xref: /openbmc/linux/drivers/usb/host/xhci-mem.c (revision 0cac60c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg->bounce_buf);
75 	kfree(seg);
76 }
77 
78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 				struct xhci_segment *first)
80 {
81 	struct xhci_segment *seg;
82 
83 	seg = first->next;
84 	while (seg != first) {
85 		struct xhci_segment *next = seg->next;
86 		xhci_segment_free(xhci, seg);
87 		seg = next;
88 	}
89 	xhci_segment_free(xhci, first);
90 }
91 
92 /*
93  * Make the prev segment point to the next segment.
94  *
95  * Change the last TRB in the prev segment to be a Link TRB which points to the
96  * DMA address of the next segment.  The caller needs to set any Link TRB
97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
98  */
99 static void xhci_link_segments(struct xhci_segment *prev,
100 			       struct xhci_segment *next,
101 			       enum xhci_ring_type type, bool chain_links)
102 {
103 	u32 val;
104 
105 	if (!prev || !next)
106 		return;
107 	prev->next = next;
108 	if (type != TYPE_EVENT) {
109 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 			cpu_to_le64(next->dma);
111 
112 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 		val &= ~TRB_TYPE_BITMASK;
115 		val |= TRB_TYPE(TRB_LINK);
116 		if (chain_links)
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 	bool chain_links;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 			 (ring->type == TYPE_ISOC &&
139 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
140 
141 	next = ring->enq_seg->next;
142 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 	xhci_link_segments(last, next, ring->type, chain_links);
144 	ring->num_segs += num_segs;
145 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146 
147 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 			&= ~cpu_to_le32(LINK_TOGGLE);
150 		last->trbs[TRBS_PER_SEGMENT-1].link.control
151 			|= cpu_to_le32(LINK_TOGGLE);
152 		ring->last_seg = last;
153 	}
154 }
155 
156 /*
157  * We need a radix tree for mapping physical addresses of TRBs to which stream
158  * ID they belong to.  We need to do this because the host controller won't tell
159  * us which stream ring the TRB came from.  We could store the stream ID in an
160  * event data TRB, but that doesn't help us for the cancellation case, since the
161  * endpoint may stop before it reaches that event data TRB.
162  *
163  * The radix tree maps the upper portion of the TRB DMA address to a ring
164  * segment that has the same upper portion of DMA addresses.  For example, say I
165  * have segments of size 1KB, that are always 1KB aligned.  A segment may
166  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168  * pass the radix tree a key to get the right stream ID:
169  *
170  *	0x10c90fff >> 10 = 0x43243
171  *	0x10c912c0 >> 10 = 0x43244
172  *	0x10c91400 >> 10 = 0x43245
173  *
174  * Obviously, only those TRBs with DMA addresses that are within the segment
175  * will make the radix tree return the stream ID for that ring.
176  *
177  * Caveats for the radix tree:
178  *
179  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184  * extended systems (where the DMA address can be bigger than 32-bits),
185  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186  */
187 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 		struct xhci_ring *ring,
189 		struct xhci_segment *seg,
190 		gfp_t mem_flags)
191 {
192 	unsigned long key;
193 	int ret;
194 
195 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 	/* Skip any segments that were already added. */
197 	if (radix_tree_lookup(trb_address_map, key))
198 		return 0;
199 
200 	ret = radix_tree_maybe_preload(mem_flags);
201 	if (ret)
202 		return ret;
203 	ret = radix_tree_insert(trb_address_map,
204 			key, ring);
205 	radix_tree_preload_end();
206 	return ret;
207 }
208 
209 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 		struct xhci_segment *seg)
211 {
212 	unsigned long key;
213 
214 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 	if (radix_tree_lookup(trb_address_map, key))
216 		radix_tree_delete(trb_address_map, key);
217 }
218 
219 static int xhci_update_stream_segment_mapping(
220 		struct radix_tree_root *trb_address_map,
221 		struct xhci_ring *ring,
222 		struct xhci_segment *first_seg,
223 		struct xhci_segment *last_seg,
224 		gfp_t mem_flags)
225 {
226 	struct xhci_segment *seg;
227 	struct xhci_segment *failed_seg;
228 	int ret;
229 
230 	if (WARN_ON_ONCE(trb_address_map == NULL))
231 		return 0;
232 
233 	seg = first_seg;
234 	do {
235 		ret = xhci_insert_segment_mapping(trb_address_map,
236 				ring, seg, mem_flags);
237 		if (ret)
238 			goto remove_streams;
239 		if (seg == last_seg)
240 			return 0;
241 		seg = seg->next;
242 	} while (seg != first_seg);
243 
244 	return 0;
245 
246 remove_streams:
247 	failed_seg = seg;
248 	seg = first_seg;
249 	do {
250 		xhci_remove_segment_mapping(trb_address_map, seg);
251 		if (seg == failed_seg)
252 			return ret;
253 		seg = seg->next;
254 	} while (seg != first_seg);
255 
256 	return ret;
257 }
258 
259 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260 {
261 	struct xhci_segment *seg;
262 
263 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 		return;
265 
266 	seg = ring->first_seg;
267 	do {
268 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 		seg = seg->next;
270 	} while (seg != ring->first_seg);
271 }
272 
273 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274 {
275 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 			ring->first_seg, ring->last_seg, mem_flags);
277 }
278 
279 /* XXX: Do we need the hcd structure in all these functions? */
280 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 	if (!ring)
283 		return;
284 
285 	trace_xhci_ring_free(ring);
286 
287 	if (ring->first_seg) {
288 		if (ring->type == TYPE_STREAM)
289 			xhci_remove_stream_mapping(ring);
290 		xhci_free_segments_for_ring(xhci, ring->first_seg);
291 	}
292 
293 	kfree(ring);
294 }
295 
296 void xhci_initialize_ring_info(struct xhci_ring *ring,
297 			       unsigned int cycle_state)
298 {
299 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
300 	ring->enqueue = ring->first_seg->trbs;
301 	ring->enq_seg = ring->first_seg;
302 	ring->dequeue = ring->enqueue;
303 	ring->deq_seg = ring->first_seg;
304 	/* The ring is initialized to 0. The producer must write 1 to the cycle
305 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 	 *
308 	 * New rings are initialized with cycle state equal to 1; if we are
309 	 * handling ring expansion, set the cycle state equal to the old ring.
310 	 */
311 	ring->cycle_state = cycle_state;
312 
313 	/*
314 	 * Each segment has a link TRB, and leave an extra TRB for SW
315 	 * accounting purpose
316 	 */
317 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318 }
319 
320 /* Allocate segments and link them for a ring */
321 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 		struct xhci_segment **first, struct xhci_segment **last,
323 		unsigned int num_segs, unsigned int cycle_state,
324 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325 {
326 	struct xhci_segment *prev;
327 	bool chain_links;
328 
329 	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 	chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 			 (type == TYPE_ISOC &&
332 			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
333 
334 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 	if (!prev)
336 		return -ENOMEM;
337 	num_segs--;
338 
339 	*first = prev;
340 	while (num_segs > 0) {
341 		struct xhci_segment	*next;
342 
343 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 		if (!next) {
345 			prev = *first;
346 			while (prev) {
347 				next = prev->next;
348 				xhci_segment_free(xhci, prev);
349 				prev = next;
350 			}
351 			return -ENOMEM;
352 		}
353 		xhci_link_segments(prev, next, type, chain_links);
354 
355 		prev = next;
356 		num_segs--;
357 	}
358 	xhci_link_segments(prev, *first, type, chain_links);
359 	*last = prev;
360 
361 	return 0;
362 }
363 
364 /*
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 		unsigned int num_segs, unsigned int cycle_state,
373 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375 	struct xhci_ring	*ring;
376 	int ret;
377 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378 
379 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 	if (!ring)
381 		return NULL;
382 
383 	ring->num_segs = num_segs;
384 	ring->bounce_buf_len = max_packet;
385 	INIT_LIST_HEAD(&ring->td_list);
386 	ring->type = type;
387 	if (num_segs == 0)
388 		return ring;
389 
390 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 			&ring->last_seg, num_segs, cycle_state, type,
392 			max_packet, flags);
393 	if (ret)
394 		goto fail;
395 
396 	/* Only event ring does not use link TRB */
397 	if (type != TYPE_EVENT) {
398 		/* See section 4.9.2.1 and 6.4.4.1 */
399 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 			cpu_to_le32(LINK_TOGGLE);
401 	}
402 	xhci_initialize_ring_info(ring, cycle_state);
403 	trace_xhci_ring_alloc(ring);
404 	return ring;
405 
406 fail:
407 	kfree(ring);
408 	return NULL;
409 }
410 
411 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 		struct xhci_virt_device *virt_dev,
413 		unsigned int ep_index)
414 {
415 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 	virt_dev->eps[ep_index].ring = NULL;
417 }
418 
419 /*
420  * Expand an existing ring.
421  * Allocate a new ring which has same segment numbers and link the two rings.
422  */
423 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 				unsigned int num_trbs, gfp_t flags)
425 {
426 	struct xhci_segment	*first;
427 	struct xhci_segment	*last;
428 	unsigned int		num_segs;
429 	unsigned int		num_segs_needed;
430 	int			ret;
431 
432 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 				(TRBS_PER_SEGMENT - 1);
434 
435 	/* Allocate number of segments we needed, or double the ring size */
436 	num_segs = max(ring->num_segs, num_segs_needed);
437 
438 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439 			num_segs, ring->cycle_state, ring->type,
440 			ring->bounce_buf_len, flags);
441 	if (ret)
442 		return -ENOMEM;
443 
444 	if (ring->type == TYPE_STREAM)
445 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446 						ring, first, last, flags);
447 	if (ret) {
448 		struct xhci_segment *next;
449 		do {
450 			next = first->next;
451 			xhci_segment_free(xhci, first);
452 			if (first == last)
453 				break;
454 			first = next;
455 		} while (true);
456 		return ret;
457 	}
458 
459 	xhci_link_rings(xhci, ring, first, last, num_segs);
460 	trace_xhci_ring_expansion(ring);
461 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462 			"ring expansion succeed, now has %d segments",
463 			ring->num_segs);
464 
465 	return 0;
466 }
467 
468 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
469 						    int type, gfp_t flags)
470 {
471 	struct xhci_container_ctx *ctx;
472 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
473 
474 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
475 		return NULL;
476 
477 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
478 	if (!ctx)
479 		return NULL;
480 
481 	ctx->type = type;
482 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
483 	if (type == XHCI_CTX_TYPE_INPUT)
484 		ctx->size += CTX_SIZE(xhci->hcc_params);
485 
486 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
487 	if (!ctx->bytes) {
488 		kfree(ctx);
489 		return NULL;
490 	}
491 	return ctx;
492 }
493 
494 void xhci_free_container_ctx(struct xhci_hcd *xhci,
495 			     struct xhci_container_ctx *ctx)
496 {
497 	if (!ctx)
498 		return;
499 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
500 	kfree(ctx);
501 }
502 
503 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
504 					      struct xhci_container_ctx *ctx)
505 {
506 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
507 		return NULL;
508 
509 	return (struct xhci_input_control_ctx *)ctx->bytes;
510 }
511 
512 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
513 					struct xhci_container_ctx *ctx)
514 {
515 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
516 		return (struct xhci_slot_ctx *)ctx->bytes;
517 
518 	return (struct xhci_slot_ctx *)
519 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
520 }
521 
522 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
523 				    struct xhci_container_ctx *ctx,
524 				    unsigned int ep_index)
525 {
526 	/* increment ep index by offset of start of ep ctx array */
527 	ep_index++;
528 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
529 		ep_index++;
530 
531 	return (struct xhci_ep_ctx *)
532 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
533 }
534 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
535 
536 /***************** Streams structures manipulation *************************/
537 
538 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
539 		unsigned int num_stream_ctxs,
540 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
541 {
542 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
543 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
544 
545 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
546 		dma_free_coherent(dev, size,
547 				stream_ctx, dma);
548 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
549 		return dma_pool_free(xhci->small_streams_pool,
550 				stream_ctx, dma);
551 	else
552 		return dma_pool_free(xhci->medium_streams_pool,
553 				stream_ctx, dma);
554 }
555 
556 /*
557  * The stream context array for each endpoint with bulk streams enabled can
558  * vary in size, based on:
559  *  - how many streams the endpoint supports,
560  *  - the maximum primary stream array size the host controller supports,
561  *  - and how many streams the device driver asks for.
562  *
563  * The stream context array must be a power of 2, and can be as small as
564  * 64 bytes or as large as 1MB.
565  */
566 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 		unsigned int num_stream_ctxs, dma_addr_t *dma,
568 		gfp_t mem_flags)
569 {
570 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
572 
573 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
574 		return dma_alloc_coherent(dev, size,
575 				dma, mem_flags);
576 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
577 		return dma_pool_alloc(xhci->small_streams_pool,
578 				mem_flags, dma);
579 	else
580 		return dma_pool_alloc(xhci->medium_streams_pool,
581 				mem_flags, dma);
582 }
583 
584 struct xhci_ring *xhci_dma_to_transfer_ring(
585 		struct xhci_virt_ep *ep,
586 		u64 address)
587 {
588 	if (ep->ep_state & EP_HAS_STREAMS)
589 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
590 				address >> TRB_SEGMENT_SHIFT);
591 	return ep->ring;
592 }
593 
594 /*
595  * Change an endpoint's internal structure so it supports stream IDs.  The
596  * number of requested streams includes stream 0, which cannot be used by device
597  * drivers.
598  *
599  * The number of stream contexts in the stream context array may be bigger than
600  * the number of streams the driver wants to use.  This is because the number of
601  * stream context array entries must be a power of two.
602  */
603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
604 		unsigned int num_stream_ctxs,
605 		unsigned int num_streams,
606 		unsigned int max_packet, gfp_t mem_flags)
607 {
608 	struct xhci_stream_info *stream_info;
609 	u32 cur_stream;
610 	struct xhci_ring *cur_ring;
611 	u64 addr;
612 	int ret;
613 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
614 
615 	xhci_dbg(xhci, "Allocating %u streams and %u "
616 			"stream context array entries.\n",
617 			num_streams, num_stream_ctxs);
618 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
619 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
620 		return NULL;
621 	}
622 	xhci->cmd_ring_reserved_trbs++;
623 
624 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
625 			dev_to_node(dev));
626 	if (!stream_info)
627 		goto cleanup_trbs;
628 
629 	stream_info->num_streams = num_streams;
630 	stream_info->num_stream_ctxs = num_stream_ctxs;
631 
632 	/* Initialize the array of virtual pointers to stream rings. */
633 	stream_info->stream_rings = kcalloc_node(
634 			num_streams, sizeof(struct xhci_ring *), mem_flags,
635 			dev_to_node(dev));
636 	if (!stream_info->stream_rings)
637 		goto cleanup_info;
638 
639 	/* Initialize the array of DMA addresses for stream rings for the HW. */
640 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
641 			num_stream_ctxs, &stream_info->ctx_array_dma,
642 			mem_flags);
643 	if (!stream_info->stream_ctx_array)
644 		goto cleanup_ring_array;
645 	memset(stream_info->stream_ctx_array, 0,
646 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
647 
648 	/* Allocate everything needed to free the stream rings later */
649 	stream_info->free_streams_command =
650 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
651 	if (!stream_info->free_streams_command)
652 		goto cleanup_ctx;
653 
654 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
655 
656 	/* Allocate rings for all the streams that the driver will use,
657 	 * and add their segment DMA addresses to the radix tree.
658 	 * Stream 0 is reserved.
659 	 */
660 
661 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
662 		stream_info->stream_rings[cur_stream] =
663 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
664 					mem_flags);
665 		cur_ring = stream_info->stream_rings[cur_stream];
666 		if (!cur_ring)
667 			goto cleanup_rings;
668 		cur_ring->stream_id = cur_stream;
669 		cur_ring->trb_address_map = &stream_info->trb_address_map;
670 		/* Set deq ptr, cycle bit, and stream context type */
671 		addr = cur_ring->first_seg->dma |
672 			SCT_FOR_CTX(SCT_PRI_TR) |
673 			cur_ring->cycle_state;
674 		stream_info->stream_ctx_array[cur_stream].stream_ring =
675 			cpu_to_le64(addr);
676 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
677 				cur_stream, (unsigned long long) addr);
678 
679 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
680 		if (ret) {
681 			xhci_ring_free(xhci, cur_ring);
682 			stream_info->stream_rings[cur_stream] = NULL;
683 			goto cleanup_rings;
684 		}
685 	}
686 	/* Leave the other unused stream ring pointers in the stream context
687 	 * array initialized to zero.  This will cause the xHC to give us an
688 	 * error if the device asks for a stream ID we don't have setup (if it
689 	 * was any other way, the host controller would assume the ring is
690 	 * "empty" and wait forever for data to be queued to that stream ID).
691 	 */
692 
693 	return stream_info;
694 
695 cleanup_rings:
696 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
697 		cur_ring = stream_info->stream_rings[cur_stream];
698 		if (cur_ring) {
699 			xhci_ring_free(xhci, cur_ring);
700 			stream_info->stream_rings[cur_stream] = NULL;
701 		}
702 	}
703 	xhci_free_command(xhci, stream_info->free_streams_command);
704 cleanup_ctx:
705 	xhci_free_stream_ctx(xhci,
706 		stream_info->num_stream_ctxs,
707 		stream_info->stream_ctx_array,
708 		stream_info->ctx_array_dma);
709 cleanup_ring_array:
710 	kfree(stream_info->stream_rings);
711 cleanup_info:
712 	kfree(stream_info);
713 cleanup_trbs:
714 	xhci->cmd_ring_reserved_trbs--;
715 	return NULL;
716 }
717 /*
718  * Sets the MaxPStreams field and the Linear Stream Array field.
719  * Sets the dequeue pointer to the stream context array.
720  */
721 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
722 		struct xhci_ep_ctx *ep_ctx,
723 		struct xhci_stream_info *stream_info)
724 {
725 	u32 max_primary_streams;
726 	/* MaxPStreams is the number of stream context array entries, not the
727 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
728 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
729 	 */
730 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
731 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
732 			"Setting number of stream ctx array entries to %u",
733 			1 << (max_primary_streams + 1));
734 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
735 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
736 				       | EP_HAS_LSA);
737 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
738 }
739 
740 /*
741  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
742  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
743  * not at the beginning of the ring).
744  */
745 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
746 		struct xhci_virt_ep *ep)
747 {
748 	dma_addr_t addr;
749 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
750 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
751 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
752 }
753 
754 /* Frees all stream contexts associated with the endpoint,
755  *
756  * Caller should fix the endpoint context streams fields.
757  */
758 void xhci_free_stream_info(struct xhci_hcd *xhci,
759 		struct xhci_stream_info *stream_info)
760 {
761 	int cur_stream;
762 	struct xhci_ring *cur_ring;
763 
764 	if (!stream_info)
765 		return;
766 
767 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
768 			cur_stream++) {
769 		cur_ring = stream_info->stream_rings[cur_stream];
770 		if (cur_ring) {
771 			xhci_ring_free(xhci, cur_ring);
772 			stream_info->stream_rings[cur_stream] = NULL;
773 		}
774 	}
775 	xhci_free_command(xhci, stream_info->free_streams_command);
776 	xhci->cmd_ring_reserved_trbs--;
777 	if (stream_info->stream_ctx_array)
778 		xhci_free_stream_ctx(xhci,
779 				stream_info->num_stream_ctxs,
780 				stream_info->stream_ctx_array,
781 				stream_info->ctx_array_dma);
782 
783 	kfree(stream_info->stream_rings);
784 	kfree(stream_info);
785 }
786 
787 
788 /***************** Device context manipulation *************************/
789 
790 static void xhci_free_tt_info(struct xhci_hcd *xhci,
791 		struct xhci_virt_device *virt_dev,
792 		int slot_id)
793 {
794 	struct list_head *tt_list_head;
795 	struct xhci_tt_bw_info *tt_info, *next;
796 	bool slot_found = false;
797 
798 	/* If the device never made it past the Set Address stage,
799 	 * it may not have the real_port set correctly.
800 	 */
801 	if (virt_dev->real_port == 0 ||
802 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
803 		xhci_dbg(xhci, "Bad real port.\n");
804 		return;
805 	}
806 
807 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
808 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
809 		/* Multi-TT hubs will have more than one entry */
810 		if (tt_info->slot_id == slot_id) {
811 			slot_found = true;
812 			list_del(&tt_info->tt_list);
813 			kfree(tt_info);
814 		} else if (slot_found) {
815 			break;
816 		}
817 	}
818 }
819 
820 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
821 		struct xhci_virt_device *virt_dev,
822 		struct usb_device *hdev,
823 		struct usb_tt *tt, gfp_t mem_flags)
824 {
825 	struct xhci_tt_bw_info		*tt_info;
826 	unsigned int			num_ports;
827 	int				i, j;
828 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
829 
830 	if (!tt->multi)
831 		num_ports = 1;
832 	else
833 		num_ports = hdev->maxchild;
834 
835 	for (i = 0; i < num_ports; i++, tt_info++) {
836 		struct xhci_interval_bw_table *bw_table;
837 
838 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
839 				dev_to_node(dev));
840 		if (!tt_info)
841 			goto free_tts;
842 		INIT_LIST_HEAD(&tt_info->tt_list);
843 		list_add(&tt_info->tt_list,
844 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
845 		tt_info->slot_id = virt_dev->udev->slot_id;
846 		if (tt->multi)
847 			tt_info->ttport = i+1;
848 		bw_table = &tt_info->bw_table;
849 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
850 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
851 	}
852 	return 0;
853 
854 free_tts:
855 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
856 	return -ENOMEM;
857 }
858 
859 
860 /* All the xhci_tds in the ring's TD list should be freed at this point.
861  * Should be called with xhci->lock held if there is any chance the TT lists
862  * will be manipulated by the configure endpoint, allocate device, or update
863  * hub functions while this function is removing the TT entries from the list.
864  */
865 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
866 {
867 	struct xhci_virt_device *dev;
868 	int i;
869 	int old_active_eps = 0;
870 
871 	/* Slot ID 0 is reserved */
872 	if (slot_id == 0 || !xhci->devs[slot_id])
873 		return;
874 
875 	dev = xhci->devs[slot_id];
876 
877 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
878 	if (!dev)
879 		return;
880 
881 	trace_xhci_free_virt_device(dev);
882 
883 	if (dev->tt_info)
884 		old_active_eps = dev->tt_info->active_eps;
885 
886 	for (i = 0; i < 31; i++) {
887 		if (dev->eps[i].ring)
888 			xhci_ring_free(xhci, dev->eps[i].ring);
889 		if (dev->eps[i].stream_info)
890 			xhci_free_stream_info(xhci,
891 					dev->eps[i].stream_info);
892 		/*
893 		 * Endpoints are normally deleted from the bandwidth list when
894 		 * endpoints are dropped, before device is freed.
895 		 * If host is dying or being removed then endpoints aren't
896 		 * dropped cleanly, so delete the endpoint from list here.
897 		 * Only applicable for hosts with software bandwidth checking.
898 		 */
899 
900 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
901 			list_del_init(&dev->eps[i].bw_endpoint_list);
902 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
903 				 slot_id, i);
904 		}
905 	}
906 	/* If this is a hub, free the TT(s) from the TT list */
907 	xhci_free_tt_info(xhci, dev, slot_id);
908 	/* If necessary, update the number of active TTs on this root port */
909 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910 
911 	if (dev->in_ctx)
912 		xhci_free_container_ctx(xhci, dev->in_ctx);
913 	if (dev->out_ctx)
914 		xhci_free_container_ctx(xhci, dev->out_ctx);
915 
916 	if (dev->udev && dev->udev->slot_id)
917 		dev->udev->slot_id = 0;
918 	kfree(xhci->devs[slot_id]);
919 	xhci->devs[slot_id] = NULL;
920 }
921 
922 /*
923  * Free a virt_device structure.
924  * If the virt_device added a tt_info (a hub) and has children pointing to
925  * that tt_info, then free the child first. Recursive.
926  * We can't rely on udev at this point to find child-parent relationships.
927  */
928 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
929 {
930 	struct xhci_virt_device *vdev;
931 	struct list_head *tt_list_head;
932 	struct xhci_tt_bw_info *tt_info, *next;
933 	int i;
934 
935 	vdev = xhci->devs[slot_id];
936 	if (!vdev)
937 		return;
938 
939 	if (vdev->real_port == 0 ||
940 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
941 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
942 		goto out;
943 	}
944 
945 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
946 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
947 		/* is this a hub device that added a tt_info to the tts list */
948 		if (tt_info->slot_id == slot_id) {
949 			/* are any devices using this tt_info? */
950 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
951 				vdev = xhci->devs[i];
952 				if (vdev && (vdev->tt_info == tt_info))
953 					xhci_free_virt_devices_depth_first(
954 						xhci, i);
955 			}
956 		}
957 	}
958 out:
959 	/* we are now at a leaf device */
960 	xhci_debugfs_remove_slot(xhci, slot_id);
961 	xhci_free_virt_device(xhci, slot_id);
962 }
963 
964 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
965 		struct usb_device *udev, gfp_t flags)
966 {
967 	struct xhci_virt_device *dev;
968 	int i;
969 
970 	/* Slot ID 0 is reserved */
971 	if (slot_id == 0 || xhci->devs[slot_id]) {
972 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
973 		return 0;
974 	}
975 
976 	dev = kzalloc(sizeof(*dev), flags);
977 	if (!dev)
978 		return 0;
979 
980 	dev->slot_id = slot_id;
981 
982 	/* Allocate the (output) device context that will be used in the HC. */
983 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
984 	if (!dev->out_ctx)
985 		goto fail;
986 
987 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
988 			(unsigned long long)dev->out_ctx->dma);
989 
990 	/* Allocate the (input) device context for address device command */
991 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
992 	if (!dev->in_ctx)
993 		goto fail;
994 
995 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
996 			(unsigned long long)dev->in_ctx->dma);
997 
998 	/* Initialize the cancellation and bandwidth list for each ep */
999 	for (i = 0; i < 31; i++) {
1000 		dev->eps[i].ep_index = i;
1001 		dev->eps[i].vdev = dev;
1002 		dev->eps[i].xhci = xhci;
1003 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005 	}
1006 
1007 	/* Allocate endpoint 0 ring */
1008 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009 	if (!dev->eps[0].ring)
1010 		goto fail;
1011 
1012 	dev->udev = udev;
1013 
1014 	/* Point to output device context in dcbaa. */
1015 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1017 		 slot_id,
1018 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1020 
1021 	trace_xhci_alloc_virt_device(dev);
1022 
1023 	xhci->devs[slot_id] = dev;
1024 
1025 	return 1;
1026 fail:
1027 
1028 	if (dev->in_ctx)
1029 		xhci_free_container_ctx(xhci, dev->in_ctx);
1030 	if (dev->out_ctx)
1031 		xhci_free_container_ctx(xhci, dev->out_ctx);
1032 	kfree(dev);
1033 
1034 	return 0;
1035 }
1036 
1037 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1038 		struct usb_device *udev)
1039 {
1040 	struct xhci_virt_device *virt_dev;
1041 	struct xhci_ep_ctx	*ep0_ctx;
1042 	struct xhci_ring	*ep_ring;
1043 
1044 	virt_dev = xhci->devs[udev->slot_id];
1045 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1046 	ep_ring = virt_dev->eps[0].ring;
1047 	/*
1048 	 * FIXME we don't keep track of the dequeue pointer very well after a
1049 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1050 	 * host to our enqueue pointer.  This should only be called after a
1051 	 * configured device has reset, so all control transfers should have
1052 	 * been completed or cancelled before the reset.
1053 	 */
1054 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1055 							ep_ring->enqueue)
1056 				   | ep_ring->cycle_state);
1057 }
1058 
1059 /*
1060  * The xHCI roothub may have ports of differing speeds in any order in the port
1061  * status registers.
1062  *
1063  * The xHCI hardware wants to know the roothub port number that the USB device
1064  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1065  * know is the index of that port under either the USB 2.0 or the USB 3.0
1066  * roothub, but that doesn't give us the real index into the HW port status
1067  * registers. Call xhci_find_raw_port_number() to get real index.
1068  */
1069 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070 		struct usb_device *udev)
1071 {
1072 	struct usb_device *top_dev;
1073 	struct usb_hcd *hcd;
1074 
1075 	if (udev->speed >= USB_SPEED_SUPER)
1076 		hcd = xhci_get_usb3_hcd(xhci);
1077 	else
1078 		hcd = xhci->main_hcd;
1079 
1080 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081 			top_dev = top_dev->parent)
1082 		/* Found device below root hub */;
1083 
1084 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1085 }
1086 
1087 /* Setup an xHCI virtual device for a Set Address command */
1088 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089 {
1090 	struct xhci_virt_device *dev;
1091 	struct xhci_ep_ctx	*ep0_ctx;
1092 	struct xhci_slot_ctx    *slot_ctx;
1093 	u32			port_num;
1094 	u32			max_packets;
1095 	struct usb_device *top_dev;
1096 
1097 	dev = xhci->devs[udev->slot_id];
1098 	/* Slot ID 0 is reserved */
1099 	if (udev->slot_id == 0 || !dev) {
1100 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101 				udev->slot_id);
1102 		return -EINVAL;
1103 	}
1104 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106 
1107 	/* 3) Only the control endpoint is valid - one endpoint context */
1108 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109 	switch (udev->speed) {
1110 	case USB_SPEED_SUPER_PLUS:
1111 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1112 		max_packets = MAX_PACKET(512);
1113 		break;
1114 	case USB_SPEED_SUPER:
1115 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1116 		max_packets = MAX_PACKET(512);
1117 		break;
1118 	case USB_SPEED_HIGH:
1119 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1120 		max_packets = MAX_PACKET(64);
1121 		break;
1122 	/* USB core guesses at a 64-byte max packet first for FS devices */
1123 	case USB_SPEED_FULL:
1124 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1125 		max_packets = MAX_PACKET(64);
1126 		break;
1127 	case USB_SPEED_LOW:
1128 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1129 		max_packets = MAX_PACKET(8);
1130 		break;
1131 	case USB_SPEED_WIRELESS:
1132 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1133 		return -EINVAL;
1134 	default:
1135 		/* Speed was set earlier, this shouldn't happen. */
1136 		return -EINVAL;
1137 	}
1138 	/* Find the root hub port this device is under */
1139 	port_num = xhci_find_real_port_number(xhci, udev);
1140 	if (!port_num)
1141 		return -EINVAL;
1142 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143 	/* Set the port number in the virtual_device to the faked port number */
1144 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145 			top_dev = top_dev->parent)
1146 		/* Found device below root hub */;
1147 	dev->fake_port = top_dev->portnum;
1148 	dev->real_port = port_num;
1149 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151 
1152 	/* Find the right bandwidth table that this device will be a part of.
1153 	 * If this is a full speed device attached directly to a root port (or a
1154 	 * decendent of one), it counts as a primary bandwidth domain, not a
1155 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156 	 * will never be created for the HS root hub.
1157 	 */
1158 	if (!udev->tt || !udev->tt->hub->parent) {
1159 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160 	} else {
1161 		struct xhci_root_port_bw_info *rh_bw;
1162 		struct xhci_tt_bw_info *tt_bw;
1163 
1164 		rh_bw = &xhci->rh_bw[port_num - 1];
1165 		/* Find the right TT. */
1166 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168 				continue;
1169 
1170 			if (!dev->udev->tt->multi ||
1171 					(udev->tt->multi &&
1172 					 tt_bw->ttport == dev->udev->ttport)) {
1173 				dev->bw_table = &tt_bw->bw_table;
1174 				dev->tt_info = tt_bw;
1175 				break;
1176 			}
1177 		}
1178 		if (!dev->tt_info)
1179 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180 	}
1181 
1182 	/* Is this a LS/FS device under an external HS hub? */
1183 	if (udev->tt && udev->tt->hub->parent) {
1184 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185 						(udev->ttport << 8));
1186 		if (udev->tt->multi)
1187 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188 	}
1189 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191 
1192 	/* Step 4 - ring already allocated */
1193 	/* Step 5 */
1194 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195 
1196 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198 					 max_packets);
1199 
1200 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201 				   dev->eps[0].ring->cycle_state);
1202 
1203 	trace_xhci_setup_addressable_virt_device(dev);
1204 
1205 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1206 
1207 	return 0;
1208 }
1209 
1210 /*
1211  * Convert interval expressed as 2^(bInterval - 1) == interval into
1212  * straight exponent value 2^n == interval.
1213  *
1214  */
1215 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1216 		struct usb_host_endpoint *ep)
1217 {
1218 	unsigned int interval;
1219 
1220 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1221 	if (interval != ep->desc.bInterval - 1)
1222 		dev_warn(&udev->dev,
1223 			 "ep %#x - rounding interval to %d %sframes\n",
1224 			 ep->desc.bEndpointAddress,
1225 			 1 << interval,
1226 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1227 
1228 	if (udev->speed == USB_SPEED_FULL) {
1229 		/*
1230 		 * Full speed isoc endpoints specify interval in frames,
1231 		 * not microframes. We are using microframes everywhere,
1232 		 * so adjust accordingly.
1233 		 */
1234 		interval += 3;	/* 1 frame = 2^3 uframes */
1235 	}
1236 
1237 	return interval;
1238 }
1239 
1240 /*
1241  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1242  * microframes, rounded down to nearest power of 2.
1243  */
1244 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1245 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1246 		unsigned int min_exponent, unsigned int max_exponent)
1247 {
1248 	unsigned int interval;
1249 
1250 	interval = fls(desc_interval) - 1;
1251 	interval = clamp_val(interval, min_exponent, max_exponent);
1252 	if ((1 << interval) != desc_interval)
1253 		dev_dbg(&udev->dev,
1254 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1255 			 ep->desc.bEndpointAddress,
1256 			 1 << interval,
1257 			 desc_interval);
1258 
1259 	return interval;
1260 }
1261 
1262 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1263 		struct usb_host_endpoint *ep)
1264 {
1265 	if (ep->desc.bInterval == 0)
1266 		return 0;
1267 	return xhci_microframes_to_exponent(udev, ep,
1268 			ep->desc.bInterval, 0, 15);
1269 }
1270 
1271 
1272 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273 		struct usb_host_endpoint *ep)
1274 {
1275 	return xhci_microframes_to_exponent(udev, ep,
1276 			ep->desc.bInterval * 8, 3, 10);
1277 }
1278 
1279 /* Return the polling or NAK interval.
1280  *
1281  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1282  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1283  *
1284  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1285  * is set to 0.
1286  */
1287 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288 		struct usb_host_endpoint *ep)
1289 {
1290 	unsigned int interval = 0;
1291 
1292 	switch (udev->speed) {
1293 	case USB_SPEED_HIGH:
1294 		/* Max NAK rate */
1295 		if (usb_endpoint_xfer_control(&ep->desc) ||
1296 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1297 			interval = xhci_parse_microframe_interval(udev, ep);
1298 			break;
1299 		}
1300 		fallthrough;	/* SS and HS isoc/int have same decoding */
1301 
1302 	case USB_SPEED_SUPER_PLUS:
1303 	case USB_SPEED_SUPER:
1304 		if (usb_endpoint_xfer_int(&ep->desc) ||
1305 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1306 			interval = xhci_parse_exponent_interval(udev, ep);
1307 		}
1308 		break;
1309 
1310 	case USB_SPEED_FULL:
1311 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1312 			interval = xhci_parse_exponent_interval(udev, ep);
1313 			break;
1314 		}
1315 		/*
1316 		 * Fall through for interrupt endpoint interval decoding
1317 		 * since it uses the same rules as low speed interrupt
1318 		 * endpoints.
1319 		 */
1320 		fallthrough;
1321 
1322 	case USB_SPEED_LOW:
1323 		if (usb_endpoint_xfer_int(&ep->desc) ||
1324 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1325 
1326 			interval = xhci_parse_frame_interval(udev, ep);
1327 		}
1328 		break;
1329 
1330 	default:
1331 		BUG();
1332 	}
1333 	return interval;
1334 }
1335 
1336 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1337  * High speed endpoint descriptors can define "the number of additional
1338  * transaction opportunities per microframe", but that goes in the Max Burst
1339  * endpoint context field.
1340  */
1341 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1342 		struct usb_host_endpoint *ep)
1343 {
1344 	if (udev->speed < USB_SPEED_SUPER ||
1345 			!usb_endpoint_xfer_isoc(&ep->desc))
1346 		return 0;
1347 	return ep->ss_ep_comp.bmAttributes;
1348 }
1349 
1350 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1351 				       struct usb_host_endpoint *ep)
1352 {
1353 	/* Super speed and Plus have max burst in ep companion desc */
1354 	if (udev->speed >= USB_SPEED_SUPER)
1355 		return ep->ss_ep_comp.bMaxBurst;
1356 
1357 	if (udev->speed == USB_SPEED_HIGH &&
1358 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1359 	     usb_endpoint_xfer_int(&ep->desc)))
1360 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1361 
1362 	return 0;
1363 }
1364 
1365 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1366 {
1367 	int in;
1368 
1369 	in = usb_endpoint_dir_in(&ep->desc);
1370 
1371 	switch (usb_endpoint_type(&ep->desc)) {
1372 	case USB_ENDPOINT_XFER_CONTROL:
1373 		return CTRL_EP;
1374 	case USB_ENDPOINT_XFER_BULK:
1375 		return in ? BULK_IN_EP : BULK_OUT_EP;
1376 	case USB_ENDPOINT_XFER_ISOC:
1377 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1378 	case USB_ENDPOINT_XFER_INT:
1379 		return in ? INT_IN_EP : INT_OUT_EP;
1380 	}
1381 	return 0;
1382 }
1383 
1384 /* Return the maximum endpoint service interval time (ESIT) payload.
1385  * Basically, this is the maxpacket size, multiplied by the burst size
1386  * and mult size.
1387  */
1388 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1389 		struct usb_host_endpoint *ep)
1390 {
1391 	int max_burst;
1392 	int max_packet;
1393 
1394 	/* Only applies for interrupt or isochronous endpoints */
1395 	if (usb_endpoint_xfer_control(&ep->desc) ||
1396 			usb_endpoint_xfer_bulk(&ep->desc))
1397 		return 0;
1398 
1399 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1400 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1401 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1402 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1403 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1404 	else if (udev->speed >= USB_SPEED_SUPER)
1405 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1406 
1407 	max_packet = usb_endpoint_maxp(&ep->desc);
1408 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1409 	/* A 0 in max burst means 1 transfer per ESIT */
1410 	return max_packet * max_burst;
1411 }
1412 
1413 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1414  * Drivers will have to call usb_alloc_streams() to do that.
1415  */
1416 int xhci_endpoint_init(struct xhci_hcd *xhci,
1417 		struct xhci_virt_device *virt_dev,
1418 		struct usb_device *udev,
1419 		struct usb_host_endpoint *ep,
1420 		gfp_t mem_flags)
1421 {
1422 	unsigned int ep_index;
1423 	struct xhci_ep_ctx *ep_ctx;
1424 	struct xhci_ring *ep_ring;
1425 	unsigned int max_packet;
1426 	enum xhci_ring_type ring_type;
1427 	u32 max_esit_payload;
1428 	u32 endpoint_type;
1429 	unsigned int max_burst;
1430 	unsigned int interval;
1431 	unsigned int mult;
1432 	unsigned int avg_trb_len;
1433 	unsigned int err_count = 0;
1434 
1435 	ep_index = xhci_get_endpoint_index(&ep->desc);
1436 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1437 
1438 	endpoint_type = xhci_get_endpoint_type(ep);
1439 	if (!endpoint_type)
1440 		return -EINVAL;
1441 
1442 	ring_type = usb_endpoint_type(&ep->desc);
1443 
1444 	/*
1445 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1446 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1447 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1448 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1449 	 */
1450 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1451 	interval = xhci_get_endpoint_interval(udev, ep);
1452 
1453 	/* Periodic endpoint bInterval limit quirk */
1454 	if (usb_endpoint_xfer_int(&ep->desc) ||
1455 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1456 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1457 		    udev->speed >= USB_SPEED_HIGH &&
1458 		    interval >= 7) {
1459 			interval = 6;
1460 		}
1461 	}
1462 
1463 	mult = xhci_get_endpoint_mult(udev, ep);
1464 	max_packet = usb_endpoint_maxp(&ep->desc);
1465 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466 	avg_trb_len = max_esit_payload;
1467 
1468 	/* FIXME dig Mult and streams info out of ep companion desc */
1469 
1470 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1471 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1472 		err_count = 3;
1473 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1474 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1475 		if (udev->speed == USB_SPEED_HIGH)
1476 			max_packet = 512;
1477 		if (udev->speed == USB_SPEED_FULL) {
1478 			max_packet = rounddown_pow_of_two(max_packet);
1479 			max_packet = clamp_val(max_packet, 8, 64);
1480 		}
1481 	}
1482 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1483 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1484 		avg_trb_len = 8;
1485 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1486 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1487 		mult = 0;
1488 
1489 	/* Set up the endpoint ring */
1490 	virt_dev->eps[ep_index].new_ring =
1491 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1492 	if (!virt_dev->eps[ep_index].new_ring)
1493 		return -ENOMEM;
1494 
1495 	virt_dev->eps[ep_index].skip = false;
1496 	ep_ring = virt_dev->eps[ep_index].new_ring;
1497 
1498 	/* Fill the endpoint context */
1499 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1500 				      EP_INTERVAL(interval) |
1501 				      EP_MULT(mult));
1502 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1503 				       MAX_PACKET(max_packet) |
1504 				       MAX_BURST(max_burst) |
1505 				       ERROR_COUNT(err_count));
1506 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1507 				  ep_ring->cycle_state);
1508 
1509 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1510 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1511 
1512 	return 0;
1513 }
1514 
1515 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1516 		struct xhci_virt_device *virt_dev,
1517 		struct usb_host_endpoint *ep)
1518 {
1519 	unsigned int ep_index;
1520 	struct xhci_ep_ctx *ep_ctx;
1521 
1522 	ep_index = xhci_get_endpoint_index(&ep->desc);
1523 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1524 
1525 	ep_ctx->ep_info = 0;
1526 	ep_ctx->ep_info2 = 0;
1527 	ep_ctx->deq = 0;
1528 	ep_ctx->tx_info = 0;
1529 	/* Don't free the endpoint ring until the set interface or configuration
1530 	 * request succeeds.
1531 	 */
1532 }
1533 
1534 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1535 {
1536 	bw_info->ep_interval = 0;
1537 	bw_info->mult = 0;
1538 	bw_info->num_packets = 0;
1539 	bw_info->max_packet_size = 0;
1540 	bw_info->type = 0;
1541 	bw_info->max_esit_payload = 0;
1542 }
1543 
1544 void xhci_update_bw_info(struct xhci_hcd *xhci,
1545 		struct xhci_container_ctx *in_ctx,
1546 		struct xhci_input_control_ctx *ctrl_ctx,
1547 		struct xhci_virt_device *virt_dev)
1548 {
1549 	struct xhci_bw_info *bw_info;
1550 	struct xhci_ep_ctx *ep_ctx;
1551 	unsigned int ep_type;
1552 	int i;
1553 
1554 	for (i = 1; i < 31; i++) {
1555 		bw_info = &virt_dev->eps[i].bw_info;
1556 
1557 		/* We can't tell what endpoint type is being dropped, but
1558 		 * unconditionally clearing the bandwidth info for non-periodic
1559 		 * endpoints should be harmless because the info will never be
1560 		 * set in the first place.
1561 		 */
1562 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1563 			/* Dropped endpoint */
1564 			xhci_clear_endpoint_bw_info(bw_info);
1565 			continue;
1566 		}
1567 
1568 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1569 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1570 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1571 
1572 			/* Ignore non-periodic endpoints */
1573 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1574 					ep_type != ISOC_IN_EP &&
1575 					ep_type != INT_IN_EP)
1576 				continue;
1577 
1578 			/* Added or changed endpoint */
1579 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1580 					le32_to_cpu(ep_ctx->ep_info));
1581 			/* Number of packets and mult are zero-based in the
1582 			 * input context, but we want one-based for the
1583 			 * interval table.
1584 			 */
1585 			bw_info->mult = CTX_TO_EP_MULT(
1586 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1587 			bw_info->num_packets = CTX_TO_MAX_BURST(
1588 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1589 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1590 					le32_to_cpu(ep_ctx->ep_info2));
1591 			bw_info->type = ep_type;
1592 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1593 					le32_to_cpu(ep_ctx->tx_info));
1594 		}
1595 	}
1596 }
1597 
1598 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1599  * Useful when you want to change one particular aspect of the endpoint and then
1600  * issue a configure endpoint command.
1601  */
1602 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1603 		struct xhci_container_ctx *in_ctx,
1604 		struct xhci_container_ctx *out_ctx,
1605 		unsigned int ep_index)
1606 {
1607 	struct xhci_ep_ctx *out_ep_ctx;
1608 	struct xhci_ep_ctx *in_ep_ctx;
1609 
1610 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1611 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1612 
1613 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1614 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1615 	in_ep_ctx->deq = out_ep_ctx->deq;
1616 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1617 	if (xhci->quirks & XHCI_MTK_HOST) {
1618 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1619 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1620 	}
1621 }
1622 
1623 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624  * Useful when you want to change one particular aspect of the endpoint and then
1625  * issue a configure endpoint command.  Only the context entries field matters,
1626  * but we'll copy the whole thing anyway.
1627  */
1628 void xhci_slot_copy(struct xhci_hcd *xhci,
1629 		struct xhci_container_ctx *in_ctx,
1630 		struct xhci_container_ctx *out_ctx)
1631 {
1632 	struct xhci_slot_ctx *in_slot_ctx;
1633 	struct xhci_slot_ctx *out_slot_ctx;
1634 
1635 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637 
1638 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642 }
1643 
1644 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646 {
1647 	int i;
1648 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1649 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650 
1651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652 			"Allocating %d scratchpad buffers", num_sp);
1653 
1654 	if (!num_sp)
1655 		return 0;
1656 
1657 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1658 				dev_to_node(dev));
1659 	if (!xhci->scratchpad)
1660 		goto fail_sp;
1661 
1662 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1663 				     num_sp * sizeof(u64),
1664 				     &xhci->scratchpad->sp_dma, flags);
1665 	if (!xhci->scratchpad->sp_array)
1666 		goto fail_sp2;
1667 
1668 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1669 					flags, dev_to_node(dev));
1670 	if (!xhci->scratchpad->sp_buffers)
1671 		goto fail_sp3;
1672 
1673 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674 	for (i = 0; i < num_sp; i++) {
1675 		dma_addr_t dma;
1676 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1677 					       flags);
1678 		if (!buf)
1679 			goto fail_sp4;
1680 
1681 		xhci->scratchpad->sp_array[i] = dma;
1682 		xhci->scratchpad->sp_buffers[i] = buf;
1683 	}
1684 
1685 	return 0;
1686 
1687  fail_sp4:
1688 	for (i = i - 1; i >= 0; i--) {
1689 		dma_free_coherent(dev, xhci->page_size,
1690 				    xhci->scratchpad->sp_buffers[i],
1691 				    xhci->scratchpad->sp_array[i]);
1692 	}
1693 
1694 	kfree(xhci->scratchpad->sp_buffers);
1695 
1696  fail_sp3:
1697 	dma_free_coherent(dev, num_sp * sizeof(u64),
1698 			    xhci->scratchpad->sp_array,
1699 			    xhci->scratchpad->sp_dma);
1700 
1701  fail_sp2:
1702 	kfree(xhci->scratchpad);
1703 	xhci->scratchpad = NULL;
1704 
1705  fail_sp:
1706 	return -ENOMEM;
1707 }
1708 
1709 static void scratchpad_free(struct xhci_hcd *xhci)
1710 {
1711 	int num_sp;
1712 	int i;
1713 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1714 
1715 	if (!xhci->scratchpad)
1716 		return;
1717 
1718 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1719 
1720 	for (i = 0; i < num_sp; i++) {
1721 		dma_free_coherent(dev, xhci->page_size,
1722 				    xhci->scratchpad->sp_buffers[i],
1723 				    xhci->scratchpad->sp_array[i]);
1724 	}
1725 	kfree(xhci->scratchpad->sp_buffers);
1726 	dma_free_coherent(dev, num_sp * sizeof(u64),
1727 			    xhci->scratchpad->sp_array,
1728 			    xhci->scratchpad->sp_dma);
1729 	kfree(xhci->scratchpad);
1730 	xhci->scratchpad = NULL;
1731 }
1732 
1733 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1734 		bool allocate_completion, gfp_t mem_flags)
1735 {
1736 	struct xhci_command *command;
1737 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1738 
1739 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1740 	if (!command)
1741 		return NULL;
1742 
1743 	if (allocate_completion) {
1744 		command->completion =
1745 			kzalloc_node(sizeof(struct completion), mem_flags,
1746 				dev_to_node(dev));
1747 		if (!command->completion) {
1748 			kfree(command);
1749 			return NULL;
1750 		}
1751 		init_completion(command->completion);
1752 	}
1753 
1754 	command->status = 0;
1755 	INIT_LIST_HEAD(&command->cmd_list);
1756 	return command;
1757 }
1758 
1759 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1760 		bool allocate_completion, gfp_t mem_flags)
1761 {
1762 	struct xhci_command *command;
1763 
1764 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1765 	if (!command)
1766 		return NULL;
1767 
1768 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1769 						   mem_flags);
1770 	if (!command->in_ctx) {
1771 		kfree(command->completion);
1772 		kfree(command);
1773 		return NULL;
1774 	}
1775 	return command;
1776 }
1777 
1778 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1779 {
1780 	kfree(urb_priv);
1781 }
1782 
1783 void xhci_free_command(struct xhci_hcd *xhci,
1784 		struct xhci_command *command)
1785 {
1786 	xhci_free_container_ctx(xhci,
1787 			command->in_ctx);
1788 	kfree(command->completion);
1789 	kfree(command);
1790 }
1791 
1792 int xhci_alloc_erst(struct xhci_hcd *xhci,
1793 		    struct xhci_ring *evt_ring,
1794 		    struct xhci_erst *erst,
1795 		    gfp_t flags)
1796 {
1797 	size_t size;
1798 	unsigned int val;
1799 	struct xhci_segment *seg;
1800 	struct xhci_erst_entry *entry;
1801 
1802 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1803 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1804 					   size, &erst->erst_dma_addr, flags);
1805 	if (!erst->entries)
1806 		return -ENOMEM;
1807 
1808 	erst->num_entries = evt_ring->num_segs;
1809 
1810 	seg = evt_ring->first_seg;
1811 	for (val = 0; val < evt_ring->num_segs; val++) {
1812 		entry = &erst->entries[val];
1813 		entry->seg_addr = cpu_to_le64(seg->dma);
1814 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1815 		entry->rsvd = 0;
1816 		seg = seg->next;
1817 	}
1818 
1819 	return 0;
1820 }
1821 
1822 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1823 {
1824 	size_t size;
1825 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1826 
1827 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1828 	if (erst->entries)
1829 		dma_free_coherent(dev, size,
1830 				erst->entries,
1831 				erst->erst_dma_addr);
1832 	erst->entries = NULL;
1833 }
1834 
1835 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1836 {
1837 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1838 	int i, j, num_ports;
1839 
1840 	cancel_delayed_work_sync(&xhci->cmd_timer);
1841 
1842 	xhci_free_erst(xhci, &xhci->erst);
1843 
1844 	if (xhci->event_ring)
1845 		xhci_ring_free(xhci, xhci->event_ring);
1846 	xhci->event_ring = NULL;
1847 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1848 
1849 	if (xhci->cmd_ring)
1850 		xhci_ring_free(xhci, xhci->cmd_ring);
1851 	xhci->cmd_ring = NULL;
1852 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1853 	xhci_cleanup_command_queue(xhci);
1854 
1855 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1858 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1859 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1860 			while (!list_empty(ep))
1861 				list_del_init(ep->next);
1862 		}
1863 	}
1864 
1865 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1866 		xhci_free_virt_devices_depth_first(xhci, i);
1867 
1868 	dma_pool_destroy(xhci->segment_pool);
1869 	xhci->segment_pool = NULL;
1870 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1871 
1872 	dma_pool_destroy(xhci->device_pool);
1873 	xhci->device_pool = NULL;
1874 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1875 
1876 	dma_pool_destroy(xhci->small_streams_pool);
1877 	xhci->small_streams_pool = NULL;
1878 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1879 			"Freed small stream array pool");
1880 
1881 	dma_pool_destroy(xhci->medium_streams_pool);
1882 	xhci->medium_streams_pool = NULL;
1883 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1884 			"Freed medium stream array pool");
1885 
1886 	if (xhci->dcbaa)
1887 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888 				xhci->dcbaa, xhci->dcbaa->dma);
1889 	xhci->dcbaa = NULL;
1890 
1891 	scratchpad_free(xhci);
1892 
1893 	if (!xhci->rh_bw)
1894 		goto no_bw;
1895 
1896 	for (i = 0; i < num_ports; i++) {
1897 		struct xhci_tt_bw_info *tt, *n;
1898 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1899 			list_del(&tt->tt_list);
1900 			kfree(tt);
1901 		}
1902 	}
1903 
1904 no_bw:
1905 	xhci->cmd_ring_reserved_trbs = 0;
1906 	xhci->usb2_rhub.num_ports = 0;
1907 	xhci->usb3_rhub.num_ports = 0;
1908 	xhci->num_active_eps = 0;
1909 	kfree(xhci->usb2_rhub.ports);
1910 	kfree(xhci->usb3_rhub.ports);
1911 	kfree(xhci->hw_ports);
1912 	kfree(xhci->rh_bw);
1913 	kfree(xhci->ext_caps);
1914 	for (i = 0; i < xhci->num_port_caps; i++)
1915 		kfree(xhci->port_caps[i].psi);
1916 	kfree(xhci->port_caps);
1917 	xhci->num_port_caps = 0;
1918 
1919 	xhci->usb2_rhub.ports = NULL;
1920 	xhci->usb3_rhub.ports = NULL;
1921 	xhci->hw_ports = NULL;
1922 	xhci->rh_bw = NULL;
1923 	xhci->ext_caps = NULL;
1924 	xhci->port_caps = NULL;
1925 
1926 	xhci->page_size = 0;
1927 	xhci->page_shift = 0;
1928 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1929 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1930 }
1931 
1932 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1933 		struct xhci_segment *input_seg,
1934 		union xhci_trb *start_trb,
1935 		union xhci_trb *end_trb,
1936 		dma_addr_t input_dma,
1937 		struct xhci_segment *result_seg,
1938 		char *test_name, int test_number)
1939 {
1940 	unsigned long long start_dma;
1941 	unsigned long long end_dma;
1942 	struct xhci_segment *seg;
1943 
1944 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1945 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1946 
1947 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1948 	if (seg != result_seg) {
1949 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1950 				test_name, test_number);
1951 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1952 				"input DMA 0x%llx\n",
1953 				input_seg,
1954 				(unsigned long long) input_dma);
1955 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1956 				"ending TRB %p (0x%llx DMA)\n",
1957 				start_trb, start_dma,
1958 				end_trb, end_dma);
1959 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1960 				result_seg, seg);
1961 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1962 			  true);
1963 		return -1;
1964 	}
1965 	return 0;
1966 }
1967 
1968 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1969 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1970 {
1971 	struct {
1972 		dma_addr_t		input_dma;
1973 		struct xhci_segment	*result_seg;
1974 	} simple_test_vector [] = {
1975 		/* A zeroed DMA field should fail */
1976 		{ 0, NULL },
1977 		/* One TRB before the ring start should fail */
1978 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1979 		/* One byte before the ring start should fail */
1980 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1981 		/* Starting TRB should succeed */
1982 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1983 		/* Ending TRB should succeed */
1984 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1985 			xhci->event_ring->first_seg },
1986 		/* One byte after the ring end should fail */
1987 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1988 		/* One TRB after the ring end should fail */
1989 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1990 		/* An address of all ones should fail */
1991 		{ (dma_addr_t) (~0), NULL },
1992 	};
1993 	struct {
1994 		struct xhci_segment	*input_seg;
1995 		union xhci_trb		*start_trb;
1996 		union xhci_trb		*end_trb;
1997 		dma_addr_t		input_dma;
1998 		struct xhci_segment	*result_seg;
1999 	} complex_test_vector [] = {
2000 		/* Test feeding a valid DMA address from a different ring */
2001 		{	.input_seg = xhci->event_ring->first_seg,
2002 			.start_trb = xhci->event_ring->first_seg->trbs,
2003 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2004 			.input_dma = xhci->cmd_ring->first_seg->dma,
2005 			.result_seg = NULL,
2006 		},
2007 		/* Test feeding a valid end TRB from a different ring */
2008 		{	.input_seg = xhci->event_ring->first_seg,
2009 			.start_trb = xhci->event_ring->first_seg->trbs,
2010 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011 			.input_dma = xhci->cmd_ring->first_seg->dma,
2012 			.result_seg = NULL,
2013 		},
2014 		/* Test feeding a valid start and end TRB from a different ring */
2015 		{	.input_seg = xhci->event_ring->first_seg,
2016 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2017 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2018 			.input_dma = xhci->cmd_ring->first_seg->dma,
2019 			.result_seg = NULL,
2020 		},
2021 		/* TRB in this ring, but after this TD */
2022 		{	.input_seg = xhci->event_ring->first_seg,
2023 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2024 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2025 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2026 			.result_seg = NULL,
2027 		},
2028 		/* TRB in this ring, but before this TD */
2029 		{	.input_seg = xhci->event_ring->first_seg,
2030 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2031 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2032 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2033 			.result_seg = NULL,
2034 		},
2035 		/* TRB in this ring, but after this wrapped TD */
2036 		{	.input_seg = xhci->event_ring->first_seg,
2037 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2038 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2039 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2040 			.result_seg = NULL,
2041 		},
2042 		/* TRB in this ring, but before this wrapped TD */
2043 		{	.input_seg = xhci->event_ring->first_seg,
2044 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2045 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2046 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2047 			.result_seg = NULL,
2048 		},
2049 		/* TRB not in this ring, and we have a wrapped TD */
2050 		{	.input_seg = xhci->event_ring->first_seg,
2051 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2052 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2053 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2054 			.result_seg = NULL,
2055 		},
2056 	};
2057 
2058 	unsigned int num_tests;
2059 	int i, ret;
2060 
2061 	num_tests = ARRAY_SIZE(simple_test_vector);
2062 	for (i = 0; i < num_tests; i++) {
2063 		ret = xhci_test_trb_in_td(xhci,
2064 				xhci->event_ring->first_seg,
2065 				xhci->event_ring->first_seg->trbs,
2066 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2067 				simple_test_vector[i].input_dma,
2068 				simple_test_vector[i].result_seg,
2069 				"Simple", i);
2070 		if (ret < 0)
2071 			return ret;
2072 	}
2073 
2074 	num_tests = ARRAY_SIZE(complex_test_vector);
2075 	for (i = 0; i < num_tests; i++) {
2076 		ret = xhci_test_trb_in_td(xhci,
2077 				complex_test_vector[i].input_seg,
2078 				complex_test_vector[i].start_trb,
2079 				complex_test_vector[i].end_trb,
2080 				complex_test_vector[i].input_dma,
2081 				complex_test_vector[i].result_seg,
2082 				"Complex", i);
2083 		if (ret < 0)
2084 			return ret;
2085 	}
2086 	xhci_dbg(xhci, "TRB math tests passed.\n");
2087 	return 0;
2088 }
2089 
2090 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2091 {
2092 	u64 temp;
2093 	dma_addr_t deq;
2094 
2095 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2096 			xhci->event_ring->dequeue);
2097 	if (!deq)
2098 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2099 				"dequeue ptr.\n");
2100 	/* Update HC event ring dequeue pointer */
2101 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2102 	temp &= ERST_PTR_MASK;
2103 	/* Don't clear the EHB bit (which is RW1C) because
2104 	 * there might be more events to service.
2105 	 */
2106 	temp &= ~ERST_EHB;
2107 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2108 			"// Write event ring dequeue pointer, "
2109 			"preserving EHB bit");
2110 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2111 			&xhci->ir_set->erst_dequeue);
2112 }
2113 
2114 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2115 		__le32 __iomem *addr, int max_caps)
2116 {
2117 	u32 temp, port_offset, port_count;
2118 	int i;
2119 	u8 major_revision, minor_revision;
2120 	struct xhci_hub *rhub;
2121 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2122 	struct xhci_port_cap *port_cap;
2123 
2124 	temp = readl(addr);
2125 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2126 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2127 
2128 	if (major_revision == 0x03) {
2129 		rhub = &xhci->usb3_rhub;
2130 		/*
2131 		 * Some hosts incorrectly use sub-minor version for minor
2132 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2133 		 * for bcdUSB 0x310). Since there is no USB release with sub
2134 		 * minor version 0x301 to 0x309, we can assume that they are
2135 		 * incorrect and fix it here.
2136 		 */
2137 		if (minor_revision > 0x00 && minor_revision < 0x10)
2138 			minor_revision <<= 4;
2139 	} else if (major_revision <= 0x02) {
2140 		rhub = &xhci->usb2_rhub;
2141 	} else {
2142 		xhci_warn(xhci, "Ignoring unknown port speed, "
2143 				"Ext Cap %p, revision = 0x%x\n",
2144 				addr, major_revision);
2145 		/* Ignoring port protocol we can't understand. FIXME */
2146 		return;
2147 	}
2148 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2149 
2150 	if (rhub->min_rev < minor_revision)
2151 		rhub->min_rev = minor_revision;
2152 
2153 	/* Port offset and count in the third dword, see section 7.2 */
2154 	temp = readl(addr + 2);
2155 	port_offset = XHCI_EXT_PORT_OFF(temp);
2156 	port_count = XHCI_EXT_PORT_COUNT(temp);
2157 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2158 			"Ext Cap %p, port offset = %u, "
2159 			"count = %u, revision = 0x%x",
2160 			addr, port_offset, port_count, major_revision);
2161 	/* Port count includes the current port offset */
2162 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2163 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2164 		return;
2165 
2166 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2167 	if (xhci->num_port_caps > max_caps)
2168 		return;
2169 
2170 	port_cap->maj_rev = major_revision;
2171 	port_cap->min_rev = minor_revision;
2172 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2173 
2174 	if (port_cap->psi_count) {
2175 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2176 					     sizeof(*port_cap->psi),
2177 					     GFP_KERNEL, dev_to_node(dev));
2178 		if (!port_cap->psi)
2179 			port_cap->psi_count = 0;
2180 
2181 		port_cap->psi_uid_count++;
2182 		for (i = 0; i < port_cap->psi_count; i++) {
2183 			port_cap->psi[i] = readl(addr + 4 + i);
2184 
2185 			/* count unique ID values, two consecutive entries can
2186 			 * have the same ID if link is assymetric
2187 			 */
2188 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2189 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2190 				port_cap->psi_uid_count++;
2191 
2192 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2193 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2194 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2195 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2196 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2197 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2198 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2199 		}
2200 	}
2201 	/* cache usb2 port capabilities */
2202 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2203 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2204 
2205 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2206 		 (temp & XHCI_HLC)) {
2207 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2208 			       "xHCI 1.0: support USB2 hardware lpm");
2209 		xhci->hw_lpm_support = 1;
2210 	}
2211 
2212 	port_offset--;
2213 	for (i = port_offset; i < (port_offset + port_count); i++) {
2214 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2215 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2216 		if (hw_port->rhub) {
2217 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2218 					" port %u\n", addr, i);
2219 			xhci_warn(xhci, "Port was marked as USB %u, "
2220 					"duplicated as USB %u\n",
2221 					hw_port->rhub->maj_rev, major_revision);
2222 			/* Only adjust the roothub port counts if we haven't
2223 			 * found a similar duplicate.
2224 			 */
2225 			if (hw_port->rhub != rhub &&
2226 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2227 				hw_port->rhub->num_ports--;
2228 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2229 			}
2230 			continue;
2231 		}
2232 		hw_port->rhub = rhub;
2233 		hw_port->port_cap = port_cap;
2234 		rhub->num_ports++;
2235 	}
2236 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2237 }
2238 
2239 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2240 					struct xhci_hub *rhub, gfp_t flags)
2241 {
2242 	int port_index = 0;
2243 	int i;
2244 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2245 
2246 	if (!rhub->num_ports)
2247 		return;
2248 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2249 			flags, dev_to_node(dev));
2250 	if (!rhub->ports)
2251 		return;
2252 
2253 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2254 		if (xhci->hw_ports[i].rhub != rhub ||
2255 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2256 			continue;
2257 		xhci->hw_ports[i].hcd_portnum = port_index;
2258 		rhub->ports[port_index] = &xhci->hw_ports[i];
2259 		port_index++;
2260 		if (port_index == rhub->num_ports)
2261 			break;
2262 	}
2263 }
2264 
2265 /*
2266  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2267  * specify what speeds each port is supposed to be.  We can't count on the port
2268  * speed bits in the PORTSC register being correct until a device is connected,
2269  * but we need to set up the two fake roothubs with the correct number of USB
2270  * 3.0 and USB 2.0 ports at host controller initialization time.
2271  */
2272 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2273 {
2274 	void __iomem *base;
2275 	u32 offset;
2276 	unsigned int num_ports;
2277 	int i, j;
2278 	int cap_count = 0;
2279 	u32 cap_start;
2280 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2281 
2282 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2283 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2284 				flags, dev_to_node(dev));
2285 	if (!xhci->hw_ports)
2286 		return -ENOMEM;
2287 
2288 	for (i = 0; i < num_ports; i++) {
2289 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2290 			NUM_PORT_REGS * i;
2291 		xhci->hw_ports[i].hw_portnum = i;
2292 	}
2293 
2294 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2295 				   dev_to_node(dev));
2296 	if (!xhci->rh_bw)
2297 		return -ENOMEM;
2298 	for (i = 0; i < num_ports; i++) {
2299 		struct xhci_interval_bw_table *bw_table;
2300 
2301 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2302 		bw_table = &xhci->rh_bw[i].bw_table;
2303 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2304 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2305 	}
2306 	base = &xhci->cap_regs->hc_capbase;
2307 
2308 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2309 	if (!cap_start) {
2310 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2311 		return -ENODEV;
2312 	}
2313 
2314 	offset = cap_start;
2315 	/* count extended protocol capability entries for later caching */
2316 	while (offset) {
2317 		cap_count++;
2318 		offset = xhci_find_next_ext_cap(base, offset,
2319 						      XHCI_EXT_CAPS_PROTOCOL);
2320 	}
2321 
2322 	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2323 				flags, dev_to_node(dev));
2324 	if (!xhci->ext_caps)
2325 		return -ENOMEM;
2326 
2327 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2328 				flags, dev_to_node(dev));
2329 	if (!xhci->port_caps)
2330 		return -ENOMEM;
2331 
2332 	offset = cap_start;
2333 
2334 	while (offset) {
2335 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2336 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2337 		    num_ports)
2338 			break;
2339 		offset = xhci_find_next_ext_cap(base, offset,
2340 						XHCI_EXT_CAPS_PROTOCOL);
2341 	}
2342 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2343 		xhci_warn(xhci, "No ports on the roothubs?\n");
2344 		return -ENODEV;
2345 	}
2346 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2348 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2349 
2350 	/* Place limits on the number of roothub ports so that the hub
2351 	 * descriptors aren't longer than the USB core will allocate.
2352 	 */
2353 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2354 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355 				"Limiting USB 3.0 roothub ports to %u.",
2356 				USB_SS_MAXPORTS);
2357 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2358 	}
2359 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2360 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361 				"Limiting USB 2.0 roothub ports to %u.",
2362 				USB_MAXCHILDREN);
2363 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2364 	}
2365 
2366 	if (!xhci->usb2_rhub.num_ports)
2367 		xhci_info(xhci, "USB2 root hub has no ports\n");
2368 
2369 	if (!xhci->usb3_rhub.num_ports)
2370 		xhci_info(xhci, "USB3 root hub has no ports\n");
2371 
2372 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2373 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2374 
2375 	return 0;
2376 }
2377 
2378 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2379 {
2380 	dma_addr_t	dma;
2381 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2382 	unsigned int	val, val2;
2383 	u64		val_64;
2384 	u32		page_size, temp;
2385 	int		i, ret;
2386 
2387 	INIT_LIST_HEAD(&xhci->cmd_list);
2388 
2389 	/* init command timeout work */
2390 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2391 	init_completion(&xhci->cmd_ring_stop_completion);
2392 
2393 	page_size = readl(&xhci->op_regs->page_size);
2394 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2395 			"Supported page size register = 0x%x", page_size);
2396 	i = ffs(page_size);
2397 	if (i < 16)
2398 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2400 	else
2401 		xhci_warn(xhci, "WARN: no supported page size\n");
2402 	/* Use 4K pages, since that's common and the minimum the HC supports */
2403 	xhci->page_shift = 12;
2404 	xhci->page_size = 1 << xhci->page_shift;
2405 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406 			"HCD page size set to %iK", xhci->page_size / 1024);
2407 
2408 	/*
2409 	 * Program the Number of Device Slots Enabled field in the CONFIG
2410 	 * register with the max value of slots the HC can handle.
2411 	 */
2412 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2413 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2414 			"// xHC can handle at most %d device slots.", val);
2415 	val2 = readl(&xhci->op_regs->config_reg);
2416 	val |= (val2 & ~HCS_SLOTS_MASK);
2417 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418 			"// Setting Max device slots reg = 0x%x.", val);
2419 	writel(val, &xhci->op_regs->config_reg);
2420 
2421 	/*
2422 	 * xHCI section 5.4.6 - Device Context array must be
2423 	 * "physically contiguous and 64-byte (cache line) aligned".
2424 	 */
2425 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2426 			flags);
2427 	if (!xhci->dcbaa)
2428 		goto fail;
2429 	xhci->dcbaa->dma = dma;
2430 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2431 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2432 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2433 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2434 
2435 	/*
2436 	 * Initialize the ring segment pool.  The ring must be a contiguous
2437 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2438 	 * however, the command ring segment needs 64-byte aligned segments
2439 	 * and our use of dma addresses in the trb_address_map radix tree needs
2440 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2441 	 */
2442 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2443 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2444 
2445 	/* See Table 46 and Note on Figure 55 */
2446 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2447 			2112, 64, xhci->page_size);
2448 	if (!xhci->segment_pool || !xhci->device_pool)
2449 		goto fail;
2450 
2451 	/* Linear stream context arrays don't have any boundary restrictions,
2452 	 * and only need to be 16-byte aligned.
2453 	 */
2454 	xhci->small_streams_pool =
2455 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2456 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2457 	xhci->medium_streams_pool =
2458 		dma_pool_create("xHCI 1KB stream ctx arrays",
2459 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2460 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2461 	 * will be allocated with dma_alloc_coherent()
2462 	 */
2463 
2464 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2465 		goto fail;
2466 
2467 	/* Set up the command ring to have one segments for now. */
2468 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2469 	if (!xhci->cmd_ring)
2470 		goto fail;
2471 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472 			"Allocated command ring at %p", xhci->cmd_ring);
2473 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2474 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2475 
2476 	/* Set the address in the Command Ring Control register */
2477 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2478 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2479 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2480 		xhci->cmd_ring->cycle_state;
2481 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2482 			"// Setting command ring address to 0x%016llx", val_64);
2483 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2484 
2485 	/* Reserve one command ring TRB for disabling LPM.
2486 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487 	 * disabling LPM, we only need to reserve one TRB for all devices.
2488 	 */
2489 	xhci->cmd_ring_reserved_trbs++;
2490 
2491 	val = readl(&xhci->cap_regs->db_off);
2492 	val &= DBOFF_MASK;
2493 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 			"// Doorbell array is located at offset 0x%x"
2495 			" from cap regs base addr", val);
2496 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2497 	/* Set ir_set to interrupt register set 0 */
2498 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2499 
2500 	/*
2501 	 * Event ring setup: Allocate a normal ring, but also setup
2502 	 * the event ring segment table (ERST).  Section 4.9.3.
2503 	 */
2504 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2505 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2506 					0, flags);
2507 	if (!xhci->event_ring)
2508 		goto fail;
2509 	if (xhci_check_trb_in_td_math(xhci) < 0)
2510 		goto fail;
2511 
2512 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2513 	if (ret)
2514 		goto fail;
2515 
2516 	/* set ERST count with the number of entries in the segment table */
2517 	val = readl(&xhci->ir_set->erst_size);
2518 	val &= ERST_SIZE_MASK;
2519 	val |= ERST_NUM_SEGS;
2520 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2521 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2522 			val);
2523 	writel(val, &xhci->ir_set->erst_size);
2524 
2525 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2526 			"// Set ERST entries to point to event ring.");
2527 	/* set the segment table base address */
2528 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529 			"// Set ERST base address for ir_set 0 = 0x%llx",
2530 			(unsigned long long)xhci->erst.erst_dma_addr);
2531 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2532 	val_64 &= ERST_PTR_MASK;
2533 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2534 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2535 
2536 	/* Set the event ring dequeue address */
2537 	xhci_set_hc_event_deq(xhci);
2538 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539 			"Wrote ERST address to ir_set 0.");
2540 
2541 	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2542 
2543 	/*
2544 	 * XXX: Might need to set the Interrupter Moderation Register to
2545 	 * something other than the default (~1ms minimum between interrupts).
2546 	 * See section 5.5.1.2.
2547 	 */
2548 	for (i = 0; i < MAX_HC_SLOTS; i++)
2549 		xhci->devs[i] = NULL;
2550 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2551 		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2552 		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2553 		/* Only the USB 2.0 completions will ever be used. */
2554 		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2555 		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2556 	}
2557 
2558 	if (scratchpad_alloc(xhci, flags))
2559 		goto fail;
2560 	if (xhci_setup_port_arrays(xhci, flags))
2561 		goto fail;
2562 
2563 	/* Enable USB 3.0 device notifications for function remote wake, which
2564 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2565 	 * U3 (device suspend).
2566 	 */
2567 	temp = readl(&xhci->op_regs->dev_notification);
2568 	temp &= ~DEV_NOTE_MASK;
2569 	temp |= DEV_NOTE_FWAKE;
2570 	writel(temp, &xhci->op_regs->dev_notification);
2571 
2572 	return 0;
2573 
2574 fail:
2575 	xhci_halt(xhci);
2576 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2577 	xhci_mem_cleanup(xhci);
2578 	return -ENOMEM;
2579 }
2580