040 { 1041 struct usb_device *top_dev; 1042 struct usb_hcd *hcd; 1043 1044 if (udev->speed == USB_SPEED_SUPER) 1045 hcd = xhci->shared_hcd; 1046 else 1047 hcd = xhci->main_hcd; 1048 1049 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1050 top_dev = top_dev->parent) 1051 /* Found device below root hub */; 1052 1053 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1054 } 1055 1056 /* Setup an xHCI virtual device for a Set Address command */ 1057 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1058 { 1059 struct xhci_virt_device *dev; 1060 struct xhci_ep_ctx *ep0_ctx; 1061 struct xhci_slot_ctx *slot_ctx; 1062 u32 port_num; 1063 u32 max_packets; 1064 struct usb_device *top_dev; 1065 1066 dev = xhci->devs[udev->slot_id]; 1067 /* Slot ID 0 is reserved */ 1068 if (udev->slot_id == 0 || !dev) { 1069 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1070 udev->slot_id); 1071 return -EINVAL; 1072 } 1073 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1074 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1075 1076 /* 3) Only the control endpoint is valid - one endpoint context */ 1077 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1078 switch (udev->speed) { 1079 case USB_SPEED_SUPER: 1080 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1081 max_packets = MAX_PACKET(512); 1082 break; 1083 case USB_SPEED_HIGH: 1084 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1085 max_packets = MAX_PACKET(64); 1086 break; 1087 /* USB core guesses at a 64-byte max packet first for FS devices */ 1088 case USB_SPEED_FULL: 1089 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1090 max_packets = MAX_PACKET(64); 1091 break; 1092 case USB_SPEED_LOW: 1093 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1094 max_packets = MAX_PACKET(8); 1095 break; 1096 case USB_SPEED_WIRELESS: 1097 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1098 return -EINVAL; 1099 break; 1100 default: 1101 /* Speed was set earlier, this shouldn't happen. */ 1102 return -EINVAL; 1103 } 1104 /* Find the root hub port this device is under */ 1105 port_num = xhci_find_real_port_number(xhci, udev); 1106 if (!port_num) 1107 return -EINVAL; 1108 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1109 /* Set the port number in the virtual_device to the faked port number */ 1110 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1111 top_dev = top_dev->parent) 1112 /* Found device below root hub */; 1113 dev->fake_port = top_dev->portnum; 1114 dev->real_port = port_num; 1115 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1116 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1117 1118 /* Find the right bandwidth table that this device will be a part of. 1119 * If this is a full speed device attached directly to a root port (or a 1120 * decendent of one), it counts as a primary bandwidth domain, not a 1121 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1122 * will never be created for the HS root hub. 1123 */ 1124 if (!udev->tt || !udev->tt->hub->parent) { 1125 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1126 } else { 1127 struct xhci_root_port_bw_info *rh_bw; 1128 struct xhci_tt_bw_info *tt_bw; 1129 1130 rh_bw = &xhci->rh_bw[port_num - 1]; 1131 /* Find the right TT. */ 1132 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1133 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1134 continue; 1135 1136 if (!dev->udev->tt->multi || 1137 (udev->tt->multi && 1138 tt_bw->ttport == dev->udev->ttport)) { 1139 dev->bw_table = &tt_bw->bw_table; 1140 dev->tt_info = tt_bw; 1141 break; 1142 } 1143 } 1144 if (!dev->tt_info) 1145 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1146 } 1147 1148 /* Is this a LS/FS device under an external HS hub? */ 1149 if (udev->tt && udev->tt->hub->parent) { 1150 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1151 (udev->ttport << 8)); 1152 if (udev->tt->multi) 1153 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1154 } 1155 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1156 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1157 1158 /* Step 4 - ring already allocated */ 1159 /* Step 5 */ 1160 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1161 1162 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1163 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1164 max_packets); 1165 1166 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1167 dev->eps[0].ring->cycle_state); 1168 1169 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1170 1171 return 0; 1172 } 1173 1174 /* 1175 * Convert interval expressed as 2^(bInterval - 1) == interval into 1176 * straight exponent value 2^n == interval. 1177 * 1178 */ 1179 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1180 struct usb_host_endpoint *ep) 1181 { 1182 unsigned int interval; 1183 1184 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1185 if (interval != ep->desc.bInterval - 1) 1186 dev_warn(&udev->dev, 1187 "ep %#x - rounding interval to %d %sframes\n", 1188 ep->desc.bEndpointAddress, 1189 1 << interval, 1190 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1191 1192 if (udev->speed == USB_SPEED_FULL) { 1193 /* 1194 * Full speed isoc endpoints specify interval in frames, 1195 * not microframes. We are using microframes everywhere, 1196 * so adjust accordingly. 1197 */ 1198 interval += 3; /* 1 frame = 2^3 uframes */ 1199 } 1200 1201 return interval; 1202 } 1203 1204 /* 1205 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1206 * microframes, rounded down to nearest power of 2. 1207 */ 1208 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1209 struct usb_host_endpoint *ep, unsigned int desc_interval, 1210 unsigned int min_exponent, unsigned int max_exponent) 1211 { 1212 unsigned int interval; 1213 1214 interval = fls(desc_interval) - 1; 1215 interval = clamp_val(interval, min_exponent, max_exponent); 1216 if ((1 << interval) != desc_interval) 1217 dev_warn(&udev->dev, 1218 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1219 ep->desc.bEndpointAddress, 1220 1 << interval, 1221 desc_interval); 1222 1223 return interval; 1224 } 1225 1226 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1227 struct usb_host_endpoint *ep) 1228 { 1229 if (ep->desc.bInterval == 0) 1230 return 0; 1231 return xhci_microframes_to_exponent(udev, ep, 1232 ep->desc.bInterval, 0, 15); 1233 } 1234 1235 1236 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1237 struct usb_host_endpoint *ep) 1238 { 1239 return xhci_microframes_to_exponent(udev, ep, 1240 ep->desc.bInterval * 8, 3, 10); 1241 } 1242 1243 /* Return the polling or NAK interval. 1244 * 1245 * The polling interval is expressed in "microframes". If xHCI's Interval field 1246 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1247 * 1248 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1249 * is set to 0. 1250 */ 1251 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1252 struct usb_host_endpoint *ep) 1253 { 1254 unsigned int interval = 0; 1255 1256 switch (udev->speed) { 1257 case USB_SPEED_HIGH: 1258 /* Max NAK rate */ 1259 if (usb_endpoint_xfer_control(&ep->desc) || 1260 usb_endpoint_xfer_bulk(&ep->desc)) { 1261 interval = xhci_parse_microframe_interval(udev, ep); 1262 break; 1263 } 1264 /* Fall through - SS and HS isoc/int have same decoding */ 1265 1266 case USB_SPEED_SUPER: 1267 if (usb_endpoint_xfer_int(&ep->desc) || 1268 usb_endpoint_xfer_isoc(&ep->desc)) { 1269 interval = xhci_parse_exponent_interval(udev, ep); 1270 } 1271 break; 1272 1273 case USB_SPEED_FULL: 1274 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1275 interval = xhci_parse_exponent_interval(udev, ep); 1276 break; 1277 } 1278 /* 1279 * Fall through for interrupt endpoint interval decoding 1280 * since it uses the same rules as low speed interrupt 1281 * endpoints. 1282 */ 1283 1284 case USB_SPEED_LOW: 1285 if (usb_endpoint_xfer_int(&ep->desc) || 1286 usb_endpoint_xfer_isoc(&ep->desc)) { 1287 1288 interval = xhci_parse_frame_interval(udev, ep); 1289 } 1290 break; 1291 1292 default: 1293 BUG(); 1294 } 1295 return EP_INTERVAL(interval); 1296 } 1297 1298 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1299 * High speed endpoint descriptors can define "the number of additional 1300 * transaction opportunities per microframe", but that goes in the Max Burst 1301 * endpoint context field. 1302 */ 1303 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1304 struct usb_host_endpoint *ep) 1305 { 1306 if (udev->speed != USB_SPEED_SUPER || 1307 !usb_endpoint_xfer_isoc(&ep->desc)) 1308 return 0; 1309 return ep->ss_ep_comp.bmAttributes; 1310 } 1311 1312 static u32 xhci_get_endpoint_type(struct usb_device *udev, 1313 struct usb_host_endpoint *ep) 1314 { 1315 int in; 1316 u32 type; 1317 1318 in = usb_endpoint_dir_in(&ep->desc); 1319 if (usb_endpoint_xfer_control(&ep->desc)) { 1320 type = EP_TYPE(CTRL_EP); 1321 } else if (usb_endpoint_xfer_bulk(&ep->desc)) { 1322 if (in) 1323 type = EP_TYPE(BULK_IN_EP); 1324 else 1325 type = EP_TYPE(BULK_OUT_EP); 1326 } else if (usb_endpoint_xfer_isoc(&ep->desc)) { 1327 if (in) 1328 type = EP_TYPE(ISOC_IN_EP); 1329 else 1330 type = EP_TYPE(ISOC_OUT_EP); 1331 } else if (usb_endpoint_xfer_int(&ep->desc)) { 1332 if (in) 1333 type = EP_TYPE(INT_IN_EP); 1334 else 1335 type = EP_TYPE(INT_OUT_EP); 1336 } else { 1337 type = 0; 1338 } 1339 return type; 1340 } 1341 1342 /* Return the maximum endpoint service interval time (ESIT) payload. 1343 * Basically, this is the maxpacket size, multiplied by the burst size 1344 * and mult size. 1345 */ 1346 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, 1347 struct usb_device *udev, 1348 struct usb_host_endpoint *ep) 1349 { 1350 int max_burst; 1351 int max_packet; 1352 1353 /* Only applies for interrupt or isochronous endpoints */ 1354 if (usb_endpoint_xfer_control(&ep->desc) || 1355 usb_endpoint_xfer_bulk(&ep->desc)) 1356 return 0; 1357 1358 if (udev->speed == USB_SPEED_SUPER) 1359 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1360 1361 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1362 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; 1363 /* A 0 in max burst means 1 transfer per ESIT */ 1364 return max_packet * (max_burst + 1); 1365 } 1366 1367 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1368 * Drivers will have to call usb_alloc_streams() to do that. 1369 */ 1370 int xhci_endpoint_init(struct xhci_hcd *xhci, 1371 struct xhci_virt_device *virt_dev, 1372 struct usb_device *udev, 1373 struct usb_host_endpoint *ep, 1374 gfp_t mem_flags) 1375 { 1376 unsigned int ep_index; 1377 struct xhci_ep_ctx *ep_ctx; 1378 struct xhci_ring *ep_ring; 1379 unsigned int max_packet; 1380 unsigned int max_burst; 1381 enum xhci_ring_type type; 1382 u32 max_esit_payload; 1383 u32 endpoint_type; 1384 1385 ep_index = xhci_get_endpoint_index(&ep->desc); 1386 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1387 1388 endpoint_type = xhci_get_endpoint_type(udev, ep); 1389 if (!endpoint_type) 1390 return -EINVAL; 1391 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type); 1392 1393 type = usb_endpoint_type(&ep->desc); 1394 /* Set up the endpoint ring */ 1395 virt_dev->eps[ep_index].new_ring = 1396 xhci_ring_alloc(xhci, 2, 1, type, mem_flags); 1397 if (!virt_dev->eps[ep_index].new_ring) { 1398 /* Attempt to use the ring cache */ 1399 if (virt_dev->num_rings_cached == 0) 1400 return -ENOMEM; 1401 virt_dev->eps[ep_index].new_ring = 1402 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1403 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1404 virt_dev->num_rings_cached--; 1405 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1406 1, type); 1407 } 1408 virt_dev->eps[ep_index].skip = false; 1409 ep_ring = virt_dev->eps[ep_index].new_ring; 1410 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); 1411 1412 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) 1413 | EP_MULT(xhci_get_endpoint_mult(udev, ep))); 1414 1415 /* FIXME dig Mult and streams info out of ep companion desc */ 1416 1417 /* Allow 3 retries for everything but isoc; 1418 * CErr shall be set to 0 for Isoch endpoints. 1419 */ 1420 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1421 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3)); 1422 else 1423 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0)); 1424 1425 /* Set the max packet size and max burst */ 1426 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1427 max_burst = 0; 1428 switch (udev->speed) { 1429 case USB_SPEED_SUPER: 1430 /* dig out max burst from ep companion desc */ 1431 max_burst = ep->ss_ep_comp.bMaxBurst; 1432 break; 1433 case USB_SPEED_HIGH: 1434 /* Some devices get this wrong */ 1435 if (usb_endpoint_xfer_bulk(&ep->desc)) 1436 max_packet = 512; 1437 /* bits 11:12 specify the number of additional transaction 1438 * opportunities per microframe (USB 2.0, section 9.6.6) 1439 */ 1440 if (usb_endpoint_xfer_isoc(&ep->desc) || 1441 usb_endpoint_xfer_int(&ep->desc)) { 1442 max_burst = (usb_endpoint_maxp(&ep->desc) 1443 & 0x1800) >> 11; 1444 } 1445 break; 1446 case USB_SPEED_FULL: 1447 case USB_SPEED_LOW: 1448 break; 1449 default: 1450 BUG(); 1451 } 1452 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) | 1453 MAX_BURST(max_burst)); 1454 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); 1455 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); 1456 1457 /* 1458 * XXX no idea how to calculate the average TRB buffer length for bulk 1459 * endpoints, as the driver gives us no clue how big each scatter gather 1460 * list entry (or buffer) is going to be. 1461 * 1462 * For isochronous and interrupt endpoints, we set it to the max 1463 * available, until we have new API in the USB core to allow drivers to 1464 * declare how much bandwidth they actually need. 1465 * 1466 * Normally, it would be calculated by taking the total of the buffer 1467 * lengths in the TD and then dividing by the number of TRBs in a TD, 1468 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't 1469 * use Event Data TRBs, and we don't chain in a link TRB on short 1470 * transfers, we're basically dividing by 1. 1471 * 1472 * xHCI 1.0 specification indicates that the Average TRB Length should 1473 * be set to 8 for control endpoints. 1474 */ 1475 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100) 1476 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); 1477 else 1478 ep_ctx->tx_info |= 1479 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); 1480 1481 /* FIXME Debug endpoint context */ 1482 return 0; 1483 } 1484 1485 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1486 struct xhci_virt_device *virt_dev, 1487 struct usb_host_endpoint *ep) 1488 { 1489 unsigned int ep_index; 1490 struct xhci_ep_ctx *ep_ctx; 1491 1492 ep_index = xhci_get_endpoint_index(&ep->desc); 1493 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1494 1495 ep_ctx->ep_info = 0; 1496 ep_ctx->ep_info2 = 0; 1497 ep_ctx->deq = 0; 1498 ep_ctx->tx_info = 0; 1499 /* Don't free the endpoint ring until the set interface or configuration 1500 * request succeeds. 1501 */ 1502 } 1503 1504 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1505 { 1506 bw_info->ep_interval = 0; 1507 bw_info->mult = 0; 1508 bw_info->num_packets = 0; 1509 bw_info->max_packet_size = 0; 1510 bw_info->type = 0; 1511 bw_info->max_esit_payload = 0; 1512 } 1513 1514 void xhci_update_bw_info(struct xhci_hcd *xhci, 1515 struct xhci_container_ctx *in_ctx, 1516 struct xhci_input_control_ctx *ctrl_ctx, 1517 struct xhci_virt_device *virt_dev) 1518 { 1519 struct xhci_bw_info *bw_info; 1520 struct xhci_ep_ctx *ep_ctx; 1521 unsigned int ep_type; 1522 int i; 1523 1524 for (i = 1; i < 31; ++i) { 1525 bw_info = &virt_dev->eps[i].bw_info; 1526 1527 /* We can't tell what endpoint type is being dropped, but 1528 * unconditionally clearing the bandwidth info for non-periodic 1529 * endpoints should be harmless because the info will never be 1530 * set in the first place. 1531 */ 1532 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1533 /* Dropped endpoint */ 1534 xhci_clear_endpoint_bw_info(bw_info); 1535 continue; 1536 } 1537 1538 if (EP_IS_ADDED(ctrl_ctx, i)) { 1539 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1540 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1541 1542 /* Ignore non-periodic endpoints */ 1543 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1544 ep_type != ISOC_IN_EP && 1545 ep_type != INT_IN_EP) 1546 continue; 1547 1548 /* Added or changed endpoint */ 1549 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1550 le32_to_cpu(ep_ctx->ep_info)); 1551 /* Number of packets and mult are zero-based in the 1552 * input context, but we want one-based for the 1553 * interval table. 1554 */ 1555 bw_info->mult = CTX_TO_EP_MULT( 1556 le32_to_cpu(ep_ctx->ep_info)) + 1; 1557 bw_info->num_packets = CTX_TO_MAX_BURST( 1558 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1559 bw_info->max_packet_size = MAX_PACKET_DECODED( 1560 le32_to_cpu(ep_ctx->ep_info2)); 1561 bw_info->type = ep_type; 1562 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1563 le32_to_cpu(ep_ctx->tx_info)); 1564 } 1565 } 1566 } 1567 1568 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1569 * Useful when you want to change one particular aspect of the endpoint and then 1570 * issue a configure endpoint command. 1571 */ 1572 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1573 struct xhci_container_ctx *in_ctx, 1574 struct xhci_container_ctx *out_ctx, 1575 unsigned int ep_index) 1576 { 1577 struct xhci_ep_ctx *out_ep_ctx; 1578 struct xhci_ep_ctx *in_ep_ctx; 1579 1580 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1581 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1582 1583 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1584 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1585 in_ep_ctx->deq = out_ep_ctx->deq; 1586 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1587 } 1588 1589 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1590 * Useful when you want to change one particular aspect of the endpoint and then 1591 * issue a configure endpoint command. Only the context entries field matters, 1592 * but we'll copy the whole thing anyway. 1593 */ 1594 void xhci_slot_copy(struct xhci_hcd *xhci, 1595 struct xhci_container_ctx *in_ctx, 1596 struct xhci_container_ctx *out_ctx) 1597 { 1598 struct xhci_slot_ctx *in_slot_ctx; 1599 struct xhci_slot_ctx *out_slot_ctx; 1600 1601 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1602 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1603 1604 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1605 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1606 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1607 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1608 } 1609 1610 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1611 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1612 { 1613 int i; 1614 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1615 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1616 1617 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp); 1618 1619 if (!num_sp) 1620 return 0; 1621 1622 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1623 if (!xhci->scratchpad) 1624 goto fail_sp; 1625 1626 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1627 num_sp * sizeof(u64), 1628 &xhci->scratchpad->sp_dma, flags); 1629 if (!xhci->scratchpad->sp_array) 1630 goto fail_sp2; 1631 1632 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1633 if (!xhci->scratchpad->sp_buffers) 1634 goto fail_sp3; 1635 1636 xhci->scratchpad->sp_dma_buffers = 1637 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1638 1639 if (!xhci->scratchpad->sp_dma_buffers) 1640 goto fail_sp4; 1641 1642 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1643 for (i = 0; i < num_sp; i++) { 1644 dma_addr_t dma; 1645 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1646 flags); 1647 if (!buf) 1648 goto fail_sp5; 1649 1650 xhci->scratchpad->sp_array[i] = dma; 1651 xhci->scratchpad->sp_buffers[i] = buf; 1652 xhci->scratchpad->sp_dma_buffers[i] = dma; 1653 } 1654 1655 return 0; 1656 1657 fail_sp5: 1658 for (i = i - 1; i >= 0; i--) { 1659 dma_free_coherent(dev, xhci->page_size, 1660 xhci->scratchpad->sp_buffers[i], 1661 xhci->scratchpad->sp_dma_buffers[i]); 1662 } 1663 kfree(xhci->scratchpad->sp_dma_buffers); 1664 1665 fail_sp4: 1666 kfree(xhci->scratchpad->sp_buffers); 1667 1668 fail_sp3: 1669 dma_free_coherent(dev, num_sp * sizeof(u64), 1670 xhci->scratchpad->sp_array, 1671 xhci->scratchpad->sp_dma); 1672 1673 fail_sp2: 1674 kfree(xhci->scratchpad); 1675 xhci->scratchpad = NULL; 1676 1677 fail_sp: 1678 return -ENOMEM; 1679 } 1680 1681 static void scratchpad_free(struct xhci_hcd *xhci) 1682 { 1683 int num_sp; 1684 int i; 1685 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1686 1687 if (!xhci->scratchpad) 1688 return; 1689 1690 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1691 1692 for (i = 0; i < num_sp; i++) { 1693 dma_free_coherent(&pdev->dev, xhci->page_size, 1694 xhci->scratchpad->sp_buffers[i], 1695 xhci->scratchpad->sp_dma_buffers[i]); 1696 } 1697 kfree(xhci->scratchpad->sp_dma_buffers); 1698 kfree(xhci->scratchpad->sp_buffers); 1699 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64), 1700 xhci->scratchpad->sp_array, 1701 xhci->scratchpad->sp_dma); 1702 kfree(xhci->scratchpad); 1703 xhci->scratchpad = NULL; 1704 } 1705 1706 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1707 bool allocate_in_ctx, bool allocate_completion, 1708 gfp_t mem_flags) 1709 { 1710 struct xhci_command *command; 1711 1712 command = kzalloc(sizeof(*command), mem_flags); 1713 if (!command) 1714 return NULL; 1715 1716 if (allocate_in_ctx) { 1717 command->in_ctx = 1718 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1719 mem_flags); 1720 if (!command->in_ctx) { 1721 kfree(command); 1722 return NULL; 1723 } 1724 } 1725 1726 if (allocate_completion) { 1727 command->completion = 1728 kzalloc(sizeof(struct completion), mem_flags); 1729 if (!command->completion) { 1730 xhci_free_container_ctx(xhci, command->in_ctx); 1731 kfree(command); 1732 return NULL; 1733 } 1734 init_completion(command->completion); 1735 } 1736 1737 command->status = 0; 1738 INIT_LIST_HEAD(&command->cmd_list); 1739 return command; 1740 } 1741 1742 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv) 1743 { 1744 if (urb_priv) { 1745 kfree(urb_priv->td[0]); 1746 kfree(urb_priv); 1747 } 1748 } 1749 1750 void xhci_free_command(struct xhci_hcd *xhci, 1751 struct xhci_command *command) 1752 { 1753 xhci_free_container_ctx(xhci, 1754 command->in_ctx); 1755 kfree(command->completion); 1756 kfree(command); 1757 } 1758 1759 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1760 { 1761 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 1762 struct dev_info *dev_info, *next; 1763 struct xhci_cd *cur_cd, *next_cd; 1764 unsigned long flags; 1765 int size; 1766 int i, j, num_ports; 1767 1768 /* Free the Event Ring Segment Table and the actual Event Ring */ 1769 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1770 if (xhci->erst.entries) 1771 dma_free_coherent(&pdev->dev, size, 1772 xhci->erst.entries, xhci->erst.erst_dma_addr); 1773 xhci->erst.entries = NULL; 1774 xhci_dbg(xhci, "Freed ERST\n"); 1775 if (xhci->event_ring) 1776 xhci_ring_free(xhci, xhci->event_ring); 1777 xhci->event_ring = NULL; 1778 xhci_dbg(xhci, "Freed event ring\n"); 1779 1780 if (xhci->lpm_command) 1781 xhci_free_command(xhci, xhci->lpm_command); 1782 xhci->cmd_ring_reserved_trbs = 0; 1783 if (xhci->cmd_ring) 1784 xhci_ring_free(xhci, xhci->cmd_ring); 1785 xhci->cmd_ring = NULL; 1786 xhci_dbg(xhci, "Freed command ring\n"); 1787 list_for_each_entry_safe(cur_cd, next_cd, 1788 &xhci->cancel_cmd_list, cancel_cmd_list) { 1789 list_del(&cur_cd->cancel_cmd_list); 1790 kfree(cur_cd); 1791 } 1792 1793 for (i = 1; i < MAX_HC_SLOTS; ++i) 1794 xhci_free_virt_device(xhci, i); 1795 1796 if (xhci->segment_pool) 1797 dma_pool_destroy(xhci->segment_pool); 1798 xhci->segment_pool = NULL; 1799 xhci_dbg(xhci, "Freed segment pool\n"); 1800 1801 if (xhci->device_pool) 1802 dma_pool_destroy(xhci->device_pool); 1803 xhci->device_pool = NULL; 1804 xhci_dbg(xhci, "Freed device context pool\n"); 1805 1806 if (xhci->small_streams_pool) 1807 dma_pool_destroy(xhci->small_streams_pool); 1808 xhci->small_streams_pool = NULL; 1809 xhci_dbg(xhci, "Freed small stream array pool\n"); 1810 1811 if (xhci->medium_streams_pool) 1812 dma_pool_destroy(xhci->medium_streams_pool); 1813 xhci->medium_streams_pool = NULL; 1814 xhci_dbg(xhci, "Freed medium stream array pool\n"); 1815 1816 if (xhci->dcbaa) 1817 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa), 1818 xhci->dcbaa, xhci->dcbaa->dma); 1819 xhci->dcbaa = NULL; 1820 1821 scratchpad_free(xhci); 1822 1823 spin_lock_irqsave(&xhci->lock, flags); 1824 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) { 1825 list_del(&dev_info->list); 1826 kfree(dev_info); 1827 } 1828 spin_unlock_irqrestore(&xhci->lock, flags); 1829 1830 if (!xhci->rh_bw) 1831 goto no_bw; 1832 1833 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1834 for (i = 0; i < num_ports; i++) { 1835 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1836 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1837 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1838 while (!list_empty(ep)) 1839 list_del_init(ep->next); 1840 } 1841 } 1842 1843 for (i = 0; i < num_ports; i++) { 1844 struct xhci_tt_bw_info *tt, *n; 1845 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1846 list_del(&tt->tt_list); 1847 kfree(tt); 1848 } 1849 } 1850 1851 no_bw: 1852 xhci->num_usb2_ports = 0; 1853 xhci->num_usb3_ports = 0; 1854 xhci->num_active_eps = 0; 1855 kfree(xhci->usb2_ports); 1856 kfree(xhci->usb3_ports); 1857 kfree(xhci->port_array); 1858 kfree(xhci->rh_bw); 1859 kfree(xhci->ext_caps); 1860 1861 xhci->page_size = 0; 1862 xhci->page_shift = 0; 1863 xhci->bus_state[0].bus_suspended = 0; 1864 xhci->bus_state[1].bus_suspended = 0; 1865 } 1866 1867 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1868 struct xhci_segment *input_seg, 1869 union xhci_trb *start_trb, 1870 union xhci_trb *end_trb, 1871 dma_addr_t input_dma, 1872 struct xhci_segment *result_seg, 1873 char *test_name, int test_number) 1874 { 1875 unsigned long long start_dma; 1876 unsigned long long end_dma; 1877 struct xhci_segment *seg; 1878 1879 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1880 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1881 1882 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma); 1883 if (seg != result_seg) { 1884 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1885 test_name, test_number); 1886 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1887 "input DMA 0x%llx\n", 1888 input_seg, 1889 (unsigned long long) input_dma); 1890 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1891 "ending TRB %p (0x%llx DMA)\n", 1892 start_trb, start_dma, 1893 end_trb, end_dma); 1894 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1895 result_seg, seg); 1896 return -1; 1897 } 1898 return 0; 1899 } 1900 1901 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1902 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags) 1903 { 1904 struct { 1905 dma_addr_t input_dma; 1906 struct xhci_segment *result_seg; 1907 } simple_test_vector [] = { 1908 /* A zeroed DMA field should fail */ 1909 { 0, NULL }, 1910 /* One TRB before the ring start should fail */ 1911 { xhci->event_ring->first_seg->dma - 16, NULL }, 1912 /* One byte before the ring start should fail */ 1913 { xhci->event_ring->first_seg->dma - 1, NULL }, 1914 /* Starting TRB should succeed */ 1915 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1916 /* Ending TRB should succeed */ 1917 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1918 xhci->event_ring->first_seg }, 1919 /* One byte after the ring end should fail */ 1920 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1921 /* One TRB after the ring end should fail */ 1922 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1923 /* An address of all ones should fail */ 1924 { (dma_addr_t) (~0), NULL }, 1925 }; 1926 struct { 1927 struct xhci_segment *input_seg; 1928 union xhci_trb *start_trb; 1929 union xhci_trb *end_trb; 1930 dma_addr_t input_dma; 1931 struct xhci_segment *result_seg; 1932 } complex_test_vector [] = { 1933 /* Test feeding a valid DMA address from a different ring */ 1934 { .input_seg = xhci->event_ring->first_seg, 1935 .start_trb = xhci->event_ring->first_seg->trbs, 1936 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1937 .input_dma = xhci->cmd_ring->first_seg->dma, 1938 .result_seg = NULL, 1939 }, 1940 /* Test feeding a valid end TRB from a different ring */ 1941 { .input_seg = xhci->event_ring->first_seg, 1942 .start_trb = xhci->event_ring->first_seg->trbs, 1943 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1944 .input_dma = xhci->cmd_ring->first_seg->dma, 1945 .result_seg = NULL, 1946 }, 1947 /* Test feeding a valid start and end TRB from a different ring */ 1948 { .input_seg = xhci->event_ring->first_seg, 1949 .start_trb = xhci->cmd_ring->first_seg->trbs, 1950 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1951 .input_dma = xhci->cmd_ring->first_seg->dma, 1952 .result_seg = NULL, 1953 }, 1954 /* TRB in this ring, but after this TD */ 1955 { .input_seg = xhci->event_ring->first_seg, 1956 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1957 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1958 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1959 .result_seg = NULL, 1960 }, 1961 /* TRB in this ring, but before this TD */ 1962 { .input_seg = xhci->event_ring->first_seg, 1963 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1964 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1965 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1966 .result_seg = NULL, 1967 }, 1968 /* TRB in this ring, but after this wrapped TD */ 1969 { .input_seg = xhci->event_ring->first_seg, 1970 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1971 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1972 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1973 .result_seg = NULL, 1974 }, 1975 /* TRB in this ring, but before this wrapped TD */ 1976 { .input_seg = xhci->event_ring->first_seg, 1977 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1978 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1979 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 1980 .result_seg = NULL, 1981 }, 1982 /* TRB not in this ring, and we have a wrapped TD */ 1983 { .input_seg = xhci->event_ring->first_seg, 1984 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 1985 .end_trb = &xhci->event_ring->first_seg->trbs[1], 1986 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 1987 .result_seg = NULL, 1988 }, 1989 }; 1990 1991 unsigned int num_tests; 1992 int i, ret; 1993 1994 num_tests = ARRAY_SIZE(simple_test_vector); 1995 for (i = 0; i < num_tests; i++) { 1996 ret = xhci_test_trb_in_td(xhci, 1997 xhci->event_ring->first_seg, 1998 xhci->event_ring->first_seg->trbs, 1999 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2000 simple_test_vector[i].input_dma, 2001 simple_test_vector[i].result_seg, 2002 "Simple", i); 2003 if (ret < 0) 2004 return ret; 2005 } 2006 2007 num_tests = ARRAY_SIZE(complex_test_vector); 2008 for (i = 0; i < num_tests; i++) { 2009 ret = xhci_test_trb_in_td(xhci, 2010 complex_test_vector[i].input_seg, 2011 complex_test_vector[i].start_trb, 2012 complex_test_vector[i].end_trb, 2013 complex_test_vector[i].input_dma, 2014 complex_test_vector[i].result_seg, 2015 "Complex", i); 2016 if (ret < 0) 2017 return ret; 2018 } 2019 xhci_dbg(xhci, "TRB math tests passed.\n"); 2020 return 0; 2021 } 2022 2023 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2024 { 2025 u64 temp; 2026 dma_addr_t deq; 2027 2028 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2029 xhci->event_ring->dequeue); 2030 if (deq == 0 && !in_interrupt()) 2031 xhci_warn(xhci, "WARN something wrong with SW event ring " 2032 "dequeue ptr.\n"); 2033 /* Update HC event ring dequeue pointer */ 2034 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2035 temp &= ERST_PTR_MASK; 2036 /* Don't clear the EHB bit (which is RW1C) because 2037 * there might be more events to service. 2038 */ 2039 temp &= ~ERST_EHB; 2040 xhci_dbg(xhci, "// Write event ring dequeue pointer, " 2041 "preserving EHB bit\n"); 2042 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2043 &xhci->ir_set->erst_dequeue); 2044 } 2045 2046 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2047 __le32 __iomem *addr, u8 major_revision, int max_caps) 2048 { 2049 u32 temp, port_offset, port_count; 2050 int i; 2051 2052 if (major_revision > 0x03) { 2053 xhci_warn(xhci, "Ignoring unknown port speed, " 2054 "Ext Cap %p, revision = 0x%x\n", 2055 addr, major_revision); 2056 /* Ignoring port protocol we can't understand. FIXME */ 2057 return; 2058 } 2059 2060 /* Port offset and count in the third dword, see section 7.2 */ 2061 temp = xhci_readl(xhci, addr + 2); 2062 port_offset = XHCI_EXT_PORT_OFF(temp); 2063 port_count = XHCI_EXT_PORT_COUNT(temp); 2064 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, " 2065 "count = %u, revision = 0x%x\n", 2066 addr, port_offset, port_count, major_revision); 2067 /* Port count includes the current port offset */ 2068 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2069 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2070 return; 2071 2072 /* cache usb2 port capabilities */ 2073 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2074 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2075 2076 /* Check the host's USB2 LPM capability */ 2077 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2078 (temp & XHCI_L1C)) { 2079 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n"); 2080 xhci->sw_lpm_support = 1; 2081 } 2082 2083 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2084 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n"); 2085 xhci->sw_lpm_support = 1; 2086 if (temp & XHCI_HLC) { 2087 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n"); 2088 xhci->hw_lpm_support = 1; 2089 } 2090 } 2091 2092 port_offset--; 2093 for (i = port_offset; i < (port_offset + port_count); i++) { 2094 /* Duplicate entry. Ignore the port if the revisions differ. */ 2095 if (xhci->port_array[i] != 0) { 2096 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2097 " port %u\n", addr, i); 2098 xhci_warn(xhci, "Port was marked as USB %u, " 2099 "duplicated as USB %u\n", 2100 xhci->port_array[i], major_revision); 2101 /* Only adjust the roothub port counts if we haven't 2102 * found a similar duplicate. 2103 */ 2104 if (xhci->port_array[i] != major_revision && 2105 xhci->port_array[i] != DUPLICATE_ENTRY) { 2106 if (xhci->port_array[i] == 0x03) 2107 xhci->num_usb3_ports--; 2108 else 2109 xhci->num_usb2_ports--; 2110 xhci->port_array[i] = DUPLICATE_ENTRY; 2111 } 2112 /* FIXME: Should we disable the port? */ 2113 continue; 2114 } 2115 xhci->port_array[i] = major_revision; 2116 if (major_revision == 0x03) 2117 xhci->num_usb3_ports++; 2118 else 2119 xhci->num_usb2_ports++; 2120 } 2121 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2122 } 2123 2124 /* 2125 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2126 * specify what speeds each port is supposed to be. We can't count on the port 2127 * speed bits in the PORTSC register being correct until a device is connected, 2128 * but we need to set up the two fake roothubs with the correct number of USB 2129 * 3.0 and USB 2.0 ports at host controller initialization time. 2130 */ 2131 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2132 { 2133 __le32 __iomem *addr, *tmp_addr; 2134 u32 offset, tmp_offset; 2135 unsigned int num_ports; 2136 int i, j, port_index; 2137 int cap_count = 0; 2138 2139 addr = &xhci->cap_regs->hcc_params; 2140 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr)); 2141 if (offset == 0) { 2142 xhci_err(xhci, "No Extended Capability registers, " 2143 "unable to set up roothub.\n"); 2144 return -ENODEV; 2145 } 2146 2147 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2148 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2149 if (!xhci->port_array) 2150 return -ENOMEM; 2151 2152 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2153 if (!xhci->rh_bw) 2154 return -ENOMEM; 2155 for (i = 0; i < num_ports; i++) { 2156 struct xhci_interval_bw_table *bw_table; 2157 2158 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2159 bw_table = &xhci->rh_bw[i].bw_table; 2160 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2161 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2162 } 2163 2164 /* 2165 * For whatever reason, the first capability offset is from the 2166 * capability register base, not from the HCCPARAMS register. 2167 * See section 5.3.6 for offset calculation. 2168 */ 2169 addr = &xhci->cap_regs->hc_capbase + offset; 2170 2171 tmp_addr = addr; 2172 tmp_offset = offset; 2173 2174 /* count extended protocol capability entries for later caching */ 2175 do { 2176 u32 cap_id; 2177 cap_id = xhci_readl(xhci, tmp_addr); 2178 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2179 cap_count++; 2180 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id); 2181 tmp_addr += tmp_offset; 2182 } while (tmp_offset); 2183 2184 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2185 if (!xhci->ext_caps) 2186 return -ENOMEM; 2187 2188 while (1) { 2189 u32 cap_id; 2190 2191 cap_id = xhci_readl(xhci, addr); 2192 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2193 xhci_add_in_port(xhci, num_ports, addr, 2194 (u8) XHCI_EXT_PORT_MAJOR(cap_id), 2195 cap_count); 2196 offset = XHCI_EXT_CAPS_NEXT(cap_id); 2197 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) 2198 == num_ports) 2199 break; 2200 /* 2201 * Once you're into the Extended Capabilities, the offset is 2202 * always relative to the register holding the offset. 2203 */ 2204 addr += offset; 2205 } 2206 2207 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2208 xhci_warn(xhci, "No ports on the roothubs?\n"); 2209 return -ENODEV; 2210 } 2211 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n", 2212 xhci->num_usb2_ports, xhci->num_usb3_ports); 2213 2214 /* Place limits on the number of roothub ports so that the hub 2215 * descriptors aren't longer than the USB core will allocate. 2216 */ 2217 if (xhci->num_usb3_ports > 15) { 2218 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n"); 2219 xhci->num_usb3_ports = 15; 2220 } 2221 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2222 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n", 2223 USB_MAXCHILDREN); 2224 xhci->num_usb2_ports = USB_MAXCHILDREN; 2225 } 2226 2227 /* 2228 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2229 * Not sure how the USB core will handle a hub with no ports... 2230 */ 2231 if (xhci->num_usb2_ports) { 2232 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2233 xhci->num_usb2_ports, flags); 2234 if (!xhci->usb2_ports) 2235 return -ENOMEM; 2236 2237 port_index = 0; 2238 for (i = 0; i < num_ports; i++) { 2239 if (xhci->port_array[i] == 0x03 || 2240 xhci->port_array[i] == 0 || 2241 xhci->port_array[i] == DUPLICATE_ENTRY) 2242 continue; 2243 2244 xhci->usb2_ports[port_index] = 2245 &xhci->op_regs->port_status_base + 2246 NUM_PORT_REGS*i; 2247 xhci_dbg(xhci, "USB 2.0 port at index %u, " 2248 "addr = %p\n", i, 2249 xhci->usb2_ports[port_index]); 2250 port_index++; 2251 if (port_index == xhci->num_usb2_ports) 2252 break; 2253 } 2254 } 2255 if (xhci->num_usb3_ports) { 2256 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2257 xhci->num_usb3_ports, flags); 2258 if (!xhci->usb3_ports) 2259 return -ENOMEM; 2260 2261 port_index = 0; 2262 for (i = 0; i < num_ports; i++) 2263 if (xhci->port_array[i] == 0x03) { 2264 xhci->usb3_ports[port_index] = 2265 &xhci->op_regs->port_status_base + 2266 NUM_PORT_REGS*i; 2267 xhci_dbg(xhci, "USB 3.0 port at index %u, " 2268 "addr = %p\n", i, 2269 xhci->usb3_ports[port_index]); 2270 port_index++; 2271 if (port_index == xhci->num_usb3_ports) 2272 break; 2273 } 2274 } 2275 return 0; 2276 } 2277 2278 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2279 { 2280 dma_addr_t dma; 2281 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2282 unsigned int val, val2; 2283 u64 val_64; 2284 struct xhci_segment *seg; 2285 u32 page_size, temp; 2286 int i; 2287 2288 INIT_LIST_HEAD(&xhci->lpm_failed_devs); 2289 INIT_LIST_HEAD(&xhci->cancel_cmd_list); 2290 2291 page_size = xhci_readl(xhci, &xhci->op_regs->page_size); 2292 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); 2293 for (i = 0; i < 16; i++) { 2294 if ((0x1 & page_size) != 0) 2295 break; 2296 page_size = page_size >> 1; 2297 } 2298 if (i < 16) 2299 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); 2300 else 2301 xhci_warn(xhci, "WARN: no supported page size\n"); 2302 /* Use 4K pages, since that's common and the minimum the HC supports */ 2303 xhci->page_shift = 12; 2304 xhci->page_size = 1 << xhci->page_shift; 2305 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); 2306 2307 /* 2308 * Program the Number of Device Slots Enabled field in the CONFIG 2309 * register with the max value of slots the HC can handle. 2310 */ 2311 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); 2312 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", 2313 (unsigned int) val); 2314 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); 2315 val |= (val2 & ~HCS_SLOTS_MASK); 2316 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", 2317 (unsigned int) val); 2318 xhci_writel(xhci, val, &xhci->op_regs->config_reg); 2319 2320 /* 2321 * Section 5.4.8 - doorbell array must be 2322 * "physically contiguous and 64-byte (cache line) aligned". 2323 */ 2324 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2325 GFP_KERNEL); 2326 if (!xhci->dcbaa) 2327 goto fail; 2328 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2329 xhci->dcbaa->dma = dma; 2330 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", 2331 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2332 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2333 2334 /* 2335 * Initialize the ring segment pool. The ring must be a contiguous 2336 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2337 * however, the command ring segment needs 64-byte aligned segments, 2338 * so we pick the greater alignment need. 2339 */ 2340 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2341 TRB_SEGMENT_SIZE, 64, xhci->page_size); 2342 2343 /* See Table 46 and Note on Figure 55 */ 2344 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2345 2112, 64, xhci->page_size); 2346 if (!xhci->segment_pool || !xhci->device_pool) 2347 goto fail; 2348 2349 /* Linear stream context arrays don't have any boundary restrictions, 2350 * and only need to be 16-byte aligned. 2351 */ 2352 xhci->small_streams_pool = 2353 dma_pool_create("xHCI 256 byte stream ctx arrays", 2354 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2355 xhci->medium_streams_pool = 2356 dma_pool_create("xHCI 1KB stream ctx arrays", 2357 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2358 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2359 * will be allocated with dma_alloc_coherent() 2360 */ 2361 2362 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2363 goto fail; 2364 2365 /* Set up the command ring to have one segments for now. */ 2366 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags); 2367 if (!xhci->cmd_ring) 2368 goto fail; 2369 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); 2370 xhci_dbg(xhci, "First segment DMA is 0x%llx\n", 2371 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2372 2373 /* Set the address in the Command Ring Control register */ 2374 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2375 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2376 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2377 xhci->cmd_ring->cycle_state; 2378 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val); 2379 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2380 xhci_dbg_cmd_ptrs(xhci); 2381 2382 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2383 if (!xhci->lpm_command) 2384 goto fail; 2385 2386 /* Reserve one command ring TRB for disabling LPM. 2387 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2388 * disabling LPM, we only need to reserve one TRB for all devices. 2389 */ 2390 xhci->cmd_ring_reserved_trbs++; 2391 2392 val = xhci_readl(xhci, &xhci->cap_regs->db_off); 2393 val &= DBOFF_MASK; 2394 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" 2395 " from cap regs base addr\n", val); 2396 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2397 xhci_dbg_regs(xhci); 2398 xhci_print_run_regs(xhci); 2399 /* Set ir_set to interrupt register set 0 */ 2400 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2401 2402 /* 2403 * Event ring setup: Allocate a normal ring, but also setup 2404 * the event ring segment table (ERST). Section 4.9.3. 2405 */ 2406 xhci_dbg(xhci, "// Allocating event ring\n"); 2407 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2408 flags); 2409 if (!xhci->event_ring) 2410 goto fail; 2411 if (xhci_check_trb_in_td_math(xhci, flags) < 0) 2412 goto fail; 2413 2414 xhci->erst.entries = dma_alloc_coherent(dev, 2415 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2416 GFP_KERNEL); 2417 if (!xhci->erst.entries) 2418 goto fail; 2419 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", 2420 (unsigned long long)dma); 2421 2422 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2423 xhci->erst.num_entries = ERST_NUM_SEGS; 2424 xhci->erst.erst_dma_addr = dma; 2425 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", 2426 xhci->erst.num_entries, 2427 xhci->erst.entries, 2428 (unsigned long long)xhci->erst.erst_dma_addr); 2429 2430 /* set ring base address and size for each segment table entry */ 2431 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2432 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2433 entry->seg_addr = cpu_to_le64(seg->dma); 2434 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2435 entry->rsvd = 0; 2436 seg = seg->next; 2437 } 2438 2439 /* set ERST count with the number of entries in the segment table */ 2440 val = xhci_readl(xhci, &xhci->ir_set->erst_size); 2441 val &= ERST_SIZE_MASK; 2442 val |= ERST_NUM_SEGS; 2443 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", 2444 val); 2445 xhci_writel(xhci, val, &xhci->ir_set->erst_size); 2446 2447 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); 2448 /* set the segment table base address */ 2449 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", 2450 (unsigned long long)xhci->erst.erst_dma_addr); 2451 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2452 val_64 &= ERST_PTR_MASK; 2453 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2454 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2455 2456 /* Set the event ring dequeue address */ 2457 xhci_set_hc_event_deq(xhci); 2458 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); 2459 xhci_print_ir_set(xhci, 0); 2460 2461 /* 2462 * XXX: Might need to set the Interrupter Moderation Register to 2463 * something other than the default (~1ms minimum between interrupts). 2464 * See section 5.5.1.2. 2465 */ 2466 init_completion(&xhci->addr_dev); 2467 for (i = 0; i < MAX_HC_SLOTS; ++i) 2468 xhci->devs[i] = NULL; 2469 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2470 xhci->bus_state[0].resume_done[i] = 0; 2471 xhci->bus_state[1].resume_done[i] = 0; 2472 } 2473 2474 if (scratchpad_alloc(xhci, flags)) 2475 goto fail; 2476 if (xhci_setup_port_arrays(xhci, flags)) 2477 goto fail; 2478 2479 /* Enable USB 3.0 device notifications for function remote wake, which 2480 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2481 * U3 (device suspend). 2482 */ 2483 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification); 2484 temp &= ~DEV_NOTE_MASK; 2485 temp |= DEV_NOTE_FWAKE; 2486 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification); 2487 2488 return 0; 2489 2490 fail: 2491 xhci_warn(xhci, "Couldn't initialize memory\n"); 2492 xhci_halt(xhci); 2493 xhci_reset(xhci); 2494 xhci_mem_cleanup(xhci); 2495 return -ENOMEM; 2496 } 2497