1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/usb.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/dmapool.h> 27 #include <linux/dma-mapping.h> 28 29 #include "xhci.h" 30 #include "xhci-trace.h" 31 32 /* 33 * Allocates a generic ring segment from the ring pool, sets the dma address, 34 * initializes the segment to zero, and sets the private next pointer to NULL. 35 * 36 * Section 4.11.1.1: 37 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 38 */ 39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 40 unsigned int cycle_state, 41 unsigned int max_packet, 42 gfp_t flags) 43 { 44 struct xhci_segment *seg; 45 dma_addr_t dma; 46 int i; 47 48 seg = kzalloc(sizeof *seg, flags); 49 if (!seg) 50 return NULL; 51 52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 53 if (!seg->trbs) { 54 kfree(seg); 55 return NULL; 56 } 57 58 if (max_packet) { 59 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA); 60 if (!seg->bounce_buf) { 61 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 62 kfree(seg); 63 return NULL; 64 } 65 } 66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 67 if (cycle_state == 0) { 68 for (i = 0; i < TRBS_PER_SEGMENT; i++) 69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 70 } 71 seg->dma = dma; 72 seg->next = NULL; 73 74 return seg; 75 } 76 77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 78 { 79 if (seg->trbs) { 80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 81 seg->trbs = NULL; 82 } 83 kfree(seg->bounce_buf); 84 kfree(seg); 85 } 86 87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 88 struct xhci_segment *first) 89 { 90 struct xhci_segment *seg; 91 92 seg = first->next; 93 while (seg != first) { 94 struct xhci_segment *next = seg->next; 95 xhci_segment_free(xhci, seg); 96 seg = next; 97 } 98 xhci_segment_free(xhci, first); 99 } 100 101 /* 102 * Make the prev segment point to the next segment. 103 * 104 * Change the last TRB in the prev segment to be a Link TRB which points to the 105 * DMA address of the next segment. The caller needs to set any Link TRB 106 * related flags, such as End TRB, Toggle Cycle, and no snoop. 107 */ 108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 109 struct xhci_segment *next, enum xhci_ring_type type) 110 { 111 u32 val; 112 113 if (!prev || !next) 114 return; 115 prev->next = next; 116 if (type != TYPE_EVENT) { 117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 118 cpu_to_le64(next->dma); 119 120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 122 val &= ~TRB_TYPE_BITMASK; 123 val |= TRB_TYPE(TRB_LINK); 124 /* Always set the chain bit with 0.95 hardware */ 125 /* Set chain bit for isoc rings on AMD 0.96 host */ 126 if (xhci_link_trb_quirk(xhci) || 127 (type == TYPE_ISOC && 128 (xhci->quirks & XHCI_AMD_0x96_HOST))) 129 val |= TRB_CHAIN; 130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 131 } 132 } 133 134 /* 135 * Link the ring to the new segments. 136 * Set Toggle Cycle for the new ring if needed. 137 */ 138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 139 struct xhci_segment *first, struct xhci_segment *last, 140 unsigned int num_segs) 141 { 142 struct xhci_segment *next; 143 144 if (!ring || !first || !last) 145 return; 146 147 next = ring->enq_seg->next; 148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 149 xhci_link_segments(xhci, last, next, ring->type); 150 ring->num_segs += num_segs; 151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 152 153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 155 &= ~cpu_to_le32(LINK_TOGGLE); 156 last->trbs[TRBS_PER_SEGMENT-1].link.control 157 |= cpu_to_le32(LINK_TOGGLE); 158 ring->last_seg = last; 159 } 160 } 161 162 /* 163 * We need a radix tree for mapping physical addresses of TRBs to which stream 164 * ID they belong to. We need to do this because the host controller won't tell 165 * us which stream ring the TRB came from. We could store the stream ID in an 166 * event data TRB, but that doesn't help us for the cancellation case, since the 167 * endpoint may stop before it reaches that event data TRB. 168 * 169 * The radix tree maps the upper portion of the TRB DMA address to a ring 170 * segment that has the same upper portion of DMA addresses. For example, say I 171 * have segments of size 1KB, that are always 1KB aligned. A segment may 172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 174 * pass the radix tree a key to get the right stream ID: 175 * 176 * 0x10c90fff >> 10 = 0x43243 177 * 0x10c912c0 >> 10 = 0x43244 178 * 0x10c91400 >> 10 = 0x43245 179 * 180 * Obviously, only those TRBs with DMA addresses that are within the segment 181 * will make the radix tree return the stream ID for that ring. 182 * 183 * Caveats for the radix tree: 184 * 185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 190 * extended systems (where the DMA address can be bigger than 32-bits), 191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 192 */ 193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 194 struct xhci_ring *ring, 195 struct xhci_segment *seg, 196 gfp_t mem_flags) 197 { 198 unsigned long key; 199 int ret; 200 201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 202 /* Skip any segments that were already added. */ 203 if (radix_tree_lookup(trb_address_map, key)) 204 return 0; 205 206 ret = radix_tree_maybe_preload(mem_flags); 207 if (ret) 208 return ret; 209 ret = radix_tree_insert(trb_address_map, 210 key, ring); 211 radix_tree_preload_end(); 212 return ret; 213 } 214 215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 216 struct xhci_segment *seg) 217 { 218 unsigned long key; 219 220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 221 if (radix_tree_lookup(trb_address_map, key)) 222 radix_tree_delete(trb_address_map, key); 223 } 224 225 static int xhci_update_stream_segment_mapping( 226 struct radix_tree_root *trb_address_map, 227 struct xhci_ring *ring, 228 struct xhci_segment *first_seg, 229 struct xhci_segment *last_seg, 230 gfp_t mem_flags) 231 { 232 struct xhci_segment *seg; 233 struct xhci_segment *failed_seg; 234 int ret; 235 236 if (WARN_ON_ONCE(trb_address_map == NULL)) 237 return 0; 238 239 seg = first_seg; 240 do { 241 ret = xhci_insert_segment_mapping(trb_address_map, 242 ring, seg, mem_flags); 243 if (ret) 244 goto remove_streams; 245 if (seg == last_seg) 246 return 0; 247 seg = seg->next; 248 } while (seg != first_seg); 249 250 return 0; 251 252 remove_streams: 253 failed_seg = seg; 254 seg = first_seg; 255 do { 256 xhci_remove_segment_mapping(trb_address_map, seg); 257 if (seg == failed_seg) 258 return ret; 259 seg = seg->next; 260 } while (seg != first_seg); 261 262 return ret; 263 } 264 265 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 266 { 267 struct xhci_segment *seg; 268 269 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 270 return; 271 272 seg = ring->first_seg; 273 do { 274 xhci_remove_segment_mapping(ring->trb_address_map, seg); 275 seg = seg->next; 276 } while (seg != ring->first_seg); 277 } 278 279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 280 { 281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 282 ring->first_seg, ring->last_seg, mem_flags); 283 } 284 285 /* XXX: Do we need the hcd structure in all these functions? */ 286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 287 { 288 if (!ring) 289 return; 290 291 if (ring->first_seg) { 292 if (ring->type == TYPE_STREAM) 293 xhci_remove_stream_mapping(ring); 294 xhci_free_segments_for_ring(xhci, ring->first_seg); 295 } 296 297 kfree(ring); 298 } 299 300 static void xhci_initialize_ring_info(struct xhci_ring *ring, 301 unsigned int cycle_state) 302 { 303 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 304 ring->enqueue = ring->first_seg->trbs; 305 ring->enq_seg = ring->first_seg; 306 ring->dequeue = ring->enqueue; 307 ring->deq_seg = ring->first_seg; 308 /* The ring is initialized to 0. The producer must write 1 to the cycle 309 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 310 * compare CCS to the cycle bit to check ownership, so CCS = 1. 311 * 312 * New rings are initialized with cycle state equal to 1; if we are 313 * handling ring expansion, set the cycle state equal to the old ring. 314 */ 315 ring->cycle_state = cycle_state; 316 /* Not necessary for new rings, but needed for re-initialized rings */ 317 ring->enq_updates = 0; 318 ring->deq_updates = 0; 319 320 /* 321 * Each segment has a link TRB, and leave an extra TRB for SW 322 * accounting purpose 323 */ 324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 325 } 326 327 /* Allocate segments and link them for a ring */ 328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 329 struct xhci_segment **first, struct xhci_segment **last, 330 unsigned int num_segs, unsigned int cycle_state, 331 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 332 { 333 struct xhci_segment *prev; 334 335 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 336 if (!prev) 337 return -ENOMEM; 338 num_segs--; 339 340 *first = prev; 341 while (num_segs > 0) { 342 struct xhci_segment *next; 343 344 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 345 if (!next) { 346 prev = *first; 347 while (prev) { 348 next = prev->next; 349 xhci_segment_free(xhci, prev); 350 prev = next; 351 } 352 return -ENOMEM; 353 } 354 xhci_link_segments(xhci, prev, next, type); 355 356 prev = next; 357 num_segs--; 358 } 359 xhci_link_segments(xhci, prev, *first, type); 360 *last = prev; 361 362 return 0; 363 } 364 365 /** 366 * Create a new ring with zero or more segments. 367 * 368 * Link each segment together into a ring. 369 * Set the end flag and the cycle toggle bit on the last segment. 370 * See section 4.9.1 and figures 15 and 16. 371 */ 372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 373 unsigned int num_segs, unsigned int cycle_state, 374 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 375 { 376 struct xhci_ring *ring; 377 int ret; 378 379 ring = kzalloc(sizeof *(ring), flags); 380 if (!ring) 381 return NULL; 382 383 ring->num_segs = num_segs; 384 ring->bounce_buf_len = max_packet; 385 INIT_LIST_HEAD(&ring->td_list); 386 ring->type = type; 387 if (num_segs == 0) 388 return ring; 389 390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 391 &ring->last_seg, num_segs, cycle_state, type, 392 max_packet, flags); 393 if (ret) 394 goto fail; 395 396 /* Only event ring does not use link TRB */ 397 if (type != TYPE_EVENT) { 398 /* See section 4.9.2.1 and 6.4.4.1 */ 399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 400 cpu_to_le32(LINK_TOGGLE); 401 } 402 xhci_initialize_ring_info(ring, cycle_state); 403 return ring; 404 405 fail: 406 kfree(ring); 407 return NULL; 408 } 409 410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 411 struct xhci_virt_device *virt_dev, 412 unsigned int ep_index) 413 { 414 int rings_cached; 415 416 rings_cached = virt_dev->num_rings_cached; 417 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 418 virt_dev->ring_cache[rings_cached] = 419 virt_dev->eps[ep_index].ring; 420 virt_dev->num_rings_cached++; 421 xhci_dbg(xhci, "Cached old ring, " 422 "%d ring%s cached\n", 423 virt_dev->num_rings_cached, 424 (virt_dev->num_rings_cached > 1) ? "s" : ""); 425 } else { 426 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 427 xhci_dbg(xhci, "Ring cache full (%d rings), " 428 "freeing ring\n", 429 virt_dev->num_rings_cached); 430 } 431 virt_dev->eps[ep_index].ring = NULL; 432 } 433 434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 435 * pointers to the beginning of the ring. 436 */ 437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 438 struct xhci_ring *ring, unsigned int cycle_state, 439 enum xhci_ring_type type) 440 { 441 struct xhci_segment *seg = ring->first_seg; 442 int i; 443 444 do { 445 memset(seg->trbs, 0, 446 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 447 if (cycle_state == 0) { 448 for (i = 0; i < TRBS_PER_SEGMENT; i++) 449 seg->trbs[i].link.control |= 450 cpu_to_le32(TRB_CYCLE); 451 } 452 /* All endpoint rings have link TRBs */ 453 xhci_link_segments(xhci, seg, seg->next, type); 454 seg = seg->next; 455 } while (seg != ring->first_seg); 456 ring->type = type; 457 xhci_initialize_ring_info(ring, cycle_state); 458 /* td list should be empty since all URBs have been cancelled, 459 * but just in case... 460 */ 461 INIT_LIST_HEAD(&ring->td_list); 462 } 463 464 /* 465 * Expand an existing ring. 466 * Look for a cached ring or allocate a new ring which has same segment numbers 467 * and link the two rings. 468 */ 469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 470 unsigned int num_trbs, gfp_t flags) 471 { 472 struct xhci_segment *first; 473 struct xhci_segment *last; 474 unsigned int num_segs; 475 unsigned int num_segs_needed; 476 int ret; 477 478 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 479 (TRBS_PER_SEGMENT - 1); 480 481 /* Allocate number of segments we needed, or double the ring size */ 482 num_segs = ring->num_segs > num_segs_needed ? 483 ring->num_segs : num_segs_needed; 484 485 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 486 num_segs, ring->cycle_state, ring->type, 487 ring->bounce_buf_len, flags); 488 if (ret) 489 return -ENOMEM; 490 491 if (ring->type == TYPE_STREAM) 492 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 493 ring, first, last, flags); 494 if (ret) { 495 struct xhci_segment *next; 496 do { 497 next = first->next; 498 xhci_segment_free(xhci, first); 499 if (first == last) 500 break; 501 first = next; 502 } while (true); 503 return ret; 504 } 505 506 xhci_link_rings(xhci, ring, first, last, num_segs); 507 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 508 "ring expansion succeed, now has %d segments", 509 ring->num_segs); 510 511 return 0; 512 } 513 514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 515 516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 517 int type, gfp_t flags) 518 { 519 struct xhci_container_ctx *ctx; 520 521 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 522 return NULL; 523 524 ctx = kzalloc(sizeof(*ctx), flags); 525 if (!ctx) 526 return NULL; 527 528 ctx->type = type; 529 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 530 if (type == XHCI_CTX_TYPE_INPUT) 531 ctx->size += CTX_SIZE(xhci->hcc_params); 532 533 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 534 if (!ctx->bytes) { 535 kfree(ctx); 536 return NULL; 537 } 538 return ctx; 539 } 540 541 static void xhci_free_container_ctx(struct xhci_hcd *xhci, 542 struct xhci_container_ctx *ctx) 543 { 544 if (!ctx) 545 return; 546 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 547 kfree(ctx); 548 } 549 550 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 551 struct xhci_container_ctx *ctx) 552 { 553 if (ctx->type != XHCI_CTX_TYPE_INPUT) 554 return NULL; 555 556 return (struct xhci_input_control_ctx *)ctx->bytes; 557 } 558 559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 560 struct xhci_container_ctx *ctx) 561 { 562 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 563 return (struct xhci_slot_ctx *)ctx->bytes; 564 565 return (struct xhci_slot_ctx *) 566 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 567 } 568 569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 570 struct xhci_container_ctx *ctx, 571 unsigned int ep_index) 572 { 573 /* increment ep index by offset of start of ep ctx array */ 574 ep_index++; 575 if (ctx->type == XHCI_CTX_TYPE_INPUT) 576 ep_index++; 577 578 return (struct xhci_ep_ctx *) 579 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 580 } 581 582 583 /***************** Streams structures manipulation *************************/ 584 585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 586 unsigned int num_stream_ctxs, 587 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 588 { 589 struct device *dev = xhci_to_hcd(xhci)->self.controller; 590 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 591 592 if (size > MEDIUM_STREAM_ARRAY_SIZE) 593 dma_free_coherent(dev, size, 594 stream_ctx, dma); 595 else if (size <= SMALL_STREAM_ARRAY_SIZE) 596 return dma_pool_free(xhci->small_streams_pool, 597 stream_ctx, dma); 598 else 599 return dma_pool_free(xhci->medium_streams_pool, 600 stream_ctx, dma); 601 } 602 603 /* 604 * The stream context array for each endpoint with bulk streams enabled can 605 * vary in size, based on: 606 * - how many streams the endpoint supports, 607 * - the maximum primary stream array size the host controller supports, 608 * - and how many streams the device driver asks for. 609 * 610 * The stream context array must be a power of 2, and can be as small as 611 * 64 bytes or as large as 1MB. 612 */ 613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 614 unsigned int num_stream_ctxs, dma_addr_t *dma, 615 gfp_t mem_flags) 616 { 617 struct device *dev = xhci_to_hcd(xhci)->self.controller; 618 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 619 620 if (size > MEDIUM_STREAM_ARRAY_SIZE) 621 return dma_alloc_coherent(dev, size, 622 dma, mem_flags); 623 else if (size <= SMALL_STREAM_ARRAY_SIZE) 624 return dma_pool_alloc(xhci->small_streams_pool, 625 mem_flags, dma); 626 else 627 return dma_pool_alloc(xhci->medium_streams_pool, 628 mem_flags, dma); 629 } 630 631 struct xhci_ring *xhci_dma_to_transfer_ring( 632 struct xhci_virt_ep *ep, 633 u64 address) 634 { 635 if (ep->ep_state & EP_HAS_STREAMS) 636 return radix_tree_lookup(&ep->stream_info->trb_address_map, 637 address >> TRB_SEGMENT_SHIFT); 638 return ep->ring; 639 } 640 641 struct xhci_ring *xhci_stream_id_to_ring( 642 struct xhci_virt_device *dev, 643 unsigned int ep_index, 644 unsigned int stream_id) 645 { 646 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 647 648 if (stream_id == 0) 649 return ep->ring; 650 if (!ep->stream_info) 651 return NULL; 652 653 if (stream_id > ep->stream_info->num_streams) 654 return NULL; 655 return ep->stream_info->stream_rings[stream_id]; 656 } 657 658 /* 659 * Change an endpoint's internal structure so it supports stream IDs. The 660 * number of requested streams includes stream 0, which cannot be used by device 661 * drivers. 662 * 663 * The number of stream contexts in the stream context array may be bigger than 664 * the number of streams the driver wants to use. This is because the number of 665 * stream context array entries must be a power of two. 666 */ 667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 668 unsigned int num_stream_ctxs, 669 unsigned int num_streams, 670 unsigned int max_packet, gfp_t mem_flags) 671 { 672 struct xhci_stream_info *stream_info; 673 u32 cur_stream; 674 struct xhci_ring *cur_ring; 675 u64 addr; 676 int ret; 677 678 xhci_dbg(xhci, "Allocating %u streams and %u " 679 "stream context array entries.\n", 680 num_streams, num_stream_ctxs); 681 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 682 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 683 return NULL; 684 } 685 xhci->cmd_ring_reserved_trbs++; 686 687 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 688 if (!stream_info) 689 goto cleanup_trbs; 690 691 stream_info->num_streams = num_streams; 692 stream_info->num_stream_ctxs = num_stream_ctxs; 693 694 /* Initialize the array of virtual pointers to stream rings. */ 695 stream_info->stream_rings = kzalloc( 696 sizeof(struct xhci_ring *)*num_streams, 697 mem_flags); 698 if (!stream_info->stream_rings) 699 goto cleanup_info; 700 701 /* Initialize the array of DMA addresses for stream rings for the HW. */ 702 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 703 num_stream_ctxs, &stream_info->ctx_array_dma, 704 mem_flags); 705 if (!stream_info->stream_ctx_array) 706 goto cleanup_ctx; 707 memset(stream_info->stream_ctx_array, 0, 708 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 709 710 /* Allocate everything needed to free the stream rings later */ 711 stream_info->free_streams_command = 712 xhci_alloc_command(xhci, true, true, mem_flags); 713 if (!stream_info->free_streams_command) 714 goto cleanup_ctx; 715 716 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 717 718 /* Allocate rings for all the streams that the driver will use, 719 * and add their segment DMA addresses to the radix tree. 720 * Stream 0 is reserved. 721 */ 722 723 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 724 stream_info->stream_rings[cur_stream] = 725 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 726 mem_flags); 727 cur_ring = stream_info->stream_rings[cur_stream]; 728 if (!cur_ring) 729 goto cleanup_rings; 730 cur_ring->stream_id = cur_stream; 731 cur_ring->trb_address_map = &stream_info->trb_address_map; 732 /* Set deq ptr, cycle bit, and stream context type */ 733 addr = cur_ring->first_seg->dma | 734 SCT_FOR_CTX(SCT_PRI_TR) | 735 cur_ring->cycle_state; 736 stream_info->stream_ctx_array[cur_stream].stream_ring = 737 cpu_to_le64(addr); 738 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 739 cur_stream, (unsigned long long) addr); 740 741 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 742 if (ret) { 743 xhci_ring_free(xhci, cur_ring); 744 stream_info->stream_rings[cur_stream] = NULL; 745 goto cleanup_rings; 746 } 747 } 748 /* Leave the other unused stream ring pointers in the stream context 749 * array initialized to zero. This will cause the xHC to give us an 750 * error if the device asks for a stream ID we don't have setup (if it 751 * was any other way, the host controller would assume the ring is 752 * "empty" and wait forever for data to be queued to that stream ID). 753 */ 754 755 return stream_info; 756 757 cleanup_rings: 758 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 759 cur_ring = stream_info->stream_rings[cur_stream]; 760 if (cur_ring) { 761 xhci_ring_free(xhci, cur_ring); 762 stream_info->stream_rings[cur_stream] = NULL; 763 } 764 } 765 xhci_free_command(xhci, stream_info->free_streams_command); 766 cleanup_ctx: 767 kfree(stream_info->stream_rings); 768 cleanup_info: 769 kfree(stream_info); 770 cleanup_trbs: 771 xhci->cmd_ring_reserved_trbs--; 772 return NULL; 773 } 774 /* 775 * Sets the MaxPStreams field and the Linear Stream Array field. 776 * Sets the dequeue pointer to the stream context array. 777 */ 778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 779 struct xhci_ep_ctx *ep_ctx, 780 struct xhci_stream_info *stream_info) 781 { 782 u32 max_primary_streams; 783 /* MaxPStreams is the number of stream context array entries, not the 784 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 785 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 786 */ 787 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 788 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 789 "Setting number of stream ctx array entries to %u", 790 1 << (max_primary_streams + 1)); 791 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 792 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 793 | EP_HAS_LSA); 794 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 795 } 796 797 /* 798 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 799 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 800 * not at the beginning of the ring). 801 */ 802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 803 struct xhci_virt_ep *ep) 804 { 805 dma_addr_t addr; 806 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 807 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 808 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 809 } 810 811 /* Frees all stream contexts associated with the endpoint, 812 * 813 * Caller should fix the endpoint context streams fields. 814 */ 815 void xhci_free_stream_info(struct xhci_hcd *xhci, 816 struct xhci_stream_info *stream_info) 817 { 818 int cur_stream; 819 struct xhci_ring *cur_ring; 820 821 if (!stream_info) 822 return; 823 824 for (cur_stream = 1; cur_stream < stream_info->num_streams; 825 cur_stream++) { 826 cur_ring = stream_info->stream_rings[cur_stream]; 827 if (cur_ring) { 828 xhci_ring_free(xhci, cur_ring); 829 stream_info->stream_rings[cur_stream] = NULL; 830 } 831 } 832 xhci_free_command(xhci, stream_info->free_streams_command); 833 xhci->cmd_ring_reserved_trbs--; 834 if (stream_info->stream_ctx_array) 835 xhci_free_stream_ctx(xhci, 836 stream_info->num_stream_ctxs, 837 stream_info->stream_ctx_array, 838 stream_info->ctx_array_dma); 839 840 kfree(stream_info->stream_rings); 841 kfree(stream_info); 842 } 843 844 845 /***************** Device context manipulation *************************/ 846 847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 848 struct xhci_virt_ep *ep) 849 { 850 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 851 (unsigned long)ep); 852 ep->xhci = xhci; 853 } 854 855 static void xhci_free_tt_info(struct xhci_hcd *xhci, 856 struct xhci_virt_device *virt_dev, 857 int slot_id) 858 { 859 struct list_head *tt_list_head; 860 struct xhci_tt_bw_info *tt_info, *next; 861 bool slot_found = false; 862 863 /* If the device never made it past the Set Address stage, 864 * it may not have the real_port set correctly. 865 */ 866 if (virt_dev->real_port == 0 || 867 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 868 xhci_dbg(xhci, "Bad real port.\n"); 869 return; 870 } 871 872 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 873 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 874 /* Multi-TT hubs will have more than one entry */ 875 if (tt_info->slot_id == slot_id) { 876 slot_found = true; 877 list_del(&tt_info->tt_list); 878 kfree(tt_info); 879 } else if (slot_found) { 880 break; 881 } 882 } 883 } 884 885 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 886 struct xhci_virt_device *virt_dev, 887 struct usb_device *hdev, 888 struct usb_tt *tt, gfp_t mem_flags) 889 { 890 struct xhci_tt_bw_info *tt_info; 891 unsigned int num_ports; 892 int i, j; 893 894 if (!tt->multi) 895 num_ports = 1; 896 else 897 num_ports = hdev->maxchild; 898 899 for (i = 0; i < num_ports; i++, tt_info++) { 900 struct xhci_interval_bw_table *bw_table; 901 902 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 903 if (!tt_info) 904 goto free_tts; 905 INIT_LIST_HEAD(&tt_info->tt_list); 906 list_add(&tt_info->tt_list, 907 &xhci->rh_bw[virt_dev->real_port - 1].tts); 908 tt_info->slot_id = virt_dev->udev->slot_id; 909 if (tt->multi) 910 tt_info->ttport = i+1; 911 bw_table = &tt_info->bw_table; 912 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 913 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 914 } 915 return 0; 916 917 free_tts: 918 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 919 return -ENOMEM; 920 } 921 922 923 /* All the xhci_tds in the ring's TD list should be freed at this point. 924 * Should be called with xhci->lock held if there is any chance the TT lists 925 * will be manipulated by the configure endpoint, allocate device, or update 926 * hub functions while this function is removing the TT entries from the list. 927 */ 928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 929 { 930 struct xhci_virt_device *dev; 931 int i; 932 int old_active_eps = 0; 933 934 /* Slot ID 0 is reserved */ 935 if (slot_id == 0 || !xhci->devs[slot_id]) 936 return; 937 938 dev = xhci->devs[slot_id]; 939 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 940 if (!dev) 941 return; 942 943 if (dev->tt_info) 944 old_active_eps = dev->tt_info->active_eps; 945 946 for (i = 0; i < 31; ++i) { 947 if (dev->eps[i].ring) 948 xhci_ring_free(xhci, dev->eps[i].ring); 949 if (dev->eps[i].stream_info) 950 xhci_free_stream_info(xhci, 951 dev->eps[i].stream_info); 952 /* Endpoints on the TT/root port lists should have been removed 953 * when usb_disable_device() was called for the device. 954 * We can't drop them anyway, because the udev might have gone 955 * away by this point, and we can't tell what speed it was. 956 */ 957 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 958 xhci_warn(xhci, "Slot %u endpoint %u " 959 "not removed from BW list!\n", 960 slot_id, i); 961 } 962 /* If this is a hub, free the TT(s) from the TT list */ 963 xhci_free_tt_info(xhci, dev, slot_id); 964 /* If necessary, update the number of active TTs on this root port */ 965 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 966 967 if (dev->ring_cache) { 968 for (i = 0; i < dev->num_rings_cached; i++) 969 xhci_ring_free(xhci, dev->ring_cache[i]); 970 kfree(dev->ring_cache); 971 } 972 973 if (dev->in_ctx) 974 xhci_free_container_ctx(xhci, dev->in_ctx); 975 if (dev->out_ctx) 976 xhci_free_container_ctx(xhci, dev->out_ctx); 977 978 kfree(xhci->devs[slot_id]); 979 xhci->devs[slot_id] = NULL; 980 } 981 982 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 983 struct usb_device *udev, gfp_t flags) 984 { 985 struct xhci_virt_device *dev; 986 int i; 987 988 /* Slot ID 0 is reserved */ 989 if (slot_id == 0 || xhci->devs[slot_id]) { 990 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 991 return 0; 992 } 993 994 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 995 if (!xhci->devs[slot_id]) 996 return 0; 997 dev = xhci->devs[slot_id]; 998 999 /* Allocate the (output) device context that will be used in the HC. */ 1000 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 1001 if (!dev->out_ctx) 1002 goto fail; 1003 1004 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 1005 (unsigned long long)dev->out_ctx->dma); 1006 1007 /* Allocate the (input) device context for address device command */ 1008 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 1009 if (!dev->in_ctx) 1010 goto fail; 1011 1012 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 1013 (unsigned long long)dev->in_ctx->dma); 1014 1015 /* Initialize the cancellation list and watchdog timers for each ep */ 1016 for (i = 0; i < 31; i++) { 1017 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1018 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1019 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1020 } 1021 1022 /* Allocate endpoint 0 ring */ 1023 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1024 if (!dev->eps[0].ring) 1025 goto fail; 1026 1027 /* Allocate pointers to the ring cache */ 1028 dev->ring_cache = kzalloc( 1029 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 1030 flags); 1031 if (!dev->ring_cache) 1032 goto fail; 1033 dev->num_rings_cached = 0; 1034 1035 init_completion(&dev->cmd_completion); 1036 dev->udev = udev; 1037 1038 /* Point to output device context in dcbaa. */ 1039 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1040 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1041 slot_id, 1042 &xhci->dcbaa->dev_context_ptrs[slot_id], 1043 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1044 1045 return 1; 1046 fail: 1047 xhci_free_virt_device(xhci, slot_id); 1048 return 0; 1049 } 1050 1051 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1052 struct usb_device *udev) 1053 { 1054 struct xhci_virt_device *virt_dev; 1055 struct xhci_ep_ctx *ep0_ctx; 1056 struct xhci_ring *ep_ring; 1057 1058 virt_dev = xhci->devs[udev->slot_id]; 1059 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1060 ep_ring = virt_dev->eps[0].ring; 1061 /* 1062 * FIXME we don't keep track of the dequeue pointer very well after a 1063 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1064 * host to our enqueue pointer. This should only be called after a 1065 * configured device has reset, so all control transfers should have 1066 * been completed or cancelled before the reset. 1067 */ 1068 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1069 ep_ring->enqueue) 1070 | ep_ring->cycle_state); 1071 } 1072 1073 /* 1074 * The xHCI roothub may have ports of differing speeds in any order in the port 1075 * status registers. xhci->port_array provides an array of the port speed for 1076 * each offset into the port status registers. 1077 * 1078 * The xHCI hardware wants to know the roothub port number that the USB device 1079 * is attached to (or the roothub port its ancestor hub is attached to). All we 1080 * know is the index of that port under either the USB 2.0 or the USB 3.0 1081 * roothub, but that doesn't give us the real index into the HW port status 1082 * registers. Call xhci_find_raw_port_number() to get real index. 1083 */ 1084 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1085 struct usb_device *udev) 1086 { 1087 struct usb_device *top_dev; 1088 struct usb_hcd *hcd; 1089 1090 if (udev->speed >= USB_SPEED_SUPER) 1091 hcd = xhci->shared_hcd; 1092 else 1093 hcd = xhci->main_hcd; 1094 1095 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1096 top_dev = top_dev->parent) 1097 /* Found device below root hub */; 1098 1099 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1100 } 1101 1102 /* Setup an xHCI virtual device for a Set Address command */ 1103 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1104 { 1105 struct xhci_virt_device *dev; 1106 struct xhci_ep_ctx *ep0_ctx; 1107 struct xhci_slot_ctx *slot_ctx; 1108 u32 port_num; 1109 u32 max_packets; 1110 struct usb_device *top_dev; 1111 1112 dev = xhci->devs[udev->slot_id]; 1113 /* Slot ID 0 is reserved */ 1114 if (udev->slot_id == 0 || !dev) { 1115 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1116 udev->slot_id); 1117 return -EINVAL; 1118 } 1119 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1120 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1121 1122 /* 3) Only the control endpoint is valid - one endpoint context */ 1123 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1124 switch (udev->speed) { 1125 case USB_SPEED_SUPER_PLUS: 1126 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1127 max_packets = MAX_PACKET(512); 1128 break; 1129 case USB_SPEED_SUPER: 1130 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1131 max_packets = MAX_PACKET(512); 1132 break; 1133 case USB_SPEED_HIGH: 1134 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1135 max_packets = MAX_PACKET(64); 1136 break; 1137 /* USB core guesses at a 64-byte max packet first for FS devices */ 1138 case USB_SPEED_FULL: 1139 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1140 max_packets = MAX_PACKET(64); 1141 break; 1142 case USB_SPEED_LOW: 1143 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1144 max_packets = MAX_PACKET(8); 1145 break; 1146 case USB_SPEED_WIRELESS: 1147 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1148 return -EINVAL; 1149 break; 1150 default: 1151 /* Speed was set earlier, this shouldn't happen. */ 1152 return -EINVAL; 1153 } 1154 /* Find the root hub port this device is under */ 1155 port_num = xhci_find_real_port_number(xhci, udev); 1156 if (!port_num) 1157 return -EINVAL; 1158 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1159 /* Set the port number in the virtual_device to the faked port number */ 1160 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1161 top_dev = top_dev->parent) 1162 /* Found device below root hub */; 1163 dev->fake_port = top_dev->portnum; 1164 dev->real_port = port_num; 1165 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1166 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1167 1168 /* Find the right bandwidth table that this device will be a part of. 1169 * If this is a full speed device attached directly to a root port (or a 1170 * decendent of one), it counts as a primary bandwidth domain, not a 1171 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1172 * will never be created for the HS root hub. 1173 */ 1174 if (!udev->tt || !udev->tt->hub->parent) { 1175 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1176 } else { 1177 struct xhci_root_port_bw_info *rh_bw; 1178 struct xhci_tt_bw_info *tt_bw; 1179 1180 rh_bw = &xhci->rh_bw[port_num - 1]; 1181 /* Find the right TT. */ 1182 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1183 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1184 continue; 1185 1186 if (!dev->udev->tt->multi || 1187 (udev->tt->multi && 1188 tt_bw->ttport == dev->udev->ttport)) { 1189 dev->bw_table = &tt_bw->bw_table; 1190 dev->tt_info = tt_bw; 1191 break; 1192 } 1193 } 1194 if (!dev->tt_info) 1195 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1196 } 1197 1198 /* Is this a LS/FS device under an external HS hub? */ 1199 if (udev->tt && udev->tt->hub->parent) { 1200 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1201 (udev->ttport << 8)); 1202 if (udev->tt->multi) 1203 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1204 } 1205 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1206 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1207 1208 /* Step 4 - ring already allocated */ 1209 /* Step 5 */ 1210 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1211 1212 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1213 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1214 max_packets); 1215 1216 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1217 dev->eps[0].ring->cycle_state); 1218 1219 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1220 1221 return 0; 1222 } 1223 1224 /* 1225 * Convert interval expressed as 2^(bInterval - 1) == interval into 1226 * straight exponent value 2^n == interval. 1227 * 1228 */ 1229 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1230 struct usb_host_endpoint *ep) 1231 { 1232 unsigned int interval; 1233 1234 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1235 if (interval != ep->desc.bInterval - 1) 1236 dev_warn(&udev->dev, 1237 "ep %#x - rounding interval to %d %sframes\n", 1238 ep->desc.bEndpointAddress, 1239 1 << interval, 1240 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1241 1242 if (udev->speed == USB_SPEED_FULL) { 1243 /* 1244 * Full speed isoc endpoints specify interval in frames, 1245 * not microframes. We are using microframes everywhere, 1246 * so adjust accordingly. 1247 */ 1248 interval += 3; /* 1 frame = 2^3 uframes */ 1249 } 1250 1251 return interval; 1252 } 1253 1254 /* 1255 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1256 * microframes, rounded down to nearest power of 2. 1257 */ 1258 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1259 struct usb_host_endpoint *ep, unsigned int desc_interval, 1260 unsigned int min_exponent, unsigned int max_exponent) 1261 { 1262 unsigned int interval; 1263 1264 interval = fls(desc_interval) - 1; 1265 interval = clamp_val(interval, min_exponent, max_exponent); 1266 if ((1 << interval) != desc_interval) 1267 dev_dbg(&udev->dev, 1268 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1269 ep->desc.bEndpointAddress, 1270 1 << interval, 1271 desc_interval); 1272 1273 return interval; 1274 } 1275 1276 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1277 struct usb_host_endpoint *ep) 1278 { 1279 if (ep->desc.bInterval == 0) 1280 return 0; 1281 return xhci_microframes_to_exponent(udev, ep, 1282 ep->desc.bInterval, 0, 15); 1283 } 1284 1285 1286 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1287 struct usb_host_endpoint *ep) 1288 { 1289 return xhci_microframes_to_exponent(udev, ep, 1290 ep->desc.bInterval * 8, 3, 10); 1291 } 1292 1293 /* Return the polling or NAK interval. 1294 * 1295 * The polling interval is expressed in "microframes". If xHCI's Interval field 1296 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1297 * 1298 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1299 * is set to 0. 1300 */ 1301 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1302 struct usb_host_endpoint *ep) 1303 { 1304 unsigned int interval = 0; 1305 1306 switch (udev->speed) { 1307 case USB_SPEED_HIGH: 1308 /* Max NAK rate */ 1309 if (usb_endpoint_xfer_control(&ep->desc) || 1310 usb_endpoint_xfer_bulk(&ep->desc)) { 1311 interval = xhci_parse_microframe_interval(udev, ep); 1312 break; 1313 } 1314 /* Fall through - SS and HS isoc/int have same decoding */ 1315 1316 case USB_SPEED_SUPER_PLUS: 1317 case USB_SPEED_SUPER: 1318 if (usb_endpoint_xfer_int(&ep->desc) || 1319 usb_endpoint_xfer_isoc(&ep->desc)) { 1320 interval = xhci_parse_exponent_interval(udev, ep); 1321 } 1322 break; 1323 1324 case USB_SPEED_FULL: 1325 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1326 interval = xhci_parse_exponent_interval(udev, ep); 1327 break; 1328 } 1329 /* 1330 * Fall through for interrupt endpoint interval decoding 1331 * since it uses the same rules as low speed interrupt 1332 * endpoints. 1333 */ 1334 1335 case USB_SPEED_LOW: 1336 if (usb_endpoint_xfer_int(&ep->desc) || 1337 usb_endpoint_xfer_isoc(&ep->desc)) { 1338 1339 interval = xhci_parse_frame_interval(udev, ep); 1340 } 1341 break; 1342 1343 default: 1344 BUG(); 1345 } 1346 return interval; 1347 } 1348 1349 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1350 * High speed endpoint descriptors can define "the number of additional 1351 * transaction opportunities per microframe", but that goes in the Max Burst 1352 * endpoint context field. 1353 */ 1354 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1355 struct usb_host_endpoint *ep) 1356 { 1357 if (udev->speed < USB_SPEED_SUPER || 1358 !usb_endpoint_xfer_isoc(&ep->desc)) 1359 return 0; 1360 return ep->ss_ep_comp.bmAttributes; 1361 } 1362 1363 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1364 struct usb_host_endpoint *ep) 1365 { 1366 /* Super speed and Plus have max burst in ep companion desc */ 1367 if (udev->speed >= USB_SPEED_SUPER) 1368 return ep->ss_ep_comp.bMaxBurst; 1369 1370 if (udev->speed == USB_SPEED_HIGH && 1371 (usb_endpoint_xfer_isoc(&ep->desc) || 1372 usb_endpoint_xfer_int(&ep->desc))) 1373 return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; 1374 1375 return 0; 1376 } 1377 1378 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1379 { 1380 int in; 1381 1382 in = usb_endpoint_dir_in(&ep->desc); 1383 1384 if (usb_endpoint_xfer_control(&ep->desc)) 1385 return CTRL_EP; 1386 if (usb_endpoint_xfer_bulk(&ep->desc)) 1387 return in ? BULK_IN_EP : BULK_OUT_EP; 1388 if (usb_endpoint_xfer_isoc(&ep->desc)) 1389 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1390 if (usb_endpoint_xfer_int(&ep->desc)) 1391 return in ? INT_IN_EP : INT_OUT_EP; 1392 return 0; 1393 } 1394 1395 /* Return the maximum endpoint service interval time (ESIT) payload. 1396 * Basically, this is the maxpacket size, multiplied by the burst size 1397 * and mult size. 1398 */ 1399 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1400 struct usb_host_endpoint *ep) 1401 { 1402 int max_burst; 1403 int max_packet; 1404 1405 /* Only applies for interrupt or isochronous endpoints */ 1406 if (usb_endpoint_xfer_control(&ep->desc) || 1407 usb_endpoint_xfer_bulk(&ep->desc)) 1408 return 0; 1409 1410 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1411 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1412 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1413 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1414 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1415 else if (udev->speed >= USB_SPEED_SUPER) 1416 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1417 1418 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1419 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; 1420 /* A 0 in max burst means 1 transfer per ESIT */ 1421 return max_packet * (max_burst + 1); 1422 } 1423 1424 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1425 * Drivers will have to call usb_alloc_streams() to do that. 1426 */ 1427 int xhci_endpoint_init(struct xhci_hcd *xhci, 1428 struct xhci_virt_device *virt_dev, 1429 struct usb_device *udev, 1430 struct usb_host_endpoint *ep, 1431 gfp_t mem_flags) 1432 { 1433 unsigned int ep_index; 1434 struct xhci_ep_ctx *ep_ctx; 1435 struct xhci_ring *ep_ring; 1436 unsigned int max_packet; 1437 enum xhci_ring_type ring_type; 1438 u32 max_esit_payload; 1439 u32 endpoint_type; 1440 unsigned int max_burst; 1441 unsigned int interval; 1442 unsigned int mult; 1443 unsigned int avg_trb_len; 1444 unsigned int err_count = 0; 1445 1446 ep_index = xhci_get_endpoint_index(&ep->desc); 1447 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1448 1449 endpoint_type = xhci_get_endpoint_type(ep); 1450 if (!endpoint_type) 1451 return -EINVAL; 1452 1453 ring_type = usb_endpoint_type(&ep->desc); 1454 1455 /* 1456 * Get values to fill the endpoint context, mostly from ep descriptor. 1457 * The average TRB buffer lengt for bulk endpoints is unclear as we 1458 * have no clue on scatter gather list entry size. For Isoc and Int, 1459 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1460 */ 1461 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1462 interval = xhci_get_endpoint_interval(udev, ep); 1463 mult = xhci_get_endpoint_mult(udev, ep); 1464 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1465 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1466 avg_trb_len = max_esit_payload; 1467 1468 /* FIXME dig Mult and streams info out of ep companion desc */ 1469 1470 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1471 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1472 err_count = 3; 1473 /* Some devices get this wrong */ 1474 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH) 1475 max_packet = 512; 1476 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1477 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1478 avg_trb_len = 8; 1479 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1480 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1481 mult = 0; 1482 1483 /* Set up the endpoint ring */ 1484 virt_dev->eps[ep_index].new_ring = 1485 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1486 if (!virt_dev->eps[ep_index].new_ring) { 1487 /* Attempt to use the ring cache */ 1488 if (virt_dev->num_rings_cached == 0) 1489 return -ENOMEM; 1490 virt_dev->num_rings_cached--; 1491 virt_dev->eps[ep_index].new_ring = 1492 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1493 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1494 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1495 1, ring_type); 1496 } 1497 virt_dev->eps[ep_index].skip = false; 1498 ep_ring = virt_dev->eps[ep_index].new_ring; 1499 1500 /* Fill the endpoint context */ 1501 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1502 EP_INTERVAL(interval) | 1503 EP_MULT(mult)); 1504 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1505 MAX_PACKET(max_packet) | 1506 MAX_BURST(max_burst) | 1507 ERROR_COUNT(err_count)); 1508 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1509 ep_ring->cycle_state); 1510 1511 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1512 EP_AVG_TRB_LENGTH(avg_trb_len)); 1513 1514 /* FIXME Debug endpoint context */ 1515 return 0; 1516 } 1517 1518 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1519 struct xhci_virt_device *virt_dev, 1520 struct usb_host_endpoint *ep) 1521 { 1522 unsigned int ep_index; 1523 struct xhci_ep_ctx *ep_ctx; 1524 1525 ep_index = xhci_get_endpoint_index(&ep->desc); 1526 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1527 1528 ep_ctx->ep_info = 0; 1529 ep_ctx->ep_info2 = 0; 1530 ep_ctx->deq = 0; 1531 ep_ctx->tx_info = 0; 1532 /* Don't free the endpoint ring until the set interface or configuration 1533 * request succeeds. 1534 */ 1535 } 1536 1537 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1538 { 1539 bw_info->ep_interval = 0; 1540 bw_info->mult = 0; 1541 bw_info->num_packets = 0; 1542 bw_info->max_packet_size = 0; 1543 bw_info->type = 0; 1544 bw_info->max_esit_payload = 0; 1545 } 1546 1547 void xhci_update_bw_info(struct xhci_hcd *xhci, 1548 struct xhci_container_ctx *in_ctx, 1549 struct xhci_input_control_ctx *ctrl_ctx, 1550 struct xhci_virt_device *virt_dev) 1551 { 1552 struct xhci_bw_info *bw_info; 1553 struct xhci_ep_ctx *ep_ctx; 1554 unsigned int ep_type; 1555 int i; 1556 1557 for (i = 1; i < 31; ++i) { 1558 bw_info = &virt_dev->eps[i].bw_info; 1559 1560 /* We can't tell what endpoint type is being dropped, but 1561 * unconditionally clearing the bandwidth info for non-periodic 1562 * endpoints should be harmless because the info will never be 1563 * set in the first place. 1564 */ 1565 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1566 /* Dropped endpoint */ 1567 xhci_clear_endpoint_bw_info(bw_info); 1568 continue; 1569 } 1570 1571 if (EP_IS_ADDED(ctrl_ctx, i)) { 1572 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1573 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1574 1575 /* Ignore non-periodic endpoints */ 1576 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1577 ep_type != ISOC_IN_EP && 1578 ep_type != INT_IN_EP) 1579 continue; 1580 1581 /* Added or changed endpoint */ 1582 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1583 le32_to_cpu(ep_ctx->ep_info)); 1584 /* Number of packets and mult are zero-based in the 1585 * input context, but we want one-based for the 1586 * interval table. 1587 */ 1588 bw_info->mult = CTX_TO_EP_MULT( 1589 le32_to_cpu(ep_ctx->ep_info)) + 1; 1590 bw_info->num_packets = CTX_TO_MAX_BURST( 1591 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1592 bw_info->max_packet_size = MAX_PACKET_DECODED( 1593 le32_to_cpu(ep_ctx->ep_info2)); 1594 bw_info->type = ep_type; 1595 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1596 le32_to_cpu(ep_ctx->tx_info)); 1597 } 1598 } 1599 } 1600 1601 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1602 * Useful when you want to change one particular aspect of the endpoint and then 1603 * issue a configure endpoint command. 1604 */ 1605 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1606 struct xhci_container_ctx *in_ctx, 1607 struct xhci_container_ctx *out_ctx, 1608 unsigned int ep_index) 1609 { 1610 struct xhci_ep_ctx *out_ep_ctx; 1611 struct xhci_ep_ctx *in_ep_ctx; 1612 1613 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1614 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1615 1616 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1617 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1618 in_ep_ctx->deq = out_ep_ctx->deq; 1619 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1620 } 1621 1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1623 * Useful when you want to change one particular aspect of the endpoint and then 1624 * issue a configure endpoint command. Only the context entries field matters, 1625 * but we'll copy the whole thing anyway. 1626 */ 1627 void xhci_slot_copy(struct xhci_hcd *xhci, 1628 struct xhci_container_ctx *in_ctx, 1629 struct xhci_container_ctx *out_ctx) 1630 { 1631 struct xhci_slot_ctx *in_slot_ctx; 1632 struct xhci_slot_ctx *out_slot_ctx; 1633 1634 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1635 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1636 1637 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1638 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1639 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1640 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1641 } 1642 1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1644 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1645 { 1646 int i; 1647 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1648 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1649 1650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1651 "Allocating %d scratchpad buffers", num_sp); 1652 1653 if (!num_sp) 1654 return 0; 1655 1656 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1657 if (!xhci->scratchpad) 1658 goto fail_sp; 1659 1660 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1661 num_sp * sizeof(u64), 1662 &xhci->scratchpad->sp_dma, flags); 1663 if (!xhci->scratchpad->sp_array) 1664 goto fail_sp2; 1665 1666 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1667 if (!xhci->scratchpad->sp_buffers) 1668 goto fail_sp3; 1669 1670 xhci->scratchpad->sp_dma_buffers = 1671 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1672 1673 if (!xhci->scratchpad->sp_dma_buffers) 1674 goto fail_sp4; 1675 1676 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1677 for (i = 0; i < num_sp; i++) { 1678 dma_addr_t dma; 1679 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1680 flags); 1681 if (!buf) 1682 goto fail_sp5; 1683 1684 xhci->scratchpad->sp_array[i] = dma; 1685 xhci->scratchpad->sp_buffers[i] = buf; 1686 xhci->scratchpad->sp_dma_buffers[i] = dma; 1687 } 1688 1689 return 0; 1690 1691 fail_sp5: 1692 for (i = i - 1; i >= 0; i--) { 1693 dma_free_coherent(dev, xhci->page_size, 1694 xhci->scratchpad->sp_buffers[i], 1695 xhci->scratchpad->sp_dma_buffers[i]); 1696 } 1697 kfree(xhci->scratchpad->sp_dma_buffers); 1698 1699 fail_sp4: 1700 kfree(xhci->scratchpad->sp_buffers); 1701 1702 fail_sp3: 1703 dma_free_coherent(dev, num_sp * sizeof(u64), 1704 xhci->scratchpad->sp_array, 1705 xhci->scratchpad->sp_dma); 1706 1707 fail_sp2: 1708 kfree(xhci->scratchpad); 1709 xhci->scratchpad = NULL; 1710 1711 fail_sp: 1712 return -ENOMEM; 1713 } 1714 1715 static void scratchpad_free(struct xhci_hcd *xhci) 1716 { 1717 int num_sp; 1718 int i; 1719 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1720 1721 if (!xhci->scratchpad) 1722 return; 1723 1724 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1725 1726 for (i = 0; i < num_sp; i++) { 1727 dma_free_coherent(dev, xhci->page_size, 1728 xhci->scratchpad->sp_buffers[i], 1729 xhci->scratchpad->sp_dma_buffers[i]); 1730 } 1731 kfree(xhci->scratchpad->sp_dma_buffers); 1732 kfree(xhci->scratchpad->sp_buffers); 1733 dma_free_coherent(dev, num_sp * sizeof(u64), 1734 xhci->scratchpad->sp_array, 1735 xhci->scratchpad->sp_dma); 1736 kfree(xhci->scratchpad); 1737 xhci->scratchpad = NULL; 1738 } 1739 1740 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1741 bool allocate_in_ctx, bool allocate_completion, 1742 gfp_t mem_flags) 1743 { 1744 struct xhci_command *command; 1745 1746 command = kzalloc(sizeof(*command), mem_flags); 1747 if (!command) 1748 return NULL; 1749 1750 if (allocate_in_ctx) { 1751 command->in_ctx = 1752 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1753 mem_flags); 1754 if (!command->in_ctx) { 1755 kfree(command); 1756 return NULL; 1757 } 1758 } 1759 1760 if (allocate_completion) { 1761 command->completion = 1762 kzalloc(sizeof(struct completion), mem_flags); 1763 if (!command->completion) { 1764 xhci_free_container_ctx(xhci, command->in_ctx); 1765 kfree(command); 1766 return NULL; 1767 } 1768 init_completion(command->completion); 1769 } 1770 1771 command->status = 0; 1772 INIT_LIST_HEAD(&command->cmd_list); 1773 return command; 1774 } 1775 1776 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1777 { 1778 if (urb_priv) { 1779 kfree(urb_priv->td[0]); 1780 kfree(urb_priv); 1781 } 1782 } 1783 1784 void xhci_free_command(struct xhci_hcd *xhci, 1785 struct xhci_command *command) 1786 { 1787 xhci_free_container_ctx(xhci, 1788 command->in_ctx); 1789 kfree(command->completion); 1790 kfree(command); 1791 } 1792 1793 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1794 { 1795 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1796 int size; 1797 int i, j, num_ports; 1798 1799 del_timer_sync(&xhci->cmd_timer); 1800 1801 /* Free the Event Ring Segment Table and the actual Event Ring */ 1802 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1803 if (xhci->erst.entries) 1804 dma_free_coherent(dev, size, 1805 xhci->erst.entries, xhci->erst.erst_dma_addr); 1806 xhci->erst.entries = NULL; 1807 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); 1808 if (xhci->event_ring) 1809 xhci_ring_free(xhci, xhci->event_ring); 1810 xhci->event_ring = NULL; 1811 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1812 1813 if (xhci->lpm_command) 1814 xhci_free_command(xhci, xhci->lpm_command); 1815 xhci->lpm_command = NULL; 1816 if (xhci->cmd_ring) 1817 xhci_ring_free(xhci, xhci->cmd_ring); 1818 xhci->cmd_ring = NULL; 1819 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1820 xhci_cleanup_command_queue(xhci); 1821 1822 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1823 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1824 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1825 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1826 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1827 while (!list_empty(ep)) 1828 list_del_init(ep->next); 1829 } 1830 } 1831 1832 for (i = 1; i < MAX_HC_SLOTS; ++i) 1833 xhci_free_virt_device(xhci, i); 1834 1835 dma_pool_destroy(xhci->segment_pool); 1836 xhci->segment_pool = NULL; 1837 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1838 1839 dma_pool_destroy(xhci->device_pool); 1840 xhci->device_pool = NULL; 1841 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1842 1843 dma_pool_destroy(xhci->small_streams_pool); 1844 xhci->small_streams_pool = NULL; 1845 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1846 "Freed small stream array pool"); 1847 1848 dma_pool_destroy(xhci->medium_streams_pool); 1849 xhci->medium_streams_pool = NULL; 1850 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1851 "Freed medium stream array pool"); 1852 1853 if (xhci->dcbaa) 1854 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1855 xhci->dcbaa, xhci->dcbaa->dma); 1856 xhci->dcbaa = NULL; 1857 1858 scratchpad_free(xhci); 1859 1860 if (!xhci->rh_bw) 1861 goto no_bw; 1862 1863 for (i = 0; i < num_ports; i++) { 1864 struct xhci_tt_bw_info *tt, *n; 1865 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1866 list_del(&tt->tt_list); 1867 kfree(tt); 1868 } 1869 } 1870 1871 no_bw: 1872 xhci->cmd_ring_reserved_trbs = 0; 1873 xhci->num_usb2_ports = 0; 1874 xhci->num_usb3_ports = 0; 1875 xhci->num_active_eps = 0; 1876 kfree(xhci->usb2_ports); 1877 kfree(xhci->usb3_ports); 1878 kfree(xhci->port_array); 1879 kfree(xhci->rh_bw); 1880 kfree(xhci->ext_caps); 1881 1882 xhci->usb2_ports = NULL; 1883 xhci->usb3_ports = NULL; 1884 xhci->port_array = NULL; 1885 xhci->rh_bw = NULL; 1886 xhci->ext_caps = NULL; 1887 1888 xhci->page_size = 0; 1889 xhci->page_shift = 0; 1890 xhci->bus_state[0].bus_suspended = 0; 1891 xhci->bus_state[1].bus_suspended = 0; 1892 } 1893 1894 static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1895 struct xhci_segment *input_seg, 1896 union xhci_trb *start_trb, 1897 union xhci_trb *end_trb, 1898 dma_addr_t input_dma, 1899 struct xhci_segment *result_seg, 1900 char *test_name, int test_number) 1901 { 1902 unsigned long long start_dma; 1903 unsigned long long end_dma; 1904 struct xhci_segment *seg; 1905 1906 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1907 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1908 1909 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1910 if (seg != result_seg) { 1911 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1912 test_name, test_number); 1913 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1914 "input DMA 0x%llx\n", 1915 input_seg, 1916 (unsigned long long) input_dma); 1917 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1918 "ending TRB %p (0x%llx DMA)\n", 1919 start_trb, start_dma, 1920 end_trb, end_dma); 1921 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1922 result_seg, seg); 1923 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1924 true); 1925 return -1; 1926 } 1927 return 0; 1928 } 1929 1930 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1931 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1932 { 1933 struct { 1934 dma_addr_t input_dma; 1935 struct xhci_segment *result_seg; 1936 } simple_test_vector [] = { 1937 /* A zeroed DMA field should fail */ 1938 { 0, NULL }, 1939 /* One TRB before the ring start should fail */ 1940 { xhci->event_ring->first_seg->dma - 16, NULL }, 1941 /* One byte before the ring start should fail */ 1942 { xhci->event_ring->first_seg->dma - 1, NULL }, 1943 /* Starting TRB should succeed */ 1944 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1945 /* Ending TRB should succeed */ 1946 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1947 xhci->event_ring->first_seg }, 1948 /* One byte after the ring end should fail */ 1949 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1950 /* One TRB after the ring end should fail */ 1951 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1952 /* An address of all ones should fail */ 1953 { (dma_addr_t) (~0), NULL }, 1954 }; 1955 struct { 1956 struct xhci_segment *input_seg; 1957 union xhci_trb *start_trb; 1958 union xhci_trb *end_trb; 1959 dma_addr_t input_dma; 1960 struct xhci_segment *result_seg; 1961 } complex_test_vector [] = { 1962 /* Test feeding a valid DMA address from a different ring */ 1963 { .input_seg = xhci->event_ring->first_seg, 1964 .start_trb = xhci->event_ring->first_seg->trbs, 1965 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1966 .input_dma = xhci->cmd_ring->first_seg->dma, 1967 .result_seg = NULL, 1968 }, 1969 /* Test feeding a valid end TRB from a different ring */ 1970 { .input_seg = xhci->event_ring->first_seg, 1971 .start_trb = xhci->event_ring->first_seg->trbs, 1972 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1973 .input_dma = xhci->cmd_ring->first_seg->dma, 1974 .result_seg = NULL, 1975 }, 1976 /* Test feeding a valid start and end TRB from a different ring */ 1977 { .input_seg = xhci->event_ring->first_seg, 1978 .start_trb = xhci->cmd_ring->first_seg->trbs, 1979 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1980 .input_dma = xhci->cmd_ring->first_seg->dma, 1981 .result_seg = NULL, 1982 }, 1983 /* TRB in this ring, but after this TD */ 1984 { .input_seg = xhci->event_ring->first_seg, 1985 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1986 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1987 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1988 .result_seg = NULL, 1989 }, 1990 /* TRB in this ring, but before this TD */ 1991 { .input_seg = xhci->event_ring->first_seg, 1992 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1993 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1994 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1995 .result_seg = NULL, 1996 }, 1997 /* TRB in this ring, but after this wrapped TD */ 1998 { .input_seg = xhci->event_ring->first_seg, 1999 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2000 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2001 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2002 .result_seg = NULL, 2003 }, 2004 /* TRB in this ring, but before this wrapped TD */ 2005 { .input_seg = xhci->event_ring->first_seg, 2006 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2007 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2008 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2009 .result_seg = NULL, 2010 }, 2011 /* TRB not in this ring, and we have a wrapped TD */ 2012 { .input_seg = xhci->event_ring->first_seg, 2013 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2014 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2015 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2016 .result_seg = NULL, 2017 }, 2018 }; 2019 2020 unsigned int num_tests; 2021 int i, ret; 2022 2023 num_tests = ARRAY_SIZE(simple_test_vector); 2024 for (i = 0; i < num_tests; i++) { 2025 ret = xhci_test_trb_in_td(xhci, 2026 xhci->event_ring->first_seg, 2027 xhci->event_ring->first_seg->trbs, 2028 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2029 simple_test_vector[i].input_dma, 2030 simple_test_vector[i].result_seg, 2031 "Simple", i); 2032 if (ret < 0) 2033 return ret; 2034 } 2035 2036 num_tests = ARRAY_SIZE(complex_test_vector); 2037 for (i = 0; i < num_tests; i++) { 2038 ret = xhci_test_trb_in_td(xhci, 2039 complex_test_vector[i].input_seg, 2040 complex_test_vector[i].start_trb, 2041 complex_test_vector[i].end_trb, 2042 complex_test_vector[i].input_dma, 2043 complex_test_vector[i].result_seg, 2044 "Complex", i); 2045 if (ret < 0) 2046 return ret; 2047 } 2048 xhci_dbg(xhci, "TRB math tests passed.\n"); 2049 return 0; 2050 } 2051 2052 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2053 { 2054 u64 temp; 2055 dma_addr_t deq; 2056 2057 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2058 xhci->event_ring->dequeue); 2059 if (deq == 0 && !in_interrupt()) 2060 xhci_warn(xhci, "WARN something wrong with SW event ring " 2061 "dequeue ptr.\n"); 2062 /* Update HC event ring dequeue pointer */ 2063 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2064 temp &= ERST_PTR_MASK; 2065 /* Don't clear the EHB bit (which is RW1C) because 2066 * there might be more events to service. 2067 */ 2068 temp &= ~ERST_EHB; 2069 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2070 "// Write event ring dequeue pointer, " 2071 "preserving EHB bit"); 2072 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2073 &xhci->ir_set->erst_dequeue); 2074 } 2075 2076 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2077 __le32 __iomem *addr, int max_caps) 2078 { 2079 u32 temp, port_offset, port_count; 2080 int i; 2081 u8 major_revision; 2082 struct xhci_hub *rhub; 2083 2084 temp = readl(addr); 2085 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2086 2087 if (major_revision == 0x03) { 2088 rhub = &xhci->usb3_rhub; 2089 } else if (major_revision <= 0x02) { 2090 rhub = &xhci->usb2_rhub; 2091 } else { 2092 xhci_warn(xhci, "Ignoring unknown port speed, " 2093 "Ext Cap %p, revision = 0x%x\n", 2094 addr, major_revision); 2095 /* Ignoring port protocol we can't understand. FIXME */ 2096 return; 2097 } 2098 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 2099 rhub->min_rev = XHCI_EXT_PORT_MINOR(temp); 2100 2101 /* Port offset and count in the third dword, see section 7.2 */ 2102 temp = readl(addr + 2); 2103 port_offset = XHCI_EXT_PORT_OFF(temp); 2104 port_count = XHCI_EXT_PORT_COUNT(temp); 2105 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2106 "Ext Cap %p, port offset = %u, " 2107 "count = %u, revision = 0x%x", 2108 addr, port_offset, port_count, major_revision); 2109 /* Port count includes the current port offset */ 2110 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2111 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2112 return; 2113 2114 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp); 2115 if (rhub->psi_count) { 2116 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi), 2117 GFP_KERNEL); 2118 if (!rhub->psi) 2119 rhub->psi_count = 0; 2120 2121 rhub->psi_uid_count++; 2122 for (i = 0; i < rhub->psi_count; i++) { 2123 rhub->psi[i] = readl(addr + 4 + i); 2124 2125 /* count unique ID values, two consecutive entries can 2126 * have the same ID if link is assymetric 2127 */ 2128 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) != 2129 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1]))) 2130 rhub->psi_uid_count++; 2131 2132 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2133 XHCI_EXT_PORT_PSIV(rhub->psi[i]), 2134 XHCI_EXT_PORT_PSIE(rhub->psi[i]), 2135 XHCI_EXT_PORT_PLT(rhub->psi[i]), 2136 XHCI_EXT_PORT_PFD(rhub->psi[i]), 2137 XHCI_EXT_PORT_LP(rhub->psi[i]), 2138 XHCI_EXT_PORT_PSIM(rhub->psi[i])); 2139 } 2140 } 2141 /* cache usb2 port capabilities */ 2142 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2143 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2144 2145 /* Check the host's USB2 LPM capability */ 2146 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2147 (temp & XHCI_L1C)) { 2148 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2149 "xHCI 0.96: support USB2 software lpm"); 2150 xhci->sw_lpm_support = 1; 2151 } 2152 2153 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2154 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2155 "xHCI 1.0: support USB2 software lpm"); 2156 xhci->sw_lpm_support = 1; 2157 if (temp & XHCI_HLC) { 2158 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2159 "xHCI 1.0: support USB2 hardware lpm"); 2160 xhci->hw_lpm_support = 1; 2161 } 2162 } 2163 2164 port_offset--; 2165 for (i = port_offset; i < (port_offset + port_count); i++) { 2166 /* Duplicate entry. Ignore the port if the revisions differ. */ 2167 if (xhci->port_array[i] != 0) { 2168 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2169 " port %u\n", addr, i); 2170 xhci_warn(xhci, "Port was marked as USB %u, " 2171 "duplicated as USB %u\n", 2172 xhci->port_array[i], major_revision); 2173 /* Only adjust the roothub port counts if we haven't 2174 * found a similar duplicate. 2175 */ 2176 if (xhci->port_array[i] != major_revision && 2177 xhci->port_array[i] != DUPLICATE_ENTRY) { 2178 if (xhci->port_array[i] == 0x03) 2179 xhci->num_usb3_ports--; 2180 else 2181 xhci->num_usb2_ports--; 2182 xhci->port_array[i] = DUPLICATE_ENTRY; 2183 } 2184 /* FIXME: Should we disable the port? */ 2185 continue; 2186 } 2187 xhci->port_array[i] = major_revision; 2188 if (major_revision == 0x03) 2189 xhci->num_usb3_ports++; 2190 else 2191 xhci->num_usb2_ports++; 2192 } 2193 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2194 } 2195 2196 /* 2197 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2198 * specify what speeds each port is supposed to be. We can't count on the port 2199 * speed bits in the PORTSC register being correct until a device is connected, 2200 * but we need to set up the two fake roothubs with the correct number of USB 2201 * 3.0 and USB 2.0 ports at host controller initialization time. 2202 */ 2203 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2204 { 2205 void __iomem *base; 2206 u32 offset; 2207 unsigned int num_ports; 2208 int i, j, port_index; 2209 int cap_count = 0; 2210 u32 cap_start; 2211 2212 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2213 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2214 if (!xhci->port_array) 2215 return -ENOMEM; 2216 2217 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2218 if (!xhci->rh_bw) 2219 return -ENOMEM; 2220 for (i = 0; i < num_ports; i++) { 2221 struct xhci_interval_bw_table *bw_table; 2222 2223 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2224 bw_table = &xhci->rh_bw[i].bw_table; 2225 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2226 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2227 } 2228 base = &xhci->cap_regs->hc_capbase; 2229 2230 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2231 if (!cap_start) { 2232 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2233 return -ENODEV; 2234 } 2235 2236 offset = cap_start; 2237 /* count extended protocol capability entries for later caching */ 2238 while (offset) { 2239 cap_count++; 2240 offset = xhci_find_next_ext_cap(base, offset, 2241 XHCI_EXT_CAPS_PROTOCOL); 2242 } 2243 2244 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2245 if (!xhci->ext_caps) 2246 return -ENOMEM; 2247 2248 offset = cap_start; 2249 2250 while (offset) { 2251 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2252 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports) 2253 break; 2254 offset = xhci_find_next_ext_cap(base, offset, 2255 XHCI_EXT_CAPS_PROTOCOL); 2256 } 2257 2258 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2259 xhci_warn(xhci, "No ports on the roothubs?\n"); 2260 return -ENODEV; 2261 } 2262 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2263 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2264 xhci->num_usb2_ports, xhci->num_usb3_ports); 2265 2266 /* Place limits on the number of roothub ports so that the hub 2267 * descriptors aren't longer than the USB core will allocate. 2268 */ 2269 if (xhci->num_usb3_ports > 15) { 2270 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2271 "Limiting USB 3.0 roothub ports to 15."); 2272 xhci->num_usb3_ports = 15; 2273 } 2274 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2275 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2276 "Limiting USB 2.0 roothub ports to %u.", 2277 USB_MAXCHILDREN); 2278 xhci->num_usb2_ports = USB_MAXCHILDREN; 2279 } 2280 2281 /* 2282 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2283 * Not sure how the USB core will handle a hub with no ports... 2284 */ 2285 if (xhci->num_usb2_ports) { 2286 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2287 xhci->num_usb2_ports, flags); 2288 if (!xhci->usb2_ports) 2289 return -ENOMEM; 2290 2291 port_index = 0; 2292 for (i = 0; i < num_ports; i++) { 2293 if (xhci->port_array[i] == 0x03 || 2294 xhci->port_array[i] == 0 || 2295 xhci->port_array[i] == DUPLICATE_ENTRY) 2296 continue; 2297 2298 xhci->usb2_ports[port_index] = 2299 &xhci->op_regs->port_status_base + 2300 NUM_PORT_REGS*i; 2301 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2302 "USB 2.0 port at index %u, " 2303 "addr = %p", i, 2304 xhci->usb2_ports[port_index]); 2305 port_index++; 2306 if (port_index == xhci->num_usb2_ports) 2307 break; 2308 } 2309 } 2310 if (xhci->num_usb3_ports) { 2311 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2312 xhci->num_usb3_ports, flags); 2313 if (!xhci->usb3_ports) 2314 return -ENOMEM; 2315 2316 port_index = 0; 2317 for (i = 0; i < num_ports; i++) 2318 if (xhci->port_array[i] == 0x03) { 2319 xhci->usb3_ports[port_index] = 2320 &xhci->op_regs->port_status_base + 2321 NUM_PORT_REGS*i; 2322 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2323 "USB 3.0 port at index %u, " 2324 "addr = %p", i, 2325 xhci->usb3_ports[port_index]); 2326 port_index++; 2327 if (port_index == xhci->num_usb3_ports) 2328 break; 2329 } 2330 } 2331 return 0; 2332 } 2333 2334 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2335 { 2336 dma_addr_t dma; 2337 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2338 unsigned int val, val2; 2339 u64 val_64; 2340 struct xhci_segment *seg; 2341 u32 page_size, temp; 2342 int i; 2343 2344 INIT_LIST_HEAD(&xhci->cmd_list); 2345 2346 /* init command timeout timer */ 2347 setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout, 2348 (unsigned long)xhci); 2349 2350 page_size = readl(&xhci->op_regs->page_size); 2351 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2352 "Supported page size register = 0x%x", page_size); 2353 for (i = 0; i < 16; i++) { 2354 if ((0x1 & page_size) != 0) 2355 break; 2356 page_size = page_size >> 1; 2357 } 2358 if (i < 16) 2359 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2360 "Supported page size of %iK", (1 << (i+12)) / 1024); 2361 else 2362 xhci_warn(xhci, "WARN: no supported page size\n"); 2363 /* Use 4K pages, since that's common and the minimum the HC supports */ 2364 xhci->page_shift = 12; 2365 xhci->page_size = 1 << xhci->page_shift; 2366 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2367 "HCD page size set to %iK", xhci->page_size / 1024); 2368 2369 /* 2370 * Program the Number of Device Slots Enabled field in the CONFIG 2371 * register with the max value of slots the HC can handle. 2372 */ 2373 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2374 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2375 "// xHC can handle at most %d device slots.", val); 2376 val2 = readl(&xhci->op_regs->config_reg); 2377 val |= (val2 & ~HCS_SLOTS_MASK); 2378 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2379 "// Setting Max device slots reg = 0x%x.", val); 2380 writel(val, &xhci->op_regs->config_reg); 2381 2382 /* 2383 * Section 5.4.8 - doorbell array must be 2384 * "physically contiguous and 64-byte (cache line) aligned". 2385 */ 2386 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2387 GFP_KERNEL); 2388 if (!xhci->dcbaa) 2389 goto fail; 2390 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2391 xhci->dcbaa->dma = dma; 2392 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2393 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2394 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2395 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2396 2397 /* 2398 * Initialize the ring segment pool. The ring must be a contiguous 2399 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2400 * however, the command ring segment needs 64-byte aligned segments 2401 * and our use of dma addresses in the trb_address_map radix tree needs 2402 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2403 */ 2404 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2405 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2406 2407 /* See Table 46 and Note on Figure 55 */ 2408 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2409 2112, 64, xhci->page_size); 2410 if (!xhci->segment_pool || !xhci->device_pool) 2411 goto fail; 2412 2413 /* Linear stream context arrays don't have any boundary restrictions, 2414 * and only need to be 16-byte aligned. 2415 */ 2416 xhci->small_streams_pool = 2417 dma_pool_create("xHCI 256 byte stream ctx arrays", 2418 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2419 xhci->medium_streams_pool = 2420 dma_pool_create("xHCI 1KB stream ctx arrays", 2421 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2422 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2423 * will be allocated with dma_alloc_coherent() 2424 */ 2425 2426 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2427 goto fail; 2428 2429 /* Set up the command ring to have one segments for now. */ 2430 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2431 if (!xhci->cmd_ring) 2432 goto fail; 2433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2434 "Allocated command ring at %p", xhci->cmd_ring); 2435 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2436 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2437 2438 /* Set the address in the Command Ring Control register */ 2439 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2440 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2441 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2442 xhci->cmd_ring->cycle_state; 2443 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2444 "// Setting command ring address to 0x%x", val); 2445 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2446 xhci_dbg_cmd_ptrs(xhci); 2447 2448 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2449 if (!xhci->lpm_command) 2450 goto fail; 2451 2452 /* Reserve one command ring TRB for disabling LPM. 2453 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2454 * disabling LPM, we only need to reserve one TRB for all devices. 2455 */ 2456 xhci->cmd_ring_reserved_trbs++; 2457 2458 val = readl(&xhci->cap_regs->db_off); 2459 val &= DBOFF_MASK; 2460 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2461 "// Doorbell array is located at offset 0x%x" 2462 " from cap regs base addr", val); 2463 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2464 xhci_dbg_regs(xhci); 2465 xhci_print_run_regs(xhci); 2466 /* Set ir_set to interrupt register set 0 */ 2467 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2468 2469 /* 2470 * Event ring setup: Allocate a normal ring, but also setup 2471 * the event ring segment table (ERST). Section 4.9.3. 2472 */ 2473 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2474 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2475 0, flags); 2476 if (!xhci->event_ring) 2477 goto fail; 2478 if (xhci_check_trb_in_td_math(xhci) < 0) 2479 goto fail; 2480 2481 xhci->erst.entries = dma_alloc_coherent(dev, 2482 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2483 GFP_KERNEL); 2484 if (!xhci->erst.entries) 2485 goto fail; 2486 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2487 "// Allocated event ring segment table at 0x%llx", 2488 (unsigned long long)dma); 2489 2490 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2491 xhci->erst.num_entries = ERST_NUM_SEGS; 2492 xhci->erst.erst_dma_addr = dma; 2493 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2494 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", 2495 xhci->erst.num_entries, 2496 xhci->erst.entries, 2497 (unsigned long long)xhci->erst.erst_dma_addr); 2498 2499 /* set ring base address and size for each segment table entry */ 2500 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2501 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2502 entry->seg_addr = cpu_to_le64(seg->dma); 2503 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2504 entry->rsvd = 0; 2505 seg = seg->next; 2506 } 2507 2508 /* set ERST count with the number of entries in the segment table */ 2509 val = readl(&xhci->ir_set->erst_size); 2510 val &= ERST_SIZE_MASK; 2511 val |= ERST_NUM_SEGS; 2512 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2513 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2514 val); 2515 writel(val, &xhci->ir_set->erst_size); 2516 2517 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2518 "// Set ERST entries to point to event ring."); 2519 /* set the segment table base address */ 2520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2521 "// Set ERST base address for ir_set 0 = 0x%llx", 2522 (unsigned long long)xhci->erst.erst_dma_addr); 2523 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2524 val_64 &= ERST_PTR_MASK; 2525 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2526 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2527 2528 /* Set the event ring dequeue address */ 2529 xhci_set_hc_event_deq(xhci); 2530 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2531 "Wrote ERST address to ir_set 0."); 2532 xhci_print_ir_set(xhci, 0); 2533 2534 /* 2535 * XXX: Might need to set the Interrupter Moderation Register to 2536 * something other than the default (~1ms minimum between interrupts). 2537 * See section 5.5.1.2. 2538 */ 2539 init_completion(&xhci->addr_dev); 2540 for (i = 0; i < MAX_HC_SLOTS; ++i) 2541 xhci->devs[i] = NULL; 2542 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2543 xhci->bus_state[0].resume_done[i] = 0; 2544 xhci->bus_state[1].resume_done[i] = 0; 2545 /* Only the USB 2.0 completions will ever be used. */ 2546 init_completion(&xhci->bus_state[1].rexit_done[i]); 2547 } 2548 2549 if (scratchpad_alloc(xhci, flags)) 2550 goto fail; 2551 if (xhci_setup_port_arrays(xhci, flags)) 2552 goto fail; 2553 2554 /* Enable USB 3.0 device notifications for function remote wake, which 2555 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2556 * U3 (device suspend). 2557 */ 2558 temp = readl(&xhci->op_regs->dev_notification); 2559 temp &= ~DEV_NOTE_MASK; 2560 temp |= DEV_NOTE_FWAKE; 2561 writel(temp, &xhci->op_regs->dev_notification); 2562 2563 return 0; 2564 2565 fail: 2566 xhci_warn(xhci, "Couldn't initialize memory\n"); 2567 xhci_halt(xhci); 2568 xhci_reset(xhci); 2569 xhci_mem_cleanup(xhci); 2570 return -ENOMEM; 2571 } 2572