1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> 4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> 5 * 6 * This code is *strongly* based on EHCI-HCD code by David Brownell since 7 * the chip is a quasi-EHCI compatible. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/dmapool.h> 13 #include <linux/kernel.h> 14 #include <linux/delay.h> 15 #include <linux/ioport.h> 16 #include <linux/sched.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/timer.h> 20 #include <linux/list.h> 21 #include <linux/interrupt.h> 22 #include <linux/usb.h> 23 #include <linux/usb/hcd.h> 24 #include <linux/moduleparam.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/io.h> 27 #include <linux/iopoll.h> 28 29 #include <asm/irq.h> 30 #include <asm/unaligned.h> 31 32 #include <linux/irq.h> 33 #include <linux/platform_device.h> 34 35 #define DRIVER_VERSION "0.0.50" 36 37 #define OXU_DEVICEID 0x00 38 #define OXU_REV_MASK 0xffff0000 39 #define OXU_REV_SHIFT 16 40 #define OXU_REV_2100 0x2100 41 #define OXU_BO_SHIFT 8 42 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT) 43 #define OXU_MAJ_REV_SHIFT 4 44 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT) 45 #define OXU_MIN_REV_SHIFT 0 46 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT) 47 #define OXU_HOSTIFCONFIG 0x04 48 #define OXU_SOFTRESET 0x08 49 #define OXU_SRESET (1 << 0) 50 51 #define OXU_PIOBURSTREADCTRL 0x0C 52 53 #define OXU_CHIPIRQSTATUS 0x10 54 #define OXU_CHIPIRQEN_SET 0x14 55 #define OXU_CHIPIRQEN_CLR 0x18 56 #define OXU_USBSPHLPWUI 0x00000080 57 #define OXU_USBOTGLPWUI 0x00000040 58 #define OXU_USBSPHI 0x00000002 59 #define OXU_USBOTGI 0x00000001 60 61 #define OXU_CLKCTRL_SET 0x1C 62 #define OXU_SYSCLKEN 0x00000008 63 #define OXU_USBSPHCLKEN 0x00000002 64 #define OXU_USBOTGCLKEN 0x00000001 65 66 #define OXU_ASO 0x68 67 #define OXU_SPHPOEN 0x00000100 68 #define OXU_OVRCCURPUPDEN 0x00000800 69 #define OXU_ASO_OP (1 << 10) 70 #define OXU_COMPARATOR 0x000004000 71 72 #define OXU_USBMODE 0x1A8 73 #define OXU_VBPS 0x00000020 74 #define OXU_ES_LITTLE 0x00000000 75 #define OXU_CM_HOST_ONLY 0x00000003 76 77 /* 78 * Proper EHCI structs & defines 79 */ 80 81 /* Magic numbers that can affect system performance */ 82 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ 83 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ 84 #define EHCI_TUNE_RL_TT 0 85 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ 86 #define EHCI_TUNE_MULT_TT 1 87 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */ 88 89 struct oxu_hcd; 90 91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */ 92 93 /* Section 2.2 Host Controller Capability Registers */ 94 struct ehci_caps { 95 /* these fields are specified as 8 and 16 bit registers, 96 * but some hosts can't perform 8 or 16 bit PCI accesses. 97 */ 98 u32 hc_capbase; 99 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */ 100 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */ 101 u32 hcs_params; /* HCSPARAMS - offset 0x4 */ 102 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */ 103 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */ 104 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */ 105 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */ 106 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */ 107 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */ 108 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */ 109 110 u32 hcc_params; /* HCCPARAMS - offset 0x8 */ 111 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */ 112 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */ 113 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */ 114 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */ 115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/ 116 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */ 117 u8 portroute[8]; /* nibbles for routing - offset 0xC */ 118 } __packed; 119 120 121 /* Section 2.3 Host Controller Operational Registers */ 122 struct ehci_regs { 123 /* USBCMD: offset 0x00 */ 124 u32 command; 125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */ 126 #define CMD_PARK (1<<11) /* enable "park" on async qh */ 127 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */ 128 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */ 129 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */ 130 #define CMD_ASE (1<<5) /* async schedule enable */ 131 #define CMD_PSE (1<<4) /* periodic schedule enable */ 132 /* 3:2 is periodic frame list size */ 133 #define CMD_RESET (1<<1) /* reset HC not bus */ 134 #define CMD_RUN (1<<0) /* start/stop HC */ 135 136 /* USBSTS: offset 0x04 */ 137 u32 status; 138 #define STS_ASS (1<<15) /* Async Schedule Status */ 139 #define STS_PSS (1<<14) /* Periodic Schedule Status */ 140 #define STS_RECL (1<<13) /* Reclamation */ 141 #define STS_HALT (1<<12) /* Not running (any reason) */ 142 /* some bits reserved */ 143 /* these STS_* flags are also intr_enable bits (USBINTR) */ 144 #define STS_IAA (1<<5) /* Interrupted on async advance */ 145 #define STS_FATAL (1<<4) /* such as some PCI access errors */ 146 #define STS_FLR (1<<3) /* frame list rolled over */ 147 #define STS_PCD (1<<2) /* port change detect */ 148 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */ 149 #define STS_INT (1<<0) /* "normal" completion (short, ...) */ 150 151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) 152 153 /* USBINTR: offset 0x08 */ 154 u32 intr_enable; 155 156 /* FRINDEX: offset 0x0C */ 157 u32 frame_index; /* current microframe number */ 158 /* CTRLDSSEGMENT: offset 0x10 */ 159 u32 segment; /* address bits 63:32 if needed */ 160 /* PERIODICLISTBASE: offset 0x14 */ 161 u32 frame_list; /* points to periodic list */ 162 /* ASYNCLISTADDR: offset 0x18 */ 163 u32 async_next; /* address of next async queue head */ 164 165 u32 reserved[9]; 166 167 /* CONFIGFLAG: offset 0x40 */ 168 u32 configured_flag; 169 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */ 170 171 /* PORTSC: offset 0x44 */ 172 u32 port_status[0]; /* up to N_PORTS */ 173 /* 31:23 reserved */ 174 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */ 175 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */ 176 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */ 177 /* 19:16 for port testing */ 178 #define PORT_LED_OFF (0<<14) 179 #define PORT_LED_AMBER (1<<14) 180 #define PORT_LED_GREEN (2<<14) 181 #define PORT_LED_MASK (3<<14) 182 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */ 183 #define PORT_POWER (1<<12) /* true: has power (see PPC) */ 184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */ 185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */ 186 /* 9 reserved */ 187 #define PORT_RESET (1<<8) /* reset port */ 188 #define PORT_SUSPEND (1<<7) /* suspend port */ 189 #define PORT_RESUME (1<<6) /* resume it */ 190 #define PORT_OCC (1<<5) /* over current change */ 191 #define PORT_OC (1<<4) /* over current active */ 192 #define PORT_PEC (1<<3) /* port enable change */ 193 #define PORT_PE (1<<2) /* port enable */ 194 #define PORT_CSC (1<<1) /* connect status change */ 195 #define PORT_CONNECT (1<<0) /* device connected */ 196 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC) 197 } __packed; 198 199 /* Appendix C, Debug port ... intended for use with special "debug devices" 200 * that can help if there's no serial console. (nonstandard enumeration.) 201 */ 202 struct ehci_dbg_port { 203 u32 control; 204 #define DBGP_OWNER (1<<30) 205 #define DBGP_ENABLED (1<<28) 206 #define DBGP_DONE (1<<16) 207 #define DBGP_INUSE (1<<10) 208 #define DBGP_ERRCODE(x) (((x)>>7)&0x07) 209 # define DBGP_ERR_BAD 1 210 # define DBGP_ERR_SIGNAL 2 211 #define DBGP_ERROR (1<<6) 212 #define DBGP_GO (1<<5) 213 #define DBGP_OUT (1<<4) 214 #define DBGP_LEN(x) (((x)>>0)&0x0f) 215 u32 pids; 216 #define DBGP_PID_GET(x) (((x)>>16)&0xff) 217 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok)) 218 u32 data03; 219 u32 data47; 220 u32 address; 221 #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep)) 222 } __packed; 223 224 #define QTD_NEXT(dma) cpu_to_le32((u32)dma) 225 226 /* 227 * EHCI Specification 0.95 Section 3.5 228 * QTD: describe data transfer components (buffer, direction, ...) 229 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram". 230 * 231 * These are associated only with "QH" (Queue Head) structures, 232 * used with control, bulk, and interrupt transfers. 233 */ 234 struct ehci_qtd { 235 /* first part defined by EHCI spec */ 236 __le32 hw_next; /* see EHCI 3.5.1 */ 237 __le32 hw_alt_next; /* see EHCI 3.5.2 */ 238 __le32 hw_token; /* see EHCI 3.5.3 */ 239 #define QTD_TOGGLE (1 << 31) /* data toggle */ 240 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff) 241 #define QTD_IOC (1 << 15) /* interrupt on complete */ 242 #define QTD_CERR(tok) (((tok)>>10) & 0x3) 243 #define QTD_PID(tok) (((tok)>>8) & 0x3) 244 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */ 245 #define QTD_STS_HALT (1 << 6) /* halted on error */ 246 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */ 247 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */ 248 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */ 249 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */ 250 #define QTD_STS_STS (1 << 1) /* split transaction state */ 251 #define QTD_STS_PING (1 << 0) /* issue PING? */ 252 __le32 hw_buf[5]; /* see EHCI 3.5.4 */ 253 __le32 hw_buf_hi[5]; /* Appendix B */ 254 255 /* the rest is HCD-private */ 256 dma_addr_t qtd_dma; /* qtd address */ 257 struct list_head qtd_list; /* sw qtd list */ 258 struct urb *urb; /* qtd's urb */ 259 size_t length; /* length of buffer */ 260 261 u32 qtd_buffer_len; 262 void *buffer; 263 dma_addr_t buffer_dma; 264 void *transfer_buffer; 265 void *transfer_dma; 266 } __aligned(32); 267 268 /* mask NakCnt+T in qh->hw_alt_next */ 269 #define QTD_MASK cpu_to_le32 (~0x1f) 270 271 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1) 272 273 /* Type tag from {qh, itd, sitd, fstn}->hw_next */ 274 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1)) 275 276 /* values for that type tag */ 277 #define Q_TYPE_QH cpu_to_le32 (1 << 1) 278 279 /* next async queue entry, or pointer to interrupt/periodic QH */ 280 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH) 281 282 /* for periodic/async schedules and qtd lists, mark end of list */ 283 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */ 284 285 /* 286 * Entries in periodic shadow table are pointers to one of four kinds 287 * of data structure. That's dictated by the hardware; a type tag is 288 * encoded in the low bits of the hardware's periodic schedule. Use 289 * Q_NEXT_TYPE to get the tag. 290 * 291 * For entries in the async schedule, the type tag always says "qh". 292 */ 293 union ehci_shadow { 294 struct ehci_qh *qh; /* Q_TYPE_QH */ 295 __le32 *hw_next; /* (all types) */ 296 void *ptr; 297 }; 298 299 /* 300 * EHCI Specification 0.95 Section 3.6 301 * QH: describes control/bulk/interrupt endpoints 302 * See Fig 3-7 "Queue Head Structure Layout". 303 * 304 * These appear in both the async and (for interrupt) periodic schedules. 305 */ 306 307 struct ehci_qh { 308 /* first part defined by EHCI spec */ 309 __le32 hw_next; /* see EHCI 3.6.1 */ 310 __le32 hw_info1; /* see EHCI 3.6.2 */ 311 #define QH_HEAD 0x00008000 312 __le32 hw_info2; /* see EHCI 3.6.2 */ 313 #define QH_SMASK 0x000000ff 314 #define QH_CMASK 0x0000ff00 315 #define QH_HUBADDR 0x007f0000 316 #define QH_HUBPORT 0x3f800000 317 #define QH_MULT 0xc0000000 318 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */ 319 320 /* qtd overlay (hardware parts of a struct ehci_qtd) */ 321 __le32 hw_qtd_next; 322 __le32 hw_alt_next; 323 __le32 hw_token; 324 __le32 hw_buf[5]; 325 __le32 hw_buf_hi[5]; 326 327 /* the rest is HCD-private */ 328 dma_addr_t qh_dma; /* address of qh */ 329 union ehci_shadow qh_next; /* ptr to qh; or periodic */ 330 struct list_head qtd_list; /* sw qtd list */ 331 struct ehci_qtd *dummy; 332 struct ehci_qh *reclaim; /* next to reclaim */ 333 334 struct oxu_hcd *oxu; 335 struct kref kref; 336 unsigned int stamp; 337 338 u8 qh_state; 339 #define QH_STATE_LINKED 1 /* HC sees this */ 340 #define QH_STATE_UNLINK 2 /* HC may still see this */ 341 #define QH_STATE_IDLE 3 /* HC doesn't see this */ 342 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */ 343 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */ 344 345 /* periodic schedule info */ 346 u8 usecs; /* intr bandwidth */ 347 u8 gap_uf; /* uframes split/csplit gap */ 348 u8 c_usecs; /* ... split completion bw */ 349 u16 tt_usecs; /* tt downstream bandwidth */ 350 unsigned short period; /* polling interval */ 351 unsigned short start; /* where polling starts */ 352 #define NO_FRAME ((unsigned short)~0) /* pick new start */ 353 struct usb_device *dev; /* access to TT */ 354 } __aligned(32); 355 356 /* 357 * Proper OXU210HP structs 358 */ 359 360 #define OXU_OTG_CORE_OFFSET 0x00400 361 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100) 362 #define OXU_SPH_CORE_OFFSET 0x00800 363 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100) 364 365 #define OXU_OTG_MEM 0xE000 366 #define OXU_SPH_MEM 0x16000 367 368 /* Only how many elements & element structure are specifies here. */ 369 /* 2 host controllers are enabled - total size <= 28 kbytes */ 370 #define DEFAULT_I_TDPS 1024 371 #define QHEAD_NUM 16 372 #define QTD_NUM 32 373 #define SITD_NUM 8 374 #define MURB_NUM 8 375 376 #define BUFFER_NUM 8 377 #define BUFFER_SIZE 512 378 379 struct oxu_info { 380 struct usb_hcd *hcd[2]; 381 }; 382 383 struct oxu_buf { 384 u8 buffer[BUFFER_SIZE]; 385 } __aligned(BUFFER_SIZE); 386 387 struct oxu_onchip_mem { 388 struct oxu_buf db_pool[BUFFER_NUM]; 389 390 u32 frame_list[DEFAULT_I_TDPS]; 391 struct ehci_qh qh_pool[QHEAD_NUM]; 392 struct ehci_qtd qtd_pool[QTD_NUM]; 393 } __aligned(4 << 10); 394 395 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */ 396 397 struct oxu_murb { 398 struct urb urb; 399 struct urb *main; 400 u8 last; 401 }; 402 403 struct oxu_hcd { /* one per controller */ 404 unsigned int is_otg:1; 405 406 u8 qh_used[QHEAD_NUM]; 407 u8 qtd_used[QTD_NUM]; 408 u8 db_used[BUFFER_NUM]; 409 u8 murb_used[MURB_NUM]; 410 411 struct oxu_onchip_mem __iomem *mem; 412 spinlock_t mem_lock; 413 414 struct timer_list urb_timer; 415 416 struct ehci_caps __iomem *caps; 417 struct ehci_regs __iomem *regs; 418 419 u32 hcs_params; /* cached register copy */ 420 spinlock_t lock; 421 422 /* async schedule support */ 423 struct ehci_qh *async; 424 struct ehci_qh *reclaim; 425 unsigned int reclaim_ready:1; 426 unsigned int scanning:1; 427 428 /* periodic schedule support */ 429 unsigned int periodic_size; 430 __le32 *periodic; /* hw periodic table */ 431 dma_addr_t periodic_dma; 432 unsigned int i_thresh; /* uframes HC might cache */ 433 434 union ehci_shadow *pshadow; /* mirror hw periodic table */ 435 int next_uframe; /* scan periodic, start here */ 436 unsigned int periodic_sched; /* periodic activity count */ 437 438 /* per root hub port */ 439 unsigned long reset_done[EHCI_MAX_ROOT_PORTS]; 440 /* bit vectors (one bit per port) */ 441 unsigned long bus_suspended; /* which ports were 442 * already suspended at the 443 * start of a bus suspend 444 */ 445 unsigned long companion_ports;/* which ports are dedicated 446 * to the companion controller 447 */ 448 449 struct timer_list watchdog; 450 unsigned long actions; 451 unsigned int stamp; 452 unsigned long next_statechange; 453 u32 command; 454 455 /* SILICON QUIRKS */ 456 struct list_head urb_list; /* this is the head to urb 457 * queue that didn't get enough 458 * resources 459 */ 460 struct oxu_murb *murb_pool; /* murb per split big urb */ 461 unsigned int urb_len; 462 463 u8 sbrn; /* packed release number */ 464 }; 465 466 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */ 467 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */ 468 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */ 469 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */ 470 471 enum ehci_timer_action { 472 TIMER_IO_WATCHDOG, 473 TIMER_IAA_WATCHDOG, 474 TIMER_ASYNC_SHRINK, 475 TIMER_ASYNC_OFF, 476 }; 477 478 /* 479 * Main defines 480 */ 481 482 #define oxu_dbg(oxu, fmt, args...) \ 483 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 484 #define oxu_err(oxu, fmt, args...) \ 485 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 486 #define oxu_info(oxu, fmt, args...) \ 487 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 488 489 #ifdef CONFIG_DYNAMIC_DEBUG 490 #define DEBUG 491 #endif 492 493 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) 494 { 495 return container_of((void *) oxu, struct usb_hcd, hcd_priv); 496 } 497 498 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) 499 { 500 return (struct oxu_hcd *) (hcd->hcd_priv); 501 } 502 503 /* 504 * Debug stuff 505 */ 506 507 #undef OXU_URB_TRACE 508 #undef OXU_VERBOSE_DEBUG 509 510 #ifdef OXU_VERBOSE_DEBUG 511 #define oxu_vdbg oxu_dbg 512 #else 513 #define oxu_vdbg(oxu, fmt, args...) /* Nop */ 514 #endif 515 516 #ifdef DEBUG 517 518 static int __attribute__((__unused__)) 519 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 520 { 521 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 522 label, label[0] ? " " : "", status, 523 (status & STS_ASS) ? " Async" : "", 524 (status & STS_PSS) ? " Periodic" : "", 525 (status & STS_RECL) ? " Recl" : "", 526 (status & STS_HALT) ? " Halt" : "", 527 (status & STS_IAA) ? " IAA" : "", 528 (status & STS_FATAL) ? " FATAL" : "", 529 (status & STS_FLR) ? " FLR" : "", 530 (status & STS_PCD) ? " PCD" : "", 531 (status & STS_ERR) ? " ERR" : "", 532 (status & STS_INT) ? " INT" : "" 533 ); 534 } 535 536 static int __attribute__((__unused__)) 537 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 538 { 539 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 540 label, label[0] ? " " : "", enable, 541 (enable & STS_IAA) ? " IAA" : "", 542 (enable & STS_FATAL) ? " FATAL" : "", 543 (enable & STS_FLR) ? " FLR" : "", 544 (enable & STS_PCD) ? " PCD" : "", 545 (enable & STS_ERR) ? " ERR" : "", 546 (enable & STS_INT) ? " INT" : "" 547 ); 548 } 549 550 static const char *const fls_strings[] = 551 { "1024", "512", "256", "??" }; 552 553 static int dbg_command_buf(char *buf, unsigned len, 554 const char *label, u32 command) 555 { 556 return scnprintf(buf, len, 557 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", 558 label, label[0] ? " " : "", command, 559 (command & CMD_PARK) ? "park" : "(park)", 560 CMD_PARK_CNT(command), 561 (command >> 16) & 0x3f, 562 (command & CMD_LRESET) ? " LReset" : "", 563 (command & CMD_IAAD) ? " IAAD" : "", 564 (command & CMD_ASE) ? " Async" : "", 565 (command & CMD_PSE) ? " Periodic" : "", 566 fls_strings[(command >> 2) & 0x3], 567 (command & CMD_RESET) ? " Reset" : "", 568 (command & CMD_RUN) ? "RUN" : "HALT" 569 ); 570 } 571 572 static int dbg_port_buf(char *buf, unsigned len, const char *label, 573 int port, u32 status) 574 { 575 char *sig; 576 577 /* signaling state */ 578 switch (status & (3 << 10)) { 579 case 0 << 10: 580 sig = "se0"; 581 break; 582 case 1 << 10: 583 sig = "k"; /* low speed */ 584 break; 585 case 2 << 10: 586 sig = "j"; 587 break; 588 default: 589 sig = "?"; 590 break; 591 } 592 593 return scnprintf(buf, len, 594 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", 595 label, label[0] ? " " : "", port, status, 596 (status & PORT_POWER) ? " POWER" : "", 597 (status & PORT_OWNER) ? " OWNER" : "", 598 sig, 599 (status & PORT_RESET) ? " RESET" : "", 600 (status & PORT_SUSPEND) ? " SUSPEND" : "", 601 (status & PORT_RESUME) ? " RESUME" : "", 602 (status & PORT_OCC) ? " OCC" : "", 603 (status & PORT_OC) ? " OC" : "", 604 (status & PORT_PEC) ? " PEC" : "", 605 (status & PORT_PE) ? " PE" : "", 606 (status & PORT_CSC) ? " CSC" : "", 607 (status & PORT_CONNECT) ? " CONNECT" : "" 608 ); 609 } 610 611 #else 612 613 static inline int __attribute__((__unused__)) 614 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 615 { return 0; } 616 617 static inline int __attribute__((__unused__)) 618 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 619 { return 0; } 620 621 static inline int __attribute__((__unused__)) 622 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 623 { return 0; } 624 625 static inline int __attribute__((__unused__)) 626 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 627 { return 0; } 628 629 #endif /* DEBUG */ 630 631 /* functions have the "wrong" filename when they're output... */ 632 #define dbg_status(oxu, label, status) { \ 633 char _buf[80]; \ 634 dbg_status_buf(_buf, sizeof _buf, label, status); \ 635 oxu_dbg(oxu, "%s\n", _buf); \ 636 } 637 638 #define dbg_cmd(oxu, label, command) { \ 639 char _buf[80]; \ 640 dbg_command_buf(_buf, sizeof _buf, label, command); \ 641 oxu_dbg(oxu, "%s\n", _buf); \ 642 } 643 644 #define dbg_port(oxu, label, port, status) { \ 645 char _buf[80]; \ 646 dbg_port_buf(_buf, sizeof _buf, label, port, status); \ 647 oxu_dbg(oxu, "%s\n", _buf); \ 648 } 649 650 /* 651 * Module parameters 652 */ 653 654 /* Initial IRQ latency: faster than hw default */ 655 static int log2_irq_thresh; /* 0 to 6 */ 656 module_param(log2_irq_thresh, int, S_IRUGO); 657 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 658 659 /* Initial park setting: slower than hw default */ 660 static unsigned park; 661 module_param(park, uint, S_IRUGO); 662 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 663 664 /* For flakey hardware, ignore overcurrent indicators */ 665 static bool ignore_oc; 666 module_param(ignore_oc, bool, S_IRUGO); 667 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); 668 669 670 static void ehci_work(struct oxu_hcd *oxu); 671 static int oxu_hub_control(struct usb_hcd *hcd, 672 u16 typeReq, u16 wValue, u16 wIndex, 673 char *buf, u16 wLength); 674 675 /* 676 * Local functions 677 */ 678 679 /* Low level read/write registers functions */ 680 static inline u32 oxu_readl(void __iomem *base, u32 reg) 681 { 682 return readl(base + reg); 683 } 684 685 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val) 686 { 687 writel(val, base + reg); 688 } 689 690 static inline void timer_action_done(struct oxu_hcd *oxu, 691 enum ehci_timer_action action) 692 { 693 clear_bit(action, &oxu->actions); 694 } 695 696 static inline void timer_action(struct oxu_hcd *oxu, 697 enum ehci_timer_action action) 698 { 699 if (!test_and_set_bit(action, &oxu->actions)) { 700 unsigned long t; 701 702 switch (action) { 703 case TIMER_IAA_WATCHDOG: 704 t = EHCI_IAA_JIFFIES; 705 break; 706 case TIMER_IO_WATCHDOG: 707 t = EHCI_IO_JIFFIES; 708 break; 709 case TIMER_ASYNC_OFF: 710 t = EHCI_ASYNC_JIFFIES; 711 break; 712 case TIMER_ASYNC_SHRINK: 713 default: 714 t = EHCI_SHRINK_JIFFIES; 715 break; 716 } 717 t += jiffies; 718 /* all timings except IAA watchdog can be overridden. 719 * async queue SHRINK often precedes IAA. while it's ready 720 * to go OFF neither can matter, and afterwards the IO 721 * watchdog stops unless there's still periodic traffic. 722 */ 723 if (action != TIMER_IAA_WATCHDOG 724 && t > oxu->watchdog.expires 725 && timer_pending(&oxu->watchdog)) 726 return; 727 mod_timer(&oxu->watchdog, t); 728 } 729 } 730 731 /* 732 * handshake - spin reading hc until handshake completes or fails 733 * @ptr: address of hc register to be read 734 * @mask: bits to look at in result of read 735 * @done: value of those bits when handshake succeeds 736 * @usec: timeout in microseconds 737 * 738 * Returns negative errno, or zero on success 739 * 740 * Success happens when the "mask" bits have the specified value (hardware 741 * handshake done). There are two failure modes: "usec" have passed (major 742 * hardware flakeout), or the register reads as all-ones (hardware removed). 743 * 744 * That last failure should_only happen in cases like physical cardbus eject 745 * before driver shutdown. But it also seems to be caused by bugs in cardbus 746 * bridge shutdown: shutting down the bridge before the devices using it. 747 */ 748 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, 749 u32 mask, u32 done, int usec) 750 { 751 u32 result; 752 int ret; 753 754 ret = readl_poll_timeout_atomic(ptr, result, 755 ((result & mask) == done || 756 result == U32_MAX), 757 1, usec); 758 if (result == U32_MAX) /* card removed */ 759 return -ENODEV; 760 761 return ret; 762 } 763 764 /* Force HC to halt state from unknown (EHCI spec section 2.3) */ 765 static int ehci_halt(struct oxu_hcd *oxu) 766 { 767 u32 temp = readl(&oxu->regs->status); 768 769 /* disable any irqs left enabled by previous code */ 770 writel(0, &oxu->regs->intr_enable); 771 772 if ((temp & STS_HALT) != 0) 773 return 0; 774 775 temp = readl(&oxu->regs->command); 776 temp &= ~CMD_RUN; 777 writel(temp, &oxu->regs->command); 778 return handshake(oxu, &oxu->regs->status, 779 STS_HALT, STS_HALT, 16 * 125); 780 } 781 782 /* Put TDI/ARC silicon into EHCI mode */ 783 static void tdi_reset(struct oxu_hcd *oxu) 784 { 785 u32 __iomem *reg_ptr; 786 u32 tmp; 787 788 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); 789 tmp = readl(reg_ptr); 790 tmp |= 0x3; 791 writel(tmp, reg_ptr); 792 } 793 794 /* Reset a non-running (STS_HALT == 1) controller */ 795 static int ehci_reset(struct oxu_hcd *oxu) 796 { 797 int retval; 798 u32 command = readl(&oxu->regs->command); 799 800 command |= CMD_RESET; 801 dbg_cmd(oxu, "reset", command); 802 writel(command, &oxu->regs->command); 803 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 804 oxu->next_statechange = jiffies; 805 retval = handshake(oxu, &oxu->regs->command, 806 CMD_RESET, 0, 250 * 1000); 807 808 if (retval) 809 return retval; 810 811 tdi_reset(oxu); 812 813 return retval; 814 } 815 816 /* Idle the controller (from running) */ 817 static void ehci_quiesce(struct oxu_hcd *oxu) 818 { 819 u32 temp; 820 821 #ifdef DEBUG 822 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)); 823 #endif 824 825 /* wait for any schedule enables/disables to take effect */ 826 temp = readl(&oxu->regs->command) << 10; 827 temp &= STS_ASS | STS_PSS; 828 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 829 temp, 16 * 125) != 0) { 830 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 831 return; 832 } 833 834 /* then disable anything that's still active */ 835 temp = readl(&oxu->regs->command); 836 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); 837 writel(temp, &oxu->regs->command); 838 839 /* hardware can take 16 microframes to turn off ... */ 840 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 841 0, 16 * 125) != 0) { 842 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 843 return; 844 } 845 } 846 847 static int check_reset_complete(struct oxu_hcd *oxu, int index, 848 u32 __iomem *status_reg, int port_status) 849 { 850 if (!(port_status & PORT_CONNECT)) { 851 oxu->reset_done[index] = 0; 852 return port_status; 853 } 854 855 /* if reset finished and it's still not enabled -- handoff */ 856 if (!(port_status & PORT_PE)) { 857 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", 858 index+1); 859 return port_status; 860 } else 861 oxu_dbg(oxu, "port %d high speed\n", index + 1); 862 863 return port_status; 864 } 865 866 static void ehci_hub_descriptor(struct oxu_hcd *oxu, 867 struct usb_hub_descriptor *desc) 868 { 869 int ports = HCS_N_PORTS(oxu->hcs_params); 870 u16 temp; 871 872 desc->bDescriptorType = USB_DT_HUB; 873 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ 874 desc->bHubContrCurrent = 0; 875 876 desc->bNbrPorts = ports; 877 temp = 1 + (ports / 8); 878 desc->bDescLength = 7 + 2 * temp; 879 880 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 881 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 882 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 883 884 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 885 if (HCS_PPC(oxu->hcs_params)) 886 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */ 887 else 888 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 889 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); 890 } 891 892 893 /* Allocate an OXU210HP on-chip memory data buffer 894 * 895 * An on-chip memory data buffer is required for each OXU210HP USB transfer. 896 * Each transfer descriptor has one or more on-chip memory data buffers. 897 * 898 * Data buffers are allocated from a fix sized pool of data blocks. 899 * To minimise fragmentation and give reasonable memory utlisation, 900 * data buffers are allocated with sizes the power of 2 multiples of 901 * the block size, starting on an address a multiple of the allocated size. 902 * 903 * FIXME: callers of this function require a buffer to be allocated for 904 * len=0. This is a waste of on-chip memory and should be fix. Then this 905 * function should be changed to not allocate a buffer for len=0. 906 */ 907 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) 908 { 909 int n_blocks; /* minium blocks needed to hold len */ 910 int a_blocks; /* blocks allocated */ 911 int i, j; 912 913 /* Don't allocte bigger than supported */ 914 if (len > BUFFER_SIZE * BUFFER_NUM) { 915 oxu_err(oxu, "buffer too big (%d)\n", len); 916 return -ENOMEM; 917 } 918 919 spin_lock(&oxu->mem_lock); 920 921 /* Number of blocks needed to hold len */ 922 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; 923 924 /* Round the number of blocks up to the power of 2 */ 925 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) 926 ; 927 928 /* Find a suitable available data buffer */ 929 for (i = 0; i < BUFFER_NUM; 930 i += max(a_blocks, (int)oxu->db_used[i])) { 931 932 /* Check all the required blocks are available */ 933 for (j = 0; j < a_blocks; j++) 934 if (oxu->db_used[i + j]) 935 break; 936 937 if (j != a_blocks) 938 continue; 939 940 /* Allocate blocks found! */ 941 qtd->buffer = (void *) &oxu->mem->db_pool[i]; 942 qtd->buffer_dma = virt_to_phys(qtd->buffer); 943 944 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; 945 oxu->db_used[i] = a_blocks; 946 947 spin_unlock(&oxu->mem_lock); 948 949 return 0; 950 } 951 952 /* Failed */ 953 954 spin_unlock(&oxu->mem_lock); 955 956 return -ENOMEM; 957 } 958 959 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 960 { 961 int index; 962 963 spin_lock(&oxu->mem_lock); 964 965 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) 966 / BUFFER_SIZE; 967 oxu->db_used[index] = 0; 968 qtd->qtd_buffer_len = 0; 969 qtd->buffer_dma = 0; 970 qtd->buffer = NULL; 971 972 spin_unlock(&oxu->mem_lock); 973 } 974 975 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) 976 { 977 memset(qtd, 0, sizeof *qtd); 978 qtd->qtd_dma = dma; 979 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 980 qtd->hw_next = EHCI_LIST_END; 981 qtd->hw_alt_next = EHCI_LIST_END; 982 INIT_LIST_HEAD(&qtd->qtd_list); 983 } 984 985 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 986 { 987 int index; 988 989 if (qtd->buffer) 990 oxu_buf_free(oxu, qtd); 991 992 spin_lock(&oxu->mem_lock); 993 994 index = qtd - &oxu->mem->qtd_pool[0]; 995 oxu->qtd_used[index] = 0; 996 997 spin_unlock(&oxu->mem_lock); 998 } 999 1000 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) 1001 { 1002 int i; 1003 struct ehci_qtd *qtd = NULL; 1004 1005 spin_lock(&oxu->mem_lock); 1006 1007 for (i = 0; i < QTD_NUM; i++) 1008 if (!oxu->qtd_used[i]) 1009 break; 1010 1011 if (i < QTD_NUM) { 1012 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; 1013 memset(qtd, 0, sizeof *qtd); 1014 1015 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 1016 qtd->hw_next = EHCI_LIST_END; 1017 qtd->hw_alt_next = EHCI_LIST_END; 1018 INIT_LIST_HEAD(&qtd->qtd_list); 1019 1020 qtd->qtd_dma = virt_to_phys(qtd); 1021 1022 oxu->qtd_used[i] = 1; 1023 } 1024 1025 spin_unlock(&oxu->mem_lock); 1026 1027 return qtd; 1028 } 1029 1030 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) 1031 { 1032 int index; 1033 1034 spin_lock(&oxu->mem_lock); 1035 1036 index = qh - &oxu->mem->qh_pool[0]; 1037 oxu->qh_used[index] = 0; 1038 1039 spin_unlock(&oxu->mem_lock); 1040 } 1041 1042 static void qh_destroy(struct kref *kref) 1043 { 1044 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); 1045 struct oxu_hcd *oxu = qh->oxu; 1046 1047 /* clean qtds first, and know this is not linked */ 1048 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 1049 oxu_dbg(oxu, "unused qh not empty!\n"); 1050 BUG(); 1051 } 1052 if (qh->dummy) 1053 oxu_qtd_free(oxu, qh->dummy); 1054 oxu_qh_free(oxu, qh); 1055 } 1056 1057 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) 1058 { 1059 int i; 1060 struct ehci_qh *qh = NULL; 1061 1062 spin_lock(&oxu->mem_lock); 1063 1064 for (i = 0; i < QHEAD_NUM; i++) 1065 if (!oxu->qh_used[i]) 1066 break; 1067 1068 if (i < QHEAD_NUM) { 1069 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; 1070 memset(qh, 0, sizeof *qh); 1071 1072 kref_init(&qh->kref); 1073 qh->oxu = oxu; 1074 qh->qh_dma = virt_to_phys(qh); 1075 INIT_LIST_HEAD(&qh->qtd_list); 1076 1077 /* dummy td enables safe urb queuing */ 1078 qh->dummy = ehci_qtd_alloc(oxu); 1079 if (qh->dummy == NULL) { 1080 oxu_dbg(oxu, "no dummy td\n"); 1081 oxu->qh_used[i] = 0; 1082 qh = NULL; 1083 goto unlock; 1084 } 1085 1086 oxu->qh_used[i] = 1; 1087 } 1088 unlock: 1089 spin_unlock(&oxu->mem_lock); 1090 1091 return qh; 1092 } 1093 1094 /* to share a qh (cpu threads, or hc) */ 1095 static inline struct ehci_qh *qh_get(struct ehci_qh *qh) 1096 { 1097 kref_get(&qh->kref); 1098 return qh; 1099 } 1100 1101 static inline void qh_put(struct ehci_qh *qh) 1102 { 1103 kref_put(&qh->kref, qh_destroy); 1104 } 1105 1106 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) 1107 { 1108 int index; 1109 1110 spin_lock(&oxu->mem_lock); 1111 1112 index = murb - &oxu->murb_pool[0]; 1113 oxu->murb_used[index] = 0; 1114 1115 spin_unlock(&oxu->mem_lock); 1116 } 1117 1118 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) 1119 1120 { 1121 int i; 1122 struct oxu_murb *murb = NULL; 1123 1124 spin_lock(&oxu->mem_lock); 1125 1126 for (i = 0; i < MURB_NUM; i++) 1127 if (!oxu->murb_used[i]) 1128 break; 1129 1130 if (i < MURB_NUM) { 1131 murb = &(oxu->murb_pool)[i]; 1132 1133 oxu->murb_used[i] = 1; 1134 } 1135 1136 spin_unlock(&oxu->mem_lock); 1137 1138 return murb; 1139 } 1140 1141 /* The queue heads and transfer descriptors are managed from pools tied 1142 * to each of the "per device" structures. 1143 * This is the initialisation and cleanup code. 1144 */ 1145 static void ehci_mem_cleanup(struct oxu_hcd *oxu) 1146 { 1147 kfree(oxu->murb_pool); 1148 oxu->murb_pool = NULL; 1149 1150 if (oxu->async) 1151 qh_put(oxu->async); 1152 oxu->async = NULL; 1153 1154 del_timer(&oxu->urb_timer); 1155 1156 oxu->periodic = NULL; 1157 1158 /* shadow periodic table */ 1159 kfree(oxu->pshadow); 1160 oxu->pshadow = NULL; 1161 } 1162 1163 /* Remember to add cleanup code (above) if you add anything here. 1164 */ 1165 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) 1166 { 1167 int i; 1168 1169 for (i = 0; i < oxu->periodic_size; i++) 1170 oxu->mem->frame_list[i] = EHCI_LIST_END; 1171 for (i = 0; i < QHEAD_NUM; i++) 1172 oxu->qh_used[i] = 0; 1173 for (i = 0; i < QTD_NUM; i++) 1174 oxu->qtd_used[i] = 0; 1175 1176 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); 1177 if (!oxu->murb_pool) 1178 goto fail; 1179 1180 for (i = 0; i < MURB_NUM; i++) 1181 oxu->murb_used[i] = 0; 1182 1183 oxu->async = oxu_qh_alloc(oxu); 1184 if (!oxu->async) 1185 goto fail; 1186 1187 oxu->periodic = (__le32 *) &oxu->mem->frame_list; 1188 oxu->periodic_dma = virt_to_phys(oxu->periodic); 1189 1190 for (i = 0; i < oxu->periodic_size; i++) 1191 oxu->periodic[i] = EHCI_LIST_END; 1192 1193 /* software shadow of hardware table */ 1194 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); 1195 if (oxu->pshadow != NULL) 1196 return 0; 1197 1198 fail: 1199 oxu_dbg(oxu, "couldn't init memory\n"); 1200 ehci_mem_cleanup(oxu); 1201 return -ENOMEM; 1202 } 1203 1204 /* Fill a qtd, returning how much of the buffer we were able to queue up. 1205 */ 1206 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, 1207 int token, int maxpacket) 1208 { 1209 int i, count; 1210 u64 addr = buf; 1211 1212 /* one buffer entry per 4K ... first might be short or unaligned */ 1213 qtd->hw_buf[0] = cpu_to_le32((u32)addr); 1214 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); 1215 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 1216 if (likely(len < count)) /* ... iff needed */ 1217 count = len; 1218 else { 1219 buf += 0x1000; 1220 buf &= ~0x0fff; 1221 1222 /* per-qtd limit: from 16K to 20K (best alignment) */ 1223 for (i = 1; count < len && i < 5; i++) { 1224 addr = buf; 1225 qtd->hw_buf[i] = cpu_to_le32((u32)addr); 1226 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); 1227 buf += 0x1000; 1228 if ((count + 0x1000) < len) 1229 count += 0x1000; 1230 else 1231 count = len; 1232 } 1233 1234 /* short packets may only terminate transfers */ 1235 if (count != len) 1236 count -= (count % maxpacket); 1237 } 1238 qtd->hw_token = cpu_to_le32((count << 16) | token); 1239 qtd->length = count; 1240 1241 return count; 1242 } 1243 1244 static inline void qh_update(struct oxu_hcd *oxu, 1245 struct ehci_qh *qh, struct ehci_qtd *qtd) 1246 { 1247 /* writes to an active overlay are unsafe */ 1248 BUG_ON(qh->qh_state != QH_STATE_IDLE); 1249 1250 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); 1251 qh->hw_alt_next = EHCI_LIST_END; 1252 1253 /* Except for control endpoints, we make hardware maintain data 1254 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 1255 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 1256 * ever clear it. 1257 */ 1258 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { 1259 unsigned is_out, epnum; 1260 1261 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); 1262 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; 1263 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 1264 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); 1265 usb_settoggle(qh->dev, epnum, is_out, 1); 1266 } 1267 } 1268 1269 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 1270 wmb(); 1271 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); 1272 } 1273 1274 /* If it weren't for a common silicon quirk (writing the dummy into the qh 1275 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 1276 * recovery (including urb dequeue) would need software changes to a QH... 1277 */ 1278 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) 1279 { 1280 struct ehci_qtd *qtd; 1281 1282 if (list_empty(&qh->qtd_list)) 1283 qtd = qh->dummy; 1284 else { 1285 qtd = list_entry(qh->qtd_list.next, 1286 struct ehci_qtd, qtd_list); 1287 /* first qtd may already be partially processed */ 1288 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) 1289 qtd = NULL; 1290 } 1291 1292 if (qtd) 1293 qh_update(oxu, qh, qtd); 1294 } 1295 1296 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, 1297 size_t length, u32 token) 1298 { 1299 /* count IN/OUT bytes, not SETUP (even short packets) */ 1300 if (likely(QTD_PID(token) != 2)) 1301 urb->actual_length += length - QTD_LENGTH(token); 1302 1303 /* don't modify error codes */ 1304 if (unlikely(urb->status != -EINPROGRESS)) 1305 return; 1306 1307 /* force cleanup after short read; not always an error */ 1308 if (unlikely(IS_SHORT_READ(token))) 1309 urb->status = -EREMOTEIO; 1310 1311 /* serious "can't proceed" faults reported by the hardware */ 1312 if (token & QTD_STS_HALT) { 1313 if (token & QTD_STS_BABBLE) { 1314 /* FIXME "must" disable babbling device's port too */ 1315 urb->status = -EOVERFLOW; 1316 } else if (token & QTD_STS_MMF) { 1317 /* fs/ls interrupt xfer missed the complete-split */ 1318 urb->status = -EPROTO; 1319 } else if (token & QTD_STS_DBE) { 1320 urb->status = (QTD_PID(token) == 1) /* IN ? */ 1321 ? -ENOSR /* hc couldn't read data */ 1322 : -ECOMM; /* hc couldn't write data */ 1323 } else if (token & QTD_STS_XACT) { 1324 /* timeout, bad crc, wrong PID, etc; retried */ 1325 if (QTD_CERR(token)) 1326 urb->status = -EPIPE; 1327 else { 1328 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", 1329 urb->dev->devpath, 1330 usb_pipeendpoint(urb->pipe), 1331 usb_pipein(urb->pipe) ? "in" : "out"); 1332 urb->status = -EPROTO; 1333 } 1334 /* CERR nonzero + no errors + halt --> stall */ 1335 } else if (QTD_CERR(token)) 1336 urb->status = -EPIPE; 1337 else /* unknown */ 1338 urb->status = -EPROTO; 1339 1340 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", 1341 usb_pipedevice(urb->pipe), 1342 usb_pipeendpoint(urb->pipe), 1343 usb_pipein(urb->pipe) ? "in" : "out", 1344 token, urb->status); 1345 } 1346 } 1347 1348 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) 1349 __releases(oxu->lock) 1350 __acquires(oxu->lock) 1351 { 1352 if (likely(urb->hcpriv != NULL)) { 1353 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 1354 1355 /* S-mask in a QH means it's an interrupt urb */ 1356 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { 1357 1358 /* ... update hc-wide periodic stats (for usbfs) */ 1359 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; 1360 } 1361 qh_put(qh); 1362 } 1363 1364 urb->hcpriv = NULL; 1365 switch (urb->status) { 1366 case -EINPROGRESS: /* success */ 1367 urb->status = 0; 1368 default: /* fault */ 1369 break; 1370 case -EREMOTEIO: /* fault or normal */ 1371 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 1372 urb->status = 0; 1373 break; 1374 case -ECONNRESET: /* canceled */ 1375 case -ENOENT: 1376 break; 1377 } 1378 1379 #ifdef OXU_URB_TRACE 1380 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", 1381 __func__, urb->dev->devpath, urb, 1382 usb_pipeendpoint(urb->pipe), 1383 usb_pipein(urb->pipe) ? "in" : "out", 1384 urb->status, 1385 urb->actual_length, urb->transfer_buffer_length); 1386 #endif 1387 1388 /* complete() can reenter this HCD */ 1389 spin_unlock(&oxu->lock); 1390 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); 1391 spin_lock(&oxu->lock); 1392 } 1393 1394 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 1395 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 1396 1397 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 1398 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 1399 1400 #define HALT_BIT cpu_to_le32(QTD_STS_HALT) 1401 1402 /* Process and free completed qtds for a qh, returning URBs to drivers. 1403 * Chases up to qh->hw_current. Returns number of completions called, 1404 * indicating how much "real" work we did. 1405 */ 1406 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) 1407 { 1408 struct ehci_qtd *last = NULL, *end = qh->dummy; 1409 struct ehci_qtd *qtd, *tmp; 1410 int stopped; 1411 unsigned count = 0; 1412 int do_status = 0; 1413 u8 state; 1414 struct oxu_murb *murb = NULL; 1415 1416 if (unlikely(list_empty(&qh->qtd_list))) 1417 return count; 1418 1419 /* completions (or tasks on other cpus) must never clobber HALT 1420 * till we've gone through and cleaned everything up, even when 1421 * they add urbs to this qh's queue or mark them for unlinking. 1422 * 1423 * NOTE: unlinking expects to be done in queue order. 1424 */ 1425 state = qh->qh_state; 1426 qh->qh_state = QH_STATE_COMPLETING; 1427 stopped = (state == QH_STATE_IDLE); 1428 1429 /* remove de-activated QTDs from front of queue. 1430 * after faults (including short reads), cleanup this urb 1431 * then let the queue advance. 1432 * if queue is stopped, handles unlinks. 1433 */ 1434 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 1435 struct urb *urb; 1436 u32 token = 0; 1437 1438 urb = qtd->urb; 1439 1440 /* Clean up any state from previous QTD ...*/ 1441 if (last) { 1442 if (likely(last->urb != urb)) { 1443 if (last->urb->complete == NULL) { 1444 murb = (struct oxu_murb *) last->urb; 1445 last->urb = murb->main; 1446 if (murb->last) { 1447 ehci_urb_done(oxu, last->urb); 1448 count++; 1449 } 1450 oxu_murb_free(oxu, murb); 1451 } else { 1452 ehci_urb_done(oxu, last->urb); 1453 count++; 1454 } 1455 } 1456 oxu_qtd_free(oxu, last); 1457 last = NULL; 1458 } 1459 1460 /* ignore urbs submitted during completions we reported */ 1461 if (qtd == end) 1462 break; 1463 1464 /* hardware copies qtd out of qh overlay */ 1465 rmb(); 1466 token = le32_to_cpu(qtd->hw_token); 1467 1468 /* always clean up qtds the hc de-activated */ 1469 if ((token & QTD_STS_ACTIVE) == 0) { 1470 1471 if ((token & QTD_STS_HALT) != 0) { 1472 stopped = 1; 1473 1474 /* magic dummy for some short reads; qh won't advance. 1475 * that silicon quirk can kick in with this dummy too. 1476 */ 1477 } else if (IS_SHORT_READ(token) && 1478 !(qtd->hw_alt_next & EHCI_LIST_END)) { 1479 stopped = 1; 1480 goto halt; 1481 } 1482 1483 /* stop scanning when we reach qtds the hc is using */ 1484 } else if (likely(!stopped && 1485 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { 1486 break; 1487 1488 } else { 1489 stopped = 1; 1490 1491 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) 1492 urb->status = -ESHUTDOWN; 1493 1494 /* ignore active urbs unless some previous qtd 1495 * for the urb faulted (including short read) or 1496 * its urb was canceled. we may patch qh or qtds. 1497 */ 1498 if (likely(urb->status == -EINPROGRESS)) 1499 continue; 1500 1501 /* issue status after short control reads */ 1502 if (unlikely(do_status != 0) 1503 && QTD_PID(token) == 0 /* OUT */) { 1504 do_status = 0; 1505 continue; 1506 } 1507 1508 /* token in overlay may be most current */ 1509 if (state == QH_STATE_IDLE 1510 && cpu_to_le32(qtd->qtd_dma) 1511 == qh->hw_current) 1512 token = le32_to_cpu(qh->hw_token); 1513 1514 /* force halt for unlinked or blocked qh, so we'll 1515 * patch the qh later and so that completions can't 1516 * activate it while we "know" it's stopped. 1517 */ 1518 if ((HALT_BIT & qh->hw_token) == 0) { 1519 halt: 1520 qh->hw_token |= HALT_BIT; 1521 wmb(); 1522 } 1523 } 1524 1525 /* Remove it from the queue */ 1526 qtd_copy_status(oxu, urb->complete ? 1527 urb : ((struct oxu_murb *) urb)->main, 1528 qtd->length, token); 1529 if ((usb_pipein(qtd->urb->pipe)) && 1530 (NULL != qtd->transfer_buffer)) 1531 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); 1532 do_status = (urb->status == -EREMOTEIO) 1533 && usb_pipecontrol(urb->pipe); 1534 1535 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 1536 last = list_entry(qtd->qtd_list.prev, 1537 struct ehci_qtd, qtd_list); 1538 last->hw_next = qtd->hw_next; 1539 } 1540 list_del(&qtd->qtd_list); 1541 last = qtd; 1542 } 1543 1544 /* last urb's completion might still need calling */ 1545 if (likely(last != NULL)) { 1546 if (last->urb->complete == NULL) { 1547 murb = (struct oxu_murb *) last->urb; 1548 last->urb = murb->main; 1549 if (murb->last) { 1550 ehci_urb_done(oxu, last->urb); 1551 count++; 1552 } 1553 oxu_murb_free(oxu, murb); 1554 } else { 1555 ehci_urb_done(oxu, last->urb); 1556 count++; 1557 } 1558 oxu_qtd_free(oxu, last); 1559 } 1560 1561 /* restore original state; caller must unlink or relink */ 1562 qh->qh_state = state; 1563 1564 /* be sure the hardware's done with the qh before refreshing 1565 * it after fault cleanup, or recovering from silicon wrongly 1566 * overlaying the dummy qtd (which reduces DMA chatter). 1567 */ 1568 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { 1569 switch (state) { 1570 case QH_STATE_IDLE: 1571 qh_refresh(oxu, qh); 1572 break; 1573 case QH_STATE_LINKED: 1574 /* should be rare for periodic transfers, 1575 * except maybe high bandwidth ... 1576 */ 1577 if ((cpu_to_le32(QH_SMASK) 1578 & qh->hw_info2) != 0) { 1579 intr_deschedule(oxu, qh); 1580 (void) qh_schedule(oxu, qh); 1581 } else 1582 unlink_async(oxu, qh); 1583 break; 1584 /* otherwise, unlink already started */ 1585 } 1586 } 1587 1588 return count; 1589 } 1590 1591 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 1592 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 1593 /* ... and packet size, for any kind of endpoint descriptor */ 1594 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 1595 1596 /* Reverse of qh_urb_transaction: free a list of TDs. 1597 * used for cleanup after errors, before HC sees an URB's TDs. 1598 */ 1599 static void qtd_list_free(struct oxu_hcd *oxu, 1600 struct urb *urb, struct list_head *head) 1601 { 1602 struct ehci_qtd *qtd, *temp; 1603 1604 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 1605 list_del(&qtd->qtd_list); 1606 oxu_qtd_free(oxu, qtd); 1607 } 1608 } 1609 1610 /* Create a list of filled qtds for this URB; won't link into qh. 1611 */ 1612 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, 1613 struct urb *urb, 1614 struct list_head *head, 1615 gfp_t flags) 1616 { 1617 struct ehci_qtd *qtd, *qtd_prev; 1618 dma_addr_t buf; 1619 int len, maxpacket; 1620 int is_input; 1621 u32 token; 1622 void *transfer_buf = NULL; 1623 int ret; 1624 1625 /* 1626 * URBs map to sequences of QTDs: one logical transaction 1627 */ 1628 qtd = ehci_qtd_alloc(oxu); 1629 if (unlikely(!qtd)) 1630 return NULL; 1631 list_add_tail(&qtd->qtd_list, head); 1632 qtd->urb = urb; 1633 1634 token = QTD_STS_ACTIVE; 1635 token |= (EHCI_TUNE_CERR << 10); 1636 /* for split transactions, SplitXState initialized to zero */ 1637 1638 len = urb->transfer_buffer_length; 1639 is_input = usb_pipein(urb->pipe); 1640 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) 1641 urb->transfer_buffer = phys_to_virt(urb->transfer_dma); 1642 1643 if (usb_pipecontrol(urb->pipe)) { 1644 /* SETUP pid */ 1645 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); 1646 if (ret) 1647 goto cleanup; 1648 1649 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), 1650 token | (2 /* "setup" */ << 8), 8); 1651 memcpy(qtd->buffer, qtd->urb->setup_packet, 1652 sizeof(struct usb_ctrlrequest)); 1653 1654 /* ... and always at least one more pid */ 1655 token ^= QTD_TOGGLE; 1656 qtd_prev = qtd; 1657 qtd = ehci_qtd_alloc(oxu); 1658 if (unlikely(!qtd)) 1659 goto cleanup; 1660 qtd->urb = urb; 1661 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1662 list_add_tail(&qtd->qtd_list, head); 1663 1664 /* for zero length DATA stages, STATUS is always IN */ 1665 if (len == 0) 1666 token |= (1 /* "in" */ << 8); 1667 } 1668 1669 /* 1670 * Data transfer stage: buffer setup 1671 */ 1672 1673 ret = oxu_buf_alloc(oxu, qtd, len); 1674 if (ret) 1675 goto cleanup; 1676 1677 buf = qtd->buffer_dma; 1678 transfer_buf = urb->transfer_buffer; 1679 1680 if (!is_input) 1681 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); 1682 1683 if (is_input) 1684 token |= (1 /* "in" */ << 8); 1685 /* else it's already initted to "out" pid (0 << 8) */ 1686 1687 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 1688 1689 /* 1690 * buffer gets wrapped in one or more qtds; 1691 * last one may be "short" (including zero len) 1692 * and may serve as a control status ack 1693 */ 1694 for (;;) { 1695 int this_qtd_len; 1696 1697 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); 1698 qtd->transfer_buffer = transfer_buf; 1699 len -= this_qtd_len; 1700 buf += this_qtd_len; 1701 transfer_buf += this_qtd_len; 1702 if (is_input) 1703 qtd->hw_alt_next = oxu->async->hw_alt_next; 1704 1705 /* qh makes control packets use qtd toggle; maybe switch it */ 1706 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 1707 token ^= QTD_TOGGLE; 1708 1709 if (likely(len <= 0)) 1710 break; 1711 1712 qtd_prev = qtd; 1713 qtd = ehci_qtd_alloc(oxu); 1714 if (unlikely(!qtd)) 1715 goto cleanup; 1716 if (likely(len > 0)) { 1717 ret = oxu_buf_alloc(oxu, qtd, len); 1718 if (ret) 1719 goto cleanup; 1720 } 1721 qtd->urb = urb; 1722 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1723 list_add_tail(&qtd->qtd_list, head); 1724 } 1725 1726 /* unless the bulk/interrupt caller wants a chance to clean 1727 * up after short reads, hc should advance qh past this urb 1728 */ 1729 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 1730 || usb_pipecontrol(urb->pipe))) 1731 qtd->hw_alt_next = EHCI_LIST_END; 1732 1733 /* 1734 * control requests may need a terminating data "status" ack; 1735 * bulk ones may need a terminating short packet (zero length). 1736 */ 1737 if (likely(urb->transfer_buffer_length != 0)) { 1738 int one_more = 0; 1739 1740 if (usb_pipecontrol(urb->pipe)) { 1741 one_more = 1; 1742 token ^= 0x0100; /* "in" <--> "out" */ 1743 token |= QTD_TOGGLE; /* force DATA1 */ 1744 } else if (usb_pipebulk(urb->pipe) 1745 && (urb->transfer_flags & URB_ZERO_PACKET) 1746 && !(urb->transfer_buffer_length % maxpacket)) { 1747 one_more = 1; 1748 } 1749 if (one_more) { 1750 qtd_prev = qtd; 1751 qtd = ehci_qtd_alloc(oxu); 1752 if (unlikely(!qtd)) 1753 goto cleanup; 1754 qtd->urb = urb; 1755 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1756 list_add_tail(&qtd->qtd_list, head); 1757 1758 /* never any data in such packets */ 1759 qtd_fill(qtd, 0, 0, token, 0); 1760 } 1761 } 1762 1763 /* by default, enable interrupt on urb completion */ 1764 qtd->hw_token |= cpu_to_le32(QTD_IOC); 1765 return head; 1766 1767 cleanup: 1768 qtd_list_free(oxu, urb, head); 1769 return NULL; 1770 } 1771 1772 /* Each QH holds a qtd list; a QH is used for everything except iso. 1773 * 1774 * For interrupt urbs, the scheduler must set the microframe scheduling 1775 * mask(s) each time the QH gets scheduled. For highspeed, that's 1776 * just one microframe in the s-mask. For split interrupt transactions 1777 * there are additional complications: c-mask, maybe FSTNs. 1778 */ 1779 static struct ehci_qh *qh_make(struct oxu_hcd *oxu, 1780 struct urb *urb, gfp_t flags) 1781 { 1782 struct ehci_qh *qh = oxu_qh_alloc(oxu); 1783 u32 info1 = 0, info2 = 0; 1784 int is_input, type; 1785 int maxp = 0; 1786 1787 if (!qh) 1788 return qh; 1789 1790 /* 1791 * init endpoint/device data for this QH 1792 */ 1793 info1 |= usb_pipeendpoint(urb->pipe) << 8; 1794 info1 |= usb_pipedevice(urb->pipe) << 0; 1795 1796 is_input = usb_pipein(urb->pipe); 1797 type = usb_pipetype(urb->pipe); 1798 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); 1799 1800 /* Compute interrupt scheduling parameters just once, and save. 1801 * - allowing for high bandwidth, how many nsec/uframe are used? 1802 * - split transactions need a second CSPLIT uframe; same question 1803 * - splits also need a schedule gap (for full/low speed I/O) 1804 * - qh has a polling interval 1805 * 1806 * For control/bulk requests, the HC or TT handles these. 1807 */ 1808 if (type == PIPE_INTERRUPT) { 1809 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 1810 is_input, 0, 1811 hb_mult(maxp) * max_packet(maxp))); 1812 qh->start = NO_FRAME; 1813 1814 if (urb->dev->speed == USB_SPEED_HIGH) { 1815 qh->c_usecs = 0; 1816 qh->gap_uf = 0; 1817 1818 qh->period = urb->interval >> 3; 1819 if (qh->period == 0 && urb->interval != 1) { 1820 /* NOTE interval 2 or 4 uframes could work. 1821 * But interval 1 scheduling is simpler, and 1822 * includes high bandwidth. 1823 */ 1824 oxu_dbg(oxu, "intr period %d uframes, NYET!\n", 1825 urb->interval); 1826 goto done; 1827 } 1828 } else { 1829 struct usb_tt *tt = urb->dev->tt; 1830 int think_time; 1831 1832 /* gap is f(FS/LS transfer times) */ 1833 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 1834 is_input, 0, maxp) / (125 * 1000); 1835 1836 /* FIXME this just approximates SPLIT/CSPLIT times */ 1837 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 1838 qh->c_usecs = qh->usecs + HS_USECS(0); 1839 qh->usecs = HS_USECS(1); 1840 } else { /* SPLIT+DATA, gap, CSPLIT */ 1841 qh->usecs += HS_USECS(1); 1842 qh->c_usecs = HS_USECS(0); 1843 } 1844 1845 think_time = tt ? tt->think_time : 0; 1846 qh->tt_usecs = NS_TO_US(think_time + 1847 usb_calc_bus_time(urb->dev->speed, 1848 is_input, 0, max_packet(maxp))); 1849 qh->period = urb->interval; 1850 } 1851 } 1852 1853 /* support for tt scheduling, and access to toggles */ 1854 qh->dev = urb->dev; 1855 1856 /* using TT? */ 1857 switch (urb->dev->speed) { 1858 case USB_SPEED_LOW: 1859 info1 |= (1 << 12); /* EPS "low" */ 1860 fallthrough; 1861 1862 case USB_SPEED_FULL: 1863 /* EPS 0 means "full" */ 1864 if (type != PIPE_INTERRUPT) 1865 info1 |= (EHCI_TUNE_RL_TT << 28); 1866 if (type == PIPE_CONTROL) { 1867 info1 |= (1 << 27); /* for TT */ 1868 info1 |= 1 << 14; /* toggle from qtd */ 1869 } 1870 info1 |= maxp << 16; 1871 1872 info2 |= (EHCI_TUNE_MULT_TT << 30); 1873 info2 |= urb->dev->ttport << 23; 1874 1875 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 1876 1877 break; 1878 1879 case USB_SPEED_HIGH: /* no TT involved */ 1880 info1 |= (2 << 12); /* EPS "high" */ 1881 if (type == PIPE_CONTROL) { 1882 info1 |= (EHCI_TUNE_RL_HS << 28); 1883 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 1884 info1 |= 1 << 14; /* toggle from qtd */ 1885 info2 |= (EHCI_TUNE_MULT_HS << 30); 1886 } else if (type == PIPE_BULK) { 1887 info1 |= (EHCI_TUNE_RL_HS << 28); 1888 info1 |= 512 << 16; /* usb2 fixed maxpacket */ 1889 info2 |= (EHCI_TUNE_MULT_HS << 30); 1890 } else { /* PIPE_INTERRUPT */ 1891 info1 |= max_packet(maxp) << 16; 1892 info2 |= hb_mult(maxp) << 30; 1893 } 1894 break; 1895 default: 1896 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); 1897 done: 1898 qh_put(qh); 1899 return NULL; 1900 } 1901 1902 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 1903 1904 /* init as live, toggle clear, advance to dummy */ 1905 qh->qh_state = QH_STATE_IDLE; 1906 qh->hw_info1 = cpu_to_le32(info1); 1907 qh->hw_info2 = cpu_to_le32(info2); 1908 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 1909 qh_refresh(oxu, qh); 1910 return qh; 1911 } 1912 1913 /* Move qh (and its qtds) onto async queue; maybe enable queue. 1914 */ 1915 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1916 { 1917 __le32 dma = QH_NEXT(qh->qh_dma); 1918 struct ehci_qh *head; 1919 1920 /* (re)start the async schedule? */ 1921 head = oxu->async; 1922 timer_action_done(oxu, TIMER_ASYNC_OFF); 1923 if (!head->qh_next.qh) { 1924 u32 cmd = readl(&oxu->regs->command); 1925 1926 if (!(cmd & CMD_ASE)) { 1927 /* in case a clear of CMD_ASE didn't take yet */ 1928 (void)handshake(oxu, &oxu->regs->status, 1929 STS_ASS, 0, 150); 1930 cmd |= CMD_ASE | CMD_RUN; 1931 writel(cmd, &oxu->regs->command); 1932 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1933 /* posted write need not be known to HC yet ... */ 1934 } 1935 } 1936 1937 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1938 if (qh->qh_state == QH_STATE_IDLE) 1939 qh_refresh(oxu, qh); 1940 1941 /* splice right after start */ 1942 qh->qh_next = head->qh_next; 1943 qh->hw_next = head->hw_next; 1944 wmb(); 1945 1946 head->qh_next.qh = qh; 1947 head->hw_next = dma; 1948 1949 qh->qh_state = QH_STATE_LINKED; 1950 /* qtd completions reported later by interrupt */ 1951 } 1952 1953 #define QH_ADDR_MASK cpu_to_le32(0x7f) 1954 1955 /* 1956 * For control/bulk/interrupt, return QH with these TDs appended. 1957 * Allocates and initializes the QH if necessary. 1958 * Returns null if it can't allocate a QH it needs to. 1959 * If the QH has TDs (urbs) already, that's great. 1960 */ 1961 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, 1962 struct urb *urb, struct list_head *qtd_list, 1963 int epnum, void **ptr) 1964 { 1965 struct ehci_qh *qh = NULL; 1966 1967 qh = (struct ehci_qh *) *ptr; 1968 if (unlikely(qh == NULL)) { 1969 /* can't sleep here, we have oxu->lock... */ 1970 qh = qh_make(oxu, urb, GFP_ATOMIC); 1971 *ptr = qh; 1972 } 1973 if (likely(qh != NULL)) { 1974 struct ehci_qtd *qtd; 1975 1976 if (unlikely(list_empty(qtd_list))) 1977 qtd = NULL; 1978 else 1979 qtd = list_entry(qtd_list->next, struct ehci_qtd, 1980 qtd_list); 1981 1982 /* control qh may need patching ... */ 1983 if (unlikely(epnum == 0)) { 1984 1985 /* usb_reset_device() briefly reverts to address 0 */ 1986 if (usb_pipedevice(urb->pipe) == 0) 1987 qh->hw_info1 &= ~QH_ADDR_MASK; 1988 } 1989 1990 /* just one way to queue requests: swap with the dummy qtd. 1991 * only hc or qh_refresh() ever modify the overlay. 1992 */ 1993 if (likely(qtd != NULL)) { 1994 struct ehci_qtd *dummy; 1995 dma_addr_t dma; 1996 __le32 token; 1997 1998 /* to avoid racing the HC, use the dummy td instead of 1999 * the first td of our list (becomes new dummy). both 2000 * tds stay deactivated until we're done, when the 2001 * HC is allowed to fetch the old dummy (4.10.2). 2002 */ 2003 token = qtd->hw_token; 2004 qtd->hw_token = HALT_BIT; 2005 wmb(); 2006 dummy = qh->dummy; 2007 2008 dma = dummy->qtd_dma; 2009 *dummy = *qtd; 2010 dummy->qtd_dma = dma; 2011 2012 list_del(&qtd->qtd_list); 2013 list_add(&dummy->qtd_list, qtd_list); 2014 list_splice(qtd_list, qh->qtd_list.prev); 2015 2016 ehci_qtd_init(qtd, qtd->qtd_dma); 2017 qh->dummy = qtd; 2018 2019 /* hc must see the new dummy at list end */ 2020 dma = qtd->qtd_dma; 2021 qtd = list_entry(qh->qtd_list.prev, 2022 struct ehci_qtd, qtd_list); 2023 qtd->hw_next = QTD_NEXT(dma); 2024 2025 /* let the hc process these next qtds */ 2026 dummy->hw_token = (token & ~(0x80)); 2027 wmb(); 2028 dummy->hw_token = token; 2029 2030 urb->hcpriv = qh_get(qh); 2031 } 2032 } 2033 return qh; 2034 } 2035 2036 static int submit_async(struct oxu_hcd *oxu, struct urb *urb, 2037 struct list_head *qtd_list, gfp_t mem_flags) 2038 { 2039 int epnum = urb->ep->desc.bEndpointAddress; 2040 unsigned long flags; 2041 struct ehci_qh *qh = NULL; 2042 int rc = 0; 2043 #ifdef OXU_URB_TRACE 2044 struct ehci_qtd *qtd; 2045 2046 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 2047 2048 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 2049 __func__, urb->dev->devpath, urb, 2050 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 2051 urb->transfer_buffer_length, 2052 qtd, urb->ep->hcpriv); 2053 #endif 2054 2055 spin_lock_irqsave(&oxu->lock, flags); 2056 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2057 rc = -ESHUTDOWN; 2058 goto done; 2059 } 2060 2061 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2062 if (unlikely(qh == NULL)) { 2063 rc = -ENOMEM; 2064 goto done; 2065 } 2066 2067 /* Control/bulk operations through TTs don't need scheduling, 2068 * the HC and TT handle it when the TT has a buffer ready. 2069 */ 2070 if (likely(qh->qh_state == QH_STATE_IDLE)) 2071 qh_link_async(oxu, qh_get(qh)); 2072 done: 2073 spin_unlock_irqrestore(&oxu->lock, flags); 2074 if (unlikely(qh == NULL)) 2075 qtd_list_free(oxu, urb, qtd_list); 2076 return rc; 2077 } 2078 2079 /* The async qh for the qtds being reclaimed are now unlinked from the HC */ 2080 2081 static void end_unlink_async(struct oxu_hcd *oxu) 2082 { 2083 struct ehci_qh *qh = oxu->reclaim; 2084 struct ehci_qh *next; 2085 2086 timer_action_done(oxu, TIMER_IAA_WATCHDOG); 2087 2088 qh->qh_state = QH_STATE_IDLE; 2089 qh->qh_next.qh = NULL; 2090 qh_put(qh); /* refcount from reclaim */ 2091 2092 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 2093 next = qh->reclaim; 2094 oxu->reclaim = next; 2095 oxu->reclaim_ready = 0; 2096 qh->reclaim = NULL; 2097 2098 qh_completions(oxu, qh); 2099 2100 if (!list_empty(&qh->qtd_list) 2101 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2102 qh_link_async(oxu, qh); 2103 else { 2104 qh_put(qh); /* refcount from async list */ 2105 2106 /* it's not free to turn the async schedule on/off; leave it 2107 * active but idle for a while once it empties. 2108 */ 2109 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) 2110 && oxu->async->qh_next.qh == NULL) 2111 timer_action(oxu, TIMER_ASYNC_OFF); 2112 } 2113 2114 if (next) { 2115 oxu->reclaim = NULL; 2116 start_unlink_async(oxu, next); 2117 } 2118 } 2119 2120 /* makes sure the async qh will become idle */ 2121 /* caller must own oxu->lock */ 2122 2123 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2124 { 2125 int cmd = readl(&oxu->regs->command); 2126 struct ehci_qh *prev; 2127 2128 #ifdef DEBUG 2129 assert_spin_locked(&oxu->lock); 2130 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED 2131 && qh->qh_state != QH_STATE_UNLINK_WAIT)); 2132 #endif 2133 2134 /* stop async schedule right now? */ 2135 if (unlikely(qh == oxu->async)) { 2136 /* can't get here without STS_ASS set */ 2137 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT 2138 && !oxu->reclaim) { 2139 /* ... and CMD_IAAD clear */ 2140 writel(cmd & ~CMD_ASE, &oxu->regs->command); 2141 wmb(); 2142 /* handshake later, if we need to */ 2143 timer_action_done(oxu, TIMER_ASYNC_OFF); 2144 } 2145 return; 2146 } 2147 2148 qh->qh_state = QH_STATE_UNLINK; 2149 oxu->reclaim = qh = qh_get(qh); 2150 2151 prev = oxu->async; 2152 while (prev->qh_next.qh != qh) 2153 prev = prev->qh_next.qh; 2154 2155 prev->hw_next = qh->hw_next; 2156 prev->qh_next = qh->qh_next; 2157 wmb(); 2158 2159 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { 2160 /* if (unlikely(qh->reclaim != 0)) 2161 * this will recurse, probably not much 2162 */ 2163 end_unlink_async(oxu); 2164 return; 2165 } 2166 2167 oxu->reclaim_ready = 0; 2168 cmd |= CMD_IAAD; 2169 writel(cmd, &oxu->regs->command); 2170 (void) readl(&oxu->regs->command); 2171 timer_action(oxu, TIMER_IAA_WATCHDOG); 2172 } 2173 2174 static void scan_async(struct oxu_hcd *oxu) 2175 { 2176 struct ehci_qh *qh; 2177 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 2178 2179 if (!++(oxu->stamp)) 2180 oxu->stamp++; 2181 timer_action_done(oxu, TIMER_ASYNC_SHRINK); 2182 rescan: 2183 qh = oxu->async->qh_next.qh; 2184 if (likely(qh != NULL)) { 2185 do { 2186 /* clean any finished work for this qh */ 2187 if (!list_empty(&qh->qtd_list) 2188 && qh->stamp != oxu->stamp) { 2189 int temp; 2190 2191 /* unlinks could happen here; completion 2192 * reporting drops the lock. rescan using 2193 * the latest schedule, but don't rescan 2194 * qhs we already finished (no looping). 2195 */ 2196 qh = qh_get(qh); 2197 qh->stamp = oxu->stamp; 2198 temp = qh_completions(oxu, qh); 2199 qh_put(qh); 2200 if (temp != 0) 2201 goto rescan; 2202 } 2203 2204 /* unlink idle entries, reducing HC PCI usage as well 2205 * as HCD schedule-scanning costs. delay for any qh 2206 * we just scanned, there's a not-unusual case that it 2207 * doesn't stay idle for long. 2208 * (plus, avoids some kind of re-activation race.) 2209 */ 2210 if (list_empty(&qh->qtd_list)) { 2211 if (qh->stamp == oxu->stamp) 2212 action = TIMER_ASYNC_SHRINK; 2213 else if (!oxu->reclaim 2214 && qh->qh_state == QH_STATE_LINKED) 2215 start_unlink_async(oxu, qh); 2216 } 2217 2218 qh = qh->qh_next.qh; 2219 } while (qh); 2220 } 2221 if (action == TIMER_ASYNC_SHRINK) 2222 timer_action(oxu, TIMER_ASYNC_SHRINK); 2223 } 2224 2225 /* 2226 * periodic_next_shadow - return "next" pointer on shadow list 2227 * @periodic: host pointer to qh/itd/sitd 2228 * @tag: hardware tag for type of this record 2229 */ 2230 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, 2231 __le32 tag) 2232 { 2233 switch (tag) { 2234 default: 2235 case Q_TYPE_QH: 2236 return &periodic->qh->qh_next; 2237 } 2238 } 2239 2240 /* caller must hold oxu->lock */ 2241 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) 2242 { 2243 union ehci_shadow *prev_p = &oxu->pshadow[frame]; 2244 __le32 *hw_p = &oxu->periodic[frame]; 2245 union ehci_shadow here = *prev_p; 2246 2247 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 2248 while (here.ptr && here.ptr != ptr) { 2249 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); 2250 hw_p = here.hw_next; 2251 here = *prev_p; 2252 } 2253 /* an interrupt entry (at list end) could have been shared */ 2254 if (!here.ptr) 2255 return; 2256 2257 /* update shadow and hardware lists ... the old "next" pointers 2258 * from ptr may still be in use, the caller updates them. 2259 */ 2260 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); 2261 *hw_p = *here.hw_next; 2262 } 2263 2264 /* how many of the uframe's 125 usecs are allocated? */ 2265 static unsigned short periodic_usecs(struct oxu_hcd *oxu, 2266 unsigned frame, unsigned uframe) 2267 { 2268 __le32 *hw_p = &oxu->periodic[frame]; 2269 union ehci_shadow *q = &oxu->pshadow[frame]; 2270 unsigned usecs = 0; 2271 2272 while (q->ptr) { 2273 switch (Q_NEXT_TYPE(*hw_p)) { 2274 case Q_TYPE_QH: 2275 default: 2276 /* is it in the S-mask? */ 2277 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) 2278 usecs += q->qh->usecs; 2279 /* ... or C-mask? */ 2280 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) 2281 usecs += q->qh->c_usecs; 2282 hw_p = &q->qh->hw_next; 2283 q = &q->qh->qh_next; 2284 break; 2285 } 2286 } 2287 #ifdef DEBUG 2288 if (usecs > 100) 2289 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", 2290 frame * 8 + uframe, usecs); 2291 #endif 2292 return usecs; 2293 } 2294 2295 static int enable_periodic(struct oxu_hcd *oxu) 2296 { 2297 u32 cmd; 2298 int status; 2299 2300 /* did clearing PSE did take effect yet? 2301 * takes effect only at frame boundaries... 2302 */ 2303 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); 2304 if (status != 0) { 2305 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 2306 usb_hc_died(oxu_to_hcd(oxu)); 2307 return status; 2308 } 2309 2310 cmd = readl(&oxu->regs->command) | CMD_PSE; 2311 writel(cmd, &oxu->regs->command); 2312 /* posted write ... PSS happens later */ 2313 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 2314 2315 /* make sure ehci_work scans these */ 2316 oxu->next_uframe = readl(&oxu->regs->frame_index) 2317 % (oxu->periodic_size << 3); 2318 return 0; 2319 } 2320 2321 static int disable_periodic(struct oxu_hcd *oxu) 2322 { 2323 u32 cmd; 2324 int status; 2325 2326 /* did setting PSE not take effect yet? 2327 * takes effect only at frame boundaries... 2328 */ 2329 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); 2330 if (status != 0) { 2331 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 2332 usb_hc_died(oxu_to_hcd(oxu)); 2333 return status; 2334 } 2335 2336 cmd = readl(&oxu->regs->command) & ~CMD_PSE; 2337 writel(cmd, &oxu->regs->command); 2338 /* posted write ... */ 2339 2340 oxu->next_uframe = -1; 2341 return 0; 2342 } 2343 2344 /* periodic schedule slots have iso tds (normal or split) first, then a 2345 * sparse tree for active interrupt transfers. 2346 * 2347 * this just links in a qh; caller guarantees uframe masks are set right. 2348 * no FSTN support (yet; oxu 0.96+) 2349 */ 2350 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 2351 { 2352 unsigned i; 2353 unsigned period = qh->period; 2354 2355 dev_dbg(&qh->dev->dev, 2356 "link qh%d-%04x/%p start %d [%d/%d us]\n", 2357 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2358 qh, qh->start, qh->usecs, qh->c_usecs); 2359 2360 /* high bandwidth, or otherwise every microframe */ 2361 if (period == 0) 2362 period = 1; 2363 2364 for (i = qh->start; i < oxu->periodic_size; i += period) { 2365 union ehci_shadow *prev = &oxu->pshadow[i]; 2366 __le32 *hw_p = &oxu->periodic[i]; 2367 union ehci_shadow here = *prev; 2368 __le32 type = 0; 2369 2370 /* skip the iso nodes at list head */ 2371 while (here.ptr) { 2372 type = Q_NEXT_TYPE(*hw_p); 2373 if (type == Q_TYPE_QH) 2374 break; 2375 prev = periodic_next_shadow(prev, type); 2376 hw_p = &here.qh->hw_next; 2377 here = *prev; 2378 } 2379 2380 /* sorting each branch by period (slow-->fast) 2381 * enables sharing interior tree nodes 2382 */ 2383 while (here.ptr && qh != here.qh) { 2384 if (qh->period > here.qh->period) 2385 break; 2386 prev = &here.qh->qh_next; 2387 hw_p = &here.qh->hw_next; 2388 here = *prev; 2389 } 2390 /* link in this qh, unless some earlier pass did that */ 2391 if (qh != here.qh) { 2392 qh->qh_next = here; 2393 if (here.qh) 2394 qh->hw_next = *hw_p; 2395 wmb(); 2396 prev->qh = qh; 2397 *hw_p = QH_NEXT(qh->qh_dma); 2398 } 2399 } 2400 qh->qh_state = QH_STATE_LINKED; 2401 qh_get(qh); 2402 2403 /* update per-qh bandwidth for usbfs */ 2404 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period 2405 ? ((qh->usecs + qh->c_usecs) / qh->period) 2406 : (qh->usecs * 8); 2407 2408 /* maybe enable periodic schedule processing */ 2409 if (!oxu->periodic_sched++) 2410 return enable_periodic(oxu); 2411 2412 return 0; 2413 } 2414 2415 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 2416 { 2417 unsigned i; 2418 unsigned period; 2419 2420 /* FIXME: 2421 * IF this isn't high speed 2422 * and this qh is active in the current uframe 2423 * (and overlay token SplitXstate is false?) 2424 * THEN 2425 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); 2426 */ 2427 2428 /* high bandwidth, or otherwise part of every microframe */ 2429 period = qh->period; 2430 if (period == 0) 2431 period = 1; 2432 2433 for (i = qh->start; i < oxu->periodic_size; i += period) 2434 periodic_unlink(oxu, i, qh); 2435 2436 /* update per-qh bandwidth for usbfs */ 2437 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period 2438 ? ((qh->usecs + qh->c_usecs) / qh->period) 2439 : (qh->usecs * 8); 2440 2441 dev_dbg(&qh->dev->dev, 2442 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 2443 qh->period, 2444 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2445 qh, qh->start, qh->usecs, qh->c_usecs); 2446 2447 /* qh->qh_next still "live" to HC */ 2448 qh->qh_state = QH_STATE_UNLINK; 2449 qh->qh_next.ptr = NULL; 2450 qh_put(qh); 2451 2452 /* maybe turn off periodic schedule */ 2453 oxu->periodic_sched--; 2454 if (!oxu->periodic_sched) 2455 (void) disable_periodic(oxu); 2456 } 2457 2458 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2459 { 2460 unsigned wait; 2461 2462 qh_unlink_periodic(oxu, qh); 2463 2464 /* simple/paranoid: always delay, expecting the HC needs to read 2465 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 2466 * expect hub_wq to clean up after any CSPLITs we won't issue. 2467 * active high speed queues may need bigger delays... 2468 */ 2469 if (list_empty(&qh->qtd_list) 2470 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) 2471 wait = 2; 2472 else 2473 wait = 55; /* worst case: 3 * 1024 */ 2474 2475 udelay(wait); 2476 qh->qh_state = QH_STATE_IDLE; 2477 qh->hw_next = EHCI_LIST_END; 2478 wmb(); 2479 } 2480 2481 static int check_period(struct oxu_hcd *oxu, 2482 unsigned frame, unsigned uframe, 2483 unsigned period, unsigned usecs) 2484 { 2485 int claimed; 2486 2487 /* complete split running into next frame? 2488 * given FSTN support, we could sometimes check... 2489 */ 2490 if (uframe >= 8) 2491 return 0; 2492 2493 /* 2494 * 80% periodic == 100 usec/uframe available 2495 * convert "usecs we need" to "max already claimed" 2496 */ 2497 usecs = 100 - usecs; 2498 2499 /* we "know" 2 and 4 uframe intervals were rejected; so 2500 * for period 0, check _every_ microframe in the schedule. 2501 */ 2502 if (unlikely(period == 0)) { 2503 do { 2504 for (uframe = 0; uframe < 7; uframe++) { 2505 claimed = periodic_usecs(oxu, frame, uframe); 2506 if (claimed > usecs) 2507 return 0; 2508 } 2509 } while ((frame += 1) < oxu->periodic_size); 2510 2511 /* just check the specified uframe, at that period */ 2512 } else { 2513 do { 2514 claimed = periodic_usecs(oxu, frame, uframe); 2515 if (claimed > usecs) 2516 return 0; 2517 } while ((frame += period) < oxu->periodic_size); 2518 } 2519 2520 return 1; 2521 } 2522 2523 static int check_intr_schedule(struct oxu_hcd *oxu, 2524 unsigned frame, unsigned uframe, 2525 const struct ehci_qh *qh, __le32 *c_maskp) 2526 { 2527 int retval = -ENOSPC; 2528 2529 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 2530 goto done; 2531 2532 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) 2533 goto done; 2534 if (!qh->c_usecs) { 2535 retval = 0; 2536 *c_maskp = 0; 2537 goto done; 2538 } 2539 2540 done: 2541 return retval; 2542 } 2543 2544 /* "first fit" scheduling policy used the first time through, 2545 * or when the previous schedule slot can't be re-used. 2546 */ 2547 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2548 { 2549 int status; 2550 unsigned uframe; 2551 __le32 c_mask; 2552 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 2553 2554 qh_refresh(oxu, qh); 2555 qh->hw_next = EHCI_LIST_END; 2556 frame = qh->start; 2557 2558 /* reuse the previous schedule slots, if we can */ 2559 if (frame < qh->period) { 2560 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); 2561 status = check_intr_schedule(oxu, frame, --uframe, 2562 qh, &c_mask); 2563 } else { 2564 uframe = 0; 2565 c_mask = 0; 2566 status = -ENOSPC; 2567 } 2568 2569 /* else scan the schedule to find a group of slots such that all 2570 * uframes have enough periodic bandwidth available. 2571 */ 2572 if (status) { 2573 /* "normal" case, uframing flexible except with splits */ 2574 if (qh->period) { 2575 frame = qh->period - 1; 2576 do { 2577 for (uframe = 0; uframe < 8; uframe++) { 2578 status = check_intr_schedule(oxu, 2579 frame, uframe, qh, 2580 &c_mask); 2581 if (status == 0) 2582 break; 2583 } 2584 } while (status && frame--); 2585 2586 /* qh->period == 0 means every uframe */ 2587 } else { 2588 frame = 0; 2589 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); 2590 } 2591 if (status) 2592 goto done; 2593 qh->start = frame; 2594 2595 /* reset S-frame and (maybe) C-frame masks */ 2596 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); 2597 qh->hw_info2 |= qh->period 2598 ? cpu_to_le32(1 << uframe) 2599 : cpu_to_le32(QH_SMASK); 2600 qh->hw_info2 |= c_mask; 2601 } else 2602 oxu_dbg(oxu, "reused qh %p schedule\n", qh); 2603 2604 /* stuff into the periodic schedule */ 2605 status = qh_link_periodic(oxu, qh); 2606 done: 2607 return status; 2608 } 2609 2610 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, 2611 struct list_head *qtd_list, gfp_t mem_flags) 2612 { 2613 unsigned epnum; 2614 unsigned long flags; 2615 struct ehci_qh *qh; 2616 int status = 0; 2617 struct list_head empty; 2618 2619 /* get endpoint and transfer/schedule data */ 2620 epnum = urb->ep->desc.bEndpointAddress; 2621 2622 spin_lock_irqsave(&oxu->lock, flags); 2623 2624 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2625 status = -ESHUTDOWN; 2626 goto done; 2627 } 2628 2629 /* get qh and force any scheduling errors */ 2630 INIT_LIST_HEAD(&empty); 2631 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); 2632 if (qh == NULL) { 2633 status = -ENOMEM; 2634 goto done; 2635 } 2636 if (qh->qh_state == QH_STATE_IDLE) { 2637 status = qh_schedule(oxu, qh); 2638 if (status != 0) 2639 goto done; 2640 } 2641 2642 /* then queue the urb's tds to the qh */ 2643 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2644 BUG_ON(qh == NULL); 2645 2646 /* ... update usbfs periodic stats */ 2647 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; 2648 2649 done: 2650 spin_unlock_irqrestore(&oxu->lock, flags); 2651 if (status) 2652 qtd_list_free(oxu, urb, qtd_list); 2653 2654 return status; 2655 } 2656 2657 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, 2658 gfp_t mem_flags) 2659 { 2660 oxu_dbg(oxu, "iso support is missing!\n"); 2661 return -ENOSYS; 2662 } 2663 2664 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, 2665 gfp_t mem_flags) 2666 { 2667 oxu_dbg(oxu, "split iso support is missing!\n"); 2668 return -ENOSYS; 2669 } 2670 2671 static void scan_periodic(struct oxu_hcd *oxu) 2672 { 2673 unsigned frame, clock, now_uframe, mod; 2674 unsigned modified; 2675 2676 mod = oxu->periodic_size << 3; 2677 2678 /* 2679 * When running, scan from last scan point up to "now" 2680 * else clean up by scanning everything that's left. 2681 * Touches as few pages as possible: cache-friendly. 2682 */ 2683 now_uframe = oxu->next_uframe; 2684 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2685 clock = readl(&oxu->regs->frame_index); 2686 else 2687 clock = now_uframe + mod - 1; 2688 clock %= mod; 2689 2690 for (;;) { 2691 union ehci_shadow q, *q_p; 2692 __le32 type, *hw_p; 2693 2694 /* don't scan past the live uframe */ 2695 frame = now_uframe >> 3; 2696 if (frame != (clock >> 3)) { 2697 /* safe to scan the whole frame at once */ 2698 now_uframe |= 0x07; 2699 } 2700 2701 restart: 2702 /* scan each element in frame's queue for completions */ 2703 q_p = &oxu->pshadow[frame]; 2704 hw_p = &oxu->periodic[frame]; 2705 q.ptr = q_p->ptr; 2706 type = Q_NEXT_TYPE(*hw_p); 2707 modified = 0; 2708 2709 while (q.ptr != NULL) { 2710 union ehci_shadow temp; 2711 2712 switch (type) { 2713 case Q_TYPE_QH: 2714 /* handle any completions */ 2715 temp.qh = qh_get(q.qh); 2716 type = Q_NEXT_TYPE(q.qh->hw_next); 2717 q = q.qh->qh_next; 2718 modified = qh_completions(oxu, temp.qh); 2719 if (unlikely(list_empty(&temp.qh->qtd_list))) 2720 intr_deschedule(oxu, temp.qh); 2721 qh_put(temp.qh); 2722 break; 2723 default: 2724 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n", 2725 type, frame, q.ptr); 2726 q.ptr = NULL; 2727 } 2728 2729 /* assume completion callbacks modify the queue */ 2730 if (unlikely(modified)) 2731 goto restart; 2732 } 2733 2734 /* Stop when we catch up to the HC */ 2735 2736 /* FIXME: this assumes we won't get lapped when 2737 * latencies climb; that should be rare, but... 2738 * detect it, and just go all the way around. 2739 * FLR might help detect this case, so long as latencies 2740 * don't exceed periodic_size msec (default 1.024 sec). 2741 */ 2742 2743 /* FIXME: likewise assumes HC doesn't halt mid-scan */ 2744 2745 if (now_uframe == clock) { 2746 unsigned now; 2747 2748 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2749 break; 2750 oxu->next_uframe = now_uframe; 2751 now = readl(&oxu->regs->frame_index) % mod; 2752 if (now_uframe == now) 2753 break; 2754 2755 /* rescan the rest of this frame, then ... */ 2756 clock = now; 2757 } else { 2758 now_uframe++; 2759 now_uframe %= mod; 2760 } 2761 } 2762 } 2763 2764 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 2765 * The firmware seems to think that powering off is a wakeup event! 2766 * This routine turns off remote wakeup and everything else, on all ports. 2767 */ 2768 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) 2769 { 2770 int port = HCS_N_PORTS(oxu->hcs_params); 2771 2772 while (port--) 2773 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); 2774 } 2775 2776 static void ehci_port_power(struct oxu_hcd *oxu, int is_on) 2777 { 2778 unsigned port; 2779 2780 if (!HCS_PPC(oxu->hcs_params)) 2781 return; 2782 2783 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); 2784 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) { 2785 if (is_on) 2786 oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature, 2787 USB_PORT_FEAT_POWER, port--, NULL, 0); 2788 else 2789 oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature, 2790 USB_PORT_FEAT_POWER, port--, NULL, 0); 2791 } 2792 2793 msleep(20); 2794 } 2795 2796 /* Called from some interrupts, timers, and so on. 2797 * It calls driver completion functions, after dropping oxu->lock. 2798 */ 2799 static void ehci_work(struct oxu_hcd *oxu) 2800 { 2801 timer_action_done(oxu, TIMER_IO_WATCHDOG); 2802 if (oxu->reclaim_ready) 2803 end_unlink_async(oxu); 2804 2805 /* another CPU may drop oxu->lock during a schedule scan while 2806 * it reports urb completions. this flag guards against bogus 2807 * attempts at re-entrant schedule scanning. 2808 */ 2809 if (oxu->scanning) 2810 return; 2811 oxu->scanning = 1; 2812 scan_async(oxu); 2813 if (oxu->next_uframe != -1) 2814 scan_periodic(oxu); 2815 oxu->scanning = 0; 2816 2817 /* the IO watchdog guards against hardware or driver bugs that 2818 * misplace IRQs, and should let us run completely without IRQs. 2819 * such lossage has been observed on both VT6202 and VT8235. 2820 */ 2821 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && 2822 (oxu->async->qh_next.ptr != NULL || 2823 oxu->periodic_sched != 0)) 2824 timer_action(oxu, TIMER_IO_WATCHDOG); 2825 } 2826 2827 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2828 { 2829 /* if we need to use IAA and it's busy, defer */ 2830 if (qh->qh_state == QH_STATE_LINKED 2831 && oxu->reclaim 2832 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { 2833 struct ehci_qh *last; 2834 2835 for (last = oxu->reclaim; 2836 last->reclaim; 2837 last = last->reclaim) 2838 continue; 2839 qh->qh_state = QH_STATE_UNLINK_WAIT; 2840 last->reclaim = qh; 2841 2842 /* bypass IAA if the hc can't care */ 2843 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) 2844 end_unlink_async(oxu); 2845 2846 /* something else might have unlinked the qh by now */ 2847 if (qh->qh_state == QH_STATE_LINKED) 2848 start_unlink_async(oxu, qh); 2849 } 2850 2851 /* 2852 * USB host controller methods 2853 */ 2854 2855 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) 2856 { 2857 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2858 u32 status, pcd_status = 0; 2859 int bh; 2860 2861 spin_lock(&oxu->lock); 2862 2863 status = readl(&oxu->regs->status); 2864 2865 /* e.g. cardbus physical eject */ 2866 if (status == ~(u32) 0) { 2867 oxu_dbg(oxu, "device removed\n"); 2868 goto dead; 2869 } 2870 2871 /* Shared IRQ? */ 2872 status &= INTR_MASK; 2873 if (!status || unlikely(hcd->state == HC_STATE_HALT)) { 2874 spin_unlock(&oxu->lock); 2875 return IRQ_NONE; 2876 } 2877 2878 /* clear (just) interrupts */ 2879 writel(status, &oxu->regs->status); 2880 readl(&oxu->regs->command); /* unblock posted write */ 2881 bh = 0; 2882 2883 #ifdef OXU_VERBOSE_DEBUG 2884 /* unrequested/ignored: Frame List Rollover */ 2885 dbg_status(oxu, "irq", status); 2886 #endif 2887 2888 /* INT, ERR, and IAA interrupt rates can be throttled */ 2889 2890 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 2891 if (likely((status & (STS_INT|STS_ERR)) != 0)) 2892 bh = 1; 2893 2894 /* complete the unlinking of some qh [4.15.2.3] */ 2895 if (status & STS_IAA) { 2896 oxu->reclaim_ready = 1; 2897 bh = 1; 2898 } 2899 2900 /* remote wakeup [4.3.1] */ 2901 if (status & STS_PCD) { 2902 unsigned i = HCS_N_PORTS(oxu->hcs_params); 2903 pcd_status = status; 2904 2905 /* resume root hub? */ 2906 if (!(readl(&oxu->regs->command) & CMD_RUN)) 2907 usb_hcd_resume_root_hub(hcd); 2908 2909 while (i--) { 2910 int pstatus = readl(&oxu->regs->port_status[i]); 2911 2912 if (pstatus & PORT_OWNER) 2913 continue; 2914 if (!(pstatus & PORT_RESUME) 2915 || oxu->reset_done[i] != 0) 2916 continue; 2917 2918 /* start USB_RESUME_TIMEOUT resume signaling from this 2919 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to 2920 * stop that signaling. 2921 */ 2922 oxu->reset_done[i] = jiffies + 2923 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2924 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); 2925 mod_timer(&hcd->rh_timer, oxu->reset_done[i]); 2926 } 2927 } 2928 2929 /* PCI errors [4.15.2.4] */ 2930 if (unlikely((status & STS_FATAL) != 0)) { 2931 /* bogus "fatal" IRQs appear on some chips... why? */ 2932 status = readl(&oxu->regs->status); 2933 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); 2934 dbg_status(oxu, "fatal", status); 2935 if (status & STS_HALT) { 2936 oxu_err(oxu, "fatal error\n"); 2937 dead: 2938 ehci_reset(oxu); 2939 writel(0, &oxu->regs->configured_flag); 2940 usb_hc_died(hcd); 2941 /* generic layer kills/unlinks all urbs, then 2942 * uses oxu_stop to clean up the rest 2943 */ 2944 bh = 1; 2945 } 2946 } 2947 2948 if (bh) 2949 ehci_work(oxu); 2950 spin_unlock(&oxu->lock); 2951 if (pcd_status & STS_PCD) 2952 usb_hcd_poll_rh_status(hcd); 2953 return IRQ_HANDLED; 2954 } 2955 2956 static irqreturn_t oxu_irq(struct usb_hcd *hcd) 2957 { 2958 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2959 int ret = IRQ_HANDLED; 2960 2961 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); 2962 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); 2963 2964 /* Disable all interrupt */ 2965 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); 2966 2967 if ((oxu->is_otg && (status & OXU_USBOTGI)) || 2968 (!oxu->is_otg && (status & OXU_USBSPHI))) 2969 oxu210_hcd_irq(hcd); 2970 else 2971 ret = IRQ_NONE; 2972 2973 /* Enable all interrupt back */ 2974 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); 2975 2976 return ret; 2977 } 2978 2979 static void oxu_watchdog(struct timer_list *t) 2980 { 2981 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog); 2982 unsigned long flags; 2983 2984 spin_lock_irqsave(&oxu->lock, flags); 2985 2986 /* lost IAA irqs wedge things badly; seen with a vt8235 */ 2987 if (oxu->reclaim) { 2988 u32 status = readl(&oxu->regs->status); 2989 if (status & STS_IAA) { 2990 oxu_vdbg(oxu, "lost IAA\n"); 2991 writel(STS_IAA, &oxu->regs->status); 2992 oxu->reclaim_ready = 1; 2993 } 2994 } 2995 2996 /* stop async processing after it's idled a bit */ 2997 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) 2998 start_unlink_async(oxu, oxu->async); 2999 3000 /* oxu could run by timer, without IRQs ... */ 3001 ehci_work(oxu); 3002 3003 spin_unlock_irqrestore(&oxu->lock, flags); 3004 } 3005 3006 /* One-time init, only for memory state. 3007 */ 3008 static int oxu_hcd_init(struct usb_hcd *hcd) 3009 { 3010 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3011 u32 temp; 3012 int retval; 3013 u32 hcc_params; 3014 3015 spin_lock_init(&oxu->lock); 3016 3017 timer_setup(&oxu->watchdog, oxu_watchdog, 0); 3018 3019 /* 3020 * hw default: 1K periodic list heads, one per frame. 3021 * periodic_size can shrink by USBCMD update if hcc_params allows. 3022 */ 3023 oxu->periodic_size = DEFAULT_I_TDPS; 3024 retval = ehci_mem_init(oxu, GFP_KERNEL); 3025 if (retval < 0) 3026 return retval; 3027 3028 /* controllers may cache some of the periodic schedule ... */ 3029 hcc_params = readl(&oxu->caps->hcc_params); 3030 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ 3031 oxu->i_thresh = 8; 3032 else /* N microframes cached */ 3033 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); 3034 3035 oxu->reclaim = NULL; 3036 oxu->reclaim_ready = 0; 3037 oxu->next_uframe = -1; 3038 3039 /* 3040 * dedicate a qh for the async ring head, since we couldn't unlink 3041 * a 'real' qh without stopping the async schedule [4.8]. use it 3042 * as the 'reclamation list head' too. 3043 * its dummy is used in hw_alt_next of many tds, to prevent the qh 3044 * from automatically advancing to the next td after short reads. 3045 */ 3046 oxu->async->qh_next.qh = NULL; 3047 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); 3048 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); 3049 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); 3050 oxu->async->hw_qtd_next = EHCI_LIST_END; 3051 oxu->async->qh_state = QH_STATE_LINKED; 3052 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); 3053 3054 /* clear interrupt enables, set irq latency */ 3055 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 3056 log2_irq_thresh = 0; 3057 temp = 1 << (16 + log2_irq_thresh); 3058 if (HCC_CANPARK(hcc_params)) { 3059 /* HW default park == 3, on hardware that supports it (like 3060 * NVidia and ALI silicon), maximizes throughput on the async 3061 * schedule by avoiding QH fetches between transfers. 3062 * 3063 * With fast usb storage devices and NForce2, "park" seems to 3064 * make problems: throughput reduction (!), data errors... 3065 */ 3066 if (park) { 3067 park = min(park, (unsigned) 3); 3068 temp |= CMD_PARK; 3069 temp |= park << 8; 3070 } 3071 oxu_dbg(oxu, "park %d\n", park); 3072 } 3073 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 3074 /* periodic schedule size can be smaller than default */ 3075 temp &= ~(3 << 2); 3076 temp |= (EHCI_TUNE_FLS << 2); 3077 } 3078 oxu->command = temp; 3079 3080 return 0; 3081 } 3082 3083 /* Called during probe() after chip reset completes. 3084 */ 3085 static int oxu_reset(struct usb_hcd *hcd) 3086 { 3087 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3088 3089 spin_lock_init(&oxu->mem_lock); 3090 INIT_LIST_HEAD(&oxu->urb_list); 3091 oxu->urb_len = 0; 3092 3093 if (oxu->is_otg) { 3094 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; 3095 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ 3096 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 3097 3098 oxu->mem = hcd->regs + OXU_SPH_MEM; 3099 } else { 3100 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; 3101 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ 3102 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 3103 3104 oxu->mem = hcd->regs + OXU_OTG_MEM; 3105 } 3106 3107 oxu->hcs_params = readl(&oxu->caps->hcs_params); 3108 oxu->sbrn = 0x20; 3109 3110 return oxu_hcd_init(hcd); 3111 } 3112 3113 static int oxu_run(struct usb_hcd *hcd) 3114 { 3115 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3116 int retval; 3117 u32 temp, hcc_params; 3118 3119 hcd->uses_new_polling = 1; 3120 3121 /* EHCI spec section 4.1 */ 3122 retval = ehci_reset(oxu); 3123 if (retval != 0) { 3124 ehci_mem_cleanup(oxu); 3125 return retval; 3126 } 3127 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3128 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3129 3130 /* hcc_params controls whether oxu->regs->segment must (!!!) 3131 * be used; it constrains QH/ITD/SITD and QTD locations. 3132 * dma_pool consistent memory always uses segment zero. 3133 * streaming mappings for I/O buffers, like pci_map_single(), 3134 * can return segments above 4GB, if the device allows. 3135 * 3136 * NOTE: the dma mask is visible through dev->dma_mask, so 3137 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 3138 * Scsi_Host.highmem_io, and so forth. It's readonly to all 3139 * host side drivers though. 3140 */ 3141 hcc_params = readl(&oxu->caps->hcc_params); 3142 if (HCC_64BIT_ADDR(hcc_params)) 3143 writel(0, &oxu->regs->segment); 3144 3145 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | 3146 CMD_ASE | CMD_RESET); 3147 oxu->command |= CMD_RUN; 3148 writel(oxu->command, &oxu->regs->command); 3149 dbg_cmd(oxu, "init", oxu->command); 3150 3151 /* 3152 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 3153 * are explicitly handed to companion controller(s), so no TT is 3154 * involved with the root hub. (Except where one is integrated, 3155 * and there's no companion controller unless maybe for USB OTG.) 3156 */ 3157 hcd->state = HC_STATE_RUNNING; 3158 writel(FLAG_CF, &oxu->regs->configured_flag); 3159 readl(&oxu->regs->command); /* unblock posted writes */ 3160 3161 temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); 3162 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", 3163 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), 3164 temp >> 8, temp & 0xff, DRIVER_VERSION, 3165 ignore_oc ? ", overcurrent ignored" : ""); 3166 3167 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ 3168 3169 return 0; 3170 } 3171 3172 static void oxu_stop(struct usb_hcd *hcd) 3173 { 3174 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3175 3176 /* Turn off port power on all root hub ports. */ 3177 ehci_port_power(oxu, 0); 3178 3179 /* no more interrupts ... */ 3180 del_timer_sync(&oxu->watchdog); 3181 3182 spin_lock_irq(&oxu->lock); 3183 if (HC_IS_RUNNING(hcd->state)) 3184 ehci_quiesce(oxu); 3185 3186 ehci_reset(oxu); 3187 writel(0, &oxu->regs->intr_enable); 3188 spin_unlock_irq(&oxu->lock); 3189 3190 /* let companion controllers work when we aren't */ 3191 writel(0, &oxu->regs->configured_flag); 3192 3193 /* root hub is shut down separately (first, when possible) */ 3194 spin_lock_irq(&oxu->lock); 3195 if (oxu->async) 3196 ehci_work(oxu); 3197 spin_unlock_irq(&oxu->lock); 3198 ehci_mem_cleanup(oxu); 3199 3200 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); 3201 } 3202 3203 /* Kick in for silicon on any bus (not just pci, etc). 3204 * This forcibly disables dma and IRQs, helping kexec and other cases 3205 * where the next system software may expect clean state. 3206 */ 3207 static void oxu_shutdown(struct usb_hcd *hcd) 3208 { 3209 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3210 3211 (void) ehci_halt(oxu); 3212 ehci_turn_off_all_ports(oxu); 3213 3214 /* make BIOS/etc use companion controller during reboot */ 3215 writel(0, &oxu->regs->configured_flag); 3216 3217 /* unblock posted writes */ 3218 readl(&oxu->regs->configured_flag); 3219 } 3220 3221 /* Non-error returns are a promise to giveback() the urb later 3222 * we drop ownership so next owner (or urb unlink) can get it 3223 * 3224 * urb + dev is in hcd.self.controller.urb_list 3225 * we're queueing TDs onto software and hardware lists 3226 * 3227 * hcd-specific init for hcpriv hasn't been done yet 3228 * 3229 * NOTE: control, bulk, and interrupt share the same code to append TDs 3230 * to a (possibly active) QH, and the same QH scanning code. 3231 */ 3232 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 3233 gfp_t mem_flags) 3234 { 3235 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3236 struct list_head qtd_list; 3237 3238 INIT_LIST_HEAD(&qtd_list); 3239 3240 switch (usb_pipetype(urb->pipe)) { 3241 case PIPE_CONTROL: 3242 case PIPE_BULK: 3243 default: 3244 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 3245 return -ENOMEM; 3246 return submit_async(oxu, urb, &qtd_list, mem_flags); 3247 3248 case PIPE_INTERRUPT: 3249 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 3250 return -ENOMEM; 3251 return intr_submit(oxu, urb, &qtd_list, mem_flags); 3252 3253 case PIPE_ISOCHRONOUS: 3254 if (urb->dev->speed == USB_SPEED_HIGH) 3255 return itd_submit(oxu, urb, mem_flags); 3256 else 3257 return sitd_submit(oxu, urb, mem_flags); 3258 } 3259 } 3260 3261 /* This function is responsible for breaking URBs with big data size 3262 * into smaller size and processing small urbs in sequence. 3263 */ 3264 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 3265 gfp_t mem_flags) 3266 { 3267 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3268 int num, rem; 3269 void *transfer_buffer; 3270 struct urb *murb; 3271 int i, ret; 3272 3273 /* If not bulk pipe just enqueue the URB */ 3274 if (!usb_pipebulk(urb->pipe)) 3275 return __oxu_urb_enqueue(hcd, urb, mem_flags); 3276 3277 /* Otherwise we should verify the USB transfer buffer size! */ 3278 transfer_buffer = urb->transfer_buffer; 3279 3280 num = urb->transfer_buffer_length / 4096; 3281 rem = urb->transfer_buffer_length % 4096; 3282 if (rem != 0) 3283 num++; 3284 3285 /* If URB is smaller than 4096 bytes just enqueue it! */ 3286 if (num == 1) 3287 return __oxu_urb_enqueue(hcd, urb, mem_flags); 3288 3289 /* Ok, we have more job to do! :) */ 3290 3291 for (i = 0; i < num - 1; i++) { 3292 /* Get free micro URB poll till a free urb is received */ 3293 3294 do { 3295 murb = (struct urb *) oxu_murb_alloc(oxu); 3296 if (!murb) 3297 schedule(); 3298 } while (!murb); 3299 3300 /* Coping the urb */ 3301 memcpy(murb, urb, sizeof(struct urb)); 3302 3303 murb->transfer_buffer_length = 4096; 3304 murb->transfer_buffer = transfer_buffer + i * 4096; 3305 3306 /* Null pointer for the encodes that this is a micro urb */ 3307 murb->complete = NULL; 3308 3309 ((struct oxu_murb *) murb)->main = urb; 3310 ((struct oxu_murb *) murb)->last = 0; 3311 3312 /* This loop is to guarantee urb to be processed when there's 3313 * not enough resources at a particular time by retrying. 3314 */ 3315 do { 3316 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 3317 if (ret) 3318 schedule(); 3319 } while (ret); 3320 } 3321 3322 /* Last urb requires special handling */ 3323 3324 /* Get free micro URB poll till a free urb is received */ 3325 do { 3326 murb = (struct urb *) oxu_murb_alloc(oxu); 3327 if (!murb) 3328 schedule(); 3329 } while (!murb); 3330 3331 /* Coping the urb */ 3332 memcpy(murb, urb, sizeof(struct urb)); 3333 3334 murb->transfer_buffer_length = rem > 0 ? rem : 4096; 3335 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; 3336 3337 /* Null pointer for the encodes that this is a micro urb */ 3338 murb->complete = NULL; 3339 3340 ((struct oxu_murb *) murb)->main = urb; 3341 ((struct oxu_murb *) murb)->last = 1; 3342 3343 do { 3344 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 3345 if (ret) 3346 schedule(); 3347 } while (ret); 3348 3349 return ret; 3350 } 3351 3352 /* Remove from hardware lists. 3353 * Completions normally happen asynchronously 3354 */ 3355 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 3356 { 3357 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3358 struct ehci_qh *qh; 3359 unsigned long flags; 3360 3361 spin_lock_irqsave(&oxu->lock, flags); 3362 switch (usb_pipetype(urb->pipe)) { 3363 case PIPE_CONTROL: 3364 case PIPE_BULK: 3365 default: 3366 qh = (struct ehci_qh *) urb->hcpriv; 3367 if (!qh) 3368 break; 3369 unlink_async(oxu, qh); 3370 break; 3371 3372 case PIPE_INTERRUPT: 3373 qh = (struct ehci_qh *) urb->hcpriv; 3374 if (!qh) 3375 break; 3376 switch (qh->qh_state) { 3377 case QH_STATE_LINKED: 3378 intr_deschedule(oxu, qh); 3379 fallthrough; 3380 case QH_STATE_IDLE: 3381 qh_completions(oxu, qh); 3382 break; 3383 default: 3384 oxu_dbg(oxu, "bogus qh %p state %d\n", 3385 qh, qh->qh_state); 3386 goto done; 3387 } 3388 3389 /* reschedule QH iff another request is queued */ 3390 if (!list_empty(&qh->qtd_list) 3391 && HC_IS_RUNNING(hcd->state)) { 3392 int status; 3393 3394 status = qh_schedule(oxu, qh); 3395 spin_unlock_irqrestore(&oxu->lock, flags); 3396 3397 if (status != 0) { 3398 /* shouldn't happen often, but ... 3399 * FIXME kill those tds' urbs 3400 */ 3401 dev_err(hcd->self.controller, 3402 "can't reschedule qh %p, err %d\n", qh, 3403 status); 3404 } 3405 return status; 3406 } 3407 break; 3408 } 3409 done: 3410 spin_unlock_irqrestore(&oxu->lock, flags); 3411 return 0; 3412 } 3413 3414 /* Bulk qh holds the data toggle */ 3415 static void oxu_endpoint_disable(struct usb_hcd *hcd, 3416 struct usb_host_endpoint *ep) 3417 { 3418 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3419 unsigned long flags; 3420 struct ehci_qh *qh, *tmp; 3421 3422 /* ASSERT: any requests/urbs are being unlinked */ 3423 /* ASSERT: nobody can be submitting urbs for this any more */ 3424 3425 rescan: 3426 spin_lock_irqsave(&oxu->lock, flags); 3427 qh = ep->hcpriv; 3428 if (!qh) 3429 goto done; 3430 3431 /* endpoints can be iso streams. for now, we don't 3432 * accelerate iso completions ... so spin a while. 3433 */ 3434 if (qh->hw_info1 == 0) { 3435 oxu_vdbg(oxu, "iso delay\n"); 3436 goto idle_timeout; 3437 } 3438 3439 if (!HC_IS_RUNNING(hcd->state)) 3440 qh->qh_state = QH_STATE_IDLE; 3441 switch (qh->qh_state) { 3442 case QH_STATE_LINKED: 3443 for (tmp = oxu->async->qh_next.qh; 3444 tmp && tmp != qh; 3445 tmp = tmp->qh_next.qh) 3446 continue; 3447 /* periodic qh self-unlinks on empty */ 3448 if (!tmp) 3449 goto nogood; 3450 unlink_async(oxu, qh); 3451 fallthrough; 3452 case QH_STATE_UNLINK: /* wait for hw to finish? */ 3453 idle_timeout: 3454 spin_unlock_irqrestore(&oxu->lock, flags); 3455 schedule_timeout_uninterruptible(1); 3456 goto rescan; 3457 case QH_STATE_IDLE: /* fully unlinked */ 3458 if (list_empty(&qh->qtd_list)) { 3459 qh_put(qh); 3460 break; 3461 } 3462 fallthrough; 3463 default: 3464 nogood: 3465 /* caller was supposed to have unlinked any requests; 3466 * that's not our job. just leak this memory. 3467 */ 3468 oxu_err(oxu, "qh %p (#%02x) state %d%s\n", 3469 qh, ep->desc.bEndpointAddress, qh->qh_state, 3470 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 3471 break; 3472 } 3473 ep->hcpriv = NULL; 3474 done: 3475 spin_unlock_irqrestore(&oxu->lock, flags); 3476 } 3477 3478 static int oxu_get_frame(struct usb_hcd *hcd) 3479 { 3480 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3481 3482 return (readl(&oxu->regs->frame_index) >> 3) % 3483 oxu->periodic_size; 3484 } 3485 3486 /* Build "status change" packet (one or two bytes) from HC registers */ 3487 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) 3488 { 3489 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3490 u32 temp, mask, status = 0; 3491 int ports, i, retval = 1; 3492 unsigned long flags; 3493 3494 /* if !PM, root hub timers won't get shut down ... */ 3495 if (!HC_IS_RUNNING(hcd->state)) 3496 return 0; 3497 3498 /* init status to no-changes */ 3499 buf[0] = 0; 3500 ports = HCS_N_PORTS(oxu->hcs_params); 3501 if (ports > 7) { 3502 buf[1] = 0; 3503 retval++; 3504 } 3505 3506 /* Some boards (mostly VIA?) report bogus overcurrent indications, 3507 * causing massive log spam unless we completely ignore them. It 3508 * may be relevant that VIA VT8235 controllers, where PORT_POWER is 3509 * always set, seem to clear PORT_OCC and PORT_CSC when writing to 3510 * PORT_POWER; that's surprising, but maybe within-spec. 3511 */ 3512 if (!ignore_oc) 3513 mask = PORT_CSC | PORT_PEC | PORT_OCC; 3514 else 3515 mask = PORT_CSC | PORT_PEC; 3516 3517 /* no hub change reports (bit 0) for now (power, ...) */ 3518 3519 /* port N changes (bit N)? */ 3520 spin_lock_irqsave(&oxu->lock, flags); 3521 for (i = 0; i < ports; i++) { 3522 temp = readl(&oxu->regs->port_status[i]); 3523 3524 /* 3525 * Return status information even for ports with OWNER set. 3526 * Otherwise hub_wq wouldn't see the disconnect event when a 3527 * high-speed device is switched over to the companion 3528 * controller by the user. 3529 */ 3530 3531 if (!(temp & PORT_CONNECT)) 3532 oxu->reset_done[i] = 0; 3533 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && 3534 time_after_eq(jiffies, oxu->reset_done[i]))) { 3535 if (i < 7) 3536 buf[0] |= 1 << (i + 1); 3537 else 3538 buf[1] |= 1 << (i - 7); 3539 status = STS_PCD; 3540 } 3541 } 3542 /* FIXME autosuspend idle root hubs */ 3543 spin_unlock_irqrestore(&oxu->lock, flags); 3544 return status ? retval : 0; 3545 } 3546 3547 /* Returns the speed of a device attached to a port on the root hub. */ 3548 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, 3549 unsigned int portsc) 3550 { 3551 switch ((portsc >> 26) & 3) { 3552 case 0: 3553 return 0; 3554 case 1: 3555 return USB_PORT_STAT_LOW_SPEED; 3556 case 2: 3557 default: 3558 return USB_PORT_STAT_HIGH_SPEED; 3559 } 3560 } 3561 3562 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) 3563 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, 3564 u16 wValue, u16 wIndex, char *buf, u16 wLength) 3565 { 3566 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3567 int ports = HCS_N_PORTS(oxu->hcs_params); 3568 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; 3569 u32 temp, status; 3570 unsigned long flags; 3571 int retval = 0; 3572 unsigned selector; 3573 3574 /* 3575 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 3576 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 3577 * (track current state ourselves) ... blink for diagnostics, 3578 * power, "this is the one", etc. EHCI spec supports this. 3579 */ 3580 3581 spin_lock_irqsave(&oxu->lock, flags); 3582 switch (typeReq) { 3583 case ClearHubFeature: 3584 switch (wValue) { 3585 case C_HUB_LOCAL_POWER: 3586 case C_HUB_OVER_CURRENT: 3587 /* no hub-wide feature/status flags */ 3588 break; 3589 default: 3590 goto error; 3591 } 3592 break; 3593 case ClearPortFeature: 3594 if (!wIndex || wIndex > ports) 3595 goto error; 3596 wIndex--; 3597 temp = readl(status_reg); 3598 3599 /* 3600 * Even if OWNER is set, so the port is owned by the 3601 * companion controller, hub_wq needs to be able to clear 3602 * the port-change status bits (especially 3603 * USB_PORT_STAT_C_CONNECTION). 3604 */ 3605 3606 switch (wValue) { 3607 case USB_PORT_FEAT_ENABLE: 3608 writel(temp & ~PORT_PE, status_reg); 3609 break; 3610 case USB_PORT_FEAT_C_ENABLE: 3611 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); 3612 break; 3613 case USB_PORT_FEAT_SUSPEND: 3614 if (temp & PORT_RESET) 3615 goto error; 3616 if (temp & PORT_SUSPEND) { 3617 if ((temp & PORT_PE) == 0) 3618 goto error; 3619 /* resume signaling for 20 msec */ 3620 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); 3621 writel(temp | PORT_RESUME, status_reg); 3622 oxu->reset_done[wIndex] = jiffies 3623 + msecs_to_jiffies(20); 3624 } 3625 break; 3626 case USB_PORT_FEAT_C_SUSPEND: 3627 /* we auto-clear this feature */ 3628 break; 3629 case USB_PORT_FEAT_POWER: 3630 if (HCS_PPC(oxu->hcs_params)) 3631 writel(temp & ~(PORT_RWC_BITS | PORT_POWER), 3632 status_reg); 3633 break; 3634 case USB_PORT_FEAT_C_CONNECTION: 3635 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); 3636 break; 3637 case USB_PORT_FEAT_C_OVER_CURRENT: 3638 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); 3639 break; 3640 case USB_PORT_FEAT_C_RESET: 3641 /* GetPortStatus clears reset */ 3642 break; 3643 default: 3644 goto error; 3645 } 3646 readl(&oxu->regs->command); /* unblock posted write */ 3647 break; 3648 case GetHubDescriptor: 3649 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) 3650 buf); 3651 break; 3652 case GetHubStatus: 3653 /* no hub-wide feature/status flags */ 3654 memset(buf, 0, 4); 3655 break; 3656 case GetPortStatus: 3657 if (!wIndex || wIndex > ports) 3658 goto error; 3659 wIndex--; 3660 status = 0; 3661 temp = readl(status_reg); 3662 3663 /* wPortChange bits */ 3664 if (temp & PORT_CSC) 3665 status |= USB_PORT_STAT_C_CONNECTION << 16; 3666 if (temp & PORT_PEC) 3667 status |= USB_PORT_STAT_C_ENABLE << 16; 3668 if ((temp & PORT_OCC) && !ignore_oc) 3669 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3670 3671 /* whoever resumes must GetPortStatus to complete it!! */ 3672 if (temp & PORT_RESUME) { 3673 3674 /* Remote Wakeup received? */ 3675 if (!oxu->reset_done[wIndex]) { 3676 /* resume signaling for 20 msec */ 3677 oxu->reset_done[wIndex] = jiffies 3678 + msecs_to_jiffies(20); 3679 /* check the port again */ 3680 mod_timer(&oxu_to_hcd(oxu)->rh_timer, 3681 oxu->reset_done[wIndex]); 3682 } 3683 3684 /* resume completed? */ 3685 else if (time_after_eq(jiffies, 3686 oxu->reset_done[wIndex])) { 3687 status |= USB_PORT_STAT_C_SUSPEND << 16; 3688 oxu->reset_done[wIndex] = 0; 3689 3690 /* stop resume signaling */ 3691 temp = readl(status_reg); 3692 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), 3693 status_reg); 3694 retval = handshake(oxu, status_reg, 3695 PORT_RESUME, 0, 2000 /* 2msec */); 3696 if (retval != 0) { 3697 oxu_err(oxu, 3698 "port %d resume error %d\n", 3699 wIndex + 1, retval); 3700 goto error; 3701 } 3702 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 3703 } 3704 } 3705 3706 /* whoever resets must GetPortStatus to complete it!! */ 3707 if ((temp & PORT_RESET) 3708 && time_after_eq(jiffies, 3709 oxu->reset_done[wIndex])) { 3710 status |= USB_PORT_STAT_C_RESET << 16; 3711 oxu->reset_done[wIndex] = 0; 3712 3713 /* force reset to complete */ 3714 writel(temp & ~(PORT_RWC_BITS | PORT_RESET), 3715 status_reg); 3716 /* REVISIT: some hardware needs 550+ usec to clear 3717 * this bit; seems too long to spin routinely... 3718 */ 3719 retval = handshake(oxu, status_reg, 3720 PORT_RESET, 0, 750); 3721 if (retval != 0) { 3722 oxu_err(oxu, "port %d reset error %d\n", 3723 wIndex + 1, retval); 3724 goto error; 3725 } 3726 3727 /* see what we found out */ 3728 temp = check_reset_complete(oxu, wIndex, status_reg, 3729 readl(status_reg)); 3730 } 3731 3732 /* transfer dedicated ports to the companion hc */ 3733 if ((temp & PORT_CONNECT) && 3734 test_bit(wIndex, &oxu->companion_ports)) { 3735 temp &= ~PORT_RWC_BITS; 3736 temp |= PORT_OWNER; 3737 writel(temp, status_reg); 3738 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); 3739 temp = readl(status_reg); 3740 } 3741 3742 /* 3743 * Even if OWNER is set, there's no harm letting hub_wq 3744 * see the wPortStatus values (they should all be 0 except 3745 * for PORT_POWER anyway). 3746 */ 3747 3748 if (temp & PORT_CONNECT) { 3749 status |= USB_PORT_STAT_CONNECTION; 3750 /* status may be from integrated TT */ 3751 status |= oxu_port_speed(oxu, temp); 3752 } 3753 if (temp & PORT_PE) 3754 status |= USB_PORT_STAT_ENABLE; 3755 if (temp & (PORT_SUSPEND|PORT_RESUME)) 3756 status |= USB_PORT_STAT_SUSPEND; 3757 if (temp & PORT_OC) 3758 status |= USB_PORT_STAT_OVERCURRENT; 3759 if (temp & PORT_RESET) 3760 status |= USB_PORT_STAT_RESET; 3761 if (temp & PORT_POWER) 3762 status |= USB_PORT_STAT_POWER; 3763 3764 #ifndef OXU_VERBOSE_DEBUG 3765 if (status & ~0xffff) /* only if wPortChange is interesting */ 3766 #endif 3767 dbg_port(oxu, "GetStatus", wIndex + 1, temp); 3768 put_unaligned(cpu_to_le32(status), (__le32 *) buf); 3769 break; 3770 case SetHubFeature: 3771 switch (wValue) { 3772 case C_HUB_LOCAL_POWER: 3773 case C_HUB_OVER_CURRENT: 3774 /* no hub-wide feature/status flags */ 3775 break; 3776 default: 3777 goto error; 3778 } 3779 break; 3780 case SetPortFeature: 3781 selector = wIndex >> 8; 3782 wIndex &= 0xff; 3783 if (!wIndex || wIndex > ports) 3784 goto error; 3785 wIndex--; 3786 temp = readl(status_reg); 3787 if (temp & PORT_OWNER) 3788 break; 3789 3790 temp &= ~PORT_RWC_BITS; 3791 switch (wValue) { 3792 case USB_PORT_FEAT_SUSPEND: 3793 if ((temp & PORT_PE) == 0 3794 || (temp & PORT_RESET) != 0) 3795 goto error; 3796 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3797 temp |= PORT_WAKE_BITS; 3798 writel(temp | PORT_SUSPEND, status_reg); 3799 break; 3800 case USB_PORT_FEAT_POWER: 3801 if (HCS_PPC(oxu->hcs_params)) 3802 writel(temp | PORT_POWER, status_reg); 3803 break; 3804 case USB_PORT_FEAT_RESET: 3805 if (temp & PORT_RESUME) 3806 goto error; 3807 /* line status bits may report this as low speed, 3808 * which can be fine if this root hub has a 3809 * transaction translator built in. 3810 */ 3811 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); 3812 temp |= PORT_RESET; 3813 temp &= ~PORT_PE; 3814 3815 /* 3816 * caller must wait, then call GetPortStatus 3817 * usb 2.0 spec says 50 ms resets on root 3818 */ 3819 oxu->reset_done[wIndex] = jiffies 3820 + msecs_to_jiffies(50); 3821 writel(temp, status_reg); 3822 break; 3823 3824 /* For downstream facing ports (these): one hub port is put 3825 * into test mode according to USB2 11.24.2.13, then the hub 3826 * must be reset (which for root hub now means rmmod+modprobe, 3827 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 3828 * about the EHCI-specific stuff. 3829 */ 3830 case USB_PORT_FEAT_TEST: 3831 if (!selector || selector > 5) 3832 goto error; 3833 ehci_quiesce(oxu); 3834 ehci_halt(oxu); 3835 temp |= selector << 16; 3836 writel(temp, status_reg); 3837 break; 3838 3839 default: 3840 goto error; 3841 } 3842 readl(&oxu->regs->command); /* unblock posted writes */ 3843 break; 3844 3845 default: 3846 error: 3847 /* "stall" on error */ 3848 retval = -EPIPE; 3849 } 3850 spin_unlock_irqrestore(&oxu->lock, flags); 3851 return retval; 3852 } 3853 3854 #ifdef CONFIG_PM 3855 3856 static int oxu_bus_suspend(struct usb_hcd *hcd) 3857 { 3858 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3859 int port; 3860 int mask; 3861 3862 oxu_dbg(oxu, "suspend root hub\n"); 3863 3864 if (time_before(jiffies, oxu->next_statechange)) 3865 msleep(5); 3866 3867 port = HCS_N_PORTS(oxu->hcs_params); 3868 spin_lock_irq(&oxu->lock); 3869 3870 /* stop schedules, clean any completed work */ 3871 if (HC_IS_RUNNING(hcd->state)) { 3872 ehci_quiesce(oxu); 3873 hcd->state = HC_STATE_QUIESCING; 3874 } 3875 oxu->command = readl(&oxu->regs->command); 3876 if (oxu->reclaim) 3877 oxu->reclaim_ready = 1; 3878 ehci_work(oxu); 3879 3880 /* Unlike other USB host controller types, EHCI doesn't have 3881 * any notion of "global" or bus-wide suspend. The driver has 3882 * to manually suspend all the active unsuspended ports, and 3883 * then manually resume them in the bus_resume() routine. 3884 */ 3885 oxu->bus_suspended = 0; 3886 while (port--) { 3887 u32 __iomem *reg = &oxu->regs->port_status[port]; 3888 u32 t1 = readl(reg) & ~PORT_RWC_BITS; 3889 u32 t2 = t1; 3890 3891 /* keep track of which ports we suspend */ 3892 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && 3893 !(t1 & PORT_SUSPEND)) { 3894 t2 |= PORT_SUSPEND; 3895 set_bit(port, &oxu->bus_suspended); 3896 } 3897 3898 /* enable remote wakeup on all ports */ 3899 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3900 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; 3901 else 3902 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); 3903 3904 if (t1 != t2) { 3905 oxu_vdbg(oxu, "port %d, %08x -> %08x\n", 3906 port + 1, t1, t2); 3907 writel(t2, reg); 3908 } 3909 } 3910 3911 /* turn off now-idle HC */ 3912 del_timer_sync(&oxu->watchdog); 3913 ehci_halt(oxu); 3914 hcd->state = HC_STATE_SUSPENDED; 3915 3916 /* allow remote wakeup */ 3917 mask = INTR_MASK; 3918 if (!device_may_wakeup(&hcd->self.root_hub->dev)) 3919 mask &= ~STS_PCD; 3920 writel(mask, &oxu->regs->intr_enable); 3921 readl(&oxu->regs->intr_enable); 3922 3923 oxu->next_statechange = jiffies + msecs_to_jiffies(10); 3924 spin_unlock_irq(&oxu->lock); 3925 return 0; 3926 } 3927 3928 /* Caller has locked the root hub, and should reset/reinit on error */ 3929 static int oxu_bus_resume(struct usb_hcd *hcd) 3930 { 3931 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3932 u32 temp; 3933 int i; 3934 3935 if (time_before(jiffies, oxu->next_statechange)) 3936 msleep(5); 3937 spin_lock_irq(&oxu->lock); 3938 3939 /* Ideally and we've got a real resume here, and no port's power 3940 * was lost. (For PCI, that means Vaux was maintained.) But we 3941 * could instead be restoring a swsusp snapshot -- so that BIOS was 3942 * the last user of the controller, not reset/pm hardware keeping 3943 * state we gave to it. 3944 */ 3945 temp = readl(&oxu->regs->intr_enable); 3946 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); 3947 3948 /* at least some APM implementations will try to deliver 3949 * IRQs right away, so delay them until we're ready. 3950 */ 3951 writel(0, &oxu->regs->intr_enable); 3952 3953 /* re-init operational registers */ 3954 writel(0, &oxu->regs->segment); 3955 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3956 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3957 3958 /* restore CMD_RUN, framelist size, and irq threshold */ 3959 writel(oxu->command, &oxu->regs->command); 3960 3961 /* Some controller/firmware combinations need a delay during which 3962 * they set up the port statuses. See Bugzilla #8190. */ 3963 mdelay(8); 3964 3965 /* manually resume the ports we suspended during bus_suspend() */ 3966 i = HCS_N_PORTS(oxu->hcs_params); 3967 while (i--) { 3968 temp = readl(&oxu->regs->port_status[i]); 3969 temp &= ~(PORT_RWC_BITS 3970 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); 3971 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3972 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 3973 temp |= PORT_RESUME; 3974 } 3975 writel(temp, &oxu->regs->port_status[i]); 3976 } 3977 i = HCS_N_PORTS(oxu->hcs_params); 3978 mdelay(20); 3979 while (i--) { 3980 temp = readl(&oxu->regs->port_status[i]); 3981 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3982 temp &= ~(PORT_RWC_BITS | PORT_RESUME); 3983 writel(temp, &oxu->regs->port_status[i]); 3984 oxu_vdbg(oxu, "resumed port %d\n", i + 1); 3985 } 3986 } 3987 (void) readl(&oxu->regs->command); 3988 3989 /* maybe re-activate the schedule(s) */ 3990 temp = 0; 3991 if (oxu->async->qh_next.qh) 3992 temp |= CMD_ASE; 3993 if (oxu->periodic_sched) 3994 temp |= CMD_PSE; 3995 if (temp) { 3996 oxu->command |= temp; 3997 writel(oxu->command, &oxu->regs->command); 3998 } 3999 4000 oxu->next_statechange = jiffies + msecs_to_jiffies(5); 4001 hcd->state = HC_STATE_RUNNING; 4002 4003 /* Now we can safely re-enable irqs */ 4004 writel(INTR_MASK, &oxu->regs->intr_enable); 4005 4006 spin_unlock_irq(&oxu->lock); 4007 return 0; 4008 } 4009 4010 #else 4011 4012 static int oxu_bus_suspend(struct usb_hcd *hcd) 4013 { 4014 return 0; 4015 } 4016 4017 static int oxu_bus_resume(struct usb_hcd *hcd) 4018 { 4019 return 0; 4020 } 4021 4022 #endif /* CONFIG_PM */ 4023 4024 static const struct hc_driver oxu_hc_driver = { 4025 .description = "oxu210hp_hcd", 4026 .product_desc = "oxu210hp HCD", 4027 .hcd_priv_size = sizeof(struct oxu_hcd), 4028 4029 /* 4030 * Generic hardware linkage 4031 */ 4032 .irq = oxu_irq, 4033 .flags = HCD_MEMORY | HCD_USB2, 4034 4035 /* 4036 * Basic lifecycle operations 4037 */ 4038 .reset = oxu_reset, 4039 .start = oxu_run, 4040 .stop = oxu_stop, 4041 .shutdown = oxu_shutdown, 4042 4043 /* 4044 * Managing i/o requests and associated device resources 4045 */ 4046 .urb_enqueue = oxu_urb_enqueue, 4047 .urb_dequeue = oxu_urb_dequeue, 4048 .endpoint_disable = oxu_endpoint_disable, 4049 4050 /* 4051 * Scheduling support 4052 */ 4053 .get_frame_number = oxu_get_frame, 4054 4055 /* 4056 * Root hub support 4057 */ 4058 .hub_status_data = oxu_hub_status_data, 4059 .hub_control = oxu_hub_control, 4060 .bus_suspend = oxu_bus_suspend, 4061 .bus_resume = oxu_bus_resume, 4062 }; 4063 4064 /* 4065 * Module stuff 4066 */ 4067 4068 static void oxu_configuration(struct platform_device *pdev, void __iomem *base) 4069 { 4070 u32 tmp; 4071 4072 /* Initialize top level registers. 4073 * First write ever 4074 */ 4075 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 4076 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); 4077 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 4078 4079 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); 4080 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); 4081 4082 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | 4083 OXU_COMPARATOR | OXU_ASO_OP); 4084 4085 tmp = oxu_readl(base, OXU_CLKCTRL_SET); 4086 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); 4087 4088 /* Clear all top interrupt enable */ 4089 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); 4090 4091 /* Clear all top interrupt status */ 4092 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); 4093 4094 /* Enable all needed top interrupt except OTG SPH core */ 4095 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); 4096 } 4097 4098 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base) 4099 { 4100 u32 id; 4101 static const char * const bo[] = { 4102 "reserved", 4103 "128-pin LQFP", 4104 "84-pin TFBGA", 4105 "reserved", 4106 }; 4107 4108 /* Read controller signature register to find a match */ 4109 id = oxu_readl(base, OXU_DEVICEID); 4110 dev_info(&pdev->dev, "device ID %x\n", id); 4111 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) 4112 return -1; 4113 4114 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", 4115 id >> OXU_REV_SHIFT, 4116 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], 4117 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, 4118 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); 4119 4120 return 0; 4121 } 4122 4123 static const struct hc_driver oxu_hc_driver; 4124 static struct usb_hcd *oxu_create(struct platform_device *pdev, 4125 unsigned long memstart, unsigned long memlen, 4126 void __iomem *base, int irq, int otg) 4127 { 4128 struct device *dev = &pdev->dev; 4129 4130 struct usb_hcd *hcd; 4131 struct oxu_hcd *oxu; 4132 int ret; 4133 4134 /* Set endian mode and host mode */ 4135 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), 4136 OXU_USBMODE, 4137 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); 4138 4139 hcd = usb_create_hcd(&oxu_hc_driver, dev, 4140 otg ? "oxu210hp_otg" : "oxu210hp_sph"); 4141 if (!hcd) 4142 return ERR_PTR(-ENOMEM); 4143 4144 hcd->rsrc_start = memstart; 4145 hcd->rsrc_len = memlen; 4146 hcd->regs = base; 4147 hcd->irq = irq; 4148 hcd->state = HC_STATE_HALT; 4149 4150 oxu = hcd_to_oxu(hcd); 4151 oxu->is_otg = otg; 4152 4153 ret = usb_add_hcd(hcd, irq, IRQF_SHARED); 4154 if (ret < 0) 4155 return ERR_PTR(ret); 4156 4157 device_wakeup_enable(hcd->self.controller); 4158 return hcd; 4159 } 4160 4161 static int oxu_init(struct platform_device *pdev, 4162 unsigned long memstart, unsigned long memlen, 4163 void __iomem *base, int irq) 4164 { 4165 struct oxu_info *info = platform_get_drvdata(pdev); 4166 struct usb_hcd *hcd; 4167 int ret; 4168 4169 /* First time configuration at start up */ 4170 oxu_configuration(pdev, base); 4171 4172 ret = oxu_verify_id(pdev, base); 4173 if (ret) { 4174 dev_err(&pdev->dev, "no devices found!\n"); 4175 return -ENODEV; 4176 } 4177 4178 /* Create the OTG controller */ 4179 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); 4180 if (IS_ERR(hcd)) { 4181 dev_err(&pdev->dev, "cannot create OTG controller!\n"); 4182 ret = PTR_ERR(hcd); 4183 goto error_create_otg; 4184 } 4185 info->hcd[0] = hcd; 4186 4187 /* Create the SPH host controller */ 4188 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); 4189 if (IS_ERR(hcd)) { 4190 dev_err(&pdev->dev, "cannot create SPH controller!\n"); 4191 ret = PTR_ERR(hcd); 4192 goto error_create_sph; 4193 } 4194 info->hcd[1] = hcd; 4195 4196 oxu_writel(base, OXU_CHIPIRQEN_SET, 4197 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); 4198 4199 return 0; 4200 4201 error_create_sph: 4202 usb_remove_hcd(info->hcd[0]); 4203 usb_put_hcd(info->hcd[0]); 4204 4205 error_create_otg: 4206 return ret; 4207 } 4208 4209 static int oxu_drv_probe(struct platform_device *pdev) 4210 { 4211 struct resource *res; 4212 void __iomem *base; 4213 unsigned long memstart, memlen; 4214 int irq, ret; 4215 struct oxu_info *info; 4216 4217 if (usb_disabled()) 4218 return -ENODEV; 4219 4220 /* 4221 * Get the platform resources 4222 */ 4223 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 4224 if (!res) { 4225 dev_err(&pdev->dev, 4226 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev)); 4227 return -ENODEV; 4228 } 4229 irq = res->start; 4230 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); 4231 4232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4233 base = devm_ioremap_resource(&pdev->dev, res); 4234 if (IS_ERR(base)) { 4235 ret = PTR_ERR(base); 4236 goto error; 4237 } 4238 memstart = res->start; 4239 memlen = resource_size(res); 4240 4241 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING); 4242 if (ret) { 4243 dev_err(&pdev->dev, "error setting irq type\n"); 4244 ret = -EFAULT; 4245 goto error; 4246 } 4247 4248 /* Allocate a driver data struct to hold useful info for both 4249 * SPH & OTG devices 4250 */ 4251 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL); 4252 if (!info) { 4253 ret = -EFAULT; 4254 goto error; 4255 } 4256 platform_set_drvdata(pdev, info); 4257 4258 ret = oxu_init(pdev, memstart, memlen, base, irq); 4259 if (ret < 0) { 4260 dev_dbg(&pdev->dev, "cannot init USB devices\n"); 4261 goto error; 4262 } 4263 4264 dev_info(&pdev->dev, "devices enabled and running\n"); 4265 platform_set_drvdata(pdev, info); 4266 4267 return 0; 4268 4269 error: 4270 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); 4271 return ret; 4272 } 4273 4274 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) 4275 { 4276 usb_remove_hcd(hcd); 4277 usb_put_hcd(hcd); 4278 } 4279 4280 static int oxu_drv_remove(struct platform_device *pdev) 4281 { 4282 struct oxu_info *info = platform_get_drvdata(pdev); 4283 4284 oxu_remove(pdev, info->hcd[0]); 4285 oxu_remove(pdev, info->hcd[1]); 4286 4287 return 0; 4288 } 4289 4290 static void oxu_drv_shutdown(struct platform_device *pdev) 4291 { 4292 oxu_drv_remove(pdev); 4293 } 4294 4295 #if 0 4296 /* FIXME: TODO */ 4297 static int oxu_drv_suspend(struct device *dev) 4298 { 4299 struct platform_device *pdev = to_platform_device(dev); 4300 struct usb_hcd *hcd = dev_get_drvdata(dev); 4301 4302 return 0; 4303 } 4304 4305 static int oxu_drv_resume(struct device *dev) 4306 { 4307 struct platform_device *pdev = to_platform_device(dev); 4308 struct usb_hcd *hcd = dev_get_drvdata(dev); 4309 4310 return 0; 4311 } 4312 #else 4313 #define oxu_drv_suspend NULL 4314 #define oxu_drv_resume NULL 4315 #endif 4316 4317 static struct platform_driver oxu_driver = { 4318 .probe = oxu_drv_probe, 4319 .remove = oxu_drv_remove, 4320 .shutdown = oxu_drv_shutdown, 4321 .suspend = oxu_drv_suspend, 4322 .resume = oxu_drv_resume, 4323 .driver = { 4324 .name = "oxu210hp-hcd", 4325 .bus = &platform_bus_type 4326 } 4327 }; 4328 4329 module_platform_driver(oxu_driver); 4330 4331 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); 4332 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 4333 MODULE_LICENSE("GPL"); 4334