1 /* 2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> 3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> 4 * 5 * This code is *strongly* based on EHCI-HCD code by David Brownell since 6 * the chip is a quasi-EHCI compatible. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/pci.h> 25 #include <linux/dmapool.h> 26 #include <linux/kernel.h> 27 #include <linux/delay.h> 28 #include <linux/ioport.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/errno.h> 32 #include <linux/timer.h> 33 #include <linux/list.h> 34 #include <linux/interrupt.h> 35 #include <linux/usb.h> 36 #include <linux/usb/hcd.h> 37 #include <linux/moduleparam.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/io.h> 40 41 #include <asm/irq.h> 42 #include <asm/unaligned.h> 43 44 #include <linux/irq.h> 45 #include <linux/platform_device.h> 46 47 #include "oxu210hp.h" 48 49 #define DRIVER_VERSION "0.0.50" 50 51 /* 52 * Main defines 53 */ 54 55 #define oxu_dbg(oxu, fmt, args...) \ 56 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 57 #define oxu_err(oxu, fmt, args...) \ 58 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 59 #define oxu_info(oxu, fmt, args...) \ 60 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 61 62 #ifdef CONFIG_DYNAMIC_DEBUG 63 #define DEBUG 64 #endif 65 66 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) 67 { 68 return container_of((void *) oxu, struct usb_hcd, hcd_priv); 69 } 70 71 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) 72 { 73 return (struct oxu_hcd *) (hcd->hcd_priv); 74 } 75 76 /* 77 * Debug stuff 78 */ 79 80 #undef OXU_URB_TRACE 81 #undef OXU_VERBOSE_DEBUG 82 83 #ifdef OXU_VERBOSE_DEBUG 84 #define oxu_vdbg oxu_dbg 85 #else 86 #define oxu_vdbg(oxu, fmt, args...) /* Nop */ 87 #endif 88 89 #ifdef DEBUG 90 91 static int __attribute__((__unused__)) 92 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 93 { 94 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 95 label, label[0] ? " " : "", status, 96 (status & STS_ASS) ? " Async" : "", 97 (status & STS_PSS) ? " Periodic" : "", 98 (status & STS_RECL) ? " Recl" : "", 99 (status & STS_HALT) ? " Halt" : "", 100 (status & STS_IAA) ? " IAA" : "", 101 (status & STS_FATAL) ? " FATAL" : "", 102 (status & STS_FLR) ? " FLR" : "", 103 (status & STS_PCD) ? " PCD" : "", 104 (status & STS_ERR) ? " ERR" : "", 105 (status & STS_INT) ? " INT" : "" 106 ); 107 } 108 109 static int __attribute__((__unused__)) 110 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 111 { 112 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 113 label, label[0] ? " " : "", enable, 114 (enable & STS_IAA) ? " IAA" : "", 115 (enable & STS_FATAL) ? " FATAL" : "", 116 (enable & STS_FLR) ? " FLR" : "", 117 (enable & STS_PCD) ? " PCD" : "", 118 (enable & STS_ERR) ? " ERR" : "", 119 (enable & STS_INT) ? " INT" : "" 120 ); 121 } 122 123 static const char *const fls_strings[] = 124 { "1024", "512", "256", "??" }; 125 126 static int dbg_command_buf(char *buf, unsigned len, 127 const char *label, u32 command) 128 { 129 return scnprintf(buf, len, 130 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", 131 label, label[0] ? " " : "", command, 132 (command & CMD_PARK) ? "park" : "(park)", 133 CMD_PARK_CNT(command), 134 (command >> 16) & 0x3f, 135 (command & CMD_LRESET) ? " LReset" : "", 136 (command & CMD_IAAD) ? " IAAD" : "", 137 (command & CMD_ASE) ? " Async" : "", 138 (command & CMD_PSE) ? " Periodic" : "", 139 fls_strings[(command >> 2) & 0x3], 140 (command & CMD_RESET) ? " Reset" : "", 141 (command & CMD_RUN) ? "RUN" : "HALT" 142 ); 143 } 144 145 static int dbg_port_buf(char *buf, unsigned len, const char *label, 146 int port, u32 status) 147 { 148 char *sig; 149 150 /* signaling state */ 151 switch (status & (3 << 10)) { 152 case 0 << 10: 153 sig = "se0"; 154 break; 155 case 1 << 10: 156 sig = "k"; /* low speed */ 157 break; 158 case 2 << 10: 159 sig = "j"; 160 break; 161 default: 162 sig = "?"; 163 break; 164 } 165 166 return scnprintf(buf, len, 167 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", 168 label, label[0] ? " " : "", port, status, 169 (status & PORT_POWER) ? " POWER" : "", 170 (status & PORT_OWNER) ? " OWNER" : "", 171 sig, 172 (status & PORT_RESET) ? " RESET" : "", 173 (status & PORT_SUSPEND) ? " SUSPEND" : "", 174 (status & PORT_RESUME) ? " RESUME" : "", 175 (status & PORT_OCC) ? " OCC" : "", 176 (status & PORT_OC) ? " OC" : "", 177 (status & PORT_PEC) ? " PEC" : "", 178 (status & PORT_PE) ? " PE" : "", 179 (status & PORT_CSC) ? " CSC" : "", 180 (status & PORT_CONNECT) ? " CONNECT" : "" 181 ); 182 } 183 184 #else 185 186 static inline int __attribute__((__unused__)) 187 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 188 { return 0; } 189 190 static inline int __attribute__((__unused__)) 191 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 192 { return 0; } 193 194 static inline int __attribute__((__unused__)) 195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 196 { return 0; } 197 198 static inline int __attribute__((__unused__)) 199 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 200 { return 0; } 201 202 #endif /* DEBUG */ 203 204 /* functions have the "wrong" filename when they're output... */ 205 #define dbg_status(oxu, label, status) { \ 206 char _buf[80]; \ 207 dbg_status_buf(_buf, sizeof _buf, label, status); \ 208 oxu_dbg(oxu, "%s\n", _buf); \ 209 } 210 211 #define dbg_cmd(oxu, label, command) { \ 212 char _buf[80]; \ 213 dbg_command_buf(_buf, sizeof _buf, label, command); \ 214 oxu_dbg(oxu, "%s\n", _buf); \ 215 } 216 217 #define dbg_port(oxu, label, port, status) { \ 218 char _buf[80]; \ 219 dbg_port_buf(_buf, sizeof _buf, label, port, status); \ 220 oxu_dbg(oxu, "%s\n", _buf); \ 221 } 222 223 /* 224 * Module parameters 225 */ 226 227 /* Initial IRQ latency: faster than hw default */ 228 static int log2_irq_thresh; /* 0 to 6 */ 229 module_param(log2_irq_thresh, int, S_IRUGO); 230 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 231 232 /* Initial park setting: slower than hw default */ 233 static unsigned park; 234 module_param(park, uint, S_IRUGO); 235 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 236 237 /* For flakey hardware, ignore overcurrent indicators */ 238 static bool ignore_oc; 239 module_param(ignore_oc, bool, S_IRUGO); 240 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); 241 242 243 static void ehci_work(struct oxu_hcd *oxu); 244 static int oxu_hub_control(struct usb_hcd *hcd, 245 u16 typeReq, u16 wValue, u16 wIndex, 246 char *buf, u16 wLength); 247 248 /* 249 * Local functions 250 */ 251 252 /* Low level read/write registers functions */ 253 static inline u32 oxu_readl(void *base, u32 reg) 254 { 255 return readl(base + reg); 256 } 257 258 static inline void oxu_writel(void *base, u32 reg, u32 val) 259 { 260 writel(val, base + reg); 261 } 262 263 static inline void timer_action_done(struct oxu_hcd *oxu, 264 enum ehci_timer_action action) 265 { 266 clear_bit(action, &oxu->actions); 267 } 268 269 static inline void timer_action(struct oxu_hcd *oxu, 270 enum ehci_timer_action action) 271 { 272 if (!test_and_set_bit(action, &oxu->actions)) { 273 unsigned long t; 274 275 switch (action) { 276 case TIMER_IAA_WATCHDOG: 277 t = EHCI_IAA_JIFFIES; 278 break; 279 case TIMER_IO_WATCHDOG: 280 t = EHCI_IO_JIFFIES; 281 break; 282 case TIMER_ASYNC_OFF: 283 t = EHCI_ASYNC_JIFFIES; 284 break; 285 case TIMER_ASYNC_SHRINK: 286 default: 287 t = EHCI_SHRINK_JIFFIES; 288 break; 289 } 290 t += jiffies; 291 /* all timings except IAA watchdog can be overridden. 292 * async queue SHRINK often precedes IAA. while it's ready 293 * to go OFF neither can matter, and afterwards the IO 294 * watchdog stops unless there's still periodic traffic. 295 */ 296 if (action != TIMER_IAA_WATCHDOG 297 && t > oxu->watchdog.expires 298 && timer_pending(&oxu->watchdog)) 299 return; 300 mod_timer(&oxu->watchdog, t); 301 } 302 } 303 304 /* 305 * handshake - spin reading hc until handshake completes or fails 306 * @ptr: address of hc register to be read 307 * @mask: bits to look at in result of read 308 * @done: value of those bits when handshake succeeds 309 * @usec: timeout in microseconds 310 * 311 * Returns negative errno, or zero on success 312 * 313 * Success happens when the "mask" bits have the specified value (hardware 314 * handshake done). There are two failure modes: "usec" have passed (major 315 * hardware flakeout), or the register reads as all-ones (hardware removed). 316 * 317 * That last failure should_only happen in cases like physical cardbus eject 318 * before driver shutdown. But it also seems to be caused by bugs in cardbus 319 * bridge shutdown: shutting down the bridge before the devices using it. 320 */ 321 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, 322 u32 mask, u32 done, int usec) 323 { 324 u32 result; 325 326 do { 327 result = readl(ptr); 328 if (result == ~(u32)0) /* card removed */ 329 return -ENODEV; 330 result &= mask; 331 if (result == done) 332 return 0; 333 udelay(1); 334 usec--; 335 } while (usec > 0); 336 return -ETIMEDOUT; 337 } 338 339 /* Force HC to halt state from unknown (EHCI spec section 2.3) */ 340 static int ehci_halt(struct oxu_hcd *oxu) 341 { 342 u32 temp = readl(&oxu->regs->status); 343 344 /* disable any irqs left enabled by previous code */ 345 writel(0, &oxu->regs->intr_enable); 346 347 if ((temp & STS_HALT) != 0) 348 return 0; 349 350 temp = readl(&oxu->regs->command); 351 temp &= ~CMD_RUN; 352 writel(temp, &oxu->regs->command); 353 return handshake(oxu, &oxu->regs->status, 354 STS_HALT, STS_HALT, 16 * 125); 355 } 356 357 /* Put TDI/ARC silicon into EHCI mode */ 358 static void tdi_reset(struct oxu_hcd *oxu) 359 { 360 u32 __iomem *reg_ptr; 361 u32 tmp; 362 363 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); 364 tmp = readl(reg_ptr); 365 tmp |= 0x3; 366 writel(tmp, reg_ptr); 367 } 368 369 /* Reset a non-running (STS_HALT == 1) controller */ 370 static int ehci_reset(struct oxu_hcd *oxu) 371 { 372 int retval; 373 u32 command = readl(&oxu->regs->command); 374 375 command |= CMD_RESET; 376 dbg_cmd(oxu, "reset", command); 377 writel(command, &oxu->regs->command); 378 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 379 oxu->next_statechange = jiffies; 380 retval = handshake(oxu, &oxu->regs->command, 381 CMD_RESET, 0, 250 * 1000); 382 383 if (retval) 384 return retval; 385 386 tdi_reset(oxu); 387 388 return retval; 389 } 390 391 /* Idle the controller (from running) */ 392 static void ehci_quiesce(struct oxu_hcd *oxu) 393 { 394 u32 temp; 395 396 #ifdef DEBUG 397 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 398 BUG(); 399 #endif 400 401 /* wait for any schedule enables/disables to take effect */ 402 temp = readl(&oxu->regs->command) << 10; 403 temp &= STS_ASS | STS_PSS; 404 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 405 temp, 16 * 125) != 0) { 406 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 407 return; 408 } 409 410 /* then disable anything that's still active */ 411 temp = readl(&oxu->regs->command); 412 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); 413 writel(temp, &oxu->regs->command); 414 415 /* hardware can take 16 microframes to turn off ... */ 416 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 417 0, 16 * 125) != 0) { 418 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 419 return; 420 } 421 } 422 423 static int check_reset_complete(struct oxu_hcd *oxu, int index, 424 u32 __iomem *status_reg, int port_status) 425 { 426 if (!(port_status & PORT_CONNECT)) { 427 oxu->reset_done[index] = 0; 428 return port_status; 429 } 430 431 /* if reset finished and it's still not enabled -- handoff */ 432 if (!(port_status & PORT_PE)) { 433 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", 434 index+1); 435 return port_status; 436 } else 437 oxu_dbg(oxu, "port %d high speed\n", index + 1); 438 439 return port_status; 440 } 441 442 static void ehci_hub_descriptor(struct oxu_hcd *oxu, 443 struct usb_hub_descriptor *desc) 444 { 445 int ports = HCS_N_PORTS(oxu->hcs_params); 446 u16 temp; 447 448 desc->bDescriptorType = 0x29; 449 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ 450 desc->bHubContrCurrent = 0; 451 452 desc->bNbrPorts = ports; 453 temp = 1 + (ports / 8); 454 desc->bDescLength = 7 + 2 * temp; 455 456 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 457 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 458 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 459 460 temp = 0x0008; /* per-port overcurrent reporting */ 461 if (HCS_PPC(oxu->hcs_params)) 462 temp |= 0x0001; /* per-port power control */ 463 else 464 temp |= 0x0002; /* no power switching */ 465 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); 466 } 467 468 469 /* Allocate an OXU210HP on-chip memory data buffer 470 * 471 * An on-chip memory data buffer is required for each OXU210HP USB transfer. 472 * Each transfer descriptor has one or more on-chip memory data buffers. 473 * 474 * Data buffers are allocated from a fix sized pool of data blocks. 475 * To minimise fragmentation and give reasonable memory utlisation, 476 * data buffers are allocated with sizes the power of 2 multiples of 477 * the block size, starting on an address a multiple of the allocated size. 478 * 479 * FIXME: callers of this function require a buffer to be allocated for 480 * len=0. This is a waste of on-chip memory and should be fix. Then this 481 * function should be changed to not allocate a buffer for len=0. 482 */ 483 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) 484 { 485 int n_blocks; /* minium blocks needed to hold len */ 486 int a_blocks; /* blocks allocated */ 487 int i, j; 488 489 /* Don't allocte bigger than supported */ 490 if (len > BUFFER_SIZE * BUFFER_NUM) { 491 oxu_err(oxu, "buffer too big (%d)\n", len); 492 return -ENOMEM; 493 } 494 495 spin_lock(&oxu->mem_lock); 496 497 /* Number of blocks needed to hold len */ 498 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; 499 500 /* Round the number of blocks up to the power of 2 */ 501 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) 502 ; 503 504 /* Find a suitable available data buffer */ 505 for (i = 0; i < BUFFER_NUM; 506 i += max(a_blocks, (int)oxu->db_used[i])) { 507 508 /* Check all the required blocks are available */ 509 for (j = 0; j < a_blocks; j++) 510 if (oxu->db_used[i + j]) 511 break; 512 513 if (j != a_blocks) 514 continue; 515 516 /* Allocate blocks found! */ 517 qtd->buffer = (void *) &oxu->mem->db_pool[i]; 518 qtd->buffer_dma = virt_to_phys(qtd->buffer); 519 520 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; 521 oxu->db_used[i] = a_blocks; 522 523 spin_unlock(&oxu->mem_lock); 524 525 return 0; 526 } 527 528 /* Failed */ 529 530 spin_unlock(&oxu->mem_lock); 531 532 return -ENOMEM; 533 } 534 535 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 536 { 537 int index; 538 539 spin_lock(&oxu->mem_lock); 540 541 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) 542 / BUFFER_SIZE; 543 oxu->db_used[index] = 0; 544 qtd->qtd_buffer_len = 0; 545 qtd->buffer_dma = 0; 546 qtd->buffer = NULL; 547 548 spin_unlock(&oxu->mem_lock); 549 } 550 551 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) 552 { 553 memset(qtd, 0, sizeof *qtd); 554 qtd->qtd_dma = dma; 555 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 556 qtd->hw_next = EHCI_LIST_END; 557 qtd->hw_alt_next = EHCI_LIST_END; 558 INIT_LIST_HEAD(&qtd->qtd_list); 559 } 560 561 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 562 { 563 int index; 564 565 if (qtd->buffer) 566 oxu_buf_free(oxu, qtd); 567 568 spin_lock(&oxu->mem_lock); 569 570 index = qtd - &oxu->mem->qtd_pool[0]; 571 oxu->qtd_used[index] = 0; 572 573 spin_unlock(&oxu->mem_lock); 574 } 575 576 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) 577 { 578 int i; 579 struct ehci_qtd *qtd = NULL; 580 581 spin_lock(&oxu->mem_lock); 582 583 for (i = 0; i < QTD_NUM; i++) 584 if (!oxu->qtd_used[i]) 585 break; 586 587 if (i < QTD_NUM) { 588 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; 589 memset(qtd, 0, sizeof *qtd); 590 591 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 592 qtd->hw_next = EHCI_LIST_END; 593 qtd->hw_alt_next = EHCI_LIST_END; 594 INIT_LIST_HEAD(&qtd->qtd_list); 595 596 qtd->qtd_dma = virt_to_phys(qtd); 597 598 oxu->qtd_used[i] = 1; 599 } 600 601 spin_unlock(&oxu->mem_lock); 602 603 return qtd; 604 } 605 606 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) 607 { 608 int index; 609 610 spin_lock(&oxu->mem_lock); 611 612 index = qh - &oxu->mem->qh_pool[0]; 613 oxu->qh_used[index] = 0; 614 615 spin_unlock(&oxu->mem_lock); 616 } 617 618 static void qh_destroy(struct kref *kref) 619 { 620 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); 621 struct oxu_hcd *oxu = qh->oxu; 622 623 /* clean qtds first, and know this is not linked */ 624 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 625 oxu_dbg(oxu, "unused qh not empty!\n"); 626 BUG(); 627 } 628 if (qh->dummy) 629 oxu_qtd_free(oxu, qh->dummy); 630 oxu_qh_free(oxu, qh); 631 } 632 633 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) 634 { 635 int i; 636 struct ehci_qh *qh = NULL; 637 638 spin_lock(&oxu->mem_lock); 639 640 for (i = 0; i < QHEAD_NUM; i++) 641 if (!oxu->qh_used[i]) 642 break; 643 644 if (i < QHEAD_NUM) { 645 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; 646 memset(qh, 0, sizeof *qh); 647 648 kref_init(&qh->kref); 649 qh->oxu = oxu; 650 qh->qh_dma = virt_to_phys(qh); 651 INIT_LIST_HEAD(&qh->qtd_list); 652 653 /* dummy td enables safe urb queuing */ 654 qh->dummy = ehci_qtd_alloc(oxu); 655 if (qh->dummy == NULL) { 656 oxu_dbg(oxu, "no dummy td\n"); 657 oxu->qh_used[i] = 0; 658 qh = NULL; 659 goto unlock; 660 } 661 662 oxu->qh_used[i] = 1; 663 } 664 unlock: 665 spin_unlock(&oxu->mem_lock); 666 667 return qh; 668 } 669 670 /* to share a qh (cpu threads, or hc) */ 671 static inline struct ehci_qh *qh_get(struct ehci_qh *qh) 672 { 673 kref_get(&qh->kref); 674 return qh; 675 } 676 677 static inline void qh_put(struct ehci_qh *qh) 678 { 679 kref_put(&qh->kref, qh_destroy); 680 } 681 682 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) 683 { 684 int index; 685 686 spin_lock(&oxu->mem_lock); 687 688 index = murb - &oxu->murb_pool[0]; 689 oxu->murb_used[index] = 0; 690 691 spin_unlock(&oxu->mem_lock); 692 } 693 694 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) 695 696 { 697 int i; 698 struct oxu_murb *murb = NULL; 699 700 spin_lock(&oxu->mem_lock); 701 702 for (i = 0; i < MURB_NUM; i++) 703 if (!oxu->murb_used[i]) 704 break; 705 706 if (i < MURB_NUM) { 707 murb = &(oxu->murb_pool)[i]; 708 709 oxu->murb_used[i] = 1; 710 } 711 712 spin_unlock(&oxu->mem_lock); 713 714 return murb; 715 } 716 717 /* The queue heads and transfer descriptors are managed from pools tied 718 * to each of the "per device" structures. 719 * This is the initialisation and cleanup code. 720 */ 721 static void ehci_mem_cleanup(struct oxu_hcd *oxu) 722 { 723 kfree(oxu->murb_pool); 724 oxu->murb_pool = NULL; 725 726 if (oxu->async) 727 qh_put(oxu->async); 728 oxu->async = NULL; 729 730 del_timer(&oxu->urb_timer); 731 732 oxu->periodic = NULL; 733 734 /* shadow periodic table */ 735 kfree(oxu->pshadow); 736 oxu->pshadow = NULL; 737 } 738 739 /* Remember to add cleanup code (above) if you add anything here. 740 */ 741 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) 742 { 743 int i; 744 745 for (i = 0; i < oxu->periodic_size; i++) 746 oxu->mem->frame_list[i] = EHCI_LIST_END; 747 for (i = 0; i < QHEAD_NUM; i++) 748 oxu->qh_used[i] = 0; 749 for (i = 0; i < QTD_NUM; i++) 750 oxu->qtd_used[i] = 0; 751 752 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); 753 if (!oxu->murb_pool) 754 goto fail; 755 756 for (i = 0; i < MURB_NUM; i++) 757 oxu->murb_used[i] = 0; 758 759 oxu->async = oxu_qh_alloc(oxu); 760 if (!oxu->async) 761 goto fail; 762 763 oxu->periodic = (__le32 *) &oxu->mem->frame_list; 764 oxu->periodic_dma = virt_to_phys(oxu->periodic); 765 766 for (i = 0; i < oxu->periodic_size; i++) 767 oxu->periodic[i] = EHCI_LIST_END; 768 769 /* software shadow of hardware table */ 770 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); 771 if (oxu->pshadow != NULL) 772 return 0; 773 774 fail: 775 oxu_dbg(oxu, "couldn't init memory\n"); 776 ehci_mem_cleanup(oxu); 777 return -ENOMEM; 778 } 779 780 /* Fill a qtd, returning how much of the buffer we were able to queue up. 781 */ 782 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, 783 int token, int maxpacket) 784 { 785 int i, count; 786 u64 addr = buf; 787 788 /* one buffer entry per 4K ... first might be short or unaligned */ 789 qtd->hw_buf[0] = cpu_to_le32((u32)addr); 790 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); 791 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 792 if (likely(len < count)) /* ... iff needed */ 793 count = len; 794 else { 795 buf += 0x1000; 796 buf &= ~0x0fff; 797 798 /* per-qtd limit: from 16K to 20K (best alignment) */ 799 for (i = 1; count < len && i < 5; i++) { 800 addr = buf; 801 qtd->hw_buf[i] = cpu_to_le32((u32)addr); 802 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); 803 buf += 0x1000; 804 if ((count + 0x1000) < len) 805 count += 0x1000; 806 else 807 count = len; 808 } 809 810 /* short packets may only terminate transfers */ 811 if (count != len) 812 count -= (count % maxpacket); 813 } 814 qtd->hw_token = cpu_to_le32((count << 16) | token); 815 qtd->length = count; 816 817 return count; 818 } 819 820 static inline void qh_update(struct oxu_hcd *oxu, 821 struct ehci_qh *qh, struct ehci_qtd *qtd) 822 { 823 /* writes to an active overlay are unsafe */ 824 BUG_ON(qh->qh_state != QH_STATE_IDLE); 825 826 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); 827 qh->hw_alt_next = EHCI_LIST_END; 828 829 /* Except for control endpoints, we make hardware maintain data 830 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 831 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 832 * ever clear it. 833 */ 834 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { 835 unsigned is_out, epnum; 836 837 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); 838 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; 839 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 840 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); 841 usb_settoggle(qh->dev, epnum, is_out, 1); 842 } 843 } 844 845 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 846 wmb(); 847 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); 848 } 849 850 /* If it weren't for a common silicon quirk (writing the dummy into the qh 851 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 852 * recovery (including urb dequeue) would need software changes to a QH... 853 */ 854 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) 855 { 856 struct ehci_qtd *qtd; 857 858 if (list_empty(&qh->qtd_list)) 859 qtd = qh->dummy; 860 else { 861 qtd = list_entry(qh->qtd_list.next, 862 struct ehci_qtd, qtd_list); 863 /* first qtd may already be partially processed */ 864 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) 865 qtd = NULL; 866 } 867 868 if (qtd) 869 qh_update(oxu, qh, qtd); 870 } 871 872 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, 873 size_t length, u32 token) 874 { 875 /* count IN/OUT bytes, not SETUP (even short packets) */ 876 if (likely(QTD_PID(token) != 2)) 877 urb->actual_length += length - QTD_LENGTH(token); 878 879 /* don't modify error codes */ 880 if (unlikely(urb->status != -EINPROGRESS)) 881 return; 882 883 /* force cleanup after short read; not always an error */ 884 if (unlikely(IS_SHORT_READ(token))) 885 urb->status = -EREMOTEIO; 886 887 /* serious "can't proceed" faults reported by the hardware */ 888 if (token & QTD_STS_HALT) { 889 if (token & QTD_STS_BABBLE) { 890 /* FIXME "must" disable babbling device's port too */ 891 urb->status = -EOVERFLOW; 892 } else if (token & QTD_STS_MMF) { 893 /* fs/ls interrupt xfer missed the complete-split */ 894 urb->status = -EPROTO; 895 } else if (token & QTD_STS_DBE) { 896 urb->status = (QTD_PID(token) == 1) /* IN ? */ 897 ? -ENOSR /* hc couldn't read data */ 898 : -ECOMM; /* hc couldn't write data */ 899 } else if (token & QTD_STS_XACT) { 900 /* timeout, bad crc, wrong PID, etc; retried */ 901 if (QTD_CERR(token)) 902 urb->status = -EPIPE; 903 else { 904 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", 905 urb->dev->devpath, 906 usb_pipeendpoint(urb->pipe), 907 usb_pipein(urb->pipe) ? "in" : "out"); 908 urb->status = -EPROTO; 909 } 910 /* CERR nonzero + no errors + halt --> stall */ 911 } else if (QTD_CERR(token)) 912 urb->status = -EPIPE; 913 else /* unknown */ 914 urb->status = -EPROTO; 915 916 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", 917 usb_pipedevice(urb->pipe), 918 usb_pipeendpoint(urb->pipe), 919 usb_pipein(urb->pipe) ? "in" : "out", 920 token, urb->status); 921 } 922 } 923 924 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) 925 __releases(oxu->lock) 926 __acquires(oxu->lock) 927 { 928 if (likely(urb->hcpriv != NULL)) { 929 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 930 931 /* S-mask in a QH means it's an interrupt urb */ 932 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { 933 934 /* ... update hc-wide periodic stats (for usbfs) */ 935 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; 936 } 937 qh_put(qh); 938 } 939 940 urb->hcpriv = NULL; 941 switch (urb->status) { 942 case -EINPROGRESS: /* success */ 943 urb->status = 0; 944 default: /* fault */ 945 break; 946 case -EREMOTEIO: /* fault or normal */ 947 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 948 urb->status = 0; 949 break; 950 case -ECONNRESET: /* canceled */ 951 case -ENOENT: 952 break; 953 } 954 955 #ifdef OXU_URB_TRACE 956 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", 957 __func__, urb->dev->devpath, urb, 958 usb_pipeendpoint(urb->pipe), 959 usb_pipein(urb->pipe) ? "in" : "out", 960 urb->status, 961 urb->actual_length, urb->transfer_buffer_length); 962 #endif 963 964 /* complete() can reenter this HCD */ 965 spin_unlock(&oxu->lock); 966 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); 967 spin_lock(&oxu->lock); 968 } 969 970 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 971 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 972 973 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 974 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 975 976 #define HALT_BIT cpu_to_le32(QTD_STS_HALT) 977 978 /* Process and free completed qtds for a qh, returning URBs to drivers. 979 * Chases up to qh->hw_current. Returns number of completions called, 980 * indicating how much "real" work we did. 981 */ 982 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) 983 { 984 struct ehci_qtd *last = NULL, *end = qh->dummy; 985 struct list_head *entry, *tmp; 986 int stopped; 987 unsigned count = 0; 988 int do_status = 0; 989 u8 state; 990 struct oxu_murb *murb = NULL; 991 992 if (unlikely(list_empty(&qh->qtd_list))) 993 return count; 994 995 /* completions (or tasks on other cpus) must never clobber HALT 996 * till we've gone through and cleaned everything up, even when 997 * they add urbs to this qh's queue or mark them for unlinking. 998 * 999 * NOTE: unlinking expects to be done in queue order. 1000 */ 1001 state = qh->qh_state; 1002 qh->qh_state = QH_STATE_COMPLETING; 1003 stopped = (state == QH_STATE_IDLE); 1004 1005 /* remove de-activated QTDs from front of queue. 1006 * after faults (including short reads), cleanup this urb 1007 * then let the queue advance. 1008 * if queue is stopped, handles unlinks. 1009 */ 1010 list_for_each_safe(entry, tmp, &qh->qtd_list) { 1011 struct ehci_qtd *qtd; 1012 struct urb *urb; 1013 u32 token = 0; 1014 1015 qtd = list_entry(entry, struct ehci_qtd, qtd_list); 1016 urb = qtd->urb; 1017 1018 /* Clean up any state from previous QTD ...*/ 1019 if (last) { 1020 if (likely(last->urb != urb)) { 1021 if (last->urb->complete == NULL) { 1022 murb = (struct oxu_murb *) last->urb; 1023 last->urb = murb->main; 1024 if (murb->last) { 1025 ehci_urb_done(oxu, last->urb); 1026 count++; 1027 } 1028 oxu_murb_free(oxu, murb); 1029 } else { 1030 ehci_urb_done(oxu, last->urb); 1031 count++; 1032 } 1033 } 1034 oxu_qtd_free(oxu, last); 1035 last = NULL; 1036 } 1037 1038 /* ignore urbs submitted during completions we reported */ 1039 if (qtd == end) 1040 break; 1041 1042 /* hardware copies qtd out of qh overlay */ 1043 rmb(); 1044 token = le32_to_cpu(qtd->hw_token); 1045 1046 /* always clean up qtds the hc de-activated */ 1047 if ((token & QTD_STS_ACTIVE) == 0) { 1048 1049 if ((token & QTD_STS_HALT) != 0) { 1050 stopped = 1; 1051 1052 /* magic dummy for some short reads; qh won't advance. 1053 * that silicon quirk can kick in with this dummy too. 1054 */ 1055 } else if (IS_SHORT_READ(token) && 1056 !(qtd->hw_alt_next & EHCI_LIST_END)) { 1057 stopped = 1; 1058 goto halt; 1059 } 1060 1061 /* stop scanning when we reach qtds the hc is using */ 1062 } else if (likely(!stopped && 1063 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { 1064 break; 1065 1066 } else { 1067 stopped = 1; 1068 1069 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) 1070 urb->status = -ESHUTDOWN; 1071 1072 /* ignore active urbs unless some previous qtd 1073 * for the urb faulted (including short read) or 1074 * its urb was canceled. we may patch qh or qtds. 1075 */ 1076 if (likely(urb->status == -EINPROGRESS)) 1077 continue; 1078 1079 /* issue status after short control reads */ 1080 if (unlikely(do_status != 0) 1081 && QTD_PID(token) == 0 /* OUT */) { 1082 do_status = 0; 1083 continue; 1084 } 1085 1086 /* token in overlay may be most current */ 1087 if (state == QH_STATE_IDLE 1088 && cpu_to_le32(qtd->qtd_dma) 1089 == qh->hw_current) 1090 token = le32_to_cpu(qh->hw_token); 1091 1092 /* force halt for unlinked or blocked qh, so we'll 1093 * patch the qh later and so that completions can't 1094 * activate it while we "know" it's stopped. 1095 */ 1096 if ((HALT_BIT & qh->hw_token) == 0) { 1097 halt: 1098 qh->hw_token |= HALT_BIT; 1099 wmb(); 1100 } 1101 } 1102 1103 /* Remove it from the queue */ 1104 qtd_copy_status(oxu, urb->complete ? 1105 urb : ((struct oxu_murb *) urb)->main, 1106 qtd->length, token); 1107 if ((usb_pipein(qtd->urb->pipe)) && 1108 (NULL != qtd->transfer_buffer)) 1109 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); 1110 do_status = (urb->status == -EREMOTEIO) 1111 && usb_pipecontrol(urb->pipe); 1112 1113 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 1114 last = list_entry(qtd->qtd_list.prev, 1115 struct ehci_qtd, qtd_list); 1116 last->hw_next = qtd->hw_next; 1117 } 1118 list_del(&qtd->qtd_list); 1119 last = qtd; 1120 } 1121 1122 /* last urb's completion might still need calling */ 1123 if (likely(last != NULL)) { 1124 if (last->urb->complete == NULL) { 1125 murb = (struct oxu_murb *) last->urb; 1126 last->urb = murb->main; 1127 if (murb->last) { 1128 ehci_urb_done(oxu, last->urb); 1129 count++; 1130 } 1131 oxu_murb_free(oxu, murb); 1132 } else { 1133 ehci_urb_done(oxu, last->urb); 1134 count++; 1135 } 1136 oxu_qtd_free(oxu, last); 1137 } 1138 1139 /* restore original state; caller must unlink or relink */ 1140 qh->qh_state = state; 1141 1142 /* be sure the hardware's done with the qh before refreshing 1143 * it after fault cleanup, or recovering from silicon wrongly 1144 * overlaying the dummy qtd (which reduces DMA chatter). 1145 */ 1146 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { 1147 switch (state) { 1148 case QH_STATE_IDLE: 1149 qh_refresh(oxu, qh); 1150 break; 1151 case QH_STATE_LINKED: 1152 /* should be rare for periodic transfers, 1153 * except maybe high bandwidth ... 1154 */ 1155 if ((cpu_to_le32(QH_SMASK) 1156 & qh->hw_info2) != 0) { 1157 intr_deschedule(oxu, qh); 1158 (void) qh_schedule(oxu, qh); 1159 } else 1160 unlink_async(oxu, qh); 1161 break; 1162 /* otherwise, unlink already started */ 1163 } 1164 } 1165 1166 return count; 1167 } 1168 1169 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 1170 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 1171 /* ... and packet size, for any kind of endpoint descriptor */ 1172 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 1173 1174 /* Reverse of qh_urb_transaction: free a list of TDs. 1175 * used for cleanup after errors, before HC sees an URB's TDs. 1176 */ 1177 static void qtd_list_free(struct oxu_hcd *oxu, 1178 struct urb *urb, struct list_head *qtd_list) 1179 { 1180 struct list_head *entry, *temp; 1181 1182 list_for_each_safe(entry, temp, qtd_list) { 1183 struct ehci_qtd *qtd; 1184 1185 qtd = list_entry(entry, struct ehci_qtd, qtd_list); 1186 list_del(&qtd->qtd_list); 1187 oxu_qtd_free(oxu, qtd); 1188 } 1189 } 1190 1191 /* Create a list of filled qtds for this URB; won't link into qh. 1192 */ 1193 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, 1194 struct urb *urb, 1195 struct list_head *head, 1196 gfp_t flags) 1197 { 1198 struct ehci_qtd *qtd, *qtd_prev; 1199 dma_addr_t buf; 1200 int len, maxpacket; 1201 int is_input; 1202 u32 token; 1203 void *transfer_buf = NULL; 1204 int ret; 1205 1206 /* 1207 * URBs map to sequences of QTDs: one logical transaction 1208 */ 1209 qtd = ehci_qtd_alloc(oxu); 1210 if (unlikely(!qtd)) 1211 return NULL; 1212 list_add_tail(&qtd->qtd_list, head); 1213 qtd->urb = urb; 1214 1215 token = QTD_STS_ACTIVE; 1216 token |= (EHCI_TUNE_CERR << 10); 1217 /* for split transactions, SplitXState initialized to zero */ 1218 1219 len = urb->transfer_buffer_length; 1220 is_input = usb_pipein(urb->pipe); 1221 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) 1222 urb->transfer_buffer = phys_to_virt(urb->transfer_dma); 1223 1224 if (usb_pipecontrol(urb->pipe)) { 1225 /* SETUP pid */ 1226 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); 1227 if (ret) 1228 goto cleanup; 1229 1230 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), 1231 token | (2 /* "setup" */ << 8), 8); 1232 memcpy(qtd->buffer, qtd->urb->setup_packet, 1233 sizeof(struct usb_ctrlrequest)); 1234 1235 /* ... and always at least one more pid */ 1236 token ^= QTD_TOGGLE; 1237 qtd_prev = qtd; 1238 qtd = ehci_qtd_alloc(oxu); 1239 if (unlikely(!qtd)) 1240 goto cleanup; 1241 qtd->urb = urb; 1242 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1243 list_add_tail(&qtd->qtd_list, head); 1244 1245 /* for zero length DATA stages, STATUS is always IN */ 1246 if (len == 0) 1247 token |= (1 /* "in" */ << 8); 1248 } 1249 1250 /* 1251 * Data transfer stage: buffer setup 1252 */ 1253 1254 ret = oxu_buf_alloc(oxu, qtd, len); 1255 if (ret) 1256 goto cleanup; 1257 1258 buf = qtd->buffer_dma; 1259 transfer_buf = urb->transfer_buffer; 1260 1261 if (!is_input) 1262 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); 1263 1264 if (is_input) 1265 token |= (1 /* "in" */ << 8); 1266 /* else it's already initted to "out" pid (0 << 8) */ 1267 1268 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 1269 1270 /* 1271 * buffer gets wrapped in one or more qtds; 1272 * last one may be "short" (including zero len) 1273 * and may serve as a control status ack 1274 */ 1275 for (;;) { 1276 int this_qtd_len; 1277 1278 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); 1279 qtd->transfer_buffer = transfer_buf; 1280 len -= this_qtd_len; 1281 buf += this_qtd_len; 1282 transfer_buf += this_qtd_len; 1283 if (is_input) 1284 qtd->hw_alt_next = oxu->async->hw_alt_next; 1285 1286 /* qh makes control packets use qtd toggle; maybe switch it */ 1287 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 1288 token ^= QTD_TOGGLE; 1289 1290 if (likely(len <= 0)) 1291 break; 1292 1293 qtd_prev = qtd; 1294 qtd = ehci_qtd_alloc(oxu); 1295 if (unlikely(!qtd)) 1296 goto cleanup; 1297 if (likely(len > 0)) { 1298 ret = oxu_buf_alloc(oxu, qtd, len); 1299 if (ret) 1300 goto cleanup; 1301 } 1302 qtd->urb = urb; 1303 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1304 list_add_tail(&qtd->qtd_list, head); 1305 } 1306 1307 /* unless the bulk/interrupt caller wants a chance to clean 1308 * up after short reads, hc should advance qh past this urb 1309 */ 1310 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 1311 || usb_pipecontrol(urb->pipe))) 1312 qtd->hw_alt_next = EHCI_LIST_END; 1313 1314 /* 1315 * control requests may need a terminating data "status" ack; 1316 * bulk ones may need a terminating short packet (zero length). 1317 */ 1318 if (likely(urb->transfer_buffer_length != 0)) { 1319 int one_more = 0; 1320 1321 if (usb_pipecontrol(urb->pipe)) { 1322 one_more = 1; 1323 token ^= 0x0100; /* "in" <--> "out" */ 1324 token |= QTD_TOGGLE; /* force DATA1 */ 1325 } else if (usb_pipebulk(urb->pipe) 1326 && (urb->transfer_flags & URB_ZERO_PACKET) 1327 && !(urb->transfer_buffer_length % maxpacket)) { 1328 one_more = 1; 1329 } 1330 if (one_more) { 1331 qtd_prev = qtd; 1332 qtd = ehci_qtd_alloc(oxu); 1333 if (unlikely(!qtd)) 1334 goto cleanup; 1335 qtd->urb = urb; 1336 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1337 list_add_tail(&qtd->qtd_list, head); 1338 1339 /* never any data in such packets */ 1340 qtd_fill(qtd, 0, 0, token, 0); 1341 } 1342 } 1343 1344 /* by default, enable interrupt on urb completion */ 1345 qtd->hw_token |= cpu_to_le32(QTD_IOC); 1346 return head; 1347 1348 cleanup: 1349 qtd_list_free(oxu, urb, head); 1350 return NULL; 1351 } 1352 1353 /* Each QH holds a qtd list; a QH is used for everything except iso. 1354 * 1355 * For interrupt urbs, the scheduler must set the microframe scheduling 1356 * mask(s) each time the QH gets scheduled. For highspeed, that's 1357 * just one microframe in the s-mask. For split interrupt transactions 1358 * there are additional complications: c-mask, maybe FSTNs. 1359 */ 1360 static struct ehci_qh *qh_make(struct oxu_hcd *oxu, 1361 struct urb *urb, gfp_t flags) 1362 { 1363 struct ehci_qh *qh = oxu_qh_alloc(oxu); 1364 u32 info1 = 0, info2 = 0; 1365 int is_input, type; 1366 int maxp = 0; 1367 1368 if (!qh) 1369 return qh; 1370 1371 /* 1372 * init endpoint/device data for this QH 1373 */ 1374 info1 |= usb_pipeendpoint(urb->pipe) << 8; 1375 info1 |= usb_pipedevice(urb->pipe) << 0; 1376 1377 is_input = usb_pipein(urb->pipe); 1378 type = usb_pipetype(urb->pipe); 1379 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); 1380 1381 /* Compute interrupt scheduling parameters just once, and save. 1382 * - allowing for high bandwidth, how many nsec/uframe are used? 1383 * - split transactions need a second CSPLIT uframe; same question 1384 * - splits also need a schedule gap (for full/low speed I/O) 1385 * - qh has a polling interval 1386 * 1387 * For control/bulk requests, the HC or TT handles these. 1388 */ 1389 if (type == PIPE_INTERRUPT) { 1390 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 1391 is_input, 0, 1392 hb_mult(maxp) * max_packet(maxp))); 1393 qh->start = NO_FRAME; 1394 1395 if (urb->dev->speed == USB_SPEED_HIGH) { 1396 qh->c_usecs = 0; 1397 qh->gap_uf = 0; 1398 1399 qh->period = urb->interval >> 3; 1400 if (qh->period == 0 && urb->interval != 1) { 1401 /* NOTE interval 2 or 4 uframes could work. 1402 * But interval 1 scheduling is simpler, and 1403 * includes high bandwidth. 1404 */ 1405 oxu_dbg(oxu, "intr period %d uframes, NYET!\n", 1406 urb->interval); 1407 goto done; 1408 } 1409 } else { 1410 struct usb_tt *tt = urb->dev->tt; 1411 int think_time; 1412 1413 /* gap is f(FS/LS transfer times) */ 1414 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 1415 is_input, 0, maxp) / (125 * 1000); 1416 1417 /* FIXME this just approximates SPLIT/CSPLIT times */ 1418 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 1419 qh->c_usecs = qh->usecs + HS_USECS(0); 1420 qh->usecs = HS_USECS(1); 1421 } else { /* SPLIT+DATA, gap, CSPLIT */ 1422 qh->usecs += HS_USECS(1); 1423 qh->c_usecs = HS_USECS(0); 1424 } 1425 1426 think_time = tt ? tt->think_time : 0; 1427 qh->tt_usecs = NS_TO_US(think_time + 1428 usb_calc_bus_time(urb->dev->speed, 1429 is_input, 0, max_packet(maxp))); 1430 qh->period = urb->interval; 1431 } 1432 } 1433 1434 /* support for tt scheduling, and access to toggles */ 1435 qh->dev = urb->dev; 1436 1437 /* using TT? */ 1438 switch (urb->dev->speed) { 1439 case USB_SPEED_LOW: 1440 info1 |= (1 << 12); /* EPS "low" */ 1441 /* FALL THROUGH */ 1442 1443 case USB_SPEED_FULL: 1444 /* EPS 0 means "full" */ 1445 if (type != PIPE_INTERRUPT) 1446 info1 |= (EHCI_TUNE_RL_TT << 28); 1447 if (type == PIPE_CONTROL) { 1448 info1 |= (1 << 27); /* for TT */ 1449 info1 |= 1 << 14; /* toggle from qtd */ 1450 } 1451 info1 |= maxp << 16; 1452 1453 info2 |= (EHCI_TUNE_MULT_TT << 30); 1454 info2 |= urb->dev->ttport << 23; 1455 1456 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 1457 1458 break; 1459 1460 case USB_SPEED_HIGH: /* no TT involved */ 1461 info1 |= (2 << 12); /* EPS "high" */ 1462 if (type == PIPE_CONTROL) { 1463 info1 |= (EHCI_TUNE_RL_HS << 28); 1464 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 1465 info1 |= 1 << 14; /* toggle from qtd */ 1466 info2 |= (EHCI_TUNE_MULT_HS << 30); 1467 } else if (type == PIPE_BULK) { 1468 info1 |= (EHCI_TUNE_RL_HS << 28); 1469 info1 |= 512 << 16; /* usb2 fixed maxpacket */ 1470 info2 |= (EHCI_TUNE_MULT_HS << 30); 1471 } else { /* PIPE_INTERRUPT */ 1472 info1 |= max_packet(maxp) << 16; 1473 info2 |= hb_mult(maxp) << 30; 1474 } 1475 break; 1476 default: 1477 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); 1478 done: 1479 qh_put(qh); 1480 return NULL; 1481 } 1482 1483 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 1484 1485 /* init as live, toggle clear, advance to dummy */ 1486 qh->qh_state = QH_STATE_IDLE; 1487 qh->hw_info1 = cpu_to_le32(info1); 1488 qh->hw_info2 = cpu_to_le32(info2); 1489 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 1490 qh_refresh(oxu, qh); 1491 return qh; 1492 } 1493 1494 /* Move qh (and its qtds) onto async queue; maybe enable queue. 1495 */ 1496 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1497 { 1498 __le32 dma = QH_NEXT(qh->qh_dma); 1499 struct ehci_qh *head; 1500 1501 /* (re)start the async schedule? */ 1502 head = oxu->async; 1503 timer_action_done(oxu, TIMER_ASYNC_OFF); 1504 if (!head->qh_next.qh) { 1505 u32 cmd = readl(&oxu->regs->command); 1506 1507 if (!(cmd & CMD_ASE)) { 1508 /* in case a clear of CMD_ASE didn't take yet */ 1509 (void)handshake(oxu, &oxu->regs->status, 1510 STS_ASS, 0, 150); 1511 cmd |= CMD_ASE | CMD_RUN; 1512 writel(cmd, &oxu->regs->command); 1513 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1514 /* posted write need not be known to HC yet ... */ 1515 } 1516 } 1517 1518 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1519 if (qh->qh_state == QH_STATE_IDLE) 1520 qh_refresh(oxu, qh); 1521 1522 /* splice right after start */ 1523 qh->qh_next = head->qh_next; 1524 qh->hw_next = head->hw_next; 1525 wmb(); 1526 1527 head->qh_next.qh = qh; 1528 head->hw_next = dma; 1529 1530 qh->qh_state = QH_STATE_LINKED; 1531 /* qtd completions reported later by interrupt */ 1532 } 1533 1534 #define QH_ADDR_MASK cpu_to_le32(0x7f) 1535 1536 /* 1537 * For control/bulk/interrupt, return QH with these TDs appended. 1538 * Allocates and initializes the QH if necessary. 1539 * Returns null if it can't allocate a QH it needs to. 1540 * If the QH has TDs (urbs) already, that's great. 1541 */ 1542 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, 1543 struct urb *urb, struct list_head *qtd_list, 1544 int epnum, void **ptr) 1545 { 1546 struct ehci_qh *qh = NULL; 1547 1548 qh = (struct ehci_qh *) *ptr; 1549 if (unlikely(qh == NULL)) { 1550 /* can't sleep here, we have oxu->lock... */ 1551 qh = qh_make(oxu, urb, GFP_ATOMIC); 1552 *ptr = qh; 1553 } 1554 if (likely(qh != NULL)) { 1555 struct ehci_qtd *qtd; 1556 1557 if (unlikely(list_empty(qtd_list))) 1558 qtd = NULL; 1559 else 1560 qtd = list_entry(qtd_list->next, struct ehci_qtd, 1561 qtd_list); 1562 1563 /* control qh may need patching ... */ 1564 if (unlikely(epnum == 0)) { 1565 1566 /* usb_reset_device() briefly reverts to address 0 */ 1567 if (usb_pipedevice(urb->pipe) == 0) 1568 qh->hw_info1 &= ~QH_ADDR_MASK; 1569 } 1570 1571 /* just one way to queue requests: swap with the dummy qtd. 1572 * only hc or qh_refresh() ever modify the overlay. 1573 */ 1574 if (likely(qtd != NULL)) { 1575 struct ehci_qtd *dummy; 1576 dma_addr_t dma; 1577 __le32 token; 1578 1579 /* to avoid racing the HC, use the dummy td instead of 1580 * the first td of our list (becomes new dummy). both 1581 * tds stay deactivated until we're done, when the 1582 * HC is allowed to fetch the old dummy (4.10.2). 1583 */ 1584 token = qtd->hw_token; 1585 qtd->hw_token = HALT_BIT; 1586 wmb(); 1587 dummy = qh->dummy; 1588 1589 dma = dummy->qtd_dma; 1590 *dummy = *qtd; 1591 dummy->qtd_dma = dma; 1592 1593 list_del(&qtd->qtd_list); 1594 list_add(&dummy->qtd_list, qtd_list); 1595 list_splice(qtd_list, qh->qtd_list.prev); 1596 1597 ehci_qtd_init(qtd, qtd->qtd_dma); 1598 qh->dummy = qtd; 1599 1600 /* hc must see the new dummy at list end */ 1601 dma = qtd->qtd_dma; 1602 qtd = list_entry(qh->qtd_list.prev, 1603 struct ehci_qtd, qtd_list); 1604 qtd->hw_next = QTD_NEXT(dma); 1605 1606 /* let the hc process these next qtds */ 1607 dummy->hw_token = (token & ~(0x80)); 1608 wmb(); 1609 dummy->hw_token = token; 1610 1611 urb->hcpriv = qh_get(qh); 1612 } 1613 } 1614 return qh; 1615 } 1616 1617 static int submit_async(struct oxu_hcd *oxu, struct urb *urb, 1618 struct list_head *qtd_list, gfp_t mem_flags) 1619 { 1620 struct ehci_qtd *qtd; 1621 int epnum; 1622 unsigned long flags; 1623 struct ehci_qh *qh = NULL; 1624 int rc = 0; 1625 1626 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1627 epnum = urb->ep->desc.bEndpointAddress; 1628 1629 #ifdef OXU_URB_TRACE 1630 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1631 __func__, urb->dev->devpath, urb, 1632 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1633 urb->transfer_buffer_length, 1634 qtd, urb->ep->hcpriv); 1635 #endif 1636 1637 spin_lock_irqsave(&oxu->lock, flags); 1638 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 1639 rc = -ESHUTDOWN; 1640 goto done; 1641 } 1642 1643 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 1644 if (unlikely(qh == NULL)) { 1645 rc = -ENOMEM; 1646 goto done; 1647 } 1648 1649 /* Control/bulk operations through TTs don't need scheduling, 1650 * the HC and TT handle it when the TT has a buffer ready. 1651 */ 1652 if (likely(qh->qh_state == QH_STATE_IDLE)) 1653 qh_link_async(oxu, qh_get(qh)); 1654 done: 1655 spin_unlock_irqrestore(&oxu->lock, flags); 1656 if (unlikely(qh == NULL)) 1657 qtd_list_free(oxu, urb, qtd_list); 1658 return rc; 1659 } 1660 1661 /* The async qh for the qtds being reclaimed are now unlinked from the HC */ 1662 1663 static void end_unlink_async(struct oxu_hcd *oxu) 1664 { 1665 struct ehci_qh *qh = oxu->reclaim; 1666 struct ehci_qh *next; 1667 1668 timer_action_done(oxu, TIMER_IAA_WATCHDOG); 1669 1670 qh->qh_state = QH_STATE_IDLE; 1671 qh->qh_next.qh = NULL; 1672 qh_put(qh); /* refcount from reclaim */ 1673 1674 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 1675 next = qh->reclaim; 1676 oxu->reclaim = next; 1677 oxu->reclaim_ready = 0; 1678 qh->reclaim = NULL; 1679 1680 qh_completions(oxu, qh); 1681 1682 if (!list_empty(&qh->qtd_list) 1683 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 1684 qh_link_async(oxu, qh); 1685 else { 1686 qh_put(qh); /* refcount from async list */ 1687 1688 /* it's not free to turn the async schedule on/off; leave it 1689 * active but idle for a while once it empties. 1690 */ 1691 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) 1692 && oxu->async->qh_next.qh == NULL) 1693 timer_action(oxu, TIMER_ASYNC_OFF); 1694 } 1695 1696 if (next) { 1697 oxu->reclaim = NULL; 1698 start_unlink_async(oxu, next); 1699 } 1700 } 1701 1702 /* makes sure the async qh will become idle */ 1703 /* caller must own oxu->lock */ 1704 1705 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1706 { 1707 int cmd = readl(&oxu->regs->command); 1708 struct ehci_qh *prev; 1709 1710 #ifdef DEBUG 1711 assert_spin_locked(&oxu->lock); 1712 if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED 1713 && qh->qh_state != QH_STATE_UNLINK_WAIT)) 1714 BUG(); 1715 #endif 1716 1717 /* stop async schedule right now? */ 1718 if (unlikely(qh == oxu->async)) { 1719 /* can't get here without STS_ASS set */ 1720 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT 1721 && !oxu->reclaim) { 1722 /* ... and CMD_IAAD clear */ 1723 writel(cmd & ~CMD_ASE, &oxu->regs->command); 1724 wmb(); 1725 /* handshake later, if we need to */ 1726 timer_action_done(oxu, TIMER_ASYNC_OFF); 1727 } 1728 return; 1729 } 1730 1731 qh->qh_state = QH_STATE_UNLINK; 1732 oxu->reclaim = qh = qh_get(qh); 1733 1734 prev = oxu->async; 1735 while (prev->qh_next.qh != qh) 1736 prev = prev->qh_next.qh; 1737 1738 prev->hw_next = qh->hw_next; 1739 prev->qh_next = qh->qh_next; 1740 wmb(); 1741 1742 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { 1743 /* if (unlikely(qh->reclaim != 0)) 1744 * this will recurse, probably not much 1745 */ 1746 end_unlink_async(oxu); 1747 return; 1748 } 1749 1750 oxu->reclaim_ready = 0; 1751 cmd |= CMD_IAAD; 1752 writel(cmd, &oxu->regs->command); 1753 (void) readl(&oxu->regs->command); 1754 timer_action(oxu, TIMER_IAA_WATCHDOG); 1755 } 1756 1757 static void scan_async(struct oxu_hcd *oxu) 1758 { 1759 struct ehci_qh *qh; 1760 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 1761 1762 if (!++(oxu->stamp)) 1763 oxu->stamp++; 1764 timer_action_done(oxu, TIMER_ASYNC_SHRINK); 1765 rescan: 1766 qh = oxu->async->qh_next.qh; 1767 if (likely(qh != NULL)) { 1768 do { 1769 /* clean any finished work for this qh */ 1770 if (!list_empty(&qh->qtd_list) 1771 && qh->stamp != oxu->stamp) { 1772 int temp; 1773 1774 /* unlinks could happen here; completion 1775 * reporting drops the lock. rescan using 1776 * the latest schedule, but don't rescan 1777 * qhs we already finished (no looping). 1778 */ 1779 qh = qh_get(qh); 1780 qh->stamp = oxu->stamp; 1781 temp = qh_completions(oxu, qh); 1782 qh_put(qh); 1783 if (temp != 0) 1784 goto rescan; 1785 } 1786 1787 /* unlink idle entries, reducing HC PCI usage as well 1788 * as HCD schedule-scanning costs. delay for any qh 1789 * we just scanned, there's a not-unusual case that it 1790 * doesn't stay idle for long. 1791 * (plus, avoids some kind of re-activation race.) 1792 */ 1793 if (list_empty(&qh->qtd_list)) { 1794 if (qh->stamp == oxu->stamp) 1795 action = TIMER_ASYNC_SHRINK; 1796 else if (!oxu->reclaim 1797 && qh->qh_state == QH_STATE_LINKED) 1798 start_unlink_async(oxu, qh); 1799 } 1800 1801 qh = qh->qh_next.qh; 1802 } while (qh); 1803 } 1804 if (action == TIMER_ASYNC_SHRINK) 1805 timer_action(oxu, TIMER_ASYNC_SHRINK); 1806 } 1807 1808 /* 1809 * periodic_next_shadow - return "next" pointer on shadow list 1810 * @periodic: host pointer to qh/itd/sitd 1811 * @tag: hardware tag for type of this record 1812 */ 1813 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, 1814 __le32 tag) 1815 { 1816 switch (tag) { 1817 default: 1818 case Q_TYPE_QH: 1819 return &periodic->qh->qh_next; 1820 } 1821 } 1822 1823 /* caller must hold oxu->lock */ 1824 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) 1825 { 1826 union ehci_shadow *prev_p = &oxu->pshadow[frame]; 1827 __le32 *hw_p = &oxu->periodic[frame]; 1828 union ehci_shadow here = *prev_p; 1829 1830 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 1831 while (here.ptr && here.ptr != ptr) { 1832 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); 1833 hw_p = here.hw_next; 1834 here = *prev_p; 1835 } 1836 /* an interrupt entry (at list end) could have been shared */ 1837 if (!here.ptr) 1838 return; 1839 1840 /* update shadow and hardware lists ... the old "next" pointers 1841 * from ptr may still be in use, the caller updates them. 1842 */ 1843 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); 1844 *hw_p = *here.hw_next; 1845 } 1846 1847 /* how many of the uframe's 125 usecs are allocated? */ 1848 static unsigned short periodic_usecs(struct oxu_hcd *oxu, 1849 unsigned frame, unsigned uframe) 1850 { 1851 __le32 *hw_p = &oxu->periodic[frame]; 1852 union ehci_shadow *q = &oxu->pshadow[frame]; 1853 unsigned usecs = 0; 1854 1855 while (q->ptr) { 1856 switch (Q_NEXT_TYPE(*hw_p)) { 1857 case Q_TYPE_QH: 1858 default: 1859 /* is it in the S-mask? */ 1860 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) 1861 usecs += q->qh->usecs; 1862 /* ... or C-mask? */ 1863 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) 1864 usecs += q->qh->c_usecs; 1865 hw_p = &q->qh->hw_next; 1866 q = &q->qh->qh_next; 1867 break; 1868 } 1869 } 1870 #ifdef DEBUG 1871 if (usecs > 100) 1872 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", 1873 frame * 8 + uframe, usecs); 1874 #endif 1875 return usecs; 1876 } 1877 1878 static int enable_periodic(struct oxu_hcd *oxu) 1879 { 1880 u32 cmd; 1881 int status; 1882 1883 /* did clearing PSE did take effect yet? 1884 * takes effect only at frame boundaries... 1885 */ 1886 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); 1887 if (status != 0) { 1888 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1889 usb_hc_died(oxu_to_hcd(oxu)); 1890 return status; 1891 } 1892 1893 cmd = readl(&oxu->regs->command) | CMD_PSE; 1894 writel(cmd, &oxu->regs->command); 1895 /* posted write ... PSS happens later */ 1896 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1897 1898 /* make sure ehci_work scans these */ 1899 oxu->next_uframe = readl(&oxu->regs->frame_index) 1900 % (oxu->periodic_size << 3); 1901 return 0; 1902 } 1903 1904 static int disable_periodic(struct oxu_hcd *oxu) 1905 { 1906 u32 cmd; 1907 int status; 1908 1909 /* did setting PSE not take effect yet? 1910 * takes effect only at frame boundaries... 1911 */ 1912 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); 1913 if (status != 0) { 1914 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1915 usb_hc_died(oxu_to_hcd(oxu)); 1916 return status; 1917 } 1918 1919 cmd = readl(&oxu->regs->command) & ~CMD_PSE; 1920 writel(cmd, &oxu->regs->command); 1921 /* posted write ... */ 1922 1923 oxu->next_uframe = -1; 1924 return 0; 1925 } 1926 1927 /* periodic schedule slots have iso tds (normal or split) first, then a 1928 * sparse tree for active interrupt transfers. 1929 * 1930 * this just links in a qh; caller guarantees uframe masks are set right. 1931 * no FSTN support (yet; oxu 0.96+) 1932 */ 1933 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1934 { 1935 unsigned i; 1936 unsigned period = qh->period; 1937 1938 dev_dbg(&qh->dev->dev, 1939 "link qh%d-%04x/%p start %d [%d/%d us]\n", 1940 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 1941 qh, qh->start, qh->usecs, qh->c_usecs); 1942 1943 /* high bandwidth, or otherwise every microframe */ 1944 if (period == 0) 1945 period = 1; 1946 1947 for (i = qh->start; i < oxu->periodic_size; i += period) { 1948 union ehci_shadow *prev = &oxu->pshadow[i]; 1949 __le32 *hw_p = &oxu->periodic[i]; 1950 union ehci_shadow here = *prev; 1951 __le32 type = 0; 1952 1953 /* skip the iso nodes at list head */ 1954 while (here.ptr) { 1955 type = Q_NEXT_TYPE(*hw_p); 1956 if (type == Q_TYPE_QH) 1957 break; 1958 prev = periodic_next_shadow(prev, type); 1959 hw_p = &here.qh->hw_next; 1960 here = *prev; 1961 } 1962 1963 /* sorting each branch by period (slow-->fast) 1964 * enables sharing interior tree nodes 1965 */ 1966 while (here.ptr && qh != here.qh) { 1967 if (qh->period > here.qh->period) 1968 break; 1969 prev = &here.qh->qh_next; 1970 hw_p = &here.qh->hw_next; 1971 here = *prev; 1972 } 1973 /* link in this qh, unless some earlier pass did that */ 1974 if (qh != here.qh) { 1975 qh->qh_next = here; 1976 if (here.qh) 1977 qh->hw_next = *hw_p; 1978 wmb(); 1979 prev->qh = qh; 1980 *hw_p = QH_NEXT(qh->qh_dma); 1981 } 1982 } 1983 qh->qh_state = QH_STATE_LINKED; 1984 qh_get(qh); 1985 1986 /* update per-qh bandwidth for usbfs */ 1987 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period 1988 ? ((qh->usecs + qh->c_usecs) / qh->period) 1989 : (qh->usecs * 8); 1990 1991 /* maybe enable periodic schedule processing */ 1992 if (!oxu->periodic_sched++) 1993 return enable_periodic(oxu); 1994 1995 return 0; 1996 } 1997 1998 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1999 { 2000 unsigned i; 2001 unsigned period; 2002 2003 /* FIXME: 2004 * IF this isn't high speed 2005 * and this qh is active in the current uframe 2006 * (and overlay token SplitXstate is false?) 2007 * THEN 2008 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); 2009 */ 2010 2011 /* high bandwidth, or otherwise part of every microframe */ 2012 period = qh->period; 2013 if (period == 0) 2014 period = 1; 2015 2016 for (i = qh->start; i < oxu->periodic_size; i += period) 2017 periodic_unlink(oxu, i, qh); 2018 2019 /* update per-qh bandwidth for usbfs */ 2020 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period 2021 ? ((qh->usecs + qh->c_usecs) / qh->period) 2022 : (qh->usecs * 8); 2023 2024 dev_dbg(&qh->dev->dev, 2025 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 2026 qh->period, 2027 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2028 qh, qh->start, qh->usecs, qh->c_usecs); 2029 2030 /* qh->qh_next still "live" to HC */ 2031 qh->qh_state = QH_STATE_UNLINK; 2032 qh->qh_next.ptr = NULL; 2033 qh_put(qh); 2034 2035 /* maybe turn off periodic schedule */ 2036 oxu->periodic_sched--; 2037 if (!oxu->periodic_sched) 2038 (void) disable_periodic(oxu); 2039 } 2040 2041 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2042 { 2043 unsigned wait; 2044 2045 qh_unlink_periodic(oxu, qh); 2046 2047 /* simple/paranoid: always delay, expecting the HC needs to read 2048 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 2049 * expect khubd to clean up after any CSPLITs we won't issue. 2050 * active high speed queues may need bigger delays... 2051 */ 2052 if (list_empty(&qh->qtd_list) 2053 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) 2054 wait = 2; 2055 else 2056 wait = 55; /* worst case: 3 * 1024 */ 2057 2058 udelay(wait); 2059 qh->qh_state = QH_STATE_IDLE; 2060 qh->hw_next = EHCI_LIST_END; 2061 wmb(); 2062 } 2063 2064 static int check_period(struct oxu_hcd *oxu, 2065 unsigned frame, unsigned uframe, 2066 unsigned period, unsigned usecs) 2067 { 2068 int claimed; 2069 2070 /* complete split running into next frame? 2071 * given FSTN support, we could sometimes check... 2072 */ 2073 if (uframe >= 8) 2074 return 0; 2075 2076 /* 2077 * 80% periodic == 100 usec/uframe available 2078 * convert "usecs we need" to "max already claimed" 2079 */ 2080 usecs = 100 - usecs; 2081 2082 /* we "know" 2 and 4 uframe intervals were rejected; so 2083 * for period 0, check _every_ microframe in the schedule. 2084 */ 2085 if (unlikely(period == 0)) { 2086 do { 2087 for (uframe = 0; uframe < 7; uframe++) { 2088 claimed = periodic_usecs(oxu, frame, uframe); 2089 if (claimed > usecs) 2090 return 0; 2091 } 2092 } while ((frame += 1) < oxu->periodic_size); 2093 2094 /* just check the specified uframe, at that period */ 2095 } else { 2096 do { 2097 claimed = periodic_usecs(oxu, frame, uframe); 2098 if (claimed > usecs) 2099 return 0; 2100 } while ((frame += period) < oxu->periodic_size); 2101 } 2102 2103 return 1; 2104 } 2105 2106 static int check_intr_schedule(struct oxu_hcd *oxu, 2107 unsigned frame, unsigned uframe, 2108 const struct ehci_qh *qh, __le32 *c_maskp) 2109 { 2110 int retval = -ENOSPC; 2111 2112 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 2113 goto done; 2114 2115 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) 2116 goto done; 2117 if (!qh->c_usecs) { 2118 retval = 0; 2119 *c_maskp = 0; 2120 goto done; 2121 } 2122 2123 done: 2124 return retval; 2125 } 2126 2127 /* "first fit" scheduling policy used the first time through, 2128 * or when the previous schedule slot can't be re-used. 2129 */ 2130 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2131 { 2132 int status; 2133 unsigned uframe; 2134 __le32 c_mask; 2135 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 2136 2137 qh_refresh(oxu, qh); 2138 qh->hw_next = EHCI_LIST_END; 2139 frame = qh->start; 2140 2141 /* reuse the previous schedule slots, if we can */ 2142 if (frame < qh->period) { 2143 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); 2144 status = check_intr_schedule(oxu, frame, --uframe, 2145 qh, &c_mask); 2146 } else { 2147 uframe = 0; 2148 c_mask = 0; 2149 status = -ENOSPC; 2150 } 2151 2152 /* else scan the schedule to find a group of slots such that all 2153 * uframes have enough periodic bandwidth available. 2154 */ 2155 if (status) { 2156 /* "normal" case, uframing flexible except with splits */ 2157 if (qh->period) { 2158 frame = qh->period - 1; 2159 do { 2160 for (uframe = 0; uframe < 8; uframe++) { 2161 status = check_intr_schedule(oxu, 2162 frame, uframe, qh, 2163 &c_mask); 2164 if (status == 0) 2165 break; 2166 } 2167 } while (status && frame--); 2168 2169 /* qh->period == 0 means every uframe */ 2170 } else { 2171 frame = 0; 2172 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); 2173 } 2174 if (status) 2175 goto done; 2176 qh->start = frame; 2177 2178 /* reset S-frame and (maybe) C-frame masks */ 2179 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); 2180 qh->hw_info2 |= qh->period 2181 ? cpu_to_le32(1 << uframe) 2182 : cpu_to_le32(QH_SMASK); 2183 qh->hw_info2 |= c_mask; 2184 } else 2185 oxu_dbg(oxu, "reused qh %p schedule\n", qh); 2186 2187 /* stuff into the periodic schedule */ 2188 status = qh_link_periodic(oxu, qh); 2189 done: 2190 return status; 2191 } 2192 2193 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, 2194 struct list_head *qtd_list, gfp_t mem_flags) 2195 { 2196 unsigned epnum; 2197 unsigned long flags; 2198 struct ehci_qh *qh; 2199 int status = 0; 2200 struct list_head empty; 2201 2202 /* get endpoint and transfer/schedule data */ 2203 epnum = urb->ep->desc.bEndpointAddress; 2204 2205 spin_lock_irqsave(&oxu->lock, flags); 2206 2207 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2208 status = -ESHUTDOWN; 2209 goto done; 2210 } 2211 2212 /* get qh and force any scheduling errors */ 2213 INIT_LIST_HEAD(&empty); 2214 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); 2215 if (qh == NULL) { 2216 status = -ENOMEM; 2217 goto done; 2218 } 2219 if (qh->qh_state == QH_STATE_IDLE) { 2220 status = qh_schedule(oxu, qh); 2221 if (status != 0) 2222 goto done; 2223 } 2224 2225 /* then queue the urb's tds to the qh */ 2226 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2227 BUG_ON(qh == NULL); 2228 2229 /* ... update usbfs periodic stats */ 2230 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; 2231 2232 done: 2233 spin_unlock_irqrestore(&oxu->lock, flags); 2234 if (status) 2235 qtd_list_free(oxu, urb, qtd_list); 2236 2237 return status; 2238 } 2239 2240 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, 2241 gfp_t mem_flags) 2242 { 2243 oxu_dbg(oxu, "iso support is missing!\n"); 2244 return -ENOSYS; 2245 } 2246 2247 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, 2248 gfp_t mem_flags) 2249 { 2250 oxu_dbg(oxu, "split iso support is missing!\n"); 2251 return -ENOSYS; 2252 } 2253 2254 static void scan_periodic(struct oxu_hcd *oxu) 2255 { 2256 unsigned frame, clock, now_uframe, mod; 2257 unsigned modified; 2258 2259 mod = oxu->periodic_size << 3; 2260 2261 /* 2262 * When running, scan from last scan point up to "now" 2263 * else clean up by scanning everything that's left. 2264 * Touches as few pages as possible: cache-friendly. 2265 */ 2266 now_uframe = oxu->next_uframe; 2267 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2268 clock = readl(&oxu->regs->frame_index); 2269 else 2270 clock = now_uframe + mod - 1; 2271 clock %= mod; 2272 2273 for (;;) { 2274 union ehci_shadow q, *q_p; 2275 __le32 type, *hw_p; 2276 unsigned uframes; 2277 2278 /* don't scan past the live uframe */ 2279 frame = now_uframe >> 3; 2280 if (frame == (clock >> 3)) 2281 uframes = now_uframe & 0x07; 2282 else { 2283 /* safe to scan the whole frame at once */ 2284 now_uframe |= 0x07; 2285 uframes = 8; 2286 } 2287 2288 restart: 2289 /* scan each element in frame's queue for completions */ 2290 q_p = &oxu->pshadow[frame]; 2291 hw_p = &oxu->periodic[frame]; 2292 q.ptr = q_p->ptr; 2293 type = Q_NEXT_TYPE(*hw_p); 2294 modified = 0; 2295 2296 while (q.ptr != NULL) { 2297 union ehci_shadow temp; 2298 int live; 2299 2300 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state); 2301 switch (type) { 2302 case Q_TYPE_QH: 2303 /* handle any completions */ 2304 temp.qh = qh_get(q.qh); 2305 type = Q_NEXT_TYPE(q.qh->hw_next); 2306 q = q.qh->qh_next; 2307 modified = qh_completions(oxu, temp.qh); 2308 if (unlikely(list_empty(&temp.qh->qtd_list))) 2309 intr_deschedule(oxu, temp.qh); 2310 qh_put(temp.qh); 2311 break; 2312 default: 2313 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n", 2314 type, frame, q.ptr); 2315 q.ptr = NULL; 2316 } 2317 2318 /* assume completion callbacks modify the queue */ 2319 if (unlikely(modified)) 2320 goto restart; 2321 } 2322 2323 /* Stop when we catch up to the HC */ 2324 2325 /* FIXME: this assumes we won't get lapped when 2326 * latencies climb; that should be rare, but... 2327 * detect it, and just go all the way around. 2328 * FLR might help detect this case, so long as latencies 2329 * don't exceed periodic_size msec (default 1.024 sec). 2330 */ 2331 2332 /* FIXME: likewise assumes HC doesn't halt mid-scan */ 2333 2334 if (now_uframe == clock) { 2335 unsigned now; 2336 2337 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2338 break; 2339 oxu->next_uframe = now_uframe; 2340 now = readl(&oxu->regs->frame_index) % mod; 2341 if (now_uframe == now) 2342 break; 2343 2344 /* rescan the rest of this frame, then ... */ 2345 clock = now; 2346 } else { 2347 now_uframe++; 2348 now_uframe %= mod; 2349 } 2350 } 2351 } 2352 2353 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 2354 * The firmware seems to think that powering off is a wakeup event! 2355 * This routine turns off remote wakeup and everything else, on all ports. 2356 */ 2357 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) 2358 { 2359 int port = HCS_N_PORTS(oxu->hcs_params); 2360 2361 while (port--) 2362 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); 2363 } 2364 2365 static void ehci_port_power(struct oxu_hcd *oxu, int is_on) 2366 { 2367 unsigned port; 2368 2369 if (!HCS_PPC(oxu->hcs_params)) 2370 return; 2371 2372 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); 2373 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) 2374 (void) oxu_hub_control(oxu_to_hcd(oxu), 2375 is_on ? SetPortFeature : ClearPortFeature, 2376 USB_PORT_FEAT_POWER, 2377 port--, NULL, 0); 2378 msleep(20); 2379 } 2380 2381 /* Called from some interrupts, timers, and so on. 2382 * It calls driver completion functions, after dropping oxu->lock. 2383 */ 2384 static void ehci_work(struct oxu_hcd *oxu) 2385 { 2386 timer_action_done(oxu, TIMER_IO_WATCHDOG); 2387 if (oxu->reclaim_ready) 2388 end_unlink_async(oxu); 2389 2390 /* another CPU may drop oxu->lock during a schedule scan while 2391 * it reports urb completions. this flag guards against bogus 2392 * attempts at re-entrant schedule scanning. 2393 */ 2394 if (oxu->scanning) 2395 return; 2396 oxu->scanning = 1; 2397 scan_async(oxu); 2398 if (oxu->next_uframe != -1) 2399 scan_periodic(oxu); 2400 oxu->scanning = 0; 2401 2402 /* the IO watchdog guards against hardware or driver bugs that 2403 * misplace IRQs, and should let us run completely without IRQs. 2404 * such lossage has been observed on both VT6202 and VT8235. 2405 */ 2406 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && 2407 (oxu->async->qh_next.ptr != NULL || 2408 oxu->periodic_sched != 0)) 2409 timer_action(oxu, TIMER_IO_WATCHDOG); 2410 } 2411 2412 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2413 { 2414 /* if we need to use IAA and it's busy, defer */ 2415 if (qh->qh_state == QH_STATE_LINKED 2416 && oxu->reclaim 2417 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { 2418 struct ehci_qh *last; 2419 2420 for (last = oxu->reclaim; 2421 last->reclaim; 2422 last = last->reclaim) 2423 continue; 2424 qh->qh_state = QH_STATE_UNLINK_WAIT; 2425 last->reclaim = qh; 2426 2427 /* bypass IAA if the hc can't care */ 2428 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) 2429 end_unlink_async(oxu); 2430 2431 /* something else might have unlinked the qh by now */ 2432 if (qh->qh_state == QH_STATE_LINKED) 2433 start_unlink_async(oxu, qh); 2434 } 2435 2436 /* 2437 * USB host controller methods 2438 */ 2439 2440 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) 2441 { 2442 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2443 u32 status, pcd_status = 0; 2444 int bh; 2445 2446 spin_lock(&oxu->lock); 2447 2448 status = readl(&oxu->regs->status); 2449 2450 /* e.g. cardbus physical eject */ 2451 if (status == ~(u32) 0) { 2452 oxu_dbg(oxu, "device removed\n"); 2453 goto dead; 2454 } 2455 2456 /* Shared IRQ? */ 2457 status &= INTR_MASK; 2458 if (!status || unlikely(hcd->state == HC_STATE_HALT)) { 2459 spin_unlock(&oxu->lock); 2460 return IRQ_NONE; 2461 } 2462 2463 /* clear (just) interrupts */ 2464 writel(status, &oxu->regs->status); 2465 readl(&oxu->regs->command); /* unblock posted write */ 2466 bh = 0; 2467 2468 #ifdef OXU_VERBOSE_DEBUG 2469 /* unrequested/ignored: Frame List Rollover */ 2470 dbg_status(oxu, "irq", status); 2471 #endif 2472 2473 /* INT, ERR, and IAA interrupt rates can be throttled */ 2474 2475 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 2476 if (likely((status & (STS_INT|STS_ERR)) != 0)) 2477 bh = 1; 2478 2479 /* complete the unlinking of some qh [4.15.2.3] */ 2480 if (status & STS_IAA) { 2481 oxu->reclaim_ready = 1; 2482 bh = 1; 2483 } 2484 2485 /* remote wakeup [4.3.1] */ 2486 if (status & STS_PCD) { 2487 unsigned i = HCS_N_PORTS(oxu->hcs_params); 2488 pcd_status = status; 2489 2490 /* resume root hub? */ 2491 if (!(readl(&oxu->regs->command) & CMD_RUN)) 2492 usb_hcd_resume_root_hub(hcd); 2493 2494 while (i--) { 2495 int pstatus = readl(&oxu->regs->port_status[i]); 2496 2497 if (pstatus & PORT_OWNER) 2498 continue; 2499 if (!(pstatus & PORT_RESUME) 2500 || oxu->reset_done[i] != 0) 2501 continue; 2502 2503 /* start 20 msec resume signaling from this port, 2504 * and make khubd collect PORT_STAT_C_SUSPEND to 2505 * stop that signaling. 2506 */ 2507 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 2508 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); 2509 mod_timer(&hcd->rh_timer, oxu->reset_done[i]); 2510 } 2511 } 2512 2513 /* PCI errors [4.15.2.4] */ 2514 if (unlikely((status & STS_FATAL) != 0)) { 2515 /* bogus "fatal" IRQs appear on some chips... why? */ 2516 status = readl(&oxu->regs->status); 2517 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); 2518 dbg_status(oxu, "fatal", status); 2519 if (status & STS_HALT) { 2520 oxu_err(oxu, "fatal error\n"); 2521 dead: 2522 ehci_reset(oxu); 2523 writel(0, &oxu->regs->configured_flag); 2524 usb_hc_died(hcd); 2525 /* generic layer kills/unlinks all urbs, then 2526 * uses oxu_stop to clean up the rest 2527 */ 2528 bh = 1; 2529 } 2530 } 2531 2532 if (bh) 2533 ehci_work(oxu); 2534 spin_unlock(&oxu->lock); 2535 if (pcd_status & STS_PCD) 2536 usb_hcd_poll_rh_status(hcd); 2537 return IRQ_HANDLED; 2538 } 2539 2540 static irqreturn_t oxu_irq(struct usb_hcd *hcd) 2541 { 2542 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2543 int ret = IRQ_HANDLED; 2544 2545 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); 2546 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); 2547 2548 /* Disable all interrupt */ 2549 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); 2550 2551 if ((oxu->is_otg && (status & OXU_USBOTGI)) || 2552 (!oxu->is_otg && (status & OXU_USBSPHI))) 2553 oxu210_hcd_irq(hcd); 2554 else 2555 ret = IRQ_NONE; 2556 2557 /* Enable all interrupt back */ 2558 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); 2559 2560 return ret; 2561 } 2562 2563 static void oxu_watchdog(unsigned long param) 2564 { 2565 struct oxu_hcd *oxu = (struct oxu_hcd *) param; 2566 unsigned long flags; 2567 2568 spin_lock_irqsave(&oxu->lock, flags); 2569 2570 /* lost IAA irqs wedge things badly; seen with a vt8235 */ 2571 if (oxu->reclaim) { 2572 u32 status = readl(&oxu->regs->status); 2573 if (status & STS_IAA) { 2574 oxu_vdbg(oxu, "lost IAA\n"); 2575 writel(STS_IAA, &oxu->regs->status); 2576 oxu->reclaim_ready = 1; 2577 } 2578 } 2579 2580 /* stop async processing after it's idled a bit */ 2581 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) 2582 start_unlink_async(oxu, oxu->async); 2583 2584 /* oxu could run by timer, without IRQs ... */ 2585 ehci_work(oxu); 2586 2587 spin_unlock_irqrestore(&oxu->lock, flags); 2588 } 2589 2590 /* One-time init, only for memory state. 2591 */ 2592 static int oxu_hcd_init(struct usb_hcd *hcd) 2593 { 2594 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2595 u32 temp; 2596 int retval; 2597 u32 hcc_params; 2598 2599 spin_lock_init(&oxu->lock); 2600 2601 init_timer(&oxu->watchdog); 2602 oxu->watchdog.function = oxu_watchdog; 2603 oxu->watchdog.data = (unsigned long) oxu; 2604 2605 /* 2606 * hw default: 1K periodic list heads, one per frame. 2607 * periodic_size can shrink by USBCMD update if hcc_params allows. 2608 */ 2609 oxu->periodic_size = DEFAULT_I_TDPS; 2610 retval = ehci_mem_init(oxu, GFP_KERNEL); 2611 if (retval < 0) 2612 return retval; 2613 2614 /* controllers may cache some of the periodic schedule ... */ 2615 hcc_params = readl(&oxu->caps->hcc_params); 2616 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ 2617 oxu->i_thresh = 8; 2618 else /* N microframes cached */ 2619 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); 2620 2621 oxu->reclaim = NULL; 2622 oxu->reclaim_ready = 0; 2623 oxu->next_uframe = -1; 2624 2625 /* 2626 * dedicate a qh for the async ring head, since we couldn't unlink 2627 * a 'real' qh without stopping the async schedule [4.8]. use it 2628 * as the 'reclamation list head' too. 2629 * its dummy is used in hw_alt_next of many tds, to prevent the qh 2630 * from automatically advancing to the next td after short reads. 2631 */ 2632 oxu->async->qh_next.qh = NULL; 2633 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); 2634 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); 2635 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); 2636 oxu->async->hw_qtd_next = EHCI_LIST_END; 2637 oxu->async->qh_state = QH_STATE_LINKED; 2638 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); 2639 2640 /* clear interrupt enables, set irq latency */ 2641 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 2642 log2_irq_thresh = 0; 2643 temp = 1 << (16 + log2_irq_thresh); 2644 if (HCC_CANPARK(hcc_params)) { 2645 /* HW default park == 3, on hardware that supports it (like 2646 * NVidia and ALI silicon), maximizes throughput on the async 2647 * schedule by avoiding QH fetches between transfers. 2648 * 2649 * With fast usb storage devices and NForce2, "park" seems to 2650 * make problems: throughput reduction (!), data errors... 2651 */ 2652 if (park) { 2653 park = min(park, (unsigned) 3); 2654 temp |= CMD_PARK; 2655 temp |= park << 8; 2656 } 2657 oxu_dbg(oxu, "park %d\n", park); 2658 } 2659 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 2660 /* periodic schedule size can be smaller than default */ 2661 temp &= ~(3 << 2); 2662 temp |= (EHCI_TUNE_FLS << 2); 2663 } 2664 oxu->command = temp; 2665 2666 return 0; 2667 } 2668 2669 /* Called during probe() after chip reset completes. 2670 */ 2671 static int oxu_reset(struct usb_hcd *hcd) 2672 { 2673 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2674 int ret; 2675 2676 spin_lock_init(&oxu->mem_lock); 2677 INIT_LIST_HEAD(&oxu->urb_list); 2678 oxu->urb_len = 0; 2679 2680 /* FIMXE */ 2681 hcd->self.controller->dma_mask = NULL; 2682 2683 if (oxu->is_otg) { 2684 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; 2685 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ 2686 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2687 2688 oxu->mem = hcd->regs + OXU_SPH_MEM; 2689 } else { 2690 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; 2691 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ 2692 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2693 2694 oxu->mem = hcd->regs + OXU_OTG_MEM; 2695 } 2696 2697 oxu->hcs_params = readl(&oxu->caps->hcs_params); 2698 oxu->sbrn = 0x20; 2699 2700 ret = oxu_hcd_init(hcd); 2701 if (ret) 2702 return ret; 2703 2704 return 0; 2705 } 2706 2707 static int oxu_run(struct usb_hcd *hcd) 2708 { 2709 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2710 int retval; 2711 u32 temp, hcc_params; 2712 2713 hcd->uses_new_polling = 1; 2714 2715 /* EHCI spec section 4.1 */ 2716 retval = ehci_reset(oxu); 2717 if (retval != 0) { 2718 ehci_mem_cleanup(oxu); 2719 return retval; 2720 } 2721 writel(oxu->periodic_dma, &oxu->regs->frame_list); 2722 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 2723 2724 /* hcc_params controls whether oxu->regs->segment must (!!!) 2725 * be used; it constrains QH/ITD/SITD and QTD locations. 2726 * pci_pool consistent memory always uses segment zero. 2727 * streaming mappings for I/O buffers, like pci_map_single(), 2728 * can return segments above 4GB, if the device allows. 2729 * 2730 * NOTE: the dma mask is visible through dma_supported(), so 2731 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 2732 * Scsi_Host.highmem_io, and so forth. It's readonly to all 2733 * host side drivers though. 2734 */ 2735 hcc_params = readl(&oxu->caps->hcc_params); 2736 if (HCC_64BIT_ADDR(hcc_params)) 2737 writel(0, &oxu->regs->segment); 2738 2739 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | 2740 CMD_ASE | CMD_RESET); 2741 oxu->command |= CMD_RUN; 2742 writel(oxu->command, &oxu->regs->command); 2743 dbg_cmd(oxu, "init", oxu->command); 2744 2745 /* 2746 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 2747 * are explicitly handed to companion controller(s), so no TT is 2748 * involved with the root hub. (Except where one is integrated, 2749 * and there's no companion controller unless maybe for USB OTG.) 2750 */ 2751 hcd->state = HC_STATE_RUNNING; 2752 writel(FLAG_CF, &oxu->regs->configured_flag); 2753 readl(&oxu->regs->command); /* unblock posted writes */ 2754 2755 temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); 2756 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", 2757 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), 2758 temp >> 8, temp & 0xff, DRIVER_VERSION, 2759 ignore_oc ? ", overcurrent ignored" : ""); 2760 2761 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ 2762 2763 return 0; 2764 } 2765 2766 static void oxu_stop(struct usb_hcd *hcd) 2767 { 2768 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2769 2770 /* Turn off port power on all root hub ports. */ 2771 ehci_port_power(oxu, 0); 2772 2773 /* no more interrupts ... */ 2774 del_timer_sync(&oxu->watchdog); 2775 2776 spin_lock_irq(&oxu->lock); 2777 if (HC_IS_RUNNING(hcd->state)) 2778 ehci_quiesce(oxu); 2779 2780 ehci_reset(oxu); 2781 writel(0, &oxu->regs->intr_enable); 2782 spin_unlock_irq(&oxu->lock); 2783 2784 /* let companion controllers work when we aren't */ 2785 writel(0, &oxu->regs->configured_flag); 2786 2787 /* root hub is shut down separately (first, when possible) */ 2788 spin_lock_irq(&oxu->lock); 2789 if (oxu->async) 2790 ehci_work(oxu); 2791 spin_unlock_irq(&oxu->lock); 2792 ehci_mem_cleanup(oxu); 2793 2794 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); 2795 } 2796 2797 /* Kick in for silicon on any bus (not just pci, etc). 2798 * This forcibly disables dma and IRQs, helping kexec and other cases 2799 * where the next system software may expect clean state. 2800 */ 2801 static void oxu_shutdown(struct usb_hcd *hcd) 2802 { 2803 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2804 2805 (void) ehci_halt(oxu); 2806 ehci_turn_off_all_ports(oxu); 2807 2808 /* make BIOS/etc use companion controller during reboot */ 2809 writel(0, &oxu->regs->configured_flag); 2810 2811 /* unblock posted writes */ 2812 readl(&oxu->regs->configured_flag); 2813 } 2814 2815 /* Non-error returns are a promise to giveback() the urb later 2816 * we drop ownership so next owner (or urb unlink) can get it 2817 * 2818 * urb + dev is in hcd.self.controller.urb_list 2819 * we're queueing TDs onto software and hardware lists 2820 * 2821 * hcd-specific init for hcpriv hasn't been done yet 2822 * 2823 * NOTE: control, bulk, and interrupt share the same code to append TDs 2824 * to a (possibly active) QH, and the same QH scanning code. 2825 */ 2826 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2827 gfp_t mem_flags) 2828 { 2829 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2830 struct list_head qtd_list; 2831 2832 INIT_LIST_HEAD(&qtd_list); 2833 2834 switch (usb_pipetype(urb->pipe)) { 2835 case PIPE_CONTROL: 2836 case PIPE_BULK: 2837 default: 2838 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2839 return -ENOMEM; 2840 return submit_async(oxu, urb, &qtd_list, mem_flags); 2841 2842 case PIPE_INTERRUPT: 2843 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2844 return -ENOMEM; 2845 return intr_submit(oxu, urb, &qtd_list, mem_flags); 2846 2847 case PIPE_ISOCHRONOUS: 2848 if (urb->dev->speed == USB_SPEED_HIGH) 2849 return itd_submit(oxu, urb, mem_flags); 2850 else 2851 return sitd_submit(oxu, urb, mem_flags); 2852 } 2853 } 2854 2855 /* This function is responsible for breaking URBs with big data size 2856 * into smaller size and processing small urbs in sequence. 2857 */ 2858 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2859 gfp_t mem_flags) 2860 { 2861 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2862 int num, rem; 2863 int transfer_buffer_length; 2864 void *transfer_buffer; 2865 struct urb *murb; 2866 int i, ret; 2867 2868 /* If not bulk pipe just enqueue the URB */ 2869 if (!usb_pipebulk(urb->pipe)) 2870 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2871 2872 /* Otherwise we should verify the USB transfer buffer size! */ 2873 transfer_buffer = urb->transfer_buffer; 2874 transfer_buffer_length = urb->transfer_buffer_length; 2875 2876 num = urb->transfer_buffer_length / 4096; 2877 rem = urb->transfer_buffer_length % 4096; 2878 if (rem != 0) 2879 num++; 2880 2881 /* If URB is smaller than 4096 bytes just enqueue it! */ 2882 if (num == 1) 2883 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2884 2885 /* Ok, we have more job to do! :) */ 2886 2887 for (i = 0; i < num - 1; i++) { 2888 /* Get free micro URB poll till a free urb is received */ 2889 2890 do { 2891 murb = (struct urb *) oxu_murb_alloc(oxu); 2892 if (!murb) 2893 schedule(); 2894 } while (!murb); 2895 2896 /* Coping the urb */ 2897 memcpy(murb, urb, sizeof(struct urb)); 2898 2899 murb->transfer_buffer_length = 4096; 2900 murb->transfer_buffer = transfer_buffer + i * 4096; 2901 2902 /* Null pointer for the encodes that this is a micro urb */ 2903 murb->complete = NULL; 2904 2905 ((struct oxu_murb *) murb)->main = urb; 2906 ((struct oxu_murb *) murb)->last = 0; 2907 2908 /* This loop is to guarantee urb to be processed when there's 2909 * not enough resources at a particular time by retrying. 2910 */ 2911 do { 2912 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2913 if (ret) 2914 schedule(); 2915 } while (ret); 2916 } 2917 2918 /* Last urb requires special handling */ 2919 2920 /* Get free micro URB poll till a free urb is received */ 2921 do { 2922 murb = (struct urb *) oxu_murb_alloc(oxu); 2923 if (!murb) 2924 schedule(); 2925 } while (!murb); 2926 2927 /* Coping the urb */ 2928 memcpy(murb, urb, sizeof(struct urb)); 2929 2930 murb->transfer_buffer_length = rem > 0 ? rem : 4096; 2931 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; 2932 2933 /* Null pointer for the encodes that this is a micro urb */ 2934 murb->complete = NULL; 2935 2936 ((struct oxu_murb *) murb)->main = urb; 2937 ((struct oxu_murb *) murb)->last = 1; 2938 2939 do { 2940 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2941 if (ret) 2942 schedule(); 2943 } while (ret); 2944 2945 return ret; 2946 } 2947 2948 /* Remove from hardware lists. 2949 * Completions normally happen asynchronously 2950 */ 2951 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 2952 { 2953 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2954 struct ehci_qh *qh; 2955 unsigned long flags; 2956 2957 spin_lock_irqsave(&oxu->lock, flags); 2958 switch (usb_pipetype(urb->pipe)) { 2959 case PIPE_CONTROL: 2960 case PIPE_BULK: 2961 default: 2962 qh = (struct ehci_qh *) urb->hcpriv; 2963 if (!qh) 2964 break; 2965 unlink_async(oxu, qh); 2966 break; 2967 2968 case PIPE_INTERRUPT: 2969 qh = (struct ehci_qh *) urb->hcpriv; 2970 if (!qh) 2971 break; 2972 switch (qh->qh_state) { 2973 case QH_STATE_LINKED: 2974 intr_deschedule(oxu, qh); 2975 /* FALL THROUGH */ 2976 case QH_STATE_IDLE: 2977 qh_completions(oxu, qh); 2978 break; 2979 default: 2980 oxu_dbg(oxu, "bogus qh %p state %d\n", 2981 qh, qh->qh_state); 2982 goto done; 2983 } 2984 2985 /* reschedule QH iff another request is queued */ 2986 if (!list_empty(&qh->qtd_list) 2987 && HC_IS_RUNNING(hcd->state)) { 2988 int status; 2989 2990 status = qh_schedule(oxu, qh); 2991 spin_unlock_irqrestore(&oxu->lock, flags); 2992 2993 if (status != 0) { 2994 /* shouldn't happen often, but ... 2995 * FIXME kill those tds' urbs 2996 */ 2997 dev_err(hcd->self.controller, 2998 "can't reschedule qh %p, err %d\n", qh, 2999 status); 3000 } 3001 return status; 3002 } 3003 break; 3004 } 3005 done: 3006 spin_unlock_irqrestore(&oxu->lock, flags); 3007 return 0; 3008 } 3009 3010 /* Bulk qh holds the data toggle */ 3011 static void oxu_endpoint_disable(struct usb_hcd *hcd, 3012 struct usb_host_endpoint *ep) 3013 { 3014 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3015 unsigned long flags; 3016 struct ehci_qh *qh, *tmp; 3017 3018 /* ASSERT: any requests/urbs are being unlinked */ 3019 /* ASSERT: nobody can be submitting urbs for this any more */ 3020 3021 rescan: 3022 spin_lock_irqsave(&oxu->lock, flags); 3023 qh = ep->hcpriv; 3024 if (!qh) 3025 goto done; 3026 3027 /* endpoints can be iso streams. for now, we don't 3028 * accelerate iso completions ... so spin a while. 3029 */ 3030 if (qh->hw_info1 == 0) { 3031 oxu_vdbg(oxu, "iso delay\n"); 3032 goto idle_timeout; 3033 } 3034 3035 if (!HC_IS_RUNNING(hcd->state)) 3036 qh->qh_state = QH_STATE_IDLE; 3037 switch (qh->qh_state) { 3038 case QH_STATE_LINKED: 3039 for (tmp = oxu->async->qh_next.qh; 3040 tmp && tmp != qh; 3041 tmp = tmp->qh_next.qh) 3042 continue; 3043 /* periodic qh self-unlinks on empty */ 3044 if (!tmp) 3045 goto nogood; 3046 unlink_async(oxu, qh); 3047 /* FALL THROUGH */ 3048 case QH_STATE_UNLINK: /* wait for hw to finish? */ 3049 idle_timeout: 3050 spin_unlock_irqrestore(&oxu->lock, flags); 3051 schedule_timeout_uninterruptible(1); 3052 goto rescan; 3053 case QH_STATE_IDLE: /* fully unlinked */ 3054 if (list_empty(&qh->qtd_list)) { 3055 qh_put(qh); 3056 break; 3057 } 3058 /* else FALL THROUGH */ 3059 default: 3060 nogood: 3061 /* caller was supposed to have unlinked any requests; 3062 * that's not our job. just leak this memory. 3063 */ 3064 oxu_err(oxu, "qh %p (#%02x) state %d%s\n", 3065 qh, ep->desc.bEndpointAddress, qh->qh_state, 3066 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 3067 break; 3068 } 3069 ep->hcpriv = NULL; 3070 done: 3071 spin_unlock_irqrestore(&oxu->lock, flags); 3072 } 3073 3074 static int oxu_get_frame(struct usb_hcd *hcd) 3075 { 3076 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3077 3078 return (readl(&oxu->regs->frame_index) >> 3) % 3079 oxu->periodic_size; 3080 } 3081 3082 /* Build "status change" packet (one or two bytes) from HC registers */ 3083 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) 3084 { 3085 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3086 u32 temp, mask, status = 0; 3087 int ports, i, retval = 1; 3088 unsigned long flags; 3089 3090 /* if !PM_RUNTIME, root hub timers won't get shut down ... */ 3091 if (!HC_IS_RUNNING(hcd->state)) 3092 return 0; 3093 3094 /* init status to no-changes */ 3095 buf[0] = 0; 3096 ports = HCS_N_PORTS(oxu->hcs_params); 3097 if (ports > 7) { 3098 buf[1] = 0; 3099 retval++; 3100 } 3101 3102 /* Some boards (mostly VIA?) report bogus overcurrent indications, 3103 * causing massive log spam unless we completely ignore them. It 3104 * may be relevant that VIA VT8235 controllers, where PORT_POWER is 3105 * always set, seem to clear PORT_OCC and PORT_CSC when writing to 3106 * PORT_POWER; that's surprising, but maybe within-spec. 3107 */ 3108 if (!ignore_oc) 3109 mask = PORT_CSC | PORT_PEC | PORT_OCC; 3110 else 3111 mask = PORT_CSC | PORT_PEC; 3112 3113 /* no hub change reports (bit 0) for now (power, ...) */ 3114 3115 /* port N changes (bit N)? */ 3116 spin_lock_irqsave(&oxu->lock, flags); 3117 for (i = 0; i < ports; i++) { 3118 temp = readl(&oxu->regs->port_status[i]); 3119 3120 /* 3121 * Return status information even for ports with OWNER set. 3122 * Otherwise khubd wouldn't see the disconnect event when a 3123 * high-speed device is switched over to the companion 3124 * controller by the user. 3125 */ 3126 3127 if (!(temp & PORT_CONNECT)) 3128 oxu->reset_done[i] = 0; 3129 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && 3130 time_after_eq(jiffies, oxu->reset_done[i]))) { 3131 if (i < 7) 3132 buf[0] |= 1 << (i + 1); 3133 else 3134 buf[1] |= 1 << (i - 7); 3135 status = STS_PCD; 3136 } 3137 } 3138 /* FIXME autosuspend idle root hubs */ 3139 spin_unlock_irqrestore(&oxu->lock, flags); 3140 return status ? retval : 0; 3141 } 3142 3143 /* Returns the speed of a device attached to a port on the root hub. */ 3144 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, 3145 unsigned int portsc) 3146 { 3147 switch ((portsc >> 26) & 3) { 3148 case 0: 3149 return 0; 3150 case 1: 3151 return USB_PORT_STAT_LOW_SPEED; 3152 case 2: 3153 default: 3154 return USB_PORT_STAT_HIGH_SPEED; 3155 } 3156 } 3157 3158 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) 3159 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, 3160 u16 wValue, u16 wIndex, char *buf, u16 wLength) 3161 { 3162 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3163 int ports = HCS_N_PORTS(oxu->hcs_params); 3164 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; 3165 u32 temp, status; 3166 unsigned long flags; 3167 int retval = 0; 3168 unsigned selector; 3169 3170 /* 3171 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 3172 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 3173 * (track current state ourselves) ... blink for diagnostics, 3174 * power, "this is the one", etc. EHCI spec supports this. 3175 */ 3176 3177 spin_lock_irqsave(&oxu->lock, flags); 3178 switch (typeReq) { 3179 case ClearHubFeature: 3180 switch (wValue) { 3181 case C_HUB_LOCAL_POWER: 3182 case C_HUB_OVER_CURRENT: 3183 /* no hub-wide feature/status flags */ 3184 break; 3185 default: 3186 goto error; 3187 } 3188 break; 3189 case ClearPortFeature: 3190 if (!wIndex || wIndex > ports) 3191 goto error; 3192 wIndex--; 3193 temp = readl(status_reg); 3194 3195 /* 3196 * Even if OWNER is set, so the port is owned by the 3197 * companion controller, khubd needs to be able to clear 3198 * the port-change status bits (especially 3199 * USB_PORT_STAT_C_CONNECTION). 3200 */ 3201 3202 switch (wValue) { 3203 case USB_PORT_FEAT_ENABLE: 3204 writel(temp & ~PORT_PE, status_reg); 3205 break; 3206 case USB_PORT_FEAT_C_ENABLE: 3207 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); 3208 break; 3209 case USB_PORT_FEAT_SUSPEND: 3210 if (temp & PORT_RESET) 3211 goto error; 3212 if (temp & PORT_SUSPEND) { 3213 if ((temp & PORT_PE) == 0) 3214 goto error; 3215 /* resume signaling for 20 msec */ 3216 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); 3217 writel(temp | PORT_RESUME, status_reg); 3218 oxu->reset_done[wIndex] = jiffies 3219 + msecs_to_jiffies(20); 3220 } 3221 break; 3222 case USB_PORT_FEAT_C_SUSPEND: 3223 /* we auto-clear this feature */ 3224 break; 3225 case USB_PORT_FEAT_POWER: 3226 if (HCS_PPC(oxu->hcs_params)) 3227 writel(temp & ~(PORT_RWC_BITS | PORT_POWER), 3228 status_reg); 3229 break; 3230 case USB_PORT_FEAT_C_CONNECTION: 3231 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); 3232 break; 3233 case USB_PORT_FEAT_C_OVER_CURRENT: 3234 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); 3235 break; 3236 case USB_PORT_FEAT_C_RESET: 3237 /* GetPortStatus clears reset */ 3238 break; 3239 default: 3240 goto error; 3241 } 3242 readl(&oxu->regs->command); /* unblock posted write */ 3243 break; 3244 case GetHubDescriptor: 3245 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) 3246 buf); 3247 break; 3248 case GetHubStatus: 3249 /* no hub-wide feature/status flags */ 3250 memset(buf, 0, 4); 3251 break; 3252 case GetPortStatus: 3253 if (!wIndex || wIndex > ports) 3254 goto error; 3255 wIndex--; 3256 status = 0; 3257 temp = readl(status_reg); 3258 3259 /* wPortChange bits */ 3260 if (temp & PORT_CSC) 3261 status |= USB_PORT_STAT_C_CONNECTION << 16; 3262 if (temp & PORT_PEC) 3263 status |= USB_PORT_STAT_C_ENABLE << 16; 3264 if ((temp & PORT_OCC) && !ignore_oc) 3265 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3266 3267 /* whoever resumes must GetPortStatus to complete it!! */ 3268 if (temp & PORT_RESUME) { 3269 3270 /* Remote Wakeup received? */ 3271 if (!oxu->reset_done[wIndex]) { 3272 /* resume signaling for 20 msec */ 3273 oxu->reset_done[wIndex] = jiffies 3274 + msecs_to_jiffies(20); 3275 /* check the port again */ 3276 mod_timer(&oxu_to_hcd(oxu)->rh_timer, 3277 oxu->reset_done[wIndex]); 3278 } 3279 3280 /* resume completed? */ 3281 else if (time_after_eq(jiffies, 3282 oxu->reset_done[wIndex])) { 3283 status |= USB_PORT_STAT_C_SUSPEND << 16; 3284 oxu->reset_done[wIndex] = 0; 3285 3286 /* stop resume signaling */ 3287 temp = readl(status_reg); 3288 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), 3289 status_reg); 3290 retval = handshake(oxu, status_reg, 3291 PORT_RESUME, 0, 2000 /* 2msec */); 3292 if (retval != 0) { 3293 oxu_err(oxu, 3294 "port %d resume error %d\n", 3295 wIndex + 1, retval); 3296 goto error; 3297 } 3298 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 3299 } 3300 } 3301 3302 /* whoever resets must GetPortStatus to complete it!! */ 3303 if ((temp & PORT_RESET) 3304 && time_after_eq(jiffies, 3305 oxu->reset_done[wIndex])) { 3306 status |= USB_PORT_STAT_C_RESET << 16; 3307 oxu->reset_done[wIndex] = 0; 3308 3309 /* force reset to complete */ 3310 writel(temp & ~(PORT_RWC_BITS | PORT_RESET), 3311 status_reg); 3312 /* REVISIT: some hardware needs 550+ usec to clear 3313 * this bit; seems too long to spin routinely... 3314 */ 3315 retval = handshake(oxu, status_reg, 3316 PORT_RESET, 0, 750); 3317 if (retval != 0) { 3318 oxu_err(oxu, "port %d reset error %d\n", 3319 wIndex + 1, retval); 3320 goto error; 3321 } 3322 3323 /* see what we found out */ 3324 temp = check_reset_complete(oxu, wIndex, status_reg, 3325 readl(status_reg)); 3326 } 3327 3328 /* transfer dedicated ports to the companion hc */ 3329 if ((temp & PORT_CONNECT) && 3330 test_bit(wIndex, &oxu->companion_ports)) { 3331 temp &= ~PORT_RWC_BITS; 3332 temp |= PORT_OWNER; 3333 writel(temp, status_reg); 3334 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); 3335 temp = readl(status_reg); 3336 } 3337 3338 /* 3339 * Even if OWNER is set, there's no harm letting khubd 3340 * see the wPortStatus values (they should all be 0 except 3341 * for PORT_POWER anyway). 3342 */ 3343 3344 if (temp & PORT_CONNECT) { 3345 status |= USB_PORT_STAT_CONNECTION; 3346 /* status may be from integrated TT */ 3347 status |= oxu_port_speed(oxu, temp); 3348 } 3349 if (temp & PORT_PE) 3350 status |= USB_PORT_STAT_ENABLE; 3351 if (temp & (PORT_SUSPEND|PORT_RESUME)) 3352 status |= USB_PORT_STAT_SUSPEND; 3353 if (temp & PORT_OC) 3354 status |= USB_PORT_STAT_OVERCURRENT; 3355 if (temp & PORT_RESET) 3356 status |= USB_PORT_STAT_RESET; 3357 if (temp & PORT_POWER) 3358 status |= USB_PORT_STAT_POWER; 3359 3360 #ifndef OXU_VERBOSE_DEBUG 3361 if (status & ~0xffff) /* only if wPortChange is interesting */ 3362 #endif 3363 dbg_port(oxu, "GetStatus", wIndex + 1, temp); 3364 put_unaligned(cpu_to_le32(status), (__le32 *) buf); 3365 break; 3366 case SetHubFeature: 3367 switch (wValue) { 3368 case C_HUB_LOCAL_POWER: 3369 case C_HUB_OVER_CURRENT: 3370 /* no hub-wide feature/status flags */ 3371 break; 3372 default: 3373 goto error; 3374 } 3375 break; 3376 case SetPortFeature: 3377 selector = wIndex >> 8; 3378 wIndex &= 0xff; 3379 if (!wIndex || wIndex > ports) 3380 goto error; 3381 wIndex--; 3382 temp = readl(status_reg); 3383 if (temp & PORT_OWNER) 3384 break; 3385 3386 temp &= ~PORT_RWC_BITS; 3387 switch (wValue) { 3388 case USB_PORT_FEAT_SUSPEND: 3389 if ((temp & PORT_PE) == 0 3390 || (temp & PORT_RESET) != 0) 3391 goto error; 3392 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3393 temp |= PORT_WAKE_BITS; 3394 writel(temp | PORT_SUSPEND, status_reg); 3395 break; 3396 case USB_PORT_FEAT_POWER: 3397 if (HCS_PPC(oxu->hcs_params)) 3398 writel(temp | PORT_POWER, status_reg); 3399 break; 3400 case USB_PORT_FEAT_RESET: 3401 if (temp & PORT_RESUME) 3402 goto error; 3403 /* line status bits may report this as low speed, 3404 * which can be fine if this root hub has a 3405 * transaction translator built in. 3406 */ 3407 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); 3408 temp |= PORT_RESET; 3409 temp &= ~PORT_PE; 3410 3411 /* 3412 * caller must wait, then call GetPortStatus 3413 * usb 2.0 spec says 50 ms resets on root 3414 */ 3415 oxu->reset_done[wIndex] = jiffies 3416 + msecs_to_jiffies(50); 3417 writel(temp, status_reg); 3418 break; 3419 3420 /* For downstream facing ports (these): one hub port is put 3421 * into test mode according to USB2 11.24.2.13, then the hub 3422 * must be reset (which for root hub now means rmmod+modprobe, 3423 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 3424 * about the EHCI-specific stuff. 3425 */ 3426 case USB_PORT_FEAT_TEST: 3427 if (!selector || selector > 5) 3428 goto error; 3429 ehci_quiesce(oxu); 3430 ehci_halt(oxu); 3431 temp |= selector << 16; 3432 writel(temp, status_reg); 3433 break; 3434 3435 default: 3436 goto error; 3437 } 3438 readl(&oxu->regs->command); /* unblock posted writes */ 3439 break; 3440 3441 default: 3442 error: 3443 /* "stall" on error */ 3444 retval = -EPIPE; 3445 } 3446 spin_unlock_irqrestore(&oxu->lock, flags); 3447 return retval; 3448 } 3449 3450 #ifdef CONFIG_PM 3451 3452 static int oxu_bus_suspend(struct usb_hcd *hcd) 3453 { 3454 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3455 int port; 3456 int mask; 3457 3458 oxu_dbg(oxu, "suspend root hub\n"); 3459 3460 if (time_before(jiffies, oxu->next_statechange)) 3461 msleep(5); 3462 3463 port = HCS_N_PORTS(oxu->hcs_params); 3464 spin_lock_irq(&oxu->lock); 3465 3466 /* stop schedules, clean any completed work */ 3467 if (HC_IS_RUNNING(hcd->state)) { 3468 ehci_quiesce(oxu); 3469 hcd->state = HC_STATE_QUIESCING; 3470 } 3471 oxu->command = readl(&oxu->regs->command); 3472 if (oxu->reclaim) 3473 oxu->reclaim_ready = 1; 3474 ehci_work(oxu); 3475 3476 /* Unlike other USB host controller types, EHCI doesn't have 3477 * any notion of "global" or bus-wide suspend. The driver has 3478 * to manually suspend all the active unsuspended ports, and 3479 * then manually resume them in the bus_resume() routine. 3480 */ 3481 oxu->bus_suspended = 0; 3482 while (port--) { 3483 u32 __iomem *reg = &oxu->regs->port_status[port]; 3484 u32 t1 = readl(reg) & ~PORT_RWC_BITS; 3485 u32 t2 = t1; 3486 3487 /* keep track of which ports we suspend */ 3488 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && 3489 !(t1 & PORT_SUSPEND)) { 3490 t2 |= PORT_SUSPEND; 3491 set_bit(port, &oxu->bus_suspended); 3492 } 3493 3494 /* enable remote wakeup on all ports */ 3495 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3496 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; 3497 else 3498 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); 3499 3500 if (t1 != t2) { 3501 oxu_vdbg(oxu, "port %d, %08x -> %08x\n", 3502 port + 1, t1, t2); 3503 writel(t2, reg); 3504 } 3505 } 3506 3507 /* turn off now-idle HC */ 3508 del_timer_sync(&oxu->watchdog); 3509 ehci_halt(oxu); 3510 hcd->state = HC_STATE_SUSPENDED; 3511 3512 /* allow remote wakeup */ 3513 mask = INTR_MASK; 3514 if (!device_may_wakeup(&hcd->self.root_hub->dev)) 3515 mask &= ~STS_PCD; 3516 writel(mask, &oxu->regs->intr_enable); 3517 readl(&oxu->regs->intr_enable); 3518 3519 oxu->next_statechange = jiffies + msecs_to_jiffies(10); 3520 spin_unlock_irq(&oxu->lock); 3521 return 0; 3522 } 3523 3524 /* Caller has locked the root hub, and should reset/reinit on error */ 3525 static int oxu_bus_resume(struct usb_hcd *hcd) 3526 { 3527 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3528 u32 temp; 3529 int i; 3530 3531 if (time_before(jiffies, oxu->next_statechange)) 3532 msleep(5); 3533 spin_lock_irq(&oxu->lock); 3534 3535 /* Ideally and we've got a real resume here, and no port's power 3536 * was lost. (For PCI, that means Vaux was maintained.) But we 3537 * could instead be restoring a swsusp snapshot -- so that BIOS was 3538 * the last user of the controller, not reset/pm hardware keeping 3539 * state we gave to it. 3540 */ 3541 temp = readl(&oxu->regs->intr_enable); 3542 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); 3543 3544 /* at least some APM implementations will try to deliver 3545 * IRQs right away, so delay them until we're ready. 3546 */ 3547 writel(0, &oxu->regs->intr_enable); 3548 3549 /* re-init operational registers */ 3550 writel(0, &oxu->regs->segment); 3551 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3552 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3553 3554 /* restore CMD_RUN, framelist size, and irq threshold */ 3555 writel(oxu->command, &oxu->regs->command); 3556 3557 /* Some controller/firmware combinations need a delay during which 3558 * they set up the port statuses. See Bugzilla #8190. */ 3559 mdelay(8); 3560 3561 /* manually resume the ports we suspended during bus_suspend() */ 3562 i = HCS_N_PORTS(oxu->hcs_params); 3563 while (i--) { 3564 temp = readl(&oxu->regs->port_status[i]); 3565 temp &= ~(PORT_RWC_BITS 3566 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); 3567 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3568 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 3569 temp |= PORT_RESUME; 3570 } 3571 writel(temp, &oxu->regs->port_status[i]); 3572 } 3573 i = HCS_N_PORTS(oxu->hcs_params); 3574 mdelay(20); 3575 while (i--) { 3576 temp = readl(&oxu->regs->port_status[i]); 3577 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3578 temp &= ~(PORT_RWC_BITS | PORT_RESUME); 3579 writel(temp, &oxu->regs->port_status[i]); 3580 oxu_vdbg(oxu, "resumed port %d\n", i + 1); 3581 } 3582 } 3583 (void) readl(&oxu->regs->command); 3584 3585 /* maybe re-activate the schedule(s) */ 3586 temp = 0; 3587 if (oxu->async->qh_next.qh) 3588 temp |= CMD_ASE; 3589 if (oxu->periodic_sched) 3590 temp |= CMD_PSE; 3591 if (temp) { 3592 oxu->command |= temp; 3593 writel(oxu->command, &oxu->regs->command); 3594 } 3595 3596 oxu->next_statechange = jiffies + msecs_to_jiffies(5); 3597 hcd->state = HC_STATE_RUNNING; 3598 3599 /* Now we can safely re-enable irqs */ 3600 writel(INTR_MASK, &oxu->regs->intr_enable); 3601 3602 spin_unlock_irq(&oxu->lock); 3603 return 0; 3604 } 3605 3606 #else 3607 3608 static int oxu_bus_suspend(struct usb_hcd *hcd) 3609 { 3610 return 0; 3611 } 3612 3613 static int oxu_bus_resume(struct usb_hcd *hcd) 3614 { 3615 return 0; 3616 } 3617 3618 #endif /* CONFIG_PM */ 3619 3620 static const struct hc_driver oxu_hc_driver = { 3621 .description = "oxu210hp_hcd", 3622 .product_desc = "oxu210hp HCD", 3623 .hcd_priv_size = sizeof(struct oxu_hcd), 3624 3625 /* 3626 * Generic hardware linkage 3627 */ 3628 .irq = oxu_irq, 3629 .flags = HCD_MEMORY | HCD_USB2, 3630 3631 /* 3632 * Basic lifecycle operations 3633 */ 3634 .reset = oxu_reset, 3635 .start = oxu_run, 3636 .stop = oxu_stop, 3637 .shutdown = oxu_shutdown, 3638 3639 /* 3640 * Managing i/o requests and associated device resources 3641 */ 3642 .urb_enqueue = oxu_urb_enqueue, 3643 .urb_dequeue = oxu_urb_dequeue, 3644 .endpoint_disable = oxu_endpoint_disable, 3645 3646 /* 3647 * Scheduling support 3648 */ 3649 .get_frame_number = oxu_get_frame, 3650 3651 /* 3652 * Root hub support 3653 */ 3654 .hub_status_data = oxu_hub_status_data, 3655 .hub_control = oxu_hub_control, 3656 .bus_suspend = oxu_bus_suspend, 3657 .bus_resume = oxu_bus_resume, 3658 }; 3659 3660 /* 3661 * Module stuff 3662 */ 3663 3664 static void oxu_configuration(struct platform_device *pdev, void *base) 3665 { 3666 u32 tmp; 3667 3668 /* Initialize top level registers. 3669 * First write ever 3670 */ 3671 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3672 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); 3673 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3674 3675 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); 3676 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); 3677 3678 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | 3679 OXU_COMPARATOR | OXU_ASO_OP); 3680 3681 tmp = oxu_readl(base, OXU_CLKCTRL_SET); 3682 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); 3683 3684 /* Clear all top interrupt enable */ 3685 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); 3686 3687 /* Clear all top interrupt status */ 3688 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); 3689 3690 /* Enable all needed top interrupt except OTG SPH core */ 3691 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); 3692 } 3693 3694 static int oxu_verify_id(struct platform_device *pdev, void *base) 3695 { 3696 u32 id; 3697 static const char * const bo[] = { 3698 "reserved", 3699 "128-pin LQFP", 3700 "84-pin TFBGA", 3701 "reserved", 3702 }; 3703 3704 /* Read controller signature register to find a match */ 3705 id = oxu_readl(base, OXU_DEVICEID); 3706 dev_info(&pdev->dev, "device ID %x\n", id); 3707 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) 3708 return -1; 3709 3710 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", 3711 id >> OXU_REV_SHIFT, 3712 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], 3713 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, 3714 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); 3715 3716 return 0; 3717 } 3718 3719 static const struct hc_driver oxu_hc_driver; 3720 static struct usb_hcd *oxu_create(struct platform_device *pdev, 3721 unsigned long memstart, unsigned long memlen, 3722 void *base, int irq, int otg) 3723 { 3724 struct device *dev = &pdev->dev; 3725 3726 struct usb_hcd *hcd; 3727 struct oxu_hcd *oxu; 3728 int ret; 3729 3730 /* Set endian mode and host mode */ 3731 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), 3732 OXU_USBMODE, 3733 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); 3734 3735 hcd = usb_create_hcd(&oxu_hc_driver, dev, 3736 otg ? "oxu210hp_otg" : "oxu210hp_sph"); 3737 if (!hcd) 3738 return ERR_PTR(-ENOMEM); 3739 3740 hcd->rsrc_start = memstart; 3741 hcd->rsrc_len = memlen; 3742 hcd->regs = base; 3743 hcd->irq = irq; 3744 hcd->state = HC_STATE_HALT; 3745 3746 oxu = hcd_to_oxu(hcd); 3747 oxu->is_otg = otg; 3748 3749 ret = usb_add_hcd(hcd, irq, IRQF_SHARED); 3750 if (ret < 0) 3751 return ERR_PTR(ret); 3752 3753 device_wakeup_enable(hcd->self.controller); 3754 return hcd; 3755 } 3756 3757 static int oxu_init(struct platform_device *pdev, 3758 unsigned long memstart, unsigned long memlen, 3759 void *base, int irq) 3760 { 3761 struct oxu_info *info = platform_get_drvdata(pdev); 3762 struct usb_hcd *hcd; 3763 int ret; 3764 3765 /* First time configuration at start up */ 3766 oxu_configuration(pdev, base); 3767 3768 ret = oxu_verify_id(pdev, base); 3769 if (ret) { 3770 dev_err(&pdev->dev, "no devices found!\n"); 3771 return -ENODEV; 3772 } 3773 3774 /* Create the OTG controller */ 3775 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); 3776 if (IS_ERR(hcd)) { 3777 dev_err(&pdev->dev, "cannot create OTG controller!\n"); 3778 ret = PTR_ERR(hcd); 3779 goto error_create_otg; 3780 } 3781 info->hcd[0] = hcd; 3782 3783 /* Create the SPH host controller */ 3784 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); 3785 if (IS_ERR(hcd)) { 3786 dev_err(&pdev->dev, "cannot create SPH controller!\n"); 3787 ret = PTR_ERR(hcd); 3788 goto error_create_sph; 3789 } 3790 info->hcd[1] = hcd; 3791 3792 oxu_writel(base, OXU_CHIPIRQEN_SET, 3793 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); 3794 3795 return 0; 3796 3797 error_create_sph: 3798 usb_remove_hcd(info->hcd[0]); 3799 usb_put_hcd(info->hcd[0]); 3800 3801 error_create_otg: 3802 return ret; 3803 } 3804 3805 static int oxu_drv_probe(struct platform_device *pdev) 3806 { 3807 struct resource *res; 3808 void *base; 3809 unsigned long memstart, memlen; 3810 int irq, ret; 3811 struct oxu_info *info; 3812 3813 if (usb_disabled()) 3814 return -ENODEV; 3815 3816 /* 3817 * Get the platform resources 3818 */ 3819 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 3820 if (!res) { 3821 dev_err(&pdev->dev, 3822 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev)); 3823 return -ENODEV; 3824 } 3825 irq = res->start; 3826 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); 3827 3828 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3829 if (!res) { 3830 dev_err(&pdev->dev, "no registers address! Check %s setup!\n", 3831 dev_name(&pdev->dev)); 3832 return -ENODEV; 3833 } 3834 memstart = res->start; 3835 memlen = resource_size(res); 3836 dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen); 3837 if (!request_mem_region(memstart, memlen, 3838 oxu_hc_driver.description)) { 3839 dev_dbg(&pdev->dev, "memory area already in use\n"); 3840 return -EBUSY; 3841 } 3842 3843 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING); 3844 if (ret) { 3845 dev_err(&pdev->dev, "error setting irq type\n"); 3846 ret = -EFAULT; 3847 goto error_set_irq_type; 3848 } 3849 3850 base = ioremap(memstart, memlen); 3851 if (!base) { 3852 dev_dbg(&pdev->dev, "error mapping memory\n"); 3853 ret = -EFAULT; 3854 goto error_ioremap; 3855 } 3856 3857 /* Allocate a driver data struct to hold useful info for both 3858 * SPH & OTG devices 3859 */ 3860 info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL); 3861 if (!info) { 3862 dev_dbg(&pdev->dev, "error allocating memory\n"); 3863 ret = -EFAULT; 3864 goto error_alloc; 3865 } 3866 platform_set_drvdata(pdev, info); 3867 3868 ret = oxu_init(pdev, memstart, memlen, base, irq); 3869 if (ret < 0) { 3870 dev_dbg(&pdev->dev, "cannot init USB devices\n"); 3871 goto error_init; 3872 } 3873 3874 dev_info(&pdev->dev, "devices enabled and running\n"); 3875 platform_set_drvdata(pdev, info); 3876 3877 return 0; 3878 3879 error_init: 3880 kfree(info); 3881 3882 error_alloc: 3883 iounmap(base); 3884 3885 error_set_irq_type: 3886 error_ioremap: 3887 release_mem_region(memstart, memlen); 3888 3889 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); 3890 return ret; 3891 } 3892 3893 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) 3894 { 3895 usb_remove_hcd(hcd); 3896 usb_put_hcd(hcd); 3897 } 3898 3899 static int oxu_drv_remove(struct platform_device *pdev) 3900 { 3901 struct oxu_info *info = platform_get_drvdata(pdev); 3902 unsigned long memstart = info->hcd[0]->rsrc_start, 3903 memlen = info->hcd[0]->rsrc_len; 3904 void *base = info->hcd[0]->regs; 3905 3906 oxu_remove(pdev, info->hcd[0]); 3907 oxu_remove(pdev, info->hcd[1]); 3908 3909 iounmap(base); 3910 release_mem_region(memstart, memlen); 3911 3912 kfree(info); 3913 3914 return 0; 3915 } 3916 3917 static void oxu_drv_shutdown(struct platform_device *pdev) 3918 { 3919 oxu_drv_remove(pdev); 3920 } 3921 3922 #if 0 3923 /* FIXME: TODO */ 3924 static int oxu_drv_suspend(struct device *dev) 3925 { 3926 struct platform_device *pdev = to_platform_device(dev); 3927 struct usb_hcd *hcd = dev_get_drvdata(dev); 3928 3929 return 0; 3930 } 3931 3932 static int oxu_drv_resume(struct device *dev) 3933 { 3934 struct platform_device *pdev = to_platform_device(dev); 3935 struct usb_hcd *hcd = dev_get_drvdata(dev); 3936 3937 return 0; 3938 } 3939 #else 3940 #define oxu_drv_suspend NULL 3941 #define oxu_drv_resume NULL 3942 #endif 3943 3944 static struct platform_driver oxu_driver = { 3945 .probe = oxu_drv_probe, 3946 .remove = oxu_drv_remove, 3947 .shutdown = oxu_drv_shutdown, 3948 .suspend = oxu_drv_suspend, 3949 .resume = oxu_drv_resume, 3950 .driver = { 3951 .name = "oxu210hp-hcd", 3952 .bus = &platform_bus_type 3953 } 3954 }; 3955 3956 module_platform_driver(oxu_driver); 3957 3958 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); 3959 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 3960 MODULE_LICENSE("GPL"); 3961