1 #ifndef __LINUX_UHCI_HCD_H 2 #define __LINUX_UHCI_HCD_H 3 4 #include <linux/list.h> 5 #include <linux/usb.h> 6 7 #define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT) 8 #define PIPE_DEVEP_MASK 0x0007ff00 9 10 11 /* 12 * Universal Host Controller Interface data structures and defines 13 */ 14 15 /* Command register */ 16 #define USBCMD 0 17 #define USBCMD_RS 0x0001 /* Run/Stop */ 18 #define USBCMD_HCRESET 0x0002 /* Host reset */ 19 #define USBCMD_GRESET 0x0004 /* Global reset */ 20 #define USBCMD_EGSM 0x0008 /* Global Suspend Mode */ 21 #define USBCMD_FGR 0x0010 /* Force Global Resume */ 22 #define USBCMD_SWDBG 0x0020 /* SW Debug mode */ 23 #define USBCMD_CF 0x0040 /* Config Flag (sw only) */ 24 #define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */ 25 26 /* Status register */ 27 #define USBSTS 2 28 #define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */ 29 #define USBSTS_ERROR 0x0002 /* Interrupt due to error */ 30 #define USBSTS_RD 0x0004 /* Resume Detect */ 31 #define USBSTS_HSE 0x0008 /* Host System Error: PCI problems */ 32 #define USBSTS_HCPE 0x0010 /* Host Controller Process Error: 33 * the schedule is buggy */ 34 #define USBSTS_HCH 0x0020 /* HC Halted */ 35 36 /* Interrupt enable register */ 37 #define USBINTR 4 38 #define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */ 39 #define USBINTR_RESUME 0x0002 /* Resume interrupt enable */ 40 #define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */ 41 #define USBINTR_SP 0x0008 /* Short packet interrupt enable */ 42 43 #define USBFRNUM 6 44 #define USBFLBASEADD 8 45 #define USBSOF 12 46 #define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms */ 47 48 /* USB port status and control registers */ 49 #define USBPORTSC1 16 50 #define USBPORTSC2 18 51 #define USBPORTSC_CCS 0x0001 /* Current Connect Status 52 * ("device present") */ 53 #define USBPORTSC_CSC 0x0002 /* Connect Status Change */ 54 #define USBPORTSC_PE 0x0004 /* Port Enable */ 55 #define USBPORTSC_PEC 0x0008 /* Port Enable Change */ 56 #define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */ 57 #define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */ 58 #define USBPORTSC_RD 0x0040 /* Resume Detect */ 59 #define USBPORTSC_RES1 0x0080 /* reserved, always 1 */ 60 #define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */ 61 #define USBPORTSC_PR 0x0200 /* Port Reset */ 62 /* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */ 63 #define USBPORTSC_OC 0x0400 /* Over Current condition */ 64 #define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */ 65 #define USBPORTSC_SUSP 0x1000 /* Suspend */ 66 #define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */ 67 #define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */ 68 #define USBPORTSC_RES4 0x8000 /* reserved, write zeroes */ 69 70 /* PCI legacy support register */ 71 #define USBLEGSUP 0xc0 72 #define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */ 73 #define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */ 74 #define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */ 75 76 /* PCI Intel-specific resume-enable register */ 77 #define USBRES_INTEL 0xc4 78 #define USBPORT1EN 0x01 79 #define USBPORT2EN 0x02 80 81 #define UHCI_PTR_BITS(uhci) cpu_to_hc32((uhci), 0x000F) 82 #define UHCI_PTR_TERM(uhci) cpu_to_hc32((uhci), 0x0001) 83 #define UHCI_PTR_QH(uhci) cpu_to_hc32((uhci), 0x0002) 84 #define UHCI_PTR_DEPTH(uhci) cpu_to_hc32((uhci), 0x0004) 85 #define UHCI_PTR_BREADTH(uhci) cpu_to_hc32((uhci), 0x0000) 86 87 #define UHCI_NUMFRAMES 1024 /* in the frame list [array] */ 88 #define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */ 89 #define CAN_SCHEDULE_FRAMES 1000 /* how far in the future frames 90 * can be scheduled */ 91 #define MAX_PHASE 32 /* Periodic scheduling length */ 92 93 /* When no queues need Full-Speed Bandwidth Reclamation, 94 * delay this long before turning FSBR off */ 95 #define FSBR_OFF_DELAY msecs_to_jiffies(10) 96 97 /* If a queue hasn't advanced after this much time, assume it is stuck */ 98 #define QH_WAIT_TIMEOUT msecs_to_jiffies(200) 99 100 101 /* 102 * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to 103 * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on 104 * the host controller implementation. 105 * 106 * To facilitate the strongest possible byte-order checking from "sparse" 107 * and so on, we use __leXX unless that's not practical. 108 */ 109 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC 110 typedef __u32 __bitwise __hc32; 111 typedef __u16 __bitwise __hc16; 112 #else 113 #define __hc32 __le32 114 #define __hc16 __le16 115 #endif 116 117 /* 118 * Queue Headers 119 */ 120 121 /* 122 * One role of a QH is to hold a queue of TDs for some endpoint. One QH goes 123 * with each endpoint, and qh->element (updated by the HC) is either: 124 * - the next unprocessed TD in the endpoint's queue, or 125 * - UHCI_PTR_TERM (when there's no more traffic for this endpoint). 126 * 127 * The other role of a QH is to serve as a "skeleton" framelist entry, so we 128 * can easily splice a QH for some endpoint into the schedule at the right 129 * place. Then qh->element is UHCI_PTR_TERM. 130 * 131 * In the schedule, qh->link maintains a list of QHs seen by the HC: 132 * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ... 133 * 134 * qh->node is the software equivalent of qh->link. The differences 135 * are that the software list is doubly-linked and QHs in the UNLINKING 136 * state are on the software list but not the hardware schedule. 137 * 138 * For bookkeeping purposes we maintain QHs even for Isochronous endpoints, 139 * but they never get added to the hardware schedule. 140 */ 141 #define QH_STATE_IDLE 1 /* QH is not being used */ 142 #define QH_STATE_UNLINKING 2 /* QH has been removed from the 143 * schedule but the hardware may 144 * still be using it */ 145 #define QH_STATE_ACTIVE 3 /* QH is on the schedule */ 146 147 struct uhci_qh { 148 /* Hardware fields */ 149 __hc32 link; /* Next QH in the schedule */ 150 __hc32 element; /* Queue element (TD) pointer */ 151 152 /* Software fields */ 153 dma_addr_t dma_handle; 154 155 struct list_head node; /* Node in the list of QHs */ 156 struct usb_host_endpoint *hep; /* Endpoint information */ 157 struct usb_device *udev; 158 struct list_head queue; /* Queue of urbps for this QH */ 159 struct uhci_td *dummy_td; /* Dummy TD to end the queue */ 160 struct uhci_td *post_td; /* Last TD completed */ 161 162 struct usb_iso_packet_descriptor *iso_packet_desc; 163 /* Next urb->iso_frame_desc entry */ 164 unsigned long advance_jiffies; /* Time of last queue advance */ 165 unsigned int unlink_frame; /* When the QH was unlinked */ 166 unsigned int period; /* For Interrupt and Isochronous QHs */ 167 short phase; /* Between 0 and period-1 */ 168 short load; /* Periodic time requirement, in us */ 169 unsigned int iso_frame; /* Frame # for iso_packet_desc */ 170 171 int state; /* QH_STATE_xxx; see above */ 172 int type; /* Queue type (control, bulk, etc) */ 173 int skel; /* Skeleton queue number */ 174 175 unsigned int initial_toggle:1; /* Endpoint's current toggle value */ 176 unsigned int needs_fixup:1; /* Must fix the TD toggle values */ 177 unsigned int is_stopped:1; /* Queue was stopped by error/unlink */ 178 unsigned int wait_expired:1; /* QH_WAIT_TIMEOUT has expired */ 179 unsigned int bandwidth_reserved:1; /* Periodic bandwidth has 180 * been allocated */ 181 } __attribute__((aligned(16))); 182 183 /* 184 * We need a special accessor for the element pointer because it is 185 * subject to asynchronous updates by the controller. 186 */ 187 #define qh_element(qh) ACCESS_ONCE((qh)->element) 188 189 #define LINK_TO_QH(uhci, qh) (UHCI_PTR_QH((uhci)) | \ 190 cpu_to_hc32((uhci), (qh)->dma_handle)) 191 192 193 /* 194 * Transfer Descriptors 195 */ 196 197 /* 198 * for TD <status>: 199 */ 200 #define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */ 201 #define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */ 202 #define TD_CTRL_C_ERR_SHIFT 27 203 #define TD_CTRL_LS (1 << 26) /* Low Speed Device */ 204 #define TD_CTRL_IOS (1 << 25) /* Isochronous Select */ 205 #define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */ 206 #define TD_CTRL_ACTIVE (1 << 23) /* TD Active */ 207 #define TD_CTRL_STALLED (1 << 22) /* TD Stalled */ 208 #define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */ 209 #define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */ 210 #define TD_CTRL_NAK (1 << 19) /* NAK Received */ 211 #define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */ 212 #define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */ 213 #define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */ 214 215 #define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT) 216 #define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000) 217 #define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & \ 218 TD_CTRL_ACTLEN_MASK) /* 1-based */ 219 220 /* 221 * for TD <info>: (a.k.a. Token) 222 */ 223 #define td_token(uhci, td) hc32_to_cpu((uhci), (td)->token) 224 #define TD_TOKEN_DEVADDR_SHIFT 8 225 #define TD_TOKEN_TOGGLE_SHIFT 19 226 #define TD_TOKEN_TOGGLE (1 << 19) 227 #define TD_TOKEN_EXPLEN_SHIFT 21 228 #define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n-1 */ 229 #define TD_TOKEN_PID_MASK 0xFF 230 231 #define uhci_explen(len) ((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \ 232 TD_TOKEN_EXPLEN_SHIFT) 233 234 #define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \ 235 1) & TD_TOKEN_EXPLEN_MASK) 236 #define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1) 237 #define uhci_endpoint(token) (((token) >> 15) & 0xf) 238 #define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f) 239 #define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff) 240 #define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK) 241 #define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN) 242 #define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN) 243 244 /* 245 * The documentation says "4 words for hardware, 4 words for software". 246 * 247 * That's silly, the hardware doesn't care. The hardware only cares that 248 * the hardware words are 16-byte aligned, and we can have any amount of 249 * sw space after the TD entry. 250 * 251 * td->link points to either another TD (not necessarily for the same urb or 252 * even the same endpoint), or nothing (PTR_TERM), or a QH. 253 */ 254 struct uhci_td { 255 /* Hardware fields */ 256 __hc32 link; 257 __hc32 status; 258 __hc32 token; 259 __hc32 buffer; 260 261 /* Software fields */ 262 dma_addr_t dma_handle; 263 264 struct list_head list; 265 266 int frame; /* for iso: what frame? */ 267 struct list_head fl_list; 268 } __attribute__((aligned(16))); 269 270 /* 271 * We need a special accessor for the control/status word because it is 272 * subject to asynchronous updates by the controller. 273 */ 274 #define td_status(uhci, td) hc32_to_cpu((uhci), \ 275 ACCESS_ONCE((td)->status)) 276 277 #define LINK_TO_TD(uhci, td) (cpu_to_hc32((uhci), (td)->dma_handle)) 278 279 280 /* 281 * Skeleton Queue Headers 282 */ 283 284 /* 285 * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for 286 * automatic queuing. To make it easy to insert entries into the schedule, 287 * we have a skeleton of QHs for each predefined Interrupt latency. 288 * Asynchronous QHs (low-speed control, full-speed control, and bulk) 289 * go onto the period-1 interrupt list, since they all get accessed on 290 * every frame. 291 * 292 * When we want to add a new QH, we add it to the list starting from the 293 * appropriate skeleton QH. For instance, the schedule can look like this: 294 * 295 * skel int128 QH 296 * dev 1 interrupt QH 297 * dev 5 interrupt QH 298 * skel int64 QH 299 * skel int32 QH 300 * ... 301 * skel int1 + async QH 302 * dev 5 low-speed control QH 303 * dev 1 bulk QH 304 * dev 2 bulk QH 305 * 306 * There is a special terminating QH used to keep full-speed bandwidth 307 * reclamation active when no full-speed control or bulk QHs are linked 308 * into the schedule. It has an inactive TD (to work around a PIIX bug, 309 * see the Intel errata) and it points back to itself. 310 * 311 * There's a special skeleton QH for Isochronous QHs which never appears 312 * on the schedule. Isochronous TDs go on the schedule before the 313 * the skeleton QHs. The hardware accesses them directly rather than 314 * through their QH, which is used only for bookkeeping purposes. 315 * While the UHCI spec doesn't forbid the use of QHs for Isochronous, 316 * it doesn't use them either. And the spec says that queues never 317 * advance on an error completion status, which makes them totally 318 * unsuitable for Isochronous transfers. 319 * 320 * There's also a special skeleton QH used for QHs which are in the process 321 * of unlinking and so may still be in use by the hardware. It too never 322 * appears on the schedule. 323 */ 324 325 #define UHCI_NUM_SKELQH 11 326 #define SKEL_UNLINK 0 327 #define skel_unlink_qh skelqh[SKEL_UNLINK] 328 #define SKEL_ISO 1 329 #define skel_iso_qh skelqh[SKEL_ISO] 330 /* int128, int64, ..., int1 = 2, 3, ..., 9 */ 331 #define SKEL_INDEX(exponent) (9 - exponent) 332 #define SKEL_ASYNC 9 333 #define skel_async_qh skelqh[SKEL_ASYNC] 334 #define SKEL_TERM 10 335 #define skel_term_qh skelqh[SKEL_TERM] 336 337 /* The following entries refer to sublists of skel_async_qh */ 338 #define SKEL_LS_CONTROL 20 339 #define SKEL_FS_CONTROL 21 340 #define SKEL_FSBR SKEL_FS_CONTROL 341 #define SKEL_BULK 22 342 343 /* 344 * The UHCI controller and root hub 345 */ 346 347 /* 348 * States for the root hub: 349 * 350 * To prevent "bouncing" in the presence of electrical noise, 351 * when there are no devices attached we delay for 1 second in the 352 * RUNNING_NODEVS state before switching to the AUTO_STOPPED state. 353 * 354 * (Note that the AUTO_STOPPED state won't be necessary once the hub 355 * driver learns to autosuspend.) 356 */ 357 enum uhci_rh_state { 358 /* In the following states the HC must be halted. 359 * These two must come first. */ 360 UHCI_RH_RESET, 361 UHCI_RH_SUSPENDED, 362 363 UHCI_RH_AUTO_STOPPED, 364 UHCI_RH_RESUMING, 365 366 /* In this state the HC changes from running to halted, 367 * so it can legally appear either way. */ 368 UHCI_RH_SUSPENDING, 369 370 /* In the following states it's an error if the HC is halted. 371 * These two must come last. */ 372 UHCI_RH_RUNNING, /* The normal state */ 373 UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */ 374 }; 375 376 /* 377 * The full UHCI controller information: 378 */ 379 struct uhci_hcd { 380 381 /* debugfs */ 382 struct dentry *dentry; 383 384 /* Grabbed from PCI */ 385 unsigned long io_addr; 386 387 /* Used when registers are memory mapped */ 388 void __iomem *regs; 389 390 struct dma_pool *qh_pool; 391 struct dma_pool *td_pool; 392 393 struct uhci_td *term_td; /* Terminating TD, see UHCI bug */ 394 struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QHs */ 395 struct uhci_qh *next_qh; /* Next QH to scan */ 396 397 spinlock_t lock; 398 399 dma_addr_t frame_dma_handle; /* Hardware frame list */ 400 __hc32 *frame; 401 void **frame_cpu; /* CPU's frame list */ 402 403 enum uhci_rh_state rh_state; 404 unsigned long auto_stop_time; /* When to AUTO_STOP */ 405 406 unsigned int frame_number; /* As of last check */ 407 unsigned int is_stopped; 408 #define UHCI_IS_STOPPED 9999 /* Larger than a frame # */ 409 unsigned int last_iso_frame; /* Frame of last scan */ 410 unsigned int cur_iso_frame; /* Frame for current scan */ 411 412 unsigned int scan_in_progress:1; /* Schedule scan is running */ 413 unsigned int need_rescan:1; /* Redo the schedule scan */ 414 unsigned int dead:1; /* Controller has died */ 415 unsigned int RD_enable:1; /* Suspended root hub with 416 Resume-Detect interrupts 417 enabled */ 418 unsigned int is_initialized:1; /* Data structure is usable */ 419 unsigned int fsbr_is_on:1; /* FSBR is turned on */ 420 unsigned int fsbr_is_wanted:1; /* Does any URB want FSBR? */ 421 unsigned int fsbr_expiring:1; /* FSBR is timing out */ 422 423 struct timer_list fsbr_timer; /* For turning off FBSR */ 424 425 /* Silicon quirks */ 426 unsigned int oc_low:1; /* OverCurrent bit active low */ 427 unsigned int wait_for_hp:1; /* Wait for HP port reset */ 428 unsigned int big_endian_mmio:1; /* Big endian registers */ 429 unsigned int big_endian_desc:1; /* Big endian descriptors */ 430 431 /* Support for port suspend/resume/reset */ 432 unsigned long port_c_suspend; /* Bit-arrays of ports */ 433 unsigned long resuming_ports; 434 unsigned long ports_timeout; /* Time to stop signalling */ 435 436 struct list_head idle_qh_list; /* Where the idle QHs live */ 437 438 int rh_numports; /* Number of root-hub ports */ 439 440 wait_queue_head_t waitqh; /* endpoint_disable waiters */ 441 int num_waiting; /* Number of waiters */ 442 443 int total_load; /* Sum of array values */ 444 short load[MAX_PHASE]; /* Periodic allocations */ 445 446 /* Reset host controller */ 447 void (*reset_hc) (struct uhci_hcd *uhci); 448 int (*check_and_reset_hc) (struct uhci_hcd *uhci); 449 /* configure_hc should perform arch specific settings, if needed */ 450 void (*configure_hc) (struct uhci_hcd *uhci); 451 /* Check for broken resume detect interrupts */ 452 int (*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci); 453 /* Check for broken global suspend */ 454 int (*global_suspend_mode_is_broken) (struct uhci_hcd *uhci); 455 }; 456 457 /* Convert between a usb_hcd pointer and the corresponding uhci_hcd */ 458 static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd) 459 { 460 return (struct uhci_hcd *) (hcd->hcd_priv); 461 } 462 static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci) 463 { 464 return container_of((void *) uhci, struct usb_hcd, hcd_priv); 465 } 466 467 #define uhci_dev(u) (uhci_to_hcd(u)->self.controller) 468 469 /* Utility macro for comparing frame numbers */ 470 #define uhci_frame_before_eq(f1, f2) (0 <= (int) ((f2) - (f1))) 471 472 473 /* 474 * Private per-URB data 475 */ 476 struct urb_priv { 477 struct list_head node; /* Node in the QH's urbp list */ 478 479 struct urb *urb; 480 481 struct uhci_qh *qh; /* QH for this URB */ 482 struct list_head td_list; 483 484 unsigned fsbr:1; /* URB wants FSBR */ 485 }; 486 487 488 /* Some special IDs */ 489 490 #define PCI_VENDOR_ID_GENESYS 0x17a0 491 #define PCI_DEVICE_ID_GL880S_UHCI 0x8083 492 493 /* 494 * Functions used to access controller registers. The UCHI spec says that host 495 * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts 496 * we use memory mapped registers. 497 */ 498 499 #ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC 500 /* Support PCI only */ 501 static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg) 502 { 503 return inl(uhci->io_addr + reg); 504 } 505 506 static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg) 507 { 508 outl(val, uhci->io_addr + reg); 509 } 510 511 static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg) 512 { 513 return inw(uhci->io_addr + reg); 514 } 515 516 static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg) 517 { 518 outw(val, uhci->io_addr + reg); 519 } 520 521 static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg) 522 { 523 return inb(uhci->io_addr + reg); 524 } 525 526 static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg) 527 { 528 outb(val, uhci->io_addr + reg); 529 } 530 531 #else 532 /* Support non-PCI host controllers */ 533 #ifdef CONFIG_PCI 534 /* Support PCI and non-PCI host controllers */ 535 #define uhci_has_pci_registers(u) ((u)->io_addr != 0) 536 #else 537 /* Support non-PCI host controllers only */ 538 #define uhci_has_pci_registers(u) 0 539 #endif 540 541 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO 542 /* Support (non-PCI) big endian host controllers */ 543 #define uhci_big_endian_mmio(u) ((u)->big_endian_mmio) 544 #else 545 #define uhci_big_endian_mmio(u) 0 546 #endif 547 548 static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg) 549 { 550 if (uhci_has_pci_registers(uhci)) 551 return inl(uhci->io_addr + reg); 552 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO 553 else if (uhci_big_endian_mmio(uhci)) 554 return readl_be(uhci->regs + reg); 555 #endif 556 else 557 return readl(uhci->regs + reg); 558 } 559 560 static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg) 561 { 562 if (uhci_has_pci_registers(uhci)) 563 outl(val, uhci->io_addr + reg); 564 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO 565 else if (uhci_big_endian_mmio(uhci)) 566 writel_be(val, uhci->regs + reg); 567 #endif 568 else 569 writel(val, uhci->regs + reg); 570 } 571 572 static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg) 573 { 574 if (uhci_has_pci_registers(uhci)) 575 return inw(uhci->io_addr + reg); 576 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO 577 else if (uhci_big_endian_mmio(uhci)) 578 return readw_be(uhci->regs + reg); 579 #endif 580 else 581 return readw(uhci->regs + reg); 582 } 583 584 static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg) 585 { 586 if (uhci_has_pci_registers(uhci)) 587 outw(val, uhci->io_addr + reg); 588 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO 589 else if (uhci_big_endian_mmio(uhci)) 590 writew_be(val, uhci->regs + reg); 591 #endif 592 else 593 writew(val, uhci->regs + reg); 594 } 595 596 static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg) 597 { 598 if (uhci_has_pci_registers(uhci)) 599 return inb(uhci->io_addr + reg); 600 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO 601 else if (uhci_big_endian_mmio(uhci)) 602 return readb_be(uhci->regs + reg); 603 #endif 604 else 605 return readb(uhci->regs + reg); 606 } 607 608 static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg) 609 { 610 if (uhci_has_pci_registers(uhci)) 611 outb(val, uhci->io_addr + reg); 612 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO 613 else if (uhci_big_endian_mmio(uhci)) 614 writeb_be(val, uhci->regs + reg); 615 #endif 616 else 617 writeb(val, uhci->regs + reg); 618 } 619 #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */ 620 621 /* 622 * The GRLIB GRUSBHC controller can use big endian format for its descriptors. 623 * 624 * UHCI controllers accessed through PCI work normally (little-endian 625 * everywhere), so we don't bother supporting a BE-only mode. 626 */ 627 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC 628 #define uhci_big_endian_desc(u) ((u)->big_endian_desc) 629 630 /* cpu to uhci */ 631 static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x) 632 { 633 return uhci_big_endian_desc(uhci) 634 ? (__force __hc32)cpu_to_be32(x) 635 : (__force __hc32)cpu_to_le32(x); 636 } 637 638 /* uhci to cpu */ 639 static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x) 640 { 641 return uhci_big_endian_desc(uhci) 642 ? be32_to_cpu((__force __be32)x) 643 : le32_to_cpu((__force __le32)x); 644 } 645 646 #else 647 /* cpu to uhci */ 648 static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x) 649 { 650 return cpu_to_le32(x); 651 } 652 653 /* uhci to cpu */ 654 static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x) 655 { 656 return le32_to_cpu(x); 657 } 658 #endif 659 660 #endif 661