1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> 4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> 5 * 6 * This code is *strongly* based on EHCI-HCD code by David Brownell since 7 * the chip is a quasi-EHCI compatible. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/dmapool.h> 13 #include <linux/kernel.h> 14 #include <linux/delay.h> 15 #include <linux/ioport.h> 16 #include <linux/sched.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/timer.h> 20 #include <linux/list.h> 21 #include <linux/interrupt.h> 22 #include <linux/usb.h> 23 #include <linux/usb/hcd.h> 24 #include <linux/moduleparam.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/io.h> 27 28 #include <asm/irq.h> 29 #include <asm/unaligned.h> 30 31 #include <linux/irq.h> 32 #include <linux/platform_device.h> 33 34 #include "oxu210hp.h" 35 36 #define DRIVER_VERSION "0.0.50" 37 38 /* 39 * Main defines 40 */ 41 42 #define oxu_dbg(oxu, fmt, args...) \ 43 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 44 #define oxu_err(oxu, fmt, args...) \ 45 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 46 #define oxu_info(oxu, fmt, args...) \ 47 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 48 49 #ifdef CONFIG_DYNAMIC_DEBUG 50 #define DEBUG 51 #endif 52 53 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) 54 { 55 return container_of((void *) oxu, struct usb_hcd, hcd_priv); 56 } 57 58 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) 59 { 60 return (struct oxu_hcd *) (hcd->hcd_priv); 61 } 62 63 /* 64 * Debug stuff 65 */ 66 67 #undef OXU_URB_TRACE 68 #undef OXU_VERBOSE_DEBUG 69 70 #ifdef OXU_VERBOSE_DEBUG 71 #define oxu_vdbg oxu_dbg 72 #else 73 #define oxu_vdbg(oxu, fmt, args...) /* Nop */ 74 #endif 75 76 #ifdef DEBUG 77 78 static int __attribute__((__unused__)) 79 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 80 { 81 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 82 label, label[0] ? " " : "", status, 83 (status & STS_ASS) ? " Async" : "", 84 (status & STS_PSS) ? " Periodic" : "", 85 (status & STS_RECL) ? " Recl" : "", 86 (status & STS_HALT) ? " Halt" : "", 87 (status & STS_IAA) ? " IAA" : "", 88 (status & STS_FATAL) ? " FATAL" : "", 89 (status & STS_FLR) ? " FLR" : "", 90 (status & STS_PCD) ? " PCD" : "", 91 (status & STS_ERR) ? " ERR" : "", 92 (status & STS_INT) ? " INT" : "" 93 ); 94 } 95 96 static int __attribute__((__unused__)) 97 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 98 { 99 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 100 label, label[0] ? " " : "", enable, 101 (enable & STS_IAA) ? " IAA" : "", 102 (enable & STS_FATAL) ? " FATAL" : "", 103 (enable & STS_FLR) ? " FLR" : "", 104 (enable & STS_PCD) ? " PCD" : "", 105 (enable & STS_ERR) ? " ERR" : "", 106 (enable & STS_INT) ? " INT" : "" 107 ); 108 } 109 110 static const char *const fls_strings[] = 111 { "1024", "512", "256", "??" }; 112 113 static int dbg_command_buf(char *buf, unsigned len, 114 const char *label, u32 command) 115 { 116 return scnprintf(buf, len, 117 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", 118 label, label[0] ? " " : "", command, 119 (command & CMD_PARK) ? "park" : "(park)", 120 CMD_PARK_CNT(command), 121 (command >> 16) & 0x3f, 122 (command & CMD_LRESET) ? " LReset" : "", 123 (command & CMD_IAAD) ? " IAAD" : "", 124 (command & CMD_ASE) ? " Async" : "", 125 (command & CMD_PSE) ? " Periodic" : "", 126 fls_strings[(command >> 2) & 0x3], 127 (command & CMD_RESET) ? " Reset" : "", 128 (command & CMD_RUN) ? "RUN" : "HALT" 129 ); 130 } 131 132 static int dbg_port_buf(char *buf, unsigned len, const char *label, 133 int port, u32 status) 134 { 135 char *sig; 136 137 /* signaling state */ 138 switch (status & (3 << 10)) { 139 case 0 << 10: 140 sig = "se0"; 141 break; 142 case 1 << 10: 143 sig = "k"; /* low speed */ 144 break; 145 case 2 << 10: 146 sig = "j"; 147 break; 148 default: 149 sig = "?"; 150 break; 151 } 152 153 return scnprintf(buf, len, 154 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", 155 label, label[0] ? " " : "", port, status, 156 (status & PORT_POWER) ? " POWER" : "", 157 (status & PORT_OWNER) ? " OWNER" : "", 158 sig, 159 (status & PORT_RESET) ? " RESET" : "", 160 (status & PORT_SUSPEND) ? " SUSPEND" : "", 161 (status & PORT_RESUME) ? " RESUME" : "", 162 (status & PORT_OCC) ? " OCC" : "", 163 (status & PORT_OC) ? " OC" : "", 164 (status & PORT_PEC) ? " PEC" : "", 165 (status & PORT_PE) ? " PE" : "", 166 (status & PORT_CSC) ? " CSC" : "", 167 (status & PORT_CONNECT) ? " CONNECT" : "" 168 ); 169 } 170 171 #else 172 173 static inline int __attribute__((__unused__)) 174 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 175 { return 0; } 176 177 static inline int __attribute__((__unused__)) 178 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 179 { return 0; } 180 181 static inline int __attribute__((__unused__)) 182 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 183 { return 0; } 184 185 static inline int __attribute__((__unused__)) 186 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 187 { return 0; } 188 189 #endif /* DEBUG */ 190 191 /* functions have the "wrong" filename when they're output... */ 192 #define dbg_status(oxu, label, status) { \ 193 char _buf[80]; \ 194 dbg_status_buf(_buf, sizeof _buf, label, status); \ 195 oxu_dbg(oxu, "%s\n", _buf); \ 196 } 197 198 #define dbg_cmd(oxu, label, command) { \ 199 char _buf[80]; \ 200 dbg_command_buf(_buf, sizeof _buf, label, command); \ 201 oxu_dbg(oxu, "%s\n", _buf); \ 202 } 203 204 #define dbg_port(oxu, label, port, status) { \ 205 char _buf[80]; \ 206 dbg_port_buf(_buf, sizeof _buf, label, port, status); \ 207 oxu_dbg(oxu, "%s\n", _buf); \ 208 } 209 210 /* 211 * Module parameters 212 */ 213 214 /* Initial IRQ latency: faster than hw default */ 215 static int log2_irq_thresh; /* 0 to 6 */ 216 module_param(log2_irq_thresh, int, S_IRUGO); 217 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 218 219 /* Initial park setting: slower than hw default */ 220 static unsigned park; 221 module_param(park, uint, S_IRUGO); 222 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 223 224 /* For flakey hardware, ignore overcurrent indicators */ 225 static bool ignore_oc; 226 module_param(ignore_oc, bool, S_IRUGO); 227 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); 228 229 230 static void ehci_work(struct oxu_hcd *oxu); 231 static int oxu_hub_control(struct usb_hcd *hcd, 232 u16 typeReq, u16 wValue, u16 wIndex, 233 char *buf, u16 wLength); 234 235 /* 236 * Local functions 237 */ 238 239 /* Low level read/write registers functions */ 240 static inline u32 oxu_readl(void *base, u32 reg) 241 { 242 return readl(base + reg); 243 } 244 245 static inline void oxu_writel(void *base, u32 reg, u32 val) 246 { 247 writel(val, base + reg); 248 } 249 250 static inline void timer_action_done(struct oxu_hcd *oxu, 251 enum ehci_timer_action action) 252 { 253 clear_bit(action, &oxu->actions); 254 } 255 256 static inline void timer_action(struct oxu_hcd *oxu, 257 enum ehci_timer_action action) 258 { 259 if (!test_and_set_bit(action, &oxu->actions)) { 260 unsigned long t; 261 262 switch (action) { 263 case TIMER_IAA_WATCHDOG: 264 t = EHCI_IAA_JIFFIES; 265 break; 266 case TIMER_IO_WATCHDOG: 267 t = EHCI_IO_JIFFIES; 268 break; 269 case TIMER_ASYNC_OFF: 270 t = EHCI_ASYNC_JIFFIES; 271 break; 272 case TIMER_ASYNC_SHRINK: 273 default: 274 t = EHCI_SHRINK_JIFFIES; 275 break; 276 } 277 t += jiffies; 278 /* all timings except IAA watchdog can be overridden. 279 * async queue SHRINK often precedes IAA. while it's ready 280 * to go OFF neither can matter, and afterwards the IO 281 * watchdog stops unless there's still periodic traffic. 282 */ 283 if (action != TIMER_IAA_WATCHDOG 284 && t > oxu->watchdog.expires 285 && timer_pending(&oxu->watchdog)) 286 return; 287 mod_timer(&oxu->watchdog, t); 288 } 289 } 290 291 /* 292 * handshake - spin reading hc until handshake completes or fails 293 * @ptr: address of hc register to be read 294 * @mask: bits to look at in result of read 295 * @done: value of those bits when handshake succeeds 296 * @usec: timeout in microseconds 297 * 298 * Returns negative errno, or zero on success 299 * 300 * Success happens when the "mask" bits have the specified value (hardware 301 * handshake done). There are two failure modes: "usec" have passed (major 302 * hardware flakeout), or the register reads as all-ones (hardware removed). 303 * 304 * That last failure should_only happen in cases like physical cardbus eject 305 * before driver shutdown. But it also seems to be caused by bugs in cardbus 306 * bridge shutdown: shutting down the bridge before the devices using it. 307 */ 308 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, 309 u32 mask, u32 done, int usec) 310 { 311 u32 result; 312 313 do { 314 result = readl(ptr); 315 if (result == ~(u32)0) /* card removed */ 316 return -ENODEV; 317 result &= mask; 318 if (result == done) 319 return 0; 320 udelay(1); 321 usec--; 322 } while (usec > 0); 323 return -ETIMEDOUT; 324 } 325 326 /* Force HC to halt state from unknown (EHCI spec section 2.3) */ 327 static int ehci_halt(struct oxu_hcd *oxu) 328 { 329 u32 temp = readl(&oxu->regs->status); 330 331 /* disable any irqs left enabled by previous code */ 332 writel(0, &oxu->regs->intr_enable); 333 334 if ((temp & STS_HALT) != 0) 335 return 0; 336 337 temp = readl(&oxu->regs->command); 338 temp &= ~CMD_RUN; 339 writel(temp, &oxu->regs->command); 340 return handshake(oxu, &oxu->regs->status, 341 STS_HALT, STS_HALT, 16 * 125); 342 } 343 344 /* Put TDI/ARC silicon into EHCI mode */ 345 static void tdi_reset(struct oxu_hcd *oxu) 346 { 347 u32 __iomem *reg_ptr; 348 u32 tmp; 349 350 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); 351 tmp = readl(reg_ptr); 352 tmp |= 0x3; 353 writel(tmp, reg_ptr); 354 } 355 356 /* Reset a non-running (STS_HALT == 1) controller */ 357 static int ehci_reset(struct oxu_hcd *oxu) 358 { 359 int retval; 360 u32 command = readl(&oxu->regs->command); 361 362 command |= CMD_RESET; 363 dbg_cmd(oxu, "reset", command); 364 writel(command, &oxu->regs->command); 365 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 366 oxu->next_statechange = jiffies; 367 retval = handshake(oxu, &oxu->regs->command, 368 CMD_RESET, 0, 250 * 1000); 369 370 if (retval) 371 return retval; 372 373 tdi_reset(oxu); 374 375 return retval; 376 } 377 378 /* Idle the controller (from running) */ 379 static void ehci_quiesce(struct oxu_hcd *oxu) 380 { 381 u32 temp; 382 383 #ifdef DEBUG 384 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)); 385 #endif 386 387 /* wait for any schedule enables/disables to take effect */ 388 temp = readl(&oxu->regs->command) << 10; 389 temp &= STS_ASS | STS_PSS; 390 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 391 temp, 16 * 125) != 0) { 392 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 393 return; 394 } 395 396 /* then disable anything that's still active */ 397 temp = readl(&oxu->regs->command); 398 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); 399 writel(temp, &oxu->regs->command); 400 401 /* hardware can take 16 microframes to turn off ... */ 402 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 403 0, 16 * 125) != 0) { 404 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 405 return; 406 } 407 } 408 409 static int check_reset_complete(struct oxu_hcd *oxu, int index, 410 u32 __iomem *status_reg, int port_status) 411 { 412 if (!(port_status & PORT_CONNECT)) { 413 oxu->reset_done[index] = 0; 414 return port_status; 415 } 416 417 /* if reset finished and it's still not enabled -- handoff */ 418 if (!(port_status & PORT_PE)) { 419 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", 420 index+1); 421 return port_status; 422 } else 423 oxu_dbg(oxu, "port %d high speed\n", index + 1); 424 425 return port_status; 426 } 427 428 static void ehci_hub_descriptor(struct oxu_hcd *oxu, 429 struct usb_hub_descriptor *desc) 430 { 431 int ports = HCS_N_PORTS(oxu->hcs_params); 432 u16 temp; 433 434 desc->bDescriptorType = USB_DT_HUB; 435 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ 436 desc->bHubContrCurrent = 0; 437 438 desc->bNbrPorts = ports; 439 temp = 1 + (ports / 8); 440 desc->bDescLength = 7 + 2 * temp; 441 442 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 443 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 444 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 445 446 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 447 if (HCS_PPC(oxu->hcs_params)) 448 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */ 449 else 450 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 451 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); 452 } 453 454 455 /* Allocate an OXU210HP on-chip memory data buffer 456 * 457 * An on-chip memory data buffer is required for each OXU210HP USB transfer. 458 * Each transfer descriptor has one or more on-chip memory data buffers. 459 * 460 * Data buffers are allocated from a fix sized pool of data blocks. 461 * To minimise fragmentation and give reasonable memory utlisation, 462 * data buffers are allocated with sizes the power of 2 multiples of 463 * the block size, starting on an address a multiple of the allocated size. 464 * 465 * FIXME: callers of this function require a buffer to be allocated for 466 * len=0. This is a waste of on-chip memory and should be fix. Then this 467 * function should be changed to not allocate a buffer for len=0. 468 */ 469 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) 470 { 471 int n_blocks; /* minium blocks needed to hold len */ 472 int a_blocks; /* blocks allocated */ 473 int i, j; 474 475 /* Don't allocte bigger than supported */ 476 if (len > BUFFER_SIZE * BUFFER_NUM) { 477 oxu_err(oxu, "buffer too big (%d)\n", len); 478 return -ENOMEM; 479 } 480 481 spin_lock(&oxu->mem_lock); 482 483 /* Number of blocks needed to hold len */ 484 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; 485 486 /* Round the number of blocks up to the power of 2 */ 487 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) 488 ; 489 490 /* Find a suitable available data buffer */ 491 for (i = 0; i < BUFFER_NUM; 492 i += max(a_blocks, (int)oxu->db_used[i])) { 493 494 /* Check all the required blocks are available */ 495 for (j = 0; j < a_blocks; j++) 496 if (oxu->db_used[i + j]) 497 break; 498 499 if (j != a_blocks) 500 continue; 501 502 /* Allocate blocks found! */ 503 qtd->buffer = (void *) &oxu->mem->db_pool[i]; 504 qtd->buffer_dma = virt_to_phys(qtd->buffer); 505 506 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; 507 oxu->db_used[i] = a_blocks; 508 509 spin_unlock(&oxu->mem_lock); 510 511 return 0; 512 } 513 514 /* Failed */ 515 516 spin_unlock(&oxu->mem_lock); 517 518 return -ENOMEM; 519 } 520 521 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 522 { 523 int index; 524 525 spin_lock(&oxu->mem_lock); 526 527 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) 528 / BUFFER_SIZE; 529 oxu->db_used[index] = 0; 530 qtd->qtd_buffer_len = 0; 531 qtd->buffer_dma = 0; 532 qtd->buffer = NULL; 533 534 spin_unlock(&oxu->mem_lock); 535 } 536 537 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) 538 { 539 memset(qtd, 0, sizeof *qtd); 540 qtd->qtd_dma = dma; 541 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 542 qtd->hw_next = EHCI_LIST_END; 543 qtd->hw_alt_next = EHCI_LIST_END; 544 INIT_LIST_HEAD(&qtd->qtd_list); 545 } 546 547 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 548 { 549 int index; 550 551 if (qtd->buffer) 552 oxu_buf_free(oxu, qtd); 553 554 spin_lock(&oxu->mem_lock); 555 556 index = qtd - &oxu->mem->qtd_pool[0]; 557 oxu->qtd_used[index] = 0; 558 559 spin_unlock(&oxu->mem_lock); 560 } 561 562 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) 563 { 564 int i; 565 struct ehci_qtd *qtd = NULL; 566 567 spin_lock(&oxu->mem_lock); 568 569 for (i = 0; i < QTD_NUM; i++) 570 if (!oxu->qtd_used[i]) 571 break; 572 573 if (i < QTD_NUM) { 574 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; 575 memset(qtd, 0, sizeof *qtd); 576 577 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 578 qtd->hw_next = EHCI_LIST_END; 579 qtd->hw_alt_next = EHCI_LIST_END; 580 INIT_LIST_HEAD(&qtd->qtd_list); 581 582 qtd->qtd_dma = virt_to_phys(qtd); 583 584 oxu->qtd_used[i] = 1; 585 } 586 587 spin_unlock(&oxu->mem_lock); 588 589 return qtd; 590 } 591 592 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) 593 { 594 int index; 595 596 spin_lock(&oxu->mem_lock); 597 598 index = qh - &oxu->mem->qh_pool[0]; 599 oxu->qh_used[index] = 0; 600 601 spin_unlock(&oxu->mem_lock); 602 } 603 604 static void qh_destroy(struct kref *kref) 605 { 606 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); 607 struct oxu_hcd *oxu = qh->oxu; 608 609 /* clean qtds first, and know this is not linked */ 610 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 611 oxu_dbg(oxu, "unused qh not empty!\n"); 612 BUG(); 613 } 614 if (qh->dummy) 615 oxu_qtd_free(oxu, qh->dummy); 616 oxu_qh_free(oxu, qh); 617 } 618 619 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) 620 { 621 int i; 622 struct ehci_qh *qh = NULL; 623 624 spin_lock(&oxu->mem_lock); 625 626 for (i = 0; i < QHEAD_NUM; i++) 627 if (!oxu->qh_used[i]) 628 break; 629 630 if (i < QHEAD_NUM) { 631 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; 632 memset(qh, 0, sizeof *qh); 633 634 kref_init(&qh->kref); 635 qh->oxu = oxu; 636 qh->qh_dma = virt_to_phys(qh); 637 INIT_LIST_HEAD(&qh->qtd_list); 638 639 /* dummy td enables safe urb queuing */ 640 qh->dummy = ehci_qtd_alloc(oxu); 641 if (qh->dummy == NULL) { 642 oxu_dbg(oxu, "no dummy td\n"); 643 oxu->qh_used[i] = 0; 644 qh = NULL; 645 goto unlock; 646 } 647 648 oxu->qh_used[i] = 1; 649 } 650 unlock: 651 spin_unlock(&oxu->mem_lock); 652 653 return qh; 654 } 655 656 /* to share a qh (cpu threads, or hc) */ 657 static inline struct ehci_qh *qh_get(struct ehci_qh *qh) 658 { 659 kref_get(&qh->kref); 660 return qh; 661 } 662 663 static inline void qh_put(struct ehci_qh *qh) 664 { 665 kref_put(&qh->kref, qh_destroy); 666 } 667 668 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) 669 { 670 int index; 671 672 spin_lock(&oxu->mem_lock); 673 674 index = murb - &oxu->murb_pool[0]; 675 oxu->murb_used[index] = 0; 676 677 spin_unlock(&oxu->mem_lock); 678 } 679 680 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) 681 682 { 683 int i; 684 struct oxu_murb *murb = NULL; 685 686 spin_lock(&oxu->mem_lock); 687 688 for (i = 0; i < MURB_NUM; i++) 689 if (!oxu->murb_used[i]) 690 break; 691 692 if (i < MURB_NUM) { 693 murb = &(oxu->murb_pool)[i]; 694 695 oxu->murb_used[i] = 1; 696 } 697 698 spin_unlock(&oxu->mem_lock); 699 700 return murb; 701 } 702 703 /* The queue heads and transfer descriptors are managed from pools tied 704 * to each of the "per device" structures. 705 * This is the initialisation and cleanup code. 706 */ 707 static void ehci_mem_cleanup(struct oxu_hcd *oxu) 708 { 709 kfree(oxu->murb_pool); 710 oxu->murb_pool = NULL; 711 712 if (oxu->async) 713 qh_put(oxu->async); 714 oxu->async = NULL; 715 716 del_timer(&oxu->urb_timer); 717 718 oxu->periodic = NULL; 719 720 /* shadow periodic table */ 721 kfree(oxu->pshadow); 722 oxu->pshadow = NULL; 723 } 724 725 /* Remember to add cleanup code (above) if you add anything here. 726 */ 727 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) 728 { 729 int i; 730 731 for (i = 0; i < oxu->periodic_size; i++) 732 oxu->mem->frame_list[i] = EHCI_LIST_END; 733 for (i = 0; i < QHEAD_NUM; i++) 734 oxu->qh_used[i] = 0; 735 for (i = 0; i < QTD_NUM; i++) 736 oxu->qtd_used[i] = 0; 737 738 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); 739 if (!oxu->murb_pool) 740 goto fail; 741 742 for (i = 0; i < MURB_NUM; i++) 743 oxu->murb_used[i] = 0; 744 745 oxu->async = oxu_qh_alloc(oxu); 746 if (!oxu->async) 747 goto fail; 748 749 oxu->periodic = (__le32 *) &oxu->mem->frame_list; 750 oxu->periodic_dma = virt_to_phys(oxu->periodic); 751 752 for (i = 0; i < oxu->periodic_size; i++) 753 oxu->periodic[i] = EHCI_LIST_END; 754 755 /* software shadow of hardware table */ 756 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); 757 if (oxu->pshadow != NULL) 758 return 0; 759 760 fail: 761 oxu_dbg(oxu, "couldn't init memory\n"); 762 ehci_mem_cleanup(oxu); 763 return -ENOMEM; 764 } 765 766 /* Fill a qtd, returning how much of the buffer we were able to queue up. 767 */ 768 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, 769 int token, int maxpacket) 770 { 771 int i, count; 772 u64 addr = buf; 773 774 /* one buffer entry per 4K ... first might be short or unaligned */ 775 qtd->hw_buf[0] = cpu_to_le32((u32)addr); 776 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); 777 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 778 if (likely(len < count)) /* ... iff needed */ 779 count = len; 780 else { 781 buf += 0x1000; 782 buf &= ~0x0fff; 783 784 /* per-qtd limit: from 16K to 20K (best alignment) */ 785 for (i = 1; count < len && i < 5; i++) { 786 addr = buf; 787 qtd->hw_buf[i] = cpu_to_le32((u32)addr); 788 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); 789 buf += 0x1000; 790 if ((count + 0x1000) < len) 791 count += 0x1000; 792 else 793 count = len; 794 } 795 796 /* short packets may only terminate transfers */ 797 if (count != len) 798 count -= (count % maxpacket); 799 } 800 qtd->hw_token = cpu_to_le32((count << 16) | token); 801 qtd->length = count; 802 803 return count; 804 } 805 806 static inline void qh_update(struct oxu_hcd *oxu, 807 struct ehci_qh *qh, struct ehci_qtd *qtd) 808 { 809 /* writes to an active overlay are unsafe */ 810 BUG_ON(qh->qh_state != QH_STATE_IDLE); 811 812 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); 813 qh->hw_alt_next = EHCI_LIST_END; 814 815 /* Except for control endpoints, we make hardware maintain data 816 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 817 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 818 * ever clear it. 819 */ 820 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { 821 unsigned is_out, epnum; 822 823 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); 824 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; 825 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 826 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); 827 usb_settoggle(qh->dev, epnum, is_out, 1); 828 } 829 } 830 831 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 832 wmb(); 833 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); 834 } 835 836 /* If it weren't for a common silicon quirk (writing the dummy into the qh 837 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 838 * recovery (including urb dequeue) would need software changes to a QH... 839 */ 840 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) 841 { 842 struct ehci_qtd *qtd; 843 844 if (list_empty(&qh->qtd_list)) 845 qtd = qh->dummy; 846 else { 847 qtd = list_entry(qh->qtd_list.next, 848 struct ehci_qtd, qtd_list); 849 /* first qtd may already be partially processed */ 850 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) 851 qtd = NULL; 852 } 853 854 if (qtd) 855 qh_update(oxu, qh, qtd); 856 } 857 858 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, 859 size_t length, u32 token) 860 { 861 /* count IN/OUT bytes, not SETUP (even short packets) */ 862 if (likely(QTD_PID(token) != 2)) 863 urb->actual_length += length - QTD_LENGTH(token); 864 865 /* don't modify error codes */ 866 if (unlikely(urb->status != -EINPROGRESS)) 867 return; 868 869 /* force cleanup after short read; not always an error */ 870 if (unlikely(IS_SHORT_READ(token))) 871 urb->status = -EREMOTEIO; 872 873 /* serious "can't proceed" faults reported by the hardware */ 874 if (token & QTD_STS_HALT) { 875 if (token & QTD_STS_BABBLE) { 876 /* FIXME "must" disable babbling device's port too */ 877 urb->status = -EOVERFLOW; 878 } else if (token & QTD_STS_MMF) { 879 /* fs/ls interrupt xfer missed the complete-split */ 880 urb->status = -EPROTO; 881 } else if (token & QTD_STS_DBE) { 882 urb->status = (QTD_PID(token) == 1) /* IN ? */ 883 ? -ENOSR /* hc couldn't read data */ 884 : -ECOMM; /* hc couldn't write data */ 885 } else if (token & QTD_STS_XACT) { 886 /* timeout, bad crc, wrong PID, etc; retried */ 887 if (QTD_CERR(token)) 888 urb->status = -EPIPE; 889 else { 890 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", 891 urb->dev->devpath, 892 usb_pipeendpoint(urb->pipe), 893 usb_pipein(urb->pipe) ? "in" : "out"); 894 urb->status = -EPROTO; 895 } 896 /* CERR nonzero + no errors + halt --> stall */ 897 } else if (QTD_CERR(token)) 898 urb->status = -EPIPE; 899 else /* unknown */ 900 urb->status = -EPROTO; 901 902 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", 903 usb_pipedevice(urb->pipe), 904 usb_pipeendpoint(urb->pipe), 905 usb_pipein(urb->pipe) ? "in" : "out", 906 token, urb->status); 907 } 908 } 909 910 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) 911 __releases(oxu->lock) 912 __acquires(oxu->lock) 913 { 914 if (likely(urb->hcpriv != NULL)) { 915 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 916 917 /* S-mask in a QH means it's an interrupt urb */ 918 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { 919 920 /* ... update hc-wide periodic stats (for usbfs) */ 921 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; 922 } 923 qh_put(qh); 924 } 925 926 urb->hcpriv = NULL; 927 switch (urb->status) { 928 case -EINPROGRESS: /* success */ 929 urb->status = 0; 930 default: /* fault */ 931 break; 932 case -EREMOTEIO: /* fault or normal */ 933 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 934 urb->status = 0; 935 break; 936 case -ECONNRESET: /* canceled */ 937 case -ENOENT: 938 break; 939 } 940 941 #ifdef OXU_URB_TRACE 942 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", 943 __func__, urb->dev->devpath, urb, 944 usb_pipeendpoint(urb->pipe), 945 usb_pipein(urb->pipe) ? "in" : "out", 946 urb->status, 947 urb->actual_length, urb->transfer_buffer_length); 948 #endif 949 950 /* complete() can reenter this HCD */ 951 spin_unlock(&oxu->lock); 952 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); 953 spin_lock(&oxu->lock); 954 } 955 956 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 957 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 958 959 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 960 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 961 962 #define HALT_BIT cpu_to_le32(QTD_STS_HALT) 963 964 /* Process and free completed qtds for a qh, returning URBs to drivers. 965 * Chases up to qh->hw_current. Returns number of completions called, 966 * indicating how much "real" work we did. 967 */ 968 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) 969 { 970 struct ehci_qtd *last = NULL, *end = qh->dummy; 971 struct ehci_qtd *qtd, *tmp; 972 int stopped; 973 unsigned count = 0; 974 int do_status = 0; 975 u8 state; 976 struct oxu_murb *murb = NULL; 977 978 if (unlikely(list_empty(&qh->qtd_list))) 979 return count; 980 981 /* completions (or tasks on other cpus) must never clobber HALT 982 * till we've gone through and cleaned everything up, even when 983 * they add urbs to this qh's queue or mark them for unlinking. 984 * 985 * NOTE: unlinking expects to be done in queue order. 986 */ 987 state = qh->qh_state; 988 qh->qh_state = QH_STATE_COMPLETING; 989 stopped = (state == QH_STATE_IDLE); 990 991 /* remove de-activated QTDs from front of queue. 992 * after faults (including short reads), cleanup this urb 993 * then let the queue advance. 994 * if queue is stopped, handles unlinks. 995 */ 996 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 997 struct urb *urb; 998 u32 token = 0; 999 1000 urb = qtd->urb; 1001 1002 /* Clean up any state from previous QTD ...*/ 1003 if (last) { 1004 if (likely(last->urb != urb)) { 1005 if (last->urb->complete == NULL) { 1006 murb = (struct oxu_murb *) last->urb; 1007 last->urb = murb->main; 1008 if (murb->last) { 1009 ehci_urb_done(oxu, last->urb); 1010 count++; 1011 } 1012 oxu_murb_free(oxu, murb); 1013 } else { 1014 ehci_urb_done(oxu, last->urb); 1015 count++; 1016 } 1017 } 1018 oxu_qtd_free(oxu, last); 1019 last = NULL; 1020 } 1021 1022 /* ignore urbs submitted during completions we reported */ 1023 if (qtd == end) 1024 break; 1025 1026 /* hardware copies qtd out of qh overlay */ 1027 rmb(); 1028 token = le32_to_cpu(qtd->hw_token); 1029 1030 /* always clean up qtds the hc de-activated */ 1031 if ((token & QTD_STS_ACTIVE) == 0) { 1032 1033 if ((token & QTD_STS_HALT) != 0) { 1034 stopped = 1; 1035 1036 /* magic dummy for some short reads; qh won't advance. 1037 * that silicon quirk can kick in with this dummy too. 1038 */ 1039 } else if (IS_SHORT_READ(token) && 1040 !(qtd->hw_alt_next & EHCI_LIST_END)) { 1041 stopped = 1; 1042 goto halt; 1043 } 1044 1045 /* stop scanning when we reach qtds the hc is using */ 1046 } else if (likely(!stopped && 1047 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { 1048 break; 1049 1050 } else { 1051 stopped = 1; 1052 1053 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) 1054 urb->status = -ESHUTDOWN; 1055 1056 /* ignore active urbs unless some previous qtd 1057 * for the urb faulted (including short read) or 1058 * its urb was canceled. we may patch qh or qtds. 1059 */ 1060 if (likely(urb->status == -EINPROGRESS)) 1061 continue; 1062 1063 /* issue status after short control reads */ 1064 if (unlikely(do_status != 0) 1065 && QTD_PID(token) == 0 /* OUT */) { 1066 do_status = 0; 1067 continue; 1068 } 1069 1070 /* token in overlay may be most current */ 1071 if (state == QH_STATE_IDLE 1072 && cpu_to_le32(qtd->qtd_dma) 1073 == qh->hw_current) 1074 token = le32_to_cpu(qh->hw_token); 1075 1076 /* force halt for unlinked or blocked qh, so we'll 1077 * patch the qh later and so that completions can't 1078 * activate it while we "know" it's stopped. 1079 */ 1080 if ((HALT_BIT & qh->hw_token) == 0) { 1081 halt: 1082 qh->hw_token |= HALT_BIT; 1083 wmb(); 1084 } 1085 } 1086 1087 /* Remove it from the queue */ 1088 qtd_copy_status(oxu, urb->complete ? 1089 urb : ((struct oxu_murb *) urb)->main, 1090 qtd->length, token); 1091 if ((usb_pipein(qtd->urb->pipe)) && 1092 (NULL != qtd->transfer_buffer)) 1093 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); 1094 do_status = (urb->status == -EREMOTEIO) 1095 && usb_pipecontrol(urb->pipe); 1096 1097 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 1098 last = list_entry(qtd->qtd_list.prev, 1099 struct ehci_qtd, qtd_list); 1100 last->hw_next = qtd->hw_next; 1101 } 1102 list_del(&qtd->qtd_list); 1103 last = qtd; 1104 } 1105 1106 /* last urb's completion might still need calling */ 1107 if (likely(last != NULL)) { 1108 if (last->urb->complete == NULL) { 1109 murb = (struct oxu_murb *) last->urb; 1110 last->urb = murb->main; 1111 if (murb->last) { 1112 ehci_urb_done(oxu, last->urb); 1113 count++; 1114 } 1115 oxu_murb_free(oxu, murb); 1116 } else { 1117 ehci_urb_done(oxu, last->urb); 1118 count++; 1119 } 1120 oxu_qtd_free(oxu, last); 1121 } 1122 1123 /* restore original state; caller must unlink or relink */ 1124 qh->qh_state = state; 1125 1126 /* be sure the hardware's done with the qh before refreshing 1127 * it after fault cleanup, or recovering from silicon wrongly 1128 * overlaying the dummy qtd (which reduces DMA chatter). 1129 */ 1130 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { 1131 switch (state) { 1132 case QH_STATE_IDLE: 1133 qh_refresh(oxu, qh); 1134 break; 1135 case QH_STATE_LINKED: 1136 /* should be rare for periodic transfers, 1137 * except maybe high bandwidth ... 1138 */ 1139 if ((cpu_to_le32(QH_SMASK) 1140 & qh->hw_info2) != 0) { 1141 intr_deschedule(oxu, qh); 1142 (void) qh_schedule(oxu, qh); 1143 } else 1144 unlink_async(oxu, qh); 1145 break; 1146 /* otherwise, unlink already started */ 1147 } 1148 } 1149 1150 return count; 1151 } 1152 1153 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 1154 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 1155 /* ... and packet size, for any kind of endpoint descriptor */ 1156 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 1157 1158 /* Reverse of qh_urb_transaction: free a list of TDs. 1159 * used for cleanup after errors, before HC sees an URB's TDs. 1160 */ 1161 static void qtd_list_free(struct oxu_hcd *oxu, 1162 struct urb *urb, struct list_head *head) 1163 { 1164 struct ehci_qtd *qtd, *temp; 1165 1166 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 1167 list_del(&qtd->qtd_list); 1168 oxu_qtd_free(oxu, qtd); 1169 } 1170 } 1171 1172 /* Create a list of filled qtds for this URB; won't link into qh. 1173 */ 1174 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, 1175 struct urb *urb, 1176 struct list_head *head, 1177 gfp_t flags) 1178 { 1179 struct ehci_qtd *qtd, *qtd_prev; 1180 dma_addr_t buf; 1181 int len, maxpacket; 1182 int is_input; 1183 u32 token; 1184 void *transfer_buf = NULL; 1185 int ret; 1186 1187 /* 1188 * URBs map to sequences of QTDs: one logical transaction 1189 */ 1190 qtd = ehci_qtd_alloc(oxu); 1191 if (unlikely(!qtd)) 1192 return NULL; 1193 list_add_tail(&qtd->qtd_list, head); 1194 qtd->urb = urb; 1195 1196 token = QTD_STS_ACTIVE; 1197 token |= (EHCI_TUNE_CERR << 10); 1198 /* for split transactions, SplitXState initialized to zero */ 1199 1200 len = urb->transfer_buffer_length; 1201 is_input = usb_pipein(urb->pipe); 1202 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) 1203 urb->transfer_buffer = phys_to_virt(urb->transfer_dma); 1204 1205 if (usb_pipecontrol(urb->pipe)) { 1206 /* SETUP pid */ 1207 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); 1208 if (ret) 1209 goto cleanup; 1210 1211 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), 1212 token | (2 /* "setup" */ << 8), 8); 1213 memcpy(qtd->buffer, qtd->urb->setup_packet, 1214 sizeof(struct usb_ctrlrequest)); 1215 1216 /* ... and always at least one more pid */ 1217 token ^= QTD_TOGGLE; 1218 qtd_prev = qtd; 1219 qtd = ehci_qtd_alloc(oxu); 1220 if (unlikely(!qtd)) 1221 goto cleanup; 1222 qtd->urb = urb; 1223 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1224 list_add_tail(&qtd->qtd_list, head); 1225 1226 /* for zero length DATA stages, STATUS is always IN */ 1227 if (len == 0) 1228 token |= (1 /* "in" */ << 8); 1229 } 1230 1231 /* 1232 * Data transfer stage: buffer setup 1233 */ 1234 1235 ret = oxu_buf_alloc(oxu, qtd, len); 1236 if (ret) 1237 goto cleanup; 1238 1239 buf = qtd->buffer_dma; 1240 transfer_buf = urb->transfer_buffer; 1241 1242 if (!is_input) 1243 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); 1244 1245 if (is_input) 1246 token |= (1 /* "in" */ << 8); 1247 /* else it's already initted to "out" pid (0 << 8) */ 1248 1249 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 1250 1251 /* 1252 * buffer gets wrapped in one or more qtds; 1253 * last one may be "short" (including zero len) 1254 * and may serve as a control status ack 1255 */ 1256 for (;;) { 1257 int this_qtd_len; 1258 1259 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); 1260 qtd->transfer_buffer = transfer_buf; 1261 len -= this_qtd_len; 1262 buf += this_qtd_len; 1263 transfer_buf += this_qtd_len; 1264 if (is_input) 1265 qtd->hw_alt_next = oxu->async->hw_alt_next; 1266 1267 /* qh makes control packets use qtd toggle; maybe switch it */ 1268 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 1269 token ^= QTD_TOGGLE; 1270 1271 if (likely(len <= 0)) 1272 break; 1273 1274 qtd_prev = qtd; 1275 qtd = ehci_qtd_alloc(oxu); 1276 if (unlikely(!qtd)) 1277 goto cleanup; 1278 if (likely(len > 0)) { 1279 ret = oxu_buf_alloc(oxu, qtd, len); 1280 if (ret) 1281 goto cleanup; 1282 } 1283 qtd->urb = urb; 1284 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1285 list_add_tail(&qtd->qtd_list, head); 1286 } 1287 1288 /* unless the bulk/interrupt caller wants a chance to clean 1289 * up after short reads, hc should advance qh past this urb 1290 */ 1291 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 1292 || usb_pipecontrol(urb->pipe))) 1293 qtd->hw_alt_next = EHCI_LIST_END; 1294 1295 /* 1296 * control requests may need a terminating data "status" ack; 1297 * bulk ones may need a terminating short packet (zero length). 1298 */ 1299 if (likely(urb->transfer_buffer_length != 0)) { 1300 int one_more = 0; 1301 1302 if (usb_pipecontrol(urb->pipe)) { 1303 one_more = 1; 1304 token ^= 0x0100; /* "in" <--> "out" */ 1305 token |= QTD_TOGGLE; /* force DATA1 */ 1306 } else if (usb_pipebulk(urb->pipe) 1307 && (urb->transfer_flags & URB_ZERO_PACKET) 1308 && !(urb->transfer_buffer_length % maxpacket)) { 1309 one_more = 1; 1310 } 1311 if (one_more) { 1312 qtd_prev = qtd; 1313 qtd = ehci_qtd_alloc(oxu); 1314 if (unlikely(!qtd)) 1315 goto cleanup; 1316 qtd->urb = urb; 1317 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1318 list_add_tail(&qtd->qtd_list, head); 1319 1320 /* never any data in such packets */ 1321 qtd_fill(qtd, 0, 0, token, 0); 1322 } 1323 } 1324 1325 /* by default, enable interrupt on urb completion */ 1326 qtd->hw_token |= cpu_to_le32(QTD_IOC); 1327 return head; 1328 1329 cleanup: 1330 qtd_list_free(oxu, urb, head); 1331 return NULL; 1332 } 1333 1334 /* Each QH holds a qtd list; a QH is used for everything except iso. 1335 * 1336 * For interrupt urbs, the scheduler must set the microframe scheduling 1337 * mask(s) each time the QH gets scheduled. For highspeed, that's 1338 * just one microframe in the s-mask. For split interrupt transactions 1339 * there are additional complications: c-mask, maybe FSTNs. 1340 */ 1341 static struct ehci_qh *qh_make(struct oxu_hcd *oxu, 1342 struct urb *urb, gfp_t flags) 1343 { 1344 struct ehci_qh *qh = oxu_qh_alloc(oxu); 1345 u32 info1 = 0, info2 = 0; 1346 int is_input, type; 1347 int maxp = 0; 1348 1349 if (!qh) 1350 return qh; 1351 1352 /* 1353 * init endpoint/device data for this QH 1354 */ 1355 info1 |= usb_pipeendpoint(urb->pipe) << 8; 1356 info1 |= usb_pipedevice(urb->pipe) << 0; 1357 1358 is_input = usb_pipein(urb->pipe); 1359 type = usb_pipetype(urb->pipe); 1360 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); 1361 1362 /* Compute interrupt scheduling parameters just once, and save. 1363 * - allowing for high bandwidth, how many nsec/uframe are used? 1364 * - split transactions need a second CSPLIT uframe; same question 1365 * - splits also need a schedule gap (for full/low speed I/O) 1366 * - qh has a polling interval 1367 * 1368 * For control/bulk requests, the HC or TT handles these. 1369 */ 1370 if (type == PIPE_INTERRUPT) { 1371 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 1372 is_input, 0, 1373 hb_mult(maxp) * max_packet(maxp))); 1374 qh->start = NO_FRAME; 1375 1376 if (urb->dev->speed == USB_SPEED_HIGH) { 1377 qh->c_usecs = 0; 1378 qh->gap_uf = 0; 1379 1380 qh->period = urb->interval >> 3; 1381 if (qh->period == 0 && urb->interval != 1) { 1382 /* NOTE interval 2 or 4 uframes could work. 1383 * But interval 1 scheduling is simpler, and 1384 * includes high bandwidth. 1385 */ 1386 oxu_dbg(oxu, "intr period %d uframes, NYET!\n", 1387 urb->interval); 1388 goto done; 1389 } 1390 } else { 1391 struct usb_tt *tt = urb->dev->tt; 1392 int think_time; 1393 1394 /* gap is f(FS/LS transfer times) */ 1395 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 1396 is_input, 0, maxp) / (125 * 1000); 1397 1398 /* FIXME this just approximates SPLIT/CSPLIT times */ 1399 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 1400 qh->c_usecs = qh->usecs + HS_USECS(0); 1401 qh->usecs = HS_USECS(1); 1402 } else { /* SPLIT+DATA, gap, CSPLIT */ 1403 qh->usecs += HS_USECS(1); 1404 qh->c_usecs = HS_USECS(0); 1405 } 1406 1407 think_time = tt ? tt->think_time : 0; 1408 qh->tt_usecs = NS_TO_US(think_time + 1409 usb_calc_bus_time(urb->dev->speed, 1410 is_input, 0, max_packet(maxp))); 1411 qh->period = urb->interval; 1412 } 1413 } 1414 1415 /* support for tt scheduling, and access to toggles */ 1416 qh->dev = urb->dev; 1417 1418 /* using TT? */ 1419 switch (urb->dev->speed) { 1420 case USB_SPEED_LOW: 1421 info1 |= (1 << 12); /* EPS "low" */ 1422 /* FALL THROUGH */ 1423 1424 case USB_SPEED_FULL: 1425 /* EPS 0 means "full" */ 1426 if (type != PIPE_INTERRUPT) 1427 info1 |= (EHCI_TUNE_RL_TT << 28); 1428 if (type == PIPE_CONTROL) { 1429 info1 |= (1 << 27); /* for TT */ 1430 info1 |= 1 << 14; /* toggle from qtd */ 1431 } 1432 info1 |= maxp << 16; 1433 1434 info2 |= (EHCI_TUNE_MULT_TT << 30); 1435 info2 |= urb->dev->ttport << 23; 1436 1437 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 1438 1439 break; 1440 1441 case USB_SPEED_HIGH: /* no TT involved */ 1442 info1 |= (2 << 12); /* EPS "high" */ 1443 if (type == PIPE_CONTROL) { 1444 info1 |= (EHCI_TUNE_RL_HS << 28); 1445 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 1446 info1 |= 1 << 14; /* toggle from qtd */ 1447 info2 |= (EHCI_TUNE_MULT_HS << 30); 1448 } else if (type == PIPE_BULK) { 1449 info1 |= (EHCI_TUNE_RL_HS << 28); 1450 info1 |= 512 << 16; /* usb2 fixed maxpacket */ 1451 info2 |= (EHCI_TUNE_MULT_HS << 30); 1452 } else { /* PIPE_INTERRUPT */ 1453 info1 |= max_packet(maxp) << 16; 1454 info2 |= hb_mult(maxp) << 30; 1455 } 1456 break; 1457 default: 1458 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); 1459 done: 1460 qh_put(qh); 1461 return NULL; 1462 } 1463 1464 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 1465 1466 /* init as live, toggle clear, advance to dummy */ 1467 qh->qh_state = QH_STATE_IDLE; 1468 qh->hw_info1 = cpu_to_le32(info1); 1469 qh->hw_info2 = cpu_to_le32(info2); 1470 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 1471 qh_refresh(oxu, qh); 1472 return qh; 1473 } 1474 1475 /* Move qh (and its qtds) onto async queue; maybe enable queue. 1476 */ 1477 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1478 { 1479 __le32 dma = QH_NEXT(qh->qh_dma); 1480 struct ehci_qh *head; 1481 1482 /* (re)start the async schedule? */ 1483 head = oxu->async; 1484 timer_action_done(oxu, TIMER_ASYNC_OFF); 1485 if (!head->qh_next.qh) { 1486 u32 cmd = readl(&oxu->regs->command); 1487 1488 if (!(cmd & CMD_ASE)) { 1489 /* in case a clear of CMD_ASE didn't take yet */ 1490 (void)handshake(oxu, &oxu->regs->status, 1491 STS_ASS, 0, 150); 1492 cmd |= CMD_ASE | CMD_RUN; 1493 writel(cmd, &oxu->regs->command); 1494 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1495 /* posted write need not be known to HC yet ... */ 1496 } 1497 } 1498 1499 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1500 if (qh->qh_state == QH_STATE_IDLE) 1501 qh_refresh(oxu, qh); 1502 1503 /* splice right after start */ 1504 qh->qh_next = head->qh_next; 1505 qh->hw_next = head->hw_next; 1506 wmb(); 1507 1508 head->qh_next.qh = qh; 1509 head->hw_next = dma; 1510 1511 qh->qh_state = QH_STATE_LINKED; 1512 /* qtd completions reported later by interrupt */ 1513 } 1514 1515 #define QH_ADDR_MASK cpu_to_le32(0x7f) 1516 1517 /* 1518 * For control/bulk/interrupt, return QH with these TDs appended. 1519 * Allocates and initializes the QH if necessary. 1520 * Returns null if it can't allocate a QH it needs to. 1521 * If the QH has TDs (urbs) already, that's great. 1522 */ 1523 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, 1524 struct urb *urb, struct list_head *qtd_list, 1525 int epnum, void **ptr) 1526 { 1527 struct ehci_qh *qh = NULL; 1528 1529 qh = (struct ehci_qh *) *ptr; 1530 if (unlikely(qh == NULL)) { 1531 /* can't sleep here, we have oxu->lock... */ 1532 qh = qh_make(oxu, urb, GFP_ATOMIC); 1533 *ptr = qh; 1534 } 1535 if (likely(qh != NULL)) { 1536 struct ehci_qtd *qtd; 1537 1538 if (unlikely(list_empty(qtd_list))) 1539 qtd = NULL; 1540 else 1541 qtd = list_entry(qtd_list->next, struct ehci_qtd, 1542 qtd_list); 1543 1544 /* control qh may need patching ... */ 1545 if (unlikely(epnum == 0)) { 1546 1547 /* usb_reset_device() briefly reverts to address 0 */ 1548 if (usb_pipedevice(urb->pipe) == 0) 1549 qh->hw_info1 &= ~QH_ADDR_MASK; 1550 } 1551 1552 /* just one way to queue requests: swap with the dummy qtd. 1553 * only hc or qh_refresh() ever modify the overlay. 1554 */ 1555 if (likely(qtd != NULL)) { 1556 struct ehci_qtd *dummy; 1557 dma_addr_t dma; 1558 __le32 token; 1559 1560 /* to avoid racing the HC, use the dummy td instead of 1561 * the first td of our list (becomes new dummy). both 1562 * tds stay deactivated until we're done, when the 1563 * HC is allowed to fetch the old dummy (4.10.2). 1564 */ 1565 token = qtd->hw_token; 1566 qtd->hw_token = HALT_BIT; 1567 wmb(); 1568 dummy = qh->dummy; 1569 1570 dma = dummy->qtd_dma; 1571 *dummy = *qtd; 1572 dummy->qtd_dma = dma; 1573 1574 list_del(&qtd->qtd_list); 1575 list_add(&dummy->qtd_list, qtd_list); 1576 list_splice(qtd_list, qh->qtd_list.prev); 1577 1578 ehci_qtd_init(qtd, qtd->qtd_dma); 1579 qh->dummy = qtd; 1580 1581 /* hc must see the new dummy at list end */ 1582 dma = qtd->qtd_dma; 1583 qtd = list_entry(qh->qtd_list.prev, 1584 struct ehci_qtd, qtd_list); 1585 qtd->hw_next = QTD_NEXT(dma); 1586 1587 /* let the hc process these next qtds */ 1588 dummy->hw_token = (token & ~(0x80)); 1589 wmb(); 1590 dummy->hw_token = token; 1591 1592 urb->hcpriv = qh_get(qh); 1593 } 1594 } 1595 return qh; 1596 } 1597 1598 static int submit_async(struct oxu_hcd *oxu, struct urb *urb, 1599 struct list_head *qtd_list, gfp_t mem_flags) 1600 { 1601 struct ehci_qtd *qtd; 1602 int epnum; 1603 unsigned long flags; 1604 struct ehci_qh *qh = NULL; 1605 int rc = 0; 1606 1607 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1608 epnum = urb->ep->desc.bEndpointAddress; 1609 1610 #ifdef OXU_URB_TRACE 1611 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1612 __func__, urb->dev->devpath, urb, 1613 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1614 urb->transfer_buffer_length, 1615 qtd, urb->ep->hcpriv); 1616 #endif 1617 1618 spin_lock_irqsave(&oxu->lock, flags); 1619 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 1620 rc = -ESHUTDOWN; 1621 goto done; 1622 } 1623 1624 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 1625 if (unlikely(qh == NULL)) { 1626 rc = -ENOMEM; 1627 goto done; 1628 } 1629 1630 /* Control/bulk operations through TTs don't need scheduling, 1631 * the HC and TT handle it when the TT has a buffer ready. 1632 */ 1633 if (likely(qh->qh_state == QH_STATE_IDLE)) 1634 qh_link_async(oxu, qh_get(qh)); 1635 done: 1636 spin_unlock_irqrestore(&oxu->lock, flags); 1637 if (unlikely(qh == NULL)) 1638 qtd_list_free(oxu, urb, qtd_list); 1639 return rc; 1640 } 1641 1642 /* The async qh for the qtds being reclaimed are now unlinked from the HC */ 1643 1644 static void end_unlink_async(struct oxu_hcd *oxu) 1645 { 1646 struct ehci_qh *qh = oxu->reclaim; 1647 struct ehci_qh *next; 1648 1649 timer_action_done(oxu, TIMER_IAA_WATCHDOG); 1650 1651 qh->qh_state = QH_STATE_IDLE; 1652 qh->qh_next.qh = NULL; 1653 qh_put(qh); /* refcount from reclaim */ 1654 1655 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 1656 next = qh->reclaim; 1657 oxu->reclaim = next; 1658 oxu->reclaim_ready = 0; 1659 qh->reclaim = NULL; 1660 1661 qh_completions(oxu, qh); 1662 1663 if (!list_empty(&qh->qtd_list) 1664 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 1665 qh_link_async(oxu, qh); 1666 else { 1667 qh_put(qh); /* refcount from async list */ 1668 1669 /* it's not free to turn the async schedule on/off; leave it 1670 * active but idle for a while once it empties. 1671 */ 1672 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) 1673 && oxu->async->qh_next.qh == NULL) 1674 timer_action(oxu, TIMER_ASYNC_OFF); 1675 } 1676 1677 if (next) { 1678 oxu->reclaim = NULL; 1679 start_unlink_async(oxu, next); 1680 } 1681 } 1682 1683 /* makes sure the async qh will become idle */ 1684 /* caller must own oxu->lock */ 1685 1686 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1687 { 1688 int cmd = readl(&oxu->regs->command); 1689 struct ehci_qh *prev; 1690 1691 #ifdef DEBUG 1692 assert_spin_locked(&oxu->lock); 1693 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED 1694 && qh->qh_state != QH_STATE_UNLINK_WAIT)); 1695 #endif 1696 1697 /* stop async schedule right now? */ 1698 if (unlikely(qh == oxu->async)) { 1699 /* can't get here without STS_ASS set */ 1700 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT 1701 && !oxu->reclaim) { 1702 /* ... and CMD_IAAD clear */ 1703 writel(cmd & ~CMD_ASE, &oxu->regs->command); 1704 wmb(); 1705 /* handshake later, if we need to */ 1706 timer_action_done(oxu, TIMER_ASYNC_OFF); 1707 } 1708 return; 1709 } 1710 1711 qh->qh_state = QH_STATE_UNLINK; 1712 oxu->reclaim = qh = qh_get(qh); 1713 1714 prev = oxu->async; 1715 while (prev->qh_next.qh != qh) 1716 prev = prev->qh_next.qh; 1717 1718 prev->hw_next = qh->hw_next; 1719 prev->qh_next = qh->qh_next; 1720 wmb(); 1721 1722 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { 1723 /* if (unlikely(qh->reclaim != 0)) 1724 * this will recurse, probably not much 1725 */ 1726 end_unlink_async(oxu); 1727 return; 1728 } 1729 1730 oxu->reclaim_ready = 0; 1731 cmd |= CMD_IAAD; 1732 writel(cmd, &oxu->regs->command); 1733 (void) readl(&oxu->regs->command); 1734 timer_action(oxu, TIMER_IAA_WATCHDOG); 1735 } 1736 1737 static void scan_async(struct oxu_hcd *oxu) 1738 { 1739 struct ehci_qh *qh; 1740 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 1741 1742 if (!++(oxu->stamp)) 1743 oxu->stamp++; 1744 timer_action_done(oxu, TIMER_ASYNC_SHRINK); 1745 rescan: 1746 qh = oxu->async->qh_next.qh; 1747 if (likely(qh != NULL)) { 1748 do { 1749 /* clean any finished work for this qh */ 1750 if (!list_empty(&qh->qtd_list) 1751 && qh->stamp != oxu->stamp) { 1752 int temp; 1753 1754 /* unlinks could happen here; completion 1755 * reporting drops the lock. rescan using 1756 * the latest schedule, but don't rescan 1757 * qhs we already finished (no looping). 1758 */ 1759 qh = qh_get(qh); 1760 qh->stamp = oxu->stamp; 1761 temp = qh_completions(oxu, qh); 1762 qh_put(qh); 1763 if (temp != 0) 1764 goto rescan; 1765 } 1766 1767 /* unlink idle entries, reducing HC PCI usage as well 1768 * as HCD schedule-scanning costs. delay for any qh 1769 * we just scanned, there's a not-unusual case that it 1770 * doesn't stay idle for long. 1771 * (plus, avoids some kind of re-activation race.) 1772 */ 1773 if (list_empty(&qh->qtd_list)) { 1774 if (qh->stamp == oxu->stamp) 1775 action = TIMER_ASYNC_SHRINK; 1776 else if (!oxu->reclaim 1777 && qh->qh_state == QH_STATE_LINKED) 1778 start_unlink_async(oxu, qh); 1779 } 1780 1781 qh = qh->qh_next.qh; 1782 } while (qh); 1783 } 1784 if (action == TIMER_ASYNC_SHRINK) 1785 timer_action(oxu, TIMER_ASYNC_SHRINK); 1786 } 1787 1788 /* 1789 * periodic_next_shadow - return "next" pointer on shadow list 1790 * @periodic: host pointer to qh/itd/sitd 1791 * @tag: hardware tag for type of this record 1792 */ 1793 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, 1794 __le32 tag) 1795 { 1796 switch (tag) { 1797 default: 1798 case Q_TYPE_QH: 1799 return &periodic->qh->qh_next; 1800 } 1801 } 1802 1803 /* caller must hold oxu->lock */ 1804 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) 1805 { 1806 union ehci_shadow *prev_p = &oxu->pshadow[frame]; 1807 __le32 *hw_p = &oxu->periodic[frame]; 1808 union ehci_shadow here = *prev_p; 1809 1810 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 1811 while (here.ptr && here.ptr != ptr) { 1812 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); 1813 hw_p = here.hw_next; 1814 here = *prev_p; 1815 } 1816 /* an interrupt entry (at list end) could have been shared */ 1817 if (!here.ptr) 1818 return; 1819 1820 /* update shadow and hardware lists ... the old "next" pointers 1821 * from ptr may still be in use, the caller updates them. 1822 */ 1823 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); 1824 *hw_p = *here.hw_next; 1825 } 1826 1827 /* how many of the uframe's 125 usecs are allocated? */ 1828 static unsigned short periodic_usecs(struct oxu_hcd *oxu, 1829 unsigned frame, unsigned uframe) 1830 { 1831 __le32 *hw_p = &oxu->periodic[frame]; 1832 union ehci_shadow *q = &oxu->pshadow[frame]; 1833 unsigned usecs = 0; 1834 1835 while (q->ptr) { 1836 switch (Q_NEXT_TYPE(*hw_p)) { 1837 case Q_TYPE_QH: 1838 default: 1839 /* is it in the S-mask? */ 1840 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) 1841 usecs += q->qh->usecs; 1842 /* ... or C-mask? */ 1843 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) 1844 usecs += q->qh->c_usecs; 1845 hw_p = &q->qh->hw_next; 1846 q = &q->qh->qh_next; 1847 break; 1848 } 1849 } 1850 #ifdef DEBUG 1851 if (usecs > 100) 1852 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", 1853 frame * 8 + uframe, usecs); 1854 #endif 1855 return usecs; 1856 } 1857 1858 static int enable_periodic(struct oxu_hcd *oxu) 1859 { 1860 u32 cmd; 1861 int status; 1862 1863 /* did clearing PSE did take effect yet? 1864 * takes effect only at frame boundaries... 1865 */ 1866 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); 1867 if (status != 0) { 1868 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1869 usb_hc_died(oxu_to_hcd(oxu)); 1870 return status; 1871 } 1872 1873 cmd = readl(&oxu->regs->command) | CMD_PSE; 1874 writel(cmd, &oxu->regs->command); 1875 /* posted write ... PSS happens later */ 1876 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1877 1878 /* make sure ehci_work scans these */ 1879 oxu->next_uframe = readl(&oxu->regs->frame_index) 1880 % (oxu->periodic_size << 3); 1881 return 0; 1882 } 1883 1884 static int disable_periodic(struct oxu_hcd *oxu) 1885 { 1886 u32 cmd; 1887 int status; 1888 1889 /* did setting PSE not take effect yet? 1890 * takes effect only at frame boundaries... 1891 */ 1892 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); 1893 if (status != 0) { 1894 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1895 usb_hc_died(oxu_to_hcd(oxu)); 1896 return status; 1897 } 1898 1899 cmd = readl(&oxu->regs->command) & ~CMD_PSE; 1900 writel(cmd, &oxu->regs->command); 1901 /* posted write ... */ 1902 1903 oxu->next_uframe = -1; 1904 return 0; 1905 } 1906 1907 /* periodic schedule slots have iso tds (normal or split) first, then a 1908 * sparse tree for active interrupt transfers. 1909 * 1910 * this just links in a qh; caller guarantees uframe masks are set right. 1911 * no FSTN support (yet; oxu 0.96+) 1912 */ 1913 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1914 { 1915 unsigned i; 1916 unsigned period = qh->period; 1917 1918 dev_dbg(&qh->dev->dev, 1919 "link qh%d-%04x/%p start %d [%d/%d us]\n", 1920 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 1921 qh, qh->start, qh->usecs, qh->c_usecs); 1922 1923 /* high bandwidth, or otherwise every microframe */ 1924 if (period == 0) 1925 period = 1; 1926 1927 for (i = qh->start; i < oxu->periodic_size; i += period) { 1928 union ehci_shadow *prev = &oxu->pshadow[i]; 1929 __le32 *hw_p = &oxu->periodic[i]; 1930 union ehci_shadow here = *prev; 1931 __le32 type = 0; 1932 1933 /* skip the iso nodes at list head */ 1934 while (here.ptr) { 1935 type = Q_NEXT_TYPE(*hw_p); 1936 if (type == Q_TYPE_QH) 1937 break; 1938 prev = periodic_next_shadow(prev, type); 1939 hw_p = &here.qh->hw_next; 1940 here = *prev; 1941 } 1942 1943 /* sorting each branch by period (slow-->fast) 1944 * enables sharing interior tree nodes 1945 */ 1946 while (here.ptr && qh != here.qh) { 1947 if (qh->period > here.qh->period) 1948 break; 1949 prev = &here.qh->qh_next; 1950 hw_p = &here.qh->hw_next; 1951 here = *prev; 1952 } 1953 /* link in this qh, unless some earlier pass did that */ 1954 if (qh != here.qh) { 1955 qh->qh_next = here; 1956 if (here.qh) 1957 qh->hw_next = *hw_p; 1958 wmb(); 1959 prev->qh = qh; 1960 *hw_p = QH_NEXT(qh->qh_dma); 1961 } 1962 } 1963 qh->qh_state = QH_STATE_LINKED; 1964 qh_get(qh); 1965 1966 /* update per-qh bandwidth for usbfs */ 1967 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period 1968 ? ((qh->usecs + qh->c_usecs) / qh->period) 1969 : (qh->usecs * 8); 1970 1971 /* maybe enable periodic schedule processing */ 1972 if (!oxu->periodic_sched++) 1973 return enable_periodic(oxu); 1974 1975 return 0; 1976 } 1977 1978 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1979 { 1980 unsigned i; 1981 unsigned period; 1982 1983 /* FIXME: 1984 * IF this isn't high speed 1985 * and this qh is active in the current uframe 1986 * (and overlay token SplitXstate is false?) 1987 * THEN 1988 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); 1989 */ 1990 1991 /* high bandwidth, or otherwise part of every microframe */ 1992 period = qh->period; 1993 if (period == 0) 1994 period = 1; 1995 1996 for (i = qh->start; i < oxu->periodic_size; i += period) 1997 periodic_unlink(oxu, i, qh); 1998 1999 /* update per-qh bandwidth for usbfs */ 2000 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period 2001 ? ((qh->usecs + qh->c_usecs) / qh->period) 2002 : (qh->usecs * 8); 2003 2004 dev_dbg(&qh->dev->dev, 2005 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 2006 qh->period, 2007 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2008 qh, qh->start, qh->usecs, qh->c_usecs); 2009 2010 /* qh->qh_next still "live" to HC */ 2011 qh->qh_state = QH_STATE_UNLINK; 2012 qh->qh_next.ptr = NULL; 2013 qh_put(qh); 2014 2015 /* maybe turn off periodic schedule */ 2016 oxu->periodic_sched--; 2017 if (!oxu->periodic_sched) 2018 (void) disable_periodic(oxu); 2019 } 2020 2021 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2022 { 2023 unsigned wait; 2024 2025 qh_unlink_periodic(oxu, qh); 2026 2027 /* simple/paranoid: always delay, expecting the HC needs to read 2028 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 2029 * expect hub_wq to clean up after any CSPLITs we won't issue. 2030 * active high speed queues may need bigger delays... 2031 */ 2032 if (list_empty(&qh->qtd_list) 2033 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) 2034 wait = 2; 2035 else 2036 wait = 55; /* worst case: 3 * 1024 */ 2037 2038 udelay(wait); 2039 qh->qh_state = QH_STATE_IDLE; 2040 qh->hw_next = EHCI_LIST_END; 2041 wmb(); 2042 } 2043 2044 static int check_period(struct oxu_hcd *oxu, 2045 unsigned frame, unsigned uframe, 2046 unsigned period, unsigned usecs) 2047 { 2048 int claimed; 2049 2050 /* complete split running into next frame? 2051 * given FSTN support, we could sometimes check... 2052 */ 2053 if (uframe >= 8) 2054 return 0; 2055 2056 /* 2057 * 80% periodic == 100 usec/uframe available 2058 * convert "usecs we need" to "max already claimed" 2059 */ 2060 usecs = 100 - usecs; 2061 2062 /* we "know" 2 and 4 uframe intervals were rejected; so 2063 * for period 0, check _every_ microframe in the schedule. 2064 */ 2065 if (unlikely(period == 0)) { 2066 do { 2067 for (uframe = 0; uframe < 7; uframe++) { 2068 claimed = periodic_usecs(oxu, frame, uframe); 2069 if (claimed > usecs) 2070 return 0; 2071 } 2072 } while ((frame += 1) < oxu->periodic_size); 2073 2074 /* just check the specified uframe, at that period */ 2075 } else { 2076 do { 2077 claimed = periodic_usecs(oxu, frame, uframe); 2078 if (claimed > usecs) 2079 return 0; 2080 } while ((frame += period) < oxu->periodic_size); 2081 } 2082 2083 return 1; 2084 } 2085 2086 static int check_intr_schedule(struct oxu_hcd *oxu, 2087 unsigned frame, unsigned uframe, 2088 const struct ehci_qh *qh, __le32 *c_maskp) 2089 { 2090 int retval = -ENOSPC; 2091 2092 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 2093 goto done; 2094 2095 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) 2096 goto done; 2097 if (!qh->c_usecs) { 2098 retval = 0; 2099 *c_maskp = 0; 2100 goto done; 2101 } 2102 2103 done: 2104 return retval; 2105 } 2106 2107 /* "first fit" scheduling policy used the first time through, 2108 * or when the previous schedule slot can't be re-used. 2109 */ 2110 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2111 { 2112 int status; 2113 unsigned uframe; 2114 __le32 c_mask; 2115 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 2116 2117 qh_refresh(oxu, qh); 2118 qh->hw_next = EHCI_LIST_END; 2119 frame = qh->start; 2120 2121 /* reuse the previous schedule slots, if we can */ 2122 if (frame < qh->period) { 2123 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); 2124 status = check_intr_schedule(oxu, frame, --uframe, 2125 qh, &c_mask); 2126 } else { 2127 uframe = 0; 2128 c_mask = 0; 2129 status = -ENOSPC; 2130 } 2131 2132 /* else scan the schedule to find a group of slots such that all 2133 * uframes have enough periodic bandwidth available. 2134 */ 2135 if (status) { 2136 /* "normal" case, uframing flexible except with splits */ 2137 if (qh->period) { 2138 frame = qh->period - 1; 2139 do { 2140 for (uframe = 0; uframe < 8; uframe++) { 2141 status = check_intr_schedule(oxu, 2142 frame, uframe, qh, 2143 &c_mask); 2144 if (status == 0) 2145 break; 2146 } 2147 } while (status && frame--); 2148 2149 /* qh->period == 0 means every uframe */ 2150 } else { 2151 frame = 0; 2152 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); 2153 } 2154 if (status) 2155 goto done; 2156 qh->start = frame; 2157 2158 /* reset S-frame and (maybe) C-frame masks */ 2159 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); 2160 qh->hw_info2 |= qh->period 2161 ? cpu_to_le32(1 << uframe) 2162 : cpu_to_le32(QH_SMASK); 2163 qh->hw_info2 |= c_mask; 2164 } else 2165 oxu_dbg(oxu, "reused qh %p schedule\n", qh); 2166 2167 /* stuff into the periodic schedule */ 2168 status = qh_link_periodic(oxu, qh); 2169 done: 2170 return status; 2171 } 2172 2173 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, 2174 struct list_head *qtd_list, gfp_t mem_flags) 2175 { 2176 unsigned epnum; 2177 unsigned long flags; 2178 struct ehci_qh *qh; 2179 int status = 0; 2180 struct list_head empty; 2181 2182 /* get endpoint and transfer/schedule data */ 2183 epnum = urb->ep->desc.bEndpointAddress; 2184 2185 spin_lock_irqsave(&oxu->lock, flags); 2186 2187 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2188 status = -ESHUTDOWN; 2189 goto done; 2190 } 2191 2192 /* get qh and force any scheduling errors */ 2193 INIT_LIST_HEAD(&empty); 2194 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); 2195 if (qh == NULL) { 2196 status = -ENOMEM; 2197 goto done; 2198 } 2199 if (qh->qh_state == QH_STATE_IDLE) { 2200 status = qh_schedule(oxu, qh); 2201 if (status != 0) 2202 goto done; 2203 } 2204 2205 /* then queue the urb's tds to the qh */ 2206 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2207 BUG_ON(qh == NULL); 2208 2209 /* ... update usbfs periodic stats */ 2210 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; 2211 2212 done: 2213 spin_unlock_irqrestore(&oxu->lock, flags); 2214 if (status) 2215 qtd_list_free(oxu, urb, qtd_list); 2216 2217 return status; 2218 } 2219 2220 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, 2221 gfp_t mem_flags) 2222 { 2223 oxu_dbg(oxu, "iso support is missing!\n"); 2224 return -ENOSYS; 2225 } 2226 2227 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, 2228 gfp_t mem_flags) 2229 { 2230 oxu_dbg(oxu, "split iso support is missing!\n"); 2231 return -ENOSYS; 2232 } 2233 2234 static void scan_periodic(struct oxu_hcd *oxu) 2235 { 2236 unsigned frame, clock, now_uframe, mod; 2237 unsigned modified; 2238 2239 mod = oxu->periodic_size << 3; 2240 2241 /* 2242 * When running, scan from last scan point up to "now" 2243 * else clean up by scanning everything that's left. 2244 * Touches as few pages as possible: cache-friendly. 2245 */ 2246 now_uframe = oxu->next_uframe; 2247 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2248 clock = readl(&oxu->regs->frame_index); 2249 else 2250 clock = now_uframe + mod - 1; 2251 clock %= mod; 2252 2253 for (;;) { 2254 union ehci_shadow q, *q_p; 2255 __le32 type, *hw_p; 2256 2257 /* don't scan past the live uframe */ 2258 frame = now_uframe >> 3; 2259 if (frame != (clock >> 3)) { 2260 /* safe to scan the whole frame at once */ 2261 now_uframe |= 0x07; 2262 } 2263 2264 restart: 2265 /* scan each element in frame's queue for completions */ 2266 q_p = &oxu->pshadow[frame]; 2267 hw_p = &oxu->periodic[frame]; 2268 q.ptr = q_p->ptr; 2269 type = Q_NEXT_TYPE(*hw_p); 2270 modified = 0; 2271 2272 while (q.ptr != NULL) { 2273 union ehci_shadow temp; 2274 2275 switch (type) { 2276 case Q_TYPE_QH: 2277 /* handle any completions */ 2278 temp.qh = qh_get(q.qh); 2279 type = Q_NEXT_TYPE(q.qh->hw_next); 2280 q = q.qh->qh_next; 2281 modified = qh_completions(oxu, temp.qh); 2282 if (unlikely(list_empty(&temp.qh->qtd_list))) 2283 intr_deschedule(oxu, temp.qh); 2284 qh_put(temp.qh); 2285 break; 2286 default: 2287 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n", 2288 type, frame, q.ptr); 2289 q.ptr = NULL; 2290 } 2291 2292 /* assume completion callbacks modify the queue */ 2293 if (unlikely(modified)) 2294 goto restart; 2295 } 2296 2297 /* Stop when we catch up to the HC */ 2298 2299 /* FIXME: this assumes we won't get lapped when 2300 * latencies climb; that should be rare, but... 2301 * detect it, and just go all the way around. 2302 * FLR might help detect this case, so long as latencies 2303 * don't exceed periodic_size msec (default 1.024 sec). 2304 */ 2305 2306 /* FIXME: likewise assumes HC doesn't halt mid-scan */ 2307 2308 if (now_uframe == clock) { 2309 unsigned now; 2310 2311 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2312 break; 2313 oxu->next_uframe = now_uframe; 2314 now = readl(&oxu->regs->frame_index) % mod; 2315 if (now_uframe == now) 2316 break; 2317 2318 /* rescan the rest of this frame, then ... */ 2319 clock = now; 2320 } else { 2321 now_uframe++; 2322 now_uframe %= mod; 2323 } 2324 } 2325 } 2326 2327 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 2328 * The firmware seems to think that powering off is a wakeup event! 2329 * This routine turns off remote wakeup and everything else, on all ports. 2330 */ 2331 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) 2332 { 2333 int port = HCS_N_PORTS(oxu->hcs_params); 2334 2335 while (port--) 2336 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); 2337 } 2338 2339 static void ehci_port_power(struct oxu_hcd *oxu, int is_on) 2340 { 2341 unsigned port; 2342 2343 if (!HCS_PPC(oxu->hcs_params)) 2344 return; 2345 2346 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); 2347 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) 2348 (void) oxu_hub_control(oxu_to_hcd(oxu), 2349 is_on ? SetPortFeature : ClearPortFeature, 2350 USB_PORT_FEAT_POWER, 2351 port--, NULL, 0); 2352 msleep(20); 2353 } 2354 2355 /* Called from some interrupts, timers, and so on. 2356 * It calls driver completion functions, after dropping oxu->lock. 2357 */ 2358 static void ehci_work(struct oxu_hcd *oxu) 2359 { 2360 timer_action_done(oxu, TIMER_IO_WATCHDOG); 2361 if (oxu->reclaim_ready) 2362 end_unlink_async(oxu); 2363 2364 /* another CPU may drop oxu->lock during a schedule scan while 2365 * it reports urb completions. this flag guards against bogus 2366 * attempts at re-entrant schedule scanning. 2367 */ 2368 if (oxu->scanning) 2369 return; 2370 oxu->scanning = 1; 2371 scan_async(oxu); 2372 if (oxu->next_uframe != -1) 2373 scan_periodic(oxu); 2374 oxu->scanning = 0; 2375 2376 /* the IO watchdog guards against hardware or driver bugs that 2377 * misplace IRQs, and should let us run completely without IRQs. 2378 * such lossage has been observed on both VT6202 and VT8235. 2379 */ 2380 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && 2381 (oxu->async->qh_next.ptr != NULL || 2382 oxu->periodic_sched != 0)) 2383 timer_action(oxu, TIMER_IO_WATCHDOG); 2384 } 2385 2386 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2387 { 2388 /* if we need to use IAA and it's busy, defer */ 2389 if (qh->qh_state == QH_STATE_LINKED 2390 && oxu->reclaim 2391 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { 2392 struct ehci_qh *last; 2393 2394 for (last = oxu->reclaim; 2395 last->reclaim; 2396 last = last->reclaim) 2397 continue; 2398 qh->qh_state = QH_STATE_UNLINK_WAIT; 2399 last->reclaim = qh; 2400 2401 /* bypass IAA if the hc can't care */ 2402 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) 2403 end_unlink_async(oxu); 2404 2405 /* something else might have unlinked the qh by now */ 2406 if (qh->qh_state == QH_STATE_LINKED) 2407 start_unlink_async(oxu, qh); 2408 } 2409 2410 /* 2411 * USB host controller methods 2412 */ 2413 2414 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) 2415 { 2416 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2417 u32 status, pcd_status = 0; 2418 int bh; 2419 2420 spin_lock(&oxu->lock); 2421 2422 status = readl(&oxu->regs->status); 2423 2424 /* e.g. cardbus physical eject */ 2425 if (status == ~(u32) 0) { 2426 oxu_dbg(oxu, "device removed\n"); 2427 goto dead; 2428 } 2429 2430 /* Shared IRQ? */ 2431 status &= INTR_MASK; 2432 if (!status || unlikely(hcd->state == HC_STATE_HALT)) { 2433 spin_unlock(&oxu->lock); 2434 return IRQ_NONE; 2435 } 2436 2437 /* clear (just) interrupts */ 2438 writel(status, &oxu->regs->status); 2439 readl(&oxu->regs->command); /* unblock posted write */ 2440 bh = 0; 2441 2442 #ifdef OXU_VERBOSE_DEBUG 2443 /* unrequested/ignored: Frame List Rollover */ 2444 dbg_status(oxu, "irq", status); 2445 #endif 2446 2447 /* INT, ERR, and IAA interrupt rates can be throttled */ 2448 2449 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 2450 if (likely((status & (STS_INT|STS_ERR)) != 0)) 2451 bh = 1; 2452 2453 /* complete the unlinking of some qh [4.15.2.3] */ 2454 if (status & STS_IAA) { 2455 oxu->reclaim_ready = 1; 2456 bh = 1; 2457 } 2458 2459 /* remote wakeup [4.3.1] */ 2460 if (status & STS_PCD) { 2461 unsigned i = HCS_N_PORTS(oxu->hcs_params); 2462 pcd_status = status; 2463 2464 /* resume root hub? */ 2465 if (!(readl(&oxu->regs->command) & CMD_RUN)) 2466 usb_hcd_resume_root_hub(hcd); 2467 2468 while (i--) { 2469 int pstatus = readl(&oxu->regs->port_status[i]); 2470 2471 if (pstatus & PORT_OWNER) 2472 continue; 2473 if (!(pstatus & PORT_RESUME) 2474 || oxu->reset_done[i] != 0) 2475 continue; 2476 2477 /* start USB_RESUME_TIMEOUT resume signaling from this 2478 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to 2479 * stop that signaling. 2480 */ 2481 oxu->reset_done[i] = jiffies + 2482 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2483 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); 2484 mod_timer(&hcd->rh_timer, oxu->reset_done[i]); 2485 } 2486 } 2487 2488 /* PCI errors [4.15.2.4] */ 2489 if (unlikely((status & STS_FATAL) != 0)) { 2490 /* bogus "fatal" IRQs appear on some chips... why? */ 2491 status = readl(&oxu->regs->status); 2492 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); 2493 dbg_status(oxu, "fatal", status); 2494 if (status & STS_HALT) { 2495 oxu_err(oxu, "fatal error\n"); 2496 dead: 2497 ehci_reset(oxu); 2498 writel(0, &oxu->regs->configured_flag); 2499 usb_hc_died(hcd); 2500 /* generic layer kills/unlinks all urbs, then 2501 * uses oxu_stop to clean up the rest 2502 */ 2503 bh = 1; 2504 } 2505 } 2506 2507 if (bh) 2508 ehci_work(oxu); 2509 spin_unlock(&oxu->lock); 2510 if (pcd_status & STS_PCD) 2511 usb_hcd_poll_rh_status(hcd); 2512 return IRQ_HANDLED; 2513 } 2514 2515 static irqreturn_t oxu_irq(struct usb_hcd *hcd) 2516 { 2517 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2518 int ret = IRQ_HANDLED; 2519 2520 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); 2521 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); 2522 2523 /* Disable all interrupt */ 2524 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); 2525 2526 if ((oxu->is_otg && (status & OXU_USBOTGI)) || 2527 (!oxu->is_otg && (status & OXU_USBSPHI))) 2528 oxu210_hcd_irq(hcd); 2529 else 2530 ret = IRQ_NONE; 2531 2532 /* Enable all interrupt back */ 2533 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); 2534 2535 return ret; 2536 } 2537 2538 static void oxu_watchdog(struct timer_list *t) 2539 { 2540 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog); 2541 unsigned long flags; 2542 2543 spin_lock_irqsave(&oxu->lock, flags); 2544 2545 /* lost IAA irqs wedge things badly; seen with a vt8235 */ 2546 if (oxu->reclaim) { 2547 u32 status = readl(&oxu->regs->status); 2548 if (status & STS_IAA) { 2549 oxu_vdbg(oxu, "lost IAA\n"); 2550 writel(STS_IAA, &oxu->regs->status); 2551 oxu->reclaim_ready = 1; 2552 } 2553 } 2554 2555 /* stop async processing after it's idled a bit */ 2556 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) 2557 start_unlink_async(oxu, oxu->async); 2558 2559 /* oxu could run by timer, without IRQs ... */ 2560 ehci_work(oxu); 2561 2562 spin_unlock_irqrestore(&oxu->lock, flags); 2563 } 2564 2565 /* One-time init, only for memory state. 2566 */ 2567 static int oxu_hcd_init(struct usb_hcd *hcd) 2568 { 2569 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2570 u32 temp; 2571 int retval; 2572 u32 hcc_params; 2573 2574 spin_lock_init(&oxu->lock); 2575 2576 timer_setup(&oxu->watchdog, oxu_watchdog, 0); 2577 2578 /* 2579 * hw default: 1K periodic list heads, one per frame. 2580 * periodic_size can shrink by USBCMD update if hcc_params allows. 2581 */ 2582 oxu->periodic_size = DEFAULT_I_TDPS; 2583 retval = ehci_mem_init(oxu, GFP_KERNEL); 2584 if (retval < 0) 2585 return retval; 2586 2587 /* controllers may cache some of the periodic schedule ... */ 2588 hcc_params = readl(&oxu->caps->hcc_params); 2589 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ 2590 oxu->i_thresh = 8; 2591 else /* N microframes cached */ 2592 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); 2593 2594 oxu->reclaim = NULL; 2595 oxu->reclaim_ready = 0; 2596 oxu->next_uframe = -1; 2597 2598 /* 2599 * dedicate a qh for the async ring head, since we couldn't unlink 2600 * a 'real' qh without stopping the async schedule [4.8]. use it 2601 * as the 'reclamation list head' too. 2602 * its dummy is used in hw_alt_next of many tds, to prevent the qh 2603 * from automatically advancing to the next td after short reads. 2604 */ 2605 oxu->async->qh_next.qh = NULL; 2606 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); 2607 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); 2608 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); 2609 oxu->async->hw_qtd_next = EHCI_LIST_END; 2610 oxu->async->qh_state = QH_STATE_LINKED; 2611 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); 2612 2613 /* clear interrupt enables, set irq latency */ 2614 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 2615 log2_irq_thresh = 0; 2616 temp = 1 << (16 + log2_irq_thresh); 2617 if (HCC_CANPARK(hcc_params)) { 2618 /* HW default park == 3, on hardware that supports it (like 2619 * NVidia and ALI silicon), maximizes throughput on the async 2620 * schedule by avoiding QH fetches between transfers. 2621 * 2622 * With fast usb storage devices and NForce2, "park" seems to 2623 * make problems: throughput reduction (!), data errors... 2624 */ 2625 if (park) { 2626 park = min(park, (unsigned) 3); 2627 temp |= CMD_PARK; 2628 temp |= park << 8; 2629 } 2630 oxu_dbg(oxu, "park %d\n", park); 2631 } 2632 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 2633 /* periodic schedule size can be smaller than default */ 2634 temp &= ~(3 << 2); 2635 temp |= (EHCI_TUNE_FLS << 2); 2636 } 2637 oxu->command = temp; 2638 2639 return 0; 2640 } 2641 2642 /* Called during probe() after chip reset completes. 2643 */ 2644 static int oxu_reset(struct usb_hcd *hcd) 2645 { 2646 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2647 2648 spin_lock_init(&oxu->mem_lock); 2649 INIT_LIST_HEAD(&oxu->urb_list); 2650 oxu->urb_len = 0; 2651 2652 /* FIMXE */ 2653 hcd->self.controller->dma_mask = NULL; 2654 2655 if (oxu->is_otg) { 2656 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; 2657 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ 2658 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2659 2660 oxu->mem = hcd->regs + OXU_SPH_MEM; 2661 } else { 2662 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; 2663 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ 2664 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2665 2666 oxu->mem = hcd->regs + OXU_OTG_MEM; 2667 } 2668 2669 oxu->hcs_params = readl(&oxu->caps->hcs_params); 2670 oxu->sbrn = 0x20; 2671 2672 return oxu_hcd_init(hcd); 2673 } 2674 2675 static int oxu_run(struct usb_hcd *hcd) 2676 { 2677 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2678 int retval; 2679 u32 temp, hcc_params; 2680 2681 hcd->uses_new_polling = 1; 2682 2683 /* EHCI spec section 4.1 */ 2684 retval = ehci_reset(oxu); 2685 if (retval != 0) { 2686 ehci_mem_cleanup(oxu); 2687 return retval; 2688 } 2689 writel(oxu->periodic_dma, &oxu->regs->frame_list); 2690 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 2691 2692 /* hcc_params controls whether oxu->regs->segment must (!!!) 2693 * be used; it constrains QH/ITD/SITD and QTD locations. 2694 * dma_pool consistent memory always uses segment zero. 2695 * streaming mappings for I/O buffers, like pci_map_single(), 2696 * can return segments above 4GB, if the device allows. 2697 * 2698 * NOTE: the dma mask is visible through dev->dma_mask, so 2699 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 2700 * Scsi_Host.highmem_io, and so forth. It's readonly to all 2701 * host side drivers though. 2702 */ 2703 hcc_params = readl(&oxu->caps->hcc_params); 2704 if (HCC_64BIT_ADDR(hcc_params)) 2705 writel(0, &oxu->regs->segment); 2706 2707 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | 2708 CMD_ASE | CMD_RESET); 2709 oxu->command |= CMD_RUN; 2710 writel(oxu->command, &oxu->regs->command); 2711 dbg_cmd(oxu, "init", oxu->command); 2712 2713 /* 2714 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 2715 * are explicitly handed to companion controller(s), so no TT is 2716 * involved with the root hub. (Except where one is integrated, 2717 * and there's no companion controller unless maybe for USB OTG.) 2718 */ 2719 hcd->state = HC_STATE_RUNNING; 2720 writel(FLAG_CF, &oxu->regs->configured_flag); 2721 readl(&oxu->regs->command); /* unblock posted writes */ 2722 2723 temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); 2724 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", 2725 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), 2726 temp >> 8, temp & 0xff, DRIVER_VERSION, 2727 ignore_oc ? ", overcurrent ignored" : ""); 2728 2729 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ 2730 2731 return 0; 2732 } 2733 2734 static void oxu_stop(struct usb_hcd *hcd) 2735 { 2736 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2737 2738 /* Turn off port power on all root hub ports. */ 2739 ehci_port_power(oxu, 0); 2740 2741 /* no more interrupts ... */ 2742 del_timer_sync(&oxu->watchdog); 2743 2744 spin_lock_irq(&oxu->lock); 2745 if (HC_IS_RUNNING(hcd->state)) 2746 ehci_quiesce(oxu); 2747 2748 ehci_reset(oxu); 2749 writel(0, &oxu->regs->intr_enable); 2750 spin_unlock_irq(&oxu->lock); 2751 2752 /* let companion controllers work when we aren't */ 2753 writel(0, &oxu->regs->configured_flag); 2754 2755 /* root hub is shut down separately (first, when possible) */ 2756 spin_lock_irq(&oxu->lock); 2757 if (oxu->async) 2758 ehci_work(oxu); 2759 spin_unlock_irq(&oxu->lock); 2760 ehci_mem_cleanup(oxu); 2761 2762 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); 2763 } 2764 2765 /* Kick in for silicon on any bus (not just pci, etc). 2766 * This forcibly disables dma and IRQs, helping kexec and other cases 2767 * where the next system software may expect clean state. 2768 */ 2769 static void oxu_shutdown(struct usb_hcd *hcd) 2770 { 2771 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2772 2773 (void) ehci_halt(oxu); 2774 ehci_turn_off_all_ports(oxu); 2775 2776 /* make BIOS/etc use companion controller during reboot */ 2777 writel(0, &oxu->regs->configured_flag); 2778 2779 /* unblock posted writes */ 2780 readl(&oxu->regs->configured_flag); 2781 } 2782 2783 /* Non-error returns are a promise to giveback() the urb later 2784 * we drop ownership so next owner (or urb unlink) can get it 2785 * 2786 * urb + dev is in hcd.self.controller.urb_list 2787 * we're queueing TDs onto software and hardware lists 2788 * 2789 * hcd-specific init for hcpriv hasn't been done yet 2790 * 2791 * NOTE: control, bulk, and interrupt share the same code to append TDs 2792 * to a (possibly active) QH, and the same QH scanning code. 2793 */ 2794 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2795 gfp_t mem_flags) 2796 { 2797 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2798 struct list_head qtd_list; 2799 2800 INIT_LIST_HEAD(&qtd_list); 2801 2802 switch (usb_pipetype(urb->pipe)) { 2803 case PIPE_CONTROL: 2804 case PIPE_BULK: 2805 default: 2806 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2807 return -ENOMEM; 2808 return submit_async(oxu, urb, &qtd_list, mem_flags); 2809 2810 case PIPE_INTERRUPT: 2811 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2812 return -ENOMEM; 2813 return intr_submit(oxu, urb, &qtd_list, mem_flags); 2814 2815 case PIPE_ISOCHRONOUS: 2816 if (urb->dev->speed == USB_SPEED_HIGH) 2817 return itd_submit(oxu, urb, mem_flags); 2818 else 2819 return sitd_submit(oxu, urb, mem_flags); 2820 } 2821 } 2822 2823 /* This function is responsible for breaking URBs with big data size 2824 * into smaller size and processing small urbs in sequence. 2825 */ 2826 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2827 gfp_t mem_flags) 2828 { 2829 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2830 int num, rem; 2831 void *transfer_buffer; 2832 struct urb *murb; 2833 int i, ret; 2834 2835 /* If not bulk pipe just enqueue the URB */ 2836 if (!usb_pipebulk(urb->pipe)) 2837 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2838 2839 /* Otherwise we should verify the USB transfer buffer size! */ 2840 transfer_buffer = urb->transfer_buffer; 2841 2842 num = urb->transfer_buffer_length / 4096; 2843 rem = urb->transfer_buffer_length % 4096; 2844 if (rem != 0) 2845 num++; 2846 2847 /* If URB is smaller than 4096 bytes just enqueue it! */ 2848 if (num == 1) 2849 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2850 2851 /* Ok, we have more job to do! :) */ 2852 2853 for (i = 0; i < num - 1; i++) { 2854 /* Get free micro URB poll till a free urb is received */ 2855 2856 do { 2857 murb = (struct urb *) oxu_murb_alloc(oxu); 2858 if (!murb) 2859 schedule(); 2860 } while (!murb); 2861 2862 /* Coping the urb */ 2863 memcpy(murb, urb, sizeof(struct urb)); 2864 2865 murb->transfer_buffer_length = 4096; 2866 murb->transfer_buffer = transfer_buffer + i * 4096; 2867 2868 /* Null pointer for the encodes that this is a micro urb */ 2869 murb->complete = NULL; 2870 2871 ((struct oxu_murb *) murb)->main = urb; 2872 ((struct oxu_murb *) murb)->last = 0; 2873 2874 /* This loop is to guarantee urb to be processed when there's 2875 * not enough resources at a particular time by retrying. 2876 */ 2877 do { 2878 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2879 if (ret) 2880 schedule(); 2881 } while (ret); 2882 } 2883 2884 /* Last urb requires special handling */ 2885 2886 /* Get free micro URB poll till a free urb is received */ 2887 do { 2888 murb = (struct urb *) oxu_murb_alloc(oxu); 2889 if (!murb) 2890 schedule(); 2891 } while (!murb); 2892 2893 /* Coping the urb */ 2894 memcpy(murb, urb, sizeof(struct urb)); 2895 2896 murb->transfer_buffer_length = rem > 0 ? rem : 4096; 2897 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; 2898 2899 /* Null pointer for the encodes that this is a micro urb */ 2900 murb->complete = NULL; 2901 2902 ((struct oxu_murb *) murb)->main = urb; 2903 ((struct oxu_murb *) murb)->last = 1; 2904 2905 do { 2906 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2907 if (ret) 2908 schedule(); 2909 } while (ret); 2910 2911 return ret; 2912 } 2913 2914 /* Remove from hardware lists. 2915 * Completions normally happen asynchronously 2916 */ 2917 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 2918 { 2919 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2920 struct ehci_qh *qh; 2921 unsigned long flags; 2922 2923 spin_lock_irqsave(&oxu->lock, flags); 2924 switch (usb_pipetype(urb->pipe)) { 2925 case PIPE_CONTROL: 2926 case PIPE_BULK: 2927 default: 2928 qh = (struct ehci_qh *) urb->hcpriv; 2929 if (!qh) 2930 break; 2931 unlink_async(oxu, qh); 2932 break; 2933 2934 case PIPE_INTERRUPT: 2935 qh = (struct ehci_qh *) urb->hcpriv; 2936 if (!qh) 2937 break; 2938 switch (qh->qh_state) { 2939 case QH_STATE_LINKED: 2940 intr_deschedule(oxu, qh); 2941 /* FALL THROUGH */ 2942 case QH_STATE_IDLE: 2943 qh_completions(oxu, qh); 2944 break; 2945 default: 2946 oxu_dbg(oxu, "bogus qh %p state %d\n", 2947 qh, qh->qh_state); 2948 goto done; 2949 } 2950 2951 /* reschedule QH iff another request is queued */ 2952 if (!list_empty(&qh->qtd_list) 2953 && HC_IS_RUNNING(hcd->state)) { 2954 int status; 2955 2956 status = qh_schedule(oxu, qh); 2957 spin_unlock_irqrestore(&oxu->lock, flags); 2958 2959 if (status != 0) { 2960 /* shouldn't happen often, but ... 2961 * FIXME kill those tds' urbs 2962 */ 2963 dev_err(hcd->self.controller, 2964 "can't reschedule qh %p, err %d\n", qh, 2965 status); 2966 } 2967 return status; 2968 } 2969 break; 2970 } 2971 done: 2972 spin_unlock_irqrestore(&oxu->lock, flags); 2973 return 0; 2974 } 2975 2976 /* Bulk qh holds the data toggle */ 2977 static void oxu_endpoint_disable(struct usb_hcd *hcd, 2978 struct usb_host_endpoint *ep) 2979 { 2980 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2981 unsigned long flags; 2982 struct ehci_qh *qh, *tmp; 2983 2984 /* ASSERT: any requests/urbs are being unlinked */ 2985 /* ASSERT: nobody can be submitting urbs for this any more */ 2986 2987 rescan: 2988 spin_lock_irqsave(&oxu->lock, flags); 2989 qh = ep->hcpriv; 2990 if (!qh) 2991 goto done; 2992 2993 /* endpoints can be iso streams. for now, we don't 2994 * accelerate iso completions ... so spin a while. 2995 */ 2996 if (qh->hw_info1 == 0) { 2997 oxu_vdbg(oxu, "iso delay\n"); 2998 goto idle_timeout; 2999 } 3000 3001 if (!HC_IS_RUNNING(hcd->state)) 3002 qh->qh_state = QH_STATE_IDLE; 3003 switch (qh->qh_state) { 3004 case QH_STATE_LINKED: 3005 for (tmp = oxu->async->qh_next.qh; 3006 tmp && tmp != qh; 3007 tmp = tmp->qh_next.qh) 3008 continue; 3009 /* periodic qh self-unlinks on empty */ 3010 if (!tmp) 3011 goto nogood; 3012 unlink_async(oxu, qh); 3013 /* FALL THROUGH */ 3014 case QH_STATE_UNLINK: /* wait for hw to finish? */ 3015 idle_timeout: 3016 spin_unlock_irqrestore(&oxu->lock, flags); 3017 schedule_timeout_uninterruptible(1); 3018 goto rescan; 3019 case QH_STATE_IDLE: /* fully unlinked */ 3020 if (list_empty(&qh->qtd_list)) { 3021 qh_put(qh); 3022 break; 3023 } 3024 /* fall through */ 3025 default: 3026 nogood: 3027 /* caller was supposed to have unlinked any requests; 3028 * that's not our job. just leak this memory. 3029 */ 3030 oxu_err(oxu, "qh %p (#%02x) state %d%s\n", 3031 qh, ep->desc.bEndpointAddress, qh->qh_state, 3032 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 3033 break; 3034 } 3035 ep->hcpriv = NULL; 3036 done: 3037 spin_unlock_irqrestore(&oxu->lock, flags); 3038 } 3039 3040 static int oxu_get_frame(struct usb_hcd *hcd) 3041 { 3042 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3043 3044 return (readl(&oxu->regs->frame_index) >> 3) % 3045 oxu->periodic_size; 3046 } 3047 3048 /* Build "status change" packet (one or two bytes) from HC registers */ 3049 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) 3050 { 3051 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3052 u32 temp, mask, status = 0; 3053 int ports, i, retval = 1; 3054 unsigned long flags; 3055 3056 /* if !PM, root hub timers won't get shut down ... */ 3057 if (!HC_IS_RUNNING(hcd->state)) 3058 return 0; 3059 3060 /* init status to no-changes */ 3061 buf[0] = 0; 3062 ports = HCS_N_PORTS(oxu->hcs_params); 3063 if (ports > 7) { 3064 buf[1] = 0; 3065 retval++; 3066 } 3067 3068 /* Some boards (mostly VIA?) report bogus overcurrent indications, 3069 * causing massive log spam unless we completely ignore them. It 3070 * may be relevant that VIA VT8235 controllers, where PORT_POWER is 3071 * always set, seem to clear PORT_OCC and PORT_CSC when writing to 3072 * PORT_POWER; that's surprising, but maybe within-spec. 3073 */ 3074 if (!ignore_oc) 3075 mask = PORT_CSC | PORT_PEC | PORT_OCC; 3076 else 3077 mask = PORT_CSC | PORT_PEC; 3078 3079 /* no hub change reports (bit 0) for now (power, ...) */ 3080 3081 /* port N changes (bit N)? */ 3082 spin_lock_irqsave(&oxu->lock, flags); 3083 for (i = 0; i < ports; i++) { 3084 temp = readl(&oxu->regs->port_status[i]); 3085 3086 /* 3087 * Return status information even for ports with OWNER set. 3088 * Otherwise hub_wq wouldn't see the disconnect event when a 3089 * high-speed device is switched over to the companion 3090 * controller by the user. 3091 */ 3092 3093 if (!(temp & PORT_CONNECT)) 3094 oxu->reset_done[i] = 0; 3095 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && 3096 time_after_eq(jiffies, oxu->reset_done[i]))) { 3097 if (i < 7) 3098 buf[0] |= 1 << (i + 1); 3099 else 3100 buf[1] |= 1 << (i - 7); 3101 status = STS_PCD; 3102 } 3103 } 3104 /* FIXME autosuspend idle root hubs */ 3105 spin_unlock_irqrestore(&oxu->lock, flags); 3106 return status ? retval : 0; 3107 } 3108 3109 /* Returns the speed of a device attached to a port on the root hub. */ 3110 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, 3111 unsigned int portsc) 3112 { 3113 switch ((portsc >> 26) & 3) { 3114 case 0: 3115 return 0; 3116 case 1: 3117 return USB_PORT_STAT_LOW_SPEED; 3118 case 2: 3119 default: 3120 return USB_PORT_STAT_HIGH_SPEED; 3121 } 3122 } 3123 3124 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) 3125 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, 3126 u16 wValue, u16 wIndex, char *buf, u16 wLength) 3127 { 3128 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3129 int ports = HCS_N_PORTS(oxu->hcs_params); 3130 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; 3131 u32 temp, status; 3132 unsigned long flags; 3133 int retval = 0; 3134 unsigned selector; 3135 3136 /* 3137 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 3138 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 3139 * (track current state ourselves) ... blink for diagnostics, 3140 * power, "this is the one", etc. EHCI spec supports this. 3141 */ 3142 3143 spin_lock_irqsave(&oxu->lock, flags); 3144 switch (typeReq) { 3145 case ClearHubFeature: 3146 switch (wValue) { 3147 case C_HUB_LOCAL_POWER: 3148 case C_HUB_OVER_CURRENT: 3149 /* no hub-wide feature/status flags */ 3150 break; 3151 default: 3152 goto error; 3153 } 3154 break; 3155 case ClearPortFeature: 3156 if (!wIndex || wIndex > ports) 3157 goto error; 3158 wIndex--; 3159 temp = readl(status_reg); 3160 3161 /* 3162 * Even if OWNER is set, so the port is owned by the 3163 * companion controller, hub_wq needs to be able to clear 3164 * the port-change status bits (especially 3165 * USB_PORT_STAT_C_CONNECTION). 3166 */ 3167 3168 switch (wValue) { 3169 case USB_PORT_FEAT_ENABLE: 3170 writel(temp & ~PORT_PE, status_reg); 3171 break; 3172 case USB_PORT_FEAT_C_ENABLE: 3173 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); 3174 break; 3175 case USB_PORT_FEAT_SUSPEND: 3176 if (temp & PORT_RESET) 3177 goto error; 3178 if (temp & PORT_SUSPEND) { 3179 if ((temp & PORT_PE) == 0) 3180 goto error; 3181 /* resume signaling for 20 msec */ 3182 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); 3183 writel(temp | PORT_RESUME, status_reg); 3184 oxu->reset_done[wIndex] = jiffies 3185 + msecs_to_jiffies(20); 3186 } 3187 break; 3188 case USB_PORT_FEAT_C_SUSPEND: 3189 /* we auto-clear this feature */ 3190 break; 3191 case USB_PORT_FEAT_POWER: 3192 if (HCS_PPC(oxu->hcs_params)) 3193 writel(temp & ~(PORT_RWC_BITS | PORT_POWER), 3194 status_reg); 3195 break; 3196 case USB_PORT_FEAT_C_CONNECTION: 3197 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); 3198 break; 3199 case USB_PORT_FEAT_C_OVER_CURRENT: 3200 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); 3201 break; 3202 case USB_PORT_FEAT_C_RESET: 3203 /* GetPortStatus clears reset */ 3204 break; 3205 default: 3206 goto error; 3207 } 3208 readl(&oxu->regs->command); /* unblock posted write */ 3209 break; 3210 case GetHubDescriptor: 3211 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) 3212 buf); 3213 break; 3214 case GetHubStatus: 3215 /* no hub-wide feature/status flags */ 3216 memset(buf, 0, 4); 3217 break; 3218 case GetPortStatus: 3219 if (!wIndex || wIndex > ports) 3220 goto error; 3221 wIndex--; 3222 status = 0; 3223 temp = readl(status_reg); 3224 3225 /* wPortChange bits */ 3226 if (temp & PORT_CSC) 3227 status |= USB_PORT_STAT_C_CONNECTION << 16; 3228 if (temp & PORT_PEC) 3229 status |= USB_PORT_STAT_C_ENABLE << 16; 3230 if ((temp & PORT_OCC) && !ignore_oc) 3231 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3232 3233 /* whoever resumes must GetPortStatus to complete it!! */ 3234 if (temp & PORT_RESUME) { 3235 3236 /* Remote Wakeup received? */ 3237 if (!oxu->reset_done[wIndex]) { 3238 /* resume signaling for 20 msec */ 3239 oxu->reset_done[wIndex] = jiffies 3240 + msecs_to_jiffies(20); 3241 /* check the port again */ 3242 mod_timer(&oxu_to_hcd(oxu)->rh_timer, 3243 oxu->reset_done[wIndex]); 3244 } 3245 3246 /* resume completed? */ 3247 else if (time_after_eq(jiffies, 3248 oxu->reset_done[wIndex])) { 3249 status |= USB_PORT_STAT_C_SUSPEND << 16; 3250 oxu->reset_done[wIndex] = 0; 3251 3252 /* stop resume signaling */ 3253 temp = readl(status_reg); 3254 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), 3255 status_reg); 3256 retval = handshake(oxu, status_reg, 3257 PORT_RESUME, 0, 2000 /* 2msec */); 3258 if (retval != 0) { 3259 oxu_err(oxu, 3260 "port %d resume error %d\n", 3261 wIndex + 1, retval); 3262 goto error; 3263 } 3264 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 3265 } 3266 } 3267 3268 /* whoever resets must GetPortStatus to complete it!! */ 3269 if ((temp & PORT_RESET) 3270 && time_after_eq(jiffies, 3271 oxu->reset_done[wIndex])) { 3272 status |= USB_PORT_STAT_C_RESET << 16; 3273 oxu->reset_done[wIndex] = 0; 3274 3275 /* force reset to complete */ 3276 writel(temp & ~(PORT_RWC_BITS | PORT_RESET), 3277 status_reg); 3278 /* REVISIT: some hardware needs 550+ usec to clear 3279 * this bit; seems too long to spin routinely... 3280 */ 3281 retval = handshake(oxu, status_reg, 3282 PORT_RESET, 0, 750); 3283 if (retval != 0) { 3284 oxu_err(oxu, "port %d reset error %d\n", 3285 wIndex + 1, retval); 3286 goto error; 3287 } 3288 3289 /* see what we found out */ 3290 temp = check_reset_complete(oxu, wIndex, status_reg, 3291 readl(status_reg)); 3292 } 3293 3294 /* transfer dedicated ports to the companion hc */ 3295 if ((temp & PORT_CONNECT) && 3296 test_bit(wIndex, &oxu->companion_ports)) { 3297 temp &= ~PORT_RWC_BITS; 3298 temp |= PORT_OWNER; 3299 writel(temp, status_reg); 3300 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); 3301 temp = readl(status_reg); 3302 } 3303 3304 /* 3305 * Even if OWNER is set, there's no harm letting hub_wq 3306 * see the wPortStatus values (they should all be 0 except 3307 * for PORT_POWER anyway). 3308 */ 3309 3310 if (temp & PORT_CONNECT) { 3311 status |= USB_PORT_STAT_CONNECTION; 3312 /* status may be from integrated TT */ 3313 status |= oxu_port_speed(oxu, temp); 3314 } 3315 if (temp & PORT_PE) 3316 status |= USB_PORT_STAT_ENABLE; 3317 if (temp & (PORT_SUSPEND|PORT_RESUME)) 3318 status |= USB_PORT_STAT_SUSPEND; 3319 if (temp & PORT_OC) 3320 status |= USB_PORT_STAT_OVERCURRENT; 3321 if (temp & PORT_RESET) 3322 status |= USB_PORT_STAT_RESET; 3323 if (temp & PORT_POWER) 3324 status |= USB_PORT_STAT_POWER; 3325 3326 #ifndef OXU_VERBOSE_DEBUG 3327 if (status & ~0xffff) /* only if wPortChange is interesting */ 3328 #endif 3329 dbg_port(oxu, "GetStatus", wIndex + 1, temp); 3330 put_unaligned(cpu_to_le32(status), (__le32 *) buf); 3331 break; 3332 case SetHubFeature: 3333 switch (wValue) { 3334 case C_HUB_LOCAL_POWER: 3335 case C_HUB_OVER_CURRENT: 3336 /* no hub-wide feature/status flags */ 3337 break; 3338 default: 3339 goto error; 3340 } 3341 break; 3342 case SetPortFeature: 3343 selector = wIndex >> 8; 3344 wIndex &= 0xff; 3345 if (!wIndex || wIndex > ports) 3346 goto error; 3347 wIndex--; 3348 temp = readl(status_reg); 3349 if (temp & PORT_OWNER) 3350 break; 3351 3352 temp &= ~PORT_RWC_BITS; 3353 switch (wValue) { 3354 case USB_PORT_FEAT_SUSPEND: 3355 if ((temp & PORT_PE) == 0 3356 || (temp & PORT_RESET) != 0) 3357 goto error; 3358 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3359 temp |= PORT_WAKE_BITS; 3360 writel(temp | PORT_SUSPEND, status_reg); 3361 break; 3362 case USB_PORT_FEAT_POWER: 3363 if (HCS_PPC(oxu->hcs_params)) 3364 writel(temp | PORT_POWER, status_reg); 3365 break; 3366 case USB_PORT_FEAT_RESET: 3367 if (temp & PORT_RESUME) 3368 goto error; 3369 /* line status bits may report this as low speed, 3370 * which can be fine if this root hub has a 3371 * transaction translator built in. 3372 */ 3373 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); 3374 temp |= PORT_RESET; 3375 temp &= ~PORT_PE; 3376 3377 /* 3378 * caller must wait, then call GetPortStatus 3379 * usb 2.0 spec says 50 ms resets on root 3380 */ 3381 oxu->reset_done[wIndex] = jiffies 3382 + msecs_to_jiffies(50); 3383 writel(temp, status_reg); 3384 break; 3385 3386 /* For downstream facing ports (these): one hub port is put 3387 * into test mode according to USB2 11.24.2.13, then the hub 3388 * must be reset (which for root hub now means rmmod+modprobe, 3389 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 3390 * about the EHCI-specific stuff. 3391 */ 3392 case USB_PORT_FEAT_TEST: 3393 if (!selector || selector > 5) 3394 goto error; 3395 ehci_quiesce(oxu); 3396 ehci_halt(oxu); 3397 temp |= selector << 16; 3398 writel(temp, status_reg); 3399 break; 3400 3401 default: 3402 goto error; 3403 } 3404 readl(&oxu->regs->command); /* unblock posted writes */ 3405 break; 3406 3407 default: 3408 error: 3409 /* "stall" on error */ 3410 retval = -EPIPE; 3411 } 3412 spin_unlock_irqrestore(&oxu->lock, flags); 3413 return retval; 3414 } 3415 3416 #ifdef CONFIG_PM 3417 3418 static int oxu_bus_suspend(struct usb_hcd *hcd) 3419 { 3420 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3421 int port; 3422 int mask; 3423 3424 oxu_dbg(oxu, "suspend root hub\n"); 3425 3426 if (time_before(jiffies, oxu->next_statechange)) 3427 msleep(5); 3428 3429 port = HCS_N_PORTS(oxu->hcs_params); 3430 spin_lock_irq(&oxu->lock); 3431 3432 /* stop schedules, clean any completed work */ 3433 if (HC_IS_RUNNING(hcd->state)) { 3434 ehci_quiesce(oxu); 3435 hcd->state = HC_STATE_QUIESCING; 3436 } 3437 oxu->command = readl(&oxu->regs->command); 3438 if (oxu->reclaim) 3439 oxu->reclaim_ready = 1; 3440 ehci_work(oxu); 3441 3442 /* Unlike other USB host controller types, EHCI doesn't have 3443 * any notion of "global" or bus-wide suspend. The driver has 3444 * to manually suspend all the active unsuspended ports, and 3445 * then manually resume them in the bus_resume() routine. 3446 */ 3447 oxu->bus_suspended = 0; 3448 while (port--) { 3449 u32 __iomem *reg = &oxu->regs->port_status[port]; 3450 u32 t1 = readl(reg) & ~PORT_RWC_BITS; 3451 u32 t2 = t1; 3452 3453 /* keep track of which ports we suspend */ 3454 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && 3455 !(t1 & PORT_SUSPEND)) { 3456 t2 |= PORT_SUSPEND; 3457 set_bit(port, &oxu->bus_suspended); 3458 } 3459 3460 /* enable remote wakeup on all ports */ 3461 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3462 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; 3463 else 3464 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); 3465 3466 if (t1 != t2) { 3467 oxu_vdbg(oxu, "port %d, %08x -> %08x\n", 3468 port + 1, t1, t2); 3469 writel(t2, reg); 3470 } 3471 } 3472 3473 /* turn off now-idle HC */ 3474 del_timer_sync(&oxu->watchdog); 3475 ehci_halt(oxu); 3476 hcd->state = HC_STATE_SUSPENDED; 3477 3478 /* allow remote wakeup */ 3479 mask = INTR_MASK; 3480 if (!device_may_wakeup(&hcd->self.root_hub->dev)) 3481 mask &= ~STS_PCD; 3482 writel(mask, &oxu->regs->intr_enable); 3483 readl(&oxu->regs->intr_enable); 3484 3485 oxu->next_statechange = jiffies + msecs_to_jiffies(10); 3486 spin_unlock_irq(&oxu->lock); 3487 return 0; 3488 } 3489 3490 /* Caller has locked the root hub, and should reset/reinit on error */ 3491 static int oxu_bus_resume(struct usb_hcd *hcd) 3492 { 3493 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3494 u32 temp; 3495 int i; 3496 3497 if (time_before(jiffies, oxu->next_statechange)) 3498 msleep(5); 3499 spin_lock_irq(&oxu->lock); 3500 3501 /* Ideally and we've got a real resume here, and no port's power 3502 * was lost. (For PCI, that means Vaux was maintained.) But we 3503 * could instead be restoring a swsusp snapshot -- so that BIOS was 3504 * the last user of the controller, not reset/pm hardware keeping 3505 * state we gave to it. 3506 */ 3507 temp = readl(&oxu->regs->intr_enable); 3508 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); 3509 3510 /* at least some APM implementations will try to deliver 3511 * IRQs right away, so delay them until we're ready. 3512 */ 3513 writel(0, &oxu->regs->intr_enable); 3514 3515 /* re-init operational registers */ 3516 writel(0, &oxu->regs->segment); 3517 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3518 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3519 3520 /* restore CMD_RUN, framelist size, and irq threshold */ 3521 writel(oxu->command, &oxu->regs->command); 3522 3523 /* Some controller/firmware combinations need a delay during which 3524 * they set up the port statuses. See Bugzilla #8190. */ 3525 mdelay(8); 3526 3527 /* manually resume the ports we suspended during bus_suspend() */ 3528 i = HCS_N_PORTS(oxu->hcs_params); 3529 while (i--) { 3530 temp = readl(&oxu->regs->port_status[i]); 3531 temp &= ~(PORT_RWC_BITS 3532 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); 3533 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3534 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 3535 temp |= PORT_RESUME; 3536 } 3537 writel(temp, &oxu->regs->port_status[i]); 3538 } 3539 i = HCS_N_PORTS(oxu->hcs_params); 3540 mdelay(20); 3541 while (i--) { 3542 temp = readl(&oxu->regs->port_status[i]); 3543 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3544 temp &= ~(PORT_RWC_BITS | PORT_RESUME); 3545 writel(temp, &oxu->regs->port_status[i]); 3546 oxu_vdbg(oxu, "resumed port %d\n", i + 1); 3547 } 3548 } 3549 (void) readl(&oxu->regs->command); 3550 3551 /* maybe re-activate the schedule(s) */ 3552 temp = 0; 3553 if (oxu->async->qh_next.qh) 3554 temp |= CMD_ASE; 3555 if (oxu->periodic_sched) 3556 temp |= CMD_PSE; 3557 if (temp) { 3558 oxu->command |= temp; 3559 writel(oxu->command, &oxu->regs->command); 3560 } 3561 3562 oxu->next_statechange = jiffies + msecs_to_jiffies(5); 3563 hcd->state = HC_STATE_RUNNING; 3564 3565 /* Now we can safely re-enable irqs */ 3566 writel(INTR_MASK, &oxu->regs->intr_enable); 3567 3568 spin_unlock_irq(&oxu->lock); 3569 return 0; 3570 } 3571 3572 #else 3573 3574 static int oxu_bus_suspend(struct usb_hcd *hcd) 3575 { 3576 return 0; 3577 } 3578 3579 static int oxu_bus_resume(struct usb_hcd *hcd) 3580 { 3581 return 0; 3582 } 3583 3584 #endif /* CONFIG_PM */ 3585 3586 static const struct hc_driver oxu_hc_driver = { 3587 .description = "oxu210hp_hcd", 3588 .product_desc = "oxu210hp HCD", 3589 .hcd_priv_size = sizeof(struct oxu_hcd), 3590 3591 /* 3592 * Generic hardware linkage 3593 */ 3594 .irq = oxu_irq, 3595 .flags = HCD_MEMORY | HCD_USB2, 3596 3597 /* 3598 * Basic lifecycle operations 3599 */ 3600 .reset = oxu_reset, 3601 .start = oxu_run, 3602 .stop = oxu_stop, 3603 .shutdown = oxu_shutdown, 3604 3605 /* 3606 * Managing i/o requests and associated device resources 3607 */ 3608 .urb_enqueue = oxu_urb_enqueue, 3609 .urb_dequeue = oxu_urb_dequeue, 3610 .endpoint_disable = oxu_endpoint_disable, 3611 3612 /* 3613 * Scheduling support 3614 */ 3615 .get_frame_number = oxu_get_frame, 3616 3617 /* 3618 * Root hub support 3619 */ 3620 .hub_status_data = oxu_hub_status_data, 3621 .hub_control = oxu_hub_control, 3622 .bus_suspend = oxu_bus_suspend, 3623 .bus_resume = oxu_bus_resume, 3624 }; 3625 3626 /* 3627 * Module stuff 3628 */ 3629 3630 static void oxu_configuration(struct platform_device *pdev, void *base) 3631 { 3632 u32 tmp; 3633 3634 /* Initialize top level registers. 3635 * First write ever 3636 */ 3637 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3638 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); 3639 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3640 3641 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); 3642 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); 3643 3644 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | 3645 OXU_COMPARATOR | OXU_ASO_OP); 3646 3647 tmp = oxu_readl(base, OXU_CLKCTRL_SET); 3648 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); 3649 3650 /* Clear all top interrupt enable */ 3651 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); 3652 3653 /* Clear all top interrupt status */ 3654 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); 3655 3656 /* Enable all needed top interrupt except OTG SPH core */ 3657 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); 3658 } 3659 3660 static int oxu_verify_id(struct platform_device *pdev, void *base) 3661 { 3662 u32 id; 3663 static const char * const bo[] = { 3664 "reserved", 3665 "128-pin LQFP", 3666 "84-pin TFBGA", 3667 "reserved", 3668 }; 3669 3670 /* Read controller signature register to find a match */ 3671 id = oxu_readl(base, OXU_DEVICEID); 3672 dev_info(&pdev->dev, "device ID %x\n", id); 3673 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) 3674 return -1; 3675 3676 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", 3677 id >> OXU_REV_SHIFT, 3678 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], 3679 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, 3680 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); 3681 3682 return 0; 3683 } 3684 3685 static const struct hc_driver oxu_hc_driver; 3686 static struct usb_hcd *oxu_create(struct platform_device *pdev, 3687 unsigned long memstart, unsigned long memlen, 3688 void *base, int irq, int otg) 3689 { 3690 struct device *dev = &pdev->dev; 3691 3692 struct usb_hcd *hcd; 3693 struct oxu_hcd *oxu; 3694 int ret; 3695 3696 /* Set endian mode and host mode */ 3697 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), 3698 OXU_USBMODE, 3699 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); 3700 3701 hcd = usb_create_hcd(&oxu_hc_driver, dev, 3702 otg ? "oxu210hp_otg" : "oxu210hp_sph"); 3703 if (!hcd) 3704 return ERR_PTR(-ENOMEM); 3705 3706 hcd->rsrc_start = memstart; 3707 hcd->rsrc_len = memlen; 3708 hcd->regs = base; 3709 hcd->irq = irq; 3710 hcd->state = HC_STATE_HALT; 3711 3712 oxu = hcd_to_oxu(hcd); 3713 oxu->is_otg = otg; 3714 3715 ret = usb_add_hcd(hcd, irq, IRQF_SHARED); 3716 if (ret < 0) 3717 return ERR_PTR(ret); 3718 3719 device_wakeup_enable(hcd->self.controller); 3720 return hcd; 3721 } 3722 3723 static int oxu_init(struct platform_device *pdev, 3724 unsigned long memstart, unsigned long memlen, 3725 void *base, int irq) 3726 { 3727 struct oxu_info *info = platform_get_drvdata(pdev); 3728 struct usb_hcd *hcd; 3729 int ret; 3730 3731 /* First time configuration at start up */ 3732 oxu_configuration(pdev, base); 3733 3734 ret = oxu_verify_id(pdev, base); 3735 if (ret) { 3736 dev_err(&pdev->dev, "no devices found!\n"); 3737 return -ENODEV; 3738 } 3739 3740 /* Create the OTG controller */ 3741 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); 3742 if (IS_ERR(hcd)) { 3743 dev_err(&pdev->dev, "cannot create OTG controller!\n"); 3744 ret = PTR_ERR(hcd); 3745 goto error_create_otg; 3746 } 3747 info->hcd[0] = hcd; 3748 3749 /* Create the SPH host controller */ 3750 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); 3751 if (IS_ERR(hcd)) { 3752 dev_err(&pdev->dev, "cannot create SPH controller!\n"); 3753 ret = PTR_ERR(hcd); 3754 goto error_create_sph; 3755 } 3756 info->hcd[1] = hcd; 3757 3758 oxu_writel(base, OXU_CHIPIRQEN_SET, 3759 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); 3760 3761 return 0; 3762 3763 error_create_sph: 3764 usb_remove_hcd(info->hcd[0]); 3765 usb_put_hcd(info->hcd[0]); 3766 3767 error_create_otg: 3768 return ret; 3769 } 3770 3771 static int oxu_drv_probe(struct platform_device *pdev) 3772 { 3773 struct resource *res; 3774 void *base; 3775 unsigned long memstart, memlen; 3776 int irq, ret; 3777 struct oxu_info *info; 3778 3779 if (usb_disabled()) 3780 return -ENODEV; 3781 3782 /* 3783 * Get the platform resources 3784 */ 3785 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 3786 if (!res) { 3787 dev_err(&pdev->dev, 3788 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev)); 3789 return -ENODEV; 3790 } 3791 irq = res->start; 3792 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); 3793 3794 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3795 base = devm_ioremap_resource(&pdev->dev, res); 3796 if (IS_ERR(base)) { 3797 ret = PTR_ERR(base); 3798 goto error; 3799 } 3800 memstart = res->start; 3801 memlen = resource_size(res); 3802 3803 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING); 3804 if (ret) { 3805 dev_err(&pdev->dev, "error setting irq type\n"); 3806 ret = -EFAULT; 3807 goto error; 3808 } 3809 3810 /* Allocate a driver data struct to hold useful info for both 3811 * SPH & OTG devices 3812 */ 3813 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL); 3814 if (!info) { 3815 ret = -EFAULT; 3816 goto error; 3817 } 3818 platform_set_drvdata(pdev, info); 3819 3820 ret = oxu_init(pdev, memstart, memlen, base, irq); 3821 if (ret < 0) { 3822 dev_dbg(&pdev->dev, "cannot init USB devices\n"); 3823 goto error; 3824 } 3825 3826 dev_info(&pdev->dev, "devices enabled and running\n"); 3827 platform_set_drvdata(pdev, info); 3828 3829 return 0; 3830 3831 error: 3832 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); 3833 return ret; 3834 } 3835 3836 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) 3837 { 3838 usb_remove_hcd(hcd); 3839 usb_put_hcd(hcd); 3840 } 3841 3842 static int oxu_drv_remove(struct platform_device *pdev) 3843 { 3844 struct oxu_info *info = platform_get_drvdata(pdev); 3845 3846 oxu_remove(pdev, info->hcd[0]); 3847 oxu_remove(pdev, info->hcd[1]); 3848 3849 return 0; 3850 } 3851 3852 static void oxu_drv_shutdown(struct platform_device *pdev) 3853 { 3854 oxu_drv_remove(pdev); 3855 } 3856 3857 #if 0 3858 /* FIXME: TODO */ 3859 static int oxu_drv_suspend(struct device *dev) 3860 { 3861 struct platform_device *pdev = to_platform_device(dev); 3862 struct usb_hcd *hcd = dev_get_drvdata(dev); 3863 3864 return 0; 3865 } 3866 3867 static int oxu_drv_resume(struct device *dev) 3868 { 3869 struct platform_device *pdev = to_platform_device(dev); 3870 struct usb_hcd *hcd = dev_get_drvdata(dev); 3871 3872 return 0; 3873 } 3874 #else 3875 #define oxu_drv_suspend NULL 3876 #define oxu_drv_resume NULL 3877 #endif 3878 3879 static struct platform_driver oxu_driver = { 3880 .probe = oxu_drv_probe, 3881 .remove = oxu_drv_remove, 3882 .shutdown = oxu_drv_shutdown, 3883 .suspend = oxu_drv_suspend, 3884 .resume = oxu_drv_resume, 3885 .driver = { 3886 .name = "oxu210hp-hcd", 3887 .bus = &platform_bus_type 3888 } 3889 }; 3890 3891 module_platform_driver(oxu_driver); 3892 3893 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); 3894 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 3895 MODULE_LICENSE("GPL"); 3896