1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> 4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> 5 * 6 * This code is *strongly* based on EHCI-HCD code by David Brownell since 7 * the chip is a quasi-EHCI compatible. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/dmapool.h> 13 #include <linux/kernel.h> 14 #include <linux/delay.h> 15 #include <linux/ioport.h> 16 #include <linux/sched.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/timer.h> 20 #include <linux/list.h> 21 #include <linux/interrupt.h> 22 #include <linux/usb.h> 23 #include <linux/usb/hcd.h> 24 #include <linux/moduleparam.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/io.h> 27 28 #include <asm/irq.h> 29 #include <asm/unaligned.h> 30 31 #include <linux/irq.h> 32 #include <linux/platform_device.h> 33 34 #include "oxu210hp.h" 35 36 #define DRIVER_VERSION "0.0.50" 37 38 /* 39 * Main defines 40 */ 41 42 #define oxu_dbg(oxu, fmt, args...) \ 43 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 44 #define oxu_err(oxu, fmt, args...) \ 45 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 46 #define oxu_info(oxu, fmt, args...) \ 47 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 48 49 #ifdef CONFIG_DYNAMIC_DEBUG 50 #define DEBUG 51 #endif 52 53 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) 54 { 55 return container_of((void *) oxu, struct usb_hcd, hcd_priv); 56 } 57 58 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) 59 { 60 return (struct oxu_hcd *) (hcd->hcd_priv); 61 } 62 63 /* 64 * Debug stuff 65 */ 66 67 #undef OXU_URB_TRACE 68 #undef OXU_VERBOSE_DEBUG 69 70 #ifdef OXU_VERBOSE_DEBUG 71 #define oxu_vdbg oxu_dbg 72 #else 73 #define oxu_vdbg(oxu, fmt, args...) /* Nop */ 74 #endif 75 76 #ifdef DEBUG 77 78 static int __attribute__((__unused__)) 79 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 80 { 81 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 82 label, label[0] ? " " : "", status, 83 (status & STS_ASS) ? " Async" : "", 84 (status & STS_PSS) ? " Periodic" : "", 85 (status & STS_RECL) ? " Recl" : "", 86 (status & STS_HALT) ? " Halt" : "", 87 (status & STS_IAA) ? " IAA" : "", 88 (status & STS_FATAL) ? " FATAL" : "", 89 (status & STS_FLR) ? " FLR" : "", 90 (status & STS_PCD) ? " PCD" : "", 91 (status & STS_ERR) ? " ERR" : "", 92 (status & STS_INT) ? " INT" : "" 93 ); 94 } 95 96 static int __attribute__((__unused__)) 97 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 98 { 99 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 100 label, label[0] ? " " : "", enable, 101 (enable & STS_IAA) ? " IAA" : "", 102 (enable & STS_FATAL) ? " FATAL" : "", 103 (enable & STS_FLR) ? " FLR" : "", 104 (enable & STS_PCD) ? " PCD" : "", 105 (enable & STS_ERR) ? " ERR" : "", 106 (enable & STS_INT) ? " INT" : "" 107 ); 108 } 109 110 static const char *const fls_strings[] = 111 { "1024", "512", "256", "??" }; 112 113 static int dbg_command_buf(char *buf, unsigned len, 114 const char *label, u32 command) 115 { 116 return scnprintf(buf, len, 117 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", 118 label, label[0] ? " " : "", command, 119 (command & CMD_PARK) ? "park" : "(park)", 120 CMD_PARK_CNT(command), 121 (command >> 16) & 0x3f, 122 (command & CMD_LRESET) ? " LReset" : "", 123 (command & CMD_IAAD) ? " IAAD" : "", 124 (command & CMD_ASE) ? " Async" : "", 125 (command & CMD_PSE) ? " Periodic" : "", 126 fls_strings[(command >> 2) & 0x3], 127 (command & CMD_RESET) ? " Reset" : "", 128 (command & CMD_RUN) ? "RUN" : "HALT" 129 ); 130 } 131 132 static int dbg_port_buf(char *buf, unsigned len, const char *label, 133 int port, u32 status) 134 { 135 char *sig; 136 137 /* signaling state */ 138 switch (status & (3 << 10)) { 139 case 0 << 10: 140 sig = "se0"; 141 break; 142 case 1 << 10: 143 sig = "k"; /* low speed */ 144 break; 145 case 2 << 10: 146 sig = "j"; 147 break; 148 default: 149 sig = "?"; 150 break; 151 } 152 153 return scnprintf(buf, len, 154 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", 155 label, label[0] ? " " : "", port, status, 156 (status & PORT_POWER) ? " POWER" : "", 157 (status & PORT_OWNER) ? " OWNER" : "", 158 sig, 159 (status & PORT_RESET) ? " RESET" : "", 160 (status & PORT_SUSPEND) ? " SUSPEND" : "", 161 (status & PORT_RESUME) ? " RESUME" : "", 162 (status & PORT_OCC) ? " OCC" : "", 163 (status & PORT_OC) ? " OC" : "", 164 (status & PORT_PEC) ? " PEC" : "", 165 (status & PORT_PE) ? " PE" : "", 166 (status & PORT_CSC) ? " CSC" : "", 167 (status & PORT_CONNECT) ? " CONNECT" : "" 168 ); 169 } 170 171 #else 172 173 static inline int __attribute__((__unused__)) 174 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 175 { return 0; } 176 177 static inline int __attribute__((__unused__)) 178 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 179 { return 0; } 180 181 static inline int __attribute__((__unused__)) 182 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 183 { return 0; } 184 185 static inline int __attribute__((__unused__)) 186 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 187 { return 0; } 188 189 #endif /* DEBUG */ 190 191 /* functions have the "wrong" filename when they're output... */ 192 #define dbg_status(oxu, label, status) { \ 193 char _buf[80]; \ 194 dbg_status_buf(_buf, sizeof _buf, label, status); \ 195 oxu_dbg(oxu, "%s\n", _buf); \ 196 } 197 198 #define dbg_cmd(oxu, label, command) { \ 199 char _buf[80]; \ 200 dbg_command_buf(_buf, sizeof _buf, label, command); \ 201 oxu_dbg(oxu, "%s\n", _buf); \ 202 } 203 204 #define dbg_port(oxu, label, port, status) { \ 205 char _buf[80]; \ 206 dbg_port_buf(_buf, sizeof _buf, label, port, status); \ 207 oxu_dbg(oxu, "%s\n", _buf); \ 208 } 209 210 /* 211 * Module parameters 212 */ 213 214 /* Initial IRQ latency: faster than hw default */ 215 static int log2_irq_thresh; /* 0 to 6 */ 216 module_param(log2_irq_thresh, int, S_IRUGO); 217 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 218 219 /* Initial park setting: slower than hw default */ 220 static unsigned park; 221 module_param(park, uint, S_IRUGO); 222 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 223 224 /* For flakey hardware, ignore overcurrent indicators */ 225 static bool ignore_oc; 226 module_param(ignore_oc, bool, S_IRUGO); 227 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); 228 229 230 static void ehci_work(struct oxu_hcd *oxu); 231 static int oxu_hub_control(struct usb_hcd *hcd, 232 u16 typeReq, u16 wValue, u16 wIndex, 233 char *buf, u16 wLength); 234 235 /* 236 * Local functions 237 */ 238 239 /* Low level read/write registers functions */ 240 static inline u32 oxu_readl(void *base, u32 reg) 241 { 242 return readl(base + reg); 243 } 244 245 static inline void oxu_writel(void *base, u32 reg, u32 val) 246 { 247 writel(val, base + reg); 248 } 249 250 static inline void timer_action_done(struct oxu_hcd *oxu, 251 enum ehci_timer_action action) 252 { 253 clear_bit(action, &oxu->actions); 254 } 255 256 static inline void timer_action(struct oxu_hcd *oxu, 257 enum ehci_timer_action action) 258 { 259 if (!test_and_set_bit(action, &oxu->actions)) { 260 unsigned long t; 261 262 switch (action) { 263 case TIMER_IAA_WATCHDOG: 264 t = EHCI_IAA_JIFFIES; 265 break; 266 case TIMER_IO_WATCHDOG: 267 t = EHCI_IO_JIFFIES; 268 break; 269 case TIMER_ASYNC_OFF: 270 t = EHCI_ASYNC_JIFFIES; 271 break; 272 case TIMER_ASYNC_SHRINK: 273 default: 274 t = EHCI_SHRINK_JIFFIES; 275 break; 276 } 277 t += jiffies; 278 /* all timings except IAA watchdog can be overridden. 279 * async queue SHRINK often precedes IAA. while it's ready 280 * to go OFF neither can matter, and afterwards the IO 281 * watchdog stops unless there's still periodic traffic. 282 */ 283 if (action != TIMER_IAA_WATCHDOG 284 && t > oxu->watchdog.expires 285 && timer_pending(&oxu->watchdog)) 286 return; 287 mod_timer(&oxu->watchdog, t); 288 } 289 } 290 291 /* 292 * handshake - spin reading hc until handshake completes or fails 293 * @ptr: address of hc register to be read 294 * @mask: bits to look at in result of read 295 * @done: value of those bits when handshake succeeds 296 * @usec: timeout in microseconds 297 * 298 * Returns negative errno, or zero on success 299 * 300 * Success happens when the "mask" bits have the specified value (hardware 301 * handshake done). There are two failure modes: "usec" have passed (major 302 * hardware flakeout), or the register reads as all-ones (hardware removed). 303 * 304 * That last failure should_only happen in cases like physical cardbus eject 305 * before driver shutdown. But it also seems to be caused by bugs in cardbus 306 * bridge shutdown: shutting down the bridge before the devices using it. 307 */ 308 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, 309 u32 mask, u32 done, int usec) 310 { 311 u32 result; 312 313 do { 314 result = readl(ptr); 315 if (result == ~(u32)0) /* card removed */ 316 return -ENODEV; 317 result &= mask; 318 if (result == done) 319 return 0; 320 udelay(1); 321 usec--; 322 } while (usec > 0); 323 return -ETIMEDOUT; 324 } 325 326 /* Force HC to halt state from unknown (EHCI spec section 2.3) */ 327 static int ehci_halt(struct oxu_hcd *oxu) 328 { 329 u32 temp = readl(&oxu->regs->status); 330 331 /* disable any irqs left enabled by previous code */ 332 writel(0, &oxu->regs->intr_enable); 333 334 if ((temp & STS_HALT) != 0) 335 return 0; 336 337 temp = readl(&oxu->regs->command); 338 temp &= ~CMD_RUN; 339 writel(temp, &oxu->regs->command); 340 return handshake(oxu, &oxu->regs->status, 341 STS_HALT, STS_HALT, 16 * 125); 342 } 343 344 /* Put TDI/ARC silicon into EHCI mode */ 345 static void tdi_reset(struct oxu_hcd *oxu) 346 { 347 u32 __iomem *reg_ptr; 348 u32 tmp; 349 350 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); 351 tmp = readl(reg_ptr); 352 tmp |= 0x3; 353 writel(tmp, reg_ptr); 354 } 355 356 /* Reset a non-running (STS_HALT == 1) controller */ 357 static int ehci_reset(struct oxu_hcd *oxu) 358 { 359 int retval; 360 u32 command = readl(&oxu->regs->command); 361 362 command |= CMD_RESET; 363 dbg_cmd(oxu, "reset", command); 364 writel(command, &oxu->regs->command); 365 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 366 oxu->next_statechange = jiffies; 367 retval = handshake(oxu, &oxu->regs->command, 368 CMD_RESET, 0, 250 * 1000); 369 370 if (retval) 371 return retval; 372 373 tdi_reset(oxu); 374 375 return retval; 376 } 377 378 /* Idle the controller (from running) */ 379 static void ehci_quiesce(struct oxu_hcd *oxu) 380 { 381 u32 temp; 382 383 #ifdef DEBUG 384 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)); 385 #endif 386 387 /* wait for any schedule enables/disables to take effect */ 388 temp = readl(&oxu->regs->command) << 10; 389 temp &= STS_ASS | STS_PSS; 390 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 391 temp, 16 * 125) != 0) { 392 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 393 return; 394 } 395 396 /* then disable anything that's still active */ 397 temp = readl(&oxu->regs->command); 398 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); 399 writel(temp, &oxu->regs->command); 400 401 /* hardware can take 16 microframes to turn off ... */ 402 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 403 0, 16 * 125) != 0) { 404 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 405 return; 406 } 407 } 408 409 static int check_reset_complete(struct oxu_hcd *oxu, int index, 410 u32 __iomem *status_reg, int port_status) 411 { 412 if (!(port_status & PORT_CONNECT)) { 413 oxu->reset_done[index] = 0; 414 return port_status; 415 } 416 417 /* if reset finished and it's still not enabled -- handoff */ 418 if (!(port_status & PORT_PE)) { 419 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", 420 index+1); 421 return port_status; 422 } else 423 oxu_dbg(oxu, "port %d high speed\n", index + 1); 424 425 return port_status; 426 } 427 428 static void ehci_hub_descriptor(struct oxu_hcd *oxu, 429 struct usb_hub_descriptor *desc) 430 { 431 int ports = HCS_N_PORTS(oxu->hcs_params); 432 u16 temp; 433 434 desc->bDescriptorType = USB_DT_HUB; 435 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ 436 desc->bHubContrCurrent = 0; 437 438 desc->bNbrPorts = ports; 439 temp = 1 + (ports / 8); 440 desc->bDescLength = 7 + 2 * temp; 441 442 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 443 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 444 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 445 446 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 447 if (HCS_PPC(oxu->hcs_params)) 448 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */ 449 else 450 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 451 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); 452 } 453 454 455 /* Allocate an OXU210HP on-chip memory data buffer 456 * 457 * An on-chip memory data buffer is required for each OXU210HP USB transfer. 458 * Each transfer descriptor has one or more on-chip memory data buffers. 459 * 460 * Data buffers are allocated from a fix sized pool of data blocks. 461 * To minimise fragmentation and give reasonable memory utlisation, 462 * data buffers are allocated with sizes the power of 2 multiples of 463 * the block size, starting on an address a multiple of the allocated size. 464 * 465 * FIXME: callers of this function require a buffer to be allocated for 466 * len=0. This is a waste of on-chip memory and should be fix. Then this 467 * function should be changed to not allocate a buffer for len=0. 468 */ 469 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) 470 { 471 int n_blocks; /* minium blocks needed to hold len */ 472 int a_blocks; /* blocks allocated */ 473 int i, j; 474 475 /* Don't allocte bigger than supported */ 476 if (len > BUFFER_SIZE * BUFFER_NUM) { 477 oxu_err(oxu, "buffer too big (%d)\n", len); 478 return -ENOMEM; 479 } 480 481 spin_lock(&oxu->mem_lock); 482 483 /* Number of blocks needed to hold len */ 484 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; 485 486 /* Round the number of blocks up to the power of 2 */ 487 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) 488 ; 489 490 /* Find a suitable available data buffer */ 491 for (i = 0; i < BUFFER_NUM; 492 i += max(a_blocks, (int)oxu->db_used[i])) { 493 494 /* Check all the required blocks are available */ 495 for (j = 0; j < a_blocks; j++) 496 if (oxu->db_used[i + j]) 497 break; 498 499 if (j != a_blocks) 500 continue; 501 502 /* Allocate blocks found! */ 503 qtd->buffer = (void *) &oxu->mem->db_pool[i]; 504 qtd->buffer_dma = virt_to_phys(qtd->buffer); 505 506 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; 507 oxu->db_used[i] = a_blocks; 508 509 spin_unlock(&oxu->mem_lock); 510 511 return 0; 512 } 513 514 /* Failed */ 515 516 spin_unlock(&oxu->mem_lock); 517 518 return -ENOMEM; 519 } 520 521 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 522 { 523 int index; 524 525 spin_lock(&oxu->mem_lock); 526 527 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) 528 / BUFFER_SIZE; 529 oxu->db_used[index] = 0; 530 qtd->qtd_buffer_len = 0; 531 qtd->buffer_dma = 0; 532 qtd->buffer = NULL; 533 534 spin_unlock(&oxu->mem_lock); 535 } 536 537 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) 538 { 539 memset(qtd, 0, sizeof *qtd); 540 qtd->qtd_dma = dma; 541 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 542 qtd->hw_next = EHCI_LIST_END; 543 qtd->hw_alt_next = EHCI_LIST_END; 544 INIT_LIST_HEAD(&qtd->qtd_list); 545 } 546 547 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 548 { 549 int index; 550 551 if (qtd->buffer) 552 oxu_buf_free(oxu, qtd); 553 554 spin_lock(&oxu->mem_lock); 555 556 index = qtd - &oxu->mem->qtd_pool[0]; 557 oxu->qtd_used[index] = 0; 558 559 spin_unlock(&oxu->mem_lock); 560 } 561 562 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) 563 { 564 int i; 565 struct ehci_qtd *qtd = NULL; 566 567 spin_lock(&oxu->mem_lock); 568 569 for (i = 0; i < QTD_NUM; i++) 570 if (!oxu->qtd_used[i]) 571 break; 572 573 if (i < QTD_NUM) { 574 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; 575 memset(qtd, 0, sizeof *qtd); 576 577 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 578 qtd->hw_next = EHCI_LIST_END; 579 qtd->hw_alt_next = EHCI_LIST_END; 580 INIT_LIST_HEAD(&qtd->qtd_list); 581 582 qtd->qtd_dma = virt_to_phys(qtd); 583 584 oxu->qtd_used[i] = 1; 585 } 586 587 spin_unlock(&oxu->mem_lock); 588 589 return qtd; 590 } 591 592 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) 593 { 594 int index; 595 596 spin_lock(&oxu->mem_lock); 597 598 index = qh - &oxu->mem->qh_pool[0]; 599 oxu->qh_used[index] = 0; 600 601 spin_unlock(&oxu->mem_lock); 602 } 603 604 static void qh_destroy(struct kref *kref) 605 { 606 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); 607 struct oxu_hcd *oxu = qh->oxu; 608 609 /* clean qtds first, and know this is not linked */ 610 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 611 oxu_dbg(oxu, "unused qh not empty!\n"); 612 BUG(); 613 } 614 if (qh->dummy) 615 oxu_qtd_free(oxu, qh->dummy); 616 oxu_qh_free(oxu, qh); 617 } 618 619 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) 620 { 621 int i; 622 struct ehci_qh *qh = NULL; 623 624 spin_lock(&oxu->mem_lock); 625 626 for (i = 0; i < QHEAD_NUM; i++) 627 if (!oxu->qh_used[i]) 628 break; 629 630 if (i < QHEAD_NUM) { 631 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; 632 memset(qh, 0, sizeof *qh); 633 634 kref_init(&qh->kref); 635 qh->oxu = oxu; 636 qh->qh_dma = virt_to_phys(qh); 637 INIT_LIST_HEAD(&qh->qtd_list); 638 639 /* dummy td enables safe urb queuing */ 640 qh->dummy = ehci_qtd_alloc(oxu); 641 if (qh->dummy == NULL) { 642 oxu_dbg(oxu, "no dummy td\n"); 643 oxu->qh_used[i] = 0; 644 qh = NULL; 645 goto unlock; 646 } 647 648 oxu->qh_used[i] = 1; 649 } 650 unlock: 651 spin_unlock(&oxu->mem_lock); 652 653 return qh; 654 } 655 656 /* to share a qh (cpu threads, or hc) */ 657 static inline struct ehci_qh *qh_get(struct ehci_qh *qh) 658 { 659 kref_get(&qh->kref); 660 return qh; 661 } 662 663 static inline void qh_put(struct ehci_qh *qh) 664 { 665 kref_put(&qh->kref, qh_destroy); 666 } 667 668 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) 669 { 670 int index; 671 672 spin_lock(&oxu->mem_lock); 673 674 index = murb - &oxu->murb_pool[0]; 675 oxu->murb_used[index] = 0; 676 677 spin_unlock(&oxu->mem_lock); 678 } 679 680 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) 681 682 { 683 int i; 684 struct oxu_murb *murb = NULL; 685 686 spin_lock(&oxu->mem_lock); 687 688 for (i = 0; i < MURB_NUM; i++) 689 if (!oxu->murb_used[i]) 690 break; 691 692 if (i < MURB_NUM) { 693 murb = &(oxu->murb_pool)[i]; 694 695 oxu->murb_used[i] = 1; 696 } 697 698 spin_unlock(&oxu->mem_lock); 699 700 return murb; 701 } 702 703 /* The queue heads and transfer descriptors are managed from pools tied 704 * to each of the "per device" structures. 705 * This is the initialisation and cleanup code. 706 */ 707 static void ehci_mem_cleanup(struct oxu_hcd *oxu) 708 { 709 kfree(oxu->murb_pool); 710 oxu->murb_pool = NULL; 711 712 if (oxu->async) 713 qh_put(oxu->async); 714 oxu->async = NULL; 715 716 del_timer(&oxu->urb_timer); 717 718 oxu->periodic = NULL; 719 720 /* shadow periodic table */ 721 kfree(oxu->pshadow); 722 oxu->pshadow = NULL; 723 } 724 725 /* Remember to add cleanup code (above) if you add anything here. 726 */ 727 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) 728 { 729 int i; 730 731 for (i = 0; i < oxu->periodic_size; i++) 732 oxu->mem->frame_list[i] = EHCI_LIST_END; 733 for (i = 0; i < QHEAD_NUM; i++) 734 oxu->qh_used[i] = 0; 735 for (i = 0; i < QTD_NUM; i++) 736 oxu->qtd_used[i] = 0; 737 738 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); 739 if (!oxu->murb_pool) 740 goto fail; 741 742 for (i = 0; i < MURB_NUM; i++) 743 oxu->murb_used[i] = 0; 744 745 oxu->async = oxu_qh_alloc(oxu); 746 if (!oxu->async) 747 goto fail; 748 749 oxu->periodic = (__le32 *) &oxu->mem->frame_list; 750 oxu->periodic_dma = virt_to_phys(oxu->periodic); 751 752 for (i = 0; i < oxu->periodic_size; i++) 753 oxu->periodic[i] = EHCI_LIST_END; 754 755 /* software shadow of hardware table */ 756 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); 757 if (oxu->pshadow != NULL) 758 return 0; 759 760 fail: 761 oxu_dbg(oxu, "couldn't init memory\n"); 762 ehci_mem_cleanup(oxu); 763 return -ENOMEM; 764 } 765 766 /* Fill a qtd, returning how much of the buffer we were able to queue up. 767 */ 768 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, 769 int token, int maxpacket) 770 { 771 int i, count; 772 u64 addr = buf; 773 774 /* one buffer entry per 4K ... first might be short or unaligned */ 775 qtd->hw_buf[0] = cpu_to_le32((u32)addr); 776 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); 777 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 778 if (likely(len < count)) /* ... iff needed */ 779 count = len; 780 else { 781 buf += 0x1000; 782 buf &= ~0x0fff; 783 784 /* per-qtd limit: from 16K to 20K (best alignment) */ 785 for (i = 1; count < len && i < 5; i++) { 786 addr = buf; 787 qtd->hw_buf[i] = cpu_to_le32((u32)addr); 788 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); 789 buf += 0x1000; 790 if ((count + 0x1000) < len) 791 count += 0x1000; 792 else 793 count = len; 794 } 795 796 /* short packets may only terminate transfers */ 797 if (count != len) 798 count -= (count % maxpacket); 799 } 800 qtd->hw_token = cpu_to_le32((count << 16) | token); 801 qtd->length = count; 802 803 return count; 804 } 805 806 static inline void qh_update(struct oxu_hcd *oxu, 807 struct ehci_qh *qh, struct ehci_qtd *qtd) 808 { 809 /* writes to an active overlay are unsafe */ 810 BUG_ON(qh->qh_state != QH_STATE_IDLE); 811 812 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); 813 qh->hw_alt_next = EHCI_LIST_END; 814 815 /* Except for control endpoints, we make hardware maintain data 816 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 817 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 818 * ever clear it. 819 */ 820 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { 821 unsigned is_out, epnum; 822 823 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); 824 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; 825 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 826 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); 827 usb_settoggle(qh->dev, epnum, is_out, 1); 828 } 829 } 830 831 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 832 wmb(); 833 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); 834 } 835 836 /* If it weren't for a common silicon quirk (writing the dummy into the qh 837 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 838 * recovery (including urb dequeue) would need software changes to a QH... 839 */ 840 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) 841 { 842 struct ehci_qtd *qtd; 843 844 if (list_empty(&qh->qtd_list)) 845 qtd = qh->dummy; 846 else { 847 qtd = list_entry(qh->qtd_list.next, 848 struct ehci_qtd, qtd_list); 849 /* first qtd may already be partially processed */ 850 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) 851 qtd = NULL; 852 } 853 854 if (qtd) 855 qh_update(oxu, qh, qtd); 856 } 857 858 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, 859 size_t length, u32 token) 860 { 861 /* count IN/OUT bytes, not SETUP (even short packets) */ 862 if (likely(QTD_PID(token) != 2)) 863 urb->actual_length += length - QTD_LENGTH(token); 864 865 /* don't modify error codes */ 866 if (unlikely(urb->status != -EINPROGRESS)) 867 return; 868 869 /* force cleanup after short read; not always an error */ 870 if (unlikely(IS_SHORT_READ(token))) 871 urb->status = -EREMOTEIO; 872 873 /* serious "can't proceed" faults reported by the hardware */ 874 if (token & QTD_STS_HALT) { 875 if (token & QTD_STS_BABBLE) { 876 /* FIXME "must" disable babbling device's port too */ 877 urb->status = -EOVERFLOW; 878 } else if (token & QTD_STS_MMF) { 879 /* fs/ls interrupt xfer missed the complete-split */ 880 urb->status = -EPROTO; 881 } else if (token & QTD_STS_DBE) { 882 urb->status = (QTD_PID(token) == 1) /* IN ? */ 883 ? -ENOSR /* hc couldn't read data */ 884 : -ECOMM; /* hc couldn't write data */ 885 } else if (token & QTD_STS_XACT) { 886 /* timeout, bad crc, wrong PID, etc; retried */ 887 if (QTD_CERR(token)) 888 urb->status = -EPIPE; 889 else { 890 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", 891 urb->dev->devpath, 892 usb_pipeendpoint(urb->pipe), 893 usb_pipein(urb->pipe) ? "in" : "out"); 894 urb->status = -EPROTO; 895 } 896 /* CERR nonzero + no errors + halt --> stall */ 897 } else if (QTD_CERR(token)) 898 urb->status = -EPIPE; 899 else /* unknown */ 900 urb->status = -EPROTO; 901 902 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", 903 usb_pipedevice(urb->pipe), 904 usb_pipeendpoint(urb->pipe), 905 usb_pipein(urb->pipe) ? "in" : "out", 906 token, urb->status); 907 } 908 } 909 910 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) 911 __releases(oxu->lock) 912 __acquires(oxu->lock) 913 { 914 if (likely(urb->hcpriv != NULL)) { 915 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 916 917 /* S-mask in a QH means it's an interrupt urb */ 918 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { 919 920 /* ... update hc-wide periodic stats (for usbfs) */ 921 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; 922 } 923 qh_put(qh); 924 } 925 926 urb->hcpriv = NULL; 927 switch (urb->status) { 928 case -EINPROGRESS: /* success */ 929 urb->status = 0; 930 default: /* fault */ 931 break; 932 case -EREMOTEIO: /* fault or normal */ 933 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 934 urb->status = 0; 935 break; 936 case -ECONNRESET: /* canceled */ 937 case -ENOENT: 938 break; 939 } 940 941 #ifdef OXU_URB_TRACE 942 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", 943 __func__, urb->dev->devpath, urb, 944 usb_pipeendpoint(urb->pipe), 945 usb_pipein(urb->pipe) ? "in" : "out", 946 urb->status, 947 urb->actual_length, urb->transfer_buffer_length); 948 #endif 949 950 /* complete() can reenter this HCD */ 951 spin_unlock(&oxu->lock); 952 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); 953 spin_lock(&oxu->lock); 954 } 955 956 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 957 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 958 959 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 960 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 961 962 #define HALT_BIT cpu_to_le32(QTD_STS_HALT) 963 964 /* Process and free completed qtds for a qh, returning URBs to drivers. 965 * Chases up to qh->hw_current. Returns number of completions called, 966 * indicating how much "real" work we did. 967 */ 968 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) 969 { 970 struct ehci_qtd *last = NULL, *end = qh->dummy; 971 struct ehci_qtd *qtd, *tmp; 972 int stopped; 973 unsigned count = 0; 974 int do_status = 0; 975 u8 state; 976 struct oxu_murb *murb = NULL; 977 978 if (unlikely(list_empty(&qh->qtd_list))) 979 return count; 980 981 /* completions (or tasks on other cpus) must never clobber HALT 982 * till we've gone through and cleaned everything up, even when 983 * they add urbs to this qh's queue or mark them for unlinking. 984 * 985 * NOTE: unlinking expects to be done in queue order. 986 */ 987 state = qh->qh_state; 988 qh->qh_state = QH_STATE_COMPLETING; 989 stopped = (state == QH_STATE_IDLE); 990 991 /* remove de-activated QTDs from front of queue. 992 * after faults (including short reads), cleanup this urb 993 * then let the queue advance. 994 * if queue is stopped, handles unlinks. 995 */ 996 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 997 struct urb *urb; 998 u32 token = 0; 999 1000 urb = qtd->urb; 1001 1002 /* Clean up any state from previous QTD ...*/ 1003 if (last) { 1004 if (likely(last->urb != urb)) { 1005 if (last->urb->complete == NULL) { 1006 murb = (struct oxu_murb *) last->urb; 1007 last->urb = murb->main; 1008 if (murb->last) { 1009 ehci_urb_done(oxu, last->urb); 1010 count++; 1011 } 1012 oxu_murb_free(oxu, murb); 1013 } else { 1014 ehci_urb_done(oxu, last->urb); 1015 count++; 1016 } 1017 } 1018 oxu_qtd_free(oxu, last); 1019 last = NULL; 1020 } 1021 1022 /* ignore urbs submitted during completions we reported */ 1023 if (qtd == end) 1024 break; 1025 1026 /* hardware copies qtd out of qh overlay */ 1027 rmb(); 1028 token = le32_to_cpu(qtd->hw_token); 1029 1030 /* always clean up qtds the hc de-activated */ 1031 if ((token & QTD_STS_ACTIVE) == 0) { 1032 1033 if ((token & QTD_STS_HALT) != 0) { 1034 stopped = 1; 1035 1036 /* magic dummy for some short reads; qh won't advance. 1037 * that silicon quirk can kick in with this dummy too. 1038 */ 1039 } else if (IS_SHORT_READ(token) && 1040 !(qtd->hw_alt_next & EHCI_LIST_END)) { 1041 stopped = 1; 1042 goto halt; 1043 } 1044 1045 /* stop scanning when we reach qtds the hc is using */ 1046 } else if (likely(!stopped && 1047 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { 1048 break; 1049 1050 } else { 1051 stopped = 1; 1052 1053 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) 1054 urb->status = -ESHUTDOWN; 1055 1056 /* ignore active urbs unless some previous qtd 1057 * for the urb faulted (including short read) or 1058 * its urb was canceled. we may patch qh or qtds. 1059 */ 1060 if (likely(urb->status == -EINPROGRESS)) 1061 continue; 1062 1063 /* issue status after short control reads */ 1064 if (unlikely(do_status != 0) 1065 && QTD_PID(token) == 0 /* OUT */) { 1066 do_status = 0; 1067 continue; 1068 } 1069 1070 /* token in overlay may be most current */ 1071 if (state == QH_STATE_IDLE 1072 && cpu_to_le32(qtd->qtd_dma) 1073 == qh->hw_current) 1074 token = le32_to_cpu(qh->hw_token); 1075 1076 /* force halt for unlinked or blocked qh, so we'll 1077 * patch the qh later and so that completions can't 1078 * activate it while we "know" it's stopped. 1079 */ 1080 if ((HALT_BIT & qh->hw_token) == 0) { 1081 halt: 1082 qh->hw_token |= HALT_BIT; 1083 wmb(); 1084 } 1085 } 1086 1087 /* Remove it from the queue */ 1088 qtd_copy_status(oxu, urb->complete ? 1089 urb : ((struct oxu_murb *) urb)->main, 1090 qtd->length, token); 1091 if ((usb_pipein(qtd->urb->pipe)) && 1092 (NULL != qtd->transfer_buffer)) 1093 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); 1094 do_status = (urb->status == -EREMOTEIO) 1095 && usb_pipecontrol(urb->pipe); 1096 1097 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 1098 last = list_entry(qtd->qtd_list.prev, 1099 struct ehci_qtd, qtd_list); 1100 last->hw_next = qtd->hw_next; 1101 } 1102 list_del(&qtd->qtd_list); 1103 last = qtd; 1104 } 1105 1106 /* last urb's completion might still need calling */ 1107 if (likely(last != NULL)) { 1108 if (last->urb->complete == NULL) { 1109 murb = (struct oxu_murb *) last->urb; 1110 last->urb = murb->main; 1111 if (murb->last) { 1112 ehci_urb_done(oxu, last->urb); 1113 count++; 1114 } 1115 oxu_murb_free(oxu, murb); 1116 } else { 1117 ehci_urb_done(oxu, last->urb); 1118 count++; 1119 } 1120 oxu_qtd_free(oxu, last); 1121 } 1122 1123 /* restore original state; caller must unlink or relink */ 1124 qh->qh_state = state; 1125 1126 /* be sure the hardware's done with the qh before refreshing 1127 * it after fault cleanup, or recovering from silicon wrongly 1128 * overlaying the dummy qtd (which reduces DMA chatter). 1129 */ 1130 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { 1131 switch (state) { 1132 case QH_STATE_IDLE: 1133 qh_refresh(oxu, qh); 1134 break; 1135 case QH_STATE_LINKED: 1136 /* should be rare for periodic transfers, 1137 * except maybe high bandwidth ... 1138 */ 1139 if ((cpu_to_le32(QH_SMASK) 1140 & qh->hw_info2) != 0) { 1141 intr_deschedule(oxu, qh); 1142 (void) qh_schedule(oxu, qh); 1143 } else 1144 unlink_async(oxu, qh); 1145 break; 1146 /* otherwise, unlink already started */ 1147 } 1148 } 1149 1150 return count; 1151 } 1152 1153 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 1154 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 1155 /* ... and packet size, for any kind of endpoint descriptor */ 1156 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 1157 1158 /* Reverse of qh_urb_transaction: free a list of TDs. 1159 * used for cleanup after errors, before HC sees an URB's TDs. 1160 */ 1161 static void qtd_list_free(struct oxu_hcd *oxu, 1162 struct urb *urb, struct list_head *head) 1163 { 1164 struct ehci_qtd *qtd, *temp; 1165 1166 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 1167 list_del(&qtd->qtd_list); 1168 oxu_qtd_free(oxu, qtd); 1169 } 1170 } 1171 1172 /* Create a list of filled qtds for this URB; won't link into qh. 1173 */ 1174 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, 1175 struct urb *urb, 1176 struct list_head *head, 1177 gfp_t flags) 1178 { 1179 struct ehci_qtd *qtd, *qtd_prev; 1180 dma_addr_t buf; 1181 int len, maxpacket; 1182 int is_input; 1183 u32 token; 1184 void *transfer_buf = NULL; 1185 int ret; 1186 1187 /* 1188 * URBs map to sequences of QTDs: one logical transaction 1189 */ 1190 qtd = ehci_qtd_alloc(oxu); 1191 if (unlikely(!qtd)) 1192 return NULL; 1193 list_add_tail(&qtd->qtd_list, head); 1194 qtd->urb = urb; 1195 1196 token = QTD_STS_ACTIVE; 1197 token |= (EHCI_TUNE_CERR << 10); 1198 /* for split transactions, SplitXState initialized to zero */ 1199 1200 len = urb->transfer_buffer_length; 1201 is_input = usb_pipein(urb->pipe); 1202 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) 1203 urb->transfer_buffer = phys_to_virt(urb->transfer_dma); 1204 1205 if (usb_pipecontrol(urb->pipe)) { 1206 /* SETUP pid */ 1207 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); 1208 if (ret) 1209 goto cleanup; 1210 1211 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), 1212 token | (2 /* "setup" */ << 8), 8); 1213 memcpy(qtd->buffer, qtd->urb->setup_packet, 1214 sizeof(struct usb_ctrlrequest)); 1215 1216 /* ... and always at least one more pid */ 1217 token ^= QTD_TOGGLE; 1218 qtd_prev = qtd; 1219 qtd = ehci_qtd_alloc(oxu); 1220 if (unlikely(!qtd)) 1221 goto cleanup; 1222 qtd->urb = urb; 1223 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1224 list_add_tail(&qtd->qtd_list, head); 1225 1226 /* for zero length DATA stages, STATUS is always IN */ 1227 if (len == 0) 1228 token |= (1 /* "in" */ << 8); 1229 } 1230 1231 /* 1232 * Data transfer stage: buffer setup 1233 */ 1234 1235 ret = oxu_buf_alloc(oxu, qtd, len); 1236 if (ret) 1237 goto cleanup; 1238 1239 buf = qtd->buffer_dma; 1240 transfer_buf = urb->transfer_buffer; 1241 1242 if (!is_input) 1243 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); 1244 1245 if (is_input) 1246 token |= (1 /* "in" */ << 8); 1247 /* else it's already initted to "out" pid (0 << 8) */ 1248 1249 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 1250 1251 /* 1252 * buffer gets wrapped in one or more qtds; 1253 * last one may be "short" (including zero len) 1254 * and may serve as a control status ack 1255 */ 1256 for (;;) { 1257 int this_qtd_len; 1258 1259 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); 1260 qtd->transfer_buffer = transfer_buf; 1261 len -= this_qtd_len; 1262 buf += this_qtd_len; 1263 transfer_buf += this_qtd_len; 1264 if (is_input) 1265 qtd->hw_alt_next = oxu->async->hw_alt_next; 1266 1267 /* qh makes control packets use qtd toggle; maybe switch it */ 1268 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 1269 token ^= QTD_TOGGLE; 1270 1271 if (likely(len <= 0)) 1272 break; 1273 1274 qtd_prev = qtd; 1275 qtd = ehci_qtd_alloc(oxu); 1276 if (unlikely(!qtd)) 1277 goto cleanup; 1278 if (likely(len > 0)) { 1279 ret = oxu_buf_alloc(oxu, qtd, len); 1280 if (ret) 1281 goto cleanup; 1282 } 1283 qtd->urb = urb; 1284 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1285 list_add_tail(&qtd->qtd_list, head); 1286 } 1287 1288 /* unless the bulk/interrupt caller wants a chance to clean 1289 * up after short reads, hc should advance qh past this urb 1290 */ 1291 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 1292 || usb_pipecontrol(urb->pipe))) 1293 qtd->hw_alt_next = EHCI_LIST_END; 1294 1295 /* 1296 * control requests may need a terminating data "status" ack; 1297 * bulk ones may need a terminating short packet (zero length). 1298 */ 1299 if (likely(urb->transfer_buffer_length != 0)) { 1300 int one_more = 0; 1301 1302 if (usb_pipecontrol(urb->pipe)) { 1303 one_more = 1; 1304 token ^= 0x0100; /* "in" <--> "out" */ 1305 token |= QTD_TOGGLE; /* force DATA1 */ 1306 } else if (usb_pipebulk(urb->pipe) 1307 && (urb->transfer_flags & URB_ZERO_PACKET) 1308 && !(urb->transfer_buffer_length % maxpacket)) { 1309 one_more = 1; 1310 } 1311 if (one_more) { 1312 qtd_prev = qtd; 1313 qtd = ehci_qtd_alloc(oxu); 1314 if (unlikely(!qtd)) 1315 goto cleanup; 1316 qtd->urb = urb; 1317 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1318 list_add_tail(&qtd->qtd_list, head); 1319 1320 /* never any data in such packets */ 1321 qtd_fill(qtd, 0, 0, token, 0); 1322 } 1323 } 1324 1325 /* by default, enable interrupt on urb completion */ 1326 qtd->hw_token |= cpu_to_le32(QTD_IOC); 1327 return head; 1328 1329 cleanup: 1330 qtd_list_free(oxu, urb, head); 1331 return NULL; 1332 } 1333 1334 /* Each QH holds a qtd list; a QH is used for everything except iso. 1335 * 1336 * For interrupt urbs, the scheduler must set the microframe scheduling 1337 * mask(s) each time the QH gets scheduled. For highspeed, that's 1338 * just one microframe in the s-mask. For split interrupt transactions 1339 * there are additional complications: c-mask, maybe FSTNs. 1340 */ 1341 static struct ehci_qh *qh_make(struct oxu_hcd *oxu, 1342 struct urb *urb, gfp_t flags) 1343 { 1344 struct ehci_qh *qh = oxu_qh_alloc(oxu); 1345 u32 info1 = 0, info2 = 0; 1346 int is_input, type; 1347 int maxp = 0; 1348 1349 if (!qh) 1350 return qh; 1351 1352 /* 1353 * init endpoint/device data for this QH 1354 */ 1355 info1 |= usb_pipeendpoint(urb->pipe) << 8; 1356 info1 |= usb_pipedevice(urb->pipe) << 0; 1357 1358 is_input = usb_pipein(urb->pipe); 1359 type = usb_pipetype(urb->pipe); 1360 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); 1361 1362 /* Compute interrupt scheduling parameters just once, and save. 1363 * - allowing for high bandwidth, how many nsec/uframe are used? 1364 * - split transactions need a second CSPLIT uframe; same question 1365 * - splits also need a schedule gap (for full/low speed I/O) 1366 * - qh has a polling interval 1367 * 1368 * For control/bulk requests, the HC or TT handles these. 1369 */ 1370 if (type == PIPE_INTERRUPT) { 1371 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 1372 is_input, 0, 1373 hb_mult(maxp) * max_packet(maxp))); 1374 qh->start = NO_FRAME; 1375 1376 if (urb->dev->speed == USB_SPEED_HIGH) { 1377 qh->c_usecs = 0; 1378 qh->gap_uf = 0; 1379 1380 qh->period = urb->interval >> 3; 1381 if (qh->period == 0 && urb->interval != 1) { 1382 /* NOTE interval 2 or 4 uframes could work. 1383 * But interval 1 scheduling is simpler, and 1384 * includes high bandwidth. 1385 */ 1386 oxu_dbg(oxu, "intr period %d uframes, NYET!\n", 1387 urb->interval); 1388 goto done; 1389 } 1390 } else { 1391 struct usb_tt *tt = urb->dev->tt; 1392 int think_time; 1393 1394 /* gap is f(FS/LS transfer times) */ 1395 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 1396 is_input, 0, maxp) / (125 * 1000); 1397 1398 /* FIXME this just approximates SPLIT/CSPLIT times */ 1399 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 1400 qh->c_usecs = qh->usecs + HS_USECS(0); 1401 qh->usecs = HS_USECS(1); 1402 } else { /* SPLIT+DATA, gap, CSPLIT */ 1403 qh->usecs += HS_USECS(1); 1404 qh->c_usecs = HS_USECS(0); 1405 } 1406 1407 think_time = tt ? tt->think_time : 0; 1408 qh->tt_usecs = NS_TO_US(think_time + 1409 usb_calc_bus_time(urb->dev->speed, 1410 is_input, 0, max_packet(maxp))); 1411 qh->period = urb->interval; 1412 } 1413 } 1414 1415 /* support for tt scheduling, and access to toggles */ 1416 qh->dev = urb->dev; 1417 1418 /* using TT? */ 1419 switch (urb->dev->speed) { 1420 case USB_SPEED_LOW: 1421 info1 |= (1 << 12); /* EPS "low" */ 1422 /* FALL THROUGH */ 1423 1424 case USB_SPEED_FULL: 1425 /* EPS 0 means "full" */ 1426 if (type != PIPE_INTERRUPT) 1427 info1 |= (EHCI_TUNE_RL_TT << 28); 1428 if (type == PIPE_CONTROL) { 1429 info1 |= (1 << 27); /* for TT */ 1430 info1 |= 1 << 14; /* toggle from qtd */ 1431 } 1432 info1 |= maxp << 16; 1433 1434 info2 |= (EHCI_TUNE_MULT_TT << 30); 1435 info2 |= urb->dev->ttport << 23; 1436 1437 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 1438 1439 break; 1440 1441 case USB_SPEED_HIGH: /* no TT involved */ 1442 info1 |= (2 << 12); /* EPS "high" */ 1443 if (type == PIPE_CONTROL) { 1444 info1 |= (EHCI_TUNE_RL_HS << 28); 1445 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 1446 info1 |= 1 << 14; /* toggle from qtd */ 1447 info2 |= (EHCI_TUNE_MULT_HS << 30); 1448 } else if (type == PIPE_BULK) { 1449 info1 |= (EHCI_TUNE_RL_HS << 28); 1450 info1 |= 512 << 16; /* usb2 fixed maxpacket */ 1451 info2 |= (EHCI_TUNE_MULT_HS << 30); 1452 } else { /* PIPE_INTERRUPT */ 1453 info1 |= max_packet(maxp) << 16; 1454 info2 |= hb_mult(maxp) << 30; 1455 } 1456 break; 1457 default: 1458 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); 1459 done: 1460 qh_put(qh); 1461 return NULL; 1462 } 1463 1464 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 1465 1466 /* init as live, toggle clear, advance to dummy */ 1467 qh->qh_state = QH_STATE_IDLE; 1468 qh->hw_info1 = cpu_to_le32(info1); 1469 qh->hw_info2 = cpu_to_le32(info2); 1470 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 1471 qh_refresh(oxu, qh); 1472 return qh; 1473 } 1474 1475 /* Move qh (and its qtds) onto async queue; maybe enable queue. 1476 */ 1477 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1478 { 1479 __le32 dma = QH_NEXT(qh->qh_dma); 1480 struct ehci_qh *head; 1481 1482 /* (re)start the async schedule? */ 1483 head = oxu->async; 1484 timer_action_done(oxu, TIMER_ASYNC_OFF); 1485 if (!head->qh_next.qh) { 1486 u32 cmd = readl(&oxu->regs->command); 1487 1488 if (!(cmd & CMD_ASE)) { 1489 /* in case a clear of CMD_ASE didn't take yet */ 1490 (void)handshake(oxu, &oxu->regs->status, 1491 STS_ASS, 0, 150); 1492 cmd |= CMD_ASE | CMD_RUN; 1493 writel(cmd, &oxu->regs->command); 1494 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1495 /* posted write need not be known to HC yet ... */ 1496 } 1497 } 1498 1499 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1500 if (qh->qh_state == QH_STATE_IDLE) 1501 qh_refresh(oxu, qh); 1502 1503 /* splice right after start */ 1504 qh->qh_next = head->qh_next; 1505 qh->hw_next = head->hw_next; 1506 wmb(); 1507 1508 head->qh_next.qh = qh; 1509 head->hw_next = dma; 1510 1511 qh->qh_state = QH_STATE_LINKED; 1512 /* qtd completions reported later by interrupt */ 1513 } 1514 1515 #define QH_ADDR_MASK cpu_to_le32(0x7f) 1516 1517 /* 1518 * For control/bulk/interrupt, return QH with these TDs appended. 1519 * Allocates and initializes the QH if necessary. 1520 * Returns null if it can't allocate a QH it needs to. 1521 * If the QH has TDs (urbs) already, that's great. 1522 */ 1523 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, 1524 struct urb *urb, struct list_head *qtd_list, 1525 int epnum, void **ptr) 1526 { 1527 struct ehci_qh *qh = NULL; 1528 1529 qh = (struct ehci_qh *) *ptr; 1530 if (unlikely(qh == NULL)) { 1531 /* can't sleep here, we have oxu->lock... */ 1532 qh = qh_make(oxu, urb, GFP_ATOMIC); 1533 *ptr = qh; 1534 } 1535 if (likely(qh != NULL)) { 1536 struct ehci_qtd *qtd; 1537 1538 if (unlikely(list_empty(qtd_list))) 1539 qtd = NULL; 1540 else 1541 qtd = list_entry(qtd_list->next, struct ehci_qtd, 1542 qtd_list); 1543 1544 /* control qh may need patching ... */ 1545 if (unlikely(epnum == 0)) { 1546 1547 /* usb_reset_device() briefly reverts to address 0 */ 1548 if (usb_pipedevice(urb->pipe) == 0) 1549 qh->hw_info1 &= ~QH_ADDR_MASK; 1550 } 1551 1552 /* just one way to queue requests: swap with the dummy qtd. 1553 * only hc or qh_refresh() ever modify the overlay. 1554 */ 1555 if (likely(qtd != NULL)) { 1556 struct ehci_qtd *dummy; 1557 dma_addr_t dma; 1558 __le32 token; 1559 1560 /* to avoid racing the HC, use the dummy td instead of 1561 * the first td of our list (becomes new dummy). both 1562 * tds stay deactivated until we're done, when the 1563 * HC is allowed to fetch the old dummy (4.10.2). 1564 */ 1565 token = qtd->hw_token; 1566 qtd->hw_token = HALT_BIT; 1567 wmb(); 1568 dummy = qh->dummy; 1569 1570 dma = dummy->qtd_dma; 1571 *dummy = *qtd; 1572 dummy->qtd_dma = dma; 1573 1574 list_del(&qtd->qtd_list); 1575 list_add(&dummy->qtd_list, qtd_list); 1576 list_splice(qtd_list, qh->qtd_list.prev); 1577 1578 ehci_qtd_init(qtd, qtd->qtd_dma); 1579 qh->dummy = qtd; 1580 1581 /* hc must see the new dummy at list end */ 1582 dma = qtd->qtd_dma; 1583 qtd = list_entry(qh->qtd_list.prev, 1584 struct ehci_qtd, qtd_list); 1585 qtd->hw_next = QTD_NEXT(dma); 1586 1587 /* let the hc process these next qtds */ 1588 dummy->hw_token = (token & ~(0x80)); 1589 wmb(); 1590 dummy->hw_token = token; 1591 1592 urb->hcpriv = qh_get(qh); 1593 } 1594 } 1595 return qh; 1596 } 1597 1598 static int submit_async(struct oxu_hcd *oxu, struct urb *urb, 1599 struct list_head *qtd_list, gfp_t mem_flags) 1600 { 1601 struct ehci_qtd *qtd; 1602 int epnum; 1603 unsigned long flags; 1604 struct ehci_qh *qh = NULL; 1605 int rc = 0; 1606 1607 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1608 epnum = urb->ep->desc.bEndpointAddress; 1609 1610 #ifdef OXU_URB_TRACE 1611 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1612 __func__, urb->dev->devpath, urb, 1613 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1614 urb->transfer_buffer_length, 1615 qtd, urb->ep->hcpriv); 1616 #endif 1617 1618 spin_lock_irqsave(&oxu->lock, flags); 1619 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 1620 rc = -ESHUTDOWN; 1621 goto done; 1622 } 1623 1624 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 1625 if (unlikely(qh == NULL)) { 1626 rc = -ENOMEM; 1627 goto done; 1628 } 1629 1630 /* Control/bulk operations through TTs don't need scheduling, 1631 * the HC and TT handle it when the TT has a buffer ready. 1632 */ 1633 if (likely(qh->qh_state == QH_STATE_IDLE)) 1634 qh_link_async(oxu, qh_get(qh)); 1635 done: 1636 spin_unlock_irqrestore(&oxu->lock, flags); 1637 if (unlikely(qh == NULL)) 1638 qtd_list_free(oxu, urb, qtd_list); 1639 return rc; 1640 } 1641 1642 /* The async qh for the qtds being reclaimed are now unlinked from the HC */ 1643 1644 static void end_unlink_async(struct oxu_hcd *oxu) 1645 { 1646 struct ehci_qh *qh = oxu->reclaim; 1647 struct ehci_qh *next; 1648 1649 timer_action_done(oxu, TIMER_IAA_WATCHDOG); 1650 1651 qh->qh_state = QH_STATE_IDLE; 1652 qh->qh_next.qh = NULL; 1653 qh_put(qh); /* refcount from reclaim */ 1654 1655 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 1656 next = qh->reclaim; 1657 oxu->reclaim = next; 1658 oxu->reclaim_ready = 0; 1659 qh->reclaim = NULL; 1660 1661 qh_completions(oxu, qh); 1662 1663 if (!list_empty(&qh->qtd_list) 1664 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 1665 qh_link_async(oxu, qh); 1666 else { 1667 qh_put(qh); /* refcount from async list */ 1668 1669 /* it's not free to turn the async schedule on/off; leave it 1670 * active but idle for a while once it empties. 1671 */ 1672 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) 1673 && oxu->async->qh_next.qh == NULL) 1674 timer_action(oxu, TIMER_ASYNC_OFF); 1675 } 1676 1677 if (next) { 1678 oxu->reclaim = NULL; 1679 start_unlink_async(oxu, next); 1680 } 1681 } 1682 1683 /* makes sure the async qh will become idle */ 1684 /* caller must own oxu->lock */ 1685 1686 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1687 { 1688 int cmd = readl(&oxu->regs->command); 1689 struct ehci_qh *prev; 1690 1691 #ifdef DEBUG 1692 assert_spin_locked(&oxu->lock); 1693 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED 1694 && qh->qh_state != QH_STATE_UNLINK_WAIT)); 1695 #endif 1696 1697 /* stop async schedule right now? */ 1698 if (unlikely(qh == oxu->async)) { 1699 /* can't get here without STS_ASS set */ 1700 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT 1701 && !oxu->reclaim) { 1702 /* ... and CMD_IAAD clear */ 1703 writel(cmd & ~CMD_ASE, &oxu->regs->command); 1704 wmb(); 1705 /* handshake later, if we need to */ 1706 timer_action_done(oxu, TIMER_ASYNC_OFF); 1707 } 1708 return; 1709 } 1710 1711 qh->qh_state = QH_STATE_UNLINK; 1712 oxu->reclaim = qh = qh_get(qh); 1713 1714 prev = oxu->async; 1715 while (prev->qh_next.qh != qh) 1716 prev = prev->qh_next.qh; 1717 1718 prev->hw_next = qh->hw_next; 1719 prev->qh_next = qh->qh_next; 1720 wmb(); 1721 1722 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { 1723 /* if (unlikely(qh->reclaim != 0)) 1724 * this will recurse, probably not much 1725 */ 1726 end_unlink_async(oxu); 1727 return; 1728 } 1729 1730 oxu->reclaim_ready = 0; 1731 cmd |= CMD_IAAD; 1732 writel(cmd, &oxu->regs->command); 1733 (void) readl(&oxu->regs->command); 1734 timer_action(oxu, TIMER_IAA_WATCHDOG); 1735 } 1736 1737 static void scan_async(struct oxu_hcd *oxu) 1738 { 1739 struct ehci_qh *qh; 1740 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 1741 1742 if (!++(oxu->stamp)) 1743 oxu->stamp++; 1744 timer_action_done(oxu, TIMER_ASYNC_SHRINK); 1745 rescan: 1746 qh = oxu->async->qh_next.qh; 1747 if (likely(qh != NULL)) { 1748 do { 1749 /* clean any finished work for this qh */ 1750 if (!list_empty(&qh->qtd_list) 1751 && qh->stamp != oxu->stamp) { 1752 int temp; 1753 1754 /* unlinks could happen here; completion 1755 * reporting drops the lock. rescan using 1756 * the latest schedule, but don't rescan 1757 * qhs we already finished (no looping). 1758 */ 1759 qh = qh_get(qh); 1760 qh->stamp = oxu->stamp; 1761 temp = qh_completions(oxu, qh); 1762 qh_put(qh); 1763 if (temp != 0) 1764 goto rescan; 1765 } 1766 1767 /* unlink idle entries, reducing HC PCI usage as well 1768 * as HCD schedule-scanning costs. delay for any qh 1769 * we just scanned, there's a not-unusual case that it 1770 * doesn't stay idle for long. 1771 * (plus, avoids some kind of re-activation race.) 1772 */ 1773 if (list_empty(&qh->qtd_list)) { 1774 if (qh->stamp == oxu->stamp) 1775 action = TIMER_ASYNC_SHRINK; 1776 else if (!oxu->reclaim 1777 && qh->qh_state == QH_STATE_LINKED) 1778 start_unlink_async(oxu, qh); 1779 } 1780 1781 qh = qh->qh_next.qh; 1782 } while (qh); 1783 } 1784 if (action == TIMER_ASYNC_SHRINK) 1785 timer_action(oxu, TIMER_ASYNC_SHRINK); 1786 } 1787 1788 /* 1789 * periodic_next_shadow - return "next" pointer on shadow list 1790 * @periodic: host pointer to qh/itd/sitd 1791 * @tag: hardware tag for type of this record 1792 */ 1793 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, 1794 __le32 tag) 1795 { 1796 switch (tag) { 1797 default: 1798 case Q_TYPE_QH: 1799 return &periodic->qh->qh_next; 1800 } 1801 } 1802 1803 /* caller must hold oxu->lock */ 1804 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) 1805 { 1806 union ehci_shadow *prev_p = &oxu->pshadow[frame]; 1807 __le32 *hw_p = &oxu->periodic[frame]; 1808 union ehci_shadow here = *prev_p; 1809 1810 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 1811 while (here.ptr && here.ptr != ptr) { 1812 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); 1813 hw_p = here.hw_next; 1814 here = *prev_p; 1815 } 1816 /* an interrupt entry (at list end) could have been shared */ 1817 if (!here.ptr) 1818 return; 1819 1820 /* update shadow and hardware lists ... the old "next" pointers 1821 * from ptr may still be in use, the caller updates them. 1822 */ 1823 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); 1824 *hw_p = *here.hw_next; 1825 } 1826 1827 /* how many of the uframe's 125 usecs are allocated? */ 1828 static unsigned short periodic_usecs(struct oxu_hcd *oxu, 1829 unsigned frame, unsigned uframe) 1830 { 1831 __le32 *hw_p = &oxu->periodic[frame]; 1832 union ehci_shadow *q = &oxu->pshadow[frame]; 1833 unsigned usecs = 0; 1834 1835 while (q->ptr) { 1836 switch (Q_NEXT_TYPE(*hw_p)) { 1837 case Q_TYPE_QH: 1838 default: 1839 /* is it in the S-mask? */ 1840 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) 1841 usecs += q->qh->usecs; 1842 /* ... or C-mask? */ 1843 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) 1844 usecs += q->qh->c_usecs; 1845 hw_p = &q->qh->hw_next; 1846 q = &q->qh->qh_next; 1847 break; 1848 } 1849 } 1850 #ifdef DEBUG 1851 if (usecs > 100) 1852 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", 1853 frame * 8 + uframe, usecs); 1854 #endif 1855 return usecs; 1856 } 1857 1858 static int enable_periodic(struct oxu_hcd *oxu) 1859 { 1860 u32 cmd; 1861 int status; 1862 1863 /* did clearing PSE did take effect yet? 1864 * takes effect only at frame boundaries... 1865 */ 1866 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); 1867 if (status != 0) { 1868 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1869 usb_hc_died(oxu_to_hcd(oxu)); 1870 return status; 1871 } 1872 1873 cmd = readl(&oxu->regs->command) | CMD_PSE; 1874 writel(cmd, &oxu->regs->command); 1875 /* posted write ... PSS happens later */ 1876 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1877 1878 /* make sure ehci_work scans these */ 1879 oxu->next_uframe = readl(&oxu->regs->frame_index) 1880 % (oxu->periodic_size << 3); 1881 return 0; 1882 } 1883 1884 static int disable_periodic(struct oxu_hcd *oxu) 1885 { 1886 u32 cmd; 1887 int status; 1888 1889 /* did setting PSE not take effect yet? 1890 * takes effect only at frame boundaries... 1891 */ 1892 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); 1893 if (status != 0) { 1894 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1895 usb_hc_died(oxu_to_hcd(oxu)); 1896 return status; 1897 } 1898 1899 cmd = readl(&oxu->regs->command) & ~CMD_PSE; 1900 writel(cmd, &oxu->regs->command); 1901 /* posted write ... */ 1902 1903 oxu->next_uframe = -1; 1904 return 0; 1905 } 1906 1907 /* periodic schedule slots have iso tds (normal or split) first, then a 1908 * sparse tree for active interrupt transfers. 1909 * 1910 * this just links in a qh; caller guarantees uframe masks are set right. 1911 * no FSTN support (yet; oxu 0.96+) 1912 */ 1913 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1914 { 1915 unsigned i; 1916 unsigned period = qh->period; 1917 1918 dev_dbg(&qh->dev->dev, 1919 "link qh%d-%04x/%p start %d [%d/%d us]\n", 1920 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 1921 qh, qh->start, qh->usecs, qh->c_usecs); 1922 1923 /* high bandwidth, or otherwise every microframe */ 1924 if (period == 0) 1925 period = 1; 1926 1927 for (i = qh->start; i < oxu->periodic_size; i += period) { 1928 union ehci_shadow *prev = &oxu->pshadow[i]; 1929 __le32 *hw_p = &oxu->periodic[i]; 1930 union ehci_shadow here = *prev; 1931 __le32 type = 0; 1932 1933 /* skip the iso nodes at list head */ 1934 while (here.ptr) { 1935 type = Q_NEXT_TYPE(*hw_p); 1936 if (type == Q_TYPE_QH) 1937 break; 1938 prev = periodic_next_shadow(prev, type); 1939 hw_p = &here.qh->hw_next; 1940 here = *prev; 1941 } 1942 1943 /* sorting each branch by period (slow-->fast) 1944 * enables sharing interior tree nodes 1945 */ 1946 while (here.ptr && qh != here.qh) { 1947 if (qh->period > here.qh->period) 1948 break; 1949 prev = &here.qh->qh_next; 1950 hw_p = &here.qh->hw_next; 1951 here = *prev; 1952 } 1953 /* link in this qh, unless some earlier pass did that */ 1954 if (qh != here.qh) { 1955 qh->qh_next = here; 1956 if (here.qh) 1957 qh->hw_next = *hw_p; 1958 wmb(); 1959 prev->qh = qh; 1960 *hw_p = QH_NEXT(qh->qh_dma); 1961 } 1962 } 1963 qh->qh_state = QH_STATE_LINKED; 1964 qh_get(qh); 1965 1966 /* update per-qh bandwidth for usbfs */ 1967 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period 1968 ? ((qh->usecs + qh->c_usecs) / qh->period) 1969 : (qh->usecs * 8); 1970 1971 /* maybe enable periodic schedule processing */ 1972 if (!oxu->periodic_sched++) 1973 return enable_periodic(oxu); 1974 1975 return 0; 1976 } 1977 1978 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1979 { 1980 unsigned i; 1981 unsigned period; 1982 1983 /* FIXME: 1984 * IF this isn't high speed 1985 * and this qh is active in the current uframe 1986 * (and overlay token SplitXstate is false?) 1987 * THEN 1988 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); 1989 */ 1990 1991 /* high bandwidth, or otherwise part of every microframe */ 1992 period = qh->period; 1993 if (period == 0) 1994 period = 1; 1995 1996 for (i = qh->start; i < oxu->periodic_size; i += period) 1997 periodic_unlink(oxu, i, qh); 1998 1999 /* update per-qh bandwidth for usbfs */ 2000 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period 2001 ? ((qh->usecs + qh->c_usecs) / qh->period) 2002 : (qh->usecs * 8); 2003 2004 dev_dbg(&qh->dev->dev, 2005 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 2006 qh->period, 2007 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2008 qh, qh->start, qh->usecs, qh->c_usecs); 2009 2010 /* qh->qh_next still "live" to HC */ 2011 qh->qh_state = QH_STATE_UNLINK; 2012 qh->qh_next.ptr = NULL; 2013 qh_put(qh); 2014 2015 /* maybe turn off periodic schedule */ 2016 oxu->periodic_sched--; 2017 if (!oxu->periodic_sched) 2018 (void) disable_periodic(oxu); 2019 } 2020 2021 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2022 { 2023 unsigned wait; 2024 2025 qh_unlink_periodic(oxu, qh); 2026 2027 /* simple/paranoid: always delay, expecting the HC needs to read 2028 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 2029 * expect hub_wq to clean up after any CSPLITs we won't issue. 2030 * active high speed queues may need bigger delays... 2031 */ 2032 if (list_empty(&qh->qtd_list) 2033 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) 2034 wait = 2; 2035 else 2036 wait = 55; /* worst case: 3 * 1024 */ 2037 2038 udelay(wait); 2039 qh->qh_state = QH_STATE_IDLE; 2040 qh->hw_next = EHCI_LIST_END; 2041 wmb(); 2042 } 2043 2044 static int check_period(struct oxu_hcd *oxu, 2045 unsigned frame, unsigned uframe, 2046 unsigned period, unsigned usecs) 2047 { 2048 int claimed; 2049 2050 /* complete split running into next frame? 2051 * given FSTN support, we could sometimes check... 2052 */ 2053 if (uframe >= 8) 2054 return 0; 2055 2056 /* 2057 * 80% periodic == 100 usec/uframe available 2058 * convert "usecs we need" to "max already claimed" 2059 */ 2060 usecs = 100 - usecs; 2061 2062 /* we "know" 2 and 4 uframe intervals were rejected; so 2063 * for period 0, check _every_ microframe in the schedule. 2064 */ 2065 if (unlikely(period == 0)) { 2066 do { 2067 for (uframe = 0; uframe < 7; uframe++) { 2068 claimed = periodic_usecs(oxu, frame, uframe); 2069 if (claimed > usecs) 2070 return 0; 2071 } 2072 } while ((frame += 1) < oxu->periodic_size); 2073 2074 /* just check the specified uframe, at that period */ 2075 } else { 2076 do { 2077 claimed = periodic_usecs(oxu, frame, uframe); 2078 if (claimed > usecs) 2079 return 0; 2080 } while ((frame += period) < oxu->periodic_size); 2081 } 2082 2083 return 1; 2084 } 2085 2086 static int check_intr_schedule(struct oxu_hcd *oxu, 2087 unsigned frame, unsigned uframe, 2088 const struct ehci_qh *qh, __le32 *c_maskp) 2089 { 2090 int retval = -ENOSPC; 2091 2092 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 2093 goto done; 2094 2095 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) 2096 goto done; 2097 if (!qh->c_usecs) { 2098 retval = 0; 2099 *c_maskp = 0; 2100 goto done; 2101 } 2102 2103 done: 2104 return retval; 2105 } 2106 2107 /* "first fit" scheduling policy used the first time through, 2108 * or when the previous schedule slot can't be re-used. 2109 */ 2110 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2111 { 2112 int status; 2113 unsigned uframe; 2114 __le32 c_mask; 2115 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 2116 2117 qh_refresh(oxu, qh); 2118 qh->hw_next = EHCI_LIST_END; 2119 frame = qh->start; 2120 2121 /* reuse the previous schedule slots, if we can */ 2122 if (frame < qh->period) { 2123 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); 2124 status = check_intr_schedule(oxu, frame, --uframe, 2125 qh, &c_mask); 2126 } else { 2127 uframe = 0; 2128 c_mask = 0; 2129 status = -ENOSPC; 2130 } 2131 2132 /* else scan the schedule to find a group of slots such that all 2133 * uframes have enough periodic bandwidth available. 2134 */ 2135 if (status) { 2136 /* "normal" case, uframing flexible except with splits */ 2137 if (qh->period) { 2138 frame = qh->period - 1; 2139 do { 2140 for (uframe = 0; uframe < 8; uframe++) { 2141 status = check_intr_schedule(oxu, 2142 frame, uframe, qh, 2143 &c_mask); 2144 if (status == 0) 2145 break; 2146 } 2147 } while (status && frame--); 2148 2149 /* qh->period == 0 means every uframe */ 2150 } else { 2151 frame = 0; 2152 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); 2153 } 2154 if (status) 2155 goto done; 2156 qh->start = frame; 2157 2158 /* reset S-frame and (maybe) C-frame masks */ 2159 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); 2160 qh->hw_info2 |= qh->period 2161 ? cpu_to_le32(1 << uframe) 2162 : cpu_to_le32(QH_SMASK); 2163 qh->hw_info2 |= c_mask; 2164 } else 2165 oxu_dbg(oxu, "reused qh %p schedule\n", qh); 2166 2167 /* stuff into the periodic schedule */ 2168 status = qh_link_periodic(oxu, qh); 2169 done: 2170 return status; 2171 } 2172 2173 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, 2174 struct list_head *qtd_list, gfp_t mem_flags) 2175 { 2176 unsigned epnum; 2177 unsigned long flags; 2178 struct ehci_qh *qh; 2179 int status = 0; 2180 struct list_head empty; 2181 2182 /* get endpoint and transfer/schedule data */ 2183 epnum = urb->ep->desc.bEndpointAddress; 2184 2185 spin_lock_irqsave(&oxu->lock, flags); 2186 2187 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2188 status = -ESHUTDOWN; 2189 goto done; 2190 } 2191 2192 /* get qh and force any scheduling errors */ 2193 INIT_LIST_HEAD(&empty); 2194 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); 2195 if (qh == NULL) { 2196 status = -ENOMEM; 2197 goto done; 2198 } 2199 if (qh->qh_state == QH_STATE_IDLE) { 2200 status = qh_schedule(oxu, qh); 2201 if (status != 0) 2202 goto done; 2203 } 2204 2205 /* then queue the urb's tds to the qh */ 2206 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2207 BUG_ON(qh == NULL); 2208 2209 /* ... update usbfs periodic stats */ 2210 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; 2211 2212 done: 2213 spin_unlock_irqrestore(&oxu->lock, flags); 2214 if (status) 2215 qtd_list_free(oxu, urb, qtd_list); 2216 2217 return status; 2218 } 2219 2220 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, 2221 gfp_t mem_flags) 2222 { 2223 oxu_dbg(oxu, "iso support is missing!\n"); 2224 return -ENOSYS; 2225 } 2226 2227 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, 2228 gfp_t mem_flags) 2229 { 2230 oxu_dbg(oxu, "split iso support is missing!\n"); 2231 return -ENOSYS; 2232 } 2233 2234 static void scan_periodic(struct oxu_hcd *oxu) 2235 { 2236 unsigned frame, clock, now_uframe, mod; 2237 unsigned modified; 2238 2239 mod = oxu->periodic_size << 3; 2240 2241 /* 2242 * When running, scan from last scan point up to "now" 2243 * else clean up by scanning everything that's left. 2244 * Touches as few pages as possible: cache-friendly. 2245 */ 2246 now_uframe = oxu->next_uframe; 2247 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2248 clock = readl(&oxu->regs->frame_index); 2249 else 2250 clock = now_uframe + mod - 1; 2251 clock %= mod; 2252 2253 for (;;) { 2254 union ehci_shadow q, *q_p; 2255 __le32 type, *hw_p; 2256 unsigned uframes; 2257 2258 /* don't scan past the live uframe */ 2259 frame = now_uframe >> 3; 2260 if (frame == (clock >> 3)) 2261 uframes = now_uframe & 0x07; 2262 else { 2263 /* safe to scan the whole frame at once */ 2264 now_uframe |= 0x07; 2265 uframes = 8; 2266 } 2267 2268 restart: 2269 /* scan each element in frame's queue for completions */ 2270 q_p = &oxu->pshadow[frame]; 2271 hw_p = &oxu->periodic[frame]; 2272 q.ptr = q_p->ptr; 2273 type = Q_NEXT_TYPE(*hw_p); 2274 modified = 0; 2275 2276 while (q.ptr != NULL) { 2277 union ehci_shadow temp; 2278 2279 switch (type) { 2280 case Q_TYPE_QH: 2281 /* handle any completions */ 2282 temp.qh = qh_get(q.qh); 2283 type = Q_NEXT_TYPE(q.qh->hw_next); 2284 q = q.qh->qh_next; 2285 modified = qh_completions(oxu, temp.qh); 2286 if (unlikely(list_empty(&temp.qh->qtd_list))) 2287 intr_deschedule(oxu, temp.qh); 2288 qh_put(temp.qh); 2289 break; 2290 default: 2291 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n", 2292 type, frame, q.ptr); 2293 q.ptr = NULL; 2294 } 2295 2296 /* assume completion callbacks modify the queue */ 2297 if (unlikely(modified)) 2298 goto restart; 2299 } 2300 2301 /* Stop when we catch up to the HC */ 2302 2303 /* FIXME: this assumes we won't get lapped when 2304 * latencies climb; that should be rare, but... 2305 * detect it, and just go all the way around. 2306 * FLR might help detect this case, so long as latencies 2307 * don't exceed periodic_size msec (default 1.024 sec). 2308 */ 2309 2310 /* FIXME: likewise assumes HC doesn't halt mid-scan */ 2311 2312 if (now_uframe == clock) { 2313 unsigned now; 2314 2315 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2316 break; 2317 oxu->next_uframe = now_uframe; 2318 now = readl(&oxu->regs->frame_index) % mod; 2319 if (now_uframe == now) 2320 break; 2321 2322 /* rescan the rest of this frame, then ... */ 2323 clock = now; 2324 } else { 2325 now_uframe++; 2326 now_uframe %= mod; 2327 } 2328 } 2329 } 2330 2331 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 2332 * The firmware seems to think that powering off is a wakeup event! 2333 * This routine turns off remote wakeup and everything else, on all ports. 2334 */ 2335 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) 2336 { 2337 int port = HCS_N_PORTS(oxu->hcs_params); 2338 2339 while (port--) 2340 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); 2341 } 2342 2343 static void ehci_port_power(struct oxu_hcd *oxu, int is_on) 2344 { 2345 unsigned port; 2346 2347 if (!HCS_PPC(oxu->hcs_params)) 2348 return; 2349 2350 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); 2351 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) 2352 (void) oxu_hub_control(oxu_to_hcd(oxu), 2353 is_on ? SetPortFeature : ClearPortFeature, 2354 USB_PORT_FEAT_POWER, 2355 port--, NULL, 0); 2356 msleep(20); 2357 } 2358 2359 /* Called from some interrupts, timers, and so on. 2360 * It calls driver completion functions, after dropping oxu->lock. 2361 */ 2362 static void ehci_work(struct oxu_hcd *oxu) 2363 { 2364 timer_action_done(oxu, TIMER_IO_WATCHDOG); 2365 if (oxu->reclaim_ready) 2366 end_unlink_async(oxu); 2367 2368 /* another CPU may drop oxu->lock during a schedule scan while 2369 * it reports urb completions. this flag guards against bogus 2370 * attempts at re-entrant schedule scanning. 2371 */ 2372 if (oxu->scanning) 2373 return; 2374 oxu->scanning = 1; 2375 scan_async(oxu); 2376 if (oxu->next_uframe != -1) 2377 scan_periodic(oxu); 2378 oxu->scanning = 0; 2379 2380 /* the IO watchdog guards against hardware or driver bugs that 2381 * misplace IRQs, and should let us run completely without IRQs. 2382 * such lossage has been observed on both VT6202 and VT8235. 2383 */ 2384 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && 2385 (oxu->async->qh_next.ptr != NULL || 2386 oxu->periodic_sched != 0)) 2387 timer_action(oxu, TIMER_IO_WATCHDOG); 2388 } 2389 2390 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2391 { 2392 /* if we need to use IAA and it's busy, defer */ 2393 if (qh->qh_state == QH_STATE_LINKED 2394 && oxu->reclaim 2395 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { 2396 struct ehci_qh *last; 2397 2398 for (last = oxu->reclaim; 2399 last->reclaim; 2400 last = last->reclaim) 2401 continue; 2402 qh->qh_state = QH_STATE_UNLINK_WAIT; 2403 last->reclaim = qh; 2404 2405 /* bypass IAA if the hc can't care */ 2406 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) 2407 end_unlink_async(oxu); 2408 2409 /* something else might have unlinked the qh by now */ 2410 if (qh->qh_state == QH_STATE_LINKED) 2411 start_unlink_async(oxu, qh); 2412 } 2413 2414 /* 2415 * USB host controller methods 2416 */ 2417 2418 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) 2419 { 2420 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2421 u32 status, pcd_status = 0; 2422 int bh; 2423 2424 spin_lock(&oxu->lock); 2425 2426 status = readl(&oxu->regs->status); 2427 2428 /* e.g. cardbus physical eject */ 2429 if (status == ~(u32) 0) { 2430 oxu_dbg(oxu, "device removed\n"); 2431 goto dead; 2432 } 2433 2434 /* Shared IRQ? */ 2435 status &= INTR_MASK; 2436 if (!status || unlikely(hcd->state == HC_STATE_HALT)) { 2437 spin_unlock(&oxu->lock); 2438 return IRQ_NONE; 2439 } 2440 2441 /* clear (just) interrupts */ 2442 writel(status, &oxu->regs->status); 2443 readl(&oxu->regs->command); /* unblock posted write */ 2444 bh = 0; 2445 2446 #ifdef OXU_VERBOSE_DEBUG 2447 /* unrequested/ignored: Frame List Rollover */ 2448 dbg_status(oxu, "irq", status); 2449 #endif 2450 2451 /* INT, ERR, and IAA interrupt rates can be throttled */ 2452 2453 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 2454 if (likely((status & (STS_INT|STS_ERR)) != 0)) 2455 bh = 1; 2456 2457 /* complete the unlinking of some qh [4.15.2.3] */ 2458 if (status & STS_IAA) { 2459 oxu->reclaim_ready = 1; 2460 bh = 1; 2461 } 2462 2463 /* remote wakeup [4.3.1] */ 2464 if (status & STS_PCD) { 2465 unsigned i = HCS_N_PORTS(oxu->hcs_params); 2466 pcd_status = status; 2467 2468 /* resume root hub? */ 2469 if (!(readl(&oxu->regs->command) & CMD_RUN)) 2470 usb_hcd_resume_root_hub(hcd); 2471 2472 while (i--) { 2473 int pstatus = readl(&oxu->regs->port_status[i]); 2474 2475 if (pstatus & PORT_OWNER) 2476 continue; 2477 if (!(pstatus & PORT_RESUME) 2478 || oxu->reset_done[i] != 0) 2479 continue; 2480 2481 /* start USB_RESUME_TIMEOUT resume signaling from this 2482 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to 2483 * stop that signaling. 2484 */ 2485 oxu->reset_done[i] = jiffies + 2486 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2487 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); 2488 mod_timer(&hcd->rh_timer, oxu->reset_done[i]); 2489 } 2490 } 2491 2492 /* PCI errors [4.15.2.4] */ 2493 if (unlikely((status & STS_FATAL) != 0)) { 2494 /* bogus "fatal" IRQs appear on some chips... why? */ 2495 status = readl(&oxu->regs->status); 2496 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); 2497 dbg_status(oxu, "fatal", status); 2498 if (status & STS_HALT) { 2499 oxu_err(oxu, "fatal error\n"); 2500 dead: 2501 ehci_reset(oxu); 2502 writel(0, &oxu->regs->configured_flag); 2503 usb_hc_died(hcd); 2504 /* generic layer kills/unlinks all urbs, then 2505 * uses oxu_stop to clean up the rest 2506 */ 2507 bh = 1; 2508 } 2509 } 2510 2511 if (bh) 2512 ehci_work(oxu); 2513 spin_unlock(&oxu->lock); 2514 if (pcd_status & STS_PCD) 2515 usb_hcd_poll_rh_status(hcd); 2516 return IRQ_HANDLED; 2517 } 2518 2519 static irqreturn_t oxu_irq(struct usb_hcd *hcd) 2520 { 2521 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2522 int ret = IRQ_HANDLED; 2523 2524 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); 2525 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); 2526 2527 /* Disable all interrupt */ 2528 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); 2529 2530 if ((oxu->is_otg && (status & OXU_USBOTGI)) || 2531 (!oxu->is_otg && (status & OXU_USBSPHI))) 2532 oxu210_hcd_irq(hcd); 2533 else 2534 ret = IRQ_NONE; 2535 2536 /* Enable all interrupt back */ 2537 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); 2538 2539 return ret; 2540 } 2541 2542 static void oxu_watchdog(struct timer_list *t) 2543 { 2544 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog); 2545 unsigned long flags; 2546 2547 spin_lock_irqsave(&oxu->lock, flags); 2548 2549 /* lost IAA irqs wedge things badly; seen with a vt8235 */ 2550 if (oxu->reclaim) { 2551 u32 status = readl(&oxu->regs->status); 2552 if (status & STS_IAA) { 2553 oxu_vdbg(oxu, "lost IAA\n"); 2554 writel(STS_IAA, &oxu->regs->status); 2555 oxu->reclaim_ready = 1; 2556 } 2557 } 2558 2559 /* stop async processing after it's idled a bit */ 2560 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) 2561 start_unlink_async(oxu, oxu->async); 2562 2563 /* oxu could run by timer, without IRQs ... */ 2564 ehci_work(oxu); 2565 2566 spin_unlock_irqrestore(&oxu->lock, flags); 2567 } 2568 2569 /* One-time init, only for memory state. 2570 */ 2571 static int oxu_hcd_init(struct usb_hcd *hcd) 2572 { 2573 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2574 u32 temp; 2575 int retval; 2576 u32 hcc_params; 2577 2578 spin_lock_init(&oxu->lock); 2579 2580 timer_setup(&oxu->watchdog, oxu_watchdog, 0); 2581 2582 /* 2583 * hw default: 1K periodic list heads, one per frame. 2584 * periodic_size can shrink by USBCMD update if hcc_params allows. 2585 */ 2586 oxu->periodic_size = DEFAULT_I_TDPS; 2587 retval = ehci_mem_init(oxu, GFP_KERNEL); 2588 if (retval < 0) 2589 return retval; 2590 2591 /* controllers may cache some of the periodic schedule ... */ 2592 hcc_params = readl(&oxu->caps->hcc_params); 2593 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ 2594 oxu->i_thresh = 8; 2595 else /* N microframes cached */ 2596 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); 2597 2598 oxu->reclaim = NULL; 2599 oxu->reclaim_ready = 0; 2600 oxu->next_uframe = -1; 2601 2602 /* 2603 * dedicate a qh for the async ring head, since we couldn't unlink 2604 * a 'real' qh without stopping the async schedule [4.8]. use it 2605 * as the 'reclamation list head' too. 2606 * its dummy is used in hw_alt_next of many tds, to prevent the qh 2607 * from automatically advancing to the next td after short reads. 2608 */ 2609 oxu->async->qh_next.qh = NULL; 2610 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); 2611 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); 2612 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); 2613 oxu->async->hw_qtd_next = EHCI_LIST_END; 2614 oxu->async->qh_state = QH_STATE_LINKED; 2615 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); 2616 2617 /* clear interrupt enables, set irq latency */ 2618 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 2619 log2_irq_thresh = 0; 2620 temp = 1 << (16 + log2_irq_thresh); 2621 if (HCC_CANPARK(hcc_params)) { 2622 /* HW default park == 3, on hardware that supports it (like 2623 * NVidia and ALI silicon), maximizes throughput on the async 2624 * schedule by avoiding QH fetches between transfers. 2625 * 2626 * With fast usb storage devices and NForce2, "park" seems to 2627 * make problems: throughput reduction (!), data errors... 2628 */ 2629 if (park) { 2630 park = min(park, (unsigned) 3); 2631 temp |= CMD_PARK; 2632 temp |= park << 8; 2633 } 2634 oxu_dbg(oxu, "park %d\n", park); 2635 } 2636 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 2637 /* periodic schedule size can be smaller than default */ 2638 temp &= ~(3 << 2); 2639 temp |= (EHCI_TUNE_FLS << 2); 2640 } 2641 oxu->command = temp; 2642 2643 return 0; 2644 } 2645 2646 /* Called during probe() after chip reset completes. 2647 */ 2648 static int oxu_reset(struct usb_hcd *hcd) 2649 { 2650 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2651 2652 spin_lock_init(&oxu->mem_lock); 2653 INIT_LIST_HEAD(&oxu->urb_list); 2654 oxu->urb_len = 0; 2655 2656 /* FIMXE */ 2657 hcd->self.controller->dma_mask = NULL; 2658 2659 if (oxu->is_otg) { 2660 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; 2661 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ 2662 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2663 2664 oxu->mem = hcd->regs + OXU_SPH_MEM; 2665 } else { 2666 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; 2667 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ 2668 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2669 2670 oxu->mem = hcd->regs + OXU_OTG_MEM; 2671 } 2672 2673 oxu->hcs_params = readl(&oxu->caps->hcs_params); 2674 oxu->sbrn = 0x20; 2675 2676 return oxu_hcd_init(hcd); 2677 } 2678 2679 static int oxu_run(struct usb_hcd *hcd) 2680 { 2681 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2682 int retval; 2683 u32 temp, hcc_params; 2684 2685 hcd->uses_new_polling = 1; 2686 2687 /* EHCI spec section 4.1 */ 2688 retval = ehci_reset(oxu); 2689 if (retval != 0) { 2690 ehci_mem_cleanup(oxu); 2691 return retval; 2692 } 2693 writel(oxu->periodic_dma, &oxu->regs->frame_list); 2694 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 2695 2696 /* hcc_params controls whether oxu->regs->segment must (!!!) 2697 * be used; it constrains QH/ITD/SITD and QTD locations. 2698 * dma_pool consistent memory always uses segment zero. 2699 * streaming mappings for I/O buffers, like pci_map_single(), 2700 * can return segments above 4GB, if the device allows. 2701 * 2702 * NOTE: the dma mask is visible through dev->dma_mask, so 2703 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 2704 * Scsi_Host.highmem_io, and so forth. It's readonly to all 2705 * host side drivers though. 2706 */ 2707 hcc_params = readl(&oxu->caps->hcc_params); 2708 if (HCC_64BIT_ADDR(hcc_params)) 2709 writel(0, &oxu->regs->segment); 2710 2711 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | 2712 CMD_ASE | CMD_RESET); 2713 oxu->command |= CMD_RUN; 2714 writel(oxu->command, &oxu->regs->command); 2715 dbg_cmd(oxu, "init", oxu->command); 2716 2717 /* 2718 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 2719 * are explicitly handed to companion controller(s), so no TT is 2720 * involved with the root hub. (Except where one is integrated, 2721 * and there's no companion controller unless maybe for USB OTG.) 2722 */ 2723 hcd->state = HC_STATE_RUNNING; 2724 writel(FLAG_CF, &oxu->regs->configured_flag); 2725 readl(&oxu->regs->command); /* unblock posted writes */ 2726 2727 temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); 2728 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", 2729 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), 2730 temp >> 8, temp & 0xff, DRIVER_VERSION, 2731 ignore_oc ? ", overcurrent ignored" : ""); 2732 2733 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ 2734 2735 return 0; 2736 } 2737 2738 static void oxu_stop(struct usb_hcd *hcd) 2739 { 2740 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2741 2742 /* Turn off port power on all root hub ports. */ 2743 ehci_port_power(oxu, 0); 2744 2745 /* no more interrupts ... */ 2746 del_timer_sync(&oxu->watchdog); 2747 2748 spin_lock_irq(&oxu->lock); 2749 if (HC_IS_RUNNING(hcd->state)) 2750 ehci_quiesce(oxu); 2751 2752 ehci_reset(oxu); 2753 writel(0, &oxu->regs->intr_enable); 2754 spin_unlock_irq(&oxu->lock); 2755 2756 /* let companion controllers work when we aren't */ 2757 writel(0, &oxu->regs->configured_flag); 2758 2759 /* root hub is shut down separately (first, when possible) */ 2760 spin_lock_irq(&oxu->lock); 2761 if (oxu->async) 2762 ehci_work(oxu); 2763 spin_unlock_irq(&oxu->lock); 2764 ehci_mem_cleanup(oxu); 2765 2766 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); 2767 } 2768 2769 /* Kick in for silicon on any bus (not just pci, etc). 2770 * This forcibly disables dma and IRQs, helping kexec and other cases 2771 * where the next system software may expect clean state. 2772 */ 2773 static void oxu_shutdown(struct usb_hcd *hcd) 2774 { 2775 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2776 2777 (void) ehci_halt(oxu); 2778 ehci_turn_off_all_ports(oxu); 2779 2780 /* make BIOS/etc use companion controller during reboot */ 2781 writel(0, &oxu->regs->configured_flag); 2782 2783 /* unblock posted writes */ 2784 readl(&oxu->regs->configured_flag); 2785 } 2786 2787 /* Non-error returns are a promise to giveback() the urb later 2788 * we drop ownership so next owner (or urb unlink) can get it 2789 * 2790 * urb + dev is in hcd.self.controller.urb_list 2791 * we're queueing TDs onto software and hardware lists 2792 * 2793 * hcd-specific init for hcpriv hasn't been done yet 2794 * 2795 * NOTE: control, bulk, and interrupt share the same code to append TDs 2796 * to a (possibly active) QH, and the same QH scanning code. 2797 */ 2798 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2799 gfp_t mem_flags) 2800 { 2801 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2802 struct list_head qtd_list; 2803 2804 INIT_LIST_HEAD(&qtd_list); 2805 2806 switch (usb_pipetype(urb->pipe)) { 2807 case PIPE_CONTROL: 2808 case PIPE_BULK: 2809 default: 2810 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2811 return -ENOMEM; 2812 return submit_async(oxu, urb, &qtd_list, mem_flags); 2813 2814 case PIPE_INTERRUPT: 2815 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2816 return -ENOMEM; 2817 return intr_submit(oxu, urb, &qtd_list, mem_flags); 2818 2819 case PIPE_ISOCHRONOUS: 2820 if (urb->dev->speed == USB_SPEED_HIGH) 2821 return itd_submit(oxu, urb, mem_flags); 2822 else 2823 return sitd_submit(oxu, urb, mem_flags); 2824 } 2825 } 2826 2827 /* This function is responsible for breaking URBs with big data size 2828 * into smaller size and processing small urbs in sequence. 2829 */ 2830 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2831 gfp_t mem_flags) 2832 { 2833 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2834 int num, rem; 2835 int transfer_buffer_length; 2836 void *transfer_buffer; 2837 struct urb *murb; 2838 int i, ret; 2839 2840 /* If not bulk pipe just enqueue the URB */ 2841 if (!usb_pipebulk(urb->pipe)) 2842 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2843 2844 /* Otherwise we should verify the USB transfer buffer size! */ 2845 transfer_buffer = urb->transfer_buffer; 2846 transfer_buffer_length = urb->transfer_buffer_length; 2847 2848 num = urb->transfer_buffer_length / 4096; 2849 rem = urb->transfer_buffer_length % 4096; 2850 if (rem != 0) 2851 num++; 2852 2853 /* If URB is smaller than 4096 bytes just enqueue it! */ 2854 if (num == 1) 2855 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2856 2857 /* Ok, we have more job to do! :) */ 2858 2859 for (i = 0; i < num - 1; i++) { 2860 /* Get free micro URB poll till a free urb is received */ 2861 2862 do { 2863 murb = (struct urb *) oxu_murb_alloc(oxu); 2864 if (!murb) 2865 schedule(); 2866 } while (!murb); 2867 2868 /* Coping the urb */ 2869 memcpy(murb, urb, sizeof(struct urb)); 2870 2871 murb->transfer_buffer_length = 4096; 2872 murb->transfer_buffer = transfer_buffer + i * 4096; 2873 2874 /* Null pointer for the encodes that this is a micro urb */ 2875 murb->complete = NULL; 2876 2877 ((struct oxu_murb *) murb)->main = urb; 2878 ((struct oxu_murb *) murb)->last = 0; 2879 2880 /* This loop is to guarantee urb to be processed when there's 2881 * not enough resources at a particular time by retrying. 2882 */ 2883 do { 2884 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2885 if (ret) 2886 schedule(); 2887 } while (ret); 2888 } 2889 2890 /* Last urb requires special handling */ 2891 2892 /* Get free micro URB poll till a free urb is received */ 2893 do { 2894 murb = (struct urb *) oxu_murb_alloc(oxu); 2895 if (!murb) 2896 schedule(); 2897 } while (!murb); 2898 2899 /* Coping the urb */ 2900 memcpy(murb, urb, sizeof(struct urb)); 2901 2902 murb->transfer_buffer_length = rem > 0 ? rem : 4096; 2903 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; 2904 2905 /* Null pointer for the encodes that this is a micro urb */ 2906 murb->complete = NULL; 2907 2908 ((struct oxu_murb *) murb)->main = urb; 2909 ((struct oxu_murb *) murb)->last = 1; 2910 2911 do { 2912 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2913 if (ret) 2914 schedule(); 2915 } while (ret); 2916 2917 return ret; 2918 } 2919 2920 /* Remove from hardware lists. 2921 * Completions normally happen asynchronously 2922 */ 2923 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 2924 { 2925 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2926 struct ehci_qh *qh; 2927 unsigned long flags; 2928 2929 spin_lock_irqsave(&oxu->lock, flags); 2930 switch (usb_pipetype(urb->pipe)) { 2931 case PIPE_CONTROL: 2932 case PIPE_BULK: 2933 default: 2934 qh = (struct ehci_qh *) urb->hcpriv; 2935 if (!qh) 2936 break; 2937 unlink_async(oxu, qh); 2938 break; 2939 2940 case PIPE_INTERRUPT: 2941 qh = (struct ehci_qh *) urb->hcpriv; 2942 if (!qh) 2943 break; 2944 switch (qh->qh_state) { 2945 case QH_STATE_LINKED: 2946 intr_deschedule(oxu, qh); 2947 /* FALL THROUGH */ 2948 case QH_STATE_IDLE: 2949 qh_completions(oxu, qh); 2950 break; 2951 default: 2952 oxu_dbg(oxu, "bogus qh %p state %d\n", 2953 qh, qh->qh_state); 2954 goto done; 2955 } 2956 2957 /* reschedule QH iff another request is queued */ 2958 if (!list_empty(&qh->qtd_list) 2959 && HC_IS_RUNNING(hcd->state)) { 2960 int status; 2961 2962 status = qh_schedule(oxu, qh); 2963 spin_unlock_irqrestore(&oxu->lock, flags); 2964 2965 if (status != 0) { 2966 /* shouldn't happen often, but ... 2967 * FIXME kill those tds' urbs 2968 */ 2969 dev_err(hcd->self.controller, 2970 "can't reschedule qh %p, err %d\n", qh, 2971 status); 2972 } 2973 return status; 2974 } 2975 break; 2976 } 2977 done: 2978 spin_unlock_irqrestore(&oxu->lock, flags); 2979 return 0; 2980 } 2981 2982 /* Bulk qh holds the data toggle */ 2983 static void oxu_endpoint_disable(struct usb_hcd *hcd, 2984 struct usb_host_endpoint *ep) 2985 { 2986 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2987 unsigned long flags; 2988 struct ehci_qh *qh, *tmp; 2989 2990 /* ASSERT: any requests/urbs are being unlinked */ 2991 /* ASSERT: nobody can be submitting urbs for this any more */ 2992 2993 rescan: 2994 spin_lock_irqsave(&oxu->lock, flags); 2995 qh = ep->hcpriv; 2996 if (!qh) 2997 goto done; 2998 2999 /* endpoints can be iso streams. for now, we don't 3000 * accelerate iso completions ... so spin a while. 3001 */ 3002 if (qh->hw_info1 == 0) { 3003 oxu_vdbg(oxu, "iso delay\n"); 3004 goto idle_timeout; 3005 } 3006 3007 if (!HC_IS_RUNNING(hcd->state)) 3008 qh->qh_state = QH_STATE_IDLE; 3009 switch (qh->qh_state) { 3010 case QH_STATE_LINKED: 3011 for (tmp = oxu->async->qh_next.qh; 3012 tmp && tmp != qh; 3013 tmp = tmp->qh_next.qh) 3014 continue; 3015 /* periodic qh self-unlinks on empty */ 3016 if (!tmp) 3017 goto nogood; 3018 unlink_async(oxu, qh); 3019 /* FALL THROUGH */ 3020 case QH_STATE_UNLINK: /* wait for hw to finish? */ 3021 idle_timeout: 3022 spin_unlock_irqrestore(&oxu->lock, flags); 3023 schedule_timeout_uninterruptible(1); 3024 goto rescan; 3025 case QH_STATE_IDLE: /* fully unlinked */ 3026 if (list_empty(&qh->qtd_list)) { 3027 qh_put(qh); 3028 break; 3029 } 3030 /* fall through */ 3031 default: 3032 nogood: 3033 /* caller was supposed to have unlinked any requests; 3034 * that's not our job. just leak this memory. 3035 */ 3036 oxu_err(oxu, "qh %p (#%02x) state %d%s\n", 3037 qh, ep->desc.bEndpointAddress, qh->qh_state, 3038 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 3039 break; 3040 } 3041 ep->hcpriv = NULL; 3042 done: 3043 spin_unlock_irqrestore(&oxu->lock, flags); 3044 } 3045 3046 static int oxu_get_frame(struct usb_hcd *hcd) 3047 { 3048 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3049 3050 return (readl(&oxu->regs->frame_index) >> 3) % 3051 oxu->periodic_size; 3052 } 3053 3054 /* Build "status change" packet (one or two bytes) from HC registers */ 3055 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) 3056 { 3057 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3058 u32 temp, mask, status = 0; 3059 int ports, i, retval = 1; 3060 unsigned long flags; 3061 3062 /* if !PM, root hub timers won't get shut down ... */ 3063 if (!HC_IS_RUNNING(hcd->state)) 3064 return 0; 3065 3066 /* init status to no-changes */ 3067 buf[0] = 0; 3068 ports = HCS_N_PORTS(oxu->hcs_params); 3069 if (ports > 7) { 3070 buf[1] = 0; 3071 retval++; 3072 } 3073 3074 /* Some boards (mostly VIA?) report bogus overcurrent indications, 3075 * causing massive log spam unless we completely ignore them. It 3076 * may be relevant that VIA VT8235 controllers, where PORT_POWER is 3077 * always set, seem to clear PORT_OCC and PORT_CSC when writing to 3078 * PORT_POWER; that's surprising, but maybe within-spec. 3079 */ 3080 if (!ignore_oc) 3081 mask = PORT_CSC | PORT_PEC | PORT_OCC; 3082 else 3083 mask = PORT_CSC | PORT_PEC; 3084 3085 /* no hub change reports (bit 0) for now (power, ...) */ 3086 3087 /* port N changes (bit N)? */ 3088 spin_lock_irqsave(&oxu->lock, flags); 3089 for (i = 0; i < ports; i++) { 3090 temp = readl(&oxu->regs->port_status[i]); 3091 3092 /* 3093 * Return status information even for ports with OWNER set. 3094 * Otherwise hub_wq wouldn't see the disconnect event when a 3095 * high-speed device is switched over to the companion 3096 * controller by the user. 3097 */ 3098 3099 if (!(temp & PORT_CONNECT)) 3100 oxu->reset_done[i] = 0; 3101 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && 3102 time_after_eq(jiffies, oxu->reset_done[i]))) { 3103 if (i < 7) 3104 buf[0] |= 1 << (i + 1); 3105 else 3106 buf[1] |= 1 << (i - 7); 3107 status = STS_PCD; 3108 } 3109 } 3110 /* FIXME autosuspend idle root hubs */ 3111 spin_unlock_irqrestore(&oxu->lock, flags); 3112 return status ? retval : 0; 3113 } 3114 3115 /* Returns the speed of a device attached to a port on the root hub. */ 3116 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, 3117 unsigned int portsc) 3118 { 3119 switch ((portsc >> 26) & 3) { 3120 case 0: 3121 return 0; 3122 case 1: 3123 return USB_PORT_STAT_LOW_SPEED; 3124 case 2: 3125 default: 3126 return USB_PORT_STAT_HIGH_SPEED; 3127 } 3128 } 3129 3130 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) 3131 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, 3132 u16 wValue, u16 wIndex, char *buf, u16 wLength) 3133 { 3134 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3135 int ports = HCS_N_PORTS(oxu->hcs_params); 3136 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; 3137 u32 temp, status; 3138 unsigned long flags; 3139 int retval = 0; 3140 unsigned selector; 3141 3142 /* 3143 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 3144 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 3145 * (track current state ourselves) ... blink for diagnostics, 3146 * power, "this is the one", etc. EHCI spec supports this. 3147 */ 3148 3149 spin_lock_irqsave(&oxu->lock, flags); 3150 switch (typeReq) { 3151 case ClearHubFeature: 3152 switch (wValue) { 3153 case C_HUB_LOCAL_POWER: 3154 case C_HUB_OVER_CURRENT: 3155 /* no hub-wide feature/status flags */ 3156 break; 3157 default: 3158 goto error; 3159 } 3160 break; 3161 case ClearPortFeature: 3162 if (!wIndex || wIndex > ports) 3163 goto error; 3164 wIndex--; 3165 temp = readl(status_reg); 3166 3167 /* 3168 * Even if OWNER is set, so the port is owned by the 3169 * companion controller, hub_wq needs to be able to clear 3170 * the port-change status bits (especially 3171 * USB_PORT_STAT_C_CONNECTION). 3172 */ 3173 3174 switch (wValue) { 3175 case USB_PORT_FEAT_ENABLE: 3176 writel(temp & ~PORT_PE, status_reg); 3177 break; 3178 case USB_PORT_FEAT_C_ENABLE: 3179 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); 3180 break; 3181 case USB_PORT_FEAT_SUSPEND: 3182 if (temp & PORT_RESET) 3183 goto error; 3184 if (temp & PORT_SUSPEND) { 3185 if ((temp & PORT_PE) == 0) 3186 goto error; 3187 /* resume signaling for 20 msec */ 3188 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); 3189 writel(temp | PORT_RESUME, status_reg); 3190 oxu->reset_done[wIndex] = jiffies 3191 + msecs_to_jiffies(20); 3192 } 3193 break; 3194 case USB_PORT_FEAT_C_SUSPEND: 3195 /* we auto-clear this feature */ 3196 break; 3197 case USB_PORT_FEAT_POWER: 3198 if (HCS_PPC(oxu->hcs_params)) 3199 writel(temp & ~(PORT_RWC_BITS | PORT_POWER), 3200 status_reg); 3201 break; 3202 case USB_PORT_FEAT_C_CONNECTION: 3203 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); 3204 break; 3205 case USB_PORT_FEAT_C_OVER_CURRENT: 3206 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); 3207 break; 3208 case USB_PORT_FEAT_C_RESET: 3209 /* GetPortStatus clears reset */ 3210 break; 3211 default: 3212 goto error; 3213 } 3214 readl(&oxu->regs->command); /* unblock posted write */ 3215 break; 3216 case GetHubDescriptor: 3217 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) 3218 buf); 3219 break; 3220 case GetHubStatus: 3221 /* no hub-wide feature/status flags */ 3222 memset(buf, 0, 4); 3223 break; 3224 case GetPortStatus: 3225 if (!wIndex || wIndex > ports) 3226 goto error; 3227 wIndex--; 3228 status = 0; 3229 temp = readl(status_reg); 3230 3231 /* wPortChange bits */ 3232 if (temp & PORT_CSC) 3233 status |= USB_PORT_STAT_C_CONNECTION << 16; 3234 if (temp & PORT_PEC) 3235 status |= USB_PORT_STAT_C_ENABLE << 16; 3236 if ((temp & PORT_OCC) && !ignore_oc) 3237 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3238 3239 /* whoever resumes must GetPortStatus to complete it!! */ 3240 if (temp & PORT_RESUME) { 3241 3242 /* Remote Wakeup received? */ 3243 if (!oxu->reset_done[wIndex]) { 3244 /* resume signaling for 20 msec */ 3245 oxu->reset_done[wIndex] = jiffies 3246 + msecs_to_jiffies(20); 3247 /* check the port again */ 3248 mod_timer(&oxu_to_hcd(oxu)->rh_timer, 3249 oxu->reset_done[wIndex]); 3250 } 3251 3252 /* resume completed? */ 3253 else if (time_after_eq(jiffies, 3254 oxu->reset_done[wIndex])) { 3255 status |= USB_PORT_STAT_C_SUSPEND << 16; 3256 oxu->reset_done[wIndex] = 0; 3257 3258 /* stop resume signaling */ 3259 temp = readl(status_reg); 3260 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), 3261 status_reg); 3262 retval = handshake(oxu, status_reg, 3263 PORT_RESUME, 0, 2000 /* 2msec */); 3264 if (retval != 0) { 3265 oxu_err(oxu, 3266 "port %d resume error %d\n", 3267 wIndex + 1, retval); 3268 goto error; 3269 } 3270 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 3271 } 3272 } 3273 3274 /* whoever resets must GetPortStatus to complete it!! */ 3275 if ((temp & PORT_RESET) 3276 && time_after_eq(jiffies, 3277 oxu->reset_done[wIndex])) { 3278 status |= USB_PORT_STAT_C_RESET << 16; 3279 oxu->reset_done[wIndex] = 0; 3280 3281 /* force reset to complete */ 3282 writel(temp & ~(PORT_RWC_BITS | PORT_RESET), 3283 status_reg); 3284 /* REVISIT: some hardware needs 550+ usec to clear 3285 * this bit; seems too long to spin routinely... 3286 */ 3287 retval = handshake(oxu, status_reg, 3288 PORT_RESET, 0, 750); 3289 if (retval != 0) { 3290 oxu_err(oxu, "port %d reset error %d\n", 3291 wIndex + 1, retval); 3292 goto error; 3293 } 3294 3295 /* see what we found out */ 3296 temp = check_reset_complete(oxu, wIndex, status_reg, 3297 readl(status_reg)); 3298 } 3299 3300 /* transfer dedicated ports to the companion hc */ 3301 if ((temp & PORT_CONNECT) && 3302 test_bit(wIndex, &oxu->companion_ports)) { 3303 temp &= ~PORT_RWC_BITS; 3304 temp |= PORT_OWNER; 3305 writel(temp, status_reg); 3306 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); 3307 temp = readl(status_reg); 3308 } 3309 3310 /* 3311 * Even if OWNER is set, there's no harm letting hub_wq 3312 * see the wPortStatus values (they should all be 0 except 3313 * for PORT_POWER anyway). 3314 */ 3315 3316 if (temp & PORT_CONNECT) { 3317 status |= USB_PORT_STAT_CONNECTION; 3318 /* status may be from integrated TT */ 3319 status |= oxu_port_speed(oxu, temp); 3320 } 3321 if (temp & PORT_PE) 3322 status |= USB_PORT_STAT_ENABLE; 3323 if (temp & (PORT_SUSPEND|PORT_RESUME)) 3324 status |= USB_PORT_STAT_SUSPEND; 3325 if (temp & PORT_OC) 3326 status |= USB_PORT_STAT_OVERCURRENT; 3327 if (temp & PORT_RESET) 3328 status |= USB_PORT_STAT_RESET; 3329 if (temp & PORT_POWER) 3330 status |= USB_PORT_STAT_POWER; 3331 3332 #ifndef OXU_VERBOSE_DEBUG 3333 if (status & ~0xffff) /* only if wPortChange is interesting */ 3334 #endif 3335 dbg_port(oxu, "GetStatus", wIndex + 1, temp); 3336 put_unaligned(cpu_to_le32(status), (__le32 *) buf); 3337 break; 3338 case SetHubFeature: 3339 switch (wValue) { 3340 case C_HUB_LOCAL_POWER: 3341 case C_HUB_OVER_CURRENT: 3342 /* no hub-wide feature/status flags */ 3343 break; 3344 default: 3345 goto error; 3346 } 3347 break; 3348 case SetPortFeature: 3349 selector = wIndex >> 8; 3350 wIndex &= 0xff; 3351 if (!wIndex || wIndex > ports) 3352 goto error; 3353 wIndex--; 3354 temp = readl(status_reg); 3355 if (temp & PORT_OWNER) 3356 break; 3357 3358 temp &= ~PORT_RWC_BITS; 3359 switch (wValue) { 3360 case USB_PORT_FEAT_SUSPEND: 3361 if ((temp & PORT_PE) == 0 3362 || (temp & PORT_RESET) != 0) 3363 goto error; 3364 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3365 temp |= PORT_WAKE_BITS; 3366 writel(temp | PORT_SUSPEND, status_reg); 3367 break; 3368 case USB_PORT_FEAT_POWER: 3369 if (HCS_PPC(oxu->hcs_params)) 3370 writel(temp | PORT_POWER, status_reg); 3371 break; 3372 case USB_PORT_FEAT_RESET: 3373 if (temp & PORT_RESUME) 3374 goto error; 3375 /* line status bits may report this as low speed, 3376 * which can be fine if this root hub has a 3377 * transaction translator built in. 3378 */ 3379 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); 3380 temp |= PORT_RESET; 3381 temp &= ~PORT_PE; 3382 3383 /* 3384 * caller must wait, then call GetPortStatus 3385 * usb 2.0 spec says 50 ms resets on root 3386 */ 3387 oxu->reset_done[wIndex] = jiffies 3388 + msecs_to_jiffies(50); 3389 writel(temp, status_reg); 3390 break; 3391 3392 /* For downstream facing ports (these): one hub port is put 3393 * into test mode according to USB2 11.24.2.13, then the hub 3394 * must be reset (which for root hub now means rmmod+modprobe, 3395 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 3396 * about the EHCI-specific stuff. 3397 */ 3398 case USB_PORT_FEAT_TEST: 3399 if (!selector || selector > 5) 3400 goto error; 3401 ehci_quiesce(oxu); 3402 ehci_halt(oxu); 3403 temp |= selector << 16; 3404 writel(temp, status_reg); 3405 break; 3406 3407 default: 3408 goto error; 3409 } 3410 readl(&oxu->regs->command); /* unblock posted writes */ 3411 break; 3412 3413 default: 3414 error: 3415 /* "stall" on error */ 3416 retval = -EPIPE; 3417 } 3418 spin_unlock_irqrestore(&oxu->lock, flags); 3419 return retval; 3420 } 3421 3422 #ifdef CONFIG_PM 3423 3424 static int oxu_bus_suspend(struct usb_hcd *hcd) 3425 { 3426 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3427 int port; 3428 int mask; 3429 3430 oxu_dbg(oxu, "suspend root hub\n"); 3431 3432 if (time_before(jiffies, oxu->next_statechange)) 3433 msleep(5); 3434 3435 port = HCS_N_PORTS(oxu->hcs_params); 3436 spin_lock_irq(&oxu->lock); 3437 3438 /* stop schedules, clean any completed work */ 3439 if (HC_IS_RUNNING(hcd->state)) { 3440 ehci_quiesce(oxu); 3441 hcd->state = HC_STATE_QUIESCING; 3442 } 3443 oxu->command = readl(&oxu->regs->command); 3444 if (oxu->reclaim) 3445 oxu->reclaim_ready = 1; 3446 ehci_work(oxu); 3447 3448 /* Unlike other USB host controller types, EHCI doesn't have 3449 * any notion of "global" or bus-wide suspend. The driver has 3450 * to manually suspend all the active unsuspended ports, and 3451 * then manually resume them in the bus_resume() routine. 3452 */ 3453 oxu->bus_suspended = 0; 3454 while (port--) { 3455 u32 __iomem *reg = &oxu->regs->port_status[port]; 3456 u32 t1 = readl(reg) & ~PORT_RWC_BITS; 3457 u32 t2 = t1; 3458 3459 /* keep track of which ports we suspend */ 3460 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && 3461 !(t1 & PORT_SUSPEND)) { 3462 t2 |= PORT_SUSPEND; 3463 set_bit(port, &oxu->bus_suspended); 3464 } 3465 3466 /* enable remote wakeup on all ports */ 3467 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3468 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; 3469 else 3470 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); 3471 3472 if (t1 != t2) { 3473 oxu_vdbg(oxu, "port %d, %08x -> %08x\n", 3474 port + 1, t1, t2); 3475 writel(t2, reg); 3476 } 3477 } 3478 3479 /* turn off now-idle HC */ 3480 del_timer_sync(&oxu->watchdog); 3481 ehci_halt(oxu); 3482 hcd->state = HC_STATE_SUSPENDED; 3483 3484 /* allow remote wakeup */ 3485 mask = INTR_MASK; 3486 if (!device_may_wakeup(&hcd->self.root_hub->dev)) 3487 mask &= ~STS_PCD; 3488 writel(mask, &oxu->regs->intr_enable); 3489 readl(&oxu->regs->intr_enable); 3490 3491 oxu->next_statechange = jiffies + msecs_to_jiffies(10); 3492 spin_unlock_irq(&oxu->lock); 3493 return 0; 3494 } 3495 3496 /* Caller has locked the root hub, and should reset/reinit on error */ 3497 static int oxu_bus_resume(struct usb_hcd *hcd) 3498 { 3499 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3500 u32 temp; 3501 int i; 3502 3503 if (time_before(jiffies, oxu->next_statechange)) 3504 msleep(5); 3505 spin_lock_irq(&oxu->lock); 3506 3507 /* Ideally and we've got a real resume here, and no port's power 3508 * was lost. (For PCI, that means Vaux was maintained.) But we 3509 * could instead be restoring a swsusp snapshot -- so that BIOS was 3510 * the last user of the controller, not reset/pm hardware keeping 3511 * state we gave to it. 3512 */ 3513 temp = readl(&oxu->regs->intr_enable); 3514 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); 3515 3516 /* at least some APM implementations will try to deliver 3517 * IRQs right away, so delay them until we're ready. 3518 */ 3519 writel(0, &oxu->regs->intr_enable); 3520 3521 /* re-init operational registers */ 3522 writel(0, &oxu->regs->segment); 3523 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3524 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3525 3526 /* restore CMD_RUN, framelist size, and irq threshold */ 3527 writel(oxu->command, &oxu->regs->command); 3528 3529 /* Some controller/firmware combinations need a delay during which 3530 * they set up the port statuses. See Bugzilla #8190. */ 3531 mdelay(8); 3532 3533 /* manually resume the ports we suspended during bus_suspend() */ 3534 i = HCS_N_PORTS(oxu->hcs_params); 3535 while (i--) { 3536 temp = readl(&oxu->regs->port_status[i]); 3537 temp &= ~(PORT_RWC_BITS 3538 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); 3539 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3540 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 3541 temp |= PORT_RESUME; 3542 } 3543 writel(temp, &oxu->regs->port_status[i]); 3544 } 3545 i = HCS_N_PORTS(oxu->hcs_params); 3546 mdelay(20); 3547 while (i--) { 3548 temp = readl(&oxu->regs->port_status[i]); 3549 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3550 temp &= ~(PORT_RWC_BITS | PORT_RESUME); 3551 writel(temp, &oxu->regs->port_status[i]); 3552 oxu_vdbg(oxu, "resumed port %d\n", i + 1); 3553 } 3554 } 3555 (void) readl(&oxu->regs->command); 3556 3557 /* maybe re-activate the schedule(s) */ 3558 temp = 0; 3559 if (oxu->async->qh_next.qh) 3560 temp |= CMD_ASE; 3561 if (oxu->periodic_sched) 3562 temp |= CMD_PSE; 3563 if (temp) { 3564 oxu->command |= temp; 3565 writel(oxu->command, &oxu->regs->command); 3566 } 3567 3568 oxu->next_statechange = jiffies + msecs_to_jiffies(5); 3569 hcd->state = HC_STATE_RUNNING; 3570 3571 /* Now we can safely re-enable irqs */ 3572 writel(INTR_MASK, &oxu->regs->intr_enable); 3573 3574 spin_unlock_irq(&oxu->lock); 3575 return 0; 3576 } 3577 3578 #else 3579 3580 static int oxu_bus_suspend(struct usb_hcd *hcd) 3581 { 3582 return 0; 3583 } 3584 3585 static int oxu_bus_resume(struct usb_hcd *hcd) 3586 { 3587 return 0; 3588 } 3589 3590 #endif /* CONFIG_PM */ 3591 3592 static const struct hc_driver oxu_hc_driver = { 3593 .description = "oxu210hp_hcd", 3594 .product_desc = "oxu210hp HCD", 3595 .hcd_priv_size = sizeof(struct oxu_hcd), 3596 3597 /* 3598 * Generic hardware linkage 3599 */ 3600 .irq = oxu_irq, 3601 .flags = HCD_MEMORY | HCD_USB2, 3602 3603 /* 3604 * Basic lifecycle operations 3605 */ 3606 .reset = oxu_reset, 3607 .start = oxu_run, 3608 .stop = oxu_stop, 3609 .shutdown = oxu_shutdown, 3610 3611 /* 3612 * Managing i/o requests and associated device resources 3613 */ 3614 .urb_enqueue = oxu_urb_enqueue, 3615 .urb_dequeue = oxu_urb_dequeue, 3616 .endpoint_disable = oxu_endpoint_disable, 3617 3618 /* 3619 * Scheduling support 3620 */ 3621 .get_frame_number = oxu_get_frame, 3622 3623 /* 3624 * Root hub support 3625 */ 3626 .hub_status_data = oxu_hub_status_data, 3627 .hub_control = oxu_hub_control, 3628 .bus_suspend = oxu_bus_suspend, 3629 .bus_resume = oxu_bus_resume, 3630 }; 3631 3632 /* 3633 * Module stuff 3634 */ 3635 3636 static void oxu_configuration(struct platform_device *pdev, void *base) 3637 { 3638 u32 tmp; 3639 3640 /* Initialize top level registers. 3641 * First write ever 3642 */ 3643 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3644 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); 3645 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3646 3647 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); 3648 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); 3649 3650 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | 3651 OXU_COMPARATOR | OXU_ASO_OP); 3652 3653 tmp = oxu_readl(base, OXU_CLKCTRL_SET); 3654 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); 3655 3656 /* Clear all top interrupt enable */ 3657 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); 3658 3659 /* Clear all top interrupt status */ 3660 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); 3661 3662 /* Enable all needed top interrupt except OTG SPH core */ 3663 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); 3664 } 3665 3666 static int oxu_verify_id(struct platform_device *pdev, void *base) 3667 { 3668 u32 id; 3669 static const char * const bo[] = { 3670 "reserved", 3671 "128-pin LQFP", 3672 "84-pin TFBGA", 3673 "reserved", 3674 }; 3675 3676 /* Read controller signature register to find a match */ 3677 id = oxu_readl(base, OXU_DEVICEID); 3678 dev_info(&pdev->dev, "device ID %x\n", id); 3679 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) 3680 return -1; 3681 3682 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", 3683 id >> OXU_REV_SHIFT, 3684 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], 3685 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, 3686 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); 3687 3688 return 0; 3689 } 3690 3691 static const struct hc_driver oxu_hc_driver; 3692 static struct usb_hcd *oxu_create(struct platform_device *pdev, 3693 unsigned long memstart, unsigned long memlen, 3694 void *base, int irq, int otg) 3695 { 3696 struct device *dev = &pdev->dev; 3697 3698 struct usb_hcd *hcd; 3699 struct oxu_hcd *oxu; 3700 int ret; 3701 3702 /* Set endian mode and host mode */ 3703 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), 3704 OXU_USBMODE, 3705 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); 3706 3707 hcd = usb_create_hcd(&oxu_hc_driver, dev, 3708 otg ? "oxu210hp_otg" : "oxu210hp_sph"); 3709 if (!hcd) 3710 return ERR_PTR(-ENOMEM); 3711 3712 hcd->rsrc_start = memstart; 3713 hcd->rsrc_len = memlen; 3714 hcd->regs = base; 3715 hcd->irq = irq; 3716 hcd->state = HC_STATE_HALT; 3717 3718 oxu = hcd_to_oxu(hcd); 3719 oxu->is_otg = otg; 3720 3721 ret = usb_add_hcd(hcd, irq, IRQF_SHARED); 3722 if (ret < 0) 3723 return ERR_PTR(ret); 3724 3725 device_wakeup_enable(hcd->self.controller); 3726 return hcd; 3727 } 3728 3729 static int oxu_init(struct platform_device *pdev, 3730 unsigned long memstart, unsigned long memlen, 3731 void *base, int irq) 3732 { 3733 struct oxu_info *info = platform_get_drvdata(pdev); 3734 struct usb_hcd *hcd; 3735 int ret; 3736 3737 /* First time configuration at start up */ 3738 oxu_configuration(pdev, base); 3739 3740 ret = oxu_verify_id(pdev, base); 3741 if (ret) { 3742 dev_err(&pdev->dev, "no devices found!\n"); 3743 return -ENODEV; 3744 } 3745 3746 /* Create the OTG controller */ 3747 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); 3748 if (IS_ERR(hcd)) { 3749 dev_err(&pdev->dev, "cannot create OTG controller!\n"); 3750 ret = PTR_ERR(hcd); 3751 goto error_create_otg; 3752 } 3753 info->hcd[0] = hcd; 3754 3755 /* Create the SPH host controller */ 3756 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); 3757 if (IS_ERR(hcd)) { 3758 dev_err(&pdev->dev, "cannot create SPH controller!\n"); 3759 ret = PTR_ERR(hcd); 3760 goto error_create_sph; 3761 } 3762 info->hcd[1] = hcd; 3763 3764 oxu_writel(base, OXU_CHIPIRQEN_SET, 3765 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); 3766 3767 return 0; 3768 3769 error_create_sph: 3770 usb_remove_hcd(info->hcd[0]); 3771 usb_put_hcd(info->hcd[0]); 3772 3773 error_create_otg: 3774 return ret; 3775 } 3776 3777 static int oxu_drv_probe(struct platform_device *pdev) 3778 { 3779 struct resource *res; 3780 void *base; 3781 unsigned long memstart, memlen; 3782 int irq, ret; 3783 struct oxu_info *info; 3784 3785 if (usb_disabled()) 3786 return -ENODEV; 3787 3788 /* 3789 * Get the platform resources 3790 */ 3791 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 3792 if (!res) { 3793 dev_err(&pdev->dev, 3794 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev)); 3795 return -ENODEV; 3796 } 3797 irq = res->start; 3798 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); 3799 3800 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3801 base = devm_ioremap_resource(&pdev->dev, res); 3802 if (IS_ERR(base)) { 3803 ret = PTR_ERR(base); 3804 goto error; 3805 } 3806 memstart = res->start; 3807 memlen = resource_size(res); 3808 3809 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING); 3810 if (ret) { 3811 dev_err(&pdev->dev, "error setting irq type\n"); 3812 ret = -EFAULT; 3813 goto error; 3814 } 3815 3816 /* Allocate a driver data struct to hold useful info for both 3817 * SPH & OTG devices 3818 */ 3819 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL); 3820 if (!info) { 3821 ret = -EFAULT; 3822 goto error; 3823 } 3824 platform_set_drvdata(pdev, info); 3825 3826 ret = oxu_init(pdev, memstart, memlen, base, irq); 3827 if (ret < 0) { 3828 dev_dbg(&pdev->dev, "cannot init USB devices\n"); 3829 goto error; 3830 } 3831 3832 dev_info(&pdev->dev, "devices enabled and running\n"); 3833 platform_set_drvdata(pdev, info); 3834 3835 return 0; 3836 3837 error: 3838 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); 3839 return ret; 3840 } 3841 3842 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) 3843 { 3844 usb_remove_hcd(hcd); 3845 usb_put_hcd(hcd); 3846 } 3847 3848 static int oxu_drv_remove(struct platform_device *pdev) 3849 { 3850 struct oxu_info *info = platform_get_drvdata(pdev); 3851 3852 oxu_remove(pdev, info->hcd[0]); 3853 oxu_remove(pdev, info->hcd[1]); 3854 3855 return 0; 3856 } 3857 3858 static void oxu_drv_shutdown(struct platform_device *pdev) 3859 { 3860 oxu_drv_remove(pdev); 3861 } 3862 3863 #if 0 3864 /* FIXME: TODO */ 3865 static int oxu_drv_suspend(struct device *dev) 3866 { 3867 struct platform_device *pdev = to_platform_device(dev); 3868 struct usb_hcd *hcd = dev_get_drvdata(dev); 3869 3870 return 0; 3871 } 3872 3873 static int oxu_drv_resume(struct device *dev) 3874 { 3875 struct platform_device *pdev = to_platform_device(dev); 3876 struct usb_hcd *hcd = dev_get_drvdata(dev); 3877 3878 return 0; 3879 } 3880 #else 3881 #define oxu_drv_suspend NULL 3882 #define oxu_drv_resume NULL 3883 #endif 3884 3885 static struct platform_driver oxu_driver = { 3886 .probe = oxu_drv_probe, 3887 .remove = oxu_drv_remove, 3888 .shutdown = oxu_drv_shutdown, 3889 .suspend = oxu_drv_suspend, 3890 .resume = oxu_drv_resume, 3891 .driver = { 3892 .name = "oxu210hp-hcd", 3893 .bus = &platform_bus_type 3894 } 3895 }; 3896 3897 module_platform_driver(oxu_driver); 3898 3899 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); 3900 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 3901 MODULE_LICENSE("GPL"); 3902