1 /* 2 * Universal Host Controller Interface driver for USB. 3 * 4 * Maintainer: Alan Stern <stern@rowland.harvard.edu> 5 * 6 * (C) Copyright 1999 Linus Torvalds 7 * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com 8 * (C) Copyright 1999 Randy Dunlap 9 * (C) Copyright 1999 Georg Acher, acher@in.tum.de 10 * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de 11 * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch 12 * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at 13 * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface 14 * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). 15 * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) 16 * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu 17 */ 18 19 20 /* 21 * Technically, updating td->status here is a race, but it's not really a 22 * problem. The worst that can happen is that we set the IOC bit again 23 * generating a spurious interrupt. We could fix this by creating another 24 * QH and leaving the IOC bit always set, but then we would have to play 25 * games with the FSBR code to make sure we get the correct order in all 26 * the cases. I don't think it's worth the effort 27 */ 28 static void uhci_set_next_interrupt(struct uhci_hcd *uhci) 29 { 30 if (uhci->is_stopped) 31 mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies); 32 uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC); 33 } 34 35 static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci) 36 { 37 uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC); 38 } 39 40 41 /* 42 * Full-Speed Bandwidth Reclamation (FSBR). 43 * We turn on FSBR whenever a queue that wants it is advancing, 44 * and leave it on for a short time thereafter. 45 */ 46 static void uhci_fsbr_on(struct uhci_hcd *uhci) 47 { 48 struct uhci_qh *lqh; 49 50 /* The terminating skeleton QH always points back to the first 51 * FSBR QH. Make the last async QH point to the terminating 52 * skeleton QH. */ 53 uhci->fsbr_is_on = 1; 54 lqh = list_entry(uhci->skel_async_qh->node.prev, 55 struct uhci_qh, node); 56 lqh->link = LINK_TO_QH(uhci->skel_term_qh); 57 } 58 59 static void uhci_fsbr_off(struct uhci_hcd *uhci) 60 { 61 struct uhci_qh *lqh; 62 63 /* Remove the link from the last async QH to the terminating 64 * skeleton QH. */ 65 uhci->fsbr_is_on = 0; 66 lqh = list_entry(uhci->skel_async_qh->node.prev, 67 struct uhci_qh, node); 68 lqh->link = UHCI_PTR_TERM; 69 } 70 71 static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb) 72 { 73 struct urb_priv *urbp = urb->hcpriv; 74 75 if (!(urb->transfer_flags & URB_NO_FSBR)) 76 urbp->fsbr = 1; 77 } 78 79 static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp) 80 { 81 if (urbp->fsbr) { 82 uhci->fsbr_is_wanted = 1; 83 if (!uhci->fsbr_is_on) 84 uhci_fsbr_on(uhci); 85 else if (uhci->fsbr_expiring) { 86 uhci->fsbr_expiring = 0; 87 del_timer(&uhci->fsbr_timer); 88 } 89 } 90 } 91 92 static void uhci_fsbr_timeout(unsigned long _uhci) 93 { 94 struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci; 95 unsigned long flags; 96 97 spin_lock_irqsave(&uhci->lock, flags); 98 if (uhci->fsbr_expiring) { 99 uhci->fsbr_expiring = 0; 100 uhci_fsbr_off(uhci); 101 } 102 spin_unlock_irqrestore(&uhci->lock, flags); 103 } 104 105 106 static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci) 107 { 108 dma_addr_t dma_handle; 109 struct uhci_td *td; 110 111 td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle); 112 if (!td) 113 return NULL; 114 115 td->dma_handle = dma_handle; 116 td->frame = -1; 117 118 INIT_LIST_HEAD(&td->list); 119 INIT_LIST_HEAD(&td->fl_list); 120 121 return td; 122 } 123 124 static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td) 125 { 126 if (!list_empty(&td->list)) 127 dev_WARN(uhci_dev(uhci), "td %p still in list!\n", td); 128 if (!list_empty(&td->fl_list)) 129 dev_WARN(uhci_dev(uhci), "td %p still in fl_list!\n", td); 130 131 dma_pool_free(uhci->td_pool, td, td->dma_handle); 132 } 133 134 static inline void uhci_fill_td(struct uhci_td *td, u32 status, 135 u32 token, u32 buffer) 136 { 137 td->status = cpu_to_le32(status); 138 td->token = cpu_to_le32(token); 139 td->buffer = cpu_to_le32(buffer); 140 } 141 142 static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp) 143 { 144 list_add_tail(&td->list, &urbp->td_list); 145 } 146 147 static void uhci_remove_td_from_urbp(struct uhci_td *td) 148 { 149 list_del_init(&td->list); 150 } 151 152 /* 153 * We insert Isochronous URBs directly into the frame list at the beginning 154 */ 155 static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci, 156 struct uhci_td *td, unsigned framenum) 157 { 158 framenum &= (UHCI_NUMFRAMES - 1); 159 160 td->frame = framenum; 161 162 /* Is there a TD already mapped there? */ 163 if (uhci->frame_cpu[framenum]) { 164 struct uhci_td *ftd, *ltd; 165 166 ftd = uhci->frame_cpu[framenum]; 167 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); 168 169 list_add_tail(&td->fl_list, &ftd->fl_list); 170 171 td->link = ltd->link; 172 wmb(); 173 ltd->link = LINK_TO_TD(td); 174 } else { 175 td->link = uhci->frame[framenum]; 176 wmb(); 177 uhci->frame[framenum] = LINK_TO_TD(td); 178 uhci->frame_cpu[framenum] = td; 179 } 180 } 181 182 static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci, 183 struct uhci_td *td) 184 { 185 /* If it's not inserted, don't remove it */ 186 if (td->frame == -1) { 187 WARN_ON(!list_empty(&td->fl_list)); 188 return; 189 } 190 191 if (uhci->frame_cpu[td->frame] == td) { 192 if (list_empty(&td->fl_list)) { 193 uhci->frame[td->frame] = td->link; 194 uhci->frame_cpu[td->frame] = NULL; 195 } else { 196 struct uhci_td *ntd; 197 198 ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list); 199 uhci->frame[td->frame] = LINK_TO_TD(ntd); 200 uhci->frame_cpu[td->frame] = ntd; 201 } 202 } else { 203 struct uhci_td *ptd; 204 205 ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list); 206 ptd->link = td->link; 207 } 208 209 list_del_init(&td->fl_list); 210 td->frame = -1; 211 } 212 213 static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci, 214 unsigned int framenum) 215 { 216 struct uhci_td *ftd, *ltd; 217 218 framenum &= (UHCI_NUMFRAMES - 1); 219 220 ftd = uhci->frame_cpu[framenum]; 221 if (ftd) { 222 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); 223 uhci->frame[framenum] = ltd->link; 224 uhci->frame_cpu[framenum] = NULL; 225 226 while (!list_empty(&ftd->fl_list)) 227 list_del_init(ftd->fl_list.prev); 228 } 229 } 230 231 /* 232 * Remove all the TDs for an Isochronous URB from the frame list 233 */ 234 static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb) 235 { 236 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 237 struct uhci_td *td; 238 239 list_for_each_entry(td, &urbp->td_list, list) 240 uhci_remove_td_from_frame_list(uhci, td); 241 } 242 243 static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, 244 struct usb_device *udev, struct usb_host_endpoint *hep) 245 { 246 dma_addr_t dma_handle; 247 struct uhci_qh *qh; 248 249 qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle); 250 if (!qh) 251 return NULL; 252 253 memset(qh, 0, sizeof(*qh)); 254 qh->dma_handle = dma_handle; 255 256 qh->element = UHCI_PTR_TERM; 257 qh->link = UHCI_PTR_TERM; 258 259 INIT_LIST_HEAD(&qh->queue); 260 INIT_LIST_HEAD(&qh->node); 261 262 if (udev) { /* Normal QH */ 263 qh->type = usb_endpoint_type(&hep->desc); 264 if (qh->type != USB_ENDPOINT_XFER_ISOC) { 265 qh->dummy_td = uhci_alloc_td(uhci); 266 if (!qh->dummy_td) { 267 dma_pool_free(uhci->qh_pool, qh, dma_handle); 268 return NULL; 269 } 270 } 271 qh->state = QH_STATE_IDLE; 272 qh->hep = hep; 273 qh->udev = udev; 274 hep->hcpriv = qh; 275 276 if (qh->type == USB_ENDPOINT_XFER_INT || 277 qh->type == USB_ENDPOINT_XFER_ISOC) 278 qh->load = usb_calc_bus_time(udev->speed, 279 usb_endpoint_dir_in(&hep->desc), 280 qh->type == USB_ENDPOINT_XFER_ISOC, 281 le16_to_cpu(hep->desc.wMaxPacketSize)) 282 / 1000 + 1; 283 284 } else { /* Skeleton QH */ 285 qh->state = QH_STATE_ACTIVE; 286 qh->type = -1; 287 } 288 return qh; 289 } 290 291 static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 292 { 293 WARN_ON(qh->state != QH_STATE_IDLE && qh->udev); 294 if (!list_empty(&qh->queue)) 295 dev_WARN(uhci_dev(uhci), "qh %p list not empty!\n", qh); 296 297 list_del(&qh->node); 298 if (qh->udev) { 299 qh->hep->hcpriv = NULL; 300 if (qh->dummy_td) 301 uhci_free_td(uhci, qh->dummy_td); 302 } 303 dma_pool_free(uhci->qh_pool, qh, qh->dma_handle); 304 } 305 306 /* 307 * When a queue is stopped and a dequeued URB is given back, adjust 308 * the previous TD link (if the URB isn't first on the queue) or 309 * save its toggle value (if it is first and is currently executing). 310 * 311 * Returns 0 if the URB should not yet be given back, 1 otherwise. 312 */ 313 static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh, 314 struct urb *urb) 315 { 316 struct urb_priv *urbp = urb->hcpriv; 317 struct uhci_td *td; 318 int ret = 1; 319 320 /* Isochronous pipes don't use toggles and their TD link pointers 321 * get adjusted during uhci_urb_dequeue(). But since their queues 322 * cannot truly be stopped, we have to watch out for dequeues 323 * occurring after the nominal unlink frame. */ 324 if (qh->type == USB_ENDPOINT_XFER_ISOC) { 325 ret = (uhci->frame_number + uhci->is_stopped != 326 qh->unlink_frame); 327 goto done; 328 } 329 330 /* If the URB isn't first on its queue, adjust the link pointer 331 * of the last TD in the previous URB. The toggle doesn't need 332 * to be saved since this URB can't be executing yet. */ 333 if (qh->queue.next != &urbp->node) { 334 struct urb_priv *purbp; 335 struct uhci_td *ptd; 336 337 purbp = list_entry(urbp->node.prev, struct urb_priv, node); 338 WARN_ON(list_empty(&purbp->td_list)); 339 ptd = list_entry(purbp->td_list.prev, struct uhci_td, 340 list); 341 td = list_entry(urbp->td_list.prev, struct uhci_td, 342 list); 343 ptd->link = td->link; 344 goto done; 345 } 346 347 /* If the QH element pointer is UHCI_PTR_TERM then then currently 348 * executing URB has already been unlinked, so this one isn't it. */ 349 if (qh_element(qh) == UHCI_PTR_TERM) 350 goto done; 351 qh->element = UHCI_PTR_TERM; 352 353 /* Control pipes don't have to worry about toggles */ 354 if (qh->type == USB_ENDPOINT_XFER_CONTROL) 355 goto done; 356 357 /* Save the next toggle value */ 358 WARN_ON(list_empty(&urbp->td_list)); 359 td = list_entry(urbp->td_list.next, struct uhci_td, list); 360 qh->needs_fixup = 1; 361 qh->initial_toggle = uhci_toggle(td_token(td)); 362 363 done: 364 return ret; 365 } 366 367 /* 368 * Fix up the data toggles for URBs in a queue, when one of them 369 * terminates early (short transfer, error, or dequeued). 370 */ 371 static void uhci_fixup_toggles(struct uhci_qh *qh, int skip_first) 372 { 373 struct urb_priv *urbp = NULL; 374 struct uhci_td *td; 375 unsigned int toggle = qh->initial_toggle; 376 unsigned int pipe; 377 378 /* Fixups for a short transfer start with the second URB in the 379 * queue (the short URB is the first). */ 380 if (skip_first) 381 urbp = list_entry(qh->queue.next, struct urb_priv, node); 382 383 /* When starting with the first URB, if the QH element pointer is 384 * still valid then we know the URB's toggles are okay. */ 385 else if (qh_element(qh) != UHCI_PTR_TERM) 386 toggle = 2; 387 388 /* Fix up the toggle for the URBs in the queue. Normally this 389 * loop won't run more than once: When an error or short transfer 390 * occurs, the queue usually gets emptied. */ 391 urbp = list_prepare_entry(urbp, &qh->queue, node); 392 list_for_each_entry_continue(urbp, &qh->queue, node) { 393 394 /* If the first TD has the right toggle value, we don't 395 * need to change any toggles in this URB */ 396 td = list_entry(urbp->td_list.next, struct uhci_td, list); 397 if (toggle > 1 || uhci_toggle(td_token(td)) == toggle) { 398 td = list_entry(urbp->td_list.prev, struct uhci_td, 399 list); 400 toggle = uhci_toggle(td_token(td)) ^ 1; 401 402 /* Otherwise all the toggles in the URB have to be switched */ 403 } else { 404 list_for_each_entry(td, &urbp->td_list, list) { 405 td->token ^= cpu_to_le32( 406 TD_TOKEN_TOGGLE); 407 toggle ^= 1; 408 } 409 } 410 } 411 412 wmb(); 413 pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe; 414 usb_settoggle(qh->udev, usb_pipeendpoint(pipe), 415 usb_pipeout(pipe), toggle); 416 qh->needs_fixup = 0; 417 } 418 419 /* 420 * Link an Isochronous QH into its skeleton's list 421 */ 422 static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh) 423 { 424 list_add_tail(&qh->node, &uhci->skel_iso_qh->node); 425 426 /* Isochronous QHs aren't linked by the hardware */ 427 } 428 429 /* 430 * Link a high-period interrupt QH into the schedule at the end of its 431 * skeleton's list 432 */ 433 static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) 434 { 435 struct uhci_qh *pqh; 436 437 list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node); 438 439 pqh = list_entry(qh->node.prev, struct uhci_qh, node); 440 qh->link = pqh->link; 441 wmb(); 442 pqh->link = LINK_TO_QH(qh); 443 } 444 445 /* 446 * Link a period-1 interrupt or async QH into the schedule at the 447 * correct spot in the async skeleton's list, and update the FSBR link 448 */ 449 static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh) 450 { 451 struct uhci_qh *pqh; 452 __le32 link_to_new_qh; 453 454 /* Find the predecessor QH for our new one and insert it in the list. 455 * The list of QHs is expected to be short, so linear search won't 456 * take too long. */ 457 list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) { 458 if (pqh->skel <= qh->skel) 459 break; 460 } 461 list_add(&qh->node, &pqh->node); 462 463 /* Link it into the schedule */ 464 qh->link = pqh->link; 465 wmb(); 466 link_to_new_qh = LINK_TO_QH(qh); 467 pqh->link = link_to_new_qh; 468 469 /* If this is now the first FSBR QH, link the terminating skeleton 470 * QH to it. */ 471 if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) 472 uhci->skel_term_qh->link = link_to_new_qh; 473 } 474 475 /* 476 * Put a QH on the schedule in both hardware and software 477 */ 478 static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 479 { 480 WARN_ON(list_empty(&qh->queue)); 481 482 /* Set the element pointer if it isn't set already. 483 * This isn't needed for Isochronous queues, but it doesn't hurt. */ 484 if (qh_element(qh) == UHCI_PTR_TERM) { 485 struct urb_priv *urbp = list_entry(qh->queue.next, 486 struct urb_priv, node); 487 struct uhci_td *td = list_entry(urbp->td_list.next, 488 struct uhci_td, list); 489 490 qh->element = LINK_TO_TD(td); 491 } 492 493 /* Treat the queue as if it has just advanced */ 494 qh->wait_expired = 0; 495 qh->advance_jiffies = jiffies; 496 497 if (qh->state == QH_STATE_ACTIVE) 498 return; 499 qh->state = QH_STATE_ACTIVE; 500 501 /* Move the QH from its old list to the correct spot in the appropriate 502 * skeleton's list */ 503 if (qh == uhci->next_qh) 504 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 505 node); 506 list_del(&qh->node); 507 508 if (qh->skel == SKEL_ISO) 509 link_iso(uhci, qh); 510 else if (qh->skel < SKEL_ASYNC) 511 link_interrupt(uhci, qh); 512 else 513 link_async(uhci, qh); 514 } 515 516 /* 517 * Unlink a high-period interrupt QH from the schedule 518 */ 519 static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) 520 { 521 struct uhci_qh *pqh; 522 523 pqh = list_entry(qh->node.prev, struct uhci_qh, node); 524 pqh->link = qh->link; 525 mb(); 526 } 527 528 /* 529 * Unlink a period-1 interrupt or async QH from the schedule 530 */ 531 static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh) 532 { 533 struct uhci_qh *pqh; 534 __le32 link_to_next_qh = qh->link; 535 536 pqh = list_entry(qh->node.prev, struct uhci_qh, node); 537 pqh->link = link_to_next_qh; 538 539 /* If this was the old first FSBR QH, link the terminating skeleton 540 * QH to the next (new first FSBR) QH. */ 541 if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) 542 uhci->skel_term_qh->link = link_to_next_qh; 543 mb(); 544 } 545 546 /* 547 * Take a QH off the hardware schedule 548 */ 549 static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 550 { 551 if (qh->state == QH_STATE_UNLINKING) 552 return; 553 WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev); 554 qh->state = QH_STATE_UNLINKING; 555 556 /* Unlink the QH from the schedule and record when we did it */ 557 if (qh->skel == SKEL_ISO) 558 ; 559 else if (qh->skel < SKEL_ASYNC) 560 unlink_interrupt(uhci, qh); 561 else 562 unlink_async(uhci, qh); 563 564 uhci_get_current_frame_number(uhci); 565 qh->unlink_frame = uhci->frame_number; 566 567 /* Force an interrupt so we know when the QH is fully unlinked */ 568 if (list_empty(&uhci->skel_unlink_qh->node) || uhci->is_stopped) 569 uhci_set_next_interrupt(uhci); 570 571 /* Move the QH from its old list to the end of the unlinking list */ 572 if (qh == uhci->next_qh) 573 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 574 node); 575 list_move_tail(&qh->node, &uhci->skel_unlink_qh->node); 576 } 577 578 /* 579 * When we and the controller are through with a QH, it becomes IDLE. 580 * This happens when a QH has been off the schedule (on the unlinking 581 * list) for more than one frame, or when an error occurs while adding 582 * the first URB onto a new QH. 583 */ 584 static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh) 585 { 586 WARN_ON(qh->state == QH_STATE_ACTIVE); 587 588 if (qh == uhci->next_qh) 589 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 590 node); 591 list_move(&qh->node, &uhci->idle_qh_list); 592 qh->state = QH_STATE_IDLE; 593 594 /* Now that the QH is idle, its post_td isn't being used */ 595 if (qh->post_td) { 596 uhci_free_td(uhci, qh->post_td); 597 qh->post_td = NULL; 598 } 599 600 /* If anyone is waiting for a QH to become idle, wake them up */ 601 if (uhci->num_waiting) 602 wake_up_all(&uhci->waitqh); 603 } 604 605 /* 606 * Find the highest existing bandwidth load for a given phase and period. 607 */ 608 static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period) 609 { 610 int highest_load = uhci->load[phase]; 611 612 for (phase += period; phase < MAX_PHASE; phase += period) 613 highest_load = max_t(int, highest_load, uhci->load[phase]); 614 return highest_load; 615 } 616 617 /* 618 * Set qh->phase to the optimal phase for a periodic transfer and 619 * check whether the bandwidth requirement is acceptable. 620 */ 621 static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 622 { 623 int minimax_load; 624 625 /* Find the optimal phase (unless it is already set) and get 626 * its load value. */ 627 if (qh->phase >= 0) 628 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); 629 else { 630 int phase, load; 631 int max_phase = min_t(int, MAX_PHASE, qh->period); 632 633 qh->phase = 0; 634 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); 635 for (phase = 1; phase < max_phase; ++phase) { 636 load = uhci_highest_load(uhci, phase, qh->period); 637 if (load < minimax_load) { 638 minimax_load = load; 639 qh->phase = phase; 640 } 641 } 642 } 643 644 /* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */ 645 if (minimax_load + qh->load > 900) { 646 dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: " 647 "period %d, phase %d, %d + %d us\n", 648 qh->period, qh->phase, minimax_load, qh->load); 649 return -ENOSPC; 650 } 651 return 0; 652 } 653 654 /* 655 * Reserve a periodic QH's bandwidth in the schedule 656 */ 657 static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 658 { 659 int i; 660 int load = qh->load; 661 char *p = "??"; 662 663 for (i = qh->phase; i < MAX_PHASE; i += qh->period) { 664 uhci->load[i] += load; 665 uhci->total_load += load; 666 } 667 uhci_to_hcd(uhci)->self.bandwidth_allocated = 668 uhci->total_load / MAX_PHASE; 669 switch (qh->type) { 670 case USB_ENDPOINT_XFER_INT: 671 ++uhci_to_hcd(uhci)->self.bandwidth_int_reqs; 672 p = "INT"; 673 break; 674 case USB_ENDPOINT_XFER_ISOC: 675 ++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; 676 p = "ISO"; 677 break; 678 } 679 qh->bandwidth_reserved = 1; 680 dev_dbg(uhci_dev(uhci), 681 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", 682 "reserve", qh->udev->devnum, 683 qh->hep->desc.bEndpointAddress, p, 684 qh->period, qh->phase, load); 685 } 686 687 /* 688 * Release a periodic QH's bandwidth reservation 689 */ 690 static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 691 { 692 int i; 693 int load = qh->load; 694 char *p = "??"; 695 696 for (i = qh->phase; i < MAX_PHASE; i += qh->period) { 697 uhci->load[i] -= load; 698 uhci->total_load -= load; 699 } 700 uhci_to_hcd(uhci)->self.bandwidth_allocated = 701 uhci->total_load / MAX_PHASE; 702 switch (qh->type) { 703 case USB_ENDPOINT_XFER_INT: 704 --uhci_to_hcd(uhci)->self.bandwidth_int_reqs; 705 p = "INT"; 706 break; 707 case USB_ENDPOINT_XFER_ISOC: 708 --uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; 709 p = "ISO"; 710 break; 711 } 712 qh->bandwidth_reserved = 0; 713 dev_dbg(uhci_dev(uhci), 714 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", 715 "release", qh->udev->devnum, 716 qh->hep->desc.bEndpointAddress, p, 717 qh->period, qh->phase, load); 718 } 719 720 static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, 721 struct urb *urb) 722 { 723 struct urb_priv *urbp; 724 725 urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC); 726 if (!urbp) 727 return NULL; 728 729 urbp->urb = urb; 730 urb->hcpriv = urbp; 731 732 INIT_LIST_HEAD(&urbp->node); 733 INIT_LIST_HEAD(&urbp->td_list); 734 735 return urbp; 736 } 737 738 static void uhci_free_urb_priv(struct uhci_hcd *uhci, 739 struct urb_priv *urbp) 740 { 741 struct uhci_td *td, *tmp; 742 743 if (!list_empty(&urbp->node)) 744 dev_WARN(uhci_dev(uhci), "urb %p still on QH's list!\n", 745 urbp->urb); 746 747 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 748 uhci_remove_td_from_urbp(td); 749 uhci_free_td(uhci, td); 750 } 751 752 kmem_cache_free(uhci_up_cachep, urbp); 753 } 754 755 /* 756 * Map status to standard result codes 757 * 758 * <status> is (td_status(td) & 0xF60000), a.k.a. 759 * uhci_status_bits(td_status(td)). 760 * Note: <status> does not include the TD_CTRL_NAK bit. 761 * <dir_out> is True for output TDs and False for input TDs. 762 */ 763 static int uhci_map_status(int status, int dir_out) 764 { 765 if (!status) 766 return 0; 767 if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */ 768 return -EPROTO; 769 if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */ 770 if (dir_out) 771 return -EPROTO; 772 else 773 return -EILSEQ; 774 } 775 if (status & TD_CTRL_BABBLE) /* Babble */ 776 return -EOVERFLOW; 777 if (status & TD_CTRL_DBUFERR) /* Buffer error */ 778 return -ENOSR; 779 if (status & TD_CTRL_STALLED) /* Stalled */ 780 return -EPIPE; 781 return 0; 782 } 783 784 /* 785 * Control transfers 786 */ 787 static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, 788 struct uhci_qh *qh) 789 { 790 struct uhci_td *td; 791 unsigned long destination, status; 792 int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize); 793 int len = urb->transfer_buffer_length; 794 dma_addr_t data = urb->transfer_dma; 795 __le32 *plink; 796 struct urb_priv *urbp = urb->hcpriv; 797 int skel; 798 799 /* The "pipe" thing contains the destination in bits 8--18 */ 800 destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP; 801 802 /* 3 errors, dummy TD remains inactive */ 803 status = uhci_maxerr(3); 804 if (urb->dev->speed == USB_SPEED_LOW) 805 status |= TD_CTRL_LS; 806 807 /* 808 * Build the TD for the control request setup packet 809 */ 810 td = qh->dummy_td; 811 uhci_add_td_to_urbp(td, urbp); 812 uhci_fill_td(td, status, destination | uhci_explen(8), 813 urb->setup_dma); 814 plink = &td->link; 815 status |= TD_CTRL_ACTIVE; 816 817 /* 818 * If direction is "send", change the packet ID from SETUP (0x2D) 819 * to OUT (0xE1). Else change it from SETUP to IN (0x69) and 820 * set Short Packet Detect (SPD) for all data packets. 821 * 822 * 0-length transfers always get treated as "send". 823 */ 824 if (usb_pipeout(urb->pipe) || len == 0) 825 destination ^= (USB_PID_SETUP ^ USB_PID_OUT); 826 else { 827 destination ^= (USB_PID_SETUP ^ USB_PID_IN); 828 status |= TD_CTRL_SPD; 829 } 830 831 /* 832 * Build the DATA TDs 833 */ 834 while (len > 0) { 835 int pktsze = maxsze; 836 837 if (len <= pktsze) { /* The last data packet */ 838 pktsze = len; 839 status &= ~TD_CTRL_SPD; 840 } 841 842 td = uhci_alloc_td(uhci); 843 if (!td) 844 goto nomem; 845 *plink = LINK_TO_TD(td); 846 847 /* Alternate Data0/1 (start with Data1) */ 848 destination ^= TD_TOKEN_TOGGLE; 849 850 uhci_add_td_to_urbp(td, urbp); 851 uhci_fill_td(td, status, destination | uhci_explen(pktsze), 852 data); 853 plink = &td->link; 854 855 data += pktsze; 856 len -= pktsze; 857 } 858 859 /* 860 * Build the final TD for control status 861 */ 862 td = uhci_alloc_td(uhci); 863 if (!td) 864 goto nomem; 865 *plink = LINK_TO_TD(td); 866 867 /* Change direction for the status transaction */ 868 destination ^= (USB_PID_IN ^ USB_PID_OUT); 869 destination |= TD_TOKEN_TOGGLE; /* End in Data1 */ 870 871 uhci_add_td_to_urbp(td, urbp); 872 uhci_fill_td(td, status | TD_CTRL_IOC, 873 destination | uhci_explen(0), 0); 874 plink = &td->link; 875 876 /* 877 * Build the new dummy TD and activate the old one 878 */ 879 td = uhci_alloc_td(uhci); 880 if (!td) 881 goto nomem; 882 *plink = LINK_TO_TD(td); 883 884 uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0); 885 wmb(); 886 qh->dummy_td->status |= cpu_to_le32(TD_CTRL_ACTIVE); 887 qh->dummy_td = td; 888 889 /* Low-speed transfers get a different queue, and won't hog the bus. 890 * Also, some devices enumerate better without FSBR; the easiest way 891 * to do that is to put URBs on the low-speed queue while the device 892 * isn't in the CONFIGURED state. */ 893 if (urb->dev->speed == USB_SPEED_LOW || 894 urb->dev->state != USB_STATE_CONFIGURED) 895 skel = SKEL_LS_CONTROL; 896 else { 897 skel = SKEL_FS_CONTROL; 898 uhci_add_fsbr(uhci, urb); 899 } 900 if (qh->state != QH_STATE_ACTIVE) 901 qh->skel = skel; 902 return 0; 903 904 nomem: 905 /* Remove the dummy TD from the td_list so it doesn't get freed */ 906 uhci_remove_td_from_urbp(qh->dummy_td); 907 return -ENOMEM; 908 } 909 910 /* 911 * Common submit for bulk and interrupt 912 */ 913 static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, 914 struct uhci_qh *qh) 915 { 916 struct uhci_td *td; 917 unsigned long destination, status; 918 int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize); 919 int len = urb->transfer_buffer_length; 920 int this_sg_len; 921 dma_addr_t data; 922 __le32 *plink; 923 struct urb_priv *urbp = urb->hcpriv; 924 unsigned int toggle; 925 struct scatterlist *sg; 926 int i; 927 928 if (len < 0) 929 return -EINVAL; 930 931 /* The "pipe" thing contains the destination in bits 8--18 */ 932 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); 933 toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), 934 usb_pipeout(urb->pipe)); 935 936 /* 3 errors, dummy TD remains inactive */ 937 status = uhci_maxerr(3); 938 if (urb->dev->speed == USB_SPEED_LOW) 939 status |= TD_CTRL_LS; 940 if (usb_pipein(urb->pipe)) 941 status |= TD_CTRL_SPD; 942 943 i = urb->num_sgs; 944 if (len > 0 && i > 0) { 945 sg = urb->sg; 946 data = sg_dma_address(sg); 947 948 /* urb->transfer_buffer_length may be smaller than the 949 * size of the scatterlist (or vice versa) 950 */ 951 this_sg_len = min_t(int, sg_dma_len(sg), len); 952 } else { 953 sg = NULL; 954 data = urb->transfer_dma; 955 this_sg_len = len; 956 } 957 /* 958 * Build the DATA TDs 959 */ 960 plink = NULL; 961 td = qh->dummy_td; 962 for (;;) { /* Allow zero length packets */ 963 int pktsze = maxsze; 964 965 if (len <= pktsze) { /* The last packet */ 966 pktsze = len; 967 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 968 status &= ~TD_CTRL_SPD; 969 } 970 971 if (plink) { 972 td = uhci_alloc_td(uhci); 973 if (!td) 974 goto nomem; 975 *plink = LINK_TO_TD(td); 976 } 977 uhci_add_td_to_urbp(td, urbp); 978 uhci_fill_td(td, status, 979 destination | uhci_explen(pktsze) | 980 (toggle << TD_TOKEN_TOGGLE_SHIFT), 981 data); 982 plink = &td->link; 983 status |= TD_CTRL_ACTIVE; 984 985 toggle ^= 1; 986 data += pktsze; 987 this_sg_len -= pktsze; 988 len -= maxsze; 989 if (this_sg_len <= 0) { 990 if (--i <= 0 || len <= 0) 991 break; 992 sg = sg_next(sg); 993 data = sg_dma_address(sg); 994 this_sg_len = min_t(int, sg_dma_len(sg), len); 995 } 996 } 997 998 /* 999 * URB_ZERO_PACKET means adding a 0-length packet, if direction 1000 * is OUT and the transfer_length was an exact multiple of maxsze, 1001 * hence (len = transfer_length - N * maxsze) == 0 1002 * however, if transfer_length == 0, the zero packet was already 1003 * prepared above. 1004 */ 1005 if ((urb->transfer_flags & URB_ZERO_PACKET) && 1006 usb_pipeout(urb->pipe) && len == 0 && 1007 urb->transfer_buffer_length > 0) { 1008 td = uhci_alloc_td(uhci); 1009 if (!td) 1010 goto nomem; 1011 *plink = LINK_TO_TD(td); 1012 1013 uhci_add_td_to_urbp(td, urbp); 1014 uhci_fill_td(td, status, 1015 destination | uhci_explen(0) | 1016 (toggle << TD_TOKEN_TOGGLE_SHIFT), 1017 data); 1018 plink = &td->link; 1019 1020 toggle ^= 1; 1021 } 1022 1023 /* Set the interrupt-on-completion flag on the last packet. 1024 * A more-or-less typical 4 KB URB (= size of one memory page) 1025 * will require about 3 ms to transfer; that's a little on the 1026 * fast side but not enough to justify delaying an interrupt 1027 * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT 1028 * flag setting. */ 1029 td->status |= cpu_to_le32(TD_CTRL_IOC); 1030 1031 /* 1032 * Build the new dummy TD and activate the old one 1033 */ 1034 td = uhci_alloc_td(uhci); 1035 if (!td) 1036 goto nomem; 1037 *plink = LINK_TO_TD(td); 1038 1039 uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0); 1040 wmb(); 1041 qh->dummy_td->status |= cpu_to_le32(TD_CTRL_ACTIVE); 1042 qh->dummy_td = td; 1043 1044 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), 1045 usb_pipeout(urb->pipe), toggle); 1046 return 0; 1047 1048 nomem: 1049 /* Remove the dummy TD from the td_list so it doesn't get freed */ 1050 uhci_remove_td_from_urbp(qh->dummy_td); 1051 return -ENOMEM; 1052 } 1053 1054 static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, 1055 struct uhci_qh *qh) 1056 { 1057 int ret; 1058 1059 /* Can't have low-speed bulk transfers */ 1060 if (urb->dev->speed == USB_SPEED_LOW) 1061 return -EINVAL; 1062 1063 if (qh->state != QH_STATE_ACTIVE) 1064 qh->skel = SKEL_BULK; 1065 ret = uhci_submit_common(uhci, urb, qh); 1066 if (ret == 0) 1067 uhci_add_fsbr(uhci, urb); 1068 return ret; 1069 } 1070 1071 static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, 1072 struct uhci_qh *qh) 1073 { 1074 int ret; 1075 1076 /* USB 1.1 interrupt transfers only involve one packet per interval. 1077 * Drivers can submit URBs of any length, but longer ones will need 1078 * multiple intervals to complete. 1079 */ 1080 1081 if (!qh->bandwidth_reserved) { 1082 int exponent; 1083 1084 /* Figure out which power-of-two queue to use */ 1085 for (exponent = 7; exponent >= 0; --exponent) { 1086 if ((1 << exponent) <= urb->interval) 1087 break; 1088 } 1089 if (exponent < 0) 1090 return -EINVAL; 1091 1092 /* If the slot is full, try a lower period */ 1093 do { 1094 qh->period = 1 << exponent; 1095 qh->skel = SKEL_INDEX(exponent); 1096 1097 /* For now, interrupt phase is fixed by the layout 1098 * of the QH lists. 1099 */ 1100 qh->phase = (qh->period / 2) & (MAX_PHASE - 1); 1101 ret = uhci_check_bandwidth(uhci, qh); 1102 } while (ret != 0 && --exponent >= 0); 1103 if (ret) 1104 return ret; 1105 } else if (qh->period > urb->interval) 1106 return -EINVAL; /* Can't decrease the period */ 1107 1108 ret = uhci_submit_common(uhci, urb, qh); 1109 if (ret == 0) { 1110 urb->interval = qh->period; 1111 if (!qh->bandwidth_reserved) 1112 uhci_reserve_bandwidth(uhci, qh); 1113 } 1114 return ret; 1115 } 1116 1117 /* 1118 * Fix up the data structures following a short transfer 1119 */ 1120 static int uhci_fixup_short_transfer(struct uhci_hcd *uhci, 1121 struct uhci_qh *qh, struct urb_priv *urbp) 1122 { 1123 struct uhci_td *td; 1124 struct list_head *tmp; 1125 int ret; 1126 1127 td = list_entry(urbp->td_list.prev, struct uhci_td, list); 1128 if (qh->type == USB_ENDPOINT_XFER_CONTROL) { 1129 1130 /* When a control transfer is short, we have to restart 1131 * the queue at the status stage transaction, which is 1132 * the last TD. */ 1133 WARN_ON(list_empty(&urbp->td_list)); 1134 qh->element = LINK_TO_TD(td); 1135 tmp = td->list.prev; 1136 ret = -EINPROGRESS; 1137 1138 } else { 1139 1140 /* When a bulk/interrupt transfer is short, we have to 1141 * fix up the toggles of the following URBs on the queue 1142 * before restarting the queue at the next URB. */ 1143 qh->initial_toggle = uhci_toggle(td_token(qh->post_td)) ^ 1; 1144 uhci_fixup_toggles(qh, 1); 1145 1146 if (list_empty(&urbp->td_list)) 1147 td = qh->post_td; 1148 qh->element = td->link; 1149 tmp = urbp->td_list.prev; 1150 ret = 0; 1151 } 1152 1153 /* Remove all the TDs we skipped over, from tmp back to the start */ 1154 while (tmp != &urbp->td_list) { 1155 td = list_entry(tmp, struct uhci_td, list); 1156 tmp = tmp->prev; 1157 1158 uhci_remove_td_from_urbp(td); 1159 uhci_free_td(uhci, td); 1160 } 1161 return ret; 1162 } 1163 1164 /* 1165 * Common result for control, bulk, and interrupt 1166 */ 1167 static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb) 1168 { 1169 struct urb_priv *urbp = urb->hcpriv; 1170 struct uhci_qh *qh = urbp->qh; 1171 struct uhci_td *td, *tmp; 1172 unsigned status; 1173 int ret = 0; 1174 1175 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 1176 unsigned int ctrlstat; 1177 int len; 1178 1179 ctrlstat = td_status(td); 1180 status = uhci_status_bits(ctrlstat); 1181 if (status & TD_CTRL_ACTIVE) 1182 return -EINPROGRESS; 1183 1184 len = uhci_actual_length(ctrlstat); 1185 urb->actual_length += len; 1186 1187 if (status) { 1188 ret = uhci_map_status(status, 1189 uhci_packetout(td_token(td))); 1190 if ((debug == 1 && ret != -EPIPE) || debug > 1) { 1191 /* Some debugging code */ 1192 dev_dbg(&urb->dev->dev, 1193 "%s: failed with status %x\n", 1194 __func__, status); 1195 1196 if (debug > 1 && errbuf) { 1197 /* Print the chain for debugging */ 1198 uhci_show_qh(uhci, urbp->qh, errbuf, 1199 ERRBUF_LEN, 0); 1200 lprintk(errbuf); 1201 } 1202 } 1203 1204 /* Did we receive a short packet? */ 1205 } else if (len < uhci_expected_length(td_token(td))) { 1206 1207 /* For control transfers, go to the status TD if 1208 * this isn't already the last data TD */ 1209 if (qh->type == USB_ENDPOINT_XFER_CONTROL) { 1210 if (td->list.next != urbp->td_list.prev) 1211 ret = 1; 1212 } 1213 1214 /* For bulk and interrupt, this may be an error */ 1215 else if (urb->transfer_flags & URB_SHORT_NOT_OK) 1216 ret = -EREMOTEIO; 1217 1218 /* Fixup needed only if this isn't the URB's last TD */ 1219 else if (&td->list != urbp->td_list.prev) 1220 ret = 1; 1221 } 1222 1223 uhci_remove_td_from_urbp(td); 1224 if (qh->post_td) 1225 uhci_free_td(uhci, qh->post_td); 1226 qh->post_td = td; 1227 1228 if (ret != 0) 1229 goto err; 1230 } 1231 return ret; 1232 1233 err: 1234 if (ret < 0) { 1235 /* Note that the queue has stopped and save 1236 * the next toggle value */ 1237 qh->element = UHCI_PTR_TERM; 1238 qh->is_stopped = 1; 1239 qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL); 1240 qh->initial_toggle = uhci_toggle(td_token(td)) ^ 1241 (ret == -EREMOTEIO); 1242 1243 } else /* Short packet received */ 1244 ret = uhci_fixup_short_transfer(uhci, qh, urbp); 1245 return ret; 1246 } 1247 1248 /* 1249 * Isochronous transfers 1250 */ 1251 static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb, 1252 struct uhci_qh *qh) 1253 { 1254 struct uhci_td *td = NULL; /* Since urb->number_of_packets > 0 */ 1255 int i, frame; 1256 unsigned long destination, status; 1257 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 1258 1259 /* Values must not be too big (could overflow below) */ 1260 if (urb->interval >= UHCI_NUMFRAMES || 1261 urb->number_of_packets >= UHCI_NUMFRAMES) 1262 return -EFBIG; 1263 1264 /* Check the period and figure out the starting frame number */ 1265 if (!qh->bandwidth_reserved) { 1266 qh->period = urb->interval; 1267 if (urb->transfer_flags & URB_ISO_ASAP) { 1268 qh->phase = -1; /* Find the best phase */ 1269 i = uhci_check_bandwidth(uhci, qh); 1270 if (i) 1271 return i; 1272 1273 /* Allow a little time to allocate the TDs */ 1274 uhci_get_current_frame_number(uhci); 1275 frame = uhci->frame_number + 10; 1276 1277 /* Move forward to the first frame having the 1278 * correct phase */ 1279 urb->start_frame = frame + ((qh->phase - frame) & 1280 (qh->period - 1)); 1281 } else { 1282 i = urb->start_frame - uhci->last_iso_frame; 1283 if (i <= 0 || i >= UHCI_NUMFRAMES) 1284 return -EINVAL; 1285 qh->phase = urb->start_frame & (qh->period - 1); 1286 i = uhci_check_bandwidth(uhci, qh); 1287 if (i) 1288 return i; 1289 } 1290 1291 } else if (qh->period != urb->interval) { 1292 return -EINVAL; /* Can't change the period */ 1293 1294 } else { 1295 /* Find the next unused frame */ 1296 if (list_empty(&qh->queue)) { 1297 frame = qh->iso_frame; 1298 } else { 1299 struct urb *lurb; 1300 1301 lurb = list_entry(qh->queue.prev, 1302 struct urb_priv, node)->urb; 1303 frame = lurb->start_frame + 1304 lurb->number_of_packets * 1305 lurb->interval; 1306 } 1307 if (urb->transfer_flags & URB_ISO_ASAP) { 1308 /* Skip some frames if necessary to insure 1309 * the start frame is in the future. 1310 */ 1311 uhci_get_current_frame_number(uhci); 1312 if (uhci_frame_before_eq(frame, uhci->frame_number)) { 1313 frame = uhci->frame_number + 1; 1314 frame += ((qh->phase - frame) & 1315 (qh->period - 1)); 1316 } 1317 } /* Otherwise pick up where the last URB leaves off */ 1318 urb->start_frame = frame; 1319 } 1320 1321 /* Make sure we won't have to go too far into the future */ 1322 if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES, 1323 urb->start_frame + urb->number_of_packets * 1324 urb->interval)) 1325 return -EFBIG; 1326 1327 status = TD_CTRL_ACTIVE | TD_CTRL_IOS; 1328 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); 1329 1330 for (i = 0; i < urb->number_of_packets; i++) { 1331 td = uhci_alloc_td(uhci); 1332 if (!td) 1333 return -ENOMEM; 1334 1335 uhci_add_td_to_urbp(td, urbp); 1336 uhci_fill_td(td, status, destination | 1337 uhci_explen(urb->iso_frame_desc[i].length), 1338 urb->transfer_dma + 1339 urb->iso_frame_desc[i].offset); 1340 } 1341 1342 /* Set the interrupt-on-completion flag on the last packet. */ 1343 td->status |= cpu_to_le32(TD_CTRL_IOC); 1344 1345 /* Add the TDs to the frame list */ 1346 frame = urb->start_frame; 1347 list_for_each_entry(td, &urbp->td_list, list) { 1348 uhci_insert_td_in_frame_list(uhci, td, frame); 1349 frame += qh->period; 1350 } 1351 1352 if (list_empty(&qh->queue)) { 1353 qh->iso_packet_desc = &urb->iso_frame_desc[0]; 1354 qh->iso_frame = urb->start_frame; 1355 } 1356 1357 qh->skel = SKEL_ISO; 1358 if (!qh->bandwidth_reserved) 1359 uhci_reserve_bandwidth(uhci, qh); 1360 return 0; 1361 } 1362 1363 static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb) 1364 { 1365 struct uhci_td *td, *tmp; 1366 struct urb_priv *urbp = urb->hcpriv; 1367 struct uhci_qh *qh = urbp->qh; 1368 1369 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 1370 unsigned int ctrlstat; 1371 int status; 1372 int actlength; 1373 1374 if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame)) 1375 return -EINPROGRESS; 1376 1377 uhci_remove_tds_from_frame(uhci, qh->iso_frame); 1378 1379 ctrlstat = td_status(td); 1380 if (ctrlstat & TD_CTRL_ACTIVE) { 1381 status = -EXDEV; /* TD was added too late? */ 1382 } else { 1383 status = uhci_map_status(uhci_status_bits(ctrlstat), 1384 usb_pipeout(urb->pipe)); 1385 actlength = uhci_actual_length(ctrlstat); 1386 1387 urb->actual_length += actlength; 1388 qh->iso_packet_desc->actual_length = actlength; 1389 qh->iso_packet_desc->status = status; 1390 } 1391 if (status) 1392 urb->error_count++; 1393 1394 uhci_remove_td_from_urbp(td); 1395 uhci_free_td(uhci, td); 1396 qh->iso_frame += qh->period; 1397 ++qh->iso_packet_desc; 1398 } 1399 return 0; 1400 } 1401 1402 static int uhci_urb_enqueue(struct usb_hcd *hcd, 1403 struct urb *urb, gfp_t mem_flags) 1404 { 1405 int ret; 1406 struct uhci_hcd *uhci = hcd_to_uhci(hcd); 1407 unsigned long flags; 1408 struct urb_priv *urbp; 1409 struct uhci_qh *qh; 1410 1411 spin_lock_irqsave(&uhci->lock, flags); 1412 1413 ret = usb_hcd_link_urb_to_ep(hcd, urb); 1414 if (ret) 1415 goto done_not_linked; 1416 1417 ret = -ENOMEM; 1418 urbp = uhci_alloc_urb_priv(uhci, urb); 1419 if (!urbp) 1420 goto done; 1421 1422 if (urb->ep->hcpriv) 1423 qh = urb->ep->hcpriv; 1424 else { 1425 qh = uhci_alloc_qh(uhci, urb->dev, urb->ep); 1426 if (!qh) 1427 goto err_no_qh; 1428 } 1429 urbp->qh = qh; 1430 1431 switch (qh->type) { 1432 case USB_ENDPOINT_XFER_CONTROL: 1433 ret = uhci_submit_control(uhci, urb, qh); 1434 break; 1435 case USB_ENDPOINT_XFER_BULK: 1436 ret = uhci_submit_bulk(uhci, urb, qh); 1437 break; 1438 case USB_ENDPOINT_XFER_INT: 1439 ret = uhci_submit_interrupt(uhci, urb, qh); 1440 break; 1441 case USB_ENDPOINT_XFER_ISOC: 1442 urb->error_count = 0; 1443 ret = uhci_submit_isochronous(uhci, urb, qh); 1444 break; 1445 } 1446 if (ret != 0) 1447 goto err_submit_failed; 1448 1449 /* Add this URB to the QH */ 1450 list_add_tail(&urbp->node, &qh->queue); 1451 1452 /* If the new URB is the first and only one on this QH then either 1453 * the QH is new and idle or else it's unlinked and waiting to 1454 * become idle, so we can activate it right away. But only if the 1455 * queue isn't stopped. */ 1456 if (qh->queue.next == &urbp->node && !qh->is_stopped) { 1457 uhci_activate_qh(uhci, qh); 1458 uhci_urbp_wants_fsbr(uhci, urbp); 1459 } 1460 goto done; 1461 1462 err_submit_failed: 1463 if (qh->state == QH_STATE_IDLE) 1464 uhci_make_qh_idle(uhci, qh); /* Reclaim unused QH */ 1465 err_no_qh: 1466 uhci_free_urb_priv(uhci, urbp); 1467 done: 1468 if (ret) 1469 usb_hcd_unlink_urb_from_ep(hcd, urb); 1470 done_not_linked: 1471 spin_unlock_irqrestore(&uhci->lock, flags); 1472 return ret; 1473 } 1474 1475 static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1476 { 1477 struct uhci_hcd *uhci = hcd_to_uhci(hcd); 1478 unsigned long flags; 1479 struct uhci_qh *qh; 1480 int rc; 1481 1482 spin_lock_irqsave(&uhci->lock, flags); 1483 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 1484 if (rc) 1485 goto done; 1486 1487 qh = ((struct urb_priv *) urb->hcpriv)->qh; 1488 1489 /* Remove Isochronous TDs from the frame list ASAP */ 1490 if (qh->type == USB_ENDPOINT_XFER_ISOC) { 1491 uhci_unlink_isochronous_tds(uhci, urb); 1492 mb(); 1493 1494 /* If the URB has already started, update the QH unlink time */ 1495 uhci_get_current_frame_number(uhci); 1496 if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number)) 1497 qh->unlink_frame = uhci->frame_number; 1498 } 1499 1500 uhci_unlink_qh(uhci, qh); 1501 1502 done: 1503 spin_unlock_irqrestore(&uhci->lock, flags); 1504 return rc; 1505 } 1506 1507 /* 1508 * Finish unlinking an URB and give it back 1509 */ 1510 static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh, 1511 struct urb *urb, int status) 1512 __releases(uhci->lock) 1513 __acquires(uhci->lock) 1514 { 1515 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 1516 1517 if (qh->type == USB_ENDPOINT_XFER_CONTROL) { 1518 1519 /* Subtract off the length of the SETUP packet from 1520 * urb->actual_length. 1521 */ 1522 urb->actual_length -= min_t(u32, 8, urb->actual_length); 1523 } 1524 1525 /* When giving back the first URB in an Isochronous queue, 1526 * reinitialize the QH's iso-related members for the next URB. */ 1527 else if (qh->type == USB_ENDPOINT_XFER_ISOC && 1528 urbp->node.prev == &qh->queue && 1529 urbp->node.next != &qh->queue) { 1530 struct urb *nurb = list_entry(urbp->node.next, 1531 struct urb_priv, node)->urb; 1532 1533 qh->iso_packet_desc = &nurb->iso_frame_desc[0]; 1534 qh->iso_frame = nurb->start_frame; 1535 } 1536 1537 /* Take the URB off the QH's queue. If the queue is now empty, 1538 * this is a perfect time for a toggle fixup. */ 1539 list_del_init(&urbp->node); 1540 if (list_empty(&qh->queue) && qh->needs_fixup) { 1541 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), 1542 usb_pipeout(urb->pipe), qh->initial_toggle); 1543 qh->needs_fixup = 0; 1544 } 1545 1546 uhci_free_urb_priv(uhci, urbp); 1547 usb_hcd_unlink_urb_from_ep(uhci_to_hcd(uhci), urb); 1548 1549 spin_unlock(&uhci->lock); 1550 usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb, status); 1551 spin_lock(&uhci->lock); 1552 1553 /* If the queue is now empty, we can unlink the QH and give up its 1554 * reserved bandwidth. */ 1555 if (list_empty(&qh->queue)) { 1556 uhci_unlink_qh(uhci, qh); 1557 if (qh->bandwidth_reserved) 1558 uhci_release_bandwidth(uhci, qh); 1559 } 1560 } 1561 1562 /* 1563 * Scan the URBs in a QH's queue 1564 */ 1565 #define QH_FINISHED_UNLINKING(qh) \ 1566 (qh->state == QH_STATE_UNLINKING && \ 1567 uhci->frame_number + uhci->is_stopped != qh->unlink_frame) 1568 1569 static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 1570 { 1571 struct urb_priv *urbp; 1572 struct urb *urb; 1573 int status; 1574 1575 while (!list_empty(&qh->queue)) { 1576 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1577 urb = urbp->urb; 1578 1579 if (qh->type == USB_ENDPOINT_XFER_ISOC) 1580 status = uhci_result_isochronous(uhci, urb); 1581 else 1582 status = uhci_result_common(uhci, urb); 1583 if (status == -EINPROGRESS) 1584 break; 1585 1586 /* Dequeued but completed URBs can't be given back unless 1587 * the QH is stopped or has finished unlinking. */ 1588 if (urb->unlinked) { 1589 if (QH_FINISHED_UNLINKING(qh)) 1590 qh->is_stopped = 1; 1591 else if (!qh->is_stopped) 1592 return; 1593 } 1594 1595 uhci_giveback_urb(uhci, qh, urb, status); 1596 if (status < 0) 1597 break; 1598 } 1599 1600 /* If the QH is neither stopped nor finished unlinking (normal case), 1601 * our work here is done. */ 1602 if (QH_FINISHED_UNLINKING(qh)) 1603 qh->is_stopped = 1; 1604 else if (!qh->is_stopped) 1605 return; 1606 1607 /* Otherwise give back each of the dequeued URBs */ 1608 restart: 1609 list_for_each_entry(urbp, &qh->queue, node) { 1610 urb = urbp->urb; 1611 if (urb->unlinked) { 1612 1613 /* Fix up the TD links and save the toggles for 1614 * non-Isochronous queues. For Isochronous queues, 1615 * test for too-recent dequeues. */ 1616 if (!uhci_cleanup_queue(uhci, qh, urb)) { 1617 qh->is_stopped = 0; 1618 return; 1619 } 1620 uhci_giveback_urb(uhci, qh, urb, 0); 1621 goto restart; 1622 } 1623 } 1624 qh->is_stopped = 0; 1625 1626 /* There are no more dequeued URBs. If there are still URBs on the 1627 * queue, the QH can now be re-activated. */ 1628 if (!list_empty(&qh->queue)) { 1629 if (qh->needs_fixup) 1630 uhci_fixup_toggles(qh, 0); 1631 1632 /* If the first URB on the queue wants FSBR but its time 1633 * limit has expired, set the next TD to interrupt on 1634 * completion before reactivating the QH. */ 1635 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1636 if (urbp->fsbr && qh->wait_expired) { 1637 struct uhci_td *td = list_entry(urbp->td_list.next, 1638 struct uhci_td, list); 1639 1640 td->status |= __cpu_to_le32(TD_CTRL_IOC); 1641 } 1642 1643 uhci_activate_qh(uhci, qh); 1644 } 1645 1646 /* The queue is empty. The QH can become idle if it is fully 1647 * unlinked. */ 1648 else if (QH_FINISHED_UNLINKING(qh)) 1649 uhci_make_qh_idle(uhci, qh); 1650 } 1651 1652 /* 1653 * Check for queues that have made some forward progress. 1654 * Returns 0 if the queue is not Isochronous, is ACTIVE, and 1655 * has not advanced since last examined; 1 otherwise. 1656 * 1657 * Early Intel controllers have a bug which causes qh->element sometimes 1658 * not to advance when a TD completes successfully. The queue remains 1659 * stuck on the inactive completed TD. We detect such cases and advance 1660 * the element pointer by hand. 1661 */ 1662 static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh) 1663 { 1664 struct urb_priv *urbp = NULL; 1665 struct uhci_td *td; 1666 int ret = 1; 1667 unsigned status; 1668 1669 if (qh->type == USB_ENDPOINT_XFER_ISOC) 1670 goto done; 1671 1672 /* Treat an UNLINKING queue as though it hasn't advanced. 1673 * This is okay because reactivation will treat it as though 1674 * it has advanced, and if it is going to become IDLE then 1675 * this doesn't matter anyway. Furthermore it's possible 1676 * for an UNLINKING queue not to have any URBs at all, or 1677 * for its first URB not to have any TDs (if it was dequeued 1678 * just as it completed). So it's not easy in any case to 1679 * test whether such queues have advanced. */ 1680 if (qh->state != QH_STATE_ACTIVE) { 1681 urbp = NULL; 1682 status = 0; 1683 1684 } else { 1685 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1686 td = list_entry(urbp->td_list.next, struct uhci_td, list); 1687 status = td_status(td); 1688 if (!(status & TD_CTRL_ACTIVE)) { 1689 1690 /* We're okay, the queue has advanced */ 1691 qh->wait_expired = 0; 1692 qh->advance_jiffies = jiffies; 1693 goto done; 1694 } 1695 ret = uhci->is_stopped; 1696 } 1697 1698 /* The queue hasn't advanced; check for timeout */ 1699 if (qh->wait_expired) 1700 goto done; 1701 1702 if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) { 1703 1704 /* Detect the Intel bug and work around it */ 1705 if (qh->post_td && qh_element(qh) == LINK_TO_TD(qh->post_td)) { 1706 qh->element = qh->post_td->link; 1707 qh->advance_jiffies = jiffies; 1708 ret = 1; 1709 goto done; 1710 } 1711 1712 qh->wait_expired = 1; 1713 1714 /* If the current URB wants FSBR, unlink it temporarily 1715 * so that we can safely set the next TD to interrupt on 1716 * completion. That way we'll know as soon as the queue 1717 * starts moving again. */ 1718 if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC)) 1719 uhci_unlink_qh(uhci, qh); 1720 1721 } else { 1722 /* Unmoving but not-yet-expired queues keep FSBR alive */ 1723 if (urbp) 1724 uhci_urbp_wants_fsbr(uhci, urbp); 1725 } 1726 1727 done: 1728 return ret; 1729 } 1730 1731 /* 1732 * Process events in the schedule, but only in one thread at a time 1733 */ 1734 static void uhci_scan_schedule(struct uhci_hcd *uhci) 1735 { 1736 int i; 1737 struct uhci_qh *qh; 1738 1739 /* Don't allow re-entrant calls */ 1740 if (uhci->scan_in_progress) { 1741 uhci->need_rescan = 1; 1742 return; 1743 } 1744 uhci->scan_in_progress = 1; 1745 rescan: 1746 uhci->need_rescan = 0; 1747 uhci->fsbr_is_wanted = 0; 1748 1749 uhci_clear_next_interrupt(uhci); 1750 uhci_get_current_frame_number(uhci); 1751 uhci->cur_iso_frame = uhci->frame_number; 1752 1753 /* Go through all the QH queues and process the URBs in each one */ 1754 for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) { 1755 uhci->next_qh = list_entry(uhci->skelqh[i]->node.next, 1756 struct uhci_qh, node); 1757 while ((qh = uhci->next_qh) != uhci->skelqh[i]) { 1758 uhci->next_qh = list_entry(qh->node.next, 1759 struct uhci_qh, node); 1760 1761 if (uhci_advance_check(uhci, qh)) { 1762 uhci_scan_qh(uhci, qh); 1763 if (qh->state == QH_STATE_ACTIVE) { 1764 uhci_urbp_wants_fsbr(uhci, 1765 list_entry(qh->queue.next, struct urb_priv, node)); 1766 } 1767 } 1768 } 1769 } 1770 1771 uhci->last_iso_frame = uhci->cur_iso_frame; 1772 if (uhci->need_rescan) 1773 goto rescan; 1774 uhci->scan_in_progress = 0; 1775 1776 if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted && 1777 !uhci->fsbr_expiring) { 1778 uhci->fsbr_expiring = 1; 1779 mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY); 1780 } 1781 1782 if (list_empty(&uhci->skel_unlink_qh->node)) 1783 uhci_clear_next_interrupt(uhci); 1784 else 1785 uhci_set_next_interrupt(uhci); 1786 } 1787