xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision 110e6f26)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					unsigned int cycle_state, gfp_t flags)
41 {
42 	struct xhci_segment *seg;
43 	dma_addr_t	dma;
44 	int		i;
45 
46 	seg = kzalloc(sizeof *seg, flags);
47 	if (!seg)
48 		return NULL;
49 
50 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
51 	if (!seg->trbs) {
52 		kfree(seg);
53 		return NULL;
54 	}
55 
56 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
57 	if (cycle_state == 0) {
58 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
59 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
60 	}
61 	seg->dma = dma;
62 	seg->next = NULL;
63 
64 	return seg;
65 }
66 
67 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
68 {
69 	if (seg->trbs) {
70 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
71 		seg->trbs = NULL;
72 	}
73 	kfree(seg);
74 }
75 
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 				struct xhci_segment *first)
78 {
79 	struct xhci_segment *seg;
80 
81 	seg = first->next;
82 	while (seg != first) {
83 		struct xhci_segment *next = seg->next;
84 		xhci_segment_free(xhci, seg);
85 		seg = next;
86 	}
87 	xhci_segment_free(xhci, first);
88 }
89 
90 /*
91  * Make the prev segment point to the next segment.
92  *
93  * Change the last TRB in the prev segment to be a Link TRB which points to the
94  * DMA address of the next segment.  The caller needs to set any Link TRB
95  * related flags, such as End TRB, Toggle Cycle, and no snoop.
96  */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 		struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 	u32 val;
101 
102 	if (!prev || !next)
103 		return;
104 	prev->next = next;
105 	if (type != TYPE_EVENT) {
106 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 			cpu_to_le64(next->dma);
108 
109 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 		val &= ~TRB_TYPE_BITMASK;
112 		val |= TRB_TYPE(TRB_LINK);
113 		/* Always set the chain bit with 0.95 hardware */
114 		/* Set chain bit for isoc rings on AMD 0.96 host */
115 		if (xhci_link_trb_quirk(xhci) ||
116 				(type == TYPE_ISOC &&
117 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 			val |= TRB_CHAIN;
119 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 	}
121 }
122 
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 		struct xhci_segment *first, struct xhci_segment *last,
129 		unsigned int num_segs)
130 {
131 	struct xhci_segment *next;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	next = ring->enq_seg->next;
137 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 	xhci_link_segments(xhci, last, next, ring->type);
139 	ring->num_segs += num_segs;
140 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141 
142 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 			&= ~cpu_to_le32(LINK_TOGGLE);
145 		last->trbs[TRBS_PER_SEGMENT-1].link.control
146 			|= cpu_to_le32(LINK_TOGGLE);
147 		ring->last_seg = last;
148 	}
149 }
150 
151 /*
152  * We need a radix tree for mapping physical addresses of TRBs to which stream
153  * ID they belong to.  We need to do this because the host controller won't tell
154  * us which stream ring the TRB came from.  We could store the stream ID in an
155  * event data TRB, but that doesn't help us for the cancellation case, since the
156  * endpoint may stop before it reaches that event data TRB.
157  *
158  * The radix tree maps the upper portion of the TRB DMA address to a ring
159  * segment that has the same upper portion of DMA addresses.  For example, say I
160  * have segments of size 1KB, that are always 1KB aligned.  A segment may
161  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
162  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
163  * pass the radix tree a key to get the right stream ID:
164  *
165  *	0x10c90fff >> 10 = 0x43243
166  *	0x10c912c0 >> 10 = 0x43244
167  *	0x10c91400 >> 10 = 0x43245
168  *
169  * Obviously, only those TRBs with DMA addresses that are within the segment
170  * will make the radix tree return the stream ID for that ring.
171  *
172  * Caveats for the radix tree:
173  *
174  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
175  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
177  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
179  * extended systems (where the DMA address can be bigger than 32-bits),
180  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
181  */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 		struct xhci_ring *ring,
184 		struct xhci_segment *seg,
185 		gfp_t mem_flags)
186 {
187 	unsigned long key;
188 	int ret;
189 
190 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 	/* Skip any segments that were already added. */
192 	if (radix_tree_lookup(trb_address_map, key))
193 		return 0;
194 
195 	ret = radix_tree_maybe_preload(mem_flags);
196 	if (ret)
197 		return ret;
198 	ret = radix_tree_insert(trb_address_map,
199 			key, ring);
200 	radix_tree_preload_end();
201 	return ret;
202 }
203 
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 		struct xhci_segment *seg)
206 {
207 	unsigned long key;
208 
209 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 	if (radix_tree_lookup(trb_address_map, key))
211 		radix_tree_delete(trb_address_map, key);
212 }
213 
214 static int xhci_update_stream_segment_mapping(
215 		struct radix_tree_root *trb_address_map,
216 		struct xhci_ring *ring,
217 		struct xhci_segment *first_seg,
218 		struct xhci_segment *last_seg,
219 		gfp_t mem_flags)
220 {
221 	struct xhci_segment *seg;
222 	struct xhci_segment *failed_seg;
223 	int ret;
224 
225 	if (WARN_ON_ONCE(trb_address_map == NULL))
226 		return 0;
227 
228 	seg = first_seg;
229 	do {
230 		ret = xhci_insert_segment_mapping(trb_address_map,
231 				ring, seg, mem_flags);
232 		if (ret)
233 			goto remove_streams;
234 		if (seg == last_seg)
235 			return 0;
236 		seg = seg->next;
237 	} while (seg != first_seg);
238 
239 	return 0;
240 
241 remove_streams:
242 	failed_seg = seg;
243 	seg = first_seg;
244 	do {
245 		xhci_remove_segment_mapping(trb_address_map, seg);
246 		if (seg == failed_seg)
247 			return ret;
248 		seg = seg->next;
249 	} while (seg != first_seg);
250 
251 	return ret;
252 }
253 
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256 	struct xhci_segment *seg;
257 
258 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 		return;
260 
261 	seg = ring->first_seg;
262 	do {
263 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 		seg = seg->next;
265 	} while (seg != ring->first_seg);
266 }
267 
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 			ring->first_seg, ring->last_seg, mem_flags);
272 }
273 
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 	if (!ring)
278 		return;
279 
280 	if (ring->first_seg) {
281 		if (ring->type == TYPE_STREAM)
282 			xhci_remove_stream_mapping(ring);
283 		xhci_free_segments_for_ring(xhci, ring->first_seg);
284 	}
285 
286 	kfree(ring);
287 }
288 
289 static void xhci_initialize_ring_info(struct xhci_ring *ring,
290 					unsigned int cycle_state)
291 {
292 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
293 	ring->enqueue = ring->first_seg->trbs;
294 	ring->enq_seg = ring->first_seg;
295 	ring->dequeue = ring->enqueue;
296 	ring->deq_seg = ring->first_seg;
297 	/* The ring is initialized to 0. The producer must write 1 to the cycle
298 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
299 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
300 	 *
301 	 * New rings are initialized with cycle state equal to 1; if we are
302 	 * handling ring expansion, set the cycle state equal to the old ring.
303 	 */
304 	ring->cycle_state = cycle_state;
305 	/* Not necessary for new rings, but needed for re-initialized rings */
306 	ring->enq_updates = 0;
307 	ring->deq_updates = 0;
308 
309 	/*
310 	 * Each segment has a link TRB, and leave an extra TRB for SW
311 	 * accounting purpose
312 	 */
313 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
314 }
315 
316 /* Allocate segments and link them for a ring */
317 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
318 		struct xhci_segment **first, struct xhci_segment **last,
319 		unsigned int num_segs, unsigned int cycle_state,
320 		enum xhci_ring_type type, gfp_t flags)
321 {
322 	struct xhci_segment *prev;
323 
324 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
325 	if (!prev)
326 		return -ENOMEM;
327 	num_segs--;
328 
329 	*first = prev;
330 	while (num_segs > 0) {
331 		struct xhci_segment	*next;
332 
333 		next = xhci_segment_alloc(xhci, cycle_state, flags);
334 		if (!next) {
335 			prev = *first;
336 			while (prev) {
337 				next = prev->next;
338 				xhci_segment_free(xhci, prev);
339 				prev = next;
340 			}
341 			return -ENOMEM;
342 		}
343 		xhci_link_segments(xhci, prev, next, type);
344 
345 		prev = next;
346 		num_segs--;
347 	}
348 	xhci_link_segments(xhci, prev, *first, type);
349 	*last = prev;
350 
351 	return 0;
352 }
353 
354 /**
355  * Create a new ring with zero or more segments.
356  *
357  * Link each segment together into a ring.
358  * Set the end flag and the cycle toggle bit on the last segment.
359  * See section 4.9.1 and figures 15 and 16.
360  */
361 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
362 		unsigned int num_segs, unsigned int cycle_state,
363 		enum xhci_ring_type type, gfp_t flags)
364 {
365 	struct xhci_ring	*ring;
366 	int ret;
367 
368 	ring = kzalloc(sizeof *(ring), flags);
369 	if (!ring)
370 		return NULL;
371 
372 	ring->num_segs = num_segs;
373 	INIT_LIST_HEAD(&ring->td_list);
374 	ring->type = type;
375 	if (num_segs == 0)
376 		return ring;
377 
378 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 			&ring->last_seg, num_segs, cycle_state, type, flags);
380 	if (ret)
381 		goto fail;
382 
383 	/* Only event ring does not use link TRB */
384 	if (type != TYPE_EVENT) {
385 		/* See section 4.9.2.1 and 6.4.4.1 */
386 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
387 			cpu_to_le32(LINK_TOGGLE);
388 	}
389 	xhci_initialize_ring_info(ring, cycle_state);
390 	return ring;
391 
392 fail:
393 	kfree(ring);
394 	return NULL;
395 }
396 
397 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
398 		struct xhci_virt_device *virt_dev,
399 		unsigned int ep_index)
400 {
401 	int rings_cached;
402 
403 	rings_cached = virt_dev->num_rings_cached;
404 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
405 		virt_dev->ring_cache[rings_cached] =
406 			virt_dev->eps[ep_index].ring;
407 		virt_dev->num_rings_cached++;
408 		xhci_dbg(xhci, "Cached old ring, "
409 				"%d ring%s cached\n",
410 				virt_dev->num_rings_cached,
411 				(virt_dev->num_rings_cached > 1) ? "s" : "");
412 	} else {
413 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
414 		xhci_dbg(xhci, "Ring cache full (%d rings), "
415 				"freeing ring\n",
416 				virt_dev->num_rings_cached);
417 	}
418 	virt_dev->eps[ep_index].ring = NULL;
419 }
420 
421 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
422  * pointers to the beginning of the ring.
423  */
424 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
425 			struct xhci_ring *ring, unsigned int cycle_state,
426 			enum xhci_ring_type type)
427 {
428 	struct xhci_segment	*seg = ring->first_seg;
429 	int i;
430 
431 	do {
432 		memset(seg->trbs, 0,
433 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
434 		if (cycle_state == 0) {
435 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
436 				seg->trbs[i].link.control |=
437 					cpu_to_le32(TRB_CYCLE);
438 		}
439 		/* All endpoint rings have link TRBs */
440 		xhci_link_segments(xhci, seg, seg->next, type);
441 		seg = seg->next;
442 	} while (seg != ring->first_seg);
443 	ring->type = type;
444 	xhci_initialize_ring_info(ring, cycle_state);
445 	/* td list should be empty since all URBs have been cancelled,
446 	 * but just in case...
447 	 */
448 	INIT_LIST_HEAD(&ring->td_list);
449 }
450 
451 /*
452  * Expand an existing ring.
453  * Look for a cached ring or allocate a new ring which has same segment numbers
454  * and link the two rings.
455  */
456 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
457 				unsigned int num_trbs, gfp_t flags)
458 {
459 	struct xhci_segment	*first;
460 	struct xhci_segment	*last;
461 	unsigned int		num_segs;
462 	unsigned int		num_segs_needed;
463 	int			ret;
464 
465 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
466 				(TRBS_PER_SEGMENT - 1);
467 
468 	/* Allocate number of segments we needed, or double the ring size */
469 	num_segs = ring->num_segs > num_segs_needed ?
470 			ring->num_segs : num_segs_needed;
471 
472 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
473 			num_segs, ring->cycle_state, ring->type, flags);
474 	if (ret)
475 		return -ENOMEM;
476 
477 	if (ring->type == TYPE_STREAM)
478 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
479 						ring, first, last, flags);
480 	if (ret) {
481 		struct xhci_segment *next;
482 		do {
483 			next = first->next;
484 			xhci_segment_free(xhci, first);
485 			if (first == last)
486 				break;
487 			first = next;
488 		} while (true);
489 		return ret;
490 	}
491 
492 	xhci_link_rings(xhci, ring, first, last, num_segs);
493 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
494 			"ring expansion succeed, now has %d segments",
495 			ring->num_segs);
496 
497 	return 0;
498 }
499 
500 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
501 
502 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
503 						    int type, gfp_t flags)
504 {
505 	struct xhci_container_ctx *ctx;
506 
507 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
508 		return NULL;
509 
510 	ctx = kzalloc(sizeof(*ctx), flags);
511 	if (!ctx)
512 		return NULL;
513 
514 	ctx->type = type;
515 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
516 	if (type == XHCI_CTX_TYPE_INPUT)
517 		ctx->size += CTX_SIZE(xhci->hcc_params);
518 
519 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
520 	if (!ctx->bytes) {
521 		kfree(ctx);
522 		return NULL;
523 	}
524 	return ctx;
525 }
526 
527 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
528 			     struct xhci_container_ctx *ctx)
529 {
530 	if (!ctx)
531 		return;
532 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
533 	kfree(ctx);
534 }
535 
536 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
537 					      struct xhci_container_ctx *ctx)
538 {
539 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
540 		return NULL;
541 
542 	return (struct xhci_input_control_ctx *)ctx->bytes;
543 }
544 
545 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
546 					struct xhci_container_ctx *ctx)
547 {
548 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
549 		return (struct xhci_slot_ctx *)ctx->bytes;
550 
551 	return (struct xhci_slot_ctx *)
552 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
553 }
554 
555 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
556 				    struct xhci_container_ctx *ctx,
557 				    unsigned int ep_index)
558 {
559 	/* increment ep index by offset of start of ep ctx array */
560 	ep_index++;
561 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
562 		ep_index++;
563 
564 	return (struct xhci_ep_ctx *)
565 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
566 }
567 
568 
569 /***************** Streams structures manipulation *************************/
570 
571 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
572 		unsigned int num_stream_ctxs,
573 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
574 {
575 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
576 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
577 
578 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
579 		dma_free_coherent(dev, size,
580 				stream_ctx, dma);
581 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
582 		return dma_pool_free(xhci->small_streams_pool,
583 				stream_ctx, dma);
584 	else
585 		return dma_pool_free(xhci->medium_streams_pool,
586 				stream_ctx, dma);
587 }
588 
589 /*
590  * The stream context array for each endpoint with bulk streams enabled can
591  * vary in size, based on:
592  *  - how many streams the endpoint supports,
593  *  - the maximum primary stream array size the host controller supports,
594  *  - and how many streams the device driver asks for.
595  *
596  * The stream context array must be a power of 2, and can be as small as
597  * 64 bytes or as large as 1MB.
598  */
599 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
600 		unsigned int num_stream_ctxs, dma_addr_t *dma,
601 		gfp_t mem_flags)
602 {
603 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
604 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
605 
606 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
607 		return dma_alloc_coherent(dev, size,
608 				dma, mem_flags);
609 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
610 		return dma_pool_alloc(xhci->small_streams_pool,
611 				mem_flags, dma);
612 	else
613 		return dma_pool_alloc(xhci->medium_streams_pool,
614 				mem_flags, dma);
615 }
616 
617 struct xhci_ring *xhci_dma_to_transfer_ring(
618 		struct xhci_virt_ep *ep,
619 		u64 address)
620 {
621 	if (ep->ep_state & EP_HAS_STREAMS)
622 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
623 				address >> TRB_SEGMENT_SHIFT);
624 	return ep->ring;
625 }
626 
627 struct xhci_ring *xhci_stream_id_to_ring(
628 		struct xhci_virt_device *dev,
629 		unsigned int ep_index,
630 		unsigned int stream_id)
631 {
632 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
633 
634 	if (stream_id == 0)
635 		return ep->ring;
636 	if (!ep->stream_info)
637 		return NULL;
638 
639 	if (stream_id > ep->stream_info->num_streams)
640 		return NULL;
641 	return ep->stream_info->stream_rings[stream_id];
642 }
643 
644 /*
645  * Change an endpoint's internal structure so it supports stream IDs.  The
646  * number of requested streams includes stream 0, which cannot be used by device
647  * drivers.
648  *
649  * The number of stream contexts in the stream context array may be bigger than
650  * the number of streams the driver wants to use.  This is because the number of
651  * stream context array entries must be a power of two.
652  */
653 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
654 		unsigned int num_stream_ctxs,
655 		unsigned int num_streams, gfp_t mem_flags)
656 {
657 	struct xhci_stream_info *stream_info;
658 	u32 cur_stream;
659 	struct xhci_ring *cur_ring;
660 	u64 addr;
661 	int ret;
662 
663 	xhci_dbg(xhci, "Allocating %u streams and %u "
664 			"stream context array entries.\n",
665 			num_streams, num_stream_ctxs);
666 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
667 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
668 		return NULL;
669 	}
670 	xhci->cmd_ring_reserved_trbs++;
671 
672 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
673 	if (!stream_info)
674 		goto cleanup_trbs;
675 
676 	stream_info->num_streams = num_streams;
677 	stream_info->num_stream_ctxs = num_stream_ctxs;
678 
679 	/* Initialize the array of virtual pointers to stream rings. */
680 	stream_info->stream_rings = kzalloc(
681 			sizeof(struct xhci_ring *)*num_streams,
682 			mem_flags);
683 	if (!stream_info->stream_rings)
684 		goto cleanup_info;
685 
686 	/* Initialize the array of DMA addresses for stream rings for the HW. */
687 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
688 			num_stream_ctxs, &stream_info->ctx_array_dma,
689 			mem_flags);
690 	if (!stream_info->stream_ctx_array)
691 		goto cleanup_ctx;
692 	memset(stream_info->stream_ctx_array, 0,
693 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
694 
695 	/* Allocate everything needed to free the stream rings later */
696 	stream_info->free_streams_command =
697 		xhci_alloc_command(xhci, true, true, mem_flags);
698 	if (!stream_info->free_streams_command)
699 		goto cleanup_ctx;
700 
701 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
702 
703 	/* Allocate rings for all the streams that the driver will use,
704 	 * and add their segment DMA addresses to the radix tree.
705 	 * Stream 0 is reserved.
706 	 */
707 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
708 		stream_info->stream_rings[cur_stream] =
709 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
710 		cur_ring = stream_info->stream_rings[cur_stream];
711 		if (!cur_ring)
712 			goto cleanup_rings;
713 		cur_ring->stream_id = cur_stream;
714 		cur_ring->trb_address_map = &stream_info->trb_address_map;
715 		/* Set deq ptr, cycle bit, and stream context type */
716 		addr = cur_ring->first_seg->dma |
717 			SCT_FOR_CTX(SCT_PRI_TR) |
718 			cur_ring->cycle_state;
719 		stream_info->stream_ctx_array[cur_stream].stream_ring =
720 			cpu_to_le64(addr);
721 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
722 				cur_stream, (unsigned long long) addr);
723 
724 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
725 		if (ret) {
726 			xhci_ring_free(xhci, cur_ring);
727 			stream_info->stream_rings[cur_stream] = NULL;
728 			goto cleanup_rings;
729 		}
730 	}
731 	/* Leave the other unused stream ring pointers in the stream context
732 	 * array initialized to zero.  This will cause the xHC to give us an
733 	 * error if the device asks for a stream ID we don't have setup (if it
734 	 * was any other way, the host controller would assume the ring is
735 	 * "empty" and wait forever for data to be queued to that stream ID).
736 	 */
737 
738 	return stream_info;
739 
740 cleanup_rings:
741 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
742 		cur_ring = stream_info->stream_rings[cur_stream];
743 		if (cur_ring) {
744 			xhci_ring_free(xhci, cur_ring);
745 			stream_info->stream_rings[cur_stream] = NULL;
746 		}
747 	}
748 	xhci_free_command(xhci, stream_info->free_streams_command);
749 cleanup_ctx:
750 	kfree(stream_info->stream_rings);
751 cleanup_info:
752 	kfree(stream_info);
753 cleanup_trbs:
754 	xhci->cmd_ring_reserved_trbs--;
755 	return NULL;
756 }
757 /*
758  * Sets the MaxPStreams field and the Linear Stream Array field.
759  * Sets the dequeue pointer to the stream context array.
760  */
761 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
762 		struct xhci_ep_ctx *ep_ctx,
763 		struct xhci_stream_info *stream_info)
764 {
765 	u32 max_primary_streams;
766 	/* MaxPStreams is the number of stream context array entries, not the
767 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
768 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
769 	 */
770 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
771 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
772 			"Setting number of stream ctx array entries to %u",
773 			1 << (max_primary_streams + 1));
774 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
775 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
776 				       | EP_HAS_LSA);
777 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
778 }
779 
780 /*
781  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
782  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
783  * not at the beginning of the ring).
784  */
785 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
786 		struct xhci_virt_ep *ep)
787 {
788 	dma_addr_t addr;
789 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
790 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
791 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
792 }
793 
794 /* Frees all stream contexts associated with the endpoint,
795  *
796  * Caller should fix the endpoint context streams fields.
797  */
798 void xhci_free_stream_info(struct xhci_hcd *xhci,
799 		struct xhci_stream_info *stream_info)
800 {
801 	int cur_stream;
802 	struct xhci_ring *cur_ring;
803 
804 	if (!stream_info)
805 		return;
806 
807 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
808 			cur_stream++) {
809 		cur_ring = stream_info->stream_rings[cur_stream];
810 		if (cur_ring) {
811 			xhci_ring_free(xhci, cur_ring);
812 			stream_info->stream_rings[cur_stream] = NULL;
813 		}
814 	}
815 	xhci_free_command(xhci, stream_info->free_streams_command);
816 	xhci->cmd_ring_reserved_trbs--;
817 	if (stream_info->stream_ctx_array)
818 		xhci_free_stream_ctx(xhci,
819 				stream_info->num_stream_ctxs,
820 				stream_info->stream_ctx_array,
821 				stream_info->ctx_array_dma);
822 
823 	kfree(stream_info->stream_rings);
824 	kfree(stream_info);
825 }
826 
827 
828 /***************** Device context manipulation *************************/
829 
830 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
831 		struct xhci_virt_ep *ep)
832 {
833 	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
834 		    (unsigned long)ep);
835 	ep->xhci = xhci;
836 }
837 
838 static void xhci_free_tt_info(struct xhci_hcd *xhci,
839 		struct xhci_virt_device *virt_dev,
840 		int slot_id)
841 {
842 	struct list_head *tt_list_head;
843 	struct xhci_tt_bw_info *tt_info, *next;
844 	bool slot_found = false;
845 
846 	/* If the device never made it past the Set Address stage,
847 	 * it may not have the real_port set correctly.
848 	 */
849 	if (virt_dev->real_port == 0 ||
850 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
851 		xhci_dbg(xhci, "Bad real port.\n");
852 		return;
853 	}
854 
855 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
856 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
857 		/* Multi-TT hubs will have more than one entry */
858 		if (tt_info->slot_id == slot_id) {
859 			slot_found = true;
860 			list_del(&tt_info->tt_list);
861 			kfree(tt_info);
862 		} else if (slot_found) {
863 			break;
864 		}
865 	}
866 }
867 
868 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
869 		struct xhci_virt_device *virt_dev,
870 		struct usb_device *hdev,
871 		struct usb_tt *tt, gfp_t mem_flags)
872 {
873 	struct xhci_tt_bw_info		*tt_info;
874 	unsigned int			num_ports;
875 	int				i, j;
876 
877 	if (!tt->multi)
878 		num_ports = 1;
879 	else
880 		num_ports = hdev->maxchild;
881 
882 	for (i = 0; i < num_ports; i++, tt_info++) {
883 		struct xhci_interval_bw_table *bw_table;
884 
885 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
886 		if (!tt_info)
887 			goto free_tts;
888 		INIT_LIST_HEAD(&tt_info->tt_list);
889 		list_add(&tt_info->tt_list,
890 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
891 		tt_info->slot_id = virt_dev->udev->slot_id;
892 		if (tt->multi)
893 			tt_info->ttport = i+1;
894 		bw_table = &tt_info->bw_table;
895 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
896 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
897 	}
898 	return 0;
899 
900 free_tts:
901 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
902 	return -ENOMEM;
903 }
904 
905 
906 /* All the xhci_tds in the ring's TD list should be freed at this point.
907  * Should be called with xhci->lock held if there is any chance the TT lists
908  * will be manipulated by the configure endpoint, allocate device, or update
909  * hub functions while this function is removing the TT entries from the list.
910  */
911 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
912 {
913 	struct xhci_virt_device *dev;
914 	int i;
915 	int old_active_eps = 0;
916 
917 	/* Slot ID 0 is reserved */
918 	if (slot_id == 0 || !xhci->devs[slot_id])
919 		return;
920 
921 	dev = xhci->devs[slot_id];
922 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
923 	if (!dev)
924 		return;
925 
926 	if (dev->tt_info)
927 		old_active_eps = dev->tt_info->active_eps;
928 
929 	for (i = 0; i < 31; ++i) {
930 		if (dev->eps[i].ring)
931 			xhci_ring_free(xhci, dev->eps[i].ring);
932 		if (dev->eps[i].stream_info)
933 			xhci_free_stream_info(xhci,
934 					dev->eps[i].stream_info);
935 		/* Endpoints on the TT/root port lists should have been removed
936 		 * when usb_disable_device() was called for the device.
937 		 * We can't drop them anyway, because the udev might have gone
938 		 * away by this point, and we can't tell what speed it was.
939 		 */
940 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
941 			xhci_warn(xhci, "Slot %u endpoint %u "
942 					"not removed from BW list!\n",
943 					slot_id, i);
944 	}
945 	/* If this is a hub, free the TT(s) from the TT list */
946 	xhci_free_tt_info(xhci, dev, slot_id);
947 	/* If necessary, update the number of active TTs on this root port */
948 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
949 
950 	if (dev->ring_cache) {
951 		for (i = 0; i < dev->num_rings_cached; i++)
952 			xhci_ring_free(xhci, dev->ring_cache[i]);
953 		kfree(dev->ring_cache);
954 	}
955 
956 	if (dev->in_ctx)
957 		xhci_free_container_ctx(xhci, dev->in_ctx);
958 	if (dev->out_ctx)
959 		xhci_free_container_ctx(xhci, dev->out_ctx);
960 
961 	kfree(xhci->devs[slot_id]);
962 	xhci->devs[slot_id] = NULL;
963 }
964 
965 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
966 		struct usb_device *udev, gfp_t flags)
967 {
968 	struct xhci_virt_device *dev;
969 	int i;
970 
971 	/* Slot ID 0 is reserved */
972 	if (slot_id == 0 || xhci->devs[slot_id]) {
973 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
974 		return 0;
975 	}
976 
977 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
978 	if (!xhci->devs[slot_id])
979 		return 0;
980 	dev = xhci->devs[slot_id];
981 
982 	/* Allocate the (output) device context that will be used in the HC. */
983 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
984 	if (!dev->out_ctx)
985 		goto fail;
986 
987 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
988 			(unsigned long long)dev->out_ctx->dma);
989 
990 	/* Allocate the (input) device context for address device command */
991 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
992 	if (!dev->in_ctx)
993 		goto fail;
994 
995 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
996 			(unsigned long long)dev->in_ctx->dma);
997 
998 	/* Initialize the cancellation list and watchdog timers for each ep */
999 	for (i = 0; i < 31; i++) {
1000 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1001 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1002 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1003 	}
1004 
1005 	/* Allocate endpoint 0 ring */
1006 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1007 	if (!dev->eps[0].ring)
1008 		goto fail;
1009 
1010 	/* Allocate pointers to the ring cache */
1011 	dev->ring_cache = kzalloc(
1012 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1013 			flags);
1014 	if (!dev->ring_cache)
1015 		goto fail;
1016 	dev->num_rings_cached = 0;
1017 
1018 	init_completion(&dev->cmd_completion);
1019 	dev->udev = udev;
1020 
1021 	/* Point to output device context in dcbaa. */
1022 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1023 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1024 		 slot_id,
1025 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1026 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1027 
1028 	return 1;
1029 fail:
1030 	xhci_free_virt_device(xhci, slot_id);
1031 	return 0;
1032 }
1033 
1034 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1035 		struct usb_device *udev)
1036 {
1037 	struct xhci_virt_device *virt_dev;
1038 	struct xhci_ep_ctx	*ep0_ctx;
1039 	struct xhci_ring	*ep_ring;
1040 
1041 	virt_dev = xhci->devs[udev->slot_id];
1042 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1043 	ep_ring = virt_dev->eps[0].ring;
1044 	/*
1045 	 * FIXME we don't keep track of the dequeue pointer very well after a
1046 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1047 	 * host to our enqueue pointer.  This should only be called after a
1048 	 * configured device has reset, so all control transfers should have
1049 	 * been completed or cancelled before the reset.
1050 	 */
1051 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1052 							ep_ring->enqueue)
1053 				   | ep_ring->cycle_state);
1054 }
1055 
1056 /*
1057  * The xHCI roothub may have ports of differing speeds in any order in the port
1058  * status registers.  xhci->port_array provides an array of the port speed for
1059  * each offset into the port status registers.
1060  *
1061  * The xHCI hardware wants to know the roothub port number that the USB device
1062  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1063  * know is the index of that port under either the USB 2.0 or the USB 3.0
1064  * roothub, but that doesn't give us the real index into the HW port status
1065  * registers. Call xhci_find_raw_port_number() to get real index.
1066  */
1067 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1068 		struct usb_device *udev)
1069 {
1070 	struct usb_device *top_dev;
1071 	struct usb_hcd *hcd;
1072 
1073 	if (udev->speed >= USB_SPEED_SUPER)
1074 		hcd = xhci->shared_hcd;
1075 	else
1076 		hcd = xhci->main_hcd;
1077 
1078 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1079 			top_dev = top_dev->parent)
1080 		/* Found device below root hub */;
1081 
1082 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1083 }
1084 
1085 /* Setup an xHCI virtual device for a Set Address command */
1086 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1087 {
1088 	struct xhci_virt_device *dev;
1089 	struct xhci_ep_ctx	*ep0_ctx;
1090 	struct xhci_slot_ctx    *slot_ctx;
1091 	u32			port_num;
1092 	u32			max_packets;
1093 	struct usb_device *top_dev;
1094 
1095 	dev = xhci->devs[udev->slot_id];
1096 	/* Slot ID 0 is reserved */
1097 	if (udev->slot_id == 0 || !dev) {
1098 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1099 				udev->slot_id);
1100 		return -EINVAL;
1101 	}
1102 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1103 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1104 
1105 	/* 3) Only the control endpoint is valid - one endpoint context */
1106 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1107 	switch (udev->speed) {
1108 	case USB_SPEED_SUPER_PLUS:
1109 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1110 		max_packets = MAX_PACKET(512);
1111 		break;
1112 	case USB_SPEED_SUPER:
1113 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1114 		max_packets = MAX_PACKET(512);
1115 		break;
1116 	case USB_SPEED_HIGH:
1117 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1118 		max_packets = MAX_PACKET(64);
1119 		break;
1120 	/* USB core guesses at a 64-byte max packet first for FS devices */
1121 	case USB_SPEED_FULL:
1122 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1123 		max_packets = MAX_PACKET(64);
1124 		break;
1125 	case USB_SPEED_LOW:
1126 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1127 		max_packets = MAX_PACKET(8);
1128 		break;
1129 	case USB_SPEED_WIRELESS:
1130 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1131 		return -EINVAL;
1132 		break;
1133 	default:
1134 		/* Speed was set earlier, this shouldn't happen. */
1135 		return -EINVAL;
1136 	}
1137 	/* Find the root hub port this device is under */
1138 	port_num = xhci_find_real_port_number(xhci, udev);
1139 	if (!port_num)
1140 		return -EINVAL;
1141 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1142 	/* Set the port number in the virtual_device to the faked port number */
1143 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1144 			top_dev = top_dev->parent)
1145 		/* Found device below root hub */;
1146 	dev->fake_port = top_dev->portnum;
1147 	dev->real_port = port_num;
1148 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1149 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1150 
1151 	/* Find the right bandwidth table that this device will be a part of.
1152 	 * If this is a full speed device attached directly to a root port (or a
1153 	 * decendent of one), it counts as a primary bandwidth domain, not a
1154 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1155 	 * will never be created for the HS root hub.
1156 	 */
1157 	if (!udev->tt || !udev->tt->hub->parent) {
1158 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1159 	} else {
1160 		struct xhci_root_port_bw_info *rh_bw;
1161 		struct xhci_tt_bw_info *tt_bw;
1162 
1163 		rh_bw = &xhci->rh_bw[port_num - 1];
1164 		/* Find the right TT. */
1165 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1166 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1167 				continue;
1168 
1169 			if (!dev->udev->tt->multi ||
1170 					(udev->tt->multi &&
1171 					 tt_bw->ttport == dev->udev->ttport)) {
1172 				dev->bw_table = &tt_bw->bw_table;
1173 				dev->tt_info = tt_bw;
1174 				break;
1175 			}
1176 		}
1177 		if (!dev->tt_info)
1178 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1179 	}
1180 
1181 	/* Is this a LS/FS device under an external HS hub? */
1182 	if (udev->tt && udev->tt->hub->parent) {
1183 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1184 						(udev->ttport << 8));
1185 		if (udev->tt->multi)
1186 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1187 	}
1188 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1189 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1190 
1191 	/* Step 4 - ring already allocated */
1192 	/* Step 5 */
1193 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1194 
1195 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1197 					 max_packets);
1198 
1199 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1200 				   dev->eps[0].ring->cycle_state);
1201 
1202 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203 
1204 	return 0;
1205 }
1206 
1207 /*
1208  * Convert interval expressed as 2^(bInterval - 1) == interval into
1209  * straight exponent value 2^n == interval.
1210  *
1211  */
1212 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213 		struct usb_host_endpoint *ep)
1214 {
1215 	unsigned int interval;
1216 
1217 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218 	if (interval != ep->desc.bInterval - 1)
1219 		dev_warn(&udev->dev,
1220 			 "ep %#x - rounding interval to %d %sframes\n",
1221 			 ep->desc.bEndpointAddress,
1222 			 1 << interval,
1223 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1224 
1225 	if (udev->speed == USB_SPEED_FULL) {
1226 		/*
1227 		 * Full speed isoc endpoints specify interval in frames,
1228 		 * not microframes. We are using microframes everywhere,
1229 		 * so adjust accordingly.
1230 		 */
1231 		interval += 3;	/* 1 frame = 2^3 uframes */
1232 	}
1233 
1234 	return interval;
1235 }
1236 
1237 /*
1238  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239  * microframes, rounded down to nearest power of 2.
1240  */
1241 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1243 		unsigned int min_exponent, unsigned int max_exponent)
1244 {
1245 	unsigned int interval;
1246 
1247 	interval = fls(desc_interval) - 1;
1248 	interval = clamp_val(interval, min_exponent, max_exponent);
1249 	if ((1 << interval) != desc_interval)
1250 		dev_dbg(&udev->dev,
1251 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252 			 ep->desc.bEndpointAddress,
1253 			 1 << interval,
1254 			 desc_interval);
1255 
1256 	return interval;
1257 }
1258 
1259 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260 		struct usb_host_endpoint *ep)
1261 {
1262 	if (ep->desc.bInterval == 0)
1263 		return 0;
1264 	return xhci_microframes_to_exponent(udev, ep,
1265 			ep->desc.bInterval, 0, 15);
1266 }
1267 
1268 
1269 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270 		struct usb_host_endpoint *ep)
1271 {
1272 	return xhci_microframes_to_exponent(udev, ep,
1273 			ep->desc.bInterval * 8, 3, 10);
1274 }
1275 
1276 /* Return the polling or NAK interval.
1277  *
1278  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1279  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280  *
1281  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282  * is set to 0.
1283  */
1284 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285 		struct usb_host_endpoint *ep)
1286 {
1287 	unsigned int interval = 0;
1288 
1289 	switch (udev->speed) {
1290 	case USB_SPEED_HIGH:
1291 		/* Max NAK rate */
1292 		if (usb_endpoint_xfer_control(&ep->desc) ||
1293 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1294 			interval = xhci_parse_microframe_interval(udev, ep);
1295 			break;
1296 		}
1297 		/* Fall through - SS and HS isoc/int have same decoding */
1298 
1299 	case USB_SPEED_SUPER_PLUS:
1300 	case USB_SPEED_SUPER:
1301 		if (usb_endpoint_xfer_int(&ep->desc) ||
1302 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303 			interval = xhci_parse_exponent_interval(udev, ep);
1304 		}
1305 		break;
1306 
1307 	case USB_SPEED_FULL:
1308 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309 			interval = xhci_parse_exponent_interval(udev, ep);
1310 			break;
1311 		}
1312 		/*
1313 		 * Fall through for interrupt endpoint interval decoding
1314 		 * since it uses the same rules as low speed interrupt
1315 		 * endpoints.
1316 		 */
1317 
1318 	case USB_SPEED_LOW:
1319 		if (usb_endpoint_xfer_int(&ep->desc) ||
1320 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1321 
1322 			interval = xhci_parse_frame_interval(udev, ep);
1323 		}
1324 		break;
1325 
1326 	default:
1327 		BUG();
1328 	}
1329 	return interval;
1330 }
1331 
1332 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333  * High speed endpoint descriptors can define "the number of additional
1334  * transaction opportunities per microframe", but that goes in the Max Burst
1335  * endpoint context field.
1336  */
1337 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338 		struct usb_host_endpoint *ep)
1339 {
1340 	if (udev->speed < USB_SPEED_SUPER ||
1341 			!usb_endpoint_xfer_isoc(&ep->desc))
1342 		return 0;
1343 	return ep->ss_ep_comp.bmAttributes;
1344 }
1345 
1346 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1347 				       struct usb_host_endpoint *ep)
1348 {
1349 	/* Super speed and Plus have max burst in ep companion desc */
1350 	if (udev->speed >= USB_SPEED_SUPER)
1351 		return ep->ss_ep_comp.bMaxBurst;
1352 
1353 	if (udev->speed == USB_SPEED_HIGH &&
1354 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1355 	     usb_endpoint_xfer_int(&ep->desc)))
1356 		return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1357 
1358 	return 0;
1359 }
1360 
1361 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1362 {
1363 	int in;
1364 
1365 	in = usb_endpoint_dir_in(&ep->desc);
1366 
1367 	if (usb_endpoint_xfer_control(&ep->desc))
1368 		return CTRL_EP;
1369 	if (usb_endpoint_xfer_bulk(&ep->desc))
1370 		return in ? BULK_IN_EP : BULK_OUT_EP;
1371 	if (usb_endpoint_xfer_isoc(&ep->desc))
1372 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1373 	if (usb_endpoint_xfer_int(&ep->desc))
1374 		return in ? INT_IN_EP : INT_OUT_EP;
1375 	return 0;
1376 }
1377 
1378 /* Return the maximum endpoint service interval time (ESIT) payload.
1379  * Basically, this is the maxpacket size, multiplied by the burst size
1380  * and mult size.
1381  */
1382 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1383 		struct usb_host_endpoint *ep)
1384 {
1385 	int max_burst;
1386 	int max_packet;
1387 
1388 	/* Only applies for interrupt or isochronous endpoints */
1389 	if (usb_endpoint_xfer_control(&ep->desc) ||
1390 			usb_endpoint_xfer_bulk(&ep->desc))
1391 		return 0;
1392 
1393 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1394 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1395 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1396 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1397 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1398 	else if (udev->speed >= USB_SPEED_SUPER)
1399 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1400 
1401 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1402 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1403 	/* A 0 in max burst means 1 transfer per ESIT */
1404 	return max_packet * (max_burst + 1);
1405 }
1406 
1407 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1408  * Drivers will have to call usb_alloc_streams() to do that.
1409  */
1410 int xhci_endpoint_init(struct xhci_hcd *xhci,
1411 		struct xhci_virt_device *virt_dev,
1412 		struct usb_device *udev,
1413 		struct usb_host_endpoint *ep,
1414 		gfp_t mem_flags)
1415 {
1416 	unsigned int ep_index;
1417 	struct xhci_ep_ctx *ep_ctx;
1418 	struct xhci_ring *ep_ring;
1419 	unsigned int max_packet;
1420 	enum xhci_ring_type ring_type;
1421 	u32 max_esit_payload;
1422 	u32 endpoint_type;
1423 	unsigned int max_burst;
1424 	unsigned int interval;
1425 	unsigned int mult;
1426 	unsigned int avg_trb_len;
1427 	unsigned int err_count = 0;
1428 
1429 	ep_index = xhci_get_endpoint_index(&ep->desc);
1430 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1431 
1432 	endpoint_type = xhci_get_endpoint_type(ep);
1433 	if (!endpoint_type)
1434 		return -EINVAL;
1435 
1436 	ring_type = usb_endpoint_type(&ep->desc);
1437 	/* Set up the endpoint ring */
1438 	virt_dev->eps[ep_index].new_ring =
1439 		xhci_ring_alloc(xhci, 2, 1, ring_type, mem_flags);
1440 	if (!virt_dev->eps[ep_index].new_ring) {
1441 		/* Attempt to use the ring cache */
1442 		if (virt_dev->num_rings_cached == 0)
1443 			return -ENOMEM;
1444 		virt_dev->num_rings_cached--;
1445 		virt_dev->eps[ep_index].new_ring =
1446 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1447 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1448 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1449 					1, ring_type);
1450 	}
1451 	virt_dev->eps[ep_index].skip = false;
1452 	ep_ring = virt_dev->eps[ep_index].new_ring;
1453 
1454 	/*
1455 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1456 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1457 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1458 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1459 	 */
1460 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1461 	interval = xhci_get_endpoint_interval(udev, ep);
1462 	mult = xhci_get_endpoint_mult(udev, ep);
1463 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1464 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1465 	avg_trb_len = max_esit_payload;
1466 
1467 	/* FIXME dig Mult and streams info out of ep companion desc */
1468 
1469 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1470 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1471 		err_count = 3;
1472 	/* Some devices get this wrong */
1473 	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1474 		max_packet = 512;
1475 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1476 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1477 		avg_trb_len = 8;
1478 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1479 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1480 		mult = 0;
1481 
1482 	/* Fill the endpoint context */
1483 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1484 				      EP_INTERVAL(interval) |
1485 				      EP_MULT(mult));
1486 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1487 				       MAX_PACKET(max_packet) |
1488 				       MAX_BURST(max_burst) |
1489 				       ERROR_COUNT(err_count));
1490 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1491 				  ep_ring->cycle_state);
1492 
1493 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1494 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1495 
1496 	/* FIXME Debug endpoint context */
1497 	return 0;
1498 }
1499 
1500 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1501 		struct xhci_virt_device *virt_dev,
1502 		struct usb_host_endpoint *ep)
1503 {
1504 	unsigned int ep_index;
1505 	struct xhci_ep_ctx *ep_ctx;
1506 
1507 	ep_index = xhci_get_endpoint_index(&ep->desc);
1508 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1509 
1510 	ep_ctx->ep_info = 0;
1511 	ep_ctx->ep_info2 = 0;
1512 	ep_ctx->deq = 0;
1513 	ep_ctx->tx_info = 0;
1514 	/* Don't free the endpoint ring until the set interface or configuration
1515 	 * request succeeds.
1516 	 */
1517 }
1518 
1519 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1520 {
1521 	bw_info->ep_interval = 0;
1522 	bw_info->mult = 0;
1523 	bw_info->num_packets = 0;
1524 	bw_info->max_packet_size = 0;
1525 	bw_info->type = 0;
1526 	bw_info->max_esit_payload = 0;
1527 }
1528 
1529 void xhci_update_bw_info(struct xhci_hcd *xhci,
1530 		struct xhci_container_ctx *in_ctx,
1531 		struct xhci_input_control_ctx *ctrl_ctx,
1532 		struct xhci_virt_device *virt_dev)
1533 {
1534 	struct xhci_bw_info *bw_info;
1535 	struct xhci_ep_ctx *ep_ctx;
1536 	unsigned int ep_type;
1537 	int i;
1538 
1539 	for (i = 1; i < 31; ++i) {
1540 		bw_info = &virt_dev->eps[i].bw_info;
1541 
1542 		/* We can't tell what endpoint type is being dropped, but
1543 		 * unconditionally clearing the bandwidth info for non-periodic
1544 		 * endpoints should be harmless because the info will never be
1545 		 * set in the first place.
1546 		 */
1547 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1548 			/* Dropped endpoint */
1549 			xhci_clear_endpoint_bw_info(bw_info);
1550 			continue;
1551 		}
1552 
1553 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1554 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1555 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1556 
1557 			/* Ignore non-periodic endpoints */
1558 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1559 					ep_type != ISOC_IN_EP &&
1560 					ep_type != INT_IN_EP)
1561 				continue;
1562 
1563 			/* Added or changed endpoint */
1564 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1565 					le32_to_cpu(ep_ctx->ep_info));
1566 			/* Number of packets and mult are zero-based in the
1567 			 * input context, but we want one-based for the
1568 			 * interval table.
1569 			 */
1570 			bw_info->mult = CTX_TO_EP_MULT(
1571 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1572 			bw_info->num_packets = CTX_TO_MAX_BURST(
1573 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1574 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1575 					le32_to_cpu(ep_ctx->ep_info2));
1576 			bw_info->type = ep_type;
1577 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1578 					le32_to_cpu(ep_ctx->tx_info));
1579 		}
1580 	}
1581 }
1582 
1583 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1584  * Useful when you want to change one particular aspect of the endpoint and then
1585  * issue a configure endpoint command.
1586  */
1587 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1588 		struct xhci_container_ctx *in_ctx,
1589 		struct xhci_container_ctx *out_ctx,
1590 		unsigned int ep_index)
1591 {
1592 	struct xhci_ep_ctx *out_ep_ctx;
1593 	struct xhci_ep_ctx *in_ep_ctx;
1594 
1595 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1596 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1597 
1598 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1599 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1600 	in_ep_ctx->deq = out_ep_ctx->deq;
1601 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1602 }
1603 
1604 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1605  * Useful when you want to change one particular aspect of the endpoint and then
1606  * issue a configure endpoint command.  Only the context entries field matters,
1607  * but we'll copy the whole thing anyway.
1608  */
1609 void xhci_slot_copy(struct xhci_hcd *xhci,
1610 		struct xhci_container_ctx *in_ctx,
1611 		struct xhci_container_ctx *out_ctx)
1612 {
1613 	struct xhci_slot_ctx *in_slot_ctx;
1614 	struct xhci_slot_ctx *out_slot_ctx;
1615 
1616 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1617 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1618 
1619 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1620 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1621 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1622 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1623 }
1624 
1625 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1626 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1627 {
1628 	int i;
1629 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1630 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1631 
1632 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1633 			"Allocating %d scratchpad buffers", num_sp);
1634 
1635 	if (!num_sp)
1636 		return 0;
1637 
1638 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1639 	if (!xhci->scratchpad)
1640 		goto fail_sp;
1641 
1642 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1643 				     num_sp * sizeof(u64),
1644 				     &xhci->scratchpad->sp_dma, flags);
1645 	if (!xhci->scratchpad->sp_array)
1646 		goto fail_sp2;
1647 
1648 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1649 	if (!xhci->scratchpad->sp_buffers)
1650 		goto fail_sp3;
1651 
1652 	xhci->scratchpad->sp_dma_buffers =
1653 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1654 
1655 	if (!xhci->scratchpad->sp_dma_buffers)
1656 		goto fail_sp4;
1657 
1658 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1659 	for (i = 0; i < num_sp; i++) {
1660 		dma_addr_t dma;
1661 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1662 				flags);
1663 		if (!buf)
1664 			goto fail_sp5;
1665 
1666 		xhci->scratchpad->sp_array[i] = dma;
1667 		xhci->scratchpad->sp_buffers[i] = buf;
1668 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1669 	}
1670 
1671 	return 0;
1672 
1673  fail_sp5:
1674 	for (i = i - 1; i >= 0; i--) {
1675 		dma_free_coherent(dev, xhci->page_size,
1676 				    xhci->scratchpad->sp_buffers[i],
1677 				    xhci->scratchpad->sp_dma_buffers[i]);
1678 	}
1679 	kfree(xhci->scratchpad->sp_dma_buffers);
1680 
1681  fail_sp4:
1682 	kfree(xhci->scratchpad->sp_buffers);
1683 
1684  fail_sp3:
1685 	dma_free_coherent(dev, num_sp * sizeof(u64),
1686 			    xhci->scratchpad->sp_array,
1687 			    xhci->scratchpad->sp_dma);
1688 
1689  fail_sp2:
1690 	kfree(xhci->scratchpad);
1691 	xhci->scratchpad = NULL;
1692 
1693  fail_sp:
1694 	return -ENOMEM;
1695 }
1696 
1697 static void scratchpad_free(struct xhci_hcd *xhci)
1698 {
1699 	int num_sp;
1700 	int i;
1701 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1702 
1703 	if (!xhci->scratchpad)
1704 		return;
1705 
1706 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707 
1708 	for (i = 0; i < num_sp; i++) {
1709 		dma_free_coherent(dev, xhci->page_size,
1710 				    xhci->scratchpad->sp_buffers[i],
1711 				    xhci->scratchpad->sp_dma_buffers[i]);
1712 	}
1713 	kfree(xhci->scratchpad->sp_dma_buffers);
1714 	kfree(xhci->scratchpad->sp_buffers);
1715 	dma_free_coherent(dev, num_sp * sizeof(u64),
1716 			    xhci->scratchpad->sp_array,
1717 			    xhci->scratchpad->sp_dma);
1718 	kfree(xhci->scratchpad);
1719 	xhci->scratchpad = NULL;
1720 }
1721 
1722 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1723 		bool allocate_in_ctx, bool allocate_completion,
1724 		gfp_t mem_flags)
1725 {
1726 	struct xhci_command *command;
1727 
1728 	command = kzalloc(sizeof(*command), mem_flags);
1729 	if (!command)
1730 		return NULL;
1731 
1732 	if (allocate_in_ctx) {
1733 		command->in_ctx =
1734 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1735 					mem_flags);
1736 		if (!command->in_ctx) {
1737 			kfree(command);
1738 			return NULL;
1739 		}
1740 	}
1741 
1742 	if (allocate_completion) {
1743 		command->completion =
1744 			kzalloc(sizeof(struct completion), mem_flags);
1745 		if (!command->completion) {
1746 			xhci_free_container_ctx(xhci, command->in_ctx);
1747 			kfree(command);
1748 			return NULL;
1749 		}
1750 		init_completion(command->completion);
1751 	}
1752 
1753 	command->status = 0;
1754 	INIT_LIST_HEAD(&command->cmd_list);
1755 	return command;
1756 }
1757 
1758 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1759 {
1760 	if (urb_priv) {
1761 		kfree(urb_priv->td[0]);
1762 		kfree(urb_priv);
1763 	}
1764 }
1765 
1766 void xhci_free_command(struct xhci_hcd *xhci,
1767 		struct xhci_command *command)
1768 {
1769 	xhci_free_container_ctx(xhci,
1770 			command->in_ctx);
1771 	kfree(command->completion);
1772 	kfree(command);
1773 }
1774 
1775 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1776 {
1777 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1778 	int size;
1779 	int i, j, num_ports;
1780 
1781 	del_timer_sync(&xhci->cmd_timer);
1782 
1783 	/* Free the Event Ring Segment Table and the actual Event Ring */
1784 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1785 	if (xhci->erst.entries)
1786 		dma_free_coherent(dev, size,
1787 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1788 	xhci->erst.entries = NULL;
1789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1790 	if (xhci->event_ring)
1791 		xhci_ring_free(xhci, xhci->event_ring);
1792 	xhci->event_ring = NULL;
1793 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1794 
1795 	if (xhci->lpm_command)
1796 		xhci_free_command(xhci, xhci->lpm_command);
1797 	xhci->lpm_command = NULL;
1798 	if (xhci->cmd_ring)
1799 		xhci_ring_free(xhci, xhci->cmd_ring);
1800 	xhci->cmd_ring = NULL;
1801 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1802 	xhci_cleanup_command_queue(xhci);
1803 
1804 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1805 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1806 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1807 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1808 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1809 			while (!list_empty(ep))
1810 				list_del_init(ep->next);
1811 		}
1812 	}
1813 
1814 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1815 		xhci_free_virt_device(xhci, i);
1816 
1817 	dma_pool_destroy(xhci->segment_pool);
1818 	xhci->segment_pool = NULL;
1819 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1820 
1821 	dma_pool_destroy(xhci->device_pool);
1822 	xhci->device_pool = NULL;
1823 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1824 
1825 	dma_pool_destroy(xhci->small_streams_pool);
1826 	xhci->small_streams_pool = NULL;
1827 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1828 			"Freed small stream array pool");
1829 
1830 	dma_pool_destroy(xhci->medium_streams_pool);
1831 	xhci->medium_streams_pool = NULL;
1832 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1833 			"Freed medium stream array pool");
1834 
1835 	if (xhci->dcbaa)
1836 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1837 				xhci->dcbaa, xhci->dcbaa->dma);
1838 	xhci->dcbaa = NULL;
1839 
1840 	scratchpad_free(xhci);
1841 
1842 	if (!xhci->rh_bw)
1843 		goto no_bw;
1844 
1845 	for (i = 0; i < num_ports; i++) {
1846 		struct xhci_tt_bw_info *tt, *n;
1847 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1848 			list_del(&tt->tt_list);
1849 			kfree(tt);
1850 		}
1851 	}
1852 
1853 no_bw:
1854 	xhci->cmd_ring_reserved_trbs = 0;
1855 	xhci->num_usb2_ports = 0;
1856 	xhci->num_usb3_ports = 0;
1857 	xhci->num_active_eps = 0;
1858 	kfree(xhci->usb2_ports);
1859 	kfree(xhci->usb3_ports);
1860 	kfree(xhci->port_array);
1861 	kfree(xhci->rh_bw);
1862 	kfree(xhci->ext_caps);
1863 
1864 	xhci->page_size = 0;
1865 	xhci->page_shift = 0;
1866 	xhci->bus_state[0].bus_suspended = 0;
1867 	xhci->bus_state[1].bus_suspended = 0;
1868 }
1869 
1870 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1871 		struct xhci_segment *input_seg,
1872 		union xhci_trb *start_trb,
1873 		union xhci_trb *end_trb,
1874 		dma_addr_t input_dma,
1875 		struct xhci_segment *result_seg,
1876 		char *test_name, int test_number)
1877 {
1878 	unsigned long long start_dma;
1879 	unsigned long long end_dma;
1880 	struct xhci_segment *seg;
1881 
1882 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1883 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1884 
1885 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1886 	if (seg != result_seg) {
1887 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1888 				test_name, test_number);
1889 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1890 				"input DMA 0x%llx\n",
1891 				input_seg,
1892 				(unsigned long long) input_dma);
1893 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1894 				"ending TRB %p (0x%llx DMA)\n",
1895 				start_trb, start_dma,
1896 				end_trb, end_dma);
1897 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1898 				result_seg, seg);
1899 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1900 			  true);
1901 		return -1;
1902 	}
1903 	return 0;
1904 }
1905 
1906 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1907 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1908 {
1909 	struct {
1910 		dma_addr_t		input_dma;
1911 		struct xhci_segment	*result_seg;
1912 	} simple_test_vector [] = {
1913 		/* A zeroed DMA field should fail */
1914 		{ 0, NULL },
1915 		/* One TRB before the ring start should fail */
1916 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1917 		/* One byte before the ring start should fail */
1918 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1919 		/* Starting TRB should succeed */
1920 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1921 		/* Ending TRB should succeed */
1922 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1923 			xhci->event_ring->first_seg },
1924 		/* One byte after the ring end should fail */
1925 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1926 		/* One TRB after the ring end should fail */
1927 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1928 		/* An address of all ones should fail */
1929 		{ (dma_addr_t) (~0), NULL },
1930 	};
1931 	struct {
1932 		struct xhci_segment	*input_seg;
1933 		union xhci_trb		*start_trb;
1934 		union xhci_trb		*end_trb;
1935 		dma_addr_t		input_dma;
1936 		struct xhci_segment	*result_seg;
1937 	} complex_test_vector [] = {
1938 		/* Test feeding a valid DMA address from a different ring */
1939 		{	.input_seg = xhci->event_ring->first_seg,
1940 			.start_trb = xhci->event_ring->first_seg->trbs,
1941 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1942 			.input_dma = xhci->cmd_ring->first_seg->dma,
1943 			.result_seg = NULL,
1944 		},
1945 		/* Test feeding a valid end TRB from a different ring */
1946 		{	.input_seg = xhci->event_ring->first_seg,
1947 			.start_trb = xhci->event_ring->first_seg->trbs,
1948 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1949 			.input_dma = xhci->cmd_ring->first_seg->dma,
1950 			.result_seg = NULL,
1951 		},
1952 		/* Test feeding a valid start and end TRB from a different ring */
1953 		{	.input_seg = xhci->event_ring->first_seg,
1954 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1955 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1956 			.input_dma = xhci->cmd_ring->first_seg->dma,
1957 			.result_seg = NULL,
1958 		},
1959 		/* TRB in this ring, but after this TD */
1960 		{	.input_seg = xhci->event_ring->first_seg,
1961 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1962 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1963 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1964 			.result_seg = NULL,
1965 		},
1966 		/* TRB in this ring, but before this TD */
1967 		{	.input_seg = xhci->event_ring->first_seg,
1968 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1969 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1970 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1971 			.result_seg = NULL,
1972 		},
1973 		/* TRB in this ring, but after this wrapped TD */
1974 		{	.input_seg = xhci->event_ring->first_seg,
1975 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1976 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1977 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1978 			.result_seg = NULL,
1979 		},
1980 		/* TRB in this ring, but before this wrapped TD */
1981 		{	.input_seg = xhci->event_ring->first_seg,
1982 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1983 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1984 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1985 			.result_seg = NULL,
1986 		},
1987 		/* TRB not in this ring, and we have a wrapped TD */
1988 		{	.input_seg = xhci->event_ring->first_seg,
1989 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1990 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1991 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1992 			.result_seg = NULL,
1993 		},
1994 	};
1995 
1996 	unsigned int num_tests;
1997 	int i, ret;
1998 
1999 	num_tests = ARRAY_SIZE(simple_test_vector);
2000 	for (i = 0; i < num_tests; i++) {
2001 		ret = xhci_test_trb_in_td(xhci,
2002 				xhci->event_ring->first_seg,
2003 				xhci->event_ring->first_seg->trbs,
2004 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2005 				simple_test_vector[i].input_dma,
2006 				simple_test_vector[i].result_seg,
2007 				"Simple", i);
2008 		if (ret < 0)
2009 			return ret;
2010 	}
2011 
2012 	num_tests = ARRAY_SIZE(complex_test_vector);
2013 	for (i = 0; i < num_tests; i++) {
2014 		ret = xhci_test_trb_in_td(xhci,
2015 				complex_test_vector[i].input_seg,
2016 				complex_test_vector[i].start_trb,
2017 				complex_test_vector[i].end_trb,
2018 				complex_test_vector[i].input_dma,
2019 				complex_test_vector[i].result_seg,
2020 				"Complex", i);
2021 		if (ret < 0)
2022 			return ret;
2023 	}
2024 	xhci_dbg(xhci, "TRB math tests passed.\n");
2025 	return 0;
2026 }
2027 
2028 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2029 {
2030 	u64 temp;
2031 	dma_addr_t deq;
2032 
2033 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2034 			xhci->event_ring->dequeue);
2035 	if (deq == 0 && !in_interrupt())
2036 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2037 				"dequeue ptr.\n");
2038 	/* Update HC event ring dequeue pointer */
2039 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2040 	temp &= ERST_PTR_MASK;
2041 	/* Don't clear the EHB bit (which is RW1C) because
2042 	 * there might be more events to service.
2043 	 */
2044 	temp &= ~ERST_EHB;
2045 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2046 			"// Write event ring dequeue pointer, "
2047 			"preserving EHB bit");
2048 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2049 			&xhci->ir_set->erst_dequeue);
2050 }
2051 
2052 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2053 		__le32 __iomem *addr, int max_caps)
2054 {
2055 	u32 temp, port_offset, port_count;
2056 	int i;
2057 	u8 major_revision;
2058 	struct xhci_hub *rhub;
2059 
2060 	temp = readl(addr);
2061 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2062 
2063 	if (major_revision == 0x03) {
2064 		rhub = &xhci->usb3_rhub;
2065 	} else if (major_revision <= 0x02) {
2066 		rhub = &xhci->usb2_rhub;
2067 	} else {
2068 		xhci_warn(xhci, "Ignoring unknown port speed, "
2069 				"Ext Cap %p, revision = 0x%x\n",
2070 				addr, major_revision);
2071 		/* Ignoring port protocol we can't understand. FIXME */
2072 		return;
2073 	}
2074 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2075 	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2076 
2077 	/* Port offset and count in the third dword, see section 7.2 */
2078 	temp = readl(addr + 2);
2079 	port_offset = XHCI_EXT_PORT_OFF(temp);
2080 	port_count = XHCI_EXT_PORT_COUNT(temp);
2081 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2082 			"Ext Cap %p, port offset = %u, "
2083 			"count = %u, revision = 0x%x",
2084 			addr, port_offset, port_count, major_revision);
2085 	/* Port count includes the current port offset */
2086 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2087 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2088 		return;
2089 
2090 	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2091 	if (rhub->psi_count) {
2092 		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2093 				    GFP_KERNEL);
2094 		if (!rhub->psi)
2095 			rhub->psi_count = 0;
2096 
2097 		rhub->psi_uid_count++;
2098 		for (i = 0; i < rhub->psi_count; i++) {
2099 			rhub->psi[i] = readl(addr + 4 + i);
2100 
2101 			/* count unique ID values, two consecutive entries can
2102 			 * have the same ID if link is assymetric
2103 			 */
2104 			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2105 				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2106 				rhub->psi_uid_count++;
2107 
2108 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2109 				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2110 				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2111 				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2112 				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2113 				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2114 				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2115 		}
2116 	}
2117 	/* cache usb2 port capabilities */
2118 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2119 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2120 
2121 	/* Check the host's USB2 LPM capability */
2122 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2123 			(temp & XHCI_L1C)) {
2124 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2125 				"xHCI 0.96: support USB2 software lpm");
2126 		xhci->sw_lpm_support = 1;
2127 	}
2128 
2129 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2130 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2131 				"xHCI 1.0: support USB2 software lpm");
2132 		xhci->sw_lpm_support = 1;
2133 		if (temp & XHCI_HLC) {
2134 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2135 					"xHCI 1.0: support USB2 hardware lpm");
2136 			xhci->hw_lpm_support = 1;
2137 		}
2138 	}
2139 
2140 	port_offset--;
2141 	for (i = port_offset; i < (port_offset + port_count); i++) {
2142 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2143 		if (xhci->port_array[i] != 0) {
2144 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2145 					" port %u\n", addr, i);
2146 			xhci_warn(xhci, "Port was marked as USB %u, "
2147 					"duplicated as USB %u\n",
2148 					xhci->port_array[i], major_revision);
2149 			/* Only adjust the roothub port counts if we haven't
2150 			 * found a similar duplicate.
2151 			 */
2152 			if (xhci->port_array[i] != major_revision &&
2153 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2154 				if (xhci->port_array[i] == 0x03)
2155 					xhci->num_usb3_ports--;
2156 				else
2157 					xhci->num_usb2_ports--;
2158 				xhci->port_array[i] = DUPLICATE_ENTRY;
2159 			}
2160 			/* FIXME: Should we disable the port? */
2161 			continue;
2162 		}
2163 		xhci->port_array[i] = major_revision;
2164 		if (major_revision == 0x03)
2165 			xhci->num_usb3_ports++;
2166 		else
2167 			xhci->num_usb2_ports++;
2168 	}
2169 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2170 }
2171 
2172 /*
2173  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2174  * specify what speeds each port is supposed to be.  We can't count on the port
2175  * speed bits in the PORTSC register being correct until a device is connected,
2176  * but we need to set up the two fake roothubs with the correct number of USB
2177  * 3.0 and USB 2.0 ports at host controller initialization time.
2178  */
2179 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2180 {
2181 	void __iomem *base;
2182 	u32 offset;
2183 	unsigned int num_ports;
2184 	int i, j, port_index;
2185 	int cap_count = 0;
2186 	u32 cap_start;
2187 
2188 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2189 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2190 	if (!xhci->port_array)
2191 		return -ENOMEM;
2192 
2193 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2194 	if (!xhci->rh_bw)
2195 		return -ENOMEM;
2196 	for (i = 0; i < num_ports; i++) {
2197 		struct xhci_interval_bw_table *bw_table;
2198 
2199 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2200 		bw_table = &xhci->rh_bw[i].bw_table;
2201 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2202 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2203 	}
2204 	base = &xhci->cap_regs->hc_capbase;
2205 
2206 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2207 	if (!cap_start) {
2208 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2209 		return -ENODEV;
2210 	}
2211 
2212 	offset = cap_start;
2213 	/* count extended protocol capability entries for later caching */
2214 	while (offset) {
2215 		cap_count++;
2216 		offset = xhci_find_next_ext_cap(base, offset,
2217 						      XHCI_EXT_CAPS_PROTOCOL);
2218 	}
2219 
2220 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2221 	if (!xhci->ext_caps)
2222 		return -ENOMEM;
2223 
2224 	offset = cap_start;
2225 
2226 	while (offset) {
2227 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2228 		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2229 			break;
2230 		offset = xhci_find_next_ext_cap(base, offset,
2231 						XHCI_EXT_CAPS_PROTOCOL);
2232 	}
2233 
2234 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2235 		xhci_warn(xhci, "No ports on the roothubs?\n");
2236 		return -ENODEV;
2237 	}
2238 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2239 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2240 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2241 
2242 	/* Place limits on the number of roothub ports so that the hub
2243 	 * descriptors aren't longer than the USB core will allocate.
2244 	 */
2245 	if (xhci->num_usb3_ports > 15) {
2246 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2247 				"Limiting USB 3.0 roothub ports to 15.");
2248 		xhci->num_usb3_ports = 15;
2249 	}
2250 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2251 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2252 				"Limiting USB 2.0 roothub ports to %u.",
2253 				USB_MAXCHILDREN);
2254 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2255 	}
2256 
2257 	/*
2258 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2259 	 * Not sure how the USB core will handle a hub with no ports...
2260 	 */
2261 	if (xhci->num_usb2_ports) {
2262 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2263 				xhci->num_usb2_ports, flags);
2264 		if (!xhci->usb2_ports)
2265 			return -ENOMEM;
2266 
2267 		port_index = 0;
2268 		for (i = 0; i < num_ports; i++) {
2269 			if (xhci->port_array[i] == 0x03 ||
2270 					xhci->port_array[i] == 0 ||
2271 					xhci->port_array[i] == DUPLICATE_ENTRY)
2272 				continue;
2273 
2274 			xhci->usb2_ports[port_index] =
2275 				&xhci->op_regs->port_status_base +
2276 				NUM_PORT_REGS*i;
2277 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2278 					"USB 2.0 port at index %u, "
2279 					"addr = %p", i,
2280 					xhci->usb2_ports[port_index]);
2281 			port_index++;
2282 			if (port_index == xhci->num_usb2_ports)
2283 				break;
2284 		}
2285 	}
2286 	if (xhci->num_usb3_ports) {
2287 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2288 				xhci->num_usb3_ports, flags);
2289 		if (!xhci->usb3_ports)
2290 			return -ENOMEM;
2291 
2292 		port_index = 0;
2293 		for (i = 0; i < num_ports; i++)
2294 			if (xhci->port_array[i] == 0x03) {
2295 				xhci->usb3_ports[port_index] =
2296 					&xhci->op_regs->port_status_base +
2297 					NUM_PORT_REGS*i;
2298 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2299 						"USB 3.0 port at index %u, "
2300 						"addr = %p", i,
2301 						xhci->usb3_ports[port_index]);
2302 				port_index++;
2303 				if (port_index == xhci->num_usb3_ports)
2304 					break;
2305 			}
2306 	}
2307 	return 0;
2308 }
2309 
2310 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2311 {
2312 	dma_addr_t	dma;
2313 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2314 	unsigned int	val, val2;
2315 	u64		val_64;
2316 	struct xhci_segment	*seg;
2317 	u32 page_size, temp;
2318 	int i;
2319 
2320 	INIT_LIST_HEAD(&xhci->cmd_list);
2321 
2322 	/* init command timeout timer */
2323 	setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2324 		    (unsigned long)xhci);
2325 
2326 	page_size = readl(&xhci->op_regs->page_size);
2327 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2328 			"Supported page size register = 0x%x", page_size);
2329 	for (i = 0; i < 16; i++) {
2330 		if ((0x1 & page_size) != 0)
2331 			break;
2332 		page_size = page_size >> 1;
2333 	}
2334 	if (i < 16)
2335 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2337 	else
2338 		xhci_warn(xhci, "WARN: no supported page size\n");
2339 	/* Use 4K pages, since that's common and the minimum the HC supports */
2340 	xhci->page_shift = 12;
2341 	xhci->page_size = 1 << xhci->page_shift;
2342 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2343 			"HCD page size set to %iK", xhci->page_size / 1024);
2344 
2345 	/*
2346 	 * Program the Number of Device Slots Enabled field in the CONFIG
2347 	 * register with the max value of slots the HC can handle.
2348 	 */
2349 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2350 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351 			"// xHC can handle at most %d device slots.", val);
2352 	val2 = readl(&xhci->op_regs->config_reg);
2353 	val |= (val2 & ~HCS_SLOTS_MASK);
2354 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355 			"// Setting Max device slots reg = 0x%x.", val);
2356 	writel(val, &xhci->op_regs->config_reg);
2357 
2358 	/*
2359 	 * Section 5.4.8 - doorbell array must be
2360 	 * "physically contiguous and 64-byte (cache line) aligned".
2361 	 */
2362 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2363 			GFP_KERNEL);
2364 	if (!xhci->dcbaa)
2365 		goto fail;
2366 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2367 	xhci->dcbaa->dma = dma;
2368 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2369 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2370 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2371 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2372 
2373 	/*
2374 	 * Initialize the ring segment pool.  The ring must be a contiguous
2375 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2376 	 * however, the command ring segment needs 64-byte aligned segments
2377 	 * and our use of dma addresses in the trb_address_map radix tree needs
2378 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2379 	 */
2380 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2381 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2382 
2383 	/* See Table 46 and Note on Figure 55 */
2384 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2385 			2112, 64, xhci->page_size);
2386 	if (!xhci->segment_pool || !xhci->device_pool)
2387 		goto fail;
2388 
2389 	/* Linear stream context arrays don't have any boundary restrictions,
2390 	 * and only need to be 16-byte aligned.
2391 	 */
2392 	xhci->small_streams_pool =
2393 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2394 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2395 	xhci->medium_streams_pool =
2396 		dma_pool_create("xHCI 1KB stream ctx arrays",
2397 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2398 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2399 	 * will be allocated with dma_alloc_coherent()
2400 	 */
2401 
2402 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2403 		goto fail;
2404 
2405 	/* Set up the command ring to have one segments for now. */
2406 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2407 	if (!xhci->cmd_ring)
2408 		goto fail;
2409 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2410 			"Allocated command ring at %p", xhci->cmd_ring);
2411 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2412 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2413 
2414 	/* Set the address in the Command Ring Control register */
2415 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2416 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2417 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2418 		xhci->cmd_ring->cycle_state;
2419 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 			"// Setting command ring address to 0x%x", val);
2421 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2422 	xhci_dbg_cmd_ptrs(xhci);
2423 
2424 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2425 	if (!xhci->lpm_command)
2426 		goto fail;
2427 
2428 	/* Reserve one command ring TRB for disabling LPM.
2429 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2430 	 * disabling LPM, we only need to reserve one TRB for all devices.
2431 	 */
2432 	xhci->cmd_ring_reserved_trbs++;
2433 
2434 	val = readl(&xhci->cap_regs->db_off);
2435 	val &= DBOFF_MASK;
2436 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 			"// Doorbell array is located at offset 0x%x"
2438 			" from cap regs base addr", val);
2439 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2440 	xhci_dbg_regs(xhci);
2441 	xhci_print_run_regs(xhci);
2442 	/* Set ir_set to interrupt register set 0 */
2443 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2444 
2445 	/*
2446 	 * Event ring setup: Allocate a normal ring, but also setup
2447 	 * the event ring segment table (ERST).  Section 4.9.3.
2448 	 */
2449 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2450 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2451 						flags);
2452 	if (!xhci->event_ring)
2453 		goto fail;
2454 	if (xhci_check_trb_in_td_math(xhci) < 0)
2455 		goto fail;
2456 
2457 	xhci->erst.entries = dma_alloc_coherent(dev,
2458 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2459 			GFP_KERNEL);
2460 	if (!xhci->erst.entries)
2461 		goto fail;
2462 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2463 			"// Allocated event ring segment table at 0x%llx",
2464 			(unsigned long long)dma);
2465 
2466 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2467 	xhci->erst.num_entries = ERST_NUM_SEGS;
2468 	xhci->erst.erst_dma_addr = dma;
2469 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2470 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2471 			xhci->erst.num_entries,
2472 			xhci->erst.entries,
2473 			(unsigned long long)xhci->erst.erst_dma_addr);
2474 
2475 	/* set ring base address and size for each segment table entry */
2476 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2477 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2478 		entry->seg_addr = cpu_to_le64(seg->dma);
2479 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2480 		entry->rsvd = 0;
2481 		seg = seg->next;
2482 	}
2483 
2484 	/* set ERST count with the number of entries in the segment table */
2485 	val = readl(&xhci->ir_set->erst_size);
2486 	val &= ERST_SIZE_MASK;
2487 	val |= ERST_NUM_SEGS;
2488 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2490 			val);
2491 	writel(val, &xhci->ir_set->erst_size);
2492 
2493 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 			"// Set ERST entries to point to event ring.");
2495 	/* set the segment table base address */
2496 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497 			"// Set ERST base address for ir_set 0 = 0x%llx",
2498 			(unsigned long long)xhci->erst.erst_dma_addr);
2499 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2500 	val_64 &= ERST_PTR_MASK;
2501 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2502 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2503 
2504 	/* Set the event ring dequeue address */
2505 	xhci_set_hc_event_deq(xhci);
2506 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 			"Wrote ERST address to ir_set 0.");
2508 	xhci_print_ir_set(xhci, 0);
2509 
2510 	/*
2511 	 * XXX: Might need to set the Interrupter Moderation Register to
2512 	 * something other than the default (~1ms minimum between interrupts).
2513 	 * See section 5.5.1.2.
2514 	 */
2515 	init_completion(&xhci->addr_dev);
2516 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2517 		xhci->devs[i] = NULL;
2518 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2519 		xhci->bus_state[0].resume_done[i] = 0;
2520 		xhci->bus_state[1].resume_done[i] = 0;
2521 		/* Only the USB 2.0 completions will ever be used. */
2522 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2523 	}
2524 
2525 	if (scratchpad_alloc(xhci, flags))
2526 		goto fail;
2527 	if (xhci_setup_port_arrays(xhci, flags))
2528 		goto fail;
2529 
2530 	/* Enable USB 3.0 device notifications for function remote wake, which
2531 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2532 	 * U3 (device suspend).
2533 	 */
2534 	temp = readl(&xhci->op_regs->dev_notification);
2535 	temp &= ~DEV_NOTE_MASK;
2536 	temp |= DEV_NOTE_FWAKE;
2537 	writel(temp, &xhci->op_regs->dev_notification);
2538 
2539 	return 0;
2540 
2541 fail:
2542 	xhci_warn(xhci, "Couldn't initialize memory\n");
2543 	xhci_halt(xhci);
2544 	xhci_reset(xhci);
2545 	xhci_mem_cleanup(xhci);
2546 	return -ENOMEM;
2547 }
2548