xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision 362b34faef29f445dda1ef4bf856a64f331a80f7)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 
31 /*
32  * Allocates a generic ring segment from the ring pool, sets the dma address,
33  * initializes the segment to zero, and sets the private next pointer to NULL.
34  *
35  * Section 4.11.1.1:
36  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37  */
38 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
39 					unsigned int cycle_state, gfp_t flags)
40 {
41 	struct xhci_segment *seg;
42 	dma_addr_t	dma;
43 	int		i;
44 
45 	seg = kzalloc(sizeof *seg, flags);
46 	if (!seg)
47 		return NULL;
48 
49 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
50 	if (!seg->trbs) {
51 		kfree(seg);
52 		return NULL;
53 	}
54 
55 	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
56 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
57 	if (cycle_state == 0) {
58 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
59 			seg->trbs[i].link.control |= TRB_CYCLE;
60 	}
61 	seg->dma = dma;
62 	seg->next = NULL;
63 
64 	return seg;
65 }
66 
67 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
68 {
69 	if (seg->trbs) {
70 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
71 		seg->trbs = NULL;
72 	}
73 	kfree(seg);
74 }
75 
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 				struct xhci_segment *first)
78 {
79 	struct xhci_segment *seg;
80 
81 	seg = first->next;
82 	while (seg != first) {
83 		struct xhci_segment *next = seg->next;
84 		xhci_segment_free(xhci, seg);
85 		seg = next;
86 	}
87 	xhci_segment_free(xhci, first);
88 }
89 
90 /*
91  * Make the prev segment point to the next segment.
92  *
93  * Change the last TRB in the prev segment to be a Link TRB which points to the
94  * DMA address of the next segment.  The caller needs to set any Link TRB
95  * related flags, such as End TRB, Toggle Cycle, and no snoop.
96  */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 		struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 	u32 val;
101 
102 	if (!prev || !next)
103 		return;
104 	prev->next = next;
105 	if (type != TYPE_EVENT) {
106 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 			cpu_to_le64(next->dma);
108 
109 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 		val &= ~TRB_TYPE_BITMASK;
112 		val |= TRB_TYPE(TRB_LINK);
113 		/* Always set the chain bit with 0.95 hardware */
114 		/* Set chain bit for isoc rings on AMD 0.96 host */
115 		if (xhci_link_trb_quirk(xhci) ||
116 				(type == TYPE_ISOC &&
117 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 			val |= TRB_CHAIN;
119 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 	}
121 }
122 
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 		struct xhci_segment *first, struct xhci_segment *last,
129 		unsigned int num_segs)
130 {
131 	struct xhci_segment *next;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	next = ring->enq_seg->next;
137 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 	xhci_link_segments(xhci, last, next, ring->type);
139 	ring->num_segs += num_segs;
140 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141 
142 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 			&= ~cpu_to_le32(LINK_TOGGLE);
145 		last->trbs[TRBS_PER_SEGMENT-1].link.control
146 			|= cpu_to_le32(LINK_TOGGLE);
147 		ring->last_seg = last;
148 	}
149 }
150 
151 /* XXX: Do we need the hcd structure in all these functions? */
152 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
153 {
154 	if (!ring)
155 		return;
156 
157 	if (ring->first_seg)
158 		xhci_free_segments_for_ring(xhci, ring->first_seg);
159 
160 	kfree(ring);
161 }
162 
163 static void xhci_initialize_ring_info(struct xhci_ring *ring,
164 					unsigned int cycle_state)
165 {
166 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
167 	ring->enqueue = ring->first_seg->trbs;
168 	ring->enq_seg = ring->first_seg;
169 	ring->dequeue = ring->enqueue;
170 	ring->deq_seg = ring->first_seg;
171 	/* The ring is initialized to 0. The producer must write 1 to the cycle
172 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
173 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
174 	 *
175 	 * New rings are initialized with cycle state equal to 1; if we are
176 	 * handling ring expansion, set the cycle state equal to the old ring.
177 	 */
178 	ring->cycle_state = cycle_state;
179 	/* Not necessary for new rings, but needed for re-initialized rings */
180 	ring->enq_updates = 0;
181 	ring->deq_updates = 0;
182 
183 	/*
184 	 * Each segment has a link TRB, and leave an extra TRB for SW
185 	 * accounting purpose
186 	 */
187 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
188 }
189 
190 /* Allocate segments and link them for a ring */
191 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
192 		struct xhci_segment **first, struct xhci_segment **last,
193 		unsigned int num_segs, unsigned int cycle_state,
194 		enum xhci_ring_type type, gfp_t flags)
195 {
196 	struct xhci_segment *prev;
197 
198 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
199 	if (!prev)
200 		return -ENOMEM;
201 	num_segs--;
202 
203 	*first = prev;
204 	while (num_segs > 0) {
205 		struct xhci_segment	*next;
206 
207 		next = xhci_segment_alloc(xhci, cycle_state, flags);
208 		if (!next) {
209 			prev = *first;
210 			while (prev) {
211 				next = prev->next;
212 				xhci_segment_free(xhci, prev);
213 				prev = next;
214 			}
215 			return -ENOMEM;
216 		}
217 		xhci_link_segments(xhci, prev, next, type);
218 
219 		prev = next;
220 		num_segs--;
221 	}
222 	xhci_link_segments(xhci, prev, *first, type);
223 	*last = prev;
224 
225 	return 0;
226 }
227 
228 /**
229  * Create a new ring with zero or more segments.
230  *
231  * Link each segment together into a ring.
232  * Set the end flag and the cycle toggle bit on the last segment.
233  * See section 4.9.1 and figures 15 and 16.
234  */
235 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
236 		unsigned int num_segs, unsigned int cycle_state,
237 		enum xhci_ring_type type, gfp_t flags)
238 {
239 	struct xhci_ring	*ring;
240 	int ret;
241 
242 	ring = kzalloc(sizeof *(ring), flags);
243 	if (!ring)
244 		return NULL;
245 
246 	ring->num_segs = num_segs;
247 	INIT_LIST_HEAD(&ring->td_list);
248 	ring->type = type;
249 	if (num_segs == 0)
250 		return ring;
251 
252 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
253 			&ring->last_seg, num_segs, cycle_state, type, flags);
254 	if (ret)
255 		goto fail;
256 
257 	/* Only event ring does not use link TRB */
258 	if (type != TYPE_EVENT) {
259 		/* See section 4.9.2.1 and 6.4.4.1 */
260 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
261 			cpu_to_le32(LINK_TOGGLE);
262 	}
263 	xhci_initialize_ring_info(ring, cycle_state);
264 	return ring;
265 
266 fail:
267 	kfree(ring);
268 	return NULL;
269 }
270 
271 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
272 		struct xhci_virt_device *virt_dev,
273 		unsigned int ep_index)
274 {
275 	int rings_cached;
276 
277 	rings_cached = virt_dev->num_rings_cached;
278 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
279 		virt_dev->ring_cache[rings_cached] =
280 			virt_dev->eps[ep_index].ring;
281 		virt_dev->num_rings_cached++;
282 		xhci_dbg(xhci, "Cached old ring, "
283 				"%d ring%s cached\n",
284 				virt_dev->num_rings_cached,
285 				(virt_dev->num_rings_cached > 1) ? "s" : "");
286 	} else {
287 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
288 		xhci_dbg(xhci, "Ring cache full (%d rings), "
289 				"freeing ring\n",
290 				virt_dev->num_rings_cached);
291 	}
292 	virt_dev->eps[ep_index].ring = NULL;
293 }
294 
295 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
296  * pointers to the beginning of the ring.
297  */
298 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
299 			struct xhci_ring *ring, unsigned int cycle_state,
300 			enum xhci_ring_type type)
301 {
302 	struct xhci_segment	*seg = ring->first_seg;
303 	int i;
304 
305 	do {
306 		memset(seg->trbs, 0,
307 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
308 		if (cycle_state == 0) {
309 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
310 				seg->trbs[i].link.control |= TRB_CYCLE;
311 		}
312 		/* All endpoint rings have link TRBs */
313 		xhci_link_segments(xhci, seg, seg->next, type);
314 		seg = seg->next;
315 	} while (seg != ring->first_seg);
316 	ring->type = type;
317 	xhci_initialize_ring_info(ring, cycle_state);
318 	/* td list should be empty since all URBs have been cancelled,
319 	 * but just in case...
320 	 */
321 	INIT_LIST_HEAD(&ring->td_list);
322 }
323 
324 /*
325  * Expand an existing ring.
326  * Look for a cached ring or allocate a new ring which has same segment numbers
327  * and link the two rings.
328  */
329 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
330 				unsigned int num_trbs, gfp_t flags)
331 {
332 	struct xhci_segment	*first;
333 	struct xhci_segment	*last;
334 	unsigned int		num_segs;
335 	unsigned int		num_segs_needed;
336 	int			ret;
337 
338 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
339 				(TRBS_PER_SEGMENT - 1);
340 
341 	/* Allocate number of segments we needed, or double the ring size */
342 	num_segs = ring->num_segs > num_segs_needed ?
343 			ring->num_segs : num_segs_needed;
344 
345 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
346 			num_segs, ring->cycle_state, ring->type, flags);
347 	if (ret)
348 		return -ENOMEM;
349 
350 	xhci_link_rings(xhci, ring, first, last, num_segs);
351 	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
352 			ring->num_segs);
353 
354 	return 0;
355 }
356 
357 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
358 
359 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
360 						    int type, gfp_t flags)
361 {
362 	struct xhci_container_ctx *ctx;
363 
364 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
365 		return NULL;
366 
367 	ctx = kzalloc(sizeof(*ctx), flags);
368 	if (!ctx)
369 		return NULL;
370 
371 	ctx->type = type;
372 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
373 	if (type == XHCI_CTX_TYPE_INPUT)
374 		ctx->size += CTX_SIZE(xhci->hcc_params);
375 
376 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
377 	if (!ctx->bytes) {
378 		kfree(ctx);
379 		return NULL;
380 	}
381 	memset(ctx->bytes, 0, ctx->size);
382 	return ctx;
383 }
384 
385 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
386 			     struct xhci_container_ctx *ctx)
387 {
388 	if (!ctx)
389 		return;
390 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
391 	kfree(ctx);
392 }
393 
394 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
395 					      struct xhci_container_ctx *ctx)
396 {
397 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
398 		return NULL;
399 
400 	return (struct xhci_input_control_ctx *)ctx->bytes;
401 }
402 
403 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
404 					struct xhci_container_ctx *ctx)
405 {
406 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
407 		return (struct xhci_slot_ctx *)ctx->bytes;
408 
409 	return (struct xhci_slot_ctx *)
410 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
411 }
412 
413 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
414 				    struct xhci_container_ctx *ctx,
415 				    unsigned int ep_index)
416 {
417 	/* increment ep index by offset of start of ep ctx array */
418 	ep_index++;
419 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
420 		ep_index++;
421 
422 	return (struct xhci_ep_ctx *)
423 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
424 }
425 
426 
427 /***************** Streams structures manipulation *************************/
428 
429 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
430 		unsigned int num_stream_ctxs,
431 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
432 {
433 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
434 
435 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
436 		dma_free_coherent(&pdev->dev,
437 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
438 				stream_ctx, dma);
439 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
440 		return dma_pool_free(xhci->small_streams_pool,
441 				stream_ctx, dma);
442 	else
443 		return dma_pool_free(xhci->medium_streams_pool,
444 				stream_ctx, dma);
445 }
446 
447 /*
448  * The stream context array for each endpoint with bulk streams enabled can
449  * vary in size, based on:
450  *  - how many streams the endpoint supports,
451  *  - the maximum primary stream array size the host controller supports,
452  *  - and how many streams the device driver asks for.
453  *
454  * The stream context array must be a power of 2, and can be as small as
455  * 64 bytes or as large as 1MB.
456  */
457 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
458 		unsigned int num_stream_ctxs, dma_addr_t *dma,
459 		gfp_t mem_flags)
460 {
461 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
462 
463 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
464 		return dma_alloc_coherent(&pdev->dev,
465 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
466 				dma, mem_flags);
467 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
468 		return dma_pool_alloc(xhci->small_streams_pool,
469 				mem_flags, dma);
470 	else
471 		return dma_pool_alloc(xhci->medium_streams_pool,
472 				mem_flags, dma);
473 }
474 
475 struct xhci_ring *xhci_dma_to_transfer_ring(
476 		struct xhci_virt_ep *ep,
477 		u64 address)
478 {
479 	if (ep->ep_state & EP_HAS_STREAMS)
480 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
481 				address >> TRB_SEGMENT_SHIFT);
482 	return ep->ring;
483 }
484 
485 /* Only use this when you know stream_info is valid */
486 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
487 static struct xhci_ring *dma_to_stream_ring(
488 		struct xhci_stream_info *stream_info,
489 		u64 address)
490 {
491 	return radix_tree_lookup(&stream_info->trb_address_map,
492 			address >> TRB_SEGMENT_SHIFT);
493 }
494 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
495 
496 struct xhci_ring *xhci_stream_id_to_ring(
497 		struct xhci_virt_device *dev,
498 		unsigned int ep_index,
499 		unsigned int stream_id)
500 {
501 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
502 
503 	if (stream_id == 0)
504 		return ep->ring;
505 	if (!ep->stream_info)
506 		return NULL;
507 
508 	if (stream_id > ep->stream_info->num_streams)
509 		return NULL;
510 	return ep->stream_info->stream_rings[stream_id];
511 }
512 
513 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
514 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
515 		unsigned int num_streams,
516 		struct xhci_stream_info *stream_info)
517 {
518 	u32 cur_stream;
519 	struct xhci_ring *cur_ring;
520 	u64 addr;
521 
522 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
523 		struct xhci_ring *mapped_ring;
524 		int trb_size = sizeof(union xhci_trb);
525 
526 		cur_ring = stream_info->stream_rings[cur_stream];
527 		for (addr = cur_ring->first_seg->dma;
528 				addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
529 				addr += trb_size) {
530 			mapped_ring = dma_to_stream_ring(stream_info, addr);
531 			if (cur_ring != mapped_ring) {
532 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
533 						"didn't map to stream ID %u; "
534 						"mapped to ring %p\n",
535 						(unsigned long long) addr,
536 						cur_stream,
537 						mapped_ring);
538 				return -EINVAL;
539 			}
540 		}
541 		/* One TRB after the end of the ring segment shouldn't return a
542 		 * pointer to the current ring (although it may be a part of a
543 		 * different ring).
544 		 */
545 		mapped_ring = dma_to_stream_ring(stream_info, addr);
546 		if (mapped_ring != cur_ring) {
547 			/* One TRB before should also fail */
548 			addr = cur_ring->first_seg->dma - trb_size;
549 			mapped_ring = dma_to_stream_ring(stream_info, addr);
550 		}
551 		if (mapped_ring == cur_ring) {
552 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
553 					"mapped to valid stream ID %u; "
554 					"mapped ring = %p\n",
555 					(unsigned long long) addr,
556 					cur_stream,
557 					mapped_ring);
558 			return -EINVAL;
559 		}
560 	}
561 	return 0;
562 }
563 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
564 
565 /*
566  * Change an endpoint's internal structure so it supports stream IDs.  The
567  * number of requested streams includes stream 0, which cannot be used by device
568  * drivers.
569  *
570  * The number of stream contexts in the stream context array may be bigger than
571  * the number of streams the driver wants to use.  This is because the number of
572  * stream context array entries must be a power of two.
573  *
574  * We need a radix tree for mapping physical addresses of TRBs to which stream
575  * ID they belong to.  We need to do this because the host controller won't tell
576  * us which stream ring the TRB came from.  We could store the stream ID in an
577  * event data TRB, but that doesn't help us for the cancellation case, since the
578  * endpoint may stop before it reaches that event data TRB.
579  *
580  * The radix tree maps the upper portion of the TRB DMA address to a ring
581  * segment that has the same upper portion of DMA addresses.  For example, say I
582  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
583  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
584  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
585  * pass the radix tree a key to get the right stream ID:
586  *
587  * 	0x10c90fff >> 10 = 0x43243
588  * 	0x10c912c0 >> 10 = 0x43244
589  * 	0x10c91400 >> 10 = 0x43245
590  *
591  * Obviously, only those TRBs with DMA addresses that are within the segment
592  * will make the radix tree return the stream ID for that ring.
593  *
594  * Caveats for the radix tree:
595  *
596  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
597  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
598  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
599  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
600  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
601  * extended systems (where the DMA address can be bigger than 32-bits),
602  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
603  */
604 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
605 		unsigned int num_stream_ctxs,
606 		unsigned int num_streams, gfp_t mem_flags)
607 {
608 	struct xhci_stream_info *stream_info;
609 	u32 cur_stream;
610 	struct xhci_ring *cur_ring;
611 	unsigned long key;
612 	u64 addr;
613 	int ret;
614 
615 	xhci_dbg(xhci, "Allocating %u streams and %u "
616 			"stream context array entries.\n",
617 			num_streams, num_stream_ctxs);
618 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
619 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
620 		return NULL;
621 	}
622 	xhci->cmd_ring_reserved_trbs++;
623 
624 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
625 	if (!stream_info)
626 		goto cleanup_trbs;
627 
628 	stream_info->num_streams = num_streams;
629 	stream_info->num_stream_ctxs = num_stream_ctxs;
630 
631 	/* Initialize the array of virtual pointers to stream rings. */
632 	stream_info->stream_rings = kzalloc(
633 			sizeof(struct xhci_ring *)*num_streams,
634 			mem_flags);
635 	if (!stream_info->stream_rings)
636 		goto cleanup_info;
637 
638 	/* Initialize the array of DMA addresses for stream rings for the HW. */
639 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
640 			num_stream_ctxs, &stream_info->ctx_array_dma,
641 			mem_flags);
642 	if (!stream_info->stream_ctx_array)
643 		goto cleanup_ctx;
644 	memset(stream_info->stream_ctx_array, 0,
645 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
646 
647 	/* Allocate everything needed to free the stream rings later */
648 	stream_info->free_streams_command =
649 		xhci_alloc_command(xhci, true, true, mem_flags);
650 	if (!stream_info->free_streams_command)
651 		goto cleanup_ctx;
652 
653 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
654 
655 	/* Allocate rings for all the streams that the driver will use,
656 	 * and add their segment DMA addresses to the radix tree.
657 	 * Stream 0 is reserved.
658 	 */
659 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
660 		stream_info->stream_rings[cur_stream] =
661 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
662 		cur_ring = stream_info->stream_rings[cur_stream];
663 		if (!cur_ring)
664 			goto cleanup_rings;
665 		cur_ring->stream_id = cur_stream;
666 		/* Set deq ptr, cycle bit, and stream context type */
667 		addr = cur_ring->first_seg->dma |
668 			SCT_FOR_CTX(SCT_PRI_TR) |
669 			cur_ring->cycle_state;
670 		stream_info->stream_ctx_array[cur_stream].stream_ring =
671 			cpu_to_le64(addr);
672 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
673 				cur_stream, (unsigned long long) addr);
674 
675 		key = (unsigned long)
676 			(cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
677 		ret = radix_tree_insert(&stream_info->trb_address_map,
678 				key, cur_ring);
679 		if (ret) {
680 			xhci_ring_free(xhci, cur_ring);
681 			stream_info->stream_rings[cur_stream] = NULL;
682 			goto cleanup_rings;
683 		}
684 	}
685 	/* Leave the other unused stream ring pointers in the stream context
686 	 * array initialized to zero.  This will cause the xHC to give us an
687 	 * error if the device asks for a stream ID we don't have setup (if it
688 	 * was any other way, the host controller would assume the ring is
689 	 * "empty" and wait forever for data to be queued to that stream ID).
690 	 */
691 #if XHCI_DEBUG
692 	/* Do a little test on the radix tree to make sure it returns the
693 	 * correct values.
694 	 */
695 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
696 		goto cleanup_rings;
697 #endif
698 
699 	return stream_info;
700 
701 cleanup_rings:
702 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
703 		cur_ring = stream_info->stream_rings[cur_stream];
704 		if (cur_ring) {
705 			addr = cur_ring->first_seg->dma;
706 			radix_tree_delete(&stream_info->trb_address_map,
707 					addr >> TRB_SEGMENT_SHIFT);
708 			xhci_ring_free(xhci, cur_ring);
709 			stream_info->stream_rings[cur_stream] = NULL;
710 		}
711 	}
712 	xhci_free_command(xhci, stream_info->free_streams_command);
713 cleanup_ctx:
714 	kfree(stream_info->stream_rings);
715 cleanup_info:
716 	kfree(stream_info);
717 cleanup_trbs:
718 	xhci->cmd_ring_reserved_trbs--;
719 	return NULL;
720 }
721 /*
722  * Sets the MaxPStreams field and the Linear Stream Array field.
723  * Sets the dequeue pointer to the stream context array.
724  */
725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
726 		struct xhci_ep_ctx *ep_ctx,
727 		struct xhci_stream_info *stream_info)
728 {
729 	u32 max_primary_streams;
730 	/* MaxPStreams is the number of stream context array entries, not the
731 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
732 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
733 	 */
734 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
735 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
736 			1 << (max_primary_streams + 1));
737 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
738 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
739 				       | EP_HAS_LSA);
740 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
741 }
742 
743 /*
744  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
745  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
746  * not at the beginning of the ring).
747  */
748 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
749 		struct xhci_ep_ctx *ep_ctx,
750 		struct xhci_virt_ep *ep)
751 {
752 	dma_addr_t addr;
753 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
754 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
755 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
756 }
757 
758 /* Frees all stream contexts associated with the endpoint,
759  *
760  * Caller should fix the endpoint context streams fields.
761  */
762 void xhci_free_stream_info(struct xhci_hcd *xhci,
763 		struct xhci_stream_info *stream_info)
764 {
765 	int cur_stream;
766 	struct xhci_ring *cur_ring;
767 	dma_addr_t addr;
768 
769 	if (!stream_info)
770 		return;
771 
772 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
773 			cur_stream++) {
774 		cur_ring = stream_info->stream_rings[cur_stream];
775 		if (cur_ring) {
776 			addr = cur_ring->first_seg->dma;
777 			radix_tree_delete(&stream_info->trb_address_map,
778 					addr >> TRB_SEGMENT_SHIFT);
779 			xhci_ring_free(xhci, cur_ring);
780 			stream_info->stream_rings[cur_stream] = NULL;
781 		}
782 	}
783 	xhci_free_command(xhci, stream_info->free_streams_command);
784 	xhci->cmd_ring_reserved_trbs--;
785 	if (stream_info->stream_ctx_array)
786 		xhci_free_stream_ctx(xhci,
787 				stream_info->num_stream_ctxs,
788 				stream_info->stream_ctx_array,
789 				stream_info->ctx_array_dma);
790 
791 	if (stream_info)
792 		kfree(stream_info->stream_rings);
793 	kfree(stream_info);
794 }
795 
796 
797 /***************** Device context manipulation *************************/
798 
799 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
800 		struct xhci_virt_ep *ep)
801 {
802 	init_timer(&ep->stop_cmd_timer);
803 	ep->stop_cmd_timer.data = (unsigned long) ep;
804 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
805 	ep->xhci = xhci;
806 }
807 
808 static void xhci_free_tt_info(struct xhci_hcd *xhci,
809 		struct xhci_virt_device *virt_dev,
810 		int slot_id)
811 {
812 	struct list_head *tt_list_head;
813 	struct xhci_tt_bw_info *tt_info, *next;
814 	bool slot_found = false;
815 
816 	/* If the device never made it past the Set Address stage,
817 	 * it may not have the real_port set correctly.
818 	 */
819 	if (virt_dev->real_port == 0 ||
820 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
821 		xhci_dbg(xhci, "Bad real port.\n");
822 		return;
823 	}
824 
825 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
826 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
827 		/* Multi-TT hubs will have more than one entry */
828 		if (tt_info->slot_id == slot_id) {
829 			slot_found = true;
830 			list_del(&tt_info->tt_list);
831 			kfree(tt_info);
832 		} else if (slot_found) {
833 			break;
834 		}
835 	}
836 }
837 
838 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
839 		struct xhci_virt_device *virt_dev,
840 		struct usb_device *hdev,
841 		struct usb_tt *tt, gfp_t mem_flags)
842 {
843 	struct xhci_tt_bw_info		*tt_info;
844 	unsigned int			num_ports;
845 	int				i, j;
846 
847 	if (!tt->multi)
848 		num_ports = 1;
849 	else
850 		num_ports = hdev->maxchild;
851 
852 	for (i = 0; i < num_ports; i++, tt_info++) {
853 		struct xhci_interval_bw_table *bw_table;
854 
855 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
856 		if (!tt_info)
857 			goto free_tts;
858 		INIT_LIST_HEAD(&tt_info->tt_list);
859 		list_add(&tt_info->tt_list,
860 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
861 		tt_info->slot_id = virt_dev->udev->slot_id;
862 		if (tt->multi)
863 			tt_info->ttport = i+1;
864 		bw_table = &tt_info->bw_table;
865 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
866 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
867 	}
868 	return 0;
869 
870 free_tts:
871 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
872 	return -ENOMEM;
873 }
874 
875 
876 /* All the xhci_tds in the ring's TD list should be freed at this point.
877  * Should be called with xhci->lock held if there is any chance the TT lists
878  * will be manipulated by the configure endpoint, allocate device, or update
879  * hub functions while this function is removing the TT entries from the list.
880  */
881 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
882 {
883 	struct xhci_virt_device *dev;
884 	int i;
885 	int old_active_eps = 0;
886 
887 	/* Slot ID 0 is reserved */
888 	if (slot_id == 0 || !xhci->devs[slot_id])
889 		return;
890 
891 	dev = xhci->devs[slot_id];
892 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
893 	if (!dev)
894 		return;
895 
896 	if (dev->tt_info)
897 		old_active_eps = dev->tt_info->active_eps;
898 
899 	for (i = 0; i < 31; ++i) {
900 		if (dev->eps[i].ring)
901 			xhci_ring_free(xhci, dev->eps[i].ring);
902 		if (dev->eps[i].stream_info)
903 			xhci_free_stream_info(xhci,
904 					dev->eps[i].stream_info);
905 		/* Endpoints on the TT/root port lists should have been removed
906 		 * when usb_disable_device() was called for the device.
907 		 * We can't drop them anyway, because the udev might have gone
908 		 * away by this point, and we can't tell what speed it was.
909 		 */
910 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
911 			xhci_warn(xhci, "Slot %u endpoint %u "
912 					"not removed from BW list!\n",
913 					slot_id, i);
914 	}
915 	/* If this is a hub, free the TT(s) from the TT list */
916 	xhci_free_tt_info(xhci, dev, slot_id);
917 	/* If necessary, update the number of active TTs on this root port */
918 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
919 
920 	if (dev->ring_cache) {
921 		for (i = 0; i < dev->num_rings_cached; i++)
922 			xhci_ring_free(xhci, dev->ring_cache[i]);
923 		kfree(dev->ring_cache);
924 	}
925 
926 	if (dev->in_ctx)
927 		xhci_free_container_ctx(xhci, dev->in_ctx);
928 	if (dev->out_ctx)
929 		xhci_free_container_ctx(xhci, dev->out_ctx);
930 
931 	kfree(xhci->devs[slot_id]);
932 	xhci->devs[slot_id] = NULL;
933 }
934 
935 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
936 		struct usb_device *udev, gfp_t flags)
937 {
938 	struct xhci_virt_device *dev;
939 	int i;
940 
941 	/* Slot ID 0 is reserved */
942 	if (slot_id == 0 || xhci->devs[slot_id]) {
943 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
944 		return 0;
945 	}
946 
947 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
948 	if (!xhci->devs[slot_id])
949 		return 0;
950 	dev = xhci->devs[slot_id];
951 
952 	/* Allocate the (output) device context that will be used in the HC. */
953 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
954 	if (!dev->out_ctx)
955 		goto fail;
956 
957 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
958 			(unsigned long long)dev->out_ctx->dma);
959 
960 	/* Allocate the (input) device context for address device command */
961 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
962 	if (!dev->in_ctx)
963 		goto fail;
964 
965 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
966 			(unsigned long long)dev->in_ctx->dma);
967 
968 	/* Initialize the cancellation list and watchdog timers for each ep */
969 	for (i = 0; i < 31; i++) {
970 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
971 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
972 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
973 	}
974 
975 	/* Allocate endpoint 0 ring */
976 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
977 	if (!dev->eps[0].ring)
978 		goto fail;
979 
980 	/* Allocate pointers to the ring cache */
981 	dev->ring_cache = kzalloc(
982 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
983 			flags);
984 	if (!dev->ring_cache)
985 		goto fail;
986 	dev->num_rings_cached = 0;
987 
988 	init_completion(&dev->cmd_completion);
989 	INIT_LIST_HEAD(&dev->cmd_list);
990 	dev->udev = udev;
991 
992 	/* Point to output device context in dcbaa. */
993 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
994 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
995 		 slot_id,
996 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
997 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
998 
999 	return 1;
1000 fail:
1001 	xhci_free_virt_device(xhci, slot_id);
1002 	return 0;
1003 }
1004 
1005 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1006 		struct usb_device *udev)
1007 {
1008 	struct xhci_virt_device *virt_dev;
1009 	struct xhci_ep_ctx	*ep0_ctx;
1010 	struct xhci_ring	*ep_ring;
1011 
1012 	virt_dev = xhci->devs[udev->slot_id];
1013 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1014 	ep_ring = virt_dev->eps[0].ring;
1015 	/*
1016 	 * FIXME we don't keep track of the dequeue pointer very well after a
1017 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1018 	 * host to our enqueue pointer.  This should only be called after a
1019 	 * configured device has reset, so all control transfers should have
1020 	 * been completed or cancelled before the reset.
1021 	 */
1022 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1023 							ep_ring->enqueue)
1024 				   | ep_ring->cycle_state);
1025 }
1026 
1027 /*
1028  * The xHCI roothub may have ports of differing speeds in any order in the port
1029  * status registers.  xhci->port_array provides an array of the port speed for
1030  * each offset into the port status registers.
1031  *
1032  * The xHCI hardware wants to know the roothub port number that the USB device
1033  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1034  * know is the index of that port under either the USB 2.0 or the USB 3.0
1035  * roothub, but that doesn't give us the real index into the HW port status
1036  * registers. Call xhci_find_raw_port_number() to get real index.
1037  */
1038 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1039 		struct usb_device *udev)
1040 {
1041 	struct usb_device *top_dev;
1042 	struct usb_hcd *hcd;
1043 
1044 	if (udev->speed == USB_SPEED_SUPER)
1045 		hcd = xhci->shared_hcd;
1046 	else
1047 		hcd = xhci->main_hcd;
1048 
1049 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1050 			top_dev = top_dev->parent)
1051 		/* Found device below root hub */;
1052 
1053 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1054 }
1055 
1056 /* Setup an xHCI virtual device for a Set Address command */
1057 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1058 {
1059 	struct xhci_virt_device *dev;
1060 	struct xhci_ep_ctx	*ep0_ctx;
1061 	struct xhci_slot_ctx    *slot_ctx;
1062 	u32			port_num;
1063 	u32			max_packets;
1064 	struct usb_device *top_dev;
1065 
1066 	dev = xhci->devs[udev->slot_id];
1067 	/* Slot ID 0 is reserved */
1068 	if (udev->slot_id == 0 || !dev) {
1069 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1070 				udev->slot_id);
1071 		return -EINVAL;
1072 	}
1073 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1074 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1075 
1076 	/* 3) Only the control endpoint is valid - one endpoint context */
1077 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1078 	switch (udev->speed) {
1079 	case USB_SPEED_SUPER:
1080 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1081 		max_packets = MAX_PACKET(512);
1082 		break;
1083 	case USB_SPEED_HIGH:
1084 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1085 		max_packets = MAX_PACKET(64);
1086 		break;
1087 	/* USB core guesses at a 64-byte max packet first for FS devices */
1088 	case USB_SPEED_FULL:
1089 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1090 		max_packets = MAX_PACKET(64);
1091 		break;
1092 	case USB_SPEED_LOW:
1093 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1094 		max_packets = MAX_PACKET(8);
1095 		break;
1096 	case USB_SPEED_WIRELESS:
1097 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1098 		return -EINVAL;
1099 		break;
1100 	default:
1101 		/* Speed was set earlier, this shouldn't happen. */
1102 		return -EINVAL;
1103 	}
1104 	/* Find the root hub port this device is under */
1105 	port_num = xhci_find_real_port_number(xhci, udev);
1106 	if (!port_num)
1107 		return -EINVAL;
1108 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1109 	/* Set the port number in the virtual_device to the faked port number */
1110 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1111 			top_dev = top_dev->parent)
1112 		/* Found device below root hub */;
1113 	dev->fake_port = top_dev->portnum;
1114 	dev->real_port = port_num;
1115 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1116 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1117 
1118 	/* Find the right bandwidth table that this device will be a part of.
1119 	 * If this is a full speed device attached directly to a root port (or a
1120 	 * decendent of one), it counts as a primary bandwidth domain, not a
1121 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1122 	 * will never be created for the HS root hub.
1123 	 */
1124 	if (!udev->tt || !udev->tt->hub->parent) {
1125 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1126 	} else {
1127 		struct xhci_root_port_bw_info *rh_bw;
1128 		struct xhci_tt_bw_info *tt_bw;
1129 
1130 		rh_bw = &xhci->rh_bw[port_num - 1];
1131 		/* Find the right TT. */
1132 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1133 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1134 				continue;
1135 
1136 			if (!dev->udev->tt->multi ||
1137 					(udev->tt->multi &&
1138 					 tt_bw->ttport == dev->udev->ttport)) {
1139 				dev->bw_table = &tt_bw->bw_table;
1140 				dev->tt_info = tt_bw;
1141 				break;
1142 			}
1143 		}
1144 		if (!dev->tt_info)
1145 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1146 	}
1147 
1148 	/* Is this a LS/FS device under an external HS hub? */
1149 	if (udev->tt && udev->tt->hub->parent) {
1150 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1151 						(udev->ttport << 8));
1152 		if (udev->tt->multi)
1153 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1154 	}
1155 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1156 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1157 
1158 	/* Step 4 - ring already allocated */
1159 	/* Step 5 */
1160 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1161 
1162 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1163 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1164 					 max_packets);
1165 
1166 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1167 				   dev->eps[0].ring->cycle_state);
1168 
1169 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1170 
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Convert interval expressed as 2^(bInterval - 1) == interval into
1176  * straight exponent value 2^n == interval.
1177  *
1178  */
1179 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1180 		struct usb_host_endpoint *ep)
1181 {
1182 	unsigned int interval;
1183 
1184 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1185 	if (interval != ep->desc.bInterval - 1)
1186 		dev_warn(&udev->dev,
1187 			 "ep %#x - rounding interval to %d %sframes\n",
1188 			 ep->desc.bEndpointAddress,
1189 			 1 << interval,
1190 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1191 
1192 	if (udev->speed == USB_SPEED_FULL) {
1193 		/*
1194 		 * Full speed isoc endpoints specify interval in frames,
1195 		 * not microframes. We are using microframes everywhere,
1196 		 * so adjust accordingly.
1197 		 */
1198 		interval += 3;	/* 1 frame = 2^3 uframes */
1199 	}
1200 
1201 	return interval;
1202 }
1203 
1204 /*
1205  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1206  * microframes, rounded down to nearest power of 2.
1207  */
1208 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1209 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1210 		unsigned int min_exponent, unsigned int max_exponent)
1211 {
1212 	unsigned int interval;
1213 
1214 	interval = fls(desc_interval) - 1;
1215 	interval = clamp_val(interval, min_exponent, max_exponent);
1216 	if ((1 << interval) != desc_interval)
1217 		dev_warn(&udev->dev,
1218 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1219 			 ep->desc.bEndpointAddress,
1220 			 1 << interval,
1221 			 desc_interval);
1222 
1223 	return interval;
1224 }
1225 
1226 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1227 		struct usb_host_endpoint *ep)
1228 {
1229 	if (ep->desc.bInterval == 0)
1230 		return 0;
1231 	return xhci_microframes_to_exponent(udev, ep,
1232 			ep->desc.bInterval, 0, 15);
1233 }
1234 
1235 
1236 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1237 		struct usb_host_endpoint *ep)
1238 {
1239 	return xhci_microframes_to_exponent(udev, ep,
1240 			ep->desc.bInterval * 8, 3, 10);
1241 }
1242 
1243 /* Return the polling or NAK interval.
1244  *
1245  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1246  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1247  *
1248  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1249  * is set to 0.
1250  */
1251 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1252 		struct usb_host_endpoint *ep)
1253 {
1254 	unsigned int interval = 0;
1255 
1256 	switch (udev->speed) {
1257 	case USB_SPEED_HIGH:
1258 		/* Max NAK rate */
1259 		if (usb_endpoint_xfer_control(&ep->desc) ||
1260 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1261 			interval = xhci_parse_microframe_interval(udev, ep);
1262 			break;
1263 		}
1264 		/* Fall through - SS and HS isoc/int have same decoding */
1265 
1266 	case USB_SPEED_SUPER:
1267 		if (usb_endpoint_xfer_int(&ep->desc) ||
1268 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1269 			interval = xhci_parse_exponent_interval(udev, ep);
1270 		}
1271 		break;
1272 
1273 	case USB_SPEED_FULL:
1274 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1275 			interval = xhci_parse_exponent_interval(udev, ep);
1276 			break;
1277 		}
1278 		/*
1279 		 * Fall through for interrupt endpoint interval decoding
1280 		 * since it uses the same rules as low speed interrupt
1281 		 * endpoints.
1282 		 */
1283 
1284 	case USB_SPEED_LOW:
1285 		if (usb_endpoint_xfer_int(&ep->desc) ||
1286 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1287 
1288 			interval = xhci_parse_frame_interval(udev, ep);
1289 		}
1290 		break;
1291 
1292 	default:
1293 		BUG();
1294 	}
1295 	return EP_INTERVAL(interval);
1296 }
1297 
1298 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1299  * High speed endpoint descriptors can define "the number of additional
1300  * transaction opportunities per microframe", but that goes in the Max Burst
1301  * endpoint context field.
1302  */
1303 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1304 		struct usb_host_endpoint *ep)
1305 {
1306 	if (udev->speed != USB_SPEED_SUPER ||
1307 			!usb_endpoint_xfer_isoc(&ep->desc))
1308 		return 0;
1309 	return ep->ss_ep_comp.bmAttributes;
1310 }
1311 
1312 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1313 		struct usb_host_endpoint *ep)
1314 {
1315 	int in;
1316 	u32 type;
1317 
1318 	in = usb_endpoint_dir_in(&ep->desc);
1319 	if (usb_endpoint_xfer_control(&ep->desc)) {
1320 		type = EP_TYPE(CTRL_EP);
1321 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1322 		if (in)
1323 			type = EP_TYPE(BULK_IN_EP);
1324 		else
1325 			type = EP_TYPE(BULK_OUT_EP);
1326 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1327 		if (in)
1328 			type = EP_TYPE(ISOC_IN_EP);
1329 		else
1330 			type = EP_TYPE(ISOC_OUT_EP);
1331 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1332 		if (in)
1333 			type = EP_TYPE(INT_IN_EP);
1334 		else
1335 			type = EP_TYPE(INT_OUT_EP);
1336 	} else {
1337 		type = 0;
1338 	}
1339 	return type;
1340 }
1341 
1342 /* Return the maximum endpoint service interval time (ESIT) payload.
1343  * Basically, this is the maxpacket size, multiplied by the burst size
1344  * and mult size.
1345  */
1346 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1347 		struct usb_device *udev,
1348 		struct usb_host_endpoint *ep)
1349 {
1350 	int max_burst;
1351 	int max_packet;
1352 
1353 	/* Only applies for interrupt or isochronous endpoints */
1354 	if (usb_endpoint_xfer_control(&ep->desc) ||
1355 			usb_endpoint_xfer_bulk(&ep->desc))
1356 		return 0;
1357 
1358 	if (udev->speed == USB_SPEED_SUPER)
1359 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1360 
1361 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1362 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1363 	/* A 0 in max burst means 1 transfer per ESIT */
1364 	return max_packet * (max_burst + 1);
1365 }
1366 
1367 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1368  * Drivers will have to call usb_alloc_streams() to do that.
1369  */
1370 int xhci_endpoint_init(struct xhci_hcd *xhci,
1371 		struct xhci_virt_device *virt_dev,
1372 		struct usb_device *udev,
1373 		struct usb_host_endpoint *ep,
1374 		gfp_t mem_flags)
1375 {
1376 	unsigned int ep_index;
1377 	struct xhci_ep_ctx *ep_ctx;
1378 	struct xhci_ring *ep_ring;
1379 	unsigned int max_packet;
1380 	unsigned int max_burst;
1381 	enum xhci_ring_type type;
1382 	u32 max_esit_payload;
1383 	u32 endpoint_type;
1384 
1385 	ep_index = xhci_get_endpoint_index(&ep->desc);
1386 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1387 
1388 	endpoint_type = xhci_get_endpoint_type(udev, ep);
1389 	if (!endpoint_type)
1390 		return -EINVAL;
1391 	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1392 
1393 	type = usb_endpoint_type(&ep->desc);
1394 	/* Set up the endpoint ring */
1395 	virt_dev->eps[ep_index].new_ring =
1396 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1397 	if (!virt_dev->eps[ep_index].new_ring) {
1398 		/* Attempt to use the ring cache */
1399 		if (virt_dev->num_rings_cached == 0)
1400 			return -ENOMEM;
1401 		virt_dev->eps[ep_index].new_ring =
1402 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1403 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1404 		virt_dev->num_rings_cached--;
1405 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1406 					1, type);
1407 	}
1408 	virt_dev->eps[ep_index].skip = false;
1409 	ep_ring = virt_dev->eps[ep_index].new_ring;
1410 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1411 
1412 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1413 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1414 
1415 	/* FIXME dig Mult and streams info out of ep companion desc */
1416 
1417 	/* Allow 3 retries for everything but isoc;
1418 	 * CErr shall be set to 0 for Isoch endpoints.
1419 	 */
1420 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1421 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1422 	else
1423 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1424 
1425 	/* Set the max packet size and max burst */
1426 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1427 	max_burst = 0;
1428 	switch (udev->speed) {
1429 	case USB_SPEED_SUPER:
1430 		/* dig out max burst from ep companion desc */
1431 		max_burst = ep->ss_ep_comp.bMaxBurst;
1432 		break;
1433 	case USB_SPEED_HIGH:
1434 		/* Some devices get this wrong */
1435 		if (usb_endpoint_xfer_bulk(&ep->desc))
1436 			max_packet = 512;
1437 		/* bits 11:12 specify the number of additional transaction
1438 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1439 		 */
1440 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1441 				usb_endpoint_xfer_int(&ep->desc)) {
1442 			max_burst = (usb_endpoint_maxp(&ep->desc)
1443 				     & 0x1800) >> 11;
1444 		}
1445 		break;
1446 	case USB_SPEED_FULL:
1447 	case USB_SPEED_LOW:
1448 		break;
1449 	default:
1450 		BUG();
1451 	}
1452 	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1453 			MAX_BURST(max_burst));
1454 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1455 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1456 
1457 	/*
1458 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1459 	 * endpoints, as the driver gives us no clue how big each scatter gather
1460 	 * list entry (or buffer) is going to be.
1461 	 *
1462 	 * For isochronous and interrupt endpoints, we set it to the max
1463 	 * available, until we have new API in the USB core to allow drivers to
1464 	 * declare how much bandwidth they actually need.
1465 	 *
1466 	 * Normally, it would be calculated by taking the total of the buffer
1467 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1468 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1469 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1470 	 * transfers, we're basically dividing by 1.
1471 	 *
1472 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1473 	 * be set to 8 for control endpoints.
1474 	 */
1475 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1476 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1477 	else
1478 		ep_ctx->tx_info |=
1479 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1480 
1481 	/* FIXME Debug endpoint context */
1482 	return 0;
1483 }
1484 
1485 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1486 		struct xhci_virt_device *virt_dev,
1487 		struct usb_host_endpoint *ep)
1488 {
1489 	unsigned int ep_index;
1490 	struct xhci_ep_ctx *ep_ctx;
1491 
1492 	ep_index = xhci_get_endpoint_index(&ep->desc);
1493 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1494 
1495 	ep_ctx->ep_info = 0;
1496 	ep_ctx->ep_info2 = 0;
1497 	ep_ctx->deq = 0;
1498 	ep_ctx->tx_info = 0;
1499 	/* Don't free the endpoint ring until the set interface or configuration
1500 	 * request succeeds.
1501 	 */
1502 }
1503 
1504 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1505 {
1506 	bw_info->ep_interval = 0;
1507 	bw_info->mult = 0;
1508 	bw_info->num_packets = 0;
1509 	bw_info->max_packet_size = 0;
1510 	bw_info->type = 0;
1511 	bw_info->max_esit_payload = 0;
1512 }
1513 
1514 void xhci_update_bw_info(struct xhci_hcd *xhci,
1515 		struct xhci_container_ctx *in_ctx,
1516 		struct xhci_input_control_ctx *ctrl_ctx,
1517 		struct xhci_virt_device *virt_dev)
1518 {
1519 	struct xhci_bw_info *bw_info;
1520 	struct xhci_ep_ctx *ep_ctx;
1521 	unsigned int ep_type;
1522 	int i;
1523 
1524 	for (i = 1; i < 31; ++i) {
1525 		bw_info = &virt_dev->eps[i].bw_info;
1526 
1527 		/* We can't tell what endpoint type is being dropped, but
1528 		 * unconditionally clearing the bandwidth info for non-periodic
1529 		 * endpoints should be harmless because the info will never be
1530 		 * set in the first place.
1531 		 */
1532 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1533 			/* Dropped endpoint */
1534 			xhci_clear_endpoint_bw_info(bw_info);
1535 			continue;
1536 		}
1537 
1538 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1539 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1540 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1541 
1542 			/* Ignore non-periodic endpoints */
1543 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1544 					ep_type != ISOC_IN_EP &&
1545 					ep_type != INT_IN_EP)
1546 				continue;
1547 
1548 			/* Added or changed endpoint */
1549 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1550 					le32_to_cpu(ep_ctx->ep_info));
1551 			/* Number of packets and mult are zero-based in the
1552 			 * input context, but we want one-based for the
1553 			 * interval table.
1554 			 */
1555 			bw_info->mult = CTX_TO_EP_MULT(
1556 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1557 			bw_info->num_packets = CTX_TO_MAX_BURST(
1558 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1559 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1560 					le32_to_cpu(ep_ctx->ep_info2));
1561 			bw_info->type = ep_type;
1562 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1563 					le32_to_cpu(ep_ctx->tx_info));
1564 		}
1565 	}
1566 }
1567 
1568 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1569  * Useful when you want to change one particular aspect of the endpoint and then
1570  * issue a configure endpoint command.
1571  */
1572 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1573 		struct xhci_container_ctx *in_ctx,
1574 		struct xhci_container_ctx *out_ctx,
1575 		unsigned int ep_index)
1576 {
1577 	struct xhci_ep_ctx *out_ep_ctx;
1578 	struct xhci_ep_ctx *in_ep_ctx;
1579 
1580 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1581 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1582 
1583 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1584 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1585 	in_ep_ctx->deq = out_ep_ctx->deq;
1586 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1587 }
1588 
1589 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1590  * Useful when you want to change one particular aspect of the endpoint and then
1591  * issue a configure endpoint command.  Only the context entries field matters,
1592  * but we'll copy the whole thing anyway.
1593  */
1594 void xhci_slot_copy(struct xhci_hcd *xhci,
1595 		struct xhci_container_ctx *in_ctx,
1596 		struct xhci_container_ctx *out_ctx)
1597 {
1598 	struct xhci_slot_ctx *in_slot_ctx;
1599 	struct xhci_slot_ctx *out_slot_ctx;
1600 
1601 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1602 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1603 
1604 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1605 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1606 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1607 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1608 }
1609 
1610 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1611 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1612 {
1613 	int i;
1614 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1615 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1616 
1617 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1618 
1619 	if (!num_sp)
1620 		return 0;
1621 
1622 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1623 	if (!xhci->scratchpad)
1624 		goto fail_sp;
1625 
1626 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1627 				     num_sp * sizeof(u64),
1628 				     &xhci->scratchpad->sp_dma, flags);
1629 	if (!xhci->scratchpad->sp_array)
1630 		goto fail_sp2;
1631 
1632 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1633 	if (!xhci->scratchpad->sp_buffers)
1634 		goto fail_sp3;
1635 
1636 	xhci->scratchpad->sp_dma_buffers =
1637 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1638 
1639 	if (!xhci->scratchpad->sp_dma_buffers)
1640 		goto fail_sp4;
1641 
1642 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1643 	for (i = 0; i < num_sp; i++) {
1644 		dma_addr_t dma;
1645 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1646 				flags);
1647 		if (!buf)
1648 			goto fail_sp5;
1649 
1650 		xhci->scratchpad->sp_array[i] = dma;
1651 		xhci->scratchpad->sp_buffers[i] = buf;
1652 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1653 	}
1654 
1655 	return 0;
1656 
1657  fail_sp5:
1658 	for (i = i - 1; i >= 0; i--) {
1659 		dma_free_coherent(dev, xhci->page_size,
1660 				    xhci->scratchpad->sp_buffers[i],
1661 				    xhci->scratchpad->sp_dma_buffers[i]);
1662 	}
1663 	kfree(xhci->scratchpad->sp_dma_buffers);
1664 
1665  fail_sp4:
1666 	kfree(xhci->scratchpad->sp_buffers);
1667 
1668  fail_sp3:
1669 	dma_free_coherent(dev, num_sp * sizeof(u64),
1670 			    xhci->scratchpad->sp_array,
1671 			    xhci->scratchpad->sp_dma);
1672 
1673  fail_sp2:
1674 	kfree(xhci->scratchpad);
1675 	xhci->scratchpad = NULL;
1676 
1677  fail_sp:
1678 	return -ENOMEM;
1679 }
1680 
1681 static void scratchpad_free(struct xhci_hcd *xhci)
1682 {
1683 	int num_sp;
1684 	int i;
1685 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1686 
1687 	if (!xhci->scratchpad)
1688 		return;
1689 
1690 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1691 
1692 	for (i = 0; i < num_sp; i++) {
1693 		dma_free_coherent(&pdev->dev, xhci->page_size,
1694 				    xhci->scratchpad->sp_buffers[i],
1695 				    xhci->scratchpad->sp_dma_buffers[i]);
1696 	}
1697 	kfree(xhci->scratchpad->sp_dma_buffers);
1698 	kfree(xhci->scratchpad->sp_buffers);
1699 	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1700 			    xhci->scratchpad->sp_array,
1701 			    xhci->scratchpad->sp_dma);
1702 	kfree(xhci->scratchpad);
1703 	xhci->scratchpad = NULL;
1704 }
1705 
1706 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1707 		bool allocate_in_ctx, bool allocate_completion,
1708 		gfp_t mem_flags)
1709 {
1710 	struct xhci_command *command;
1711 
1712 	command = kzalloc(sizeof(*command), mem_flags);
1713 	if (!command)
1714 		return NULL;
1715 
1716 	if (allocate_in_ctx) {
1717 		command->in_ctx =
1718 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1719 					mem_flags);
1720 		if (!command->in_ctx) {
1721 			kfree(command);
1722 			return NULL;
1723 		}
1724 	}
1725 
1726 	if (allocate_completion) {
1727 		command->completion =
1728 			kzalloc(sizeof(struct completion), mem_flags);
1729 		if (!command->completion) {
1730 			xhci_free_container_ctx(xhci, command->in_ctx);
1731 			kfree(command);
1732 			return NULL;
1733 		}
1734 		init_completion(command->completion);
1735 	}
1736 
1737 	command->status = 0;
1738 	INIT_LIST_HEAD(&command->cmd_list);
1739 	return command;
1740 }
1741 
1742 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1743 {
1744 	if (urb_priv) {
1745 		kfree(urb_priv->td[0]);
1746 		kfree(urb_priv);
1747 	}
1748 }
1749 
1750 void xhci_free_command(struct xhci_hcd *xhci,
1751 		struct xhci_command *command)
1752 {
1753 	xhci_free_container_ctx(xhci,
1754 			command->in_ctx);
1755 	kfree(command->completion);
1756 	kfree(command);
1757 }
1758 
1759 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1760 {
1761 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1762 	struct dev_info	*dev_info, *next;
1763 	struct xhci_cd  *cur_cd, *next_cd;
1764 	unsigned long	flags;
1765 	int size;
1766 	int i, j, num_ports;
1767 
1768 	/* Free the Event Ring Segment Table and the actual Event Ring */
1769 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1770 	if (xhci->erst.entries)
1771 		dma_free_coherent(&pdev->dev, size,
1772 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1773 	xhci->erst.entries = NULL;
1774 	xhci_dbg(xhci, "Freed ERST\n");
1775 	if (xhci->event_ring)
1776 		xhci_ring_free(xhci, xhci->event_ring);
1777 	xhci->event_ring = NULL;
1778 	xhci_dbg(xhci, "Freed event ring\n");
1779 
1780 	if (xhci->lpm_command)
1781 		xhci_free_command(xhci, xhci->lpm_command);
1782 	xhci->cmd_ring_reserved_trbs = 0;
1783 	if (xhci->cmd_ring)
1784 		xhci_ring_free(xhci, xhci->cmd_ring);
1785 	xhci->cmd_ring = NULL;
1786 	xhci_dbg(xhci, "Freed command ring\n");
1787 	list_for_each_entry_safe(cur_cd, next_cd,
1788 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1789 		list_del(&cur_cd->cancel_cmd_list);
1790 		kfree(cur_cd);
1791 	}
1792 
1793 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1794 		xhci_free_virt_device(xhci, i);
1795 
1796 	if (xhci->segment_pool)
1797 		dma_pool_destroy(xhci->segment_pool);
1798 	xhci->segment_pool = NULL;
1799 	xhci_dbg(xhci, "Freed segment pool\n");
1800 
1801 	if (xhci->device_pool)
1802 		dma_pool_destroy(xhci->device_pool);
1803 	xhci->device_pool = NULL;
1804 	xhci_dbg(xhci, "Freed device context pool\n");
1805 
1806 	if (xhci->small_streams_pool)
1807 		dma_pool_destroy(xhci->small_streams_pool);
1808 	xhci->small_streams_pool = NULL;
1809 	xhci_dbg(xhci, "Freed small stream array pool\n");
1810 
1811 	if (xhci->medium_streams_pool)
1812 		dma_pool_destroy(xhci->medium_streams_pool);
1813 	xhci->medium_streams_pool = NULL;
1814 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1815 
1816 	if (xhci->dcbaa)
1817 		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1818 				xhci->dcbaa, xhci->dcbaa->dma);
1819 	xhci->dcbaa = NULL;
1820 
1821 	scratchpad_free(xhci);
1822 
1823 	spin_lock_irqsave(&xhci->lock, flags);
1824 	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1825 		list_del(&dev_info->list);
1826 		kfree(dev_info);
1827 	}
1828 	spin_unlock_irqrestore(&xhci->lock, flags);
1829 
1830 	if (!xhci->rh_bw)
1831 		goto no_bw;
1832 
1833 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1834 	for (i = 0; i < num_ports; i++) {
1835 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1836 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1837 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1838 			while (!list_empty(ep))
1839 				list_del_init(ep->next);
1840 		}
1841 	}
1842 
1843 	for (i = 0; i < num_ports; i++) {
1844 		struct xhci_tt_bw_info *tt, *n;
1845 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1846 			list_del(&tt->tt_list);
1847 			kfree(tt);
1848 		}
1849 	}
1850 
1851 no_bw:
1852 	xhci->num_usb2_ports = 0;
1853 	xhci->num_usb3_ports = 0;
1854 	xhci->num_active_eps = 0;
1855 	kfree(xhci->usb2_ports);
1856 	kfree(xhci->usb3_ports);
1857 	kfree(xhci->port_array);
1858 	kfree(xhci->rh_bw);
1859 	kfree(xhci->ext_caps);
1860 
1861 	xhci->page_size = 0;
1862 	xhci->page_shift = 0;
1863 	xhci->bus_state[0].bus_suspended = 0;
1864 	xhci->bus_state[1].bus_suspended = 0;
1865 }
1866 
1867 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1868 		struct xhci_segment *input_seg,
1869 		union xhci_trb *start_trb,
1870 		union xhci_trb *end_trb,
1871 		dma_addr_t input_dma,
1872 		struct xhci_segment *result_seg,
1873 		char *test_name, int test_number)
1874 {
1875 	unsigned long long start_dma;
1876 	unsigned long long end_dma;
1877 	struct xhci_segment *seg;
1878 
1879 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1880 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1881 
1882 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1883 	if (seg != result_seg) {
1884 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1885 				test_name, test_number);
1886 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1887 				"input DMA 0x%llx\n",
1888 				input_seg,
1889 				(unsigned long long) input_dma);
1890 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1891 				"ending TRB %p (0x%llx DMA)\n",
1892 				start_trb, start_dma,
1893 				end_trb, end_dma);
1894 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1895 				result_seg, seg);
1896 		return -1;
1897 	}
1898 	return 0;
1899 }
1900 
1901 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1902 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1903 {
1904 	struct {
1905 		dma_addr_t		input_dma;
1906 		struct xhci_segment	*result_seg;
1907 	} simple_test_vector [] = {
1908 		/* A zeroed DMA field should fail */
1909 		{ 0, NULL },
1910 		/* One TRB before the ring start should fail */
1911 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1912 		/* One byte before the ring start should fail */
1913 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1914 		/* Starting TRB should succeed */
1915 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1916 		/* Ending TRB should succeed */
1917 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1918 			xhci->event_ring->first_seg },
1919 		/* One byte after the ring end should fail */
1920 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1921 		/* One TRB after the ring end should fail */
1922 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1923 		/* An address of all ones should fail */
1924 		{ (dma_addr_t) (~0), NULL },
1925 	};
1926 	struct {
1927 		struct xhci_segment	*input_seg;
1928 		union xhci_trb		*start_trb;
1929 		union xhci_trb		*end_trb;
1930 		dma_addr_t		input_dma;
1931 		struct xhci_segment	*result_seg;
1932 	} complex_test_vector [] = {
1933 		/* Test feeding a valid DMA address from a different ring */
1934 		{	.input_seg = xhci->event_ring->first_seg,
1935 			.start_trb = xhci->event_ring->first_seg->trbs,
1936 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1937 			.input_dma = xhci->cmd_ring->first_seg->dma,
1938 			.result_seg = NULL,
1939 		},
1940 		/* Test feeding a valid end TRB from a different ring */
1941 		{	.input_seg = xhci->event_ring->first_seg,
1942 			.start_trb = xhci->event_ring->first_seg->trbs,
1943 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1944 			.input_dma = xhci->cmd_ring->first_seg->dma,
1945 			.result_seg = NULL,
1946 		},
1947 		/* Test feeding a valid start and end TRB from a different ring */
1948 		{	.input_seg = xhci->event_ring->first_seg,
1949 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1950 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1951 			.input_dma = xhci->cmd_ring->first_seg->dma,
1952 			.result_seg = NULL,
1953 		},
1954 		/* TRB in this ring, but after this TD */
1955 		{	.input_seg = xhci->event_ring->first_seg,
1956 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1957 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1958 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1959 			.result_seg = NULL,
1960 		},
1961 		/* TRB in this ring, but before this TD */
1962 		{	.input_seg = xhci->event_ring->first_seg,
1963 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1964 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1965 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1966 			.result_seg = NULL,
1967 		},
1968 		/* TRB in this ring, but after this wrapped TD */
1969 		{	.input_seg = xhci->event_ring->first_seg,
1970 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1971 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1972 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1973 			.result_seg = NULL,
1974 		},
1975 		/* TRB in this ring, but before this wrapped TD */
1976 		{	.input_seg = xhci->event_ring->first_seg,
1977 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1978 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1979 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1980 			.result_seg = NULL,
1981 		},
1982 		/* TRB not in this ring, and we have a wrapped TD */
1983 		{	.input_seg = xhci->event_ring->first_seg,
1984 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1985 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1986 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1987 			.result_seg = NULL,
1988 		},
1989 	};
1990 
1991 	unsigned int num_tests;
1992 	int i, ret;
1993 
1994 	num_tests = ARRAY_SIZE(simple_test_vector);
1995 	for (i = 0; i < num_tests; i++) {
1996 		ret = xhci_test_trb_in_td(xhci,
1997 				xhci->event_ring->first_seg,
1998 				xhci->event_ring->first_seg->trbs,
1999 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2000 				simple_test_vector[i].input_dma,
2001 				simple_test_vector[i].result_seg,
2002 				"Simple", i);
2003 		if (ret < 0)
2004 			return ret;
2005 	}
2006 
2007 	num_tests = ARRAY_SIZE(complex_test_vector);
2008 	for (i = 0; i < num_tests; i++) {
2009 		ret = xhci_test_trb_in_td(xhci,
2010 				complex_test_vector[i].input_seg,
2011 				complex_test_vector[i].start_trb,
2012 				complex_test_vector[i].end_trb,
2013 				complex_test_vector[i].input_dma,
2014 				complex_test_vector[i].result_seg,
2015 				"Complex", i);
2016 		if (ret < 0)
2017 			return ret;
2018 	}
2019 	xhci_dbg(xhci, "TRB math tests passed.\n");
2020 	return 0;
2021 }
2022 
2023 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2024 {
2025 	u64 temp;
2026 	dma_addr_t deq;
2027 
2028 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2029 			xhci->event_ring->dequeue);
2030 	if (deq == 0 && !in_interrupt())
2031 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2032 				"dequeue ptr.\n");
2033 	/* Update HC event ring dequeue pointer */
2034 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2035 	temp &= ERST_PTR_MASK;
2036 	/* Don't clear the EHB bit (which is RW1C) because
2037 	 * there might be more events to service.
2038 	 */
2039 	temp &= ~ERST_EHB;
2040 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2041 			"preserving EHB bit\n");
2042 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2043 			&xhci->ir_set->erst_dequeue);
2044 }
2045 
2046 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2047 		__le32 __iomem *addr, u8 major_revision, int max_caps)
2048 {
2049 	u32 temp, port_offset, port_count;
2050 	int i;
2051 
2052 	if (major_revision > 0x03) {
2053 		xhci_warn(xhci, "Ignoring unknown port speed, "
2054 				"Ext Cap %p, revision = 0x%x\n",
2055 				addr, major_revision);
2056 		/* Ignoring port protocol we can't understand. FIXME */
2057 		return;
2058 	}
2059 
2060 	/* Port offset and count in the third dword, see section 7.2 */
2061 	temp = xhci_readl(xhci, addr + 2);
2062 	port_offset = XHCI_EXT_PORT_OFF(temp);
2063 	port_count = XHCI_EXT_PORT_COUNT(temp);
2064 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2065 			"count = %u, revision = 0x%x\n",
2066 			addr, port_offset, port_count, major_revision);
2067 	/* Port count includes the current port offset */
2068 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2069 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2070 		return;
2071 
2072 	/* cache usb2 port capabilities */
2073 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2074 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2075 
2076 	/* Check the host's USB2 LPM capability */
2077 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2078 			(temp & XHCI_L1C)) {
2079 		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2080 		xhci->sw_lpm_support = 1;
2081 	}
2082 
2083 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2084 		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2085 		xhci->sw_lpm_support = 1;
2086 		if (temp & XHCI_HLC) {
2087 			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2088 			xhci->hw_lpm_support = 1;
2089 		}
2090 	}
2091 
2092 	port_offset--;
2093 	for (i = port_offset; i < (port_offset + port_count); i++) {
2094 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2095 		if (xhci->port_array[i] != 0) {
2096 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2097 					" port %u\n", addr, i);
2098 			xhci_warn(xhci, "Port was marked as USB %u, "
2099 					"duplicated as USB %u\n",
2100 					xhci->port_array[i], major_revision);
2101 			/* Only adjust the roothub port counts if we haven't
2102 			 * found a similar duplicate.
2103 			 */
2104 			if (xhci->port_array[i] != major_revision &&
2105 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2106 				if (xhci->port_array[i] == 0x03)
2107 					xhci->num_usb3_ports--;
2108 				else
2109 					xhci->num_usb2_ports--;
2110 				xhci->port_array[i] = DUPLICATE_ENTRY;
2111 			}
2112 			/* FIXME: Should we disable the port? */
2113 			continue;
2114 		}
2115 		xhci->port_array[i] = major_revision;
2116 		if (major_revision == 0x03)
2117 			xhci->num_usb3_ports++;
2118 		else
2119 			xhci->num_usb2_ports++;
2120 	}
2121 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2122 }
2123 
2124 /*
2125  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2126  * specify what speeds each port is supposed to be.  We can't count on the port
2127  * speed bits in the PORTSC register being correct until a device is connected,
2128  * but we need to set up the two fake roothubs with the correct number of USB
2129  * 3.0 and USB 2.0 ports at host controller initialization time.
2130  */
2131 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2132 {
2133 	__le32 __iomem *addr, *tmp_addr;
2134 	u32 offset, tmp_offset;
2135 	unsigned int num_ports;
2136 	int i, j, port_index;
2137 	int cap_count = 0;
2138 
2139 	addr = &xhci->cap_regs->hcc_params;
2140 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2141 	if (offset == 0) {
2142 		xhci_err(xhci, "No Extended Capability registers, "
2143 				"unable to set up roothub.\n");
2144 		return -ENODEV;
2145 	}
2146 
2147 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2148 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2149 	if (!xhci->port_array)
2150 		return -ENOMEM;
2151 
2152 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2153 	if (!xhci->rh_bw)
2154 		return -ENOMEM;
2155 	for (i = 0; i < num_ports; i++) {
2156 		struct xhci_interval_bw_table *bw_table;
2157 
2158 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2159 		bw_table = &xhci->rh_bw[i].bw_table;
2160 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2161 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2162 	}
2163 
2164 	/*
2165 	 * For whatever reason, the first capability offset is from the
2166 	 * capability register base, not from the HCCPARAMS register.
2167 	 * See section 5.3.6 for offset calculation.
2168 	 */
2169 	addr = &xhci->cap_regs->hc_capbase + offset;
2170 
2171 	tmp_addr = addr;
2172 	tmp_offset = offset;
2173 
2174 	/* count extended protocol capability entries for later caching */
2175 	do {
2176 		u32 cap_id;
2177 		cap_id = xhci_readl(xhci, tmp_addr);
2178 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2179 			cap_count++;
2180 		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2181 		tmp_addr += tmp_offset;
2182 	} while (tmp_offset);
2183 
2184 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2185 	if (!xhci->ext_caps)
2186 		return -ENOMEM;
2187 
2188 	while (1) {
2189 		u32 cap_id;
2190 
2191 		cap_id = xhci_readl(xhci, addr);
2192 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2193 			xhci_add_in_port(xhci, num_ports, addr,
2194 					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2195 					cap_count);
2196 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2197 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2198 				== num_ports)
2199 			break;
2200 		/*
2201 		 * Once you're into the Extended Capabilities, the offset is
2202 		 * always relative to the register holding the offset.
2203 		 */
2204 		addr += offset;
2205 	}
2206 
2207 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2208 		xhci_warn(xhci, "No ports on the roothubs?\n");
2209 		return -ENODEV;
2210 	}
2211 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2212 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2213 
2214 	/* Place limits on the number of roothub ports so that the hub
2215 	 * descriptors aren't longer than the USB core will allocate.
2216 	 */
2217 	if (xhci->num_usb3_ports > 15) {
2218 		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2219 		xhci->num_usb3_ports = 15;
2220 	}
2221 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2222 		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2223 				USB_MAXCHILDREN);
2224 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2225 	}
2226 
2227 	/*
2228 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2229 	 * Not sure how the USB core will handle a hub with no ports...
2230 	 */
2231 	if (xhci->num_usb2_ports) {
2232 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2233 				xhci->num_usb2_ports, flags);
2234 		if (!xhci->usb2_ports)
2235 			return -ENOMEM;
2236 
2237 		port_index = 0;
2238 		for (i = 0; i < num_ports; i++) {
2239 			if (xhci->port_array[i] == 0x03 ||
2240 					xhci->port_array[i] == 0 ||
2241 					xhci->port_array[i] == DUPLICATE_ENTRY)
2242 				continue;
2243 
2244 			xhci->usb2_ports[port_index] =
2245 				&xhci->op_regs->port_status_base +
2246 				NUM_PORT_REGS*i;
2247 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2248 					"addr = %p\n", i,
2249 					xhci->usb2_ports[port_index]);
2250 			port_index++;
2251 			if (port_index == xhci->num_usb2_ports)
2252 				break;
2253 		}
2254 	}
2255 	if (xhci->num_usb3_ports) {
2256 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2257 				xhci->num_usb3_ports, flags);
2258 		if (!xhci->usb3_ports)
2259 			return -ENOMEM;
2260 
2261 		port_index = 0;
2262 		for (i = 0; i < num_ports; i++)
2263 			if (xhci->port_array[i] == 0x03) {
2264 				xhci->usb3_ports[port_index] =
2265 					&xhci->op_regs->port_status_base +
2266 					NUM_PORT_REGS*i;
2267 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2268 						"addr = %p\n", i,
2269 						xhci->usb3_ports[port_index]);
2270 				port_index++;
2271 				if (port_index == xhci->num_usb3_ports)
2272 					break;
2273 			}
2274 	}
2275 	return 0;
2276 }
2277 
2278 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2279 {
2280 	dma_addr_t	dma;
2281 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2282 	unsigned int	val, val2;
2283 	u64		val_64;
2284 	struct xhci_segment	*seg;
2285 	u32 page_size, temp;
2286 	int i;
2287 
2288 	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2289 	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2290 
2291 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2292 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2293 	for (i = 0; i < 16; i++) {
2294 		if ((0x1 & page_size) != 0)
2295 			break;
2296 		page_size = page_size >> 1;
2297 	}
2298 	if (i < 16)
2299 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2300 	else
2301 		xhci_warn(xhci, "WARN: no supported page size\n");
2302 	/* Use 4K pages, since that's common and the minimum the HC supports */
2303 	xhci->page_shift = 12;
2304 	xhci->page_size = 1 << xhci->page_shift;
2305 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2306 
2307 	/*
2308 	 * Program the Number of Device Slots Enabled field in the CONFIG
2309 	 * register with the max value of slots the HC can handle.
2310 	 */
2311 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2312 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2313 			(unsigned int) val);
2314 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2315 	val |= (val2 & ~HCS_SLOTS_MASK);
2316 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2317 			(unsigned int) val);
2318 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2319 
2320 	/*
2321 	 * Section 5.4.8 - doorbell array must be
2322 	 * "physically contiguous and 64-byte (cache line) aligned".
2323 	 */
2324 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2325 			GFP_KERNEL);
2326 	if (!xhci->dcbaa)
2327 		goto fail;
2328 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2329 	xhci->dcbaa->dma = dma;
2330 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2331 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2332 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2333 
2334 	/*
2335 	 * Initialize the ring segment pool.  The ring must be a contiguous
2336 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2337 	 * however, the command ring segment needs 64-byte aligned segments,
2338 	 * so we pick the greater alignment need.
2339 	 */
2340 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2341 			TRB_SEGMENT_SIZE, 64, xhci->page_size);
2342 
2343 	/* See Table 46 and Note on Figure 55 */
2344 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2345 			2112, 64, xhci->page_size);
2346 	if (!xhci->segment_pool || !xhci->device_pool)
2347 		goto fail;
2348 
2349 	/* Linear stream context arrays don't have any boundary restrictions,
2350 	 * and only need to be 16-byte aligned.
2351 	 */
2352 	xhci->small_streams_pool =
2353 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2354 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2355 	xhci->medium_streams_pool =
2356 		dma_pool_create("xHCI 1KB stream ctx arrays",
2357 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2358 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2359 	 * will be allocated with dma_alloc_coherent()
2360 	 */
2361 
2362 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2363 		goto fail;
2364 
2365 	/* Set up the command ring to have one segments for now. */
2366 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2367 	if (!xhci->cmd_ring)
2368 		goto fail;
2369 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2370 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2371 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2372 
2373 	/* Set the address in the Command Ring Control register */
2374 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2375 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2376 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2377 		xhci->cmd_ring->cycle_state;
2378 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2379 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2380 	xhci_dbg_cmd_ptrs(xhci);
2381 
2382 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2383 	if (!xhci->lpm_command)
2384 		goto fail;
2385 
2386 	/* Reserve one command ring TRB for disabling LPM.
2387 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2388 	 * disabling LPM, we only need to reserve one TRB for all devices.
2389 	 */
2390 	xhci->cmd_ring_reserved_trbs++;
2391 
2392 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2393 	val &= DBOFF_MASK;
2394 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2395 			" from cap regs base addr\n", val);
2396 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2397 	xhci_dbg_regs(xhci);
2398 	xhci_print_run_regs(xhci);
2399 	/* Set ir_set to interrupt register set 0 */
2400 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2401 
2402 	/*
2403 	 * Event ring setup: Allocate a normal ring, but also setup
2404 	 * the event ring segment table (ERST).  Section 4.9.3.
2405 	 */
2406 	xhci_dbg(xhci, "// Allocating event ring\n");
2407 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2408 						flags);
2409 	if (!xhci->event_ring)
2410 		goto fail;
2411 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2412 		goto fail;
2413 
2414 	xhci->erst.entries = dma_alloc_coherent(dev,
2415 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2416 			GFP_KERNEL);
2417 	if (!xhci->erst.entries)
2418 		goto fail;
2419 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2420 			(unsigned long long)dma);
2421 
2422 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2423 	xhci->erst.num_entries = ERST_NUM_SEGS;
2424 	xhci->erst.erst_dma_addr = dma;
2425 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2426 			xhci->erst.num_entries,
2427 			xhci->erst.entries,
2428 			(unsigned long long)xhci->erst.erst_dma_addr);
2429 
2430 	/* set ring base address and size for each segment table entry */
2431 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2432 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2433 		entry->seg_addr = cpu_to_le64(seg->dma);
2434 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2435 		entry->rsvd = 0;
2436 		seg = seg->next;
2437 	}
2438 
2439 	/* set ERST count with the number of entries in the segment table */
2440 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2441 	val &= ERST_SIZE_MASK;
2442 	val |= ERST_NUM_SEGS;
2443 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2444 			val);
2445 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2446 
2447 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2448 	/* set the segment table base address */
2449 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2450 			(unsigned long long)xhci->erst.erst_dma_addr);
2451 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2452 	val_64 &= ERST_PTR_MASK;
2453 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2454 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2455 
2456 	/* Set the event ring dequeue address */
2457 	xhci_set_hc_event_deq(xhci);
2458 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2459 	xhci_print_ir_set(xhci, 0);
2460 
2461 	/*
2462 	 * XXX: Might need to set the Interrupter Moderation Register to
2463 	 * something other than the default (~1ms minimum between interrupts).
2464 	 * See section 5.5.1.2.
2465 	 */
2466 	init_completion(&xhci->addr_dev);
2467 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2468 		xhci->devs[i] = NULL;
2469 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2470 		xhci->bus_state[0].resume_done[i] = 0;
2471 		xhci->bus_state[1].resume_done[i] = 0;
2472 	}
2473 
2474 	if (scratchpad_alloc(xhci, flags))
2475 		goto fail;
2476 	if (xhci_setup_port_arrays(xhci, flags))
2477 		goto fail;
2478 
2479 	/* Enable USB 3.0 device notifications for function remote wake, which
2480 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2481 	 * U3 (device suspend).
2482 	 */
2483 	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2484 	temp &= ~DEV_NOTE_MASK;
2485 	temp |= DEV_NOTE_FWAKE;
2486 	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2487 
2488 	return 0;
2489 
2490 fail:
2491 	xhci_warn(xhci, "Couldn't initialize memory\n");
2492 	xhci_halt(xhci);
2493 	xhci_reset(xhci);
2494 	xhci_mem_cleanup(xhci);
2495 	return -ENOMEM;
2496 }
2497