1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> 4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> 5 * 6 * This code is *strongly* based on EHCI-HCD code by David Brownell since 7 * the chip is a quasi-EHCI compatible. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/dmapool.h> 13 #include <linux/kernel.h> 14 #include <linux/delay.h> 15 #include <linux/ioport.h> 16 #include <linux/sched.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/timer.h> 20 #include <linux/list.h> 21 #include <linux/interrupt.h> 22 #include <linux/usb.h> 23 #include <linux/usb/hcd.h> 24 #include <linux/moduleparam.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/io.h> 27 #include <linux/iopoll.h> 28 29 #include <asm/irq.h> 30 #include <asm/unaligned.h> 31 32 #include <linux/irq.h> 33 #include <linux/platform_device.h> 34 35 #define DRIVER_VERSION "0.0.50" 36 37 #define OXU_DEVICEID 0x00 38 #define OXU_REV_MASK 0xffff0000 39 #define OXU_REV_SHIFT 16 40 #define OXU_REV_2100 0x2100 41 #define OXU_BO_SHIFT 8 42 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT) 43 #define OXU_MAJ_REV_SHIFT 4 44 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT) 45 #define OXU_MIN_REV_SHIFT 0 46 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT) 47 #define OXU_HOSTIFCONFIG 0x04 48 #define OXU_SOFTRESET 0x08 49 #define OXU_SRESET (1 << 0) 50 51 #define OXU_PIOBURSTREADCTRL 0x0C 52 53 #define OXU_CHIPIRQSTATUS 0x10 54 #define OXU_CHIPIRQEN_SET 0x14 55 #define OXU_CHIPIRQEN_CLR 0x18 56 #define OXU_USBSPHLPWUI 0x00000080 57 #define OXU_USBOTGLPWUI 0x00000040 58 #define OXU_USBSPHI 0x00000002 59 #define OXU_USBOTGI 0x00000001 60 61 #define OXU_CLKCTRL_SET 0x1C 62 #define OXU_SYSCLKEN 0x00000008 63 #define OXU_USBSPHCLKEN 0x00000002 64 #define OXU_USBOTGCLKEN 0x00000001 65 66 #define OXU_ASO 0x68 67 #define OXU_SPHPOEN 0x00000100 68 #define OXU_OVRCCURPUPDEN 0x00000800 69 #define OXU_ASO_OP (1 << 10) 70 #define OXU_COMPARATOR 0x000004000 71 72 #define OXU_USBMODE 0x1A8 73 #define OXU_VBPS 0x00000020 74 #define OXU_ES_LITTLE 0x00000000 75 #define OXU_CM_HOST_ONLY 0x00000003 76 77 /* 78 * Proper EHCI structs & defines 79 */ 80 81 /* Magic numbers that can affect system performance */ 82 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ 83 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ 84 #define EHCI_TUNE_RL_TT 0 85 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ 86 #define EHCI_TUNE_MULT_TT 1 87 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */ 88 89 struct oxu_hcd; 90 91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */ 92 93 /* Section 2.2 Host Controller Capability Registers */ 94 struct ehci_caps { 95 /* these fields are specified as 8 and 16 bit registers, 96 * but some hosts can't perform 8 or 16 bit PCI accesses. 97 */ 98 u32 hc_capbase; 99 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */ 100 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */ 101 u32 hcs_params; /* HCSPARAMS - offset 0x4 */ 102 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */ 103 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */ 104 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */ 105 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */ 106 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */ 107 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */ 108 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */ 109 110 u32 hcc_params; /* HCCPARAMS - offset 0x8 */ 111 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */ 112 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */ 113 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */ 114 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */ 115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/ 116 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */ 117 u8 portroute[8]; /* nibbles for routing - offset 0xC */ 118 } __packed; 119 120 121 /* Section 2.3 Host Controller Operational Registers */ 122 struct ehci_regs { 123 /* USBCMD: offset 0x00 */ 124 u32 command; 125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */ 126 #define CMD_PARK (1<<11) /* enable "park" on async qh */ 127 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */ 128 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */ 129 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */ 130 #define CMD_ASE (1<<5) /* async schedule enable */ 131 #define CMD_PSE (1<<4) /* periodic schedule enable */ 132 /* 3:2 is periodic frame list size */ 133 #define CMD_RESET (1<<1) /* reset HC not bus */ 134 #define CMD_RUN (1<<0) /* start/stop HC */ 135 136 /* USBSTS: offset 0x04 */ 137 u32 status; 138 #define STS_ASS (1<<15) /* Async Schedule Status */ 139 #define STS_PSS (1<<14) /* Periodic Schedule Status */ 140 #define STS_RECL (1<<13) /* Reclamation */ 141 #define STS_HALT (1<<12) /* Not running (any reason) */ 142 /* some bits reserved */ 143 /* these STS_* flags are also intr_enable bits (USBINTR) */ 144 #define STS_IAA (1<<5) /* Interrupted on async advance */ 145 #define STS_FATAL (1<<4) /* such as some PCI access errors */ 146 #define STS_FLR (1<<3) /* frame list rolled over */ 147 #define STS_PCD (1<<2) /* port change detect */ 148 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */ 149 #define STS_INT (1<<0) /* "normal" completion (short, ...) */ 150 151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) 152 153 /* USBINTR: offset 0x08 */ 154 u32 intr_enable; 155 156 /* FRINDEX: offset 0x0C */ 157 u32 frame_index; /* current microframe number */ 158 /* CTRLDSSEGMENT: offset 0x10 */ 159 u32 segment; /* address bits 63:32 if needed */ 160 /* PERIODICLISTBASE: offset 0x14 */ 161 u32 frame_list; /* points to periodic list */ 162 /* ASYNCLISTADDR: offset 0x18 */ 163 u32 async_next; /* address of next async queue head */ 164 165 u32 reserved[9]; 166 167 /* CONFIGFLAG: offset 0x40 */ 168 u32 configured_flag; 169 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */ 170 171 /* PORTSC: offset 0x44 */ 172 u32 port_status[0]; /* up to N_PORTS */ 173 /* 31:23 reserved */ 174 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */ 175 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */ 176 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */ 177 /* 19:16 for port testing */ 178 #define PORT_LED_OFF (0<<14) 179 #define PORT_LED_AMBER (1<<14) 180 #define PORT_LED_GREEN (2<<14) 181 #define PORT_LED_MASK (3<<14) 182 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */ 183 #define PORT_POWER (1<<12) /* true: has power (see PPC) */ 184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */ 185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */ 186 /* 9 reserved */ 187 #define PORT_RESET (1<<8) /* reset port */ 188 #define PORT_SUSPEND (1<<7) /* suspend port */ 189 #define PORT_RESUME (1<<6) /* resume it */ 190 #define PORT_OCC (1<<5) /* over current change */ 191 #define PORT_OC (1<<4) /* over current active */ 192 #define PORT_PEC (1<<3) /* port enable change */ 193 #define PORT_PE (1<<2) /* port enable */ 194 #define PORT_CSC (1<<1) /* connect status change */ 195 #define PORT_CONNECT (1<<0) /* device connected */ 196 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC) 197 } __packed; 198 199 /* Appendix C, Debug port ... intended for use with special "debug devices" 200 * that can help if there's no serial console. (nonstandard enumeration.) 201 */ 202 struct ehci_dbg_port { 203 u32 control; 204 #define DBGP_OWNER (1<<30) 205 #define DBGP_ENABLED (1<<28) 206 #define DBGP_DONE (1<<16) 207 #define DBGP_INUSE (1<<10) 208 #define DBGP_ERRCODE(x) (((x)>>7)&0x07) 209 # define DBGP_ERR_BAD 1 210 # define DBGP_ERR_SIGNAL 2 211 #define DBGP_ERROR (1<<6) 212 #define DBGP_GO (1<<5) 213 #define DBGP_OUT (1<<4) 214 #define DBGP_LEN(x) (((x)>>0)&0x0f) 215 u32 pids; 216 #define DBGP_PID_GET(x) (((x)>>16)&0xff) 217 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok)) 218 u32 data03; 219 u32 data47; 220 u32 address; 221 #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep)) 222 } __packed; 223 224 #define QTD_NEXT(dma) cpu_to_le32((u32)dma) 225 226 /* 227 * EHCI Specification 0.95 Section 3.5 228 * QTD: describe data transfer components (buffer, direction, ...) 229 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram". 230 * 231 * These are associated only with "QH" (Queue Head) structures, 232 * used with control, bulk, and interrupt transfers. 233 */ 234 struct ehci_qtd { 235 /* first part defined by EHCI spec */ 236 __le32 hw_next; /* see EHCI 3.5.1 */ 237 __le32 hw_alt_next; /* see EHCI 3.5.2 */ 238 __le32 hw_token; /* see EHCI 3.5.3 */ 239 #define QTD_TOGGLE (1 << 31) /* data toggle */ 240 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff) 241 #define QTD_IOC (1 << 15) /* interrupt on complete */ 242 #define QTD_CERR(tok) (((tok)>>10) & 0x3) 243 #define QTD_PID(tok) (((tok)>>8) & 0x3) 244 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */ 245 #define QTD_STS_HALT (1 << 6) /* halted on error */ 246 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */ 247 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */ 248 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */ 249 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */ 250 #define QTD_STS_STS (1 << 1) /* split transaction state */ 251 #define QTD_STS_PING (1 << 0) /* issue PING? */ 252 __le32 hw_buf[5]; /* see EHCI 3.5.4 */ 253 __le32 hw_buf_hi[5]; /* Appendix B */ 254 255 /* the rest is HCD-private */ 256 dma_addr_t qtd_dma; /* qtd address */ 257 struct list_head qtd_list; /* sw qtd list */ 258 struct urb *urb; /* qtd's urb */ 259 size_t length; /* length of buffer */ 260 261 u32 qtd_buffer_len; 262 void *buffer; 263 dma_addr_t buffer_dma; 264 void *transfer_buffer; 265 void *transfer_dma; 266 } __aligned(32); 267 268 /* mask NakCnt+T in qh->hw_alt_next */ 269 #define QTD_MASK cpu_to_le32 (~0x1f) 270 271 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1) 272 273 /* Type tag from {qh, itd, sitd, fstn}->hw_next */ 274 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1)) 275 276 /* values for that type tag */ 277 #define Q_TYPE_QH cpu_to_le32 (1 << 1) 278 279 /* next async queue entry, or pointer to interrupt/periodic QH */ 280 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH) 281 282 /* for periodic/async schedules and qtd lists, mark end of list */ 283 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */ 284 285 /* 286 * Entries in periodic shadow table are pointers to one of four kinds 287 * of data structure. That's dictated by the hardware; a type tag is 288 * encoded in the low bits of the hardware's periodic schedule. Use 289 * Q_NEXT_TYPE to get the tag. 290 * 291 * For entries in the async schedule, the type tag always says "qh". 292 */ 293 union ehci_shadow { 294 struct ehci_qh *qh; /* Q_TYPE_QH */ 295 __le32 *hw_next; /* (all types) */ 296 void *ptr; 297 }; 298 299 /* 300 * EHCI Specification 0.95 Section 3.6 301 * QH: describes control/bulk/interrupt endpoints 302 * See Fig 3-7 "Queue Head Structure Layout". 303 * 304 * These appear in both the async and (for interrupt) periodic schedules. 305 */ 306 307 struct ehci_qh { 308 /* first part defined by EHCI spec */ 309 __le32 hw_next; /* see EHCI 3.6.1 */ 310 __le32 hw_info1; /* see EHCI 3.6.2 */ 311 #define QH_HEAD 0x00008000 312 __le32 hw_info2; /* see EHCI 3.6.2 */ 313 #define QH_SMASK 0x000000ff 314 #define QH_CMASK 0x0000ff00 315 #define QH_HUBADDR 0x007f0000 316 #define QH_HUBPORT 0x3f800000 317 #define QH_MULT 0xc0000000 318 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */ 319 320 /* qtd overlay (hardware parts of a struct ehci_qtd) */ 321 __le32 hw_qtd_next; 322 __le32 hw_alt_next; 323 __le32 hw_token; 324 __le32 hw_buf[5]; 325 __le32 hw_buf_hi[5]; 326 327 /* the rest is HCD-private */ 328 dma_addr_t qh_dma; /* address of qh */ 329 union ehci_shadow qh_next; /* ptr to qh; or periodic */ 330 struct list_head qtd_list; /* sw qtd list */ 331 struct ehci_qtd *dummy; 332 struct ehci_qh *reclaim; /* next to reclaim */ 333 334 struct oxu_hcd *oxu; 335 struct kref kref; 336 unsigned int stamp; 337 338 u8 qh_state; 339 #define QH_STATE_LINKED 1 /* HC sees this */ 340 #define QH_STATE_UNLINK 2 /* HC may still see this */ 341 #define QH_STATE_IDLE 3 /* HC doesn't see this */ 342 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */ 343 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */ 344 345 /* periodic schedule info */ 346 u8 usecs; /* intr bandwidth */ 347 u8 gap_uf; /* uframes split/csplit gap */ 348 u8 c_usecs; /* ... split completion bw */ 349 u16 tt_usecs; /* tt downstream bandwidth */ 350 unsigned short period; /* polling interval */ 351 unsigned short start; /* where polling starts */ 352 #define NO_FRAME ((unsigned short)~0) /* pick new start */ 353 struct usb_device *dev; /* access to TT */ 354 } __aligned(32); 355 356 /* 357 * Proper OXU210HP structs 358 */ 359 360 #define OXU_OTG_CORE_OFFSET 0x00400 361 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100) 362 #define OXU_SPH_CORE_OFFSET 0x00800 363 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100) 364 365 #define OXU_OTG_MEM 0xE000 366 #define OXU_SPH_MEM 0x16000 367 368 /* Only how many elements & element structure are specifies here. */ 369 /* 2 host controllers are enabled - total size <= 28 kbytes */ 370 #define DEFAULT_I_TDPS 1024 371 #define QHEAD_NUM 16 372 #define QTD_NUM 32 373 #define SITD_NUM 8 374 #define MURB_NUM 8 375 376 #define BUFFER_NUM 8 377 #define BUFFER_SIZE 512 378 379 struct oxu_info { 380 struct usb_hcd *hcd[2]; 381 }; 382 383 struct oxu_buf { 384 u8 buffer[BUFFER_SIZE]; 385 } __aligned(BUFFER_SIZE); 386 387 struct oxu_onchip_mem { 388 struct oxu_buf db_pool[BUFFER_NUM]; 389 390 u32 frame_list[DEFAULT_I_TDPS]; 391 struct ehci_qh qh_pool[QHEAD_NUM]; 392 struct ehci_qtd qtd_pool[QTD_NUM]; 393 } __aligned(4 << 10); 394 395 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */ 396 397 struct oxu_murb { 398 struct urb urb; 399 struct urb *main; 400 u8 last; 401 }; 402 403 struct oxu_hcd { /* one per controller */ 404 unsigned int is_otg:1; 405 406 u8 qh_used[QHEAD_NUM]; 407 u8 qtd_used[QTD_NUM]; 408 u8 db_used[BUFFER_NUM]; 409 u8 murb_used[MURB_NUM]; 410 411 struct oxu_onchip_mem __iomem *mem; 412 spinlock_t mem_lock; 413 414 struct timer_list urb_timer; 415 416 struct ehci_caps __iomem *caps; 417 struct ehci_regs __iomem *regs; 418 419 u32 hcs_params; /* cached register copy */ 420 spinlock_t lock; 421 422 /* async schedule support */ 423 struct ehci_qh *async; 424 struct ehci_qh *reclaim; 425 unsigned int reclaim_ready:1; 426 unsigned int scanning:1; 427 428 /* periodic schedule support */ 429 unsigned int periodic_size; 430 __le32 *periodic; /* hw periodic table */ 431 dma_addr_t periodic_dma; 432 unsigned int i_thresh; /* uframes HC might cache */ 433 434 union ehci_shadow *pshadow; /* mirror hw periodic table */ 435 int next_uframe; /* scan periodic, start here */ 436 unsigned int periodic_sched; /* periodic activity count */ 437 438 /* per root hub port */ 439 unsigned long reset_done[EHCI_MAX_ROOT_PORTS]; 440 /* bit vectors (one bit per port) */ 441 unsigned long bus_suspended; /* which ports were 442 * already suspended at the 443 * start of a bus suspend 444 */ 445 unsigned long companion_ports;/* which ports are dedicated 446 * to the companion controller 447 */ 448 449 struct timer_list watchdog; 450 unsigned long actions; 451 unsigned int stamp; 452 unsigned long next_statechange; 453 u32 command; 454 455 /* SILICON QUIRKS */ 456 struct list_head urb_list; /* this is the head to urb 457 * queue that didn't get enough 458 * resources 459 */ 460 struct oxu_murb *murb_pool; /* murb per split big urb */ 461 unsigned int urb_len; 462 463 u8 sbrn; /* packed release number */ 464 }; 465 466 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */ 467 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */ 468 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */ 469 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */ 470 471 enum ehci_timer_action { 472 TIMER_IO_WATCHDOG, 473 TIMER_IAA_WATCHDOG, 474 TIMER_ASYNC_SHRINK, 475 TIMER_ASYNC_OFF, 476 }; 477 478 /* 479 * Main defines 480 */ 481 482 #define oxu_dbg(oxu, fmt, args...) \ 483 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 484 #define oxu_err(oxu, fmt, args...) \ 485 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 486 #define oxu_info(oxu, fmt, args...) \ 487 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 488 489 #ifdef CONFIG_DYNAMIC_DEBUG 490 #define DEBUG 491 #endif 492 493 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) 494 { 495 return container_of((void *) oxu, struct usb_hcd, hcd_priv); 496 } 497 498 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) 499 { 500 return (struct oxu_hcd *) (hcd->hcd_priv); 501 } 502 503 /* 504 * Debug stuff 505 */ 506 507 #undef OXU_URB_TRACE 508 #undef OXU_VERBOSE_DEBUG 509 510 #ifdef OXU_VERBOSE_DEBUG 511 #define oxu_vdbg oxu_dbg 512 #else 513 #define oxu_vdbg(oxu, fmt, args...) /* Nop */ 514 #endif 515 516 #ifdef DEBUG 517 518 static int __attribute__((__unused__)) 519 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 520 { 521 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 522 label, label[0] ? " " : "", status, 523 (status & STS_ASS) ? " Async" : "", 524 (status & STS_PSS) ? " Periodic" : "", 525 (status & STS_RECL) ? " Recl" : "", 526 (status & STS_HALT) ? " Halt" : "", 527 (status & STS_IAA) ? " IAA" : "", 528 (status & STS_FATAL) ? " FATAL" : "", 529 (status & STS_FLR) ? " FLR" : "", 530 (status & STS_PCD) ? " PCD" : "", 531 (status & STS_ERR) ? " ERR" : "", 532 (status & STS_INT) ? " INT" : "" 533 ); 534 } 535 536 static int __attribute__((__unused__)) 537 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 538 { 539 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 540 label, label[0] ? " " : "", enable, 541 (enable & STS_IAA) ? " IAA" : "", 542 (enable & STS_FATAL) ? " FATAL" : "", 543 (enable & STS_FLR) ? " FLR" : "", 544 (enable & STS_PCD) ? " PCD" : "", 545 (enable & STS_ERR) ? " ERR" : "", 546 (enable & STS_INT) ? " INT" : "" 547 ); 548 } 549 550 static const char *const fls_strings[] = 551 { "1024", "512", "256", "??" }; 552 553 static int dbg_command_buf(char *buf, unsigned len, 554 const char *label, u32 command) 555 { 556 return scnprintf(buf, len, 557 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", 558 label, label[0] ? " " : "", command, 559 (command & CMD_PARK) ? "park" : "(park)", 560 CMD_PARK_CNT(command), 561 (command >> 16) & 0x3f, 562 (command & CMD_LRESET) ? " LReset" : "", 563 (command & CMD_IAAD) ? " IAAD" : "", 564 (command & CMD_ASE) ? " Async" : "", 565 (command & CMD_PSE) ? " Periodic" : "", 566 fls_strings[(command >> 2) & 0x3], 567 (command & CMD_RESET) ? " Reset" : "", 568 (command & CMD_RUN) ? "RUN" : "HALT" 569 ); 570 } 571 572 static int dbg_port_buf(char *buf, unsigned len, const char *label, 573 int port, u32 status) 574 { 575 char *sig; 576 577 /* signaling state */ 578 switch (status & (3 << 10)) { 579 case 0 << 10: 580 sig = "se0"; 581 break; 582 case 1 << 10: 583 sig = "k"; /* low speed */ 584 break; 585 case 2 << 10: 586 sig = "j"; 587 break; 588 default: 589 sig = "?"; 590 break; 591 } 592 593 return scnprintf(buf, len, 594 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", 595 label, label[0] ? " " : "", port, status, 596 (status & PORT_POWER) ? " POWER" : "", 597 (status & PORT_OWNER) ? " OWNER" : "", 598 sig, 599 (status & PORT_RESET) ? " RESET" : "", 600 (status & PORT_SUSPEND) ? " SUSPEND" : "", 601 (status & PORT_RESUME) ? " RESUME" : "", 602 (status & PORT_OCC) ? " OCC" : "", 603 (status & PORT_OC) ? " OC" : "", 604 (status & PORT_PEC) ? " PEC" : "", 605 (status & PORT_PE) ? " PE" : "", 606 (status & PORT_CSC) ? " CSC" : "", 607 (status & PORT_CONNECT) ? " CONNECT" : "" 608 ); 609 } 610 611 #else 612 613 static inline int __attribute__((__unused__)) 614 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 615 { return 0; } 616 617 static inline int __attribute__((__unused__)) 618 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 619 { return 0; } 620 621 static inline int __attribute__((__unused__)) 622 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 623 { return 0; } 624 625 static inline int __attribute__((__unused__)) 626 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 627 { return 0; } 628 629 #endif /* DEBUG */ 630 631 /* functions have the "wrong" filename when they're output... */ 632 #define dbg_status(oxu, label, status) { \ 633 char _buf[80]; \ 634 dbg_status_buf(_buf, sizeof _buf, label, status); \ 635 oxu_dbg(oxu, "%s\n", _buf); \ 636 } 637 638 #define dbg_cmd(oxu, label, command) { \ 639 char _buf[80]; \ 640 dbg_command_buf(_buf, sizeof _buf, label, command); \ 641 oxu_dbg(oxu, "%s\n", _buf); \ 642 } 643 644 #define dbg_port(oxu, label, port, status) { \ 645 char _buf[80]; \ 646 dbg_port_buf(_buf, sizeof _buf, label, port, status); \ 647 oxu_dbg(oxu, "%s\n", _buf); \ 648 } 649 650 /* 651 * Module parameters 652 */ 653 654 /* Initial IRQ latency: faster than hw default */ 655 static int log2_irq_thresh; /* 0 to 6 */ 656 module_param(log2_irq_thresh, int, S_IRUGO); 657 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 658 659 /* Initial park setting: slower than hw default */ 660 static unsigned park; 661 module_param(park, uint, S_IRUGO); 662 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 663 664 /* For flakey hardware, ignore overcurrent indicators */ 665 static bool ignore_oc; 666 module_param(ignore_oc, bool, S_IRUGO); 667 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); 668 669 670 static void ehci_work(struct oxu_hcd *oxu); 671 static int oxu_hub_control(struct usb_hcd *hcd, 672 u16 typeReq, u16 wValue, u16 wIndex, 673 char *buf, u16 wLength); 674 675 /* 676 * Local functions 677 */ 678 679 /* Low level read/write registers functions */ 680 static inline u32 oxu_readl(void __iomem *base, u32 reg) 681 { 682 return readl(base + reg); 683 } 684 685 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val) 686 { 687 writel(val, base + reg); 688 } 689 690 static inline void timer_action_done(struct oxu_hcd *oxu, 691 enum ehci_timer_action action) 692 { 693 clear_bit(action, &oxu->actions); 694 } 695 696 static inline void timer_action(struct oxu_hcd *oxu, 697 enum ehci_timer_action action) 698 { 699 if (!test_and_set_bit(action, &oxu->actions)) { 700 unsigned long t; 701 702 switch (action) { 703 case TIMER_IAA_WATCHDOG: 704 t = EHCI_IAA_JIFFIES; 705 break; 706 case TIMER_IO_WATCHDOG: 707 t = EHCI_IO_JIFFIES; 708 break; 709 case TIMER_ASYNC_OFF: 710 t = EHCI_ASYNC_JIFFIES; 711 break; 712 case TIMER_ASYNC_SHRINK: 713 default: 714 t = EHCI_SHRINK_JIFFIES; 715 break; 716 } 717 t += jiffies; 718 /* all timings except IAA watchdog can be overridden. 719 * async queue SHRINK often precedes IAA. while it's ready 720 * to go OFF neither can matter, and afterwards the IO 721 * watchdog stops unless there's still periodic traffic. 722 */ 723 if (action != TIMER_IAA_WATCHDOG 724 && t > oxu->watchdog.expires 725 && timer_pending(&oxu->watchdog)) 726 return; 727 mod_timer(&oxu->watchdog, t); 728 } 729 } 730 731 /* 732 * handshake - spin reading hc until handshake completes or fails 733 * @ptr: address of hc register to be read 734 * @mask: bits to look at in result of read 735 * @done: value of those bits when handshake succeeds 736 * @usec: timeout in microseconds 737 * 738 * Returns negative errno, or zero on success 739 * 740 * Success happens when the "mask" bits have the specified value (hardware 741 * handshake done). There are two failure modes: "usec" have passed (major 742 * hardware flakeout), or the register reads as all-ones (hardware removed). 743 * 744 * That last failure should_only happen in cases like physical cardbus eject 745 * before driver shutdown. But it also seems to be caused by bugs in cardbus 746 * bridge shutdown: shutting down the bridge before the devices using it. 747 */ 748 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, 749 u32 mask, u32 done, int usec) 750 { 751 u32 result; 752 int ret; 753 754 ret = readl_poll_timeout_atomic(ptr, result, 755 ((result & mask) == done || 756 result == U32_MAX), 757 1, usec); 758 if (result == U32_MAX) /* card removed */ 759 return -ENODEV; 760 761 return ret; 762 } 763 764 /* Force HC to halt state from unknown (EHCI spec section 2.3) */ 765 static int ehci_halt(struct oxu_hcd *oxu) 766 { 767 u32 temp = readl(&oxu->regs->status); 768 769 /* disable any irqs left enabled by previous code */ 770 writel(0, &oxu->regs->intr_enable); 771 772 if ((temp & STS_HALT) != 0) 773 return 0; 774 775 temp = readl(&oxu->regs->command); 776 temp &= ~CMD_RUN; 777 writel(temp, &oxu->regs->command); 778 return handshake(oxu, &oxu->regs->status, 779 STS_HALT, STS_HALT, 16 * 125); 780 } 781 782 /* Put TDI/ARC silicon into EHCI mode */ 783 static void tdi_reset(struct oxu_hcd *oxu) 784 { 785 u32 __iomem *reg_ptr; 786 u32 tmp; 787 788 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); 789 tmp = readl(reg_ptr); 790 tmp |= 0x3; 791 writel(tmp, reg_ptr); 792 } 793 794 /* Reset a non-running (STS_HALT == 1) controller */ 795 static int ehci_reset(struct oxu_hcd *oxu) 796 { 797 int retval; 798 u32 command = readl(&oxu->regs->command); 799 800 command |= CMD_RESET; 801 dbg_cmd(oxu, "reset", command); 802 writel(command, &oxu->regs->command); 803 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 804 oxu->next_statechange = jiffies; 805 retval = handshake(oxu, &oxu->regs->command, 806 CMD_RESET, 0, 250 * 1000); 807 808 if (retval) 809 return retval; 810 811 tdi_reset(oxu); 812 813 return retval; 814 } 815 816 /* Idle the controller (from running) */ 817 static void ehci_quiesce(struct oxu_hcd *oxu) 818 { 819 u32 temp; 820 821 #ifdef DEBUG 822 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)); 823 #endif 824 825 /* wait for any schedule enables/disables to take effect */ 826 temp = readl(&oxu->regs->command) << 10; 827 temp &= STS_ASS | STS_PSS; 828 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 829 temp, 16 * 125) != 0) { 830 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 831 return; 832 } 833 834 /* then disable anything that's still active */ 835 temp = readl(&oxu->regs->command); 836 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); 837 writel(temp, &oxu->regs->command); 838 839 /* hardware can take 16 microframes to turn off ... */ 840 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 841 0, 16 * 125) != 0) { 842 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 843 return; 844 } 845 } 846 847 static int check_reset_complete(struct oxu_hcd *oxu, int index, 848 u32 __iomem *status_reg, int port_status) 849 { 850 if (!(port_status & PORT_CONNECT)) { 851 oxu->reset_done[index] = 0; 852 return port_status; 853 } 854 855 /* if reset finished and it's still not enabled -- handoff */ 856 if (!(port_status & PORT_PE)) { 857 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", 858 index+1); 859 return port_status; 860 } else 861 oxu_dbg(oxu, "port %d high speed\n", index + 1); 862 863 return port_status; 864 } 865 866 static void ehci_hub_descriptor(struct oxu_hcd *oxu, 867 struct usb_hub_descriptor *desc) 868 { 869 int ports = HCS_N_PORTS(oxu->hcs_params); 870 u16 temp; 871 872 desc->bDescriptorType = USB_DT_HUB; 873 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ 874 desc->bHubContrCurrent = 0; 875 876 desc->bNbrPorts = ports; 877 temp = 1 + (ports / 8); 878 desc->bDescLength = 7 + 2 * temp; 879 880 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 881 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 882 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 883 884 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 885 if (HCS_PPC(oxu->hcs_params)) 886 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */ 887 else 888 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 889 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); 890 } 891 892 893 /* Allocate an OXU210HP on-chip memory data buffer 894 * 895 * An on-chip memory data buffer is required for each OXU210HP USB transfer. 896 * Each transfer descriptor has one or more on-chip memory data buffers. 897 * 898 * Data buffers are allocated from a fix sized pool of data blocks. 899 * To minimise fragmentation and give reasonable memory utlisation, 900 * data buffers are allocated with sizes the power of 2 multiples of 901 * the block size, starting on an address a multiple of the allocated size. 902 * 903 * FIXME: callers of this function require a buffer to be allocated for 904 * len=0. This is a waste of on-chip memory and should be fix. Then this 905 * function should be changed to not allocate a buffer for len=0. 906 */ 907 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) 908 { 909 int n_blocks; /* minium blocks needed to hold len */ 910 int a_blocks; /* blocks allocated */ 911 int i, j; 912 913 /* Don't allocte bigger than supported */ 914 if (len > BUFFER_SIZE * BUFFER_NUM) { 915 oxu_err(oxu, "buffer too big (%d)\n", len); 916 return -ENOMEM; 917 } 918 919 spin_lock(&oxu->mem_lock); 920 921 /* Number of blocks needed to hold len */ 922 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; 923 924 /* Round the number of blocks up to the power of 2 */ 925 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) 926 ; 927 928 /* Find a suitable available data buffer */ 929 for (i = 0; i < BUFFER_NUM; 930 i += max(a_blocks, (int)oxu->db_used[i])) { 931 932 /* Check all the required blocks are available */ 933 for (j = 0; j < a_blocks; j++) 934 if (oxu->db_used[i + j]) 935 break; 936 937 if (j != a_blocks) 938 continue; 939 940 /* Allocate blocks found! */ 941 qtd->buffer = (void *) &oxu->mem->db_pool[i]; 942 qtd->buffer_dma = virt_to_phys(qtd->buffer); 943 944 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; 945 oxu->db_used[i] = a_blocks; 946 947 spin_unlock(&oxu->mem_lock); 948 949 return 0; 950 } 951 952 /* Failed */ 953 954 spin_unlock(&oxu->mem_lock); 955 956 return -ENOMEM; 957 } 958 959 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 960 { 961 int index; 962 963 spin_lock(&oxu->mem_lock); 964 965 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) 966 / BUFFER_SIZE; 967 oxu->db_used[index] = 0; 968 qtd->qtd_buffer_len = 0; 969 qtd->buffer_dma = 0; 970 qtd->buffer = NULL; 971 972 spin_unlock(&oxu->mem_lock); 973 } 974 975 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) 976 { 977 memset(qtd, 0, sizeof *qtd); 978 qtd->qtd_dma = dma; 979 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 980 qtd->hw_next = EHCI_LIST_END; 981 qtd->hw_alt_next = EHCI_LIST_END; 982 INIT_LIST_HEAD(&qtd->qtd_list); 983 } 984 985 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 986 { 987 int index; 988 989 if (qtd->buffer) 990 oxu_buf_free(oxu, qtd); 991 992 spin_lock(&oxu->mem_lock); 993 994 index = qtd - &oxu->mem->qtd_pool[0]; 995 oxu->qtd_used[index] = 0; 996 997 spin_unlock(&oxu->mem_lock); 998 } 999 1000 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) 1001 { 1002 int i; 1003 struct ehci_qtd *qtd = NULL; 1004 1005 spin_lock(&oxu->mem_lock); 1006 1007 for (i = 0; i < QTD_NUM; i++) 1008 if (!oxu->qtd_used[i]) 1009 break; 1010 1011 if (i < QTD_NUM) { 1012 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; 1013 memset(qtd, 0, sizeof *qtd); 1014 1015 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 1016 qtd->hw_next = EHCI_LIST_END; 1017 qtd->hw_alt_next = EHCI_LIST_END; 1018 INIT_LIST_HEAD(&qtd->qtd_list); 1019 1020 qtd->qtd_dma = virt_to_phys(qtd); 1021 1022 oxu->qtd_used[i] = 1; 1023 } 1024 1025 spin_unlock(&oxu->mem_lock); 1026 1027 return qtd; 1028 } 1029 1030 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) 1031 { 1032 int index; 1033 1034 spin_lock(&oxu->mem_lock); 1035 1036 index = qh - &oxu->mem->qh_pool[0]; 1037 oxu->qh_used[index] = 0; 1038 1039 spin_unlock(&oxu->mem_lock); 1040 } 1041 1042 static void qh_destroy(struct kref *kref) 1043 { 1044 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); 1045 struct oxu_hcd *oxu = qh->oxu; 1046 1047 /* clean qtds first, and know this is not linked */ 1048 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 1049 oxu_dbg(oxu, "unused qh not empty!\n"); 1050 BUG(); 1051 } 1052 if (qh->dummy) 1053 oxu_qtd_free(oxu, qh->dummy); 1054 oxu_qh_free(oxu, qh); 1055 } 1056 1057 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) 1058 { 1059 int i; 1060 struct ehci_qh *qh = NULL; 1061 1062 spin_lock(&oxu->mem_lock); 1063 1064 for (i = 0; i < QHEAD_NUM; i++) 1065 if (!oxu->qh_used[i]) 1066 break; 1067 1068 if (i < QHEAD_NUM) { 1069 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; 1070 memset(qh, 0, sizeof *qh); 1071 1072 kref_init(&qh->kref); 1073 qh->oxu = oxu; 1074 qh->qh_dma = virt_to_phys(qh); 1075 INIT_LIST_HEAD(&qh->qtd_list); 1076 1077 /* dummy td enables safe urb queuing */ 1078 qh->dummy = ehci_qtd_alloc(oxu); 1079 if (qh->dummy == NULL) { 1080 oxu_dbg(oxu, "no dummy td\n"); 1081 oxu->qh_used[i] = 0; 1082 qh = NULL; 1083 goto unlock; 1084 } 1085 1086 oxu->qh_used[i] = 1; 1087 } 1088 unlock: 1089 spin_unlock(&oxu->mem_lock); 1090 1091 return qh; 1092 } 1093 1094 /* to share a qh (cpu threads, or hc) */ 1095 static inline struct ehci_qh *qh_get(struct ehci_qh *qh) 1096 { 1097 kref_get(&qh->kref); 1098 return qh; 1099 } 1100 1101 static inline void qh_put(struct ehci_qh *qh) 1102 { 1103 kref_put(&qh->kref, qh_destroy); 1104 } 1105 1106 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) 1107 { 1108 int index; 1109 1110 spin_lock(&oxu->mem_lock); 1111 1112 index = murb - &oxu->murb_pool[0]; 1113 oxu->murb_used[index] = 0; 1114 1115 spin_unlock(&oxu->mem_lock); 1116 } 1117 1118 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) 1119 1120 { 1121 int i; 1122 struct oxu_murb *murb = NULL; 1123 1124 spin_lock(&oxu->mem_lock); 1125 1126 for (i = 0; i < MURB_NUM; i++) 1127 if (!oxu->murb_used[i]) 1128 break; 1129 1130 if (i < MURB_NUM) { 1131 murb = &(oxu->murb_pool)[i]; 1132 1133 oxu->murb_used[i] = 1; 1134 } 1135 1136 spin_unlock(&oxu->mem_lock); 1137 1138 return murb; 1139 } 1140 1141 /* The queue heads and transfer descriptors are managed from pools tied 1142 * to each of the "per device" structures. 1143 * This is the initialisation and cleanup code. 1144 */ 1145 static void ehci_mem_cleanup(struct oxu_hcd *oxu) 1146 { 1147 kfree(oxu->murb_pool); 1148 oxu->murb_pool = NULL; 1149 1150 if (oxu->async) 1151 qh_put(oxu->async); 1152 oxu->async = NULL; 1153 1154 del_timer(&oxu->urb_timer); 1155 1156 oxu->periodic = NULL; 1157 1158 /* shadow periodic table */ 1159 kfree(oxu->pshadow); 1160 oxu->pshadow = NULL; 1161 } 1162 1163 /* Remember to add cleanup code (above) if you add anything here. 1164 */ 1165 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) 1166 { 1167 int i; 1168 1169 for (i = 0; i < oxu->periodic_size; i++) 1170 oxu->mem->frame_list[i] = EHCI_LIST_END; 1171 for (i = 0; i < QHEAD_NUM; i++) 1172 oxu->qh_used[i] = 0; 1173 for (i = 0; i < QTD_NUM; i++) 1174 oxu->qtd_used[i] = 0; 1175 1176 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); 1177 if (!oxu->murb_pool) 1178 goto fail; 1179 1180 for (i = 0; i < MURB_NUM; i++) 1181 oxu->murb_used[i] = 0; 1182 1183 oxu->async = oxu_qh_alloc(oxu); 1184 if (!oxu->async) 1185 goto fail; 1186 1187 oxu->periodic = (__le32 *) &oxu->mem->frame_list; 1188 oxu->periodic_dma = virt_to_phys(oxu->periodic); 1189 1190 for (i = 0; i < oxu->periodic_size; i++) 1191 oxu->periodic[i] = EHCI_LIST_END; 1192 1193 /* software shadow of hardware table */ 1194 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); 1195 if (oxu->pshadow != NULL) 1196 return 0; 1197 1198 fail: 1199 oxu_dbg(oxu, "couldn't init memory\n"); 1200 ehci_mem_cleanup(oxu); 1201 return -ENOMEM; 1202 } 1203 1204 /* Fill a qtd, returning how much of the buffer we were able to queue up. 1205 */ 1206 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, 1207 int token, int maxpacket) 1208 { 1209 int i, count; 1210 u64 addr = buf; 1211 1212 /* one buffer entry per 4K ... first might be short or unaligned */ 1213 qtd->hw_buf[0] = cpu_to_le32((u32)addr); 1214 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); 1215 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 1216 if (likely(len < count)) /* ... iff needed */ 1217 count = len; 1218 else { 1219 buf += 0x1000; 1220 buf &= ~0x0fff; 1221 1222 /* per-qtd limit: from 16K to 20K (best alignment) */ 1223 for (i = 1; count < len && i < 5; i++) { 1224 addr = buf; 1225 qtd->hw_buf[i] = cpu_to_le32((u32)addr); 1226 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); 1227 buf += 0x1000; 1228 if ((count + 0x1000) < len) 1229 count += 0x1000; 1230 else 1231 count = len; 1232 } 1233 1234 /* short packets may only terminate transfers */ 1235 if (count != len) 1236 count -= (count % maxpacket); 1237 } 1238 qtd->hw_token = cpu_to_le32((count << 16) | token); 1239 qtd->length = count; 1240 1241 return count; 1242 } 1243 1244 static inline void qh_update(struct oxu_hcd *oxu, 1245 struct ehci_qh *qh, struct ehci_qtd *qtd) 1246 { 1247 /* writes to an active overlay are unsafe */ 1248 BUG_ON(qh->qh_state != QH_STATE_IDLE); 1249 1250 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); 1251 qh->hw_alt_next = EHCI_LIST_END; 1252 1253 /* Except for control endpoints, we make hardware maintain data 1254 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 1255 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 1256 * ever clear it. 1257 */ 1258 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { 1259 unsigned is_out, epnum; 1260 1261 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); 1262 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; 1263 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 1264 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); 1265 usb_settoggle(qh->dev, epnum, is_out, 1); 1266 } 1267 } 1268 1269 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 1270 wmb(); 1271 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); 1272 } 1273 1274 /* If it weren't for a common silicon quirk (writing the dummy into the qh 1275 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 1276 * recovery (including urb dequeue) would need software changes to a QH... 1277 */ 1278 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) 1279 { 1280 struct ehci_qtd *qtd; 1281 1282 if (list_empty(&qh->qtd_list)) 1283 qtd = qh->dummy; 1284 else { 1285 qtd = list_entry(qh->qtd_list.next, 1286 struct ehci_qtd, qtd_list); 1287 /* first qtd may already be partially processed */ 1288 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) 1289 qtd = NULL; 1290 } 1291 1292 if (qtd) 1293 qh_update(oxu, qh, qtd); 1294 } 1295 1296 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, 1297 size_t length, u32 token) 1298 { 1299 /* count IN/OUT bytes, not SETUP (even short packets) */ 1300 if (likely(QTD_PID(token) != 2)) 1301 urb->actual_length += length - QTD_LENGTH(token); 1302 1303 /* don't modify error codes */ 1304 if (unlikely(urb->status != -EINPROGRESS)) 1305 return; 1306 1307 /* force cleanup after short read; not always an error */ 1308 if (unlikely(IS_SHORT_READ(token))) 1309 urb->status = -EREMOTEIO; 1310 1311 /* serious "can't proceed" faults reported by the hardware */ 1312 if (token & QTD_STS_HALT) { 1313 if (token & QTD_STS_BABBLE) { 1314 /* FIXME "must" disable babbling device's port too */ 1315 urb->status = -EOVERFLOW; 1316 } else if (token & QTD_STS_MMF) { 1317 /* fs/ls interrupt xfer missed the complete-split */ 1318 urb->status = -EPROTO; 1319 } else if (token & QTD_STS_DBE) { 1320 urb->status = (QTD_PID(token) == 1) /* IN ? */ 1321 ? -ENOSR /* hc couldn't read data */ 1322 : -ECOMM; /* hc couldn't write data */ 1323 } else if (token & QTD_STS_XACT) { 1324 /* timeout, bad crc, wrong PID, etc; retried */ 1325 if (QTD_CERR(token)) 1326 urb->status = -EPIPE; 1327 else { 1328 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", 1329 urb->dev->devpath, 1330 usb_pipeendpoint(urb->pipe), 1331 usb_pipein(urb->pipe) ? "in" : "out"); 1332 urb->status = -EPROTO; 1333 } 1334 /* CERR nonzero + no errors + halt --> stall */ 1335 } else if (QTD_CERR(token)) 1336 urb->status = -EPIPE; 1337 else /* unknown */ 1338 urb->status = -EPROTO; 1339 1340 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", 1341 usb_pipedevice(urb->pipe), 1342 usb_pipeendpoint(urb->pipe), 1343 usb_pipein(urb->pipe) ? "in" : "out", 1344 token, urb->status); 1345 } 1346 } 1347 1348 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) 1349 __releases(oxu->lock) 1350 __acquires(oxu->lock) 1351 { 1352 if (likely(urb->hcpriv != NULL)) { 1353 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 1354 1355 /* S-mask in a QH means it's an interrupt urb */ 1356 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { 1357 1358 /* ... update hc-wide periodic stats (for usbfs) */ 1359 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; 1360 } 1361 qh_put(qh); 1362 } 1363 1364 urb->hcpriv = NULL; 1365 switch (urb->status) { 1366 case -EINPROGRESS: /* success */ 1367 urb->status = 0; 1368 break; 1369 default: /* fault */ 1370 break; 1371 case -EREMOTEIO: /* fault or normal */ 1372 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 1373 urb->status = 0; 1374 break; 1375 case -ECONNRESET: /* canceled */ 1376 case -ENOENT: 1377 break; 1378 } 1379 1380 #ifdef OXU_URB_TRACE 1381 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", 1382 __func__, urb->dev->devpath, urb, 1383 usb_pipeendpoint(urb->pipe), 1384 usb_pipein(urb->pipe) ? "in" : "out", 1385 urb->status, 1386 urb->actual_length, urb->transfer_buffer_length); 1387 #endif 1388 1389 /* complete() can reenter this HCD */ 1390 spin_unlock(&oxu->lock); 1391 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); 1392 spin_lock(&oxu->lock); 1393 } 1394 1395 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 1396 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 1397 1398 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 1399 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 1400 1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT) 1402 1403 /* Process and free completed qtds for a qh, returning URBs to drivers. 1404 * Chases up to qh->hw_current. Returns number of completions called, 1405 * indicating how much "real" work we did. 1406 */ 1407 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) 1408 { 1409 struct ehci_qtd *last = NULL, *end = qh->dummy; 1410 struct ehci_qtd *qtd, *tmp; 1411 int stopped; 1412 unsigned count = 0; 1413 int do_status = 0; 1414 u8 state; 1415 struct oxu_murb *murb = NULL; 1416 1417 if (unlikely(list_empty(&qh->qtd_list))) 1418 return count; 1419 1420 /* completions (or tasks on other cpus) must never clobber HALT 1421 * till we've gone through and cleaned everything up, even when 1422 * they add urbs to this qh's queue or mark them for unlinking. 1423 * 1424 * NOTE: unlinking expects to be done in queue order. 1425 */ 1426 state = qh->qh_state; 1427 qh->qh_state = QH_STATE_COMPLETING; 1428 stopped = (state == QH_STATE_IDLE); 1429 1430 /* remove de-activated QTDs from front of queue. 1431 * after faults (including short reads), cleanup this urb 1432 * then let the queue advance. 1433 * if queue is stopped, handles unlinks. 1434 */ 1435 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 1436 struct urb *urb; 1437 u32 token = 0; 1438 1439 urb = qtd->urb; 1440 1441 /* Clean up any state from previous QTD ...*/ 1442 if (last) { 1443 if (likely(last->urb != urb)) { 1444 if (last->urb->complete == NULL) { 1445 murb = (struct oxu_murb *) last->urb; 1446 last->urb = murb->main; 1447 if (murb->last) { 1448 ehci_urb_done(oxu, last->urb); 1449 count++; 1450 } 1451 oxu_murb_free(oxu, murb); 1452 } else { 1453 ehci_urb_done(oxu, last->urb); 1454 count++; 1455 } 1456 } 1457 oxu_qtd_free(oxu, last); 1458 last = NULL; 1459 } 1460 1461 /* ignore urbs submitted during completions we reported */ 1462 if (qtd == end) 1463 break; 1464 1465 /* hardware copies qtd out of qh overlay */ 1466 rmb(); 1467 token = le32_to_cpu(qtd->hw_token); 1468 1469 /* always clean up qtds the hc de-activated */ 1470 if ((token & QTD_STS_ACTIVE) == 0) { 1471 1472 if ((token & QTD_STS_HALT) != 0) { 1473 stopped = 1; 1474 1475 /* magic dummy for some short reads; qh won't advance. 1476 * that silicon quirk can kick in with this dummy too. 1477 */ 1478 } else if (IS_SHORT_READ(token) && 1479 !(qtd->hw_alt_next & EHCI_LIST_END)) { 1480 stopped = 1; 1481 goto halt; 1482 } 1483 1484 /* stop scanning when we reach qtds the hc is using */ 1485 } else if (likely(!stopped && 1486 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { 1487 break; 1488 1489 } else { 1490 stopped = 1; 1491 1492 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) 1493 urb->status = -ESHUTDOWN; 1494 1495 /* ignore active urbs unless some previous qtd 1496 * for the urb faulted (including short read) or 1497 * its urb was canceled. we may patch qh or qtds. 1498 */ 1499 if (likely(urb->status == -EINPROGRESS)) 1500 continue; 1501 1502 /* issue status after short control reads */ 1503 if (unlikely(do_status != 0) 1504 && QTD_PID(token) == 0 /* OUT */) { 1505 do_status = 0; 1506 continue; 1507 } 1508 1509 /* token in overlay may be most current */ 1510 if (state == QH_STATE_IDLE 1511 && cpu_to_le32(qtd->qtd_dma) 1512 == qh->hw_current) 1513 token = le32_to_cpu(qh->hw_token); 1514 1515 /* force halt for unlinked or blocked qh, so we'll 1516 * patch the qh later and so that completions can't 1517 * activate it while we "know" it's stopped. 1518 */ 1519 if ((HALT_BIT & qh->hw_token) == 0) { 1520 halt: 1521 qh->hw_token |= HALT_BIT; 1522 wmb(); 1523 } 1524 } 1525 1526 /* Remove it from the queue */ 1527 qtd_copy_status(oxu, urb->complete ? 1528 urb : ((struct oxu_murb *) urb)->main, 1529 qtd->length, token); 1530 if ((usb_pipein(qtd->urb->pipe)) && 1531 (NULL != qtd->transfer_buffer)) 1532 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); 1533 do_status = (urb->status == -EREMOTEIO) 1534 && usb_pipecontrol(urb->pipe); 1535 1536 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 1537 last = list_entry(qtd->qtd_list.prev, 1538 struct ehci_qtd, qtd_list); 1539 last->hw_next = qtd->hw_next; 1540 } 1541 list_del(&qtd->qtd_list); 1542 last = qtd; 1543 } 1544 1545 /* last urb's completion might still need calling */ 1546 if (likely(last != NULL)) { 1547 if (last->urb->complete == NULL) { 1548 murb = (struct oxu_murb *) last->urb; 1549 last->urb = murb->main; 1550 if (murb->last) { 1551 ehci_urb_done(oxu, last->urb); 1552 count++; 1553 } 1554 oxu_murb_free(oxu, murb); 1555 } else { 1556 ehci_urb_done(oxu, last->urb); 1557 count++; 1558 } 1559 oxu_qtd_free(oxu, last); 1560 } 1561 1562 /* restore original state; caller must unlink or relink */ 1563 qh->qh_state = state; 1564 1565 /* be sure the hardware's done with the qh before refreshing 1566 * it after fault cleanup, or recovering from silicon wrongly 1567 * overlaying the dummy qtd (which reduces DMA chatter). 1568 */ 1569 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { 1570 switch (state) { 1571 case QH_STATE_IDLE: 1572 qh_refresh(oxu, qh); 1573 break; 1574 case QH_STATE_LINKED: 1575 /* should be rare for periodic transfers, 1576 * except maybe high bandwidth ... 1577 */ 1578 if ((cpu_to_le32(QH_SMASK) 1579 & qh->hw_info2) != 0) { 1580 intr_deschedule(oxu, qh); 1581 (void) qh_schedule(oxu, qh); 1582 } else 1583 unlink_async(oxu, qh); 1584 break; 1585 /* otherwise, unlink already started */ 1586 } 1587 } 1588 1589 return count; 1590 } 1591 1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 1593 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 1594 /* ... and packet size, for any kind of endpoint descriptor */ 1595 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 1596 1597 /* Reverse of qh_urb_transaction: free a list of TDs. 1598 * used for cleanup after errors, before HC sees an URB's TDs. 1599 */ 1600 static void qtd_list_free(struct oxu_hcd *oxu, 1601 struct urb *urb, struct list_head *head) 1602 { 1603 struct ehci_qtd *qtd, *temp; 1604 1605 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 1606 list_del(&qtd->qtd_list); 1607 oxu_qtd_free(oxu, qtd); 1608 } 1609 } 1610 1611 /* Create a list of filled qtds for this URB; won't link into qh. 1612 */ 1613 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, 1614 struct urb *urb, 1615 struct list_head *head, 1616 gfp_t flags) 1617 { 1618 struct ehci_qtd *qtd, *qtd_prev; 1619 dma_addr_t buf; 1620 int len, maxpacket; 1621 int is_input; 1622 u32 token; 1623 void *transfer_buf = NULL; 1624 int ret; 1625 1626 /* 1627 * URBs map to sequences of QTDs: one logical transaction 1628 */ 1629 qtd = ehci_qtd_alloc(oxu); 1630 if (unlikely(!qtd)) 1631 return NULL; 1632 list_add_tail(&qtd->qtd_list, head); 1633 qtd->urb = urb; 1634 1635 token = QTD_STS_ACTIVE; 1636 token |= (EHCI_TUNE_CERR << 10); 1637 /* for split transactions, SplitXState initialized to zero */ 1638 1639 len = urb->transfer_buffer_length; 1640 is_input = usb_pipein(urb->pipe); 1641 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) 1642 urb->transfer_buffer = phys_to_virt(urb->transfer_dma); 1643 1644 if (usb_pipecontrol(urb->pipe)) { 1645 /* SETUP pid */ 1646 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); 1647 if (ret) 1648 goto cleanup; 1649 1650 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), 1651 token | (2 /* "setup" */ << 8), 8); 1652 memcpy(qtd->buffer, qtd->urb->setup_packet, 1653 sizeof(struct usb_ctrlrequest)); 1654 1655 /* ... and always at least one more pid */ 1656 token ^= QTD_TOGGLE; 1657 qtd_prev = qtd; 1658 qtd = ehci_qtd_alloc(oxu); 1659 if (unlikely(!qtd)) 1660 goto cleanup; 1661 qtd->urb = urb; 1662 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1663 list_add_tail(&qtd->qtd_list, head); 1664 1665 /* for zero length DATA stages, STATUS is always IN */ 1666 if (len == 0) 1667 token |= (1 /* "in" */ << 8); 1668 } 1669 1670 /* 1671 * Data transfer stage: buffer setup 1672 */ 1673 1674 ret = oxu_buf_alloc(oxu, qtd, len); 1675 if (ret) 1676 goto cleanup; 1677 1678 buf = qtd->buffer_dma; 1679 transfer_buf = urb->transfer_buffer; 1680 1681 if (!is_input) 1682 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); 1683 1684 if (is_input) 1685 token |= (1 /* "in" */ << 8); 1686 /* else it's already initted to "out" pid (0 << 8) */ 1687 1688 maxpacket = usb_maxpacket(urb->dev, urb->pipe); 1689 1690 /* 1691 * buffer gets wrapped in one or more qtds; 1692 * last one may be "short" (including zero len) 1693 * and may serve as a control status ack 1694 */ 1695 for (;;) { 1696 int this_qtd_len; 1697 1698 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); 1699 qtd->transfer_buffer = transfer_buf; 1700 len -= this_qtd_len; 1701 buf += this_qtd_len; 1702 transfer_buf += this_qtd_len; 1703 if (is_input) 1704 qtd->hw_alt_next = oxu->async->hw_alt_next; 1705 1706 /* qh makes control packets use qtd toggle; maybe switch it */ 1707 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 1708 token ^= QTD_TOGGLE; 1709 1710 if (likely(len <= 0)) 1711 break; 1712 1713 qtd_prev = qtd; 1714 qtd = ehci_qtd_alloc(oxu); 1715 if (unlikely(!qtd)) 1716 goto cleanup; 1717 if (likely(len > 0)) { 1718 ret = oxu_buf_alloc(oxu, qtd, len); 1719 if (ret) 1720 goto cleanup; 1721 } 1722 qtd->urb = urb; 1723 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1724 list_add_tail(&qtd->qtd_list, head); 1725 } 1726 1727 /* unless the bulk/interrupt caller wants a chance to clean 1728 * up after short reads, hc should advance qh past this urb 1729 */ 1730 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 1731 || usb_pipecontrol(urb->pipe))) 1732 qtd->hw_alt_next = EHCI_LIST_END; 1733 1734 /* 1735 * control requests may need a terminating data "status" ack; 1736 * bulk ones may need a terminating short packet (zero length). 1737 */ 1738 if (likely(urb->transfer_buffer_length != 0)) { 1739 int one_more = 0; 1740 1741 if (usb_pipecontrol(urb->pipe)) { 1742 one_more = 1; 1743 token ^= 0x0100; /* "in" <--> "out" */ 1744 token |= QTD_TOGGLE; /* force DATA1 */ 1745 } else if (usb_pipebulk(urb->pipe) 1746 && (urb->transfer_flags & URB_ZERO_PACKET) 1747 && !(urb->transfer_buffer_length % maxpacket)) { 1748 one_more = 1; 1749 } 1750 if (one_more) { 1751 qtd_prev = qtd; 1752 qtd = ehci_qtd_alloc(oxu); 1753 if (unlikely(!qtd)) 1754 goto cleanup; 1755 qtd->urb = urb; 1756 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1757 list_add_tail(&qtd->qtd_list, head); 1758 1759 /* never any data in such packets */ 1760 qtd_fill(qtd, 0, 0, token, 0); 1761 } 1762 } 1763 1764 /* by default, enable interrupt on urb completion */ 1765 qtd->hw_token |= cpu_to_le32(QTD_IOC); 1766 return head; 1767 1768 cleanup: 1769 qtd_list_free(oxu, urb, head); 1770 return NULL; 1771 } 1772 1773 /* Each QH holds a qtd list; a QH is used for everything except iso. 1774 * 1775 * For interrupt urbs, the scheduler must set the microframe scheduling 1776 * mask(s) each time the QH gets scheduled. For highspeed, that's 1777 * just one microframe in the s-mask. For split interrupt transactions 1778 * there are additional complications: c-mask, maybe FSTNs. 1779 */ 1780 static struct ehci_qh *qh_make(struct oxu_hcd *oxu, 1781 struct urb *urb, gfp_t flags) 1782 { 1783 struct ehci_qh *qh = oxu_qh_alloc(oxu); 1784 u32 info1 = 0, info2 = 0; 1785 int is_input, type; 1786 int maxp = 0; 1787 1788 if (!qh) 1789 return qh; 1790 1791 /* 1792 * init endpoint/device data for this QH 1793 */ 1794 info1 |= usb_pipeendpoint(urb->pipe) << 8; 1795 info1 |= usb_pipedevice(urb->pipe) << 0; 1796 1797 is_input = usb_pipein(urb->pipe); 1798 type = usb_pipetype(urb->pipe); 1799 maxp = usb_maxpacket(urb->dev, urb->pipe); 1800 1801 /* Compute interrupt scheduling parameters just once, and save. 1802 * - allowing for high bandwidth, how many nsec/uframe are used? 1803 * - split transactions need a second CSPLIT uframe; same question 1804 * - splits also need a schedule gap (for full/low speed I/O) 1805 * - qh has a polling interval 1806 * 1807 * For control/bulk requests, the HC or TT handles these. 1808 */ 1809 if (type == PIPE_INTERRUPT) { 1810 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 1811 is_input, 0, 1812 hb_mult(maxp) * max_packet(maxp))); 1813 qh->start = NO_FRAME; 1814 1815 if (urb->dev->speed == USB_SPEED_HIGH) { 1816 qh->c_usecs = 0; 1817 qh->gap_uf = 0; 1818 1819 qh->period = urb->interval >> 3; 1820 if (qh->period == 0 && urb->interval != 1) { 1821 /* NOTE interval 2 or 4 uframes could work. 1822 * But interval 1 scheduling is simpler, and 1823 * includes high bandwidth. 1824 */ 1825 oxu_dbg(oxu, "intr period %d uframes, NYET!\n", 1826 urb->interval); 1827 goto done; 1828 } 1829 } else { 1830 struct usb_tt *tt = urb->dev->tt; 1831 int think_time; 1832 1833 /* gap is f(FS/LS transfer times) */ 1834 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 1835 is_input, 0, maxp) / (125 * 1000); 1836 1837 /* FIXME this just approximates SPLIT/CSPLIT times */ 1838 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 1839 qh->c_usecs = qh->usecs + HS_USECS(0); 1840 qh->usecs = HS_USECS(1); 1841 } else { /* SPLIT+DATA, gap, CSPLIT */ 1842 qh->usecs += HS_USECS(1); 1843 qh->c_usecs = HS_USECS(0); 1844 } 1845 1846 think_time = tt ? tt->think_time : 0; 1847 qh->tt_usecs = NS_TO_US(think_time + 1848 usb_calc_bus_time(urb->dev->speed, 1849 is_input, 0, max_packet(maxp))); 1850 qh->period = urb->interval; 1851 } 1852 } 1853 1854 /* support for tt scheduling, and access to toggles */ 1855 qh->dev = urb->dev; 1856 1857 /* using TT? */ 1858 switch (urb->dev->speed) { 1859 case USB_SPEED_LOW: 1860 info1 |= (1 << 12); /* EPS "low" */ 1861 fallthrough; 1862 1863 case USB_SPEED_FULL: 1864 /* EPS 0 means "full" */ 1865 if (type != PIPE_INTERRUPT) 1866 info1 |= (EHCI_TUNE_RL_TT << 28); 1867 if (type == PIPE_CONTROL) { 1868 info1 |= (1 << 27); /* for TT */ 1869 info1 |= 1 << 14; /* toggle from qtd */ 1870 } 1871 info1 |= maxp << 16; 1872 1873 info2 |= (EHCI_TUNE_MULT_TT << 30); 1874 info2 |= urb->dev->ttport << 23; 1875 1876 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 1877 1878 break; 1879 1880 case USB_SPEED_HIGH: /* no TT involved */ 1881 info1 |= (2 << 12); /* EPS "high" */ 1882 if (type == PIPE_CONTROL) { 1883 info1 |= (EHCI_TUNE_RL_HS << 28); 1884 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 1885 info1 |= 1 << 14; /* toggle from qtd */ 1886 info2 |= (EHCI_TUNE_MULT_HS << 30); 1887 } else if (type == PIPE_BULK) { 1888 info1 |= (EHCI_TUNE_RL_HS << 28); 1889 info1 |= 512 << 16; /* usb2 fixed maxpacket */ 1890 info2 |= (EHCI_TUNE_MULT_HS << 30); 1891 } else { /* PIPE_INTERRUPT */ 1892 info1 |= max_packet(maxp) << 16; 1893 info2 |= hb_mult(maxp) << 30; 1894 } 1895 break; 1896 default: 1897 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); 1898 done: 1899 qh_put(qh); 1900 return NULL; 1901 } 1902 1903 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 1904 1905 /* init as live, toggle clear, advance to dummy */ 1906 qh->qh_state = QH_STATE_IDLE; 1907 qh->hw_info1 = cpu_to_le32(info1); 1908 qh->hw_info2 = cpu_to_le32(info2); 1909 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 1910 qh_refresh(oxu, qh); 1911 return qh; 1912 } 1913 1914 /* Move qh (and its qtds) onto async queue; maybe enable queue. 1915 */ 1916 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1917 { 1918 __le32 dma = QH_NEXT(qh->qh_dma); 1919 struct ehci_qh *head; 1920 1921 /* (re)start the async schedule? */ 1922 head = oxu->async; 1923 timer_action_done(oxu, TIMER_ASYNC_OFF); 1924 if (!head->qh_next.qh) { 1925 u32 cmd = readl(&oxu->regs->command); 1926 1927 if (!(cmd & CMD_ASE)) { 1928 /* in case a clear of CMD_ASE didn't take yet */ 1929 (void)handshake(oxu, &oxu->regs->status, 1930 STS_ASS, 0, 150); 1931 cmd |= CMD_ASE | CMD_RUN; 1932 writel(cmd, &oxu->regs->command); 1933 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1934 /* posted write need not be known to HC yet ... */ 1935 } 1936 } 1937 1938 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1939 if (qh->qh_state == QH_STATE_IDLE) 1940 qh_refresh(oxu, qh); 1941 1942 /* splice right after start */ 1943 qh->qh_next = head->qh_next; 1944 qh->hw_next = head->hw_next; 1945 wmb(); 1946 1947 head->qh_next.qh = qh; 1948 head->hw_next = dma; 1949 1950 qh->qh_state = QH_STATE_LINKED; 1951 /* qtd completions reported later by interrupt */ 1952 } 1953 1954 #define QH_ADDR_MASK cpu_to_le32(0x7f) 1955 1956 /* 1957 * For control/bulk/interrupt, return QH with these TDs appended. 1958 * Allocates and initializes the QH if necessary. 1959 * Returns null if it can't allocate a QH it needs to. 1960 * If the QH has TDs (urbs) already, that's great. 1961 */ 1962 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, 1963 struct urb *urb, struct list_head *qtd_list, 1964 int epnum, void **ptr) 1965 { 1966 struct ehci_qh *qh = NULL; 1967 1968 qh = (struct ehci_qh *) *ptr; 1969 if (unlikely(qh == NULL)) { 1970 /* can't sleep here, we have oxu->lock... */ 1971 qh = qh_make(oxu, urb, GFP_ATOMIC); 1972 *ptr = qh; 1973 } 1974 if (likely(qh != NULL)) { 1975 struct ehci_qtd *qtd; 1976 1977 if (unlikely(list_empty(qtd_list))) 1978 qtd = NULL; 1979 else 1980 qtd = list_entry(qtd_list->next, struct ehci_qtd, 1981 qtd_list); 1982 1983 /* control qh may need patching ... */ 1984 if (unlikely(epnum == 0)) { 1985 1986 /* usb_reset_device() briefly reverts to address 0 */ 1987 if (usb_pipedevice(urb->pipe) == 0) 1988 qh->hw_info1 &= ~QH_ADDR_MASK; 1989 } 1990 1991 /* just one way to queue requests: swap with the dummy qtd. 1992 * only hc or qh_refresh() ever modify the overlay. 1993 */ 1994 if (likely(qtd != NULL)) { 1995 struct ehci_qtd *dummy; 1996 dma_addr_t dma; 1997 __le32 token; 1998 1999 /* to avoid racing the HC, use the dummy td instead of 2000 * the first td of our list (becomes new dummy). both 2001 * tds stay deactivated until we're done, when the 2002 * HC is allowed to fetch the old dummy (4.10.2). 2003 */ 2004 token = qtd->hw_token; 2005 qtd->hw_token = HALT_BIT; 2006 wmb(); 2007 dummy = qh->dummy; 2008 2009 dma = dummy->qtd_dma; 2010 *dummy = *qtd; 2011 dummy->qtd_dma = dma; 2012 2013 list_del(&qtd->qtd_list); 2014 list_add(&dummy->qtd_list, qtd_list); 2015 list_splice(qtd_list, qh->qtd_list.prev); 2016 2017 ehci_qtd_init(qtd, qtd->qtd_dma); 2018 qh->dummy = qtd; 2019 2020 /* hc must see the new dummy at list end */ 2021 dma = qtd->qtd_dma; 2022 qtd = list_entry(qh->qtd_list.prev, 2023 struct ehci_qtd, qtd_list); 2024 qtd->hw_next = QTD_NEXT(dma); 2025 2026 /* let the hc process these next qtds */ 2027 dummy->hw_token = (token & ~(0x80)); 2028 wmb(); 2029 dummy->hw_token = token; 2030 2031 urb->hcpriv = qh_get(qh); 2032 } 2033 } 2034 return qh; 2035 } 2036 2037 static int submit_async(struct oxu_hcd *oxu, struct urb *urb, 2038 struct list_head *qtd_list, gfp_t mem_flags) 2039 { 2040 int epnum = urb->ep->desc.bEndpointAddress; 2041 unsigned long flags; 2042 struct ehci_qh *qh = NULL; 2043 int rc = 0; 2044 #ifdef OXU_URB_TRACE 2045 struct ehci_qtd *qtd; 2046 2047 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 2048 2049 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 2050 __func__, urb->dev->devpath, urb, 2051 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 2052 urb->transfer_buffer_length, 2053 qtd, urb->ep->hcpriv); 2054 #endif 2055 2056 spin_lock_irqsave(&oxu->lock, flags); 2057 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2058 rc = -ESHUTDOWN; 2059 goto done; 2060 } 2061 2062 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2063 if (unlikely(qh == NULL)) { 2064 rc = -ENOMEM; 2065 goto done; 2066 } 2067 2068 /* Control/bulk operations through TTs don't need scheduling, 2069 * the HC and TT handle it when the TT has a buffer ready. 2070 */ 2071 if (likely(qh->qh_state == QH_STATE_IDLE)) 2072 qh_link_async(oxu, qh_get(qh)); 2073 done: 2074 spin_unlock_irqrestore(&oxu->lock, flags); 2075 if (unlikely(qh == NULL)) 2076 qtd_list_free(oxu, urb, qtd_list); 2077 return rc; 2078 } 2079 2080 /* The async qh for the qtds being reclaimed are now unlinked from the HC */ 2081 2082 static void end_unlink_async(struct oxu_hcd *oxu) 2083 { 2084 struct ehci_qh *qh = oxu->reclaim; 2085 struct ehci_qh *next; 2086 2087 timer_action_done(oxu, TIMER_IAA_WATCHDOG); 2088 2089 qh->qh_state = QH_STATE_IDLE; 2090 qh->qh_next.qh = NULL; 2091 qh_put(qh); /* refcount from reclaim */ 2092 2093 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 2094 next = qh->reclaim; 2095 oxu->reclaim = next; 2096 oxu->reclaim_ready = 0; 2097 qh->reclaim = NULL; 2098 2099 qh_completions(oxu, qh); 2100 2101 if (!list_empty(&qh->qtd_list) 2102 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2103 qh_link_async(oxu, qh); 2104 else { 2105 qh_put(qh); /* refcount from async list */ 2106 2107 /* it's not free to turn the async schedule on/off; leave it 2108 * active but idle for a while once it empties. 2109 */ 2110 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) 2111 && oxu->async->qh_next.qh == NULL) 2112 timer_action(oxu, TIMER_ASYNC_OFF); 2113 } 2114 2115 if (next) { 2116 oxu->reclaim = NULL; 2117 start_unlink_async(oxu, next); 2118 } 2119 } 2120 2121 /* makes sure the async qh will become idle */ 2122 /* caller must own oxu->lock */ 2123 2124 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2125 { 2126 int cmd = readl(&oxu->regs->command); 2127 struct ehci_qh *prev; 2128 2129 #ifdef DEBUG 2130 assert_spin_locked(&oxu->lock); 2131 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED 2132 && qh->qh_state != QH_STATE_UNLINK_WAIT)); 2133 #endif 2134 2135 /* stop async schedule right now? */ 2136 if (unlikely(qh == oxu->async)) { 2137 /* can't get here without STS_ASS set */ 2138 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT 2139 && !oxu->reclaim) { 2140 /* ... and CMD_IAAD clear */ 2141 writel(cmd & ~CMD_ASE, &oxu->regs->command); 2142 wmb(); 2143 /* handshake later, if we need to */ 2144 timer_action_done(oxu, TIMER_ASYNC_OFF); 2145 } 2146 return; 2147 } 2148 2149 qh->qh_state = QH_STATE_UNLINK; 2150 oxu->reclaim = qh = qh_get(qh); 2151 2152 prev = oxu->async; 2153 while (prev->qh_next.qh != qh) 2154 prev = prev->qh_next.qh; 2155 2156 prev->hw_next = qh->hw_next; 2157 prev->qh_next = qh->qh_next; 2158 wmb(); 2159 2160 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { 2161 /* if (unlikely(qh->reclaim != 0)) 2162 * this will recurse, probably not much 2163 */ 2164 end_unlink_async(oxu); 2165 return; 2166 } 2167 2168 oxu->reclaim_ready = 0; 2169 cmd |= CMD_IAAD; 2170 writel(cmd, &oxu->regs->command); 2171 (void) readl(&oxu->regs->command); 2172 timer_action(oxu, TIMER_IAA_WATCHDOG); 2173 } 2174 2175 static void scan_async(struct oxu_hcd *oxu) 2176 { 2177 struct ehci_qh *qh; 2178 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 2179 2180 if (!++(oxu->stamp)) 2181 oxu->stamp++; 2182 timer_action_done(oxu, TIMER_ASYNC_SHRINK); 2183 rescan: 2184 qh = oxu->async->qh_next.qh; 2185 if (likely(qh != NULL)) { 2186 do { 2187 /* clean any finished work for this qh */ 2188 if (!list_empty(&qh->qtd_list) 2189 && qh->stamp != oxu->stamp) { 2190 int temp; 2191 2192 /* unlinks could happen here; completion 2193 * reporting drops the lock. rescan using 2194 * the latest schedule, but don't rescan 2195 * qhs we already finished (no looping). 2196 */ 2197 qh = qh_get(qh); 2198 qh->stamp = oxu->stamp; 2199 temp = qh_completions(oxu, qh); 2200 qh_put(qh); 2201 if (temp != 0) 2202 goto rescan; 2203 } 2204 2205 /* unlink idle entries, reducing HC PCI usage as well 2206 * as HCD schedule-scanning costs. delay for any qh 2207 * we just scanned, there's a not-unusual case that it 2208 * doesn't stay idle for long. 2209 * (plus, avoids some kind of re-activation race.) 2210 */ 2211 if (list_empty(&qh->qtd_list)) { 2212 if (qh->stamp == oxu->stamp) 2213 action = TIMER_ASYNC_SHRINK; 2214 else if (!oxu->reclaim 2215 && qh->qh_state == QH_STATE_LINKED) 2216 start_unlink_async(oxu, qh); 2217 } 2218 2219 qh = qh->qh_next.qh; 2220 } while (qh); 2221 } 2222 if (action == TIMER_ASYNC_SHRINK) 2223 timer_action(oxu, TIMER_ASYNC_SHRINK); 2224 } 2225 2226 /* 2227 * periodic_next_shadow - return "next" pointer on shadow list 2228 * @periodic: host pointer to qh/itd/sitd 2229 * @tag: hardware tag for type of this record 2230 */ 2231 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, 2232 __le32 tag) 2233 { 2234 switch (tag) { 2235 default: 2236 case Q_TYPE_QH: 2237 return &periodic->qh->qh_next; 2238 } 2239 } 2240 2241 /* caller must hold oxu->lock */ 2242 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) 2243 { 2244 union ehci_shadow *prev_p = &oxu->pshadow[frame]; 2245 __le32 *hw_p = &oxu->periodic[frame]; 2246 union ehci_shadow here = *prev_p; 2247 2248 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 2249 while (here.ptr && here.ptr != ptr) { 2250 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); 2251 hw_p = here.hw_next; 2252 here = *prev_p; 2253 } 2254 /* an interrupt entry (at list end) could have been shared */ 2255 if (!here.ptr) 2256 return; 2257 2258 /* update shadow and hardware lists ... the old "next" pointers 2259 * from ptr may still be in use, the caller updates them. 2260 */ 2261 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); 2262 *hw_p = *here.hw_next; 2263 } 2264 2265 /* how many of the uframe's 125 usecs are allocated? */ 2266 static unsigned short periodic_usecs(struct oxu_hcd *oxu, 2267 unsigned frame, unsigned uframe) 2268 { 2269 __le32 *hw_p = &oxu->periodic[frame]; 2270 union ehci_shadow *q = &oxu->pshadow[frame]; 2271 unsigned usecs = 0; 2272 2273 while (q->ptr) { 2274 switch (Q_NEXT_TYPE(*hw_p)) { 2275 case Q_TYPE_QH: 2276 default: 2277 /* is it in the S-mask? */ 2278 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) 2279 usecs += q->qh->usecs; 2280 /* ... or C-mask? */ 2281 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) 2282 usecs += q->qh->c_usecs; 2283 hw_p = &q->qh->hw_next; 2284 q = &q->qh->qh_next; 2285 break; 2286 } 2287 } 2288 #ifdef DEBUG 2289 if (usecs > 100) 2290 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", 2291 frame * 8 + uframe, usecs); 2292 #endif 2293 return usecs; 2294 } 2295 2296 static int enable_periodic(struct oxu_hcd *oxu) 2297 { 2298 u32 cmd; 2299 int status; 2300 2301 /* did clearing PSE did take effect yet? 2302 * takes effect only at frame boundaries... 2303 */ 2304 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); 2305 if (status != 0) { 2306 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 2307 usb_hc_died(oxu_to_hcd(oxu)); 2308 return status; 2309 } 2310 2311 cmd = readl(&oxu->regs->command) | CMD_PSE; 2312 writel(cmd, &oxu->regs->command); 2313 /* posted write ... PSS happens later */ 2314 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 2315 2316 /* make sure ehci_work scans these */ 2317 oxu->next_uframe = readl(&oxu->regs->frame_index) 2318 % (oxu->periodic_size << 3); 2319 return 0; 2320 } 2321 2322 static int disable_periodic(struct oxu_hcd *oxu) 2323 { 2324 u32 cmd; 2325 int status; 2326 2327 /* did setting PSE not take effect yet? 2328 * takes effect only at frame boundaries... 2329 */ 2330 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); 2331 if (status != 0) { 2332 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 2333 usb_hc_died(oxu_to_hcd(oxu)); 2334 return status; 2335 } 2336 2337 cmd = readl(&oxu->regs->command) & ~CMD_PSE; 2338 writel(cmd, &oxu->regs->command); 2339 /* posted write ... */ 2340 2341 oxu->next_uframe = -1; 2342 return 0; 2343 } 2344 2345 /* periodic schedule slots have iso tds (normal or split) first, then a 2346 * sparse tree for active interrupt transfers. 2347 * 2348 * this just links in a qh; caller guarantees uframe masks are set right. 2349 * no FSTN support (yet; oxu 0.96+) 2350 */ 2351 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 2352 { 2353 unsigned i; 2354 unsigned period = qh->period; 2355 2356 dev_dbg(&qh->dev->dev, 2357 "link qh%d-%04x/%p start %d [%d/%d us]\n", 2358 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2359 qh, qh->start, qh->usecs, qh->c_usecs); 2360 2361 /* high bandwidth, or otherwise every microframe */ 2362 if (period == 0) 2363 period = 1; 2364 2365 for (i = qh->start; i < oxu->periodic_size; i += period) { 2366 union ehci_shadow *prev = &oxu->pshadow[i]; 2367 __le32 *hw_p = &oxu->periodic[i]; 2368 union ehci_shadow here = *prev; 2369 __le32 type = 0; 2370 2371 /* skip the iso nodes at list head */ 2372 while (here.ptr) { 2373 type = Q_NEXT_TYPE(*hw_p); 2374 if (type == Q_TYPE_QH) 2375 break; 2376 prev = periodic_next_shadow(prev, type); 2377 hw_p = &here.qh->hw_next; 2378 here = *prev; 2379 } 2380 2381 /* sorting each branch by period (slow-->fast) 2382 * enables sharing interior tree nodes 2383 */ 2384 while (here.ptr && qh != here.qh) { 2385 if (qh->period > here.qh->period) 2386 break; 2387 prev = &here.qh->qh_next; 2388 hw_p = &here.qh->hw_next; 2389 here = *prev; 2390 } 2391 /* link in this qh, unless some earlier pass did that */ 2392 if (qh != here.qh) { 2393 qh->qh_next = here; 2394 if (here.qh) 2395 qh->hw_next = *hw_p; 2396 wmb(); 2397 prev->qh = qh; 2398 *hw_p = QH_NEXT(qh->qh_dma); 2399 } 2400 } 2401 qh->qh_state = QH_STATE_LINKED; 2402 qh_get(qh); 2403 2404 /* update per-qh bandwidth for usbfs */ 2405 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period 2406 ? ((qh->usecs + qh->c_usecs) / qh->period) 2407 : (qh->usecs * 8); 2408 2409 /* maybe enable periodic schedule processing */ 2410 if (!oxu->periodic_sched++) 2411 return enable_periodic(oxu); 2412 2413 return 0; 2414 } 2415 2416 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 2417 { 2418 unsigned i; 2419 unsigned period; 2420 2421 /* FIXME: 2422 * IF this isn't high speed 2423 * and this qh is active in the current uframe 2424 * (and overlay token SplitXstate is false?) 2425 * THEN 2426 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); 2427 */ 2428 2429 /* high bandwidth, or otherwise part of every microframe */ 2430 period = qh->period; 2431 if (period == 0) 2432 period = 1; 2433 2434 for (i = qh->start; i < oxu->periodic_size; i += period) 2435 periodic_unlink(oxu, i, qh); 2436 2437 /* update per-qh bandwidth for usbfs */ 2438 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period 2439 ? ((qh->usecs + qh->c_usecs) / qh->period) 2440 : (qh->usecs * 8); 2441 2442 dev_dbg(&qh->dev->dev, 2443 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 2444 qh->period, 2445 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2446 qh, qh->start, qh->usecs, qh->c_usecs); 2447 2448 /* qh->qh_next still "live" to HC */ 2449 qh->qh_state = QH_STATE_UNLINK; 2450 qh->qh_next.ptr = NULL; 2451 qh_put(qh); 2452 2453 /* maybe turn off periodic schedule */ 2454 oxu->periodic_sched--; 2455 if (!oxu->periodic_sched) 2456 (void) disable_periodic(oxu); 2457 } 2458 2459 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2460 { 2461 unsigned wait; 2462 2463 qh_unlink_periodic(oxu, qh); 2464 2465 /* simple/paranoid: always delay, expecting the HC needs to read 2466 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 2467 * expect hub_wq to clean up after any CSPLITs we won't issue. 2468 * active high speed queues may need bigger delays... 2469 */ 2470 if (list_empty(&qh->qtd_list) 2471 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) 2472 wait = 2; 2473 else 2474 wait = 55; /* worst case: 3 * 1024 */ 2475 2476 udelay(wait); 2477 qh->qh_state = QH_STATE_IDLE; 2478 qh->hw_next = EHCI_LIST_END; 2479 wmb(); 2480 } 2481 2482 static int check_period(struct oxu_hcd *oxu, 2483 unsigned frame, unsigned uframe, 2484 unsigned period, unsigned usecs) 2485 { 2486 int claimed; 2487 2488 /* complete split running into next frame? 2489 * given FSTN support, we could sometimes check... 2490 */ 2491 if (uframe >= 8) 2492 return 0; 2493 2494 /* 2495 * 80% periodic == 100 usec/uframe available 2496 * convert "usecs we need" to "max already claimed" 2497 */ 2498 usecs = 100 - usecs; 2499 2500 /* we "know" 2 and 4 uframe intervals were rejected; so 2501 * for period 0, check _every_ microframe in the schedule. 2502 */ 2503 if (unlikely(period == 0)) { 2504 do { 2505 for (uframe = 0; uframe < 7; uframe++) { 2506 claimed = periodic_usecs(oxu, frame, uframe); 2507 if (claimed > usecs) 2508 return 0; 2509 } 2510 } while ((frame += 1) < oxu->periodic_size); 2511 2512 /* just check the specified uframe, at that period */ 2513 } else { 2514 do { 2515 claimed = periodic_usecs(oxu, frame, uframe); 2516 if (claimed > usecs) 2517 return 0; 2518 } while ((frame += period) < oxu->periodic_size); 2519 } 2520 2521 return 1; 2522 } 2523 2524 static int check_intr_schedule(struct oxu_hcd *oxu, 2525 unsigned frame, unsigned uframe, 2526 const struct ehci_qh *qh, __le32 *c_maskp) 2527 { 2528 int retval = -ENOSPC; 2529 2530 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 2531 goto done; 2532 2533 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) 2534 goto done; 2535 if (!qh->c_usecs) { 2536 retval = 0; 2537 *c_maskp = 0; 2538 goto done; 2539 } 2540 2541 done: 2542 return retval; 2543 } 2544 2545 /* "first fit" scheduling policy used the first time through, 2546 * or when the previous schedule slot can't be re-used. 2547 */ 2548 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2549 { 2550 int status; 2551 unsigned uframe; 2552 __le32 c_mask; 2553 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 2554 2555 qh_refresh(oxu, qh); 2556 qh->hw_next = EHCI_LIST_END; 2557 frame = qh->start; 2558 2559 /* reuse the previous schedule slots, if we can */ 2560 if (frame < qh->period) { 2561 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); 2562 status = check_intr_schedule(oxu, frame, --uframe, 2563 qh, &c_mask); 2564 } else { 2565 uframe = 0; 2566 c_mask = 0; 2567 status = -ENOSPC; 2568 } 2569 2570 /* else scan the schedule to find a group of slots such that all 2571 * uframes have enough periodic bandwidth available. 2572 */ 2573 if (status) { 2574 /* "normal" case, uframing flexible except with splits */ 2575 if (qh->period) { 2576 frame = qh->period - 1; 2577 do { 2578 for (uframe = 0; uframe < 8; uframe++) { 2579 status = check_intr_schedule(oxu, 2580 frame, uframe, qh, 2581 &c_mask); 2582 if (status == 0) 2583 break; 2584 } 2585 } while (status && frame--); 2586 2587 /* qh->period == 0 means every uframe */ 2588 } else { 2589 frame = 0; 2590 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); 2591 } 2592 if (status) 2593 goto done; 2594 qh->start = frame; 2595 2596 /* reset S-frame and (maybe) C-frame masks */ 2597 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); 2598 qh->hw_info2 |= qh->period 2599 ? cpu_to_le32(1 << uframe) 2600 : cpu_to_le32(QH_SMASK); 2601 qh->hw_info2 |= c_mask; 2602 } else 2603 oxu_dbg(oxu, "reused qh %p schedule\n", qh); 2604 2605 /* stuff into the periodic schedule */ 2606 status = qh_link_periodic(oxu, qh); 2607 done: 2608 return status; 2609 } 2610 2611 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, 2612 struct list_head *qtd_list, gfp_t mem_flags) 2613 { 2614 unsigned epnum; 2615 unsigned long flags; 2616 struct ehci_qh *qh; 2617 int status = 0; 2618 struct list_head empty; 2619 2620 /* get endpoint and transfer/schedule data */ 2621 epnum = urb->ep->desc.bEndpointAddress; 2622 2623 spin_lock_irqsave(&oxu->lock, flags); 2624 2625 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2626 status = -ESHUTDOWN; 2627 goto done; 2628 } 2629 2630 /* get qh and force any scheduling errors */ 2631 INIT_LIST_HEAD(&empty); 2632 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); 2633 if (qh == NULL) { 2634 status = -ENOMEM; 2635 goto done; 2636 } 2637 if (qh->qh_state == QH_STATE_IDLE) { 2638 status = qh_schedule(oxu, qh); 2639 if (status != 0) 2640 goto done; 2641 } 2642 2643 /* then queue the urb's tds to the qh */ 2644 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2645 BUG_ON(qh == NULL); 2646 2647 /* ... update usbfs periodic stats */ 2648 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; 2649 2650 done: 2651 spin_unlock_irqrestore(&oxu->lock, flags); 2652 if (status) 2653 qtd_list_free(oxu, urb, qtd_list); 2654 2655 return status; 2656 } 2657 2658 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, 2659 gfp_t mem_flags) 2660 { 2661 oxu_dbg(oxu, "iso support is missing!\n"); 2662 return -ENOSYS; 2663 } 2664 2665 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, 2666 gfp_t mem_flags) 2667 { 2668 oxu_dbg(oxu, "split iso support is missing!\n"); 2669 return -ENOSYS; 2670 } 2671 2672 static void scan_periodic(struct oxu_hcd *oxu) 2673 { 2674 unsigned frame, clock, now_uframe, mod; 2675 unsigned modified; 2676 2677 mod = oxu->periodic_size << 3; 2678 2679 /* 2680 * When running, scan from last scan point up to "now" 2681 * else clean up by scanning everything that's left. 2682 * Touches as few pages as possible: cache-friendly. 2683 */ 2684 now_uframe = oxu->next_uframe; 2685 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2686 clock = readl(&oxu->regs->frame_index); 2687 else 2688 clock = now_uframe + mod - 1; 2689 clock %= mod; 2690 2691 for (;;) { 2692 union ehci_shadow q, *q_p; 2693 __le32 type, *hw_p; 2694 2695 /* don't scan past the live uframe */ 2696 frame = now_uframe >> 3; 2697 if (frame != (clock >> 3)) { 2698 /* safe to scan the whole frame at once */ 2699 now_uframe |= 0x07; 2700 } 2701 2702 restart: 2703 /* scan each element in frame's queue for completions */ 2704 q_p = &oxu->pshadow[frame]; 2705 hw_p = &oxu->periodic[frame]; 2706 q.ptr = q_p->ptr; 2707 type = Q_NEXT_TYPE(*hw_p); 2708 modified = 0; 2709 2710 while (q.ptr != NULL) { 2711 union ehci_shadow temp; 2712 2713 switch (type) { 2714 case Q_TYPE_QH: 2715 /* handle any completions */ 2716 temp.qh = qh_get(q.qh); 2717 type = Q_NEXT_TYPE(q.qh->hw_next); 2718 q = q.qh->qh_next; 2719 modified = qh_completions(oxu, temp.qh); 2720 if (unlikely(list_empty(&temp.qh->qtd_list))) 2721 intr_deschedule(oxu, temp.qh); 2722 qh_put(temp.qh); 2723 break; 2724 default: 2725 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n", 2726 type, frame, q.ptr); 2727 q.ptr = NULL; 2728 } 2729 2730 /* assume completion callbacks modify the queue */ 2731 if (unlikely(modified)) 2732 goto restart; 2733 } 2734 2735 /* Stop when we catch up to the HC */ 2736 2737 /* FIXME: this assumes we won't get lapped when 2738 * latencies climb; that should be rare, but... 2739 * detect it, and just go all the way around. 2740 * FLR might help detect this case, so long as latencies 2741 * don't exceed periodic_size msec (default 1.024 sec). 2742 */ 2743 2744 /* FIXME: likewise assumes HC doesn't halt mid-scan */ 2745 2746 if (now_uframe == clock) { 2747 unsigned now; 2748 2749 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2750 break; 2751 oxu->next_uframe = now_uframe; 2752 now = readl(&oxu->regs->frame_index) % mod; 2753 if (now_uframe == now) 2754 break; 2755 2756 /* rescan the rest of this frame, then ... */ 2757 clock = now; 2758 } else { 2759 now_uframe++; 2760 now_uframe %= mod; 2761 } 2762 } 2763 } 2764 2765 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 2766 * The firmware seems to think that powering off is a wakeup event! 2767 * This routine turns off remote wakeup and everything else, on all ports. 2768 */ 2769 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) 2770 { 2771 int port = HCS_N_PORTS(oxu->hcs_params); 2772 2773 while (port--) 2774 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); 2775 } 2776 2777 static void ehci_port_power(struct oxu_hcd *oxu, int is_on) 2778 { 2779 unsigned port; 2780 2781 if (!HCS_PPC(oxu->hcs_params)) 2782 return; 2783 2784 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); 2785 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) { 2786 if (is_on) 2787 oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature, 2788 USB_PORT_FEAT_POWER, port--, NULL, 0); 2789 else 2790 oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature, 2791 USB_PORT_FEAT_POWER, port--, NULL, 0); 2792 } 2793 2794 msleep(20); 2795 } 2796 2797 /* Called from some interrupts, timers, and so on. 2798 * It calls driver completion functions, after dropping oxu->lock. 2799 */ 2800 static void ehci_work(struct oxu_hcd *oxu) 2801 { 2802 timer_action_done(oxu, TIMER_IO_WATCHDOG); 2803 if (oxu->reclaim_ready) 2804 end_unlink_async(oxu); 2805 2806 /* another CPU may drop oxu->lock during a schedule scan while 2807 * it reports urb completions. this flag guards against bogus 2808 * attempts at re-entrant schedule scanning. 2809 */ 2810 if (oxu->scanning) 2811 return; 2812 oxu->scanning = 1; 2813 scan_async(oxu); 2814 if (oxu->next_uframe != -1) 2815 scan_periodic(oxu); 2816 oxu->scanning = 0; 2817 2818 /* the IO watchdog guards against hardware or driver bugs that 2819 * misplace IRQs, and should let us run completely without IRQs. 2820 * such lossage has been observed on both VT6202 and VT8235. 2821 */ 2822 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && 2823 (oxu->async->qh_next.ptr != NULL || 2824 oxu->periodic_sched != 0)) 2825 timer_action(oxu, TIMER_IO_WATCHDOG); 2826 } 2827 2828 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2829 { 2830 /* if we need to use IAA and it's busy, defer */ 2831 if (qh->qh_state == QH_STATE_LINKED 2832 && oxu->reclaim 2833 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { 2834 struct ehci_qh *last; 2835 2836 for (last = oxu->reclaim; 2837 last->reclaim; 2838 last = last->reclaim) 2839 continue; 2840 qh->qh_state = QH_STATE_UNLINK_WAIT; 2841 last->reclaim = qh; 2842 2843 /* bypass IAA if the hc can't care */ 2844 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) 2845 end_unlink_async(oxu); 2846 2847 /* something else might have unlinked the qh by now */ 2848 if (qh->qh_state == QH_STATE_LINKED) 2849 start_unlink_async(oxu, qh); 2850 } 2851 2852 /* 2853 * USB host controller methods 2854 */ 2855 2856 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) 2857 { 2858 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2859 u32 status, pcd_status = 0; 2860 int bh; 2861 2862 spin_lock(&oxu->lock); 2863 2864 status = readl(&oxu->regs->status); 2865 2866 /* e.g. cardbus physical eject */ 2867 if (status == ~(u32) 0) { 2868 oxu_dbg(oxu, "device removed\n"); 2869 goto dead; 2870 } 2871 2872 /* Shared IRQ? */ 2873 status &= INTR_MASK; 2874 if (!status || unlikely(hcd->state == HC_STATE_HALT)) { 2875 spin_unlock(&oxu->lock); 2876 return IRQ_NONE; 2877 } 2878 2879 /* clear (just) interrupts */ 2880 writel(status, &oxu->regs->status); 2881 readl(&oxu->regs->command); /* unblock posted write */ 2882 bh = 0; 2883 2884 #ifdef OXU_VERBOSE_DEBUG 2885 /* unrequested/ignored: Frame List Rollover */ 2886 dbg_status(oxu, "irq", status); 2887 #endif 2888 2889 /* INT, ERR, and IAA interrupt rates can be throttled */ 2890 2891 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 2892 if (likely((status & (STS_INT|STS_ERR)) != 0)) 2893 bh = 1; 2894 2895 /* complete the unlinking of some qh [4.15.2.3] */ 2896 if (status & STS_IAA) { 2897 oxu->reclaim_ready = 1; 2898 bh = 1; 2899 } 2900 2901 /* remote wakeup [4.3.1] */ 2902 if (status & STS_PCD) { 2903 unsigned i = HCS_N_PORTS(oxu->hcs_params); 2904 pcd_status = status; 2905 2906 /* resume root hub? */ 2907 if (!(readl(&oxu->regs->command) & CMD_RUN)) 2908 usb_hcd_resume_root_hub(hcd); 2909 2910 while (i--) { 2911 int pstatus = readl(&oxu->regs->port_status[i]); 2912 2913 if (pstatus & PORT_OWNER) 2914 continue; 2915 if (!(pstatus & PORT_RESUME) 2916 || oxu->reset_done[i] != 0) 2917 continue; 2918 2919 /* start USB_RESUME_TIMEOUT resume signaling from this 2920 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to 2921 * stop that signaling. 2922 */ 2923 oxu->reset_done[i] = jiffies + 2924 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2925 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); 2926 mod_timer(&hcd->rh_timer, oxu->reset_done[i]); 2927 } 2928 } 2929 2930 /* PCI errors [4.15.2.4] */ 2931 if (unlikely((status & STS_FATAL) != 0)) { 2932 /* bogus "fatal" IRQs appear on some chips... why? */ 2933 status = readl(&oxu->regs->status); 2934 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); 2935 dbg_status(oxu, "fatal", status); 2936 if (status & STS_HALT) { 2937 oxu_err(oxu, "fatal error\n"); 2938 dead: 2939 ehci_reset(oxu); 2940 writel(0, &oxu->regs->configured_flag); 2941 usb_hc_died(hcd); 2942 /* generic layer kills/unlinks all urbs, then 2943 * uses oxu_stop to clean up the rest 2944 */ 2945 bh = 1; 2946 } 2947 } 2948 2949 if (bh) 2950 ehci_work(oxu); 2951 spin_unlock(&oxu->lock); 2952 if (pcd_status & STS_PCD) 2953 usb_hcd_poll_rh_status(hcd); 2954 return IRQ_HANDLED; 2955 } 2956 2957 static irqreturn_t oxu_irq(struct usb_hcd *hcd) 2958 { 2959 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2960 int ret = IRQ_HANDLED; 2961 2962 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); 2963 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); 2964 2965 /* Disable all interrupt */ 2966 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); 2967 2968 if ((oxu->is_otg && (status & OXU_USBOTGI)) || 2969 (!oxu->is_otg && (status & OXU_USBSPHI))) 2970 oxu210_hcd_irq(hcd); 2971 else 2972 ret = IRQ_NONE; 2973 2974 /* Enable all interrupt back */ 2975 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); 2976 2977 return ret; 2978 } 2979 2980 static void oxu_watchdog(struct timer_list *t) 2981 { 2982 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog); 2983 unsigned long flags; 2984 2985 spin_lock_irqsave(&oxu->lock, flags); 2986 2987 /* lost IAA irqs wedge things badly; seen with a vt8235 */ 2988 if (oxu->reclaim) { 2989 u32 status = readl(&oxu->regs->status); 2990 if (status & STS_IAA) { 2991 oxu_vdbg(oxu, "lost IAA\n"); 2992 writel(STS_IAA, &oxu->regs->status); 2993 oxu->reclaim_ready = 1; 2994 } 2995 } 2996 2997 /* stop async processing after it's idled a bit */ 2998 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) 2999 start_unlink_async(oxu, oxu->async); 3000 3001 /* oxu could run by timer, without IRQs ... */ 3002 ehci_work(oxu); 3003 3004 spin_unlock_irqrestore(&oxu->lock, flags); 3005 } 3006 3007 /* One-time init, only for memory state. 3008 */ 3009 static int oxu_hcd_init(struct usb_hcd *hcd) 3010 { 3011 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3012 u32 temp; 3013 int retval; 3014 u32 hcc_params; 3015 3016 spin_lock_init(&oxu->lock); 3017 3018 timer_setup(&oxu->watchdog, oxu_watchdog, 0); 3019 3020 /* 3021 * hw default: 1K periodic list heads, one per frame. 3022 * periodic_size can shrink by USBCMD update if hcc_params allows. 3023 */ 3024 oxu->periodic_size = DEFAULT_I_TDPS; 3025 retval = ehci_mem_init(oxu, GFP_KERNEL); 3026 if (retval < 0) 3027 return retval; 3028 3029 /* controllers may cache some of the periodic schedule ... */ 3030 hcc_params = readl(&oxu->caps->hcc_params); 3031 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ 3032 oxu->i_thresh = 8; 3033 else /* N microframes cached */ 3034 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); 3035 3036 oxu->reclaim = NULL; 3037 oxu->reclaim_ready = 0; 3038 oxu->next_uframe = -1; 3039 3040 /* 3041 * dedicate a qh for the async ring head, since we couldn't unlink 3042 * a 'real' qh without stopping the async schedule [4.8]. use it 3043 * as the 'reclamation list head' too. 3044 * its dummy is used in hw_alt_next of many tds, to prevent the qh 3045 * from automatically advancing to the next td after short reads. 3046 */ 3047 oxu->async->qh_next.qh = NULL; 3048 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); 3049 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); 3050 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); 3051 oxu->async->hw_qtd_next = EHCI_LIST_END; 3052 oxu->async->qh_state = QH_STATE_LINKED; 3053 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); 3054 3055 /* clear interrupt enables, set irq latency */ 3056 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 3057 log2_irq_thresh = 0; 3058 temp = 1 << (16 + log2_irq_thresh); 3059 if (HCC_CANPARK(hcc_params)) { 3060 /* HW default park == 3, on hardware that supports it (like 3061 * NVidia and ALI silicon), maximizes throughput on the async 3062 * schedule by avoiding QH fetches between transfers. 3063 * 3064 * With fast usb storage devices and NForce2, "park" seems to 3065 * make problems: throughput reduction (!), data errors... 3066 */ 3067 if (park) { 3068 park = min(park, (unsigned) 3); 3069 temp |= CMD_PARK; 3070 temp |= park << 8; 3071 } 3072 oxu_dbg(oxu, "park %d\n", park); 3073 } 3074 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 3075 /* periodic schedule size can be smaller than default */ 3076 temp &= ~(3 << 2); 3077 temp |= (EHCI_TUNE_FLS << 2); 3078 } 3079 oxu->command = temp; 3080 3081 return 0; 3082 } 3083 3084 /* Called during probe() after chip reset completes. 3085 */ 3086 static int oxu_reset(struct usb_hcd *hcd) 3087 { 3088 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3089 3090 spin_lock_init(&oxu->mem_lock); 3091 INIT_LIST_HEAD(&oxu->urb_list); 3092 oxu->urb_len = 0; 3093 3094 if (oxu->is_otg) { 3095 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; 3096 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ 3097 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 3098 3099 oxu->mem = hcd->regs + OXU_SPH_MEM; 3100 } else { 3101 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; 3102 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ 3103 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 3104 3105 oxu->mem = hcd->regs + OXU_OTG_MEM; 3106 } 3107 3108 oxu->hcs_params = readl(&oxu->caps->hcs_params); 3109 oxu->sbrn = 0x20; 3110 3111 return oxu_hcd_init(hcd); 3112 } 3113 3114 static int oxu_run(struct usb_hcd *hcd) 3115 { 3116 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3117 int retval; 3118 u32 temp, hcc_params; 3119 3120 hcd->uses_new_polling = 1; 3121 3122 /* EHCI spec section 4.1 */ 3123 retval = ehci_reset(oxu); 3124 if (retval != 0) { 3125 ehci_mem_cleanup(oxu); 3126 return retval; 3127 } 3128 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3129 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3130 3131 /* hcc_params controls whether oxu->regs->segment must (!!!) 3132 * be used; it constrains QH/ITD/SITD and QTD locations. 3133 * dma_pool consistent memory always uses segment zero. 3134 * streaming mappings for I/O buffers, like dma_map_single(), 3135 * can return segments above 4GB, if the device allows. 3136 * 3137 * NOTE: the dma mask is visible through dev->dma_mask, so 3138 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 3139 * Scsi_Host.highmem_io, and so forth. It's readonly to all 3140 * host side drivers though. 3141 */ 3142 hcc_params = readl(&oxu->caps->hcc_params); 3143 if (HCC_64BIT_ADDR(hcc_params)) 3144 writel(0, &oxu->regs->segment); 3145 3146 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | 3147 CMD_ASE | CMD_RESET); 3148 oxu->command |= CMD_RUN; 3149 writel(oxu->command, &oxu->regs->command); 3150 dbg_cmd(oxu, "init", oxu->command); 3151 3152 /* 3153 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 3154 * are explicitly handed to companion controller(s), so no TT is 3155 * involved with the root hub. (Except where one is integrated, 3156 * and there's no companion controller unless maybe for USB OTG.) 3157 */ 3158 hcd->state = HC_STATE_RUNNING; 3159 writel(FLAG_CF, &oxu->regs->configured_flag); 3160 readl(&oxu->regs->command); /* unblock posted writes */ 3161 3162 temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); 3163 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", 3164 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), 3165 temp >> 8, temp & 0xff, DRIVER_VERSION, 3166 ignore_oc ? ", overcurrent ignored" : ""); 3167 3168 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ 3169 3170 return 0; 3171 } 3172 3173 static void oxu_stop(struct usb_hcd *hcd) 3174 { 3175 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3176 3177 /* Turn off port power on all root hub ports. */ 3178 ehci_port_power(oxu, 0); 3179 3180 /* no more interrupts ... */ 3181 del_timer_sync(&oxu->watchdog); 3182 3183 spin_lock_irq(&oxu->lock); 3184 if (HC_IS_RUNNING(hcd->state)) 3185 ehci_quiesce(oxu); 3186 3187 ehci_reset(oxu); 3188 writel(0, &oxu->regs->intr_enable); 3189 spin_unlock_irq(&oxu->lock); 3190 3191 /* let companion controllers work when we aren't */ 3192 writel(0, &oxu->regs->configured_flag); 3193 3194 /* root hub is shut down separately (first, when possible) */ 3195 spin_lock_irq(&oxu->lock); 3196 if (oxu->async) 3197 ehci_work(oxu); 3198 spin_unlock_irq(&oxu->lock); 3199 ehci_mem_cleanup(oxu); 3200 3201 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); 3202 } 3203 3204 /* Kick in for silicon on any bus (not just pci, etc). 3205 * This forcibly disables dma and IRQs, helping kexec and other cases 3206 * where the next system software may expect clean state. 3207 */ 3208 static void oxu_shutdown(struct usb_hcd *hcd) 3209 { 3210 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3211 3212 (void) ehci_halt(oxu); 3213 ehci_turn_off_all_ports(oxu); 3214 3215 /* make BIOS/etc use companion controller during reboot */ 3216 writel(0, &oxu->regs->configured_flag); 3217 3218 /* unblock posted writes */ 3219 readl(&oxu->regs->configured_flag); 3220 } 3221 3222 /* Non-error returns are a promise to giveback() the urb later 3223 * we drop ownership so next owner (or urb unlink) can get it 3224 * 3225 * urb + dev is in hcd.self.controller.urb_list 3226 * we're queueing TDs onto software and hardware lists 3227 * 3228 * hcd-specific init for hcpriv hasn't been done yet 3229 * 3230 * NOTE: control, bulk, and interrupt share the same code to append TDs 3231 * to a (possibly active) QH, and the same QH scanning code. 3232 */ 3233 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 3234 gfp_t mem_flags) 3235 { 3236 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3237 struct list_head qtd_list; 3238 3239 INIT_LIST_HEAD(&qtd_list); 3240 3241 switch (usb_pipetype(urb->pipe)) { 3242 case PIPE_CONTROL: 3243 case PIPE_BULK: 3244 default: 3245 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 3246 return -ENOMEM; 3247 return submit_async(oxu, urb, &qtd_list, mem_flags); 3248 3249 case PIPE_INTERRUPT: 3250 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 3251 return -ENOMEM; 3252 return intr_submit(oxu, urb, &qtd_list, mem_flags); 3253 3254 case PIPE_ISOCHRONOUS: 3255 if (urb->dev->speed == USB_SPEED_HIGH) 3256 return itd_submit(oxu, urb, mem_flags); 3257 else 3258 return sitd_submit(oxu, urb, mem_flags); 3259 } 3260 } 3261 3262 /* This function is responsible for breaking URBs with big data size 3263 * into smaller size and processing small urbs in sequence. 3264 */ 3265 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 3266 gfp_t mem_flags) 3267 { 3268 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3269 int num, rem; 3270 void *transfer_buffer; 3271 struct urb *murb; 3272 int i, ret; 3273 3274 /* If not bulk pipe just enqueue the URB */ 3275 if (!usb_pipebulk(urb->pipe)) 3276 return __oxu_urb_enqueue(hcd, urb, mem_flags); 3277 3278 /* Otherwise we should verify the USB transfer buffer size! */ 3279 transfer_buffer = urb->transfer_buffer; 3280 3281 num = urb->transfer_buffer_length / 4096; 3282 rem = urb->transfer_buffer_length % 4096; 3283 if (rem != 0) 3284 num++; 3285 3286 /* If URB is smaller than 4096 bytes just enqueue it! */ 3287 if (num == 1) 3288 return __oxu_urb_enqueue(hcd, urb, mem_flags); 3289 3290 /* Ok, we have more job to do! :) */ 3291 3292 for (i = 0; i < num - 1; i++) { 3293 /* Get free micro URB poll till a free urb is received */ 3294 3295 do { 3296 murb = (struct urb *) oxu_murb_alloc(oxu); 3297 if (!murb) 3298 schedule(); 3299 } while (!murb); 3300 3301 /* Coping the urb */ 3302 memcpy(murb, urb, sizeof(struct urb)); 3303 3304 murb->transfer_buffer_length = 4096; 3305 murb->transfer_buffer = transfer_buffer + i * 4096; 3306 3307 /* Null pointer for the encodes that this is a micro urb */ 3308 murb->complete = NULL; 3309 3310 ((struct oxu_murb *) murb)->main = urb; 3311 ((struct oxu_murb *) murb)->last = 0; 3312 3313 /* This loop is to guarantee urb to be processed when there's 3314 * not enough resources at a particular time by retrying. 3315 */ 3316 do { 3317 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 3318 if (ret) 3319 schedule(); 3320 } while (ret); 3321 } 3322 3323 /* Last urb requires special handling */ 3324 3325 /* Get free micro URB poll till a free urb is received */ 3326 do { 3327 murb = (struct urb *) oxu_murb_alloc(oxu); 3328 if (!murb) 3329 schedule(); 3330 } while (!murb); 3331 3332 /* Coping the urb */ 3333 memcpy(murb, urb, sizeof(struct urb)); 3334 3335 murb->transfer_buffer_length = rem > 0 ? rem : 4096; 3336 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; 3337 3338 /* Null pointer for the encodes that this is a micro urb */ 3339 murb->complete = NULL; 3340 3341 ((struct oxu_murb *) murb)->main = urb; 3342 ((struct oxu_murb *) murb)->last = 1; 3343 3344 do { 3345 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 3346 if (ret) 3347 schedule(); 3348 } while (ret); 3349 3350 return ret; 3351 } 3352 3353 /* Remove from hardware lists. 3354 * Completions normally happen asynchronously 3355 */ 3356 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 3357 { 3358 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3359 struct ehci_qh *qh; 3360 unsigned long flags; 3361 3362 spin_lock_irqsave(&oxu->lock, flags); 3363 switch (usb_pipetype(urb->pipe)) { 3364 case PIPE_CONTROL: 3365 case PIPE_BULK: 3366 default: 3367 qh = (struct ehci_qh *) urb->hcpriv; 3368 if (!qh) 3369 break; 3370 unlink_async(oxu, qh); 3371 break; 3372 3373 case PIPE_INTERRUPT: 3374 qh = (struct ehci_qh *) urb->hcpriv; 3375 if (!qh) 3376 break; 3377 switch (qh->qh_state) { 3378 case QH_STATE_LINKED: 3379 intr_deschedule(oxu, qh); 3380 fallthrough; 3381 case QH_STATE_IDLE: 3382 qh_completions(oxu, qh); 3383 break; 3384 default: 3385 oxu_dbg(oxu, "bogus qh %p state %d\n", 3386 qh, qh->qh_state); 3387 goto done; 3388 } 3389 3390 /* reschedule QH iff another request is queued */ 3391 if (!list_empty(&qh->qtd_list) 3392 && HC_IS_RUNNING(hcd->state)) { 3393 int status; 3394 3395 status = qh_schedule(oxu, qh); 3396 spin_unlock_irqrestore(&oxu->lock, flags); 3397 3398 if (status != 0) { 3399 /* shouldn't happen often, but ... 3400 * FIXME kill those tds' urbs 3401 */ 3402 dev_err(hcd->self.controller, 3403 "can't reschedule qh %p, err %d\n", qh, 3404 status); 3405 } 3406 return status; 3407 } 3408 break; 3409 } 3410 done: 3411 spin_unlock_irqrestore(&oxu->lock, flags); 3412 return 0; 3413 } 3414 3415 /* Bulk qh holds the data toggle */ 3416 static void oxu_endpoint_disable(struct usb_hcd *hcd, 3417 struct usb_host_endpoint *ep) 3418 { 3419 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3420 unsigned long flags; 3421 struct ehci_qh *qh, *tmp; 3422 3423 /* ASSERT: any requests/urbs are being unlinked */ 3424 /* ASSERT: nobody can be submitting urbs for this any more */ 3425 3426 rescan: 3427 spin_lock_irqsave(&oxu->lock, flags); 3428 qh = ep->hcpriv; 3429 if (!qh) 3430 goto done; 3431 3432 /* endpoints can be iso streams. for now, we don't 3433 * accelerate iso completions ... so spin a while. 3434 */ 3435 if (qh->hw_info1 == 0) { 3436 oxu_vdbg(oxu, "iso delay\n"); 3437 goto idle_timeout; 3438 } 3439 3440 if (!HC_IS_RUNNING(hcd->state)) 3441 qh->qh_state = QH_STATE_IDLE; 3442 switch (qh->qh_state) { 3443 case QH_STATE_LINKED: 3444 for (tmp = oxu->async->qh_next.qh; 3445 tmp && tmp != qh; 3446 tmp = tmp->qh_next.qh) 3447 continue; 3448 /* periodic qh self-unlinks on empty */ 3449 if (!tmp) 3450 goto nogood; 3451 unlink_async(oxu, qh); 3452 fallthrough; 3453 case QH_STATE_UNLINK: /* wait for hw to finish? */ 3454 idle_timeout: 3455 spin_unlock_irqrestore(&oxu->lock, flags); 3456 schedule_timeout_uninterruptible(1); 3457 goto rescan; 3458 case QH_STATE_IDLE: /* fully unlinked */ 3459 if (list_empty(&qh->qtd_list)) { 3460 qh_put(qh); 3461 break; 3462 } 3463 fallthrough; 3464 default: 3465 nogood: 3466 /* caller was supposed to have unlinked any requests; 3467 * that's not our job. just leak this memory. 3468 */ 3469 oxu_err(oxu, "qh %p (#%02x) state %d%s\n", 3470 qh, ep->desc.bEndpointAddress, qh->qh_state, 3471 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 3472 break; 3473 } 3474 ep->hcpriv = NULL; 3475 done: 3476 spin_unlock_irqrestore(&oxu->lock, flags); 3477 } 3478 3479 static int oxu_get_frame(struct usb_hcd *hcd) 3480 { 3481 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3482 3483 return (readl(&oxu->regs->frame_index) >> 3) % 3484 oxu->periodic_size; 3485 } 3486 3487 /* Build "status change" packet (one or two bytes) from HC registers */ 3488 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) 3489 { 3490 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3491 u32 temp, mask, status = 0; 3492 int ports, i, retval = 1; 3493 unsigned long flags; 3494 3495 /* if !PM, root hub timers won't get shut down ... */ 3496 if (!HC_IS_RUNNING(hcd->state)) 3497 return 0; 3498 3499 /* init status to no-changes */ 3500 buf[0] = 0; 3501 ports = HCS_N_PORTS(oxu->hcs_params); 3502 if (ports > 7) { 3503 buf[1] = 0; 3504 retval++; 3505 } 3506 3507 /* Some boards (mostly VIA?) report bogus overcurrent indications, 3508 * causing massive log spam unless we completely ignore them. It 3509 * may be relevant that VIA VT8235 controllers, where PORT_POWER is 3510 * always set, seem to clear PORT_OCC and PORT_CSC when writing to 3511 * PORT_POWER; that's surprising, but maybe within-spec. 3512 */ 3513 if (!ignore_oc) 3514 mask = PORT_CSC | PORT_PEC | PORT_OCC; 3515 else 3516 mask = PORT_CSC | PORT_PEC; 3517 3518 /* no hub change reports (bit 0) for now (power, ...) */ 3519 3520 /* port N changes (bit N)? */ 3521 spin_lock_irqsave(&oxu->lock, flags); 3522 for (i = 0; i < ports; i++) { 3523 temp = readl(&oxu->regs->port_status[i]); 3524 3525 /* 3526 * Return status information even for ports with OWNER set. 3527 * Otherwise hub_wq wouldn't see the disconnect event when a 3528 * high-speed device is switched over to the companion 3529 * controller by the user. 3530 */ 3531 3532 if (!(temp & PORT_CONNECT)) 3533 oxu->reset_done[i] = 0; 3534 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && 3535 time_after_eq(jiffies, oxu->reset_done[i]))) { 3536 if (i < 7) 3537 buf[0] |= 1 << (i + 1); 3538 else 3539 buf[1] |= 1 << (i - 7); 3540 status = STS_PCD; 3541 } 3542 } 3543 /* FIXME autosuspend idle root hubs */ 3544 spin_unlock_irqrestore(&oxu->lock, flags); 3545 return status ? retval : 0; 3546 } 3547 3548 /* Returns the speed of a device attached to a port on the root hub. */ 3549 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, 3550 unsigned int portsc) 3551 { 3552 switch ((portsc >> 26) & 3) { 3553 case 0: 3554 return 0; 3555 case 1: 3556 return USB_PORT_STAT_LOW_SPEED; 3557 case 2: 3558 default: 3559 return USB_PORT_STAT_HIGH_SPEED; 3560 } 3561 } 3562 3563 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) 3564 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, 3565 u16 wValue, u16 wIndex, char *buf, u16 wLength) 3566 { 3567 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3568 int ports = HCS_N_PORTS(oxu->hcs_params); 3569 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; 3570 u32 temp, status; 3571 unsigned long flags; 3572 int retval = 0; 3573 unsigned selector; 3574 3575 /* 3576 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 3577 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 3578 * (track current state ourselves) ... blink for diagnostics, 3579 * power, "this is the one", etc. EHCI spec supports this. 3580 */ 3581 3582 spin_lock_irqsave(&oxu->lock, flags); 3583 switch (typeReq) { 3584 case ClearHubFeature: 3585 switch (wValue) { 3586 case C_HUB_LOCAL_POWER: 3587 case C_HUB_OVER_CURRENT: 3588 /* no hub-wide feature/status flags */ 3589 break; 3590 default: 3591 goto error; 3592 } 3593 break; 3594 case ClearPortFeature: 3595 if (!wIndex || wIndex > ports) 3596 goto error; 3597 wIndex--; 3598 temp = readl(status_reg); 3599 3600 /* 3601 * Even if OWNER is set, so the port is owned by the 3602 * companion controller, hub_wq needs to be able to clear 3603 * the port-change status bits (especially 3604 * USB_PORT_STAT_C_CONNECTION). 3605 */ 3606 3607 switch (wValue) { 3608 case USB_PORT_FEAT_ENABLE: 3609 writel(temp & ~PORT_PE, status_reg); 3610 break; 3611 case USB_PORT_FEAT_C_ENABLE: 3612 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); 3613 break; 3614 case USB_PORT_FEAT_SUSPEND: 3615 if (temp & PORT_RESET) 3616 goto error; 3617 if (temp & PORT_SUSPEND) { 3618 if ((temp & PORT_PE) == 0) 3619 goto error; 3620 /* resume signaling for 20 msec */ 3621 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); 3622 writel(temp | PORT_RESUME, status_reg); 3623 oxu->reset_done[wIndex] = jiffies 3624 + msecs_to_jiffies(20); 3625 } 3626 break; 3627 case USB_PORT_FEAT_C_SUSPEND: 3628 /* we auto-clear this feature */ 3629 break; 3630 case USB_PORT_FEAT_POWER: 3631 if (HCS_PPC(oxu->hcs_params)) 3632 writel(temp & ~(PORT_RWC_BITS | PORT_POWER), 3633 status_reg); 3634 break; 3635 case USB_PORT_FEAT_C_CONNECTION: 3636 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); 3637 break; 3638 case USB_PORT_FEAT_C_OVER_CURRENT: 3639 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); 3640 break; 3641 case USB_PORT_FEAT_C_RESET: 3642 /* GetPortStatus clears reset */ 3643 break; 3644 default: 3645 goto error; 3646 } 3647 readl(&oxu->regs->command); /* unblock posted write */ 3648 break; 3649 case GetHubDescriptor: 3650 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) 3651 buf); 3652 break; 3653 case GetHubStatus: 3654 /* no hub-wide feature/status flags */ 3655 memset(buf, 0, 4); 3656 break; 3657 case GetPortStatus: 3658 if (!wIndex || wIndex > ports) 3659 goto error; 3660 wIndex--; 3661 status = 0; 3662 temp = readl(status_reg); 3663 3664 /* wPortChange bits */ 3665 if (temp & PORT_CSC) 3666 status |= USB_PORT_STAT_C_CONNECTION << 16; 3667 if (temp & PORT_PEC) 3668 status |= USB_PORT_STAT_C_ENABLE << 16; 3669 if ((temp & PORT_OCC) && !ignore_oc) 3670 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3671 3672 /* whoever resumes must GetPortStatus to complete it!! */ 3673 if (temp & PORT_RESUME) { 3674 3675 /* Remote Wakeup received? */ 3676 if (!oxu->reset_done[wIndex]) { 3677 /* resume signaling for 20 msec */ 3678 oxu->reset_done[wIndex] = jiffies 3679 + msecs_to_jiffies(20); 3680 /* check the port again */ 3681 mod_timer(&oxu_to_hcd(oxu)->rh_timer, 3682 oxu->reset_done[wIndex]); 3683 } 3684 3685 /* resume completed? */ 3686 else if (time_after_eq(jiffies, 3687 oxu->reset_done[wIndex])) { 3688 status |= USB_PORT_STAT_C_SUSPEND << 16; 3689 oxu->reset_done[wIndex] = 0; 3690 3691 /* stop resume signaling */ 3692 temp = readl(status_reg); 3693 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), 3694 status_reg); 3695 retval = handshake(oxu, status_reg, 3696 PORT_RESUME, 0, 2000 /* 2msec */); 3697 if (retval != 0) { 3698 oxu_err(oxu, 3699 "port %d resume error %d\n", 3700 wIndex + 1, retval); 3701 goto error; 3702 } 3703 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 3704 } 3705 } 3706 3707 /* whoever resets must GetPortStatus to complete it!! */ 3708 if ((temp & PORT_RESET) 3709 && time_after_eq(jiffies, 3710 oxu->reset_done[wIndex])) { 3711 status |= USB_PORT_STAT_C_RESET << 16; 3712 oxu->reset_done[wIndex] = 0; 3713 3714 /* force reset to complete */ 3715 writel(temp & ~(PORT_RWC_BITS | PORT_RESET), 3716 status_reg); 3717 /* REVISIT: some hardware needs 550+ usec to clear 3718 * this bit; seems too long to spin routinely... 3719 */ 3720 retval = handshake(oxu, status_reg, 3721 PORT_RESET, 0, 750); 3722 if (retval != 0) { 3723 oxu_err(oxu, "port %d reset error %d\n", 3724 wIndex + 1, retval); 3725 goto error; 3726 } 3727 3728 /* see what we found out */ 3729 temp = check_reset_complete(oxu, wIndex, status_reg, 3730 readl(status_reg)); 3731 } 3732 3733 /* transfer dedicated ports to the companion hc */ 3734 if ((temp & PORT_CONNECT) && 3735 test_bit(wIndex, &oxu->companion_ports)) { 3736 temp &= ~PORT_RWC_BITS; 3737 temp |= PORT_OWNER; 3738 writel(temp, status_reg); 3739 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); 3740 temp = readl(status_reg); 3741 } 3742 3743 /* 3744 * Even if OWNER is set, there's no harm letting hub_wq 3745 * see the wPortStatus values (they should all be 0 except 3746 * for PORT_POWER anyway). 3747 */ 3748 3749 if (temp & PORT_CONNECT) { 3750 status |= USB_PORT_STAT_CONNECTION; 3751 /* status may be from integrated TT */ 3752 status |= oxu_port_speed(oxu, temp); 3753 } 3754 if (temp & PORT_PE) 3755 status |= USB_PORT_STAT_ENABLE; 3756 if (temp & (PORT_SUSPEND|PORT_RESUME)) 3757 status |= USB_PORT_STAT_SUSPEND; 3758 if (temp & PORT_OC) 3759 status |= USB_PORT_STAT_OVERCURRENT; 3760 if (temp & PORT_RESET) 3761 status |= USB_PORT_STAT_RESET; 3762 if (temp & PORT_POWER) 3763 status |= USB_PORT_STAT_POWER; 3764 3765 #ifndef OXU_VERBOSE_DEBUG 3766 if (status & ~0xffff) /* only if wPortChange is interesting */ 3767 #endif 3768 dbg_port(oxu, "GetStatus", wIndex + 1, temp); 3769 put_unaligned(cpu_to_le32(status), (__le32 *) buf); 3770 break; 3771 case SetHubFeature: 3772 switch (wValue) { 3773 case C_HUB_LOCAL_POWER: 3774 case C_HUB_OVER_CURRENT: 3775 /* no hub-wide feature/status flags */ 3776 break; 3777 default: 3778 goto error; 3779 } 3780 break; 3781 case SetPortFeature: 3782 selector = wIndex >> 8; 3783 wIndex &= 0xff; 3784 if (!wIndex || wIndex > ports) 3785 goto error; 3786 wIndex--; 3787 temp = readl(status_reg); 3788 if (temp & PORT_OWNER) 3789 break; 3790 3791 temp &= ~PORT_RWC_BITS; 3792 switch (wValue) { 3793 case USB_PORT_FEAT_SUSPEND: 3794 if ((temp & PORT_PE) == 0 3795 || (temp & PORT_RESET) != 0) 3796 goto error; 3797 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3798 temp |= PORT_WAKE_BITS; 3799 writel(temp | PORT_SUSPEND, status_reg); 3800 break; 3801 case USB_PORT_FEAT_POWER: 3802 if (HCS_PPC(oxu->hcs_params)) 3803 writel(temp | PORT_POWER, status_reg); 3804 break; 3805 case USB_PORT_FEAT_RESET: 3806 if (temp & PORT_RESUME) 3807 goto error; 3808 /* line status bits may report this as low speed, 3809 * which can be fine if this root hub has a 3810 * transaction translator built in. 3811 */ 3812 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); 3813 temp |= PORT_RESET; 3814 temp &= ~PORT_PE; 3815 3816 /* 3817 * caller must wait, then call GetPortStatus 3818 * usb 2.0 spec says 50 ms resets on root 3819 */ 3820 oxu->reset_done[wIndex] = jiffies 3821 + msecs_to_jiffies(50); 3822 writel(temp, status_reg); 3823 break; 3824 3825 /* For downstream facing ports (these): one hub port is put 3826 * into test mode according to USB2 11.24.2.13, then the hub 3827 * must be reset (which for root hub now means rmmod+modprobe, 3828 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 3829 * about the EHCI-specific stuff. 3830 */ 3831 case USB_PORT_FEAT_TEST: 3832 if (!selector || selector > 5) 3833 goto error; 3834 ehci_quiesce(oxu); 3835 ehci_halt(oxu); 3836 temp |= selector << 16; 3837 writel(temp, status_reg); 3838 break; 3839 3840 default: 3841 goto error; 3842 } 3843 readl(&oxu->regs->command); /* unblock posted writes */ 3844 break; 3845 3846 default: 3847 error: 3848 /* "stall" on error */ 3849 retval = -EPIPE; 3850 } 3851 spin_unlock_irqrestore(&oxu->lock, flags); 3852 return retval; 3853 } 3854 3855 #ifdef CONFIG_PM 3856 3857 static int oxu_bus_suspend(struct usb_hcd *hcd) 3858 { 3859 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3860 int port; 3861 int mask; 3862 3863 oxu_dbg(oxu, "suspend root hub\n"); 3864 3865 if (time_before(jiffies, oxu->next_statechange)) 3866 msleep(5); 3867 3868 port = HCS_N_PORTS(oxu->hcs_params); 3869 spin_lock_irq(&oxu->lock); 3870 3871 /* stop schedules, clean any completed work */ 3872 if (HC_IS_RUNNING(hcd->state)) { 3873 ehci_quiesce(oxu); 3874 hcd->state = HC_STATE_QUIESCING; 3875 } 3876 oxu->command = readl(&oxu->regs->command); 3877 if (oxu->reclaim) 3878 oxu->reclaim_ready = 1; 3879 ehci_work(oxu); 3880 3881 /* Unlike other USB host controller types, EHCI doesn't have 3882 * any notion of "global" or bus-wide suspend. The driver has 3883 * to manually suspend all the active unsuspended ports, and 3884 * then manually resume them in the bus_resume() routine. 3885 */ 3886 oxu->bus_suspended = 0; 3887 while (port--) { 3888 u32 __iomem *reg = &oxu->regs->port_status[port]; 3889 u32 t1 = readl(reg) & ~PORT_RWC_BITS; 3890 u32 t2 = t1; 3891 3892 /* keep track of which ports we suspend */ 3893 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && 3894 !(t1 & PORT_SUSPEND)) { 3895 t2 |= PORT_SUSPEND; 3896 set_bit(port, &oxu->bus_suspended); 3897 } 3898 3899 /* enable remote wakeup on all ports */ 3900 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3901 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; 3902 else 3903 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); 3904 3905 if (t1 != t2) { 3906 oxu_vdbg(oxu, "port %d, %08x -> %08x\n", 3907 port + 1, t1, t2); 3908 writel(t2, reg); 3909 } 3910 } 3911 3912 spin_unlock_irq(&oxu->lock); 3913 /* turn off now-idle HC */ 3914 del_timer_sync(&oxu->watchdog); 3915 spin_lock_irq(&oxu->lock); 3916 ehci_halt(oxu); 3917 hcd->state = HC_STATE_SUSPENDED; 3918 3919 /* allow remote wakeup */ 3920 mask = INTR_MASK; 3921 if (!device_may_wakeup(&hcd->self.root_hub->dev)) 3922 mask &= ~STS_PCD; 3923 writel(mask, &oxu->regs->intr_enable); 3924 readl(&oxu->regs->intr_enable); 3925 3926 oxu->next_statechange = jiffies + msecs_to_jiffies(10); 3927 spin_unlock_irq(&oxu->lock); 3928 return 0; 3929 } 3930 3931 /* Caller has locked the root hub, and should reset/reinit on error */ 3932 static int oxu_bus_resume(struct usb_hcd *hcd) 3933 { 3934 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3935 u32 temp; 3936 int i; 3937 3938 if (time_before(jiffies, oxu->next_statechange)) 3939 msleep(5); 3940 spin_lock_irq(&oxu->lock); 3941 3942 /* Ideally and we've got a real resume here, and no port's power 3943 * was lost. (For PCI, that means Vaux was maintained.) But we 3944 * could instead be restoring a swsusp snapshot -- so that BIOS was 3945 * the last user of the controller, not reset/pm hardware keeping 3946 * state we gave to it. 3947 */ 3948 temp = readl(&oxu->regs->intr_enable); 3949 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); 3950 3951 /* at least some APM implementations will try to deliver 3952 * IRQs right away, so delay them until we're ready. 3953 */ 3954 writel(0, &oxu->regs->intr_enable); 3955 3956 /* re-init operational registers */ 3957 writel(0, &oxu->regs->segment); 3958 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3959 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3960 3961 /* restore CMD_RUN, framelist size, and irq threshold */ 3962 writel(oxu->command, &oxu->regs->command); 3963 3964 /* Some controller/firmware combinations need a delay during which 3965 * they set up the port statuses. See Bugzilla #8190. */ 3966 mdelay(8); 3967 3968 /* manually resume the ports we suspended during bus_suspend() */ 3969 i = HCS_N_PORTS(oxu->hcs_params); 3970 while (i--) { 3971 temp = readl(&oxu->regs->port_status[i]); 3972 temp &= ~(PORT_RWC_BITS 3973 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); 3974 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3975 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 3976 temp |= PORT_RESUME; 3977 } 3978 writel(temp, &oxu->regs->port_status[i]); 3979 } 3980 i = HCS_N_PORTS(oxu->hcs_params); 3981 mdelay(20); 3982 while (i--) { 3983 temp = readl(&oxu->regs->port_status[i]); 3984 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3985 temp &= ~(PORT_RWC_BITS | PORT_RESUME); 3986 writel(temp, &oxu->regs->port_status[i]); 3987 oxu_vdbg(oxu, "resumed port %d\n", i + 1); 3988 } 3989 } 3990 (void) readl(&oxu->regs->command); 3991 3992 /* maybe re-activate the schedule(s) */ 3993 temp = 0; 3994 if (oxu->async->qh_next.qh) 3995 temp |= CMD_ASE; 3996 if (oxu->periodic_sched) 3997 temp |= CMD_PSE; 3998 if (temp) { 3999 oxu->command |= temp; 4000 writel(oxu->command, &oxu->regs->command); 4001 } 4002 4003 oxu->next_statechange = jiffies + msecs_to_jiffies(5); 4004 hcd->state = HC_STATE_RUNNING; 4005 4006 /* Now we can safely re-enable irqs */ 4007 writel(INTR_MASK, &oxu->regs->intr_enable); 4008 4009 spin_unlock_irq(&oxu->lock); 4010 return 0; 4011 } 4012 4013 #else 4014 4015 static int oxu_bus_suspend(struct usb_hcd *hcd) 4016 { 4017 return 0; 4018 } 4019 4020 static int oxu_bus_resume(struct usb_hcd *hcd) 4021 { 4022 return 0; 4023 } 4024 4025 #endif /* CONFIG_PM */ 4026 4027 static const struct hc_driver oxu_hc_driver = { 4028 .description = "oxu210hp_hcd", 4029 .product_desc = "oxu210hp HCD", 4030 .hcd_priv_size = sizeof(struct oxu_hcd), 4031 4032 /* 4033 * Generic hardware linkage 4034 */ 4035 .irq = oxu_irq, 4036 .flags = HCD_MEMORY | HCD_USB2, 4037 4038 /* 4039 * Basic lifecycle operations 4040 */ 4041 .reset = oxu_reset, 4042 .start = oxu_run, 4043 .stop = oxu_stop, 4044 .shutdown = oxu_shutdown, 4045 4046 /* 4047 * Managing i/o requests and associated device resources 4048 */ 4049 .urb_enqueue = oxu_urb_enqueue, 4050 .urb_dequeue = oxu_urb_dequeue, 4051 .endpoint_disable = oxu_endpoint_disable, 4052 4053 /* 4054 * Scheduling support 4055 */ 4056 .get_frame_number = oxu_get_frame, 4057 4058 /* 4059 * Root hub support 4060 */ 4061 .hub_status_data = oxu_hub_status_data, 4062 .hub_control = oxu_hub_control, 4063 .bus_suspend = oxu_bus_suspend, 4064 .bus_resume = oxu_bus_resume, 4065 }; 4066 4067 /* 4068 * Module stuff 4069 */ 4070 4071 static void oxu_configuration(struct platform_device *pdev, void __iomem *base) 4072 { 4073 u32 tmp; 4074 4075 /* Initialize top level registers. 4076 * First write ever 4077 */ 4078 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 4079 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); 4080 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 4081 4082 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); 4083 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); 4084 4085 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | 4086 OXU_COMPARATOR | OXU_ASO_OP); 4087 4088 tmp = oxu_readl(base, OXU_CLKCTRL_SET); 4089 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); 4090 4091 /* Clear all top interrupt enable */ 4092 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); 4093 4094 /* Clear all top interrupt status */ 4095 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); 4096 4097 /* Enable all needed top interrupt except OTG SPH core */ 4098 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); 4099 } 4100 4101 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base) 4102 { 4103 u32 id; 4104 static const char * const bo[] = { 4105 "reserved", 4106 "128-pin LQFP", 4107 "84-pin TFBGA", 4108 "reserved", 4109 }; 4110 4111 /* Read controller signature register to find a match */ 4112 id = oxu_readl(base, OXU_DEVICEID); 4113 dev_info(&pdev->dev, "device ID %x\n", id); 4114 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) 4115 return -1; 4116 4117 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", 4118 id >> OXU_REV_SHIFT, 4119 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], 4120 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, 4121 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); 4122 4123 return 0; 4124 } 4125 4126 static const struct hc_driver oxu_hc_driver; 4127 static struct usb_hcd *oxu_create(struct platform_device *pdev, 4128 unsigned long memstart, unsigned long memlen, 4129 void __iomem *base, int irq, int otg) 4130 { 4131 struct device *dev = &pdev->dev; 4132 4133 struct usb_hcd *hcd; 4134 struct oxu_hcd *oxu; 4135 int ret; 4136 4137 /* Set endian mode and host mode */ 4138 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), 4139 OXU_USBMODE, 4140 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); 4141 4142 hcd = usb_create_hcd(&oxu_hc_driver, dev, 4143 otg ? "oxu210hp_otg" : "oxu210hp_sph"); 4144 if (!hcd) 4145 return ERR_PTR(-ENOMEM); 4146 4147 hcd->rsrc_start = memstart; 4148 hcd->rsrc_len = memlen; 4149 hcd->regs = base; 4150 hcd->irq = irq; 4151 hcd->state = HC_STATE_HALT; 4152 4153 oxu = hcd_to_oxu(hcd); 4154 oxu->is_otg = otg; 4155 4156 ret = usb_add_hcd(hcd, irq, IRQF_SHARED); 4157 if (ret < 0) { 4158 usb_put_hcd(hcd); 4159 return ERR_PTR(ret); 4160 } 4161 4162 device_wakeup_enable(hcd->self.controller); 4163 return hcd; 4164 } 4165 4166 static int oxu_init(struct platform_device *pdev, 4167 unsigned long memstart, unsigned long memlen, 4168 void __iomem *base, int irq) 4169 { 4170 struct oxu_info *info = platform_get_drvdata(pdev); 4171 struct usb_hcd *hcd; 4172 int ret; 4173 4174 /* First time configuration at start up */ 4175 oxu_configuration(pdev, base); 4176 4177 ret = oxu_verify_id(pdev, base); 4178 if (ret) { 4179 dev_err(&pdev->dev, "no devices found!\n"); 4180 return -ENODEV; 4181 } 4182 4183 /* Create the OTG controller */ 4184 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); 4185 if (IS_ERR(hcd)) { 4186 dev_err(&pdev->dev, "cannot create OTG controller!\n"); 4187 ret = PTR_ERR(hcd); 4188 goto error_create_otg; 4189 } 4190 info->hcd[0] = hcd; 4191 4192 /* Create the SPH host controller */ 4193 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); 4194 if (IS_ERR(hcd)) { 4195 dev_err(&pdev->dev, "cannot create SPH controller!\n"); 4196 ret = PTR_ERR(hcd); 4197 goto error_create_sph; 4198 } 4199 info->hcd[1] = hcd; 4200 4201 oxu_writel(base, OXU_CHIPIRQEN_SET, 4202 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); 4203 4204 return 0; 4205 4206 error_create_sph: 4207 usb_remove_hcd(info->hcd[0]); 4208 usb_put_hcd(info->hcd[0]); 4209 4210 error_create_otg: 4211 return ret; 4212 } 4213 4214 static int oxu_drv_probe(struct platform_device *pdev) 4215 { 4216 struct resource *res; 4217 void __iomem *base; 4218 unsigned long memstart, memlen; 4219 int irq, ret; 4220 struct oxu_info *info; 4221 4222 if (usb_disabled()) 4223 return -ENODEV; 4224 4225 /* 4226 * Get the platform resources 4227 */ 4228 irq = platform_get_irq(pdev, 0); 4229 if (irq < 0) 4230 return irq; 4231 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); 4232 4233 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4234 base = devm_ioremap_resource(&pdev->dev, res); 4235 if (IS_ERR(base)) { 4236 ret = PTR_ERR(base); 4237 goto error; 4238 } 4239 memstart = res->start; 4240 memlen = resource_size(res); 4241 4242 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING); 4243 if (ret) { 4244 dev_err(&pdev->dev, "error setting irq type\n"); 4245 ret = -EFAULT; 4246 goto error; 4247 } 4248 4249 /* Allocate a driver data struct to hold useful info for both 4250 * SPH & OTG devices 4251 */ 4252 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL); 4253 if (!info) { 4254 ret = -EFAULT; 4255 goto error; 4256 } 4257 platform_set_drvdata(pdev, info); 4258 4259 ret = oxu_init(pdev, memstart, memlen, base, irq); 4260 if (ret < 0) { 4261 dev_dbg(&pdev->dev, "cannot init USB devices\n"); 4262 goto error; 4263 } 4264 4265 dev_info(&pdev->dev, "devices enabled and running\n"); 4266 platform_set_drvdata(pdev, info); 4267 4268 return 0; 4269 4270 error: 4271 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); 4272 return ret; 4273 } 4274 4275 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) 4276 { 4277 usb_remove_hcd(hcd); 4278 usb_put_hcd(hcd); 4279 } 4280 4281 static int oxu_drv_remove(struct platform_device *pdev) 4282 { 4283 struct oxu_info *info = platform_get_drvdata(pdev); 4284 4285 oxu_remove(pdev, info->hcd[0]); 4286 oxu_remove(pdev, info->hcd[1]); 4287 4288 return 0; 4289 } 4290 4291 static void oxu_drv_shutdown(struct platform_device *pdev) 4292 { 4293 oxu_drv_remove(pdev); 4294 } 4295 4296 #if 0 4297 /* FIXME: TODO */ 4298 static int oxu_drv_suspend(struct device *dev) 4299 { 4300 struct platform_device *pdev = to_platform_device(dev); 4301 struct usb_hcd *hcd = dev_get_drvdata(dev); 4302 4303 return 0; 4304 } 4305 4306 static int oxu_drv_resume(struct device *dev) 4307 { 4308 struct platform_device *pdev = to_platform_device(dev); 4309 struct usb_hcd *hcd = dev_get_drvdata(dev); 4310 4311 return 0; 4312 } 4313 #else 4314 #define oxu_drv_suspend NULL 4315 #define oxu_drv_resume NULL 4316 #endif 4317 4318 static struct platform_driver oxu_driver = { 4319 .probe = oxu_drv_probe, 4320 .remove = oxu_drv_remove, 4321 .shutdown = oxu_drv_shutdown, 4322 .suspend = oxu_drv_suspend, 4323 .resume = oxu_drv_resume, 4324 .driver = { 4325 .name = "oxu210hp-hcd", 4326 .bus = &platform_bus_type 4327 } 4328 }; 4329 4330 module_platform_driver(oxu_driver); 4331 4332 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); 4333 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 4334 MODULE_LICENSE("GPL"); 4335