xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision 293d5b43)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					       unsigned int cycle_state,
41 					       unsigned int max_packet,
42 					       gfp_t flags)
43 {
44 	struct xhci_segment *seg;
45 	dma_addr_t	dma;
46 	int		i;
47 
48 	seg = kzalloc(sizeof *seg, flags);
49 	if (!seg)
50 		return NULL;
51 
52 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 	if (!seg->trbs) {
54 		kfree(seg);
55 		return NULL;
56 	}
57 
58 	if (max_packet) {
59 		seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
60 		if (!seg->bounce_buf) {
61 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62 			kfree(seg);
63 			return NULL;
64 		}
65 	}
66 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 	if (cycle_state == 0) {
68 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
69 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70 	}
71 	seg->dma = dma;
72 	seg->next = NULL;
73 
74 	return seg;
75 }
76 
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79 	if (seg->trbs) {
80 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81 		seg->trbs = NULL;
82 	}
83 	kfree(seg->bounce_buf);
84 	kfree(seg);
85 }
86 
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88 				struct xhci_segment *first)
89 {
90 	struct xhci_segment *seg;
91 
92 	seg = first->next;
93 	while (seg != first) {
94 		struct xhci_segment *next = seg->next;
95 		xhci_segment_free(xhci, seg);
96 		seg = next;
97 	}
98 	xhci_segment_free(xhci, first);
99 }
100 
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109 		struct xhci_segment *next, enum xhci_ring_type type)
110 {
111 	u32 val;
112 
113 	if (!prev || !next)
114 		return;
115 	prev->next = next;
116 	if (type != TYPE_EVENT) {
117 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118 			cpu_to_le64(next->dma);
119 
120 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 		val &= ~TRB_TYPE_BITMASK;
123 		val |= TRB_TYPE(TRB_LINK);
124 		/* Always set the chain bit with 0.95 hardware */
125 		/* Set chain bit for isoc rings on AMD 0.96 host */
126 		if (xhci_link_trb_quirk(xhci) ||
127 				(type == TYPE_ISOC &&
128 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129 			val |= TRB_CHAIN;
130 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131 	}
132 }
133 
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139 		struct xhci_segment *first, struct xhci_segment *last,
140 		unsigned int num_segs)
141 {
142 	struct xhci_segment *next;
143 
144 	if (!ring || !first || !last)
145 		return;
146 
147 	next = ring->enq_seg->next;
148 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149 	xhci_link_segments(xhci, last, next, ring->type);
150 	ring->num_segs += num_segs;
151 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152 
153 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155 			&= ~cpu_to_le32(LINK_TOGGLE);
156 		last->trbs[TRBS_PER_SEGMENT-1].link.control
157 			|= cpu_to_le32(LINK_TOGGLE);
158 		ring->last_seg = last;
159 	}
160 }
161 
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *	0x10c90fff >> 10 = 0x43243
177  *	0x10c912c0 >> 10 = 0x43244
178  *	0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194 		struct xhci_ring *ring,
195 		struct xhci_segment *seg,
196 		gfp_t mem_flags)
197 {
198 	unsigned long key;
199 	int ret;
200 
201 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202 	/* Skip any segments that were already added. */
203 	if (radix_tree_lookup(trb_address_map, key))
204 		return 0;
205 
206 	ret = radix_tree_maybe_preload(mem_flags);
207 	if (ret)
208 		return ret;
209 	ret = radix_tree_insert(trb_address_map,
210 			key, ring);
211 	radix_tree_preload_end();
212 	return ret;
213 }
214 
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216 		struct xhci_segment *seg)
217 {
218 	unsigned long key;
219 
220 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221 	if (radix_tree_lookup(trb_address_map, key))
222 		radix_tree_delete(trb_address_map, key);
223 }
224 
225 static int xhci_update_stream_segment_mapping(
226 		struct radix_tree_root *trb_address_map,
227 		struct xhci_ring *ring,
228 		struct xhci_segment *first_seg,
229 		struct xhci_segment *last_seg,
230 		gfp_t mem_flags)
231 {
232 	struct xhci_segment *seg;
233 	struct xhci_segment *failed_seg;
234 	int ret;
235 
236 	if (WARN_ON_ONCE(trb_address_map == NULL))
237 		return 0;
238 
239 	seg = first_seg;
240 	do {
241 		ret = xhci_insert_segment_mapping(trb_address_map,
242 				ring, seg, mem_flags);
243 		if (ret)
244 			goto remove_streams;
245 		if (seg == last_seg)
246 			return 0;
247 		seg = seg->next;
248 	} while (seg != first_seg);
249 
250 	return 0;
251 
252 remove_streams:
253 	failed_seg = seg;
254 	seg = first_seg;
255 	do {
256 		xhci_remove_segment_mapping(trb_address_map, seg);
257 		if (seg == failed_seg)
258 			return ret;
259 		seg = seg->next;
260 	} while (seg != first_seg);
261 
262 	return ret;
263 }
264 
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267 	struct xhci_segment *seg;
268 
269 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270 		return;
271 
272 	seg = ring->first_seg;
273 	do {
274 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
275 		seg = seg->next;
276 	} while (seg != ring->first_seg);
277 }
278 
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282 			ring->first_seg, ring->last_seg, mem_flags);
283 }
284 
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288 	if (!ring)
289 		return;
290 
291 	if (ring->first_seg) {
292 		if (ring->type == TYPE_STREAM)
293 			xhci_remove_stream_mapping(ring);
294 		xhci_free_segments_for_ring(xhci, ring->first_seg);
295 	}
296 
297 	kfree(ring);
298 }
299 
300 static void xhci_initialize_ring_info(struct xhci_ring *ring,
301 					unsigned int cycle_state)
302 {
303 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
304 	ring->enqueue = ring->first_seg->trbs;
305 	ring->enq_seg = ring->first_seg;
306 	ring->dequeue = ring->enqueue;
307 	ring->deq_seg = ring->first_seg;
308 	/* The ring is initialized to 0. The producer must write 1 to the cycle
309 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
310 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
311 	 *
312 	 * New rings are initialized with cycle state equal to 1; if we are
313 	 * handling ring expansion, set the cycle state equal to the old ring.
314 	 */
315 	ring->cycle_state = cycle_state;
316 	/* Not necessary for new rings, but needed for re-initialized rings */
317 	ring->enq_updates = 0;
318 	ring->deq_updates = 0;
319 
320 	/*
321 	 * Each segment has a link TRB, and leave an extra TRB for SW
322 	 * accounting purpose
323 	 */
324 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326 
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329 		struct xhci_segment **first, struct xhci_segment **last,
330 		unsigned int num_segs, unsigned int cycle_state,
331 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 {
333 	struct xhci_segment *prev;
334 
335 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 	if (!prev)
337 		return -ENOMEM;
338 	num_segs--;
339 
340 	*first = prev;
341 	while (num_segs > 0) {
342 		struct xhci_segment	*next;
343 
344 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345 		if (!next) {
346 			prev = *first;
347 			while (prev) {
348 				next = prev->next;
349 				xhci_segment_free(xhci, prev);
350 				prev = next;
351 			}
352 			return -ENOMEM;
353 		}
354 		xhci_link_segments(xhci, prev, next, type);
355 
356 		prev = next;
357 		num_segs--;
358 	}
359 	xhci_link_segments(xhci, prev, *first, type);
360 	*last = prev;
361 
362 	return 0;
363 }
364 
365 /**
366  * Create a new ring with zero or more segments.
367  *
368  * Link each segment together into a ring.
369  * Set the end flag and the cycle toggle bit on the last segment.
370  * See section 4.9.1 and figures 15 and 16.
371  */
372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373 		unsigned int num_segs, unsigned int cycle_state,
374 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 {
376 	struct xhci_ring	*ring;
377 	int ret;
378 
379 	ring = kzalloc(sizeof *(ring), flags);
380 	if (!ring)
381 		return NULL;
382 
383 	ring->num_segs = num_segs;
384 	ring->bounce_buf_len = max_packet;
385 	INIT_LIST_HEAD(&ring->td_list);
386 	ring->type = type;
387 	if (num_segs == 0)
388 		return ring;
389 
390 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 			&ring->last_seg, num_segs, cycle_state, type,
392 			max_packet, flags);
393 	if (ret)
394 		goto fail;
395 
396 	/* Only event ring does not use link TRB */
397 	if (type != TYPE_EVENT) {
398 		/* See section 4.9.2.1 and 6.4.4.1 */
399 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 			cpu_to_le32(LINK_TOGGLE);
401 	}
402 	xhci_initialize_ring_info(ring, cycle_state);
403 	return ring;
404 
405 fail:
406 	kfree(ring);
407 	return NULL;
408 }
409 
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411 		struct xhci_virt_device *virt_dev,
412 		unsigned int ep_index)
413 {
414 	int rings_cached;
415 
416 	rings_cached = virt_dev->num_rings_cached;
417 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418 		virt_dev->ring_cache[rings_cached] =
419 			virt_dev->eps[ep_index].ring;
420 		virt_dev->num_rings_cached++;
421 		xhci_dbg(xhci, "Cached old ring, "
422 				"%d ring%s cached\n",
423 				virt_dev->num_rings_cached,
424 				(virt_dev->num_rings_cached > 1) ? "s" : "");
425 	} else {
426 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427 		xhci_dbg(xhci, "Ring cache full (%d rings), "
428 				"freeing ring\n",
429 				virt_dev->num_rings_cached);
430 	}
431 	virt_dev->eps[ep_index].ring = NULL;
432 }
433 
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435  * pointers to the beginning of the ring.
436  */
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438 			struct xhci_ring *ring, unsigned int cycle_state,
439 			enum xhci_ring_type type)
440 {
441 	struct xhci_segment	*seg = ring->first_seg;
442 	int i;
443 
444 	do {
445 		memset(seg->trbs, 0,
446 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447 		if (cycle_state == 0) {
448 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
449 				seg->trbs[i].link.control |=
450 					cpu_to_le32(TRB_CYCLE);
451 		}
452 		/* All endpoint rings have link TRBs */
453 		xhci_link_segments(xhci, seg, seg->next, type);
454 		seg = seg->next;
455 	} while (seg != ring->first_seg);
456 	ring->type = type;
457 	xhci_initialize_ring_info(ring, cycle_state);
458 	/* td list should be empty since all URBs have been cancelled,
459 	 * but just in case...
460 	 */
461 	INIT_LIST_HEAD(&ring->td_list);
462 }
463 
464 /*
465  * Expand an existing ring.
466  * Look for a cached ring or allocate a new ring which has same segment numbers
467  * and link the two rings.
468  */
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470 				unsigned int num_trbs, gfp_t flags)
471 {
472 	struct xhci_segment	*first;
473 	struct xhci_segment	*last;
474 	unsigned int		num_segs;
475 	unsigned int		num_segs_needed;
476 	int			ret;
477 
478 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479 				(TRBS_PER_SEGMENT - 1);
480 
481 	/* Allocate number of segments we needed, or double the ring size */
482 	num_segs = ring->num_segs > num_segs_needed ?
483 			ring->num_segs : num_segs_needed;
484 
485 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486 			num_segs, ring->cycle_state, ring->type,
487 			ring->bounce_buf_len, flags);
488 	if (ret)
489 		return -ENOMEM;
490 
491 	if (ring->type == TYPE_STREAM)
492 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493 						ring, first, last, flags);
494 	if (ret) {
495 		struct xhci_segment *next;
496 		do {
497 			next = first->next;
498 			xhci_segment_free(xhci, first);
499 			if (first == last)
500 				break;
501 			first = next;
502 		} while (true);
503 		return ret;
504 	}
505 
506 	xhci_link_rings(xhci, ring, first, last, num_segs);
507 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
508 			"ring expansion succeed, now has %d segments",
509 			ring->num_segs);
510 
511 	return 0;
512 }
513 
514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
515 
516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517 						    int type, gfp_t flags)
518 {
519 	struct xhci_container_ctx *ctx;
520 
521 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
522 		return NULL;
523 
524 	ctx = kzalloc(sizeof(*ctx), flags);
525 	if (!ctx)
526 		return NULL;
527 
528 	ctx->type = type;
529 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
530 	if (type == XHCI_CTX_TYPE_INPUT)
531 		ctx->size += CTX_SIZE(xhci->hcc_params);
532 
533 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534 	if (!ctx->bytes) {
535 		kfree(ctx);
536 		return NULL;
537 	}
538 	return ctx;
539 }
540 
541 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542 			     struct xhci_container_ctx *ctx)
543 {
544 	if (!ctx)
545 		return;
546 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
547 	kfree(ctx);
548 }
549 
550 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551 					      struct xhci_container_ctx *ctx)
552 {
553 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
554 		return NULL;
555 
556 	return (struct xhci_input_control_ctx *)ctx->bytes;
557 }
558 
559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
560 					struct xhci_container_ctx *ctx)
561 {
562 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
563 		return (struct xhci_slot_ctx *)ctx->bytes;
564 
565 	return (struct xhci_slot_ctx *)
566 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
567 }
568 
569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
570 				    struct xhci_container_ctx *ctx,
571 				    unsigned int ep_index)
572 {
573 	/* increment ep index by offset of start of ep ctx array */
574 	ep_index++;
575 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
576 		ep_index++;
577 
578 	return (struct xhci_ep_ctx *)
579 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
580 }
581 
582 
583 /***************** Streams structures manipulation *************************/
584 
585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586 		unsigned int num_stream_ctxs,
587 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
588 {
589 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
590 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
591 
592 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
593 		dma_free_coherent(dev, size,
594 				stream_ctx, dma);
595 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
596 		return dma_pool_free(xhci->small_streams_pool,
597 				stream_ctx, dma);
598 	else
599 		return dma_pool_free(xhci->medium_streams_pool,
600 				stream_ctx, dma);
601 }
602 
603 /*
604  * The stream context array for each endpoint with bulk streams enabled can
605  * vary in size, based on:
606  *  - how many streams the endpoint supports,
607  *  - the maximum primary stream array size the host controller supports,
608  *  - and how many streams the device driver asks for.
609  *
610  * The stream context array must be a power of 2, and can be as small as
611  * 64 bytes or as large as 1MB.
612  */
613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614 		unsigned int num_stream_ctxs, dma_addr_t *dma,
615 		gfp_t mem_flags)
616 {
617 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
618 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
619 
620 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
621 		return dma_alloc_coherent(dev, size,
622 				dma, mem_flags);
623 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
624 		return dma_pool_alloc(xhci->small_streams_pool,
625 				mem_flags, dma);
626 	else
627 		return dma_pool_alloc(xhci->medium_streams_pool,
628 				mem_flags, dma);
629 }
630 
631 struct xhci_ring *xhci_dma_to_transfer_ring(
632 		struct xhci_virt_ep *ep,
633 		u64 address)
634 {
635 	if (ep->ep_state & EP_HAS_STREAMS)
636 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
637 				address >> TRB_SEGMENT_SHIFT);
638 	return ep->ring;
639 }
640 
641 struct xhci_ring *xhci_stream_id_to_ring(
642 		struct xhci_virt_device *dev,
643 		unsigned int ep_index,
644 		unsigned int stream_id)
645 {
646 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
647 
648 	if (stream_id == 0)
649 		return ep->ring;
650 	if (!ep->stream_info)
651 		return NULL;
652 
653 	if (stream_id > ep->stream_info->num_streams)
654 		return NULL;
655 	return ep->stream_info->stream_rings[stream_id];
656 }
657 
658 /*
659  * Change an endpoint's internal structure so it supports stream IDs.  The
660  * number of requested streams includes stream 0, which cannot be used by device
661  * drivers.
662  *
663  * The number of stream contexts in the stream context array may be bigger than
664  * the number of streams the driver wants to use.  This is because the number of
665  * stream context array entries must be a power of two.
666  */
667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
668 		unsigned int num_stream_ctxs,
669 		unsigned int num_streams,
670 		unsigned int max_packet, gfp_t mem_flags)
671 {
672 	struct xhci_stream_info *stream_info;
673 	u32 cur_stream;
674 	struct xhci_ring *cur_ring;
675 	u64 addr;
676 	int ret;
677 
678 	xhci_dbg(xhci, "Allocating %u streams and %u "
679 			"stream context array entries.\n",
680 			num_streams, num_stream_ctxs);
681 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
682 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
683 		return NULL;
684 	}
685 	xhci->cmd_ring_reserved_trbs++;
686 
687 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
688 	if (!stream_info)
689 		goto cleanup_trbs;
690 
691 	stream_info->num_streams = num_streams;
692 	stream_info->num_stream_ctxs = num_stream_ctxs;
693 
694 	/* Initialize the array of virtual pointers to stream rings. */
695 	stream_info->stream_rings = kzalloc(
696 			sizeof(struct xhci_ring *)*num_streams,
697 			mem_flags);
698 	if (!stream_info->stream_rings)
699 		goto cleanup_info;
700 
701 	/* Initialize the array of DMA addresses for stream rings for the HW. */
702 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
703 			num_stream_ctxs, &stream_info->ctx_array_dma,
704 			mem_flags);
705 	if (!stream_info->stream_ctx_array)
706 		goto cleanup_ctx;
707 	memset(stream_info->stream_ctx_array, 0,
708 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
709 
710 	/* Allocate everything needed to free the stream rings later */
711 	stream_info->free_streams_command =
712 		xhci_alloc_command(xhci, true, true, mem_flags);
713 	if (!stream_info->free_streams_command)
714 		goto cleanup_ctx;
715 
716 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
717 
718 	/* Allocate rings for all the streams that the driver will use,
719 	 * and add their segment DMA addresses to the radix tree.
720 	 * Stream 0 is reserved.
721 	 */
722 
723 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
724 		stream_info->stream_rings[cur_stream] =
725 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
726 					mem_flags);
727 		cur_ring = stream_info->stream_rings[cur_stream];
728 		if (!cur_ring)
729 			goto cleanup_rings;
730 		cur_ring->stream_id = cur_stream;
731 		cur_ring->trb_address_map = &stream_info->trb_address_map;
732 		/* Set deq ptr, cycle bit, and stream context type */
733 		addr = cur_ring->first_seg->dma |
734 			SCT_FOR_CTX(SCT_PRI_TR) |
735 			cur_ring->cycle_state;
736 		stream_info->stream_ctx_array[cur_stream].stream_ring =
737 			cpu_to_le64(addr);
738 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
739 				cur_stream, (unsigned long long) addr);
740 
741 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742 		if (ret) {
743 			xhci_ring_free(xhci, cur_ring);
744 			stream_info->stream_rings[cur_stream] = NULL;
745 			goto cleanup_rings;
746 		}
747 	}
748 	/* Leave the other unused stream ring pointers in the stream context
749 	 * array initialized to zero.  This will cause the xHC to give us an
750 	 * error if the device asks for a stream ID we don't have setup (if it
751 	 * was any other way, the host controller would assume the ring is
752 	 * "empty" and wait forever for data to be queued to that stream ID).
753 	 */
754 
755 	return stream_info;
756 
757 cleanup_rings:
758 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
759 		cur_ring = stream_info->stream_rings[cur_stream];
760 		if (cur_ring) {
761 			xhci_ring_free(xhci, cur_ring);
762 			stream_info->stream_rings[cur_stream] = NULL;
763 		}
764 	}
765 	xhci_free_command(xhci, stream_info->free_streams_command);
766 cleanup_ctx:
767 	kfree(stream_info->stream_rings);
768 cleanup_info:
769 	kfree(stream_info);
770 cleanup_trbs:
771 	xhci->cmd_ring_reserved_trbs--;
772 	return NULL;
773 }
774 /*
775  * Sets the MaxPStreams field and the Linear Stream Array field.
776  * Sets the dequeue pointer to the stream context array.
777  */
778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
779 		struct xhci_ep_ctx *ep_ctx,
780 		struct xhci_stream_info *stream_info)
781 {
782 	u32 max_primary_streams;
783 	/* MaxPStreams is the number of stream context array entries, not the
784 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
785 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
786 	 */
787 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
789 			"Setting number of stream ctx array entries to %u",
790 			1 << (max_primary_streams + 1));
791 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793 				       | EP_HAS_LSA);
794 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
795 }
796 
797 /*
798  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
799  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
800  * not at the beginning of the ring).
801  */
802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803 		struct xhci_virt_ep *ep)
804 {
805 	dma_addr_t addr;
806 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
808 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
809 }
810 
811 /* Frees all stream contexts associated with the endpoint,
812  *
813  * Caller should fix the endpoint context streams fields.
814  */
815 void xhci_free_stream_info(struct xhci_hcd *xhci,
816 		struct xhci_stream_info *stream_info)
817 {
818 	int cur_stream;
819 	struct xhci_ring *cur_ring;
820 
821 	if (!stream_info)
822 		return;
823 
824 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
825 			cur_stream++) {
826 		cur_ring = stream_info->stream_rings[cur_stream];
827 		if (cur_ring) {
828 			xhci_ring_free(xhci, cur_ring);
829 			stream_info->stream_rings[cur_stream] = NULL;
830 		}
831 	}
832 	xhci_free_command(xhci, stream_info->free_streams_command);
833 	xhci->cmd_ring_reserved_trbs--;
834 	if (stream_info->stream_ctx_array)
835 		xhci_free_stream_ctx(xhci,
836 				stream_info->num_stream_ctxs,
837 				stream_info->stream_ctx_array,
838 				stream_info->ctx_array_dma);
839 
840 	kfree(stream_info->stream_rings);
841 	kfree(stream_info);
842 }
843 
844 
845 /***************** Device context manipulation *************************/
846 
847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
848 		struct xhci_virt_ep *ep)
849 {
850 	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
851 		    (unsigned long)ep);
852 	ep->xhci = xhci;
853 }
854 
855 static void xhci_free_tt_info(struct xhci_hcd *xhci,
856 		struct xhci_virt_device *virt_dev,
857 		int slot_id)
858 {
859 	struct list_head *tt_list_head;
860 	struct xhci_tt_bw_info *tt_info, *next;
861 	bool slot_found = false;
862 
863 	/* If the device never made it past the Set Address stage,
864 	 * it may not have the real_port set correctly.
865 	 */
866 	if (virt_dev->real_port == 0 ||
867 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
868 		xhci_dbg(xhci, "Bad real port.\n");
869 		return;
870 	}
871 
872 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
874 		/* Multi-TT hubs will have more than one entry */
875 		if (tt_info->slot_id == slot_id) {
876 			slot_found = true;
877 			list_del(&tt_info->tt_list);
878 			kfree(tt_info);
879 		} else if (slot_found) {
880 			break;
881 		}
882 	}
883 }
884 
885 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
886 		struct xhci_virt_device *virt_dev,
887 		struct usb_device *hdev,
888 		struct usb_tt *tt, gfp_t mem_flags)
889 {
890 	struct xhci_tt_bw_info		*tt_info;
891 	unsigned int			num_ports;
892 	int				i, j;
893 
894 	if (!tt->multi)
895 		num_ports = 1;
896 	else
897 		num_ports = hdev->maxchild;
898 
899 	for (i = 0; i < num_ports; i++, tt_info++) {
900 		struct xhci_interval_bw_table *bw_table;
901 
902 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
903 		if (!tt_info)
904 			goto free_tts;
905 		INIT_LIST_HEAD(&tt_info->tt_list);
906 		list_add(&tt_info->tt_list,
907 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
908 		tt_info->slot_id = virt_dev->udev->slot_id;
909 		if (tt->multi)
910 			tt_info->ttport = i+1;
911 		bw_table = &tt_info->bw_table;
912 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
913 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
914 	}
915 	return 0;
916 
917 free_tts:
918 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
919 	return -ENOMEM;
920 }
921 
922 
923 /* All the xhci_tds in the ring's TD list should be freed at this point.
924  * Should be called with xhci->lock held if there is any chance the TT lists
925  * will be manipulated by the configure endpoint, allocate device, or update
926  * hub functions while this function is removing the TT entries from the list.
927  */
928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
929 {
930 	struct xhci_virt_device *dev;
931 	int i;
932 	int old_active_eps = 0;
933 
934 	/* Slot ID 0 is reserved */
935 	if (slot_id == 0 || !xhci->devs[slot_id])
936 		return;
937 
938 	dev = xhci->devs[slot_id];
939 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
940 	if (!dev)
941 		return;
942 
943 	if (dev->tt_info)
944 		old_active_eps = dev->tt_info->active_eps;
945 
946 	for (i = 0; i < 31; ++i) {
947 		if (dev->eps[i].ring)
948 			xhci_ring_free(xhci, dev->eps[i].ring);
949 		if (dev->eps[i].stream_info)
950 			xhci_free_stream_info(xhci,
951 					dev->eps[i].stream_info);
952 		/* Endpoints on the TT/root port lists should have been removed
953 		 * when usb_disable_device() was called for the device.
954 		 * We can't drop them anyway, because the udev might have gone
955 		 * away by this point, and we can't tell what speed it was.
956 		 */
957 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
958 			xhci_warn(xhci, "Slot %u endpoint %u "
959 					"not removed from BW list!\n",
960 					slot_id, i);
961 	}
962 	/* If this is a hub, free the TT(s) from the TT list */
963 	xhci_free_tt_info(xhci, dev, slot_id);
964 	/* If necessary, update the number of active TTs on this root port */
965 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
966 
967 	if (dev->ring_cache) {
968 		for (i = 0; i < dev->num_rings_cached; i++)
969 			xhci_ring_free(xhci, dev->ring_cache[i]);
970 		kfree(dev->ring_cache);
971 	}
972 
973 	if (dev->in_ctx)
974 		xhci_free_container_ctx(xhci, dev->in_ctx);
975 	if (dev->out_ctx)
976 		xhci_free_container_ctx(xhci, dev->out_ctx);
977 
978 	kfree(xhci->devs[slot_id]);
979 	xhci->devs[slot_id] = NULL;
980 }
981 
982 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
983 		struct usb_device *udev, gfp_t flags)
984 {
985 	struct xhci_virt_device *dev;
986 	int i;
987 
988 	/* Slot ID 0 is reserved */
989 	if (slot_id == 0 || xhci->devs[slot_id]) {
990 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
991 		return 0;
992 	}
993 
994 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
995 	if (!xhci->devs[slot_id])
996 		return 0;
997 	dev = xhci->devs[slot_id];
998 
999 	/* Allocate the (output) device context that will be used in the HC. */
1000 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1001 	if (!dev->out_ctx)
1002 		goto fail;
1003 
1004 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1005 			(unsigned long long)dev->out_ctx->dma);
1006 
1007 	/* Allocate the (input) device context for address device command */
1008 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1009 	if (!dev->in_ctx)
1010 		goto fail;
1011 
1012 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1013 			(unsigned long long)dev->in_ctx->dma);
1014 
1015 	/* Initialize the cancellation list and watchdog timers for each ep */
1016 	for (i = 0; i < 31; i++) {
1017 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1018 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1019 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1020 	}
1021 
1022 	/* Allocate endpoint 0 ring */
1023 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1024 	if (!dev->eps[0].ring)
1025 		goto fail;
1026 
1027 	/* Allocate pointers to the ring cache */
1028 	dev->ring_cache = kzalloc(
1029 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1030 			flags);
1031 	if (!dev->ring_cache)
1032 		goto fail;
1033 	dev->num_rings_cached = 0;
1034 
1035 	init_completion(&dev->cmd_completion);
1036 	dev->udev = udev;
1037 
1038 	/* Point to output device context in dcbaa. */
1039 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1040 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1041 		 slot_id,
1042 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1043 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1044 
1045 	return 1;
1046 fail:
1047 	xhci_free_virt_device(xhci, slot_id);
1048 	return 0;
1049 }
1050 
1051 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1052 		struct usb_device *udev)
1053 {
1054 	struct xhci_virt_device *virt_dev;
1055 	struct xhci_ep_ctx	*ep0_ctx;
1056 	struct xhci_ring	*ep_ring;
1057 
1058 	virt_dev = xhci->devs[udev->slot_id];
1059 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1060 	ep_ring = virt_dev->eps[0].ring;
1061 	/*
1062 	 * FIXME we don't keep track of the dequeue pointer very well after a
1063 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1064 	 * host to our enqueue pointer.  This should only be called after a
1065 	 * configured device has reset, so all control transfers should have
1066 	 * been completed or cancelled before the reset.
1067 	 */
1068 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1069 							ep_ring->enqueue)
1070 				   | ep_ring->cycle_state);
1071 }
1072 
1073 /*
1074  * The xHCI roothub may have ports of differing speeds in any order in the port
1075  * status registers.  xhci->port_array provides an array of the port speed for
1076  * each offset into the port status registers.
1077  *
1078  * The xHCI hardware wants to know the roothub port number that the USB device
1079  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1080  * know is the index of that port under either the USB 2.0 or the USB 3.0
1081  * roothub, but that doesn't give us the real index into the HW port status
1082  * registers. Call xhci_find_raw_port_number() to get real index.
1083  */
1084 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1085 		struct usb_device *udev)
1086 {
1087 	struct usb_device *top_dev;
1088 	struct usb_hcd *hcd;
1089 
1090 	if (udev->speed >= USB_SPEED_SUPER)
1091 		hcd = xhci->shared_hcd;
1092 	else
1093 		hcd = xhci->main_hcd;
1094 
1095 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1096 			top_dev = top_dev->parent)
1097 		/* Found device below root hub */;
1098 
1099 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1100 }
1101 
1102 /* Setup an xHCI virtual device for a Set Address command */
1103 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1104 {
1105 	struct xhci_virt_device *dev;
1106 	struct xhci_ep_ctx	*ep0_ctx;
1107 	struct xhci_slot_ctx    *slot_ctx;
1108 	u32			port_num;
1109 	u32			max_packets;
1110 	struct usb_device *top_dev;
1111 
1112 	dev = xhci->devs[udev->slot_id];
1113 	/* Slot ID 0 is reserved */
1114 	if (udev->slot_id == 0 || !dev) {
1115 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1116 				udev->slot_id);
1117 		return -EINVAL;
1118 	}
1119 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1120 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1121 
1122 	/* 3) Only the control endpoint is valid - one endpoint context */
1123 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1124 	switch (udev->speed) {
1125 	case USB_SPEED_SUPER_PLUS:
1126 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1127 		max_packets = MAX_PACKET(512);
1128 		break;
1129 	case USB_SPEED_SUPER:
1130 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1131 		max_packets = MAX_PACKET(512);
1132 		break;
1133 	case USB_SPEED_HIGH:
1134 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1135 		max_packets = MAX_PACKET(64);
1136 		break;
1137 	/* USB core guesses at a 64-byte max packet first for FS devices */
1138 	case USB_SPEED_FULL:
1139 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1140 		max_packets = MAX_PACKET(64);
1141 		break;
1142 	case USB_SPEED_LOW:
1143 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1144 		max_packets = MAX_PACKET(8);
1145 		break;
1146 	case USB_SPEED_WIRELESS:
1147 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1148 		return -EINVAL;
1149 		break;
1150 	default:
1151 		/* Speed was set earlier, this shouldn't happen. */
1152 		return -EINVAL;
1153 	}
1154 	/* Find the root hub port this device is under */
1155 	port_num = xhci_find_real_port_number(xhci, udev);
1156 	if (!port_num)
1157 		return -EINVAL;
1158 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1159 	/* Set the port number in the virtual_device to the faked port number */
1160 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1161 			top_dev = top_dev->parent)
1162 		/* Found device below root hub */;
1163 	dev->fake_port = top_dev->portnum;
1164 	dev->real_port = port_num;
1165 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1166 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1167 
1168 	/* Find the right bandwidth table that this device will be a part of.
1169 	 * If this is a full speed device attached directly to a root port (or a
1170 	 * decendent of one), it counts as a primary bandwidth domain, not a
1171 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1172 	 * will never be created for the HS root hub.
1173 	 */
1174 	if (!udev->tt || !udev->tt->hub->parent) {
1175 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1176 	} else {
1177 		struct xhci_root_port_bw_info *rh_bw;
1178 		struct xhci_tt_bw_info *tt_bw;
1179 
1180 		rh_bw = &xhci->rh_bw[port_num - 1];
1181 		/* Find the right TT. */
1182 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1183 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1184 				continue;
1185 
1186 			if (!dev->udev->tt->multi ||
1187 					(udev->tt->multi &&
1188 					 tt_bw->ttport == dev->udev->ttport)) {
1189 				dev->bw_table = &tt_bw->bw_table;
1190 				dev->tt_info = tt_bw;
1191 				break;
1192 			}
1193 		}
1194 		if (!dev->tt_info)
1195 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1196 	}
1197 
1198 	/* Is this a LS/FS device under an external HS hub? */
1199 	if (udev->tt && udev->tt->hub->parent) {
1200 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1201 						(udev->ttport << 8));
1202 		if (udev->tt->multi)
1203 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1204 	}
1205 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1206 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1207 
1208 	/* Step 4 - ring already allocated */
1209 	/* Step 5 */
1210 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1211 
1212 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1213 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1214 					 max_packets);
1215 
1216 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1217 				   dev->eps[0].ring->cycle_state);
1218 
1219 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220 
1221 	return 0;
1222 }
1223 
1224 /*
1225  * Convert interval expressed as 2^(bInterval - 1) == interval into
1226  * straight exponent value 2^n == interval.
1227  *
1228  */
1229 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230 		struct usb_host_endpoint *ep)
1231 {
1232 	unsigned int interval;
1233 
1234 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235 	if (interval != ep->desc.bInterval - 1)
1236 		dev_warn(&udev->dev,
1237 			 "ep %#x - rounding interval to %d %sframes\n",
1238 			 ep->desc.bEndpointAddress,
1239 			 1 << interval,
1240 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1241 
1242 	if (udev->speed == USB_SPEED_FULL) {
1243 		/*
1244 		 * Full speed isoc endpoints specify interval in frames,
1245 		 * not microframes. We are using microframes everywhere,
1246 		 * so adjust accordingly.
1247 		 */
1248 		interval += 3;	/* 1 frame = 2^3 uframes */
1249 	}
1250 
1251 	return interval;
1252 }
1253 
1254 /*
1255  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256  * microframes, rounded down to nearest power of 2.
1257  */
1258 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1260 		unsigned int min_exponent, unsigned int max_exponent)
1261 {
1262 	unsigned int interval;
1263 
1264 	interval = fls(desc_interval) - 1;
1265 	interval = clamp_val(interval, min_exponent, max_exponent);
1266 	if ((1 << interval) != desc_interval)
1267 		dev_dbg(&udev->dev,
1268 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269 			 ep->desc.bEndpointAddress,
1270 			 1 << interval,
1271 			 desc_interval);
1272 
1273 	return interval;
1274 }
1275 
1276 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277 		struct usb_host_endpoint *ep)
1278 {
1279 	if (ep->desc.bInterval == 0)
1280 		return 0;
1281 	return xhci_microframes_to_exponent(udev, ep,
1282 			ep->desc.bInterval, 0, 15);
1283 }
1284 
1285 
1286 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287 		struct usb_host_endpoint *ep)
1288 {
1289 	return xhci_microframes_to_exponent(udev, ep,
1290 			ep->desc.bInterval * 8, 3, 10);
1291 }
1292 
1293 /* Return the polling or NAK interval.
1294  *
1295  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1296  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297  *
1298  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299  * is set to 0.
1300  */
1301 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302 		struct usb_host_endpoint *ep)
1303 {
1304 	unsigned int interval = 0;
1305 
1306 	switch (udev->speed) {
1307 	case USB_SPEED_HIGH:
1308 		/* Max NAK rate */
1309 		if (usb_endpoint_xfer_control(&ep->desc) ||
1310 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1311 			interval = xhci_parse_microframe_interval(udev, ep);
1312 			break;
1313 		}
1314 		/* Fall through - SS and HS isoc/int have same decoding */
1315 
1316 	case USB_SPEED_SUPER_PLUS:
1317 	case USB_SPEED_SUPER:
1318 		if (usb_endpoint_xfer_int(&ep->desc) ||
1319 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1320 			interval = xhci_parse_exponent_interval(udev, ep);
1321 		}
1322 		break;
1323 
1324 	case USB_SPEED_FULL:
1325 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326 			interval = xhci_parse_exponent_interval(udev, ep);
1327 			break;
1328 		}
1329 		/*
1330 		 * Fall through for interrupt endpoint interval decoding
1331 		 * since it uses the same rules as low speed interrupt
1332 		 * endpoints.
1333 		 */
1334 
1335 	case USB_SPEED_LOW:
1336 		if (usb_endpoint_xfer_int(&ep->desc) ||
1337 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1338 
1339 			interval = xhci_parse_frame_interval(udev, ep);
1340 		}
1341 		break;
1342 
1343 	default:
1344 		BUG();
1345 	}
1346 	return interval;
1347 }
1348 
1349 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1350  * High speed endpoint descriptors can define "the number of additional
1351  * transaction opportunities per microframe", but that goes in the Max Burst
1352  * endpoint context field.
1353  */
1354 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1355 		struct usb_host_endpoint *ep)
1356 {
1357 	if (udev->speed < USB_SPEED_SUPER ||
1358 			!usb_endpoint_xfer_isoc(&ep->desc))
1359 		return 0;
1360 	return ep->ss_ep_comp.bmAttributes;
1361 }
1362 
1363 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1364 				       struct usb_host_endpoint *ep)
1365 {
1366 	/* Super speed and Plus have max burst in ep companion desc */
1367 	if (udev->speed >= USB_SPEED_SUPER)
1368 		return ep->ss_ep_comp.bMaxBurst;
1369 
1370 	if (udev->speed == USB_SPEED_HIGH &&
1371 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1372 	     usb_endpoint_xfer_int(&ep->desc)))
1373 		return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1374 
1375 	return 0;
1376 }
1377 
1378 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1379 {
1380 	int in;
1381 
1382 	in = usb_endpoint_dir_in(&ep->desc);
1383 
1384 	if (usb_endpoint_xfer_control(&ep->desc))
1385 		return CTRL_EP;
1386 	if (usb_endpoint_xfer_bulk(&ep->desc))
1387 		return in ? BULK_IN_EP : BULK_OUT_EP;
1388 	if (usb_endpoint_xfer_isoc(&ep->desc))
1389 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1390 	if (usb_endpoint_xfer_int(&ep->desc))
1391 		return in ? INT_IN_EP : INT_OUT_EP;
1392 	return 0;
1393 }
1394 
1395 /* Return the maximum endpoint service interval time (ESIT) payload.
1396  * Basically, this is the maxpacket size, multiplied by the burst size
1397  * and mult size.
1398  */
1399 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1400 		struct usb_host_endpoint *ep)
1401 {
1402 	int max_burst;
1403 	int max_packet;
1404 
1405 	/* Only applies for interrupt or isochronous endpoints */
1406 	if (usb_endpoint_xfer_control(&ep->desc) ||
1407 			usb_endpoint_xfer_bulk(&ep->desc))
1408 		return 0;
1409 
1410 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1411 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1412 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1413 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1414 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1415 	else if (udev->speed >= USB_SPEED_SUPER)
1416 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1417 
1418 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1419 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1420 	/* A 0 in max burst means 1 transfer per ESIT */
1421 	return max_packet * (max_burst + 1);
1422 }
1423 
1424 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1425  * Drivers will have to call usb_alloc_streams() to do that.
1426  */
1427 int xhci_endpoint_init(struct xhci_hcd *xhci,
1428 		struct xhci_virt_device *virt_dev,
1429 		struct usb_device *udev,
1430 		struct usb_host_endpoint *ep,
1431 		gfp_t mem_flags)
1432 {
1433 	unsigned int ep_index;
1434 	struct xhci_ep_ctx *ep_ctx;
1435 	struct xhci_ring *ep_ring;
1436 	unsigned int max_packet;
1437 	enum xhci_ring_type ring_type;
1438 	u32 max_esit_payload;
1439 	u32 endpoint_type;
1440 	unsigned int max_burst;
1441 	unsigned int interval;
1442 	unsigned int mult;
1443 	unsigned int avg_trb_len;
1444 	unsigned int err_count = 0;
1445 
1446 	ep_index = xhci_get_endpoint_index(&ep->desc);
1447 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1448 
1449 	endpoint_type = xhci_get_endpoint_type(ep);
1450 	if (!endpoint_type)
1451 		return -EINVAL;
1452 
1453 	ring_type = usb_endpoint_type(&ep->desc);
1454 
1455 	/*
1456 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1457 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1458 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1459 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1460 	 */
1461 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1462 	interval = xhci_get_endpoint_interval(udev, ep);
1463 	mult = xhci_get_endpoint_mult(udev, ep);
1464 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1465 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466 	avg_trb_len = max_esit_payload;
1467 
1468 	/* FIXME dig Mult and streams info out of ep companion desc */
1469 
1470 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1471 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1472 		err_count = 3;
1473 	/* Some devices get this wrong */
1474 	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1475 		max_packet = 512;
1476 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1477 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1478 		avg_trb_len = 8;
1479 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1480 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1481 		mult = 0;
1482 
1483 	/* Set up the endpoint ring */
1484 	virt_dev->eps[ep_index].new_ring =
1485 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1486 	if (!virt_dev->eps[ep_index].new_ring) {
1487 		/* Attempt to use the ring cache */
1488 		if (virt_dev->num_rings_cached == 0)
1489 			return -ENOMEM;
1490 		virt_dev->num_rings_cached--;
1491 		virt_dev->eps[ep_index].new_ring =
1492 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1493 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1494 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1495 					1, ring_type);
1496 	}
1497 	virt_dev->eps[ep_index].skip = false;
1498 	ep_ring = virt_dev->eps[ep_index].new_ring;
1499 
1500 	/* Fill the endpoint context */
1501 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1502 				      EP_INTERVAL(interval) |
1503 				      EP_MULT(mult));
1504 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1505 				       MAX_PACKET(max_packet) |
1506 				       MAX_BURST(max_burst) |
1507 				       ERROR_COUNT(err_count));
1508 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1509 				  ep_ring->cycle_state);
1510 
1511 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1512 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1513 
1514 	/* FIXME Debug endpoint context */
1515 	return 0;
1516 }
1517 
1518 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1519 		struct xhci_virt_device *virt_dev,
1520 		struct usb_host_endpoint *ep)
1521 {
1522 	unsigned int ep_index;
1523 	struct xhci_ep_ctx *ep_ctx;
1524 
1525 	ep_index = xhci_get_endpoint_index(&ep->desc);
1526 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1527 
1528 	ep_ctx->ep_info = 0;
1529 	ep_ctx->ep_info2 = 0;
1530 	ep_ctx->deq = 0;
1531 	ep_ctx->tx_info = 0;
1532 	/* Don't free the endpoint ring until the set interface or configuration
1533 	 * request succeeds.
1534 	 */
1535 }
1536 
1537 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1538 {
1539 	bw_info->ep_interval = 0;
1540 	bw_info->mult = 0;
1541 	bw_info->num_packets = 0;
1542 	bw_info->max_packet_size = 0;
1543 	bw_info->type = 0;
1544 	bw_info->max_esit_payload = 0;
1545 }
1546 
1547 void xhci_update_bw_info(struct xhci_hcd *xhci,
1548 		struct xhci_container_ctx *in_ctx,
1549 		struct xhci_input_control_ctx *ctrl_ctx,
1550 		struct xhci_virt_device *virt_dev)
1551 {
1552 	struct xhci_bw_info *bw_info;
1553 	struct xhci_ep_ctx *ep_ctx;
1554 	unsigned int ep_type;
1555 	int i;
1556 
1557 	for (i = 1; i < 31; ++i) {
1558 		bw_info = &virt_dev->eps[i].bw_info;
1559 
1560 		/* We can't tell what endpoint type is being dropped, but
1561 		 * unconditionally clearing the bandwidth info for non-periodic
1562 		 * endpoints should be harmless because the info will never be
1563 		 * set in the first place.
1564 		 */
1565 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1566 			/* Dropped endpoint */
1567 			xhci_clear_endpoint_bw_info(bw_info);
1568 			continue;
1569 		}
1570 
1571 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1572 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1573 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1574 
1575 			/* Ignore non-periodic endpoints */
1576 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1577 					ep_type != ISOC_IN_EP &&
1578 					ep_type != INT_IN_EP)
1579 				continue;
1580 
1581 			/* Added or changed endpoint */
1582 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1583 					le32_to_cpu(ep_ctx->ep_info));
1584 			/* Number of packets and mult are zero-based in the
1585 			 * input context, but we want one-based for the
1586 			 * interval table.
1587 			 */
1588 			bw_info->mult = CTX_TO_EP_MULT(
1589 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1590 			bw_info->num_packets = CTX_TO_MAX_BURST(
1591 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1592 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1593 					le32_to_cpu(ep_ctx->ep_info2));
1594 			bw_info->type = ep_type;
1595 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1596 					le32_to_cpu(ep_ctx->tx_info));
1597 		}
1598 	}
1599 }
1600 
1601 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1602  * Useful when you want to change one particular aspect of the endpoint and then
1603  * issue a configure endpoint command.
1604  */
1605 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1606 		struct xhci_container_ctx *in_ctx,
1607 		struct xhci_container_ctx *out_ctx,
1608 		unsigned int ep_index)
1609 {
1610 	struct xhci_ep_ctx *out_ep_ctx;
1611 	struct xhci_ep_ctx *in_ep_ctx;
1612 
1613 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1614 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1615 
1616 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1617 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1618 	in_ep_ctx->deq = out_ep_ctx->deq;
1619 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1620 }
1621 
1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623  * Useful when you want to change one particular aspect of the endpoint and then
1624  * issue a configure endpoint command.  Only the context entries field matters,
1625  * but we'll copy the whole thing anyway.
1626  */
1627 void xhci_slot_copy(struct xhci_hcd *xhci,
1628 		struct xhci_container_ctx *in_ctx,
1629 		struct xhci_container_ctx *out_ctx)
1630 {
1631 	struct xhci_slot_ctx *in_slot_ctx;
1632 	struct xhci_slot_ctx *out_slot_ctx;
1633 
1634 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1635 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1636 
1637 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1638 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1639 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1640 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1641 }
1642 
1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1645 {
1646 	int i;
1647 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1648 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1649 
1650 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1651 			"Allocating %d scratchpad buffers", num_sp);
1652 
1653 	if (!num_sp)
1654 		return 0;
1655 
1656 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1657 	if (!xhci->scratchpad)
1658 		goto fail_sp;
1659 
1660 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1661 				     num_sp * sizeof(u64),
1662 				     &xhci->scratchpad->sp_dma, flags);
1663 	if (!xhci->scratchpad->sp_array)
1664 		goto fail_sp2;
1665 
1666 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1667 	if (!xhci->scratchpad->sp_buffers)
1668 		goto fail_sp3;
1669 
1670 	xhci->scratchpad->sp_dma_buffers =
1671 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1672 
1673 	if (!xhci->scratchpad->sp_dma_buffers)
1674 		goto fail_sp4;
1675 
1676 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1677 	for (i = 0; i < num_sp; i++) {
1678 		dma_addr_t dma;
1679 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1680 				flags);
1681 		if (!buf)
1682 			goto fail_sp5;
1683 
1684 		xhci->scratchpad->sp_array[i] = dma;
1685 		xhci->scratchpad->sp_buffers[i] = buf;
1686 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1687 	}
1688 
1689 	return 0;
1690 
1691  fail_sp5:
1692 	for (i = i - 1; i >= 0; i--) {
1693 		dma_free_coherent(dev, xhci->page_size,
1694 				    xhci->scratchpad->sp_buffers[i],
1695 				    xhci->scratchpad->sp_dma_buffers[i]);
1696 	}
1697 	kfree(xhci->scratchpad->sp_dma_buffers);
1698 
1699  fail_sp4:
1700 	kfree(xhci->scratchpad->sp_buffers);
1701 
1702  fail_sp3:
1703 	dma_free_coherent(dev, num_sp * sizeof(u64),
1704 			    xhci->scratchpad->sp_array,
1705 			    xhci->scratchpad->sp_dma);
1706 
1707  fail_sp2:
1708 	kfree(xhci->scratchpad);
1709 	xhci->scratchpad = NULL;
1710 
1711  fail_sp:
1712 	return -ENOMEM;
1713 }
1714 
1715 static void scratchpad_free(struct xhci_hcd *xhci)
1716 {
1717 	int num_sp;
1718 	int i;
1719 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1720 
1721 	if (!xhci->scratchpad)
1722 		return;
1723 
1724 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1725 
1726 	for (i = 0; i < num_sp; i++) {
1727 		dma_free_coherent(dev, xhci->page_size,
1728 				    xhci->scratchpad->sp_buffers[i],
1729 				    xhci->scratchpad->sp_dma_buffers[i]);
1730 	}
1731 	kfree(xhci->scratchpad->sp_dma_buffers);
1732 	kfree(xhci->scratchpad->sp_buffers);
1733 	dma_free_coherent(dev, num_sp * sizeof(u64),
1734 			    xhci->scratchpad->sp_array,
1735 			    xhci->scratchpad->sp_dma);
1736 	kfree(xhci->scratchpad);
1737 	xhci->scratchpad = NULL;
1738 }
1739 
1740 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1741 		bool allocate_in_ctx, bool allocate_completion,
1742 		gfp_t mem_flags)
1743 {
1744 	struct xhci_command *command;
1745 
1746 	command = kzalloc(sizeof(*command), mem_flags);
1747 	if (!command)
1748 		return NULL;
1749 
1750 	if (allocate_in_ctx) {
1751 		command->in_ctx =
1752 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753 					mem_flags);
1754 		if (!command->in_ctx) {
1755 			kfree(command);
1756 			return NULL;
1757 		}
1758 	}
1759 
1760 	if (allocate_completion) {
1761 		command->completion =
1762 			kzalloc(sizeof(struct completion), mem_flags);
1763 		if (!command->completion) {
1764 			xhci_free_container_ctx(xhci, command->in_ctx);
1765 			kfree(command);
1766 			return NULL;
1767 		}
1768 		init_completion(command->completion);
1769 	}
1770 
1771 	command->status = 0;
1772 	INIT_LIST_HEAD(&command->cmd_list);
1773 	return command;
1774 }
1775 
1776 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1777 {
1778 	if (urb_priv) {
1779 		kfree(urb_priv->td[0]);
1780 		kfree(urb_priv);
1781 	}
1782 }
1783 
1784 void xhci_free_command(struct xhci_hcd *xhci,
1785 		struct xhci_command *command)
1786 {
1787 	xhci_free_container_ctx(xhci,
1788 			command->in_ctx);
1789 	kfree(command->completion);
1790 	kfree(command);
1791 }
1792 
1793 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1794 {
1795 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1796 	int size;
1797 	int i, j, num_ports;
1798 
1799 	del_timer_sync(&xhci->cmd_timer);
1800 
1801 	/* Free the Event Ring Segment Table and the actual Event Ring */
1802 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803 	if (xhci->erst.entries)
1804 		dma_free_coherent(dev, size,
1805 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1806 	xhci->erst.entries = NULL;
1807 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808 	if (xhci->event_ring)
1809 		xhci_ring_free(xhci, xhci->event_ring);
1810 	xhci->event_ring = NULL;
1811 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812 
1813 	if (xhci->lpm_command)
1814 		xhci_free_command(xhci, xhci->lpm_command);
1815 	xhci->lpm_command = NULL;
1816 	if (xhci->cmd_ring)
1817 		xhci_ring_free(xhci, xhci->cmd_ring);
1818 	xhci->cmd_ring = NULL;
1819 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1820 	xhci_cleanup_command_queue(xhci);
1821 
1822 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1823 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1824 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1825 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1826 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1827 			while (!list_empty(ep))
1828 				list_del_init(ep->next);
1829 		}
1830 	}
1831 
1832 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1833 		xhci_free_virt_device(xhci, i);
1834 
1835 	dma_pool_destroy(xhci->segment_pool);
1836 	xhci->segment_pool = NULL;
1837 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1838 
1839 	dma_pool_destroy(xhci->device_pool);
1840 	xhci->device_pool = NULL;
1841 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1842 
1843 	dma_pool_destroy(xhci->small_streams_pool);
1844 	xhci->small_streams_pool = NULL;
1845 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1846 			"Freed small stream array pool");
1847 
1848 	dma_pool_destroy(xhci->medium_streams_pool);
1849 	xhci->medium_streams_pool = NULL;
1850 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1851 			"Freed medium stream array pool");
1852 
1853 	if (xhci->dcbaa)
1854 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1855 				xhci->dcbaa, xhci->dcbaa->dma);
1856 	xhci->dcbaa = NULL;
1857 
1858 	scratchpad_free(xhci);
1859 
1860 	if (!xhci->rh_bw)
1861 		goto no_bw;
1862 
1863 	for (i = 0; i < num_ports; i++) {
1864 		struct xhci_tt_bw_info *tt, *n;
1865 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1866 			list_del(&tt->tt_list);
1867 			kfree(tt);
1868 		}
1869 	}
1870 
1871 no_bw:
1872 	xhci->cmd_ring_reserved_trbs = 0;
1873 	xhci->num_usb2_ports = 0;
1874 	xhci->num_usb3_ports = 0;
1875 	xhci->num_active_eps = 0;
1876 	kfree(xhci->usb2_ports);
1877 	kfree(xhci->usb3_ports);
1878 	kfree(xhci->port_array);
1879 	kfree(xhci->rh_bw);
1880 	kfree(xhci->ext_caps);
1881 
1882 	xhci->usb2_ports = NULL;
1883 	xhci->usb3_ports = NULL;
1884 	xhci->port_array = NULL;
1885 	xhci->rh_bw = NULL;
1886 	xhci->ext_caps = NULL;
1887 
1888 	xhci->page_size = 0;
1889 	xhci->page_shift = 0;
1890 	xhci->bus_state[0].bus_suspended = 0;
1891 	xhci->bus_state[1].bus_suspended = 0;
1892 }
1893 
1894 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1895 		struct xhci_segment *input_seg,
1896 		union xhci_trb *start_trb,
1897 		union xhci_trb *end_trb,
1898 		dma_addr_t input_dma,
1899 		struct xhci_segment *result_seg,
1900 		char *test_name, int test_number)
1901 {
1902 	unsigned long long start_dma;
1903 	unsigned long long end_dma;
1904 	struct xhci_segment *seg;
1905 
1906 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1907 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1908 
1909 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1910 	if (seg != result_seg) {
1911 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1912 				test_name, test_number);
1913 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1914 				"input DMA 0x%llx\n",
1915 				input_seg,
1916 				(unsigned long long) input_dma);
1917 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1918 				"ending TRB %p (0x%llx DMA)\n",
1919 				start_trb, start_dma,
1920 				end_trb, end_dma);
1921 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1922 				result_seg, seg);
1923 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1924 			  true);
1925 		return -1;
1926 	}
1927 	return 0;
1928 }
1929 
1930 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1931 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1932 {
1933 	struct {
1934 		dma_addr_t		input_dma;
1935 		struct xhci_segment	*result_seg;
1936 	} simple_test_vector [] = {
1937 		/* A zeroed DMA field should fail */
1938 		{ 0, NULL },
1939 		/* One TRB before the ring start should fail */
1940 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1941 		/* One byte before the ring start should fail */
1942 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1943 		/* Starting TRB should succeed */
1944 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1945 		/* Ending TRB should succeed */
1946 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1947 			xhci->event_ring->first_seg },
1948 		/* One byte after the ring end should fail */
1949 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1950 		/* One TRB after the ring end should fail */
1951 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1952 		/* An address of all ones should fail */
1953 		{ (dma_addr_t) (~0), NULL },
1954 	};
1955 	struct {
1956 		struct xhci_segment	*input_seg;
1957 		union xhci_trb		*start_trb;
1958 		union xhci_trb		*end_trb;
1959 		dma_addr_t		input_dma;
1960 		struct xhci_segment	*result_seg;
1961 	} complex_test_vector [] = {
1962 		/* Test feeding a valid DMA address from a different ring */
1963 		{	.input_seg = xhci->event_ring->first_seg,
1964 			.start_trb = xhci->event_ring->first_seg->trbs,
1965 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1966 			.input_dma = xhci->cmd_ring->first_seg->dma,
1967 			.result_seg = NULL,
1968 		},
1969 		/* Test feeding a valid end TRB from a different ring */
1970 		{	.input_seg = xhci->event_ring->first_seg,
1971 			.start_trb = xhci->event_ring->first_seg->trbs,
1972 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1973 			.input_dma = xhci->cmd_ring->first_seg->dma,
1974 			.result_seg = NULL,
1975 		},
1976 		/* Test feeding a valid start and end TRB from a different ring */
1977 		{	.input_seg = xhci->event_ring->first_seg,
1978 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1979 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1980 			.input_dma = xhci->cmd_ring->first_seg->dma,
1981 			.result_seg = NULL,
1982 		},
1983 		/* TRB in this ring, but after this TD */
1984 		{	.input_seg = xhci->event_ring->first_seg,
1985 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1986 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1987 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1988 			.result_seg = NULL,
1989 		},
1990 		/* TRB in this ring, but before this TD */
1991 		{	.input_seg = xhci->event_ring->first_seg,
1992 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1993 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1994 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1995 			.result_seg = NULL,
1996 		},
1997 		/* TRB in this ring, but after this wrapped TD */
1998 		{	.input_seg = xhci->event_ring->first_seg,
1999 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2000 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2001 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2002 			.result_seg = NULL,
2003 		},
2004 		/* TRB in this ring, but before this wrapped TD */
2005 		{	.input_seg = xhci->event_ring->first_seg,
2006 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2007 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2008 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2009 			.result_seg = NULL,
2010 		},
2011 		/* TRB not in this ring, and we have a wrapped TD */
2012 		{	.input_seg = xhci->event_ring->first_seg,
2013 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2014 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2015 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2016 			.result_seg = NULL,
2017 		},
2018 	};
2019 
2020 	unsigned int num_tests;
2021 	int i, ret;
2022 
2023 	num_tests = ARRAY_SIZE(simple_test_vector);
2024 	for (i = 0; i < num_tests; i++) {
2025 		ret = xhci_test_trb_in_td(xhci,
2026 				xhci->event_ring->first_seg,
2027 				xhci->event_ring->first_seg->trbs,
2028 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2029 				simple_test_vector[i].input_dma,
2030 				simple_test_vector[i].result_seg,
2031 				"Simple", i);
2032 		if (ret < 0)
2033 			return ret;
2034 	}
2035 
2036 	num_tests = ARRAY_SIZE(complex_test_vector);
2037 	for (i = 0; i < num_tests; i++) {
2038 		ret = xhci_test_trb_in_td(xhci,
2039 				complex_test_vector[i].input_seg,
2040 				complex_test_vector[i].start_trb,
2041 				complex_test_vector[i].end_trb,
2042 				complex_test_vector[i].input_dma,
2043 				complex_test_vector[i].result_seg,
2044 				"Complex", i);
2045 		if (ret < 0)
2046 			return ret;
2047 	}
2048 	xhci_dbg(xhci, "TRB math tests passed.\n");
2049 	return 0;
2050 }
2051 
2052 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2053 {
2054 	u64 temp;
2055 	dma_addr_t deq;
2056 
2057 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2058 			xhci->event_ring->dequeue);
2059 	if (deq == 0 && !in_interrupt())
2060 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2061 				"dequeue ptr.\n");
2062 	/* Update HC event ring dequeue pointer */
2063 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2064 	temp &= ERST_PTR_MASK;
2065 	/* Don't clear the EHB bit (which is RW1C) because
2066 	 * there might be more events to service.
2067 	 */
2068 	temp &= ~ERST_EHB;
2069 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2070 			"// Write event ring dequeue pointer, "
2071 			"preserving EHB bit");
2072 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2073 			&xhci->ir_set->erst_dequeue);
2074 }
2075 
2076 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2077 		__le32 __iomem *addr, int max_caps)
2078 {
2079 	u32 temp, port_offset, port_count;
2080 	int i;
2081 	u8 major_revision;
2082 	struct xhci_hub *rhub;
2083 
2084 	temp = readl(addr);
2085 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2086 
2087 	if (major_revision == 0x03) {
2088 		rhub = &xhci->usb3_rhub;
2089 	} else if (major_revision <= 0x02) {
2090 		rhub = &xhci->usb2_rhub;
2091 	} else {
2092 		xhci_warn(xhci, "Ignoring unknown port speed, "
2093 				"Ext Cap %p, revision = 0x%x\n",
2094 				addr, major_revision);
2095 		/* Ignoring port protocol we can't understand. FIXME */
2096 		return;
2097 	}
2098 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2099 	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2100 
2101 	/* Port offset and count in the third dword, see section 7.2 */
2102 	temp = readl(addr + 2);
2103 	port_offset = XHCI_EXT_PORT_OFF(temp);
2104 	port_count = XHCI_EXT_PORT_COUNT(temp);
2105 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2106 			"Ext Cap %p, port offset = %u, "
2107 			"count = %u, revision = 0x%x",
2108 			addr, port_offset, port_count, major_revision);
2109 	/* Port count includes the current port offset */
2110 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2111 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2112 		return;
2113 
2114 	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2115 	if (rhub->psi_count) {
2116 		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2117 				    GFP_KERNEL);
2118 		if (!rhub->psi)
2119 			rhub->psi_count = 0;
2120 
2121 		rhub->psi_uid_count++;
2122 		for (i = 0; i < rhub->psi_count; i++) {
2123 			rhub->psi[i] = readl(addr + 4 + i);
2124 
2125 			/* count unique ID values, two consecutive entries can
2126 			 * have the same ID if link is assymetric
2127 			 */
2128 			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2129 				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2130 				rhub->psi_uid_count++;
2131 
2132 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2133 				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2134 				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2135 				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2136 				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2137 				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2138 				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2139 		}
2140 	}
2141 	/* cache usb2 port capabilities */
2142 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2143 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2144 
2145 	/* Check the host's USB2 LPM capability */
2146 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2147 			(temp & XHCI_L1C)) {
2148 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2149 				"xHCI 0.96: support USB2 software lpm");
2150 		xhci->sw_lpm_support = 1;
2151 	}
2152 
2153 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2154 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2155 				"xHCI 1.0: support USB2 software lpm");
2156 		xhci->sw_lpm_support = 1;
2157 		if (temp & XHCI_HLC) {
2158 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2159 					"xHCI 1.0: support USB2 hardware lpm");
2160 			xhci->hw_lpm_support = 1;
2161 		}
2162 	}
2163 
2164 	port_offset--;
2165 	for (i = port_offset; i < (port_offset + port_count); i++) {
2166 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2167 		if (xhci->port_array[i] != 0) {
2168 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2169 					" port %u\n", addr, i);
2170 			xhci_warn(xhci, "Port was marked as USB %u, "
2171 					"duplicated as USB %u\n",
2172 					xhci->port_array[i], major_revision);
2173 			/* Only adjust the roothub port counts if we haven't
2174 			 * found a similar duplicate.
2175 			 */
2176 			if (xhci->port_array[i] != major_revision &&
2177 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2178 				if (xhci->port_array[i] == 0x03)
2179 					xhci->num_usb3_ports--;
2180 				else
2181 					xhci->num_usb2_ports--;
2182 				xhci->port_array[i] = DUPLICATE_ENTRY;
2183 			}
2184 			/* FIXME: Should we disable the port? */
2185 			continue;
2186 		}
2187 		xhci->port_array[i] = major_revision;
2188 		if (major_revision == 0x03)
2189 			xhci->num_usb3_ports++;
2190 		else
2191 			xhci->num_usb2_ports++;
2192 	}
2193 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2194 }
2195 
2196 /*
2197  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2198  * specify what speeds each port is supposed to be.  We can't count on the port
2199  * speed bits in the PORTSC register being correct until a device is connected,
2200  * but we need to set up the two fake roothubs with the correct number of USB
2201  * 3.0 and USB 2.0 ports at host controller initialization time.
2202  */
2203 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2204 {
2205 	void __iomem *base;
2206 	u32 offset;
2207 	unsigned int num_ports;
2208 	int i, j, port_index;
2209 	int cap_count = 0;
2210 	u32 cap_start;
2211 
2212 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2213 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2214 	if (!xhci->port_array)
2215 		return -ENOMEM;
2216 
2217 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2218 	if (!xhci->rh_bw)
2219 		return -ENOMEM;
2220 	for (i = 0; i < num_ports; i++) {
2221 		struct xhci_interval_bw_table *bw_table;
2222 
2223 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2224 		bw_table = &xhci->rh_bw[i].bw_table;
2225 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2226 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2227 	}
2228 	base = &xhci->cap_regs->hc_capbase;
2229 
2230 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2231 	if (!cap_start) {
2232 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2233 		return -ENODEV;
2234 	}
2235 
2236 	offset = cap_start;
2237 	/* count extended protocol capability entries for later caching */
2238 	while (offset) {
2239 		cap_count++;
2240 		offset = xhci_find_next_ext_cap(base, offset,
2241 						      XHCI_EXT_CAPS_PROTOCOL);
2242 	}
2243 
2244 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2245 	if (!xhci->ext_caps)
2246 		return -ENOMEM;
2247 
2248 	offset = cap_start;
2249 
2250 	while (offset) {
2251 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2252 		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2253 			break;
2254 		offset = xhci_find_next_ext_cap(base, offset,
2255 						XHCI_EXT_CAPS_PROTOCOL);
2256 	}
2257 
2258 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2259 		xhci_warn(xhci, "No ports on the roothubs?\n");
2260 		return -ENODEV;
2261 	}
2262 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2263 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2264 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2265 
2266 	/* Place limits on the number of roothub ports so that the hub
2267 	 * descriptors aren't longer than the USB core will allocate.
2268 	 */
2269 	if (xhci->num_usb3_ports > 15) {
2270 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2271 				"Limiting USB 3.0 roothub ports to 15.");
2272 		xhci->num_usb3_ports = 15;
2273 	}
2274 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2275 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2276 				"Limiting USB 2.0 roothub ports to %u.",
2277 				USB_MAXCHILDREN);
2278 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2279 	}
2280 
2281 	/*
2282 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2283 	 * Not sure how the USB core will handle a hub with no ports...
2284 	 */
2285 	if (xhci->num_usb2_ports) {
2286 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2287 				xhci->num_usb2_ports, flags);
2288 		if (!xhci->usb2_ports)
2289 			return -ENOMEM;
2290 
2291 		port_index = 0;
2292 		for (i = 0; i < num_ports; i++) {
2293 			if (xhci->port_array[i] == 0x03 ||
2294 					xhci->port_array[i] == 0 ||
2295 					xhci->port_array[i] == DUPLICATE_ENTRY)
2296 				continue;
2297 
2298 			xhci->usb2_ports[port_index] =
2299 				&xhci->op_regs->port_status_base +
2300 				NUM_PORT_REGS*i;
2301 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2302 					"USB 2.0 port at index %u, "
2303 					"addr = %p", i,
2304 					xhci->usb2_ports[port_index]);
2305 			port_index++;
2306 			if (port_index == xhci->num_usb2_ports)
2307 				break;
2308 		}
2309 	}
2310 	if (xhci->num_usb3_ports) {
2311 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2312 				xhci->num_usb3_ports, flags);
2313 		if (!xhci->usb3_ports)
2314 			return -ENOMEM;
2315 
2316 		port_index = 0;
2317 		for (i = 0; i < num_ports; i++)
2318 			if (xhci->port_array[i] == 0x03) {
2319 				xhci->usb3_ports[port_index] =
2320 					&xhci->op_regs->port_status_base +
2321 					NUM_PORT_REGS*i;
2322 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2323 						"USB 3.0 port at index %u, "
2324 						"addr = %p", i,
2325 						xhci->usb3_ports[port_index]);
2326 				port_index++;
2327 				if (port_index == xhci->num_usb3_ports)
2328 					break;
2329 			}
2330 	}
2331 	return 0;
2332 }
2333 
2334 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2335 {
2336 	dma_addr_t	dma;
2337 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2338 	unsigned int	val, val2;
2339 	u64		val_64;
2340 	struct xhci_segment	*seg;
2341 	u32 page_size, temp;
2342 	int i;
2343 
2344 	INIT_LIST_HEAD(&xhci->cmd_list);
2345 
2346 	/* init command timeout timer */
2347 	setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2348 		    (unsigned long)xhci);
2349 
2350 	page_size = readl(&xhci->op_regs->page_size);
2351 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2352 			"Supported page size register = 0x%x", page_size);
2353 	for (i = 0; i < 16; i++) {
2354 		if ((0x1 & page_size) != 0)
2355 			break;
2356 		page_size = page_size >> 1;
2357 	}
2358 	if (i < 16)
2359 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2360 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2361 	else
2362 		xhci_warn(xhci, "WARN: no supported page size\n");
2363 	/* Use 4K pages, since that's common and the minimum the HC supports */
2364 	xhci->page_shift = 12;
2365 	xhci->page_size = 1 << xhci->page_shift;
2366 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2367 			"HCD page size set to %iK", xhci->page_size / 1024);
2368 
2369 	/*
2370 	 * Program the Number of Device Slots Enabled field in the CONFIG
2371 	 * register with the max value of slots the HC can handle.
2372 	 */
2373 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2374 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375 			"// xHC can handle at most %d device slots.", val);
2376 	val2 = readl(&xhci->op_regs->config_reg);
2377 	val |= (val2 & ~HCS_SLOTS_MASK);
2378 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379 			"// Setting Max device slots reg = 0x%x.", val);
2380 	writel(val, &xhci->op_regs->config_reg);
2381 
2382 	/*
2383 	 * Section 5.4.8 - doorbell array must be
2384 	 * "physically contiguous and 64-byte (cache line) aligned".
2385 	 */
2386 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2387 			GFP_KERNEL);
2388 	if (!xhci->dcbaa)
2389 		goto fail;
2390 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2391 	xhci->dcbaa->dma = dma;
2392 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2394 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2395 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2396 
2397 	/*
2398 	 * Initialize the ring segment pool.  The ring must be a contiguous
2399 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2400 	 * however, the command ring segment needs 64-byte aligned segments
2401 	 * and our use of dma addresses in the trb_address_map radix tree needs
2402 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2403 	 */
2404 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2405 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2406 
2407 	/* See Table 46 and Note on Figure 55 */
2408 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2409 			2112, 64, xhci->page_size);
2410 	if (!xhci->segment_pool || !xhci->device_pool)
2411 		goto fail;
2412 
2413 	/* Linear stream context arrays don't have any boundary restrictions,
2414 	 * and only need to be 16-byte aligned.
2415 	 */
2416 	xhci->small_streams_pool =
2417 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2418 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2419 	xhci->medium_streams_pool =
2420 		dma_pool_create("xHCI 1KB stream ctx arrays",
2421 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2422 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2423 	 * will be allocated with dma_alloc_coherent()
2424 	 */
2425 
2426 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2427 		goto fail;
2428 
2429 	/* Set up the command ring to have one segments for now. */
2430 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2431 	if (!xhci->cmd_ring)
2432 		goto fail;
2433 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2434 			"Allocated command ring at %p", xhci->cmd_ring);
2435 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2436 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2437 
2438 	/* Set the address in the Command Ring Control register */
2439 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2440 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2441 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2442 		xhci->cmd_ring->cycle_state;
2443 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444 			"// Setting command ring address to 0x%x", val);
2445 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2446 	xhci_dbg_cmd_ptrs(xhci);
2447 
2448 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2449 	if (!xhci->lpm_command)
2450 		goto fail;
2451 
2452 	/* Reserve one command ring TRB for disabling LPM.
2453 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2454 	 * disabling LPM, we only need to reserve one TRB for all devices.
2455 	 */
2456 	xhci->cmd_ring_reserved_trbs++;
2457 
2458 	val = readl(&xhci->cap_regs->db_off);
2459 	val &= DBOFF_MASK;
2460 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2461 			"// Doorbell array is located at offset 0x%x"
2462 			" from cap regs base addr", val);
2463 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2464 	xhci_dbg_regs(xhci);
2465 	xhci_print_run_regs(xhci);
2466 	/* Set ir_set to interrupt register set 0 */
2467 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2468 
2469 	/*
2470 	 * Event ring setup: Allocate a normal ring, but also setup
2471 	 * the event ring segment table (ERST).  Section 4.9.3.
2472 	 */
2473 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2474 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2475 					0, flags);
2476 	if (!xhci->event_ring)
2477 		goto fail;
2478 	if (xhci_check_trb_in_td_math(xhci) < 0)
2479 		goto fail;
2480 
2481 	xhci->erst.entries = dma_alloc_coherent(dev,
2482 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2483 			GFP_KERNEL);
2484 	if (!xhci->erst.entries)
2485 		goto fail;
2486 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2487 			"// Allocated event ring segment table at 0x%llx",
2488 			(unsigned long long)dma);
2489 
2490 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2491 	xhci->erst.num_entries = ERST_NUM_SEGS;
2492 	xhci->erst.erst_dma_addr = dma;
2493 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2495 			xhci->erst.num_entries,
2496 			xhci->erst.entries,
2497 			(unsigned long long)xhci->erst.erst_dma_addr);
2498 
2499 	/* set ring base address and size for each segment table entry */
2500 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2501 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2502 		entry->seg_addr = cpu_to_le64(seg->dma);
2503 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2504 		entry->rsvd = 0;
2505 		seg = seg->next;
2506 	}
2507 
2508 	/* set ERST count with the number of entries in the segment table */
2509 	val = readl(&xhci->ir_set->erst_size);
2510 	val &= ERST_SIZE_MASK;
2511 	val |= ERST_NUM_SEGS;
2512 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2513 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2514 			val);
2515 	writel(val, &xhci->ir_set->erst_size);
2516 
2517 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518 			"// Set ERST entries to point to event ring.");
2519 	/* set the segment table base address */
2520 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2521 			"// Set ERST base address for ir_set 0 = 0x%llx",
2522 			(unsigned long long)xhci->erst.erst_dma_addr);
2523 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2524 	val_64 &= ERST_PTR_MASK;
2525 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2526 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2527 
2528 	/* Set the event ring dequeue address */
2529 	xhci_set_hc_event_deq(xhci);
2530 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531 			"Wrote ERST address to ir_set 0.");
2532 	xhci_print_ir_set(xhci, 0);
2533 
2534 	/*
2535 	 * XXX: Might need to set the Interrupter Moderation Register to
2536 	 * something other than the default (~1ms minimum between interrupts).
2537 	 * See section 5.5.1.2.
2538 	 */
2539 	init_completion(&xhci->addr_dev);
2540 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2541 		xhci->devs[i] = NULL;
2542 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2543 		xhci->bus_state[0].resume_done[i] = 0;
2544 		xhci->bus_state[1].resume_done[i] = 0;
2545 		/* Only the USB 2.0 completions will ever be used. */
2546 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2547 	}
2548 
2549 	if (scratchpad_alloc(xhci, flags))
2550 		goto fail;
2551 	if (xhci_setup_port_arrays(xhci, flags))
2552 		goto fail;
2553 
2554 	/* Enable USB 3.0 device notifications for function remote wake, which
2555 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2556 	 * U3 (device suspend).
2557 	 */
2558 	temp = readl(&xhci->op_regs->dev_notification);
2559 	temp &= ~DEV_NOTE_MASK;
2560 	temp |= DEV_NOTE_FWAKE;
2561 	writel(temp, &xhci->op_regs->dev_notification);
2562 
2563 	return 0;
2564 
2565 fail:
2566 	xhci_warn(xhci, "Couldn't initialize memory\n");
2567 	xhci_halt(xhci);
2568 	xhci_reset(xhci);
2569 	xhci_mem_cleanup(xhci);
2570 	return -ENOMEM;
2571 }
2572