1 /* 2 * Universal Host Controller Interface driver for USB. 3 * 4 * Maintainer: Alan Stern <stern@rowland.harvard.edu> 5 * 6 * (C) Copyright 1999 Linus Torvalds 7 * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com 8 * (C) Copyright 1999 Randy Dunlap 9 * (C) Copyright 1999 Georg Acher, acher@in.tum.de 10 * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de 11 * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch 12 * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at 13 * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface 14 * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). 15 * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) 16 * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu 17 */ 18 19 20 /* 21 * Technically, updating td->status here is a race, but it's not really a 22 * problem. The worst that can happen is that we set the IOC bit again 23 * generating a spurious interrupt. We could fix this by creating another 24 * QH and leaving the IOC bit always set, but then we would have to play 25 * games with the FSBR code to make sure we get the correct order in all 26 * the cases. I don't think it's worth the effort 27 */ 28 static void uhci_set_next_interrupt(struct uhci_hcd *uhci) 29 { 30 if (uhci->is_stopped) 31 mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies); 32 uhci->term_td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); 33 } 34 35 static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci) 36 { 37 uhci->term_td->status &= ~cpu_to_hc32(uhci, TD_CTRL_IOC); 38 } 39 40 41 /* 42 * Full-Speed Bandwidth Reclamation (FSBR). 43 * We turn on FSBR whenever a queue that wants it is advancing, 44 * and leave it on for a short time thereafter. 45 */ 46 static void uhci_fsbr_on(struct uhci_hcd *uhci) 47 { 48 struct uhci_qh *lqh; 49 50 /* The terminating skeleton QH always points back to the first 51 * FSBR QH. Make the last async QH point to the terminating 52 * skeleton QH. */ 53 uhci->fsbr_is_on = 1; 54 lqh = list_entry(uhci->skel_async_qh->node.prev, 55 struct uhci_qh, node); 56 lqh->link = LINK_TO_QH(uhci, uhci->skel_term_qh); 57 } 58 59 static void uhci_fsbr_off(struct uhci_hcd *uhci) 60 { 61 struct uhci_qh *lqh; 62 63 /* Remove the link from the last async QH to the terminating 64 * skeleton QH. */ 65 uhci->fsbr_is_on = 0; 66 lqh = list_entry(uhci->skel_async_qh->node.prev, 67 struct uhci_qh, node); 68 lqh->link = UHCI_PTR_TERM(uhci); 69 } 70 71 static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb) 72 { 73 struct urb_priv *urbp = urb->hcpriv; 74 75 if (!(urb->transfer_flags & URB_NO_FSBR)) 76 urbp->fsbr = 1; 77 } 78 79 static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp) 80 { 81 if (urbp->fsbr) { 82 uhci->fsbr_is_wanted = 1; 83 if (!uhci->fsbr_is_on) 84 uhci_fsbr_on(uhci); 85 else if (uhci->fsbr_expiring) { 86 uhci->fsbr_expiring = 0; 87 del_timer(&uhci->fsbr_timer); 88 } 89 } 90 } 91 92 static void uhci_fsbr_timeout(unsigned long _uhci) 93 { 94 struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci; 95 unsigned long flags; 96 97 spin_lock_irqsave(&uhci->lock, flags); 98 if (uhci->fsbr_expiring) { 99 uhci->fsbr_expiring = 0; 100 uhci_fsbr_off(uhci); 101 } 102 spin_unlock_irqrestore(&uhci->lock, flags); 103 } 104 105 106 static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci) 107 { 108 dma_addr_t dma_handle; 109 struct uhci_td *td; 110 111 td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle); 112 if (!td) 113 return NULL; 114 115 td->dma_handle = dma_handle; 116 td->frame = -1; 117 118 INIT_LIST_HEAD(&td->list); 119 INIT_LIST_HEAD(&td->fl_list); 120 121 return td; 122 } 123 124 static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td) 125 { 126 if (!list_empty(&td->list)) 127 dev_WARN(uhci_dev(uhci), "td %p still in list!\n", td); 128 if (!list_empty(&td->fl_list)) 129 dev_WARN(uhci_dev(uhci), "td %p still in fl_list!\n", td); 130 131 dma_pool_free(uhci->td_pool, td, td->dma_handle); 132 } 133 134 static inline void uhci_fill_td(struct uhci_hcd *uhci, struct uhci_td *td, 135 u32 status, u32 token, u32 buffer) 136 { 137 td->status = cpu_to_hc32(uhci, status); 138 td->token = cpu_to_hc32(uhci, token); 139 td->buffer = cpu_to_hc32(uhci, buffer); 140 } 141 142 static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp) 143 { 144 list_add_tail(&td->list, &urbp->td_list); 145 } 146 147 static void uhci_remove_td_from_urbp(struct uhci_td *td) 148 { 149 list_del_init(&td->list); 150 } 151 152 /* 153 * We insert Isochronous URBs directly into the frame list at the beginning 154 */ 155 static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci, 156 struct uhci_td *td, unsigned framenum) 157 { 158 framenum &= (UHCI_NUMFRAMES - 1); 159 160 td->frame = framenum; 161 162 /* Is there a TD already mapped there? */ 163 if (uhci->frame_cpu[framenum]) { 164 struct uhci_td *ftd, *ltd; 165 166 ftd = uhci->frame_cpu[framenum]; 167 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); 168 169 list_add_tail(&td->fl_list, &ftd->fl_list); 170 171 td->link = ltd->link; 172 wmb(); 173 ltd->link = LINK_TO_TD(uhci, td); 174 } else { 175 td->link = uhci->frame[framenum]; 176 wmb(); 177 uhci->frame[framenum] = LINK_TO_TD(uhci, td); 178 uhci->frame_cpu[framenum] = td; 179 } 180 } 181 182 static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci, 183 struct uhci_td *td) 184 { 185 /* If it's not inserted, don't remove it */ 186 if (td->frame == -1) { 187 WARN_ON(!list_empty(&td->fl_list)); 188 return; 189 } 190 191 if (uhci->frame_cpu[td->frame] == td) { 192 if (list_empty(&td->fl_list)) { 193 uhci->frame[td->frame] = td->link; 194 uhci->frame_cpu[td->frame] = NULL; 195 } else { 196 struct uhci_td *ntd; 197 198 ntd = list_entry(td->fl_list.next, 199 struct uhci_td, 200 fl_list); 201 uhci->frame[td->frame] = LINK_TO_TD(uhci, ntd); 202 uhci->frame_cpu[td->frame] = ntd; 203 } 204 } else { 205 struct uhci_td *ptd; 206 207 ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list); 208 ptd->link = td->link; 209 } 210 211 list_del_init(&td->fl_list); 212 td->frame = -1; 213 } 214 215 static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci, 216 unsigned int framenum) 217 { 218 struct uhci_td *ftd, *ltd; 219 220 framenum &= (UHCI_NUMFRAMES - 1); 221 222 ftd = uhci->frame_cpu[framenum]; 223 if (ftd) { 224 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); 225 uhci->frame[framenum] = ltd->link; 226 uhci->frame_cpu[framenum] = NULL; 227 228 while (!list_empty(&ftd->fl_list)) 229 list_del_init(ftd->fl_list.prev); 230 } 231 } 232 233 /* 234 * Remove all the TDs for an Isochronous URB from the frame list 235 */ 236 static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb) 237 { 238 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 239 struct uhci_td *td; 240 241 list_for_each_entry(td, &urbp->td_list, list) 242 uhci_remove_td_from_frame_list(uhci, td); 243 } 244 245 static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, 246 struct usb_device *udev, struct usb_host_endpoint *hep) 247 { 248 dma_addr_t dma_handle; 249 struct uhci_qh *qh; 250 251 qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle); 252 if (!qh) 253 return NULL; 254 255 memset(qh, 0, sizeof(*qh)); 256 qh->dma_handle = dma_handle; 257 258 qh->element = UHCI_PTR_TERM(uhci); 259 qh->link = UHCI_PTR_TERM(uhci); 260 261 INIT_LIST_HEAD(&qh->queue); 262 INIT_LIST_HEAD(&qh->node); 263 264 if (udev) { /* Normal QH */ 265 qh->type = usb_endpoint_type(&hep->desc); 266 if (qh->type != USB_ENDPOINT_XFER_ISOC) { 267 qh->dummy_td = uhci_alloc_td(uhci); 268 if (!qh->dummy_td) { 269 dma_pool_free(uhci->qh_pool, qh, dma_handle); 270 return NULL; 271 } 272 } 273 qh->state = QH_STATE_IDLE; 274 qh->hep = hep; 275 qh->udev = udev; 276 hep->hcpriv = qh; 277 278 if (qh->type == USB_ENDPOINT_XFER_INT || 279 qh->type == USB_ENDPOINT_XFER_ISOC) 280 qh->load = usb_calc_bus_time(udev->speed, 281 usb_endpoint_dir_in(&hep->desc), 282 qh->type == USB_ENDPOINT_XFER_ISOC, 283 usb_endpoint_maxp(&hep->desc)) 284 / 1000 + 1; 285 286 } else { /* Skeleton QH */ 287 qh->state = QH_STATE_ACTIVE; 288 qh->type = -1; 289 } 290 return qh; 291 } 292 293 static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 294 { 295 WARN_ON(qh->state != QH_STATE_IDLE && qh->udev); 296 if (!list_empty(&qh->queue)) 297 dev_WARN(uhci_dev(uhci), "qh %p list not empty!\n", qh); 298 299 list_del(&qh->node); 300 if (qh->udev) { 301 qh->hep->hcpriv = NULL; 302 if (qh->dummy_td) 303 uhci_free_td(uhci, qh->dummy_td); 304 } 305 dma_pool_free(uhci->qh_pool, qh, qh->dma_handle); 306 } 307 308 /* 309 * When a queue is stopped and a dequeued URB is given back, adjust 310 * the previous TD link (if the URB isn't first on the queue) or 311 * save its toggle value (if it is first and is currently executing). 312 * 313 * Returns 0 if the URB should not yet be given back, 1 otherwise. 314 */ 315 static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh, 316 struct urb *urb) 317 { 318 struct urb_priv *urbp = urb->hcpriv; 319 struct uhci_td *td; 320 int ret = 1; 321 322 /* Isochronous pipes don't use toggles and their TD link pointers 323 * get adjusted during uhci_urb_dequeue(). But since their queues 324 * cannot truly be stopped, we have to watch out for dequeues 325 * occurring after the nominal unlink frame. */ 326 if (qh->type == USB_ENDPOINT_XFER_ISOC) { 327 ret = (uhci->frame_number + uhci->is_stopped != 328 qh->unlink_frame); 329 goto done; 330 } 331 332 /* If the URB isn't first on its queue, adjust the link pointer 333 * of the last TD in the previous URB. The toggle doesn't need 334 * to be saved since this URB can't be executing yet. */ 335 if (qh->queue.next != &urbp->node) { 336 struct urb_priv *purbp; 337 struct uhci_td *ptd; 338 339 purbp = list_entry(urbp->node.prev, struct urb_priv, node); 340 WARN_ON(list_empty(&purbp->td_list)); 341 ptd = list_entry(purbp->td_list.prev, struct uhci_td, 342 list); 343 td = list_entry(urbp->td_list.prev, struct uhci_td, 344 list); 345 ptd->link = td->link; 346 goto done; 347 } 348 349 /* If the QH element pointer is UHCI_PTR_TERM then then currently 350 * executing URB has already been unlinked, so this one isn't it. */ 351 if (qh_element(qh) == UHCI_PTR_TERM(uhci)) 352 goto done; 353 qh->element = UHCI_PTR_TERM(uhci); 354 355 /* Control pipes don't have to worry about toggles */ 356 if (qh->type == USB_ENDPOINT_XFER_CONTROL) 357 goto done; 358 359 /* Save the next toggle value */ 360 WARN_ON(list_empty(&urbp->td_list)); 361 td = list_entry(urbp->td_list.next, struct uhci_td, list); 362 qh->needs_fixup = 1; 363 qh->initial_toggle = uhci_toggle(td_token(uhci, td)); 364 365 done: 366 return ret; 367 } 368 369 /* 370 * Fix up the data toggles for URBs in a queue, when one of them 371 * terminates early (short transfer, error, or dequeued). 372 */ 373 static void uhci_fixup_toggles(struct uhci_hcd *uhci, struct uhci_qh *qh, 374 int skip_first) 375 { 376 struct urb_priv *urbp = NULL; 377 struct uhci_td *td; 378 unsigned int toggle = qh->initial_toggle; 379 unsigned int pipe; 380 381 /* Fixups for a short transfer start with the second URB in the 382 * queue (the short URB is the first). */ 383 if (skip_first) 384 urbp = list_entry(qh->queue.next, struct urb_priv, node); 385 386 /* When starting with the first URB, if the QH element pointer is 387 * still valid then we know the URB's toggles are okay. */ 388 else if (qh_element(qh) != UHCI_PTR_TERM(uhci)) 389 toggle = 2; 390 391 /* Fix up the toggle for the URBs in the queue. Normally this 392 * loop won't run more than once: When an error or short transfer 393 * occurs, the queue usually gets emptied. */ 394 urbp = list_prepare_entry(urbp, &qh->queue, node); 395 list_for_each_entry_continue(urbp, &qh->queue, node) { 396 397 /* If the first TD has the right toggle value, we don't 398 * need to change any toggles in this URB */ 399 td = list_entry(urbp->td_list.next, struct uhci_td, list); 400 if (toggle > 1 || uhci_toggle(td_token(uhci, td)) == toggle) { 401 td = list_entry(urbp->td_list.prev, struct uhci_td, 402 list); 403 toggle = uhci_toggle(td_token(uhci, td)) ^ 1; 404 405 /* Otherwise all the toggles in the URB have to be switched */ 406 } else { 407 list_for_each_entry(td, &urbp->td_list, list) { 408 td->token ^= cpu_to_hc32(uhci, 409 TD_TOKEN_TOGGLE); 410 toggle ^= 1; 411 } 412 } 413 } 414 415 wmb(); 416 pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe; 417 usb_settoggle(qh->udev, usb_pipeendpoint(pipe), 418 usb_pipeout(pipe), toggle); 419 qh->needs_fixup = 0; 420 } 421 422 /* 423 * Link an Isochronous QH into its skeleton's list 424 */ 425 static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh) 426 { 427 list_add_tail(&qh->node, &uhci->skel_iso_qh->node); 428 429 /* Isochronous QHs aren't linked by the hardware */ 430 } 431 432 /* 433 * Link a high-period interrupt QH into the schedule at the end of its 434 * skeleton's list 435 */ 436 static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) 437 { 438 struct uhci_qh *pqh; 439 440 list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node); 441 442 pqh = list_entry(qh->node.prev, struct uhci_qh, node); 443 qh->link = pqh->link; 444 wmb(); 445 pqh->link = LINK_TO_QH(uhci, qh); 446 } 447 448 /* 449 * Link a period-1 interrupt or async QH into the schedule at the 450 * correct spot in the async skeleton's list, and update the FSBR link 451 */ 452 static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh) 453 { 454 struct uhci_qh *pqh; 455 __hc32 link_to_new_qh; 456 457 /* Find the predecessor QH for our new one and insert it in the list. 458 * The list of QHs is expected to be short, so linear search won't 459 * take too long. */ 460 list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) { 461 if (pqh->skel <= qh->skel) 462 break; 463 } 464 list_add(&qh->node, &pqh->node); 465 466 /* Link it into the schedule */ 467 qh->link = pqh->link; 468 wmb(); 469 link_to_new_qh = LINK_TO_QH(uhci, qh); 470 pqh->link = link_to_new_qh; 471 472 /* If this is now the first FSBR QH, link the terminating skeleton 473 * QH to it. */ 474 if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) 475 uhci->skel_term_qh->link = link_to_new_qh; 476 } 477 478 /* 479 * Put a QH on the schedule in both hardware and software 480 */ 481 static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 482 { 483 WARN_ON(list_empty(&qh->queue)); 484 485 /* Set the element pointer if it isn't set already. 486 * This isn't needed for Isochronous queues, but it doesn't hurt. */ 487 if (qh_element(qh) == UHCI_PTR_TERM(uhci)) { 488 struct urb_priv *urbp = list_entry(qh->queue.next, 489 struct urb_priv, node); 490 struct uhci_td *td = list_entry(urbp->td_list.next, 491 struct uhci_td, list); 492 493 qh->element = LINK_TO_TD(uhci, td); 494 } 495 496 /* Treat the queue as if it has just advanced */ 497 qh->wait_expired = 0; 498 qh->advance_jiffies = jiffies; 499 500 if (qh->state == QH_STATE_ACTIVE) 501 return; 502 qh->state = QH_STATE_ACTIVE; 503 504 /* Move the QH from its old list to the correct spot in the appropriate 505 * skeleton's list */ 506 if (qh == uhci->next_qh) 507 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 508 node); 509 list_del(&qh->node); 510 511 if (qh->skel == SKEL_ISO) 512 link_iso(uhci, qh); 513 else if (qh->skel < SKEL_ASYNC) 514 link_interrupt(uhci, qh); 515 else 516 link_async(uhci, qh); 517 } 518 519 /* 520 * Unlink a high-period interrupt QH from the schedule 521 */ 522 static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) 523 { 524 struct uhci_qh *pqh; 525 526 pqh = list_entry(qh->node.prev, struct uhci_qh, node); 527 pqh->link = qh->link; 528 mb(); 529 } 530 531 /* 532 * Unlink a period-1 interrupt or async QH from the schedule 533 */ 534 static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh) 535 { 536 struct uhci_qh *pqh; 537 __hc32 link_to_next_qh = qh->link; 538 539 pqh = list_entry(qh->node.prev, struct uhci_qh, node); 540 pqh->link = link_to_next_qh; 541 542 /* If this was the old first FSBR QH, link the terminating skeleton 543 * QH to the next (new first FSBR) QH. */ 544 if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) 545 uhci->skel_term_qh->link = link_to_next_qh; 546 mb(); 547 } 548 549 /* 550 * Take a QH off the hardware schedule 551 */ 552 static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 553 { 554 if (qh->state == QH_STATE_UNLINKING) 555 return; 556 WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev); 557 qh->state = QH_STATE_UNLINKING; 558 559 /* Unlink the QH from the schedule and record when we did it */ 560 if (qh->skel == SKEL_ISO) 561 ; 562 else if (qh->skel < SKEL_ASYNC) 563 unlink_interrupt(uhci, qh); 564 else 565 unlink_async(uhci, qh); 566 567 uhci_get_current_frame_number(uhci); 568 qh->unlink_frame = uhci->frame_number; 569 570 /* Force an interrupt so we know when the QH is fully unlinked */ 571 if (list_empty(&uhci->skel_unlink_qh->node) || uhci->is_stopped) 572 uhci_set_next_interrupt(uhci); 573 574 /* Move the QH from its old list to the end of the unlinking list */ 575 if (qh == uhci->next_qh) 576 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 577 node); 578 list_move_tail(&qh->node, &uhci->skel_unlink_qh->node); 579 } 580 581 /* 582 * When we and the controller are through with a QH, it becomes IDLE. 583 * This happens when a QH has been off the schedule (on the unlinking 584 * list) for more than one frame, or when an error occurs while adding 585 * the first URB onto a new QH. 586 */ 587 static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh) 588 { 589 WARN_ON(qh->state == QH_STATE_ACTIVE); 590 591 if (qh == uhci->next_qh) 592 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 593 node); 594 list_move(&qh->node, &uhci->idle_qh_list); 595 qh->state = QH_STATE_IDLE; 596 597 /* Now that the QH is idle, its post_td isn't being used */ 598 if (qh->post_td) { 599 uhci_free_td(uhci, qh->post_td); 600 qh->post_td = NULL; 601 } 602 603 /* If anyone is waiting for a QH to become idle, wake them up */ 604 if (uhci->num_waiting) 605 wake_up_all(&uhci->waitqh); 606 } 607 608 /* 609 * Find the highest existing bandwidth load for a given phase and period. 610 */ 611 static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period) 612 { 613 int highest_load = uhci->load[phase]; 614 615 for (phase += period; phase < MAX_PHASE; phase += period) 616 highest_load = max_t(int, highest_load, uhci->load[phase]); 617 return highest_load; 618 } 619 620 /* 621 * Set qh->phase to the optimal phase for a periodic transfer and 622 * check whether the bandwidth requirement is acceptable. 623 */ 624 static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 625 { 626 int minimax_load; 627 628 /* Find the optimal phase (unless it is already set) and get 629 * its load value. */ 630 if (qh->phase >= 0) 631 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); 632 else { 633 int phase, load; 634 int max_phase = min_t(int, MAX_PHASE, qh->period); 635 636 qh->phase = 0; 637 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); 638 for (phase = 1; phase < max_phase; ++phase) { 639 load = uhci_highest_load(uhci, phase, qh->period); 640 if (load < minimax_load) { 641 minimax_load = load; 642 qh->phase = phase; 643 } 644 } 645 } 646 647 /* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */ 648 if (minimax_load + qh->load > 900) { 649 dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: " 650 "period %d, phase %d, %d + %d us\n", 651 qh->period, qh->phase, minimax_load, qh->load); 652 return -ENOSPC; 653 } 654 return 0; 655 } 656 657 /* 658 * Reserve a periodic QH's bandwidth in the schedule 659 */ 660 static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 661 { 662 int i; 663 int load = qh->load; 664 char *p = "??"; 665 666 for (i = qh->phase; i < MAX_PHASE; i += qh->period) { 667 uhci->load[i] += load; 668 uhci->total_load += load; 669 } 670 uhci_to_hcd(uhci)->self.bandwidth_allocated = 671 uhci->total_load / MAX_PHASE; 672 switch (qh->type) { 673 case USB_ENDPOINT_XFER_INT: 674 ++uhci_to_hcd(uhci)->self.bandwidth_int_reqs; 675 p = "INT"; 676 break; 677 case USB_ENDPOINT_XFER_ISOC: 678 ++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; 679 p = "ISO"; 680 break; 681 } 682 qh->bandwidth_reserved = 1; 683 dev_dbg(uhci_dev(uhci), 684 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", 685 "reserve", qh->udev->devnum, 686 qh->hep->desc.bEndpointAddress, p, 687 qh->period, qh->phase, load); 688 } 689 690 /* 691 * Release a periodic QH's bandwidth reservation 692 */ 693 static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 694 { 695 int i; 696 int load = qh->load; 697 char *p = "??"; 698 699 for (i = qh->phase; i < MAX_PHASE; i += qh->period) { 700 uhci->load[i] -= load; 701 uhci->total_load -= load; 702 } 703 uhci_to_hcd(uhci)->self.bandwidth_allocated = 704 uhci->total_load / MAX_PHASE; 705 switch (qh->type) { 706 case USB_ENDPOINT_XFER_INT: 707 --uhci_to_hcd(uhci)->self.bandwidth_int_reqs; 708 p = "INT"; 709 break; 710 case USB_ENDPOINT_XFER_ISOC: 711 --uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; 712 p = "ISO"; 713 break; 714 } 715 qh->bandwidth_reserved = 0; 716 dev_dbg(uhci_dev(uhci), 717 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", 718 "release", qh->udev->devnum, 719 qh->hep->desc.bEndpointAddress, p, 720 qh->period, qh->phase, load); 721 } 722 723 static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, 724 struct urb *urb) 725 { 726 struct urb_priv *urbp; 727 728 urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC); 729 if (!urbp) 730 return NULL; 731 732 urbp->urb = urb; 733 urb->hcpriv = urbp; 734 735 INIT_LIST_HEAD(&urbp->node); 736 INIT_LIST_HEAD(&urbp->td_list); 737 738 return urbp; 739 } 740 741 static void uhci_free_urb_priv(struct uhci_hcd *uhci, 742 struct urb_priv *urbp) 743 { 744 struct uhci_td *td, *tmp; 745 746 if (!list_empty(&urbp->node)) 747 dev_WARN(uhci_dev(uhci), "urb %p still on QH's list!\n", 748 urbp->urb); 749 750 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 751 uhci_remove_td_from_urbp(td); 752 uhci_free_td(uhci, td); 753 } 754 755 kmem_cache_free(uhci_up_cachep, urbp); 756 } 757 758 /* 759 * Map status to standard result codes 760 * 761 * <status> is (td_status(uhci, td) & 0xF60000), a.k.a. 762 * uhci_status_bits(td_status(uhci, td)). 763 * Note: <status> does not include the TD_CTRL_NAK bit. 764 * <dir_out> is True for output TDs and False for input TDs. 765 */ 766 static int uhci_map_status(int status, int dir_out) 767 { 768 if (!status) 769 return 0; 770 if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */ 771 return -EPROTO; 772 if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */ 773 if (dir_out) 774 return -EPROTO; 775 else 776 return -EILSEQ; 777 } 778 if (status & TD_CTRL_BABBLE) /* Babble */ 779 return -EOVERFLOW; 780 if (status & TD_CTRL_DBUFERR) /* Buffer error */ 781 return -ENOSR; 782 if (status & TD_CTRL_STALLED) /* Stalled */ 783 return -EPIPE; 784 return 0; 785 } 786 787 /* 788 * Control transfers 789 */ 790 static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, 791 struct uhci_qh *qh) 792 { 793 struct uhci_td *td; 794 unsigned long destination, status; 795 int maxsze = usb_endpoint_maxp(&qh->hep->desc); 796 int len = urb->transfer_buffer_length; 797 dma_addr_t data = urb->transfer_dma; 798 __hc32 *plink; 799 struct urb_priv *urbp = urb->hcpriv; 800 int skel; 801 802 /* The "pipe" thing contains the destination in bits 8--18 */ 803 destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP; 804 805 /* 3 errors, dummy TD remains inactive */ 806 status = uhci_maxerr(3); 807 if (urb->dev->speed == USB_SPEED_LOW) 808 status |= TD_CTRL_LS; 809 810 /* 811 * Build the TD for the control request setup packet 812 */ 813 td = qh->dummy_td; 814 uhci_add_td_to_urbp(td, urbp); 815 uhci_fill_td(uhci, td, status, destination | uhci_explen(8), 816 urb->setup_dma); 817 plink = &td->link; 818 status |= TD_CTRL_ACTIVE; 819 820 /* 821 * If direction is "send", change the packet ID from SETUP (0x2D) 822 * to OUT (0xE1). Else change it from SETUP to IN (0x69) and 823 * set Short Packet Detect (SPD) for all data packets. 824 * 825 * 0-length transfers always get treated as "send". 826 */ 827 if (usb_pipeout(urb->pipe) || len == 0) 828 destination ^= (USB_PID_SETUP ^ USB_PID_OUT); 829 else { 830 destination ^= (USB_PID_SETUP ^ USB_PID_IN); 831 status |= TD_CTRL_SPD; 832 } 833 834 /* 835 * Build the DATA TDs 836 */ 837 while (len > 0) { 838 int pktsze = maxsze; 839 840 if (len <= pktsze) { /* The last data packet */ 841 pktsze = len; 842 status &= ~TD_CTRL_SPD; 843 } 844 845 td = uhci_alloc_td(uhci); 846 if (!td) 847 goto nomem; 848 *plink = LINK_TO_TD(uhci, td); 849 850 /* Alternate Data0/1 (start with Data1) */ 851 destination ^= TD_TOKEN_TOGGLE; 852 853 uhci_add_td_to_urbp(td, urbp); 854 uhci_fill_td(uhci, td, status, 855 destination | uhci_explen(pktsze), data); 856 plink = &td->link; 857 858 data += pktsze; 859 len -= pktsze; 860 } 861 862 /* 863 * Build the final TD for control status 864 */ 865 td = uhci_alloc_td(uhci); 866 if (!td) 867 goto nomem; 868 *plink = LINK_TO_TD(uhci, td); 869 870 /* Change direction for the status transaction */ 871 destination ^= (USB_PID_IN ^ USB_PID_OUT); 872 destination |= TD_TOKEN_TOGGLE; /* End in Data1 */ 873 874 uhci_add_td_to_urbp(td, urbp); 875 uhci_fill_td(uhci, td, status | TD_CTRL_IOC, 876 destination | uhci_explen(0), 0); 877 plink = &td->link; 878 879 /* 880 * Build the new dummy TD and activate the old one 881 */ 882 td = uhci_alloc_td(uhci); 883 if (!td) 884 goto nomem; 885 *plink = LINK_TO_TD(uhci, td); 886 887 uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0); 888 wmb(); 889 qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE); 890 qh->dummy_td = td; 891 892 /* Low-speed transfers get a different queue, and won't hog the bus. 893 * Also, some devices enumerate better without FSBR; the easiest way 894 * to do that is to put URBs on the low-speed queue while the device 895 * isn't in the CONFIGURED state. */ 896 if (urb->dev->speed == USB_SPEED_LOW || 897 urb->dev->state != USB_STATE_CONFIGURED) 898 skel = SKEL_LS_CONTROL; 899 else { 900 skel = SKEL_FS_CONTROL; 901 uhci_add_fsbr(uhci, urb); 902 } 903 if (qh->state != QH_STATE_ACTIVE) 904 qh->skel = skel; 905 return 0; 906 907 nomem: 908 /* Remove the dummy TD from the td_list so it doesn't get freed */ 909 uhci_remove_td_from_urbp(qh->dummy_td); 910 return -ENOMEM; 911 } 912 913 /* 914 * Common submit for bulk and interrupt 915 */ 916 static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, 917 struct uhci_qh *qh) 918 { 919 struct uhci_td *td; 920 unsigned long destination, status; 921 int maxsze = usb_endpoint_maxp(&qh->hep->desc); 922 int len = urb->transfer_buffer_length; 923 int this_sg_len; 924 dma_addr_t data; 925 __hc32 *plink; 926 struct urb_priv *urbp = urb->hcpriv; 927 unsigned int toggle; 928 struct scatterlist *sg; 929 int i; 930 931 if (len < 0) 932 return -EINVAL; 933 934 /* The "pipe" thing contains the destination in bits 8--18 */ 935 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); 936 toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), 937 usb_pipeout(urb->pipe)); 938 939 /* 3 errors, dummy TD remains inactive */ 940 status = uhci_maxerr(3); 941 if (urb->dev->speed == USB_SPEED_LOW) 942 status |= TD_CTRL_LS; 943 if (usb_pipein(urb->pipe)) 944 status |= TD_CTRL_SPD; 945 946 i = urb->num_mapped_sgs; 947 if (len > 0 && i > 0) { 948 sg = urb->sg; 949 data = sg_dma_address(sg); 950 951 /* urb->transfer_buffer_length may be smaller than the 952 * size of the scatterlist (or vice versa) 953 */ 954 this_sg_len = min_t(int, sg_dma_len(sg), len); 955 } else { 956 sg = NULL; 957 data = urb->transfer_dma; 958 this_sg_len = len; 959 } 960 /* 961 * Build the DATA TDs 962 */ 963 plink = NULL; 964 td = qh->dummy_td; 965 for (;;) { /* Allow zero length packets */ 966 int pktsze = maxsze; 967 968 if (len <= pktsze) { /* The last packet */ 969 pktsze = len; 970 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 971 status &= ~TD_CTRL_SPD; 972 } 973 974 if (plink) { 975 td = uhci_alloc_td(uhci); 976 if (!td) 977 goto nomem; 978 *plink = LINK_TO_TD(uhci, td); 979 } 980 uhci_add_td_to_urbp(td, urbp); 981 uhci_fill_td(uhci, td, status, 982 destination | uhci_explen(pktsze) | 983 (toggle << TD_TOKEN_TOGGLE_SHIFT), 984 data); 985 plink = &td->link; 986 status |= TD_CTRL_ACTIVE; 987 988 toggle ^= 1; 989 data += pktsze; 990 this_sg_len -= pktsze; 991 len -= maxsze; 992 if (this_sg_len <= 0) { 993 if (--i <= 0 || len <= 0) 994 break; 995 sg = sg_next(sg); 996 data = sg_dma_address(sg); 997 this_sg_len = min_t(int, sg_dma_len(sg), len); 998 } 999 } 1000 1001 /* 1002 * URB_ZERO_PACKET means adding a 0-length packet, if direction 1003 * is OUT and the transfer_length was an exact multiple of maxsze, 1004 * hence (len = transfer_length - N * maxsze) == 0 1005 * however, if transfer_length == 0, the zero packet was already 1006 * prepared above. 1007 */ 1008 if ((urb->transfer_flags & URB_ZERO_PACKET) && 1009 usb_pipeout(urb->pipe) && len == 0 && 1010 urb->transfer_buffer_length > 0) { 1011 td = uhci_alloc_td(uhci); 1012 if (!td) 1013 goto nomem; 1014 *plink = LINK_TO_TD(uhci, td); 1015 1016 uhci_add_td_to_urbp(td, urbp); 1017 uhci_fill_td(uhci, td, status, 1018 destination | uhci_explen(0) | 1019 (toggle << TD_TOKEN_TOGGLE_SHIFT), 1020 data); 1021 plink = &td->link; 1022 1023 toggle ^= 1; 1024 } 1025 1026 /* Set the interrupt-on-completion flag on the last packet. 1027 * A more-or-less typical 4 KB URB (= size of one memory page) 1028 * will require about 3 ms to transfer; that's a little on the 1029 * fast side but not enough to justify delaying an interrupt 1030 * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT 1031 * flag setting. */ 1032 td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); 1033 1034 /* 1035 * Build the new dummy TD and activate the old one 1036 */ 1037 td = uhci_alloc_td(uhci); 1038 if (!td) 1039 goto nomem; 1040 *plink = LINK_TO_TD(uhci, td); 1041 1042 uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0); 1043 wmb(); 1044 qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE); 1045 qh->dummy_td = td; 1046 1047 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), 1048 usb_pipeout(urb->pipe), toggle); 1049 return 0; 1050 1051 nomem: 1052 /* Remove the dummy TD from the td_list so it doesn't get freed */ 1053 uhci_remove_td_from_urbp(qh->dummy_td); 1054 return -ENOMEM; 1055 } 1056 1057 static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, 1058 struct uhci_qh *qh) 1059 { 1060 int ret; 1061 1062 /* Can't have low-speed bulk transfers */ 1063 if (urb->dev->speed == USB_SPEED_LOW) 1064 return -EINVAL; 1065 1066 if (qh->state != QH_STATE_ACTIVE) 1067 qh->skel = SKEL_BULK; 1068 ret = uhci_submit_common(uhci, urb, qh); 1069 if (ret == 0) 1070 uhci_add_fsbr(uhci, urb); 1071 return ret; 1072 } 1073 1074 static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, 1075 struct uhci_qh *qh) 1076 { 1077 int ret; 1078 1079 /* USB 1.1 interrupt transfers only involve one packet per interval. 1080 * Drivers can submit URBs of any length, but longer ones will need 1081 * multiple intervals to complete. 1082 */ 1083 1084 if (!qh->bandwidth_reserved) { 1085 int exponent; 1086 1087 /* Figure out which power-of-two queue to use */ 1088 for (exponent = 7; exponent >= 0; --exponent) { 1089 if ((1 << exponent) <= urb->interval) 1090 break; 1091 } 1092 if (exponent < 0) 1093 return -EINVAL; 1094 1095 /* If the slot is full, try a lower period */ 1096 do { 1097 qh->period = 1 << exponent; 1098 qh->skel = SKEL_INDEX(exponent); 1099 1100 /* For now, interrupt phase is fixed by the layout 1101 * of the QH lists. 1102 */ 1103 qh->phase = (qh->period / 2) & (MAX_PHASE - 1); 1104 ret = uhci_check_bandwidth(uhci, qh); 1105 } while (ret != 0 && --exponent >= 0); 1106 if (ret) 1107 return ret; 1108 } else if (qh->period > urb->interval) 1109 return -EINVAL; /* Can't decrease the period */ 1110 1111 ret = uhci_submit_common(uhci, urb, qh); 1112 if (ret == 0) { 1113 urb->interval = qh->period; 1114 if (!qh->bandwidth_reserved) 1115 uhci_reserve_bandwidth(uhci, qh); 1116 } 1117 return ret; 1118 } 1119 1120 /* 1121 * Fix up the data structures following a short transfer 1122 */ 1123 static int uhci_fixup_short_transfer(struct uhci_hcd *uhci, 1124 struct uhci_qh *qh, struct urb_priv *urbp) 1125 { 1126 struct uhci_td *td; 1127 struct list_head *tmp; 1128 int ret; 1129 1130 td = list_entry(urbp->td_list.prev, struct uhci_td, list); 1131 if (qh->type == USB_ENDPOINT_XFER_CONTROL) { 1132 1133 /* When a control transfer is short, we have to restart 1134 * the queue at the status stage transaction, which is 1135 * the last TD. */ 1136 WARN_ON(list_empty(&urbp->td_list)); 1137 qh->element = LINK_TO_TD(uhci, td); 1138 tmp = td->list.prev; 1139 ret = -EINPROGRESS; 1140 1141 } else { 1142 1143 /* When a bulk/interrupt transfer is short, we have to 1144 * fix up the toggles of the following URBs on the queue 1145 * before restarting the queue at the next URB. */ 1146 qh->initial_toggle = 1147 uhci_toggle(td_token(uhci, qh->post_td)) ^ 1; 1148 uhci_fixup_toggles(uhci, qh, 1); 1149 1150 if (list_empty(&urbp->td_list)) 1151 td = qh->post_td; 1152 qh->element = td->link; 1153 tmp = urbp->td_list.prev; 1154 ret = 0; 1155 } 1156 1157 /* Remove all the TDs we skipped over, from tmp back to the start */ 1158 while (tmp != &urbp->td_list) { 1159 td = list_entry(tmp, struct uhci_td, list); 1160 tmp = tmp->prev; 1161 1162 uhci_remove_td_from_urbp(td); 1163 uhci_free_td(uhci, td); 1164 } 1165 return ret; 1166 } 1167 1168 /* 1169 * Common result for control, bulk, and interrupt 1170 */ 1171 static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb) 1172 { 1173 struct urb_priv *urbp = urb->hcpriv; 1174 struct uhci_qh *qh = urbp->qh; 1175 struct uhci_td *td, *tmp; 1176 unsigned status; 1177 int ret = 0; 1178 1179 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 1180 unsigned int ctrlstat; 1181 int len; 1182 1183 ctrlstat = td_status(uhci, td); 1184 status = uhci_status_bits(ctrlstat); 1185 if (status & TD_CTRL_ACTIVE) 1186 return -EINPROGRESS; 1187 1188 len = uhci_actual_length(ctrlstat); 1189 urb->actual_length += len; 1190 1191 if (status) { 1192 ret = uhci_map_status(status, 1193 uhci_packetout(td_token(uhci, td))); 1194 if ((debug == 1 && ret != -EPIPE) || debug > 1) { 1195 /* Some debugging code */ 1196 dev_dbg(&urb->dev->dev, 1197 "%s: failed with status %x\n", 1198 __func__, status); 1199 1200 if (debug > 1 && errbuf) { 1201 /* Print the chain for debugging */ 1202 uhci_show_qh(uhci, urbp->qh, errbuf, 1203 ERRBUF_LEN, 0); 1204 lprintk(errbuf); 1205 } 1206 } 1207 1208 /* Did we receive a short packet? */ 1209 } else if (len < uhci_expected_length(td_token(uhci, td))) { 1210 1211 /* For control transfers, go to the status TD if 1212 * this isn't already the last data TD */ 1213 if (qh->type == USB_ENDPOINT_XFER_CONTROL) { 1214 if (td->list.next != urbp->td_list.prev) 1215 ret = 1; 1216 } 1217 1218 /* For bulk and interrupt, this may be an error */ 1219 else if (urb->transfer_flags & URB_SHORT_NOT_OK) 1220 ret = -EREMOTEIO; 1221 1222 /* Fixup needed only if this isn't the URB's last TD */ 1223 else if (&td->list != urbp->td_list.prev) 1224 ret = 1; 1225 } 1226 1227 uhci_remove_td_from_urbp(td); 1228 if (qh->post_td) 1229 uhci_free_td(uhci, qh->post_td); 1230 qh->post_td = td; 1231 1232 if (ret != 0) 1233 goto err; 1234 } 1235 return ret; 1236 1237 err: 1238 if (ret < 0) { 1239 /* Note that the queue has stopped and save 1240 * the next toggle value */ 1241 qh->element = UHCI_PTR_TERM(uhci); 1242 qh->is_stopped = 1; 1243 qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL); 1244 qh->initial_toggle = uhci_toggle(td_token(uhci, td)) ^ 1245 (ret == -EREMOTEIO); 1246 1247 } else /* Short packet received */ 1248 ret = uhci_fixup_short_transfer(uhci, qh, urbp); 1249 return ret; 1250 } 1251 1252 /* 1253 * Isochronous transfers 1254 */ 1255 static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb, 1256 struct uhci_qh *qh) 1257 { 1258 struct uhci_td *td = NULL; /* Since urb->number_of_packets > 0 */ 1259 int i, frame; 1260 unsigned long destination, status; 1261 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 1262 1263 /* Values must not be too big (could overflow below) */ 1264 if (urb->interval >= UHCI_NUMFRAMES || 1265 urb->number_of_packets >= UHCI_NUMFRAMES) 1266 return -EFBIG; 1267 1268 /* Check the period and figure out the starting frame number */ 1269 if (!qh->bandwidth_reserved) { 1270 qh->period = urb->interval; 1271 if (urb->transfer_flags & URB_ISO_ASAP) { 1272 qh->phase = -1; /* Find the best phase */ 1273 i = uhci_check_bandwidth(uhci, qh); 1274 if (i) 1275 return i; 1276 1277 /* Allow a little time to allocate the TDs */ 1278 uhci_get_current_frame_number(uhci); 1279 frame = uhci->frame_number + 10; 1280 1281 /* Move forward to the first frame having the 1282 * correct phase */ 1283 urb->start_frame = frame + ((qh->phase - frame) & 1284 (qh->period - 1)); 1285 } else { 1286 i = urb->start_frame - uhci->last_iso_frame; 1287 if (i <= 0 || i >= UHCI_NUMFRAMES) 1288 return -EINVAL; 1289 qh->phase = urb->start_frame & (qh->period - 1); 1290 i = uhci_check_bandwidth(uhci, qh); 1291 if (i) 1292 return i; 1293 } 1294 1295 } else if (qh->period != urb->interval) { 1296 return -EINVAL; /* Can't change the period */ 1297 1298 } else { 1299 /* Find the next unused frame */ 1300 if (list_empty(&qh->queue)) { 1301 frame = qh->iso_frame; 1302 } else { 1303 struct urb *lurb; 1304 1305 lurb = list_entry(qh->queue.prev, 1306 struct urb_priv, node)->urb; 1307 frame = lurb->start_frame + 1308 lurb->number_of_packets * 1309 lurb->interval; 1310 } 1311 if (urb->transfer_flags & URB_ISO_ASAP) { 1312 /* Skip some frames if necessary to insure 1313 * the start frame is in the future. 1314 */ 1315 uhci_get_current_frame_number(uhci); 1316 if (uhci_frame_before_eq(frame, uhci->frame_number)) { 1317 frame = uhci->frame_number + 1; 1318 frame += ((qh->phase - frame) & 1319 (qh->period - 1)); 1320 } 1321 } /* Otherwise pick up where the last URB leaves off */ 1322 urb->start_frame = frame; 1323 } 1324 1325 /* Make sure we won't have to go too far into the future */ 1326 if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES, 1327 urb->start_frame + urb->number_of_packets * 1328 urb->interval)) 1329 return -EFBIG; 1330 1331 status = TD_CTRL_ACTIVE | TD_CTRL_IOS; 1332 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); 1333 1334 for (i = 0; i < urb->number_of_packets; i++) { 1335 td = uhci_alloc_td(uhci); 1336 if (!td) 1337 return -ENOMEM; 1338 1339 uhci_add_td_to_urbp(td, urbp); 1340 uhci_fill_td(uhci, td, status, destination | 1341 uhci_explen(urb->iso_frame_desc[i].length), 1342 urb->transfer_dma + 1343 urb->iso_frame_desc[i].offset); 1344 } 1345 1346 /* Set the interrupt-on-completion flag on the last packet. */ 1347 td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); 1348 1349 /* Add the TDs to the frame list */ 1350 frame = urb->start_frame; 1351 list_for_each_entry(td, &urbp->td_list, list) { 1352 uhci_insert_td_in_frame_list(uhci, td, frame); 1353 frame += qh->period; 1354 } 1355 1356 if (list_empty(&qh->queue)) { 1357 qh->iso_packet_desc = &urb->iso_frame_desc[0]; 1358 qh->iso_frame = urb->start_frame; 1359 } 1360 1361 qh->skel = SKEL_ISO; 1362 if (!qh->bandwidth_reserved) 1363 uhci_reserve_bandwidth(uhci, qh); 1364 return 0; 1365 } 1366 1367 static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb) 1368 { 1369 struct uhci_td *td, *tmp; 1370 struct urb_priv *urbp = urb->hcpriv; 1371 struct uhci_qh *qh = urbp->qh; 1372 1373 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 1374 unsigned int ctrlstat; 1375 int status; 1376 int actlength; 1377 1378 if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame)) 1379 return -EINPROGRESS; 1380 1381 uhci_remove_tds_from_frame(uhci, qh->iso_frame); 1382 1383 ctrlstat = td_status(uhci, td); 1384 if (ctrlstat & TD_CTRL_ACTIVE) { 1385 status = -EXDEV; /* TD was added too late? */ 1386 } else { 1387 status = uhci_map_status(uhci_status_bits(ctrlstat), 1388 usb_pipeout(urb->pipe)); 1389 actlength = uhci_actual_length(ctrlstat); 1390 1391 urb->actual_length += actlength; 1392 qh->iso_packet_desc->actual_length = actlength; 1393 qh->iso_packet_desc->status = status; 1394 } 1395 if (status) 1396 urb->error_count++; 1397 1398 uhci_remove_td_from_urbp(td); 1399 uhci_free_td(uhci, td); 1400 qh->iso_frame += qh->period; 1401 ++qh->iso_packet_desc; 1402 } 1403 return 0; 1404 } 1405 1406 static int uhci_urb_enqueue(struct usb_hcd *hcd, 1407 struct urb *urb, gfp_t mem_flags) 1408 { 1409 int ret; 1410 struct uhci_hcd *uhci = hcd_to_uhci(hcd); 1411 unsigned long flags; 1412 struct urb_priv *urbp; 1413 struct uhci_qh *qh; 1414 1415 spin_lock_irqsave(&uhci->lock, flags); 1416 1417 ret = usb_hcd_link_urb_to_ep(hcd, urb); 1418 if (ret) 1419 goto done_not_linked; 1420 1421 ret = -ENOMEM; 1422 urbp = uhci_alloc_urb_priv(uhci, urb); 1423 if (!urbp) 1424 goto done; 1425 1426 if (urb->ep->hcpriv) 1427 qh = urb->ep->hcpriv; 1428 else { 1429 qh = uhci_alloc_qh(uhci, urb->dev, urb->ep); 1430 if (!qh) 1431 goto err_no_qh; 1432 } 1433 urbp->qh = qh; 1434 1435 switch (qh->type) { 1436 case USB_ENDPOINT_XFER_CONTROL: 1437 ret = uhci_submit_control(uhci, urb, qh); 1438 break; 1439 case USB_ENDPOINT_XFER_BULK: 1440 ret = uhci_submit_bulk(uhci, urb, qh); 1441 break; 1442 case USB_ENDPOINT_XFER_INT: 1443 ret = uhci_submit_interrupt(uhci, urb, qh); 1444 break; 1445 case USB_ENDPOINT_XFER_ISOC: 1446 urb->error_count = 0; 1447 ret = uhci_submit_isochronous(uhci, urb, qh); 1448 break; 1449 } 1450 if (ret != 0) 1451 goto err_submit_failed; 1452 1453 /* Add this URB to the QH */ 1454 list_add_tail(&urbp->node, &qh->queue); 1455 1456 /* If the new URB is the first and only one on this QH then either 1457 * the QH is new and idle or else it's unlinked and waiting to 1458 * become idle, so we can activate it right away. But only if the 1459 * queue isn't stopped. */ 1460 if (qh->queue.next == &urbp->node && !qh->is_stopped) { 1461 uhci_activate_qh(uhci, qh); 1462 uhci_urbp_wants_fsbr(uhci, urbp); 1463 } 1464 goto done; 1465 1466 err_submit_failed: 1467 if (qh->state == QH_STATE_IDLE) 1468 uhci_make_qh_idle(uhci, qh); /* Reclaim unused QH */ 1469 err_no_qh: 1470 uhci_free_urb_priv(uhci, urbp); 1471 done: 1472 if (ret) 1473 usb_hcd_unlink_urb_from_ep(hcd, urb); 1474 done_not_linked: 1475 spin_unlock_irqrestore(&uhci->lock, flags); 1476 return ret; 1477 } 1478 1479 static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1480 { 1481 struct uhci_hcd *uhci = hcd_to_uhci(hcd); 1482 unsigned long flags; 1483 struct uhci_qh *qh; 1484 int rc; 1485 1486 spin_lock_irqsave(&uhci->lock, flags); 1487 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 1488 if (rc) 1489 goto done; 1490 1491 qh = ((struct urb_priv *) urb->hcpriv)->qh; 1492 1493 /* Remove Isochronous TDs from the frame list ASAP */ 1494 if (qh->type == USB_ENDPOINT_XFER_ISOC) { 1495 uhci_unlink_isochronous_tds(uhci, urb); 1496 mb(); 1497 1498 /* If the URB has already started, update the QH unlink time */ 1499 uhci_get_current_frame_number(uhci); 1500 if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number)) 1501 qh->unlink_frame = uhci->frame_number; 1502 } 1503 1504 uhci_unlink_qh(uhci, qh); 1505 1506 done: 1507 spin_unlock_irqrestore(&uhci->lock, flags); 1508 return rc; 1509 } 1510 1511 /* 1512 * Finish unlinking an URB and give it back 1513 */ 1514 static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh, 1515 struct urb *urb, int status) 1516 __releases(uhci->lock) 1517 __acquires(uhci->lock) 1518 { 1519 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 1520 1521 if (qh->type == USB_ENDPOINT_XFER_CONTROL) { 1522 1523 /* Subtract off the length of the SETUP packet from 1524 * urb->actual_length. 1525 */ 1526 urb->actual_length -= min_t(u32, 8, urb->actual_length); 1527 } 1528 1529 /* When giving back the first URB in an Isochronous queue, 1530 * reinitialize the QH's iso-related members for the next URB. */ 1531 else if (qh->type == USB_ENDPOINT_XFER_ISOC && 1532 urbp->node.prev == &qh->queue && 1533 urbp->node.next != &qh->queue) { 1534 struct urb *nurb = list_entry(urbp->node.next, 1535 struct urb_priv, node)->urb; 1536 1537 qh->iso_packet_desc = &nurb->iso_frame_desc[0]; 1538 qh->iso_frame = nurb->start_frame; 1539 } 1540 1541 /* Take the URB off the QH's queue. If the queue is now empty, 1542 * this is a perfect time for a toggle fixup. */ 1543 list_del_init(&urbp->node); 1544 if (list_empty(&qh->queue) && qh->needs_fixup) { 1545 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), 1546 usb_pipeout(urb->pipe), qh->initial_toggle); 1547 qh->needs_fixup = 0; 1548 } 1549 1550 uhci_free_urb_priv(uhci, urbp); 1551 usb_hcd_unlink_urb_from_ep(uhci_to_hcd(uhci), urb); 1552 1553 spin_unlock(&uhci->lock); 1554 usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb, status); 1555 spin_lock(&uhci->lock); 1556 1557 /* If the queue is now empty, we can unlink the QH and give up its 1558 * reserved bandwidth. */ 1559 if (list_empty(&qh->queue)) { 1560 uhci_unlink_qh(uhci, qh); 1561 if (qh->bandwidth_reserved) 1562 uhci_release_bandwidth(uhci, qh); 1563 } 1564 } 1565 1566 /* 1567 * Scan the URBs in a QH's queue 1568 */ 1569 #define QH_FINISHED_UNLINKING(qh) \ 1570 (qh->state == QH_STATE_UNLINKING && \ 1571 uhci->frame_number + uhci->is_stopped != qh->unlink_frame) 1572 1573 static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 1574 { 1575 struct urb_priv *urbp; 1576 struct urb *urb; 1577 int status; 1578 1579 while (!list_empty(&qh->queue)) { 1580 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1581 urb = urbp->urb; 1582 1583 if (qh->type == USB_ENDPOINT_XFER_ISOC) 1584 status = uhci_result_isochronous(uhci, urb); 1585 else 1586 status = uhci_result_common(uhci, urb); 1587 if (status == -EINPROGRESS) 1588 break; 1589 1590 /* Dequeued but completed URBs can't be given back unless 1591 * the QH is stopped or has finished unlinking. */ 1592 if (urb->unlinked) { 1593 if (QH_FINISHED_UNLINKING(qh)) 1594 qh->is_stopped = 1; 1595 else if (!qh->is_stopped) 1596 return; 1597 } 1598 1599 uhci_giveback_urb(uhci, qh, urb, status); 1600 if (status < 0) 1601 break; 1602 } 1603 1604 /* If the QH is neither stopped nor finished unlinking (normal case), 1605 * our work here is done. */ 1606 if (QH_FINISHED_UNLINKING(qh)) 1607 qh->is_stopped = 1; 1608 else if (!qh->is_stopped) 1609 return; 1610 1611 /* Otherwise give back each of the dequeued URBs */ 1612 restart: 1613 list_for_each_entry(urbp, &qh->queue, node) { 1614 urb = urbp->urb; 1615 if (urb->unlinked) { 1616 1617 /* Fix up the TD links and save the toggles for 1618 * non-Isochronous queues. For Isochronous queues, 1619 * test for too-recent dequeues. */ 1620 if (!uhci_cleanup_queue(uhci, qh, urb)) { 1621 qh->is_stopped = 0; 1622 return; 1623 } 1624 uhci_giveback_urb(uhci, qh, urb, 0); 1625 goto restart; 1626 } 1627 } 1628 qh->is_stopped = 0; 1629 1630 /* There are no more dequeued URBs. If there are still URBs on the 1631 * queue, the QH can now be re-activated. */ 1632 if (!list_empty(&qh->queue)) { 1633 if (qh->needs_fixup) 1634 uhci_fixup_toggles(uhci, qh, 0); 1635 1636 /* If the first URB on the queue wants FSBR but its time 1637 * limit has expired, set the next TD to interrupt on 1638 * completion before reactivating the QH. */ 1639 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1640 if (urbp->fsbr && qh->wait_expired) { 1641 struct uhci_td *td = list_entry(urbp->td_list.next, 1642 struct uhci_td, list); 1643 1644 td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC); 1645 } 1646 1647 uhci_activate_qh(uhci, qh); 1648 } 1649 1650 /* The queue is empty. The QH can become idle if it is fully 1651 * unlinked. */ 1652 else if (QH_FINISHED_UNLINKING(qh)) 1653 uhci_make_qh_idle(uhci, qh); 1654 } 1655 1656 /* 1657 * Check for queues that have made some forward progress. 1658 * Returns 0 if the queue is not Isochronous, is ACTIVE, and 1659 * has not advanced since last examined; 1 otherwise. 1660 * 1661 * Early Intel controllers have a bug which causes qh->element sometimes 1662 * not to advance when a TD completes successfully. The queue remains 1663 * stuck on the inactive completed TD. We detect such cases and advance 1664 * the element pointer by hand. 1665 */ 1666 static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh) 1667 { 1668 struct urb_priv *urbp = NULL; 1669 struct uhci_td *td; 1670 int ret = 1; 1671 unsigned status; 1672 1673 if (qh->type == USB_ENDPOINT_XFER_ISOC) 1674 goto done; 1675 1676 /* Treat an UNLINKING queue as though it hasn't advanced. 1677 * This is okay because reactivation will treat it as though 1678 * it has advanced, and if it is going to become IDLE then 1679 * this doesn't matter anyway. Furthermore it's possible 1680 * for an UNLINKING queue not to have any URBs at all, or 1681 * for its first URB not to have any TDs (if it was dequeued 1682 * just as it completed). So it's not easy in any case to 1683 * test whether such queues have advanced. */ 1684 if (qh->state != QH_STATE_ACTIVE) { 1685 urbp = NULL; 1686 status = 0; 1687 1688 } else { 1689 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1690 td = list_entry(urbp->td_list.next, struct uhci_td, list); 1691 status = td_status(uhci, td); 1692 if (!(status & TD_CTRL_ACTIVE)) { 1693 1694 /* We're okay, the queue has advanced */ 1695 qh->wait_expired = 0; 1696 qh->advance_jiffies = jiffies; 1697 goto done; 1698 } 1699 ret = uhci->is_stopped; 1700 } 1701 1702 /* The queue hasn't advanced; check for timeout */ 1703 if (qh->wait_expired) 1704 goto done; 1705 1706 if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) { 1707 1708 /* Detect the Intel bug and work around it */ 1709 if (qh->post_td && qh_element(qh) == 1710 LINK_TO_TD(uhci, qh->post_td)) { 1711 qh->element = qh->post_td->link; 1712 qh->advance_jiffies = jiffies; 1713 ret = 1; 1714 goto done; 1715 } 1716 1717 qh->wait_expired = 1; 1718 1719 /* If the current URB wants FSBR, unlink it temporarily 1720 * so that we can safely set the next TD to interrupt on 1721 * completion. That way we'll know as soon as the queue 1722 * starts moving again. */ 1723 if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC)) 1724 uhci_unlink_qh(uhci, qh); 1725 1726 } else { 1727 /* Unmoving but not-yet-expired queues keep FSBR alive */ 1728 if (urbp) 1729 uhci_urbp_wants_fsbr(uhci, urbp); 1730 } 1731 1732 done: 1733 return ret; 1734 } 1735 1736 /* 1737 * Process events in the schedule, but only in one thread at a time 1738 */ 1739 static void uhci_scan_schedule(struct uhci_hcd *uhci) 1740 { 1741 int i; 1742 struct uhci_qh *qh; 1743 1744 /* Don't allow re-entrant calls */ 1745 if (uhci->scan_in_progress) { 1746 uhci->need_rescan = 1; 1747 return; 1748 } 1749 uhci->scan_in_progress = 1; 1750 rescan: 1751 uhci->need_rescan = 0; 1752 uhci->fsbr_is_wanted = 0; 1753 1754 uhci_clear_next_interrupt(uhci); 1755 uhci_get_current_frame_number(uhci); 1756 uhci->cur_iso_frame = uhci->frame_number; 1757 1758 /* Go through all the QH queues and process the URBs in each one */ 1759 for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) { 1760 uhci->next_qh = list_entry(uhci->skelqh[i]->node.next, 1761 struct uhci_qh, node); 1762 while ((qh = uhci->next_qh) != uhci->skelqh[i]) { 1763 uhci->next_qh = list_entry(qh->node.next, 1764 struct uhci_qh, node); 1765 1766 if (uhci_advance_check(uhci, qh)) { 1767 uhci_scan_qh(uhci, qh); 1768 if (qh->state == QH_STATE_ACTIVE) { 1769 uhci_urbp_wants_fsbr(uhci, 1770 list_entry(qh->queue.next, struct urb_priv, node)); 1771 } 1772 } 1773 } 1774 } 1775 1776 uhci->last_iso_frame = uhci->cur_iso_frame; 1777 if (uhci->need_rescan) 1778 goto rescan; 1779 uhci->scan_in_progress = 0; 1780 1781 if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted && 1782 !uhci->fsbr_expiring) { 1783 uhci->fsbr_expiring = 1; 1784 mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY); 1785 } 1786 1787 if (list_empty(&uhci->skel_unlink_qh->node)) 1788 uhci_clear_next_interrupt(uhci); 1789 else 1790 uhci_set_next_interrupt(uhci); 1791 } 1792