xref: /openbmc/linux/drivers/usb/host/oxu210hp-hcd.c (revision 565d76cb)
1 /*
2  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
4  *
5  * This code is *strongly* based on EHCI-HCD code by David Brownell since
6  * the chip is a quasi-EHCI compatible.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the
10  * Free Software Foundation; either version 2 of the License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/init.h>
33 #include <linux/timer.h>
34 #include <linux/list.h>
35 #include <linux/interrupt.h>
36 #include <linux/usb.h>
37 #include <linux/usb/hcd.h>
38 #include <linux/moduleparam.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/io.h>
41 
42 #include <asm/irq.h>
43 #include <asm/system.h>
44 #include <asm/unaligned.h>
45 
46 #include <linux/irq.h>
47 #include <linux/platform_device.h>
48 
49 #include "oxu210hp.h"
50 
51 #define DRIVER_VERSION "0.0.50"
52 
53 /*
54  * Main defines
55  */
56 
57 #define oxu_dbg(oxu, fmt, args...) \
58 		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
59 #define oxu_err(oxu, fmt, args...) \
60 		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
61 #define oxu_info(oxu, fmt, args...) \
62 		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
63 
64 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
65 {
66 	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
67 }
68 
69 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
70 {
71 	return (struct oxu_hcd *) (hcd->hcd_priv);
72 }
73 
74 /*
75  * Debug stuff
76  */
77 
78 #undef OXU_URB_TRACE
79 #undef OXU_VERBOSE_DEBUG
80 
81 #ifdef OXU_VERBOSE_DEBUG
82 #define oxu_vdbg			oxu_dbg
83 #else
84 #define oxu_vdbg(oxu, fmt, args...)	/* Nop */
85 #endif
86 
87 #ifdef DEBUG
88 
89 static int __attribute__((__unused__))
90 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
91 {
92 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
93 		label, label[0] ? " " : "", status,
94 		(status & STS_ASS) ? " Async" : "",
95 		(status & STS_PSS) ? " Periodic" : "",
96 		(status & STS_RECL) ? " Recl" : "",
97 		(status & STS_HALT) ? " Halt" : "",
98 		(status & STS_IAA) ? " IAA" : "",
99 		(status & STS_FATAL) ? " FATAL" : "",
100 		(status & STS_FLR) ? " FLR" : "",
101 		(status & STS_PCD) ? " PCD" : "",
102 		(status & STS_ERR) ? " ERR" : "",
103 		(status & STS_INT) ? " INT" : ""
104 		);
105 }
106 
107 static int __attribute__((__unused__))
108 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
109 {
110 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
111 		label, label[0] ? " " : "", enable,
112 		(enable & STS_IAA) ? " IAA" : "",
113 		(enable & STS_FATAL) ? " FATAL" : "",
114 		(enable & STS_FLR) ? " FLR" : "",
115 		(enable & STS_PCD) ? " PCD" : "",
116 		(enable & STS_ERR) ? " ERR" : "",
117 		(enable & STS_INT) ? " INT" : ""
118 		);
119 }
120 
121 static const char *const fls_strings[] =
122     { "1024", "512", "256", "??" };
123 
124 static int dbg_command_buf(char *buf, unsigned len,
125 				const char *label, u32 command)
126 {
127 	return scnprintf(buf, len,
128 		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
129 		label, label[0] ? " " : "", command,
130 		(command & CMD_PARK) ? "park" : "(park)",
131 		CMD_PARK_CNT(command),
132 		(command >> 16) & 0x3f,
133 		(command & CMD_LRESET) ? " LReset" : "",
134 		(command & CMD_IAAD) ? " IAAD" : "",
135 		(command & CMD_ASE) ? " Async" : "",
136 		(command & CMD_PSE) ? " Periodic" : "",
137 		fls_strings[(command >> 2) & 0x3],
138 		(command & CMD_RESET) ? " Reset" : "",
139 		(command & CMD_RUN) ? "RUN" : "HALT"
140 		);
141 }
142 
143 static int dbg_port_buf(char *buf, unsigned len, const char *label,
144 				int port, u32 status)
145 {
146 	char	*sig;
147 
148 	/* signaling state */
149 	switch (status & (3 << 10)) {
150 	case 0 << 10:
151 		sig = "se0";
152 		break;
153 	case 1 << 10:
154 		sig = "k";	/* low speed */
155 		break;
156 	case 2 << 10:
157 		sig = "j";
158 		break;
159 	default:
160 		sig = "?";
161 		break;
162 	}
163 
164 	return scnprintf(buf, len,
165 		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
166 		label, label[0] ? " " : "", port, status,
167 		(status & PORT_POWER) ? " POWER" : "",
168 		(status & PORT_OWNER) ? " OWNER" : "",
169 		sig,
170 		(status & PORT_RESET) ? " RESET" : "",
171 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
172 		(status & PORT_RESUME) ? " RESUME" : "",
173 		(status & PORT_OCC) ? " OCC" : "",
174 		(status & PORT_OC) ? " OC" : "",
175 		(status & PORT_PEC) ? " PEC" : "",
176 		(status & PORT_PE) ? " PE" : "",
177 		(status & PORT_CSC) ? " CSC" : "",
178 		(status & PORT_CONNECT) ? " CONNECT" : ""
179 	    );
180 }
181 
182 #else
183 
184 static inline int __attribute__((__unused__))
185 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
186 { return 0; }
187 
188 static inline int __attribute__((__unused__))
189 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
190 { return 0; }
191 
192 static inline int __attribute__((__unused__))
193 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
194 { return 0; }
195 
196 static inline int __attribute__((__unused__))
197 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
198 { return 0; }
199 
200 #endif /* DEBUG */
201 
202 /* functions have the "wrong" filename when they're output... */
203 #define dbg_status(oxu, label, status) { \
204 	char _buf[80]; \
205 	dbg_status_buf(_buf, sizeof _buf, label, status); \
206 	oxu_dbg(oxu, "%s\n", _buf); \
207 }
208 
209 #define dbg_cmd(oxu, label, command) { \
210 	char _buf[80]; \
211 	dbg_command_buf(_buf, sizeof _buf, label, command); \
212 	oxu_dbg(oxu, "%s\n", _buf); \
213 }
214 
215 #define dbg_port(oxu, label, port, status) { \
216 	char _buf[80]; \
217 	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
218 	oxu_dbg(oxu, "%s\n", _buf); \
219 }
220 
221 /*
222  * Module parameters
223  */
224 
225 /* Initial IRQ latency: faster than hw default */
226 static int log2_irq_thresh;			/* 0 to 6 */
227 module_param(log2_irq_thresh, int, S_IRUGO);
228 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
229 
230 /* Initial park setting: slower than hw default */
231 static unsigned park;
232 module_param(park, uint, S_IRUGO);
233 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
234 
235 /* For flakey hardware, ignore overcurrent indicators */
236 static int ignore_oc;
237 module_param(ignore_oc, bool, S_IRUGO);
238 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
239 
240 
241 static void ehci_work(struct oxu_hcd *oxu);
242 static int oxu_hub_control(struct usb_hcd *hcd,
243 				u16 typeReq, u16 wValue, u16 wIndex,
244 				char *buf, u16 wLength);
245 
246 /*
247  * Local functions
248  */
249 
250 /* Low level read/write registers functions */
251 static inline u32 oxu_readl(void *base, u32 reg)
252 {
253 	return readl(base + reg);
254 }
255 
256 static inline void oxu_writel(void *base, u32 reg, u32 val)
257 {
258 	writel(val, base + reg);
259 }
260 
261 static inline void timer_action_done(struct oxu_hcd *oxu,
262 					enum ehci_timer_action action)
263 {
264 	clear_bit(action, &oxu->actions);
265 }
266 
267 static inline void timer_action(struct oxu_hcd *oxu,
268 					enum ehci_timer_action action)
269 {
270 	if (!test_and_set_bit(action, &oxu->actions)) {
271 		unsigned long t;
272 
273 		switch (action) {
274 		case TIMER_IAA_WATCHDOG:
275 			t = EHCI_IAA_JIFFIES;
276 			break;
277 		case TIMER_IO_WATCHDOG:
278 			t = EHCI_IO_JIFFIES;
279 			break;
280 		case TIMER_ASYNC_OFF:
281 			t = EHCI_ASYNC_JIFFIES;
282 			break;
283 		case TIMER_ASYNC_SHRINK:
284 		default:
285 			t = EHCI_SHRINK_JIFFIES;
286 			break;
287 		}
288 		t += jiffies;
289 		/* all timings except IAA watchdog can be overridden.
290 		 * async queue SHRINK often precedes IAA.  while it's ready
291 		 * to go OFF neither can matter, and afterwards the IO
292 		 * watchdog stops unless there's still periodic traffic.
293 		 */
294 		if (action != TIMER_IAA_WATCHDOG
295 				&& t > oxu->watchdog.expires
296 				&& timer_pending(&oxu->watchdog))
297 			return;
298 		mod_timer(&oxu->watchdog, t);
299 	}
300 }
301 
302 /*
303  * handshake - spin reading hc until handshake completes or fails
304  * @ptr: address of hc register to be read
305  * @mask: bits to look at in result of read
306  * @done: value of those bits when handshake succeeds
307  * @usec: timeout in microseconds
308  *
309  * Returns negative errno, or zero on success
310  *
311  * Success happens when the "mask" bits have the specified value (hardware
312  * handshake done).  There are two failure modes:  "usec" have passed (major
313  * hardware flakeout), or the register reads as all-ones (hardware removed).
314  *
315  * That last failure should_only happen in cases like physical cardbus eject
316  * before driver shutdown. But it also seems to be caused by bugs in cardbus
317  * bridge shutdown:  shutting down the bridge before the devices using it.
318  */
319 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
320 					u32 mask, u32 done, int usec)
321 {
322 	u32 result;
323 
324 	do {
325 		result = readl(ptr);
326 		if (result == ~(u32)0)		/* card removed */
327 			return -ENODEV;
328 		result &= mask;
329 		if (result == done)
330 			return 0;
331 		udelay(1);
332 		usec--;
333 	} while (usec > 0);
334 	return -ETIMEDOUT;
335 }
336 
337 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
338 static int ehci_halt(struct oxu_hcd *oxu)
339 {
340 	u32	temp = readl(&oxu->regs->status);
341 
342 	/* disable any irqs left enabled by previous code */
343 	writel(0, &oxu->regs->intr_enable);
344 
345 	if ((temp & STS_HALT) != 0)
346 		return 0;
347 
348 	temp = readl(&oxu->regs->command);
349 	temp &= ~CMD_RUN;
350 	writel(temp, &oxu->regs->command);
351 	return handshake(oxu, &oxu->regs->status,
352 			  STS_HALT, STS_HALT, 16 * 125);
353 }
354 
355 /* Put TDI/ARC silicon into EHCI mode */
356 static void tdi_reset(struct oxu_hcd *oxu)
357 {
358 	u32 __iomem *reg_ptr;
359 	u32 tmp;
360 
361 	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
362 	tmp = readl(reg_ptr);
363 	tmp |= 0x3;
364 	writel(tmp, reg_ptr);
365 }
366 
367 /* Reset a non-running (STS_HALT == 1) controller */
368 static int ehci_reset(struct oxu_hcd *oxu)
369 {
370 	int	retval;
371 	u32	command = readl(&oxu->regs->command);
372 
373 	command |= CMD_RESET;
374 	dbg_cmd(oxu, "reset", command);
375 	writel(command, &oxu->regs->command);
376 	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
377 	oxu->next_statechange = jiffies;
378 	retval = handshake(oxu, &oxu->regs->command,
379 			    CMD_RESET, 0, 250 * 1000);
380 
381 	if (retval)
382 		return retval;
383 
384 	tdi_reset(oxu);
385 
386 	return retval;
387 }
388 
389 /* Idle the controller (from running) */
390 static void ehci_quiesce(struct oxu_hcd *oxu)
391 {
392 	u32	temp;
393 
394 #ifdef DEBUG
395 	if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
396 		BUG();
397 #endif
398 
399 	/* wait for any schedule enables/disables to take effect */
400 	temp = readl(&oxu->regs->command) << 10;
401 	temp &= STS_ASS | STS_PSS;
402 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
403 				temp, 16 * 125) != 0) {
404 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
405 		return;
406 	}
407 
408 	/* then disable anything that's still active */
409 	temp = readl(&oxu->regs->command);
410 	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
411 	writel(temp, &oxu->regs->command);
412 
413 	/* hardware can take 16 microframes to turn off ... */
414 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
415 				0, 16 * 125) != 0) {
416 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
417 		return;
418 	}
419 }
420 
421 static int check_reset_complete(struct oxu_hcd *oxu, int index,
422 				u32 __iomem *status_reg, int port_status)
423 {
424 	if (!(port_status & PORT_CONNECT)) {
425 		oxu->reset_done[index] = 0;
426 		return port_status;
427 	}
428 
429 	/* if reset finished and it's still not enabled -- handoff */
430 	if (!(port_status & PORT_PE)) {
431 		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
432 				index+1);
433 		return port_status;
434 	} else
435 		oxu_dbg(oxu, "port %d high speed\n", index + 1);
436 
437 	return port_status;
438 }
439 
440 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
441 				struct usb_hub_descriptor *desc)
442 {
443 	int ports = HCS_N_PORTS(oxu->hcs_params);
444 	u16 temp;
445 
446 	desc->bDescriptorType = 0x29;
447 	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
448 	desc->bHubContrCurrent = 0;
449 
450 	desc->bNbrPorts = ports;
451 	temp = 1 + (ports / 8);
452 	desc->bDescLength = 7 + 2 * temp;
453 
454 	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
455 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
456 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
457 
458 	temp = 0x0008;			/* per-port overcurrent reporting */
459 	if (HCS_PPC(oxu->hcs_params))
460 		temp |= 0x0001;		/* per-port power control */
461 	else
462 		temp |= 0x0002;		/* no power switching */
463 	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
464 }
465 
466 
467 /* Allocate an OXU210HP on-chip memory data buffer
468  *
469  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
470  * Each transfer descriptor has one or more on-chip memory data buffers.
471  *
472  * Data buffers are allocated from a fix sized pool of data blocks.
473  * To minimise fragmentation and give reasonable memory utlisation,
474  * data buffers are allocated with sizes the power of 2 multiples of
475  * the block size, starting on an address a multiple of the allocated size.
476  *
477  * FIXME: callers of this function require a buffer to be allocated for
478  * len=0. This is a waste of on-chip memory and should be fix. Then this
479  * function should be changed to not allocate a buffer for len=0.
480  */
481 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
482 {
483 	int n_blocks;	/* minium blocks needed to hold len */
484 	int a_blocks;	/* blocks allocated */
485 	int i, j;
486 
487 	/* Don't allocte bigger than supported */
488 	if (len > BUFFER_SIZE * BUFFER_NUM) {
489 		oxu_err(oxu, "buffer too big (%d)\n", len);
490 		return -ENOMEM;
491 	}
492 
493 	spin_lock(&oxu->mem_lock);
494 
495 	/* Number of blocks needed to hold len */
496 	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
497 
498 	/* Round the number of blocks up to the power of 2 */
499 	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
500 		;
501 
502 	/* Find a suitable available data buffer */
503 	for (i = 0; i < BUFFER_NUM;
504 			i += max(a_blocks, (int)oxu->db_used[i])) {
505 
506 		/* Check all the required blocks are available */
507 		for (j = 0; j < a_blocks; j++)
508 			if (oxu->db_used[i + j])
509 				break;
510 
511 		if (j != a_blocks)
512 			continue;
513 
514 		/* Allocate blocks found! */
515 		qtd->buffer = (void *) &oxu->mem->db_pool[i];
516 		qtd->buffer_dma = virt_to_phys(qtd->buffer);
517 
518 		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
519 		oxu->db_used[i] = a_blocks;
520 
521 		spin_unlock(&oxu->mem_lock);
522 
523 		return 0;
524 	}
525 
526 	/* Failed */
527 
528 	spin_unlock(&oxu->mem_lock);
529 
530 	return -ENOMEM;
531 }
532 
533 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
534 {
535 	int index;
536 
537 	spin_lock(&oxu->mem_lock);
538 
539 	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
540 							 / BUFFER_SIZE;
541 	oxu->db_used[index] = 0;
542 	qtd->qtd_buffer_len = 0;
543 	qtd->buffer_dma = 0;
544 	qtd->buffer = NULL;
545 
546 	spin_unlock(&oxu->mem_lock);
547 }
548 
549 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
550 {
551 	memset(qtd, 0, sizeof *qtd);
552 	qtd->qtd_dma = dma;
553 	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
554 	qtd->hw_next = EHCI_LIST_END;
555 	qtd->hw_alt_next = EHCI_LIST_END;
556 	INIT_LIST_HEAD(&qtd->qtd_list);
557 }
558 
559 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
560 {
561 	int index;
562 
563 	if (qtd->buffer)
564 		oxu_buf_free(oxu, qtd);
565 
566 	spin_lock(&oxu->mem_lock);
567 
568 	index = qtd - &oxu->mem->qtd_pool[0];
569 	oxu->qtd_used[index] = 0;
570 
571 	spin_unlock(&oxu->mem_lock);
572 }
573 
574 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
575 {
576 	int i;
577 	struct ehci_qtd *qtd = NULL;
578 
579 	spin_lock(&oxu->mem_lock);
580 
581 	for (i = 0; i < QTD_NUM; i++)
582 		if (!oxu->qtd_used[i])
583 			break;
584 
585 	if (i < QTD_NUM) {
586 		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
587 		memset(qtd, 0, sizeof *qtd);
588 
589 		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
590 		qtd->hw_next = EHCI_LIST_END;
591 		qtd->hw_alt_next = EHCI_LIST_END;
592 		INIT_LIST_HEAD(&qtd->qtd_list);
593 
594 		qtd->qtd_dma = virt_to_phys(qtd);
595 
596 		oxu->qtd_used[i] = 1;
597 	}
598 
599 	spin_unlock(&oxu->mem_lock);
600 
601 	return qtd;
602 }
603 
604 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
605 {
606 	int index;
607 
608 	spin_lock(&oxu->mem_lock);
609 
610 	index = qh - &oxu->mem->qh_pool[0];
611 	oxu->qh_used[index] = 0;
612 
613 	spin_unlock(&oxu->mem_lock);
614 }
615 
616 static void qh_destroy(struct kref *kref)
617 {
618 	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
619 	struct oxu_hcd *oxu = qh->oxu;
620 
621 	/* clean qtds first, and know this is not linked */
622 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
623 		oxu_dbg(oxu, "unused qh not empty!\n");
624 		BUG();
625 	}
626 	if (qh->dummy)
627 		oxu_qtd_free(oxu, qh->dummy);
628 	oxu_qh_free(oxu, qh);
629 }
630 
631 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
632 {
633 	int i;
634 	struct ehci_qh *qh = NULL;
635 
636 	spin_lock(&oxu->mem_lock);
637 
638 	for (i = 0; i < QHEAD_NUM; i++)
639 		if (!oxu->qh_used[i])
640 			break;
641 
642 	if (i < QHEAD_NUM) {
643 		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
644 		memset(qh, 0, sizeof *qh);
645 
646 		kref_init(&qh->kref);
647 		qh->oxu = oxu;
648 		qh->qh_dma = virt_to_phys(qh);
649 		INIT_LIST_HEAD(&qh->qtd_list);
650 
651 		/* dummy td enables safe urb queuing */
652 		qh->dummy = ehci_qtd_alloc(oxu);
653 		if (qh->dummy == NULL) {
654 			oxu_dbg(oxu, "no dummy td\n");
655 			oxu->qh_used[i] = 0;
656 			qh = NULL;
657 			goto unlock;
658 		}
659 
660 		oxu->qh_used[i] = 1;
661 	}
662 unlock:
663 	spin_unlock(&oxu->mem_lock);
664 
665 	return qh;
666 }
667 
668 /* to share a qh (cpu threads, or hc) */
669 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
670 {
671 	kref_get(&qh->kref);
672 	return qh;
673 }
674 
675 static inline void qh_put(struct ehci_qh *qh)
676 {
677 	kref_put(&qh->kref, qh_destroy);
678 }
679 
680 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
681 {
682 	int index;
683 
684 	spin_lock(&oxu->mem_lock);
685 
686 	index = murb - &oxu->murb_pool[0];
687 	oxu->murb_used[index] = 0;
688 
689 	spin_unlock(&oxu->mem_lock);
690 }
691 
692 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
693 
694 {
695 	int i;
696 	struct oxu_murb *murb = NULL;
697 
698 	spin_lock(&oxu->mem_lock);
699 
700 	for (i = 0; i < MURB_NUM; i++)
701 		if (!oxu->murb_used[i])
702 			break;
703 
704 	if (i < MURB_NUM) {
705 		murb = &(oxu->murb_pool)[i];
706 
707 		oxu->murb_used[i] = 1;
708 	}
709 
710 	spin_unlock(&oxu->mem_lock);
711 
712 	return murb;
713 }
714 
715 /* The queue heads and transfer descriptors are managed from pools tied
716  * to each of the "per device" structures.
717  * This is the initialisation and cleanup code.
718  */
719 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
720 {
721 	kfree(oxu->murb_pool);
722 	oxu->murb_pool = NULL;
723 
724 	if (oxu->async)
725 		qh_put(oxu->async);
726 	oxu->async = NULL;
727 
728 	del_timer(&oxu->urb_timer);
729 
730 	oxu->periodic = NULL;
731 
732 	/* shadow periodic table */
733 	kfree(oxu->pshadow);
734 	oxu->pshadow = NULL;
735 }
736 
737 /* Remember to add cleanup code (above) if you add anything here.
738  */
739 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
740 {
741 	int i;
742 
743 	for (i = 0; i < oxu->periodic_size; i++)
744 		oxu->mem->frame_list[i] = EHCI_LIST_END;
745 	for (i = 0; i < QHEAD_NUM; i++)
746 		oxu->qh_used[i] = 0;
747 	for (i = 0; i < QTD_NUM; i++)
748 		oxu->qtd_used[i] = 0;
749 
750 	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
751 	if (!oxu->murb_pool)
752 		goto fail;
753 
754 	for (i = 0; i < MURB_NUM; i++)
755 		oxu->murb_used[i] = 0;
756 
757 	oxu->async = oxu_qh_alloc(oxu);
758 	if (!oxu->async)
759 		goto fail;
760 
761 	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
762 	oxu->periodic_dma = virt_to_phys(oxu->periodic);
763 
764 	for (i = 0; i < oxu->periodic_size; i++)
765 		oxu->periodic[i] = EHCI_LIST_END;
766 
767 	/* software shadow of hardware table */
768 	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
769 	if (oxu->pshadow != NULL)
770 		return 0;
771 
772 fail:
773 	oxu_dbg(oxu, "couldn't init memory\n");
774 	ehci_mem_cleanup(oxu);
775 	return -ENOMEM;
776 }
777 
778 /* Fill a qtd, returning how much of the buffer we were able to queue up.
779  */
780 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
781 				int token, int maxpacket)
782 {
783 	int i, count;
784 	u64 addr = buf;
785 
786 	/* one buffer entry per 4K ... first might be short or unaligned */
787 	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
788 	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
789 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
790 	if (likely(len < count))		/* ... iff needed */
791 		count = len;
792 	else {
793 		buf +=  0x1000;
794 		buf &= ~0x0fff;
795 
796 		/* per-qtd limit: from 16K to 20K (best alignment) */
797 		for (i = 1; count < len && i < 5; i++) {
798 			addr = buf;
799 			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
800 			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
801 			buf += 0x1000;
802 			if ((count + 0x1000) < len)
803 				count += 0x1000;
804 			else
805 				count = len;
806 		}
807 
808 		/* short packets may only terminate transfers */
809 		if (count != len)
810 			count -= (count % maxpacket);
811 	}
812 	qtd->hw_token = cpu_to_le32((count << 16) | token);
813 	qtd->length = count;
814 
815 	return count;
816 }
817 
818 static inline void qh_update(struct oxu_hcd *oxu,
819 				struct ehci_qh *qh, struct ehci_qtd *qtd)
820 {
821 	/* writes to an active overlay are unsafe */
822 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
823 
824 	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
825 	qh->hw_alt_next = EHCI_LIST_END;
826 
827 	/* Except for control endpoints, we make hardware maintain data
828 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
829 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
830 	 * ever clear it.
831 	 */
832 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
833 		unsigned	is_out, epnum;
834 
835 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
836 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
837 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
838 			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
839 			usb_settoggle(qh->dev, epnum, is_out, 1);
840 		}
841 	}
842 
843 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
844 	wmb();
845 	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
846 }
847 
848 /* If it weren't for a common silicon quirk (writing the dummy into the qh
849  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
850  * recovery (including urb dequeue) would need software changes to a QH...
851  */
852 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
853 {
854 	struct ehci_qtd *qtd;
855 
856 	if (list_empty(&qh->qtd_list))
857 		qtd = qh->dummy;
858 	else {
859 		qtd = list_entry(qh->qtd_list.next,
860 				struct ehci_qtd, qtd_list);
861 		/* first qtd may already be partially processed */
862 		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
863 			qtd = NULL;
864 	}
865 
866 	if (qtd)
867 		qh_update(oxu, qh, qtd);
868 }
869 
870 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
871 				size_t length, u32 token)
872 {
873 	/* count IN/OUT bytes, not SETUP (even short packets) */
874 	if (likely(QTD_PID(token) != 2))
875 		urb->actual_length += length - QTD_LENGTH(token);
876 
877 	/* don't modify error codes */
878 	if (unlikely(urb->status != -EINPROGRESS))
879 		return;
880 
881 	/* force cleanup after short read; not always an error */
882 	if (unlikely(IS_SHORT_READ(token)))
883 		urb->status = -EREMOTEIO;
884 
885 	/* serious "can't proceed" faults reported by the hardware */
886 	if (token & QTD_STS_HALT) {
887 		if (token & QTD_STS_BABBLE) {
888 			/* FIXME "must" disable babbling device's port too */
889 			urb->status = -EOVERFLOW;
890 		} else if (token & QTD_STS_MMF) {
891 			/* fs/ls interrupt xfer missed the complete-split */
892 			urb->status = -EPROTO;
893 		} else if (token & QTD_STS_DBE) {
894 			urb->status = (QTD_PID(token) == 1) /* IN ? */
895 				? -ENOSR  /* hc couldn't read data */
896 				: -ECOMM; /* hc couldn't write data */
897 		} else if (token & QTD_STS_XACT) {
898 			/* timeout, bad crc, wrong PID, etc; retried */
899 			if (QTD_CERR(token))
900 				urb->status = -EPIPE;
901 			else {
902 				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
903 					urb->dev->devpath,
904 					usb_pipeendpoint(urb->pipe),
905 					usb_pipein(urb->pipe) ? "in" : "out");
906 				urb->status = -EPROTO;
907 			}
908 		/* CERR nonzero + no errors + halt --> stall */
909 		} else if (QTD_CERR(token))
910 			urb->status = -EPIPE;
911 		else	/* unknown */
912 			urb->status = -EPROTO;
913 
914 		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
915 			usb_pipedevice(urb->pipe),
916 			usb_pipeendpoint(urb->pipe),
917 			usb_pipein(urb->pipe) ? "in" : "out",
918 			token, urb->status);
919 	}
920 }
921 
922 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
923 __releases(oxu->lock)
924 __acquires(oxu->lock)
925 {
926 	if (likely(urb->hcpriv != NULL)) {
927 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
928 
929 		/* S-mask in a QH means it's an interrupt urb */
930 		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
931 
932 			/* ... update hc-wide periodic stats (for usbfs) */
933 			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
934 		}
935 		qh_put(qh);
936 	}
937 
938 	urb->hcpriv = NULL;
939 	switch (urb->status) {
940 	case -EINPROGRESS:		/* success */
941 		urb->status = 0;
942 	default:			/* fault */
943 		break;
944 	case -EREMOTEIO:		/* fault or normal */
945 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
946 			urb->status = 0;
947 		break;
948 	case -ECONNRESET:		/* canceled */
949 	case -ENOENT:
950 		break;
951 	}
952 
953 #ifdef OXU_URB_TRACE
954 	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
955 		__func__, urb->dev->devpath, urb,
956 		usb_pipeendpoint(urb->pipe),
957 		usb_pipein(urb->pipe) ? "in" : "out",
958 		urb->status,
959 		urb->actual_length, urb->transfer_buffer_length);
960 #endif
961 
962 	/* complete() can reenter this HCD */
963 	spin_unlock(&oxu->lock);
964 	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
965 	spin_lock(&oxu->lock);
966 }
967 
968 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
969 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
970 
971 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
972 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
973 
974 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
975 
976 /* Process and free completed qtds for a qh, returning URBs to drivers.
977  * Chases up to qh->hw_current.  Returns number of completions called,
978  * indicating how much "real" work we did.
979  */
980 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
981 {
982 	struct ehci_qtd *last = NULL, *end = qh->dummy;
983 	struct list_head *entry, *tmp;
984 	int stopped;
985 	unsigned count = 0;
986 	int do_status = 0;
987 	u8 state;
988 	struct oxu_murb *murb = NULL;
989 
990 	if (unlikely(list_empty(&qh->qtd_list)))
991 		return count;
992 
993 	/* completions (or tasks on other cpus) must never clobber HALT
994 	 * till we've gone through and cleaned everything up, even when
995 	 * they add urbs to this qh's queue or mark them for unlinking.
996 	 *
997 	 * NOTE:  unlinking expects to be done in queue order.
998 	 */
999 	state = qh->qh_state;
1000 	qh->qh_state = QH_STATE_COMPLETING;
1001 	stopped = (state == QH_STATE_IDLE);
1002 
1003 	/* remove de-activated QTDs from front of queue.
1004 	 * after faults (including short reads), cleanup this urb
1005 	 * then let the queue advance.
1006 	 * if queue is stopped, handles unlinks.
1007 	 */
1008 	list_for_each_safe(entry, tmp, &qh->qtd_list) {
1009 		struct ehci_qtd	*qtd;
1010 		struct urb *urb;
1011 		u32 token = 0;
1012 
1013 		qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1014 		urb = qtd->urb;
1015 
1016 		/* Clean up any state from previous QTD ...*/
1017 		if (last) {
1018 			if (likely(last->urb != urb)) {
1019 				if (last->urb->complete == NULL) {
1020 					murb = (struct oxu_murb *) last->urb;
1021 					last->urb = murb->main;
1022 					if (murb->last) {
1023 						ehci_urb_done(oxu, last->urb);
1024 						count++;
1025 					}
1026 					oxu_murb_free(oxu, murb);
1027 				} else {
1028 					ehci_urb_done(oxu, last->urb);
1029 					count++;
1030 				}
1031 			}
1032 			oxu_qtd_free(oxu, last);
1033 			last = NULL;
1034 		}
1035 
1036 		/* ignore urbs submitted during completions we reported */
1037 		if (qtd == end)
1038 			break;
1039 
1040 		/* hardware copies qtd out of qh overlay */
1041 		rmb();
1042 		token = le32_to_cpu(qtd->hw_token);
1043 
1044 		/* always clean up qtds the hc de-activated */
1045 		if ((token & QTD_STS_ACTIVE) == 0) {
1046 
1047 			if ((token & QTD_STS_HALT) != 0) {
1048 				stopped = 1;
1049 
1050 			/* magic dummy for some short reads; qh won't advance.
1051 			 * that silicon quirk can kick in with this dummy too.
1052 			 */
1053 			} else if (IS_SHORT_READ(token) &&
1054 					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1055 				stopped = 1;
1056 				goto halt;
1057 			}
1058 
1059 		/* stop scanning when we reach qtds the hc is using */
1060 		} else if (likely(!stopped &&
1061 				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1062 			break;
1063 
1064 		} else {
1065 			stopped = 1;
1066 
1067 			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1068 				urb->status = -ESHUTDOWN;
1069 
1070 			/* ignore active urbs unless some previous qtd
1071 			 * for the urb faulted (including short read) or
1072 			 * its urb was canceled.  we may patch qh or qtds.
1073 			 */
1074 			if (likely(urb->status == -EINPROGRESS))
1075 				continue;
1076 
1077 			/* issue status after short control reads */
1078 			if (unlikely(do_status != 0)
1079 					&& QTD_PID(token) == 0 /* OUT */) {
1080 				do_status = 0;
1081 				continue;
1082 			}
1083 
1084 			/* token in overlay may be most current */
1085 			if (state == QH_STATE_IDLE
1086 					&& cpu_to_le32(qtd->qtd_dma)
1087 						== qh->hw_current)
1088 				token = le32_to_cpu(qh->hw_token);
1089 
1090 			/* force halt for unlinked or blocked qh, so we'll
1091 			 * patch the qh later and so that completions can't
1092 			 * activate it while we "know" it's stopped.
1093 			 */
1094 			if ((HALT_BIT & qh->hw_token) == 0) {
1095 halt:
1096 				qh->hw_token |= HALT_BIT;
1097 				wmb();
1098 			}
1099 		}
1100 
1101 		/* Remove it from the queue */
1102 		qtd_copy_status(oxu, urb->complete ?
1103 					urb : ((struct oxu_murb *) urb)->main,
1104 				qtd->length, token);
1105 		if ((usb_pipein(qtd->urb->pipe)) &&
1106 				(NULL != qtd->transfer_buffer))
1107 			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1108 		do_status = (urb->status == -EREMOTEIO)
1109 				&& usb_pipecontrol(urb->pipe);
1110 
1111 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1112 			last = list_entry(qtd->qtd_list.prev,
1113 					struct ehci_qtd, qtd_list);
1114 			last->hw_next = qtd->hw_next;
1115 		}
1116 		list_del(&qtd->qtd_list);
1117 		last = qtd;
1118 	}
1119 
1120 	/* last urb's completion might still need calling */
1121 	if (likely(last != NULL)) {
1122 		if (last->urb->complete == NULL) {
1123 			murb = (struct oxu_murb *) last->urb;
1124 			last->urb = murb->main;
1125 			if (murb->last) {
1126 				ehci_urb_done(oxu, last->urb);
1127 				count++;
1128 			}
1129 			oxu_murb_free(oxu, murb);
1130 		} else {
1131 			ehci_urb_done(oxu, last->urb);
1132 			count++;
1133 		}
1134 		oxu_qtd_free(oxu, last);
1135 	}
1136 
1137 	/* restore original state; caller must unlink or relink */
1138 	qh->qh_state = state;
1139 
1140 	/* be sure the hardware's done with the qh before refreshing
1141 	 * it after fault cleanup, or recovering from silicon wrongly
1142 	 * overlaying the dummy qtd (which reduces DMA chatter).
1143 	 */
1144 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1145 		switch (state) {
1146 		case QH_STATE_IDLE:
1147 			qh_refresh(oxu, qh);
1148 			break;
1149 		case QH_STATE_LINKED:
1150 			/* should be rare for periodic transfers,
1151 			 * except maybe high bandwidth ...
1152 			 */
1153 			if ((cpu_to_le32(QH_SMASK)
1154 					& qh->hw_info2) != 0) {
1155 				intr_deschedule(oxu, qh);
1156 				(void) qh_schedule(oxu, qh);
1157 			} else
1158 				unlink_async(oxu, qh);
1159 			break;
1160 		/* otherwise, unlink already started */
1161 		}
1162 	}
1163 
1164 	return count;
1165 }
1166 
1167 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1168 #define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1169 /* ... and packet size, for any kind of endpoint descriptor */
1170 #define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1171 
1172 /* Reverse of qh_urb_transaction: free a list of TDs.
1173  * used for cleanup after errors, before HC sees an URB's TDs.
1174  */
1175 static void qtd_list_free(struct oxu_hcd *oxu,
1176 				struct urb *urb, struct list_head *qtd_list)
1177 {
1178 	struct list_head *entry, *temp;
1179 
1180 	list_for_each_safe(entry, temp, qtd_list) {
1181 		struct ehci_qtd	*qtd;
1182 
1183 		qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1184 		list_del(&qtd->qtd_list);
1185 		oxu_qtd_free(oxu, qtd);
1186 	}
1187 }
1188 
1189 /* Create a list of filled qtds for this URB; won't link into qh.
1190  */
1191 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1192 						struct urb *urb,
1193 						struct list_head *head,
1194 						gfp_t flags)
1195 {
1196 	struct ehci_qtd	*qtd, *qtd_prev;
1197 	dma_addr_t buf;
1198 	int len, maxpacket;
1199 	int is_input;
1200 	u32 token;
1201 	void *transfer_buf = NULL;
1202 	int ret;
1203 
1204 	/*
1205 	 * URBs map to sequences of QTDs: one logical transaction
1206 	 */
1207 	qtd = ehci_qtd_alloc(oxu);
1208 	if (unlikely(!qtd))
1209 		return NULL;
1210 	list_add_tail(&qtd->qtd_list, head);
1211 	qtd->urb = urb;
1212 
1213 	token = QTD_STS_ACTIVE;
1214 	token |= (EHCI_TUNE_CERR << 10);
1215 	/* for split transactions, SplitXState initialized to zero */
1216 
1217 	len = urb->transfer_buffer_length;
1218 	is_input = usb_pipein(urb->pipe);
1219 	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1220 		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1221 
1222 	if (usb_pipecontrol(urb->pipe)) {
1223 		/* SETUP pid */
1224 		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1225 		if (ret)
1226 			goto cleanup;
1227 
1228 		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1229 				token | (2 /* "setup" */ << 8), 8);
1230 		memcpy(qtd->buffer, qtd->urb->setup_packet,
1231 				sizeof(struct usb_ctrlrequest));
1232 
1233 		/* ... and always at least one more pid */
1234 		token ^= QTD_TOGGLE;
1235 		qtd_prev = qtd;
1236 		qtd = ehci_qtd_alloc(oxu);
1237 		if (unlikely(!qtd))
1238 			goto cleanup;
1239 		qtd->urb = urb;
1240 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1241 		list_add_tail(&qtd->qtd_list, head);
1242 
1243 		/* for zero length DATA stages, STATUS is always IN */
1244 		if (len == 0)
1245 			token |= (1 /* "in" */ << 8);
1246 	}
1247 
1248 	/*
1249 	 * Data transfer stage: buffer setup
1250 	 */
1251 
1252 	ret = oxu_buf_alloc(oxu, qtd, len);
1253 	if (ret)
1254 		goto cleanup;
1255 
1256 	buf = qtd->buffer_dma;
1257 	transfer_buf = urb->transfer_buffer;
1258 
1259 	if (!is_input)
1260 		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1261 
1262 	if (is_input)
1263 		token |= (1 /* "in" */ << 8);
1264 	/* else it's already initted to "out" pid (0 << 8) */
1265 
1266 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1267 
1268 	/*
1269 	 * buffer gets wrapped in one or more qtds;
1270 	 * last one may be "short" (including zero len)
1271 	 * and may serve as a control status ack
1272 	 */
1273 	for (;;) {
1274 		int this_qtd_len;
1275 
1276 		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1277 		qtd->transfer_buffer = transfer_buf;
1278 		len -= this_qtd_len;
1279 		buf += this_qtd_len;
1280 		transfer_buf += this_qtd_len;
1281 		if (is_input)
1282 			qtd->hw_alt_next = oxu->async->hw_alt_next;
1283 
1284 		/* qh makes control packets use qtd toggle; maybe switch it */
1285 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1286 			token ^= QTD_TOGGLE;
1287 
1288 		if (likely(len <= 0))
1289 			break;
1290 
1291 		qtd_prev = qtd;
1292 		qtd = ehci_qtd_alloc(oxu);
1293 		if (unlikely(!qtd))
1294 			goto cleanup;
1295 		if (likely(len > 0)) {
1296 			ret = oxu_buf_alloc(oxu, qtd, len);
1297 			if (ret)
1298 				goto cleanup;
1299 		}
1300 		qtd->urb = urb;
1301 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1302 		list_add_tail(&qtd->qtd_list, head);
1303 	}
1304 
1305 	/* unless the bulk/interrupt caller wants a chance to clean
1306 	 * up after short reads, hc should advance qh past this urb
1307 	 */
1308 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1309 				|| usb_pipecontrol(urb->pipe)))
1310 		qtd->hw_alt_next = EHCI_LIST_END;
1311 
1312 	/*
1313 	 * control requests may need a terminating data "status" ack;
1314 	 * bulk ones may need a terminating short packet (zero length).
1315 	 */
1316 	if (likely(urb->transfer_buffer_length != 0)) {
1317 		int	one_more = 0;
1318 
1319 		if (usb_pipecontrol(urb->pipe)) {
1320 			one_more = 1;
1321 			token ^= 0x0100;	/* "in" <--> "out"  */
1322 			token |= QTD_TOGGLE;	/* force DATA1 */
1323 		} else if (usb_pipebulk(urb->pipe)
1324 				&& (urb->transfer_flags & URB_ZERO_PACKET)
1325 				&& !(urb->transfer_buffer_length % maxpacket)) {
1326 			one_more = 1;
1327 		}
1328 		if (one_more) {
1329 			qtd_prev = qtd;
1330 			qtd = ehci_qtd_alloc(oxu);
1331 			if (unlikely(!qtd))
1332 				goto cleanup;
1333 			qtd->urb = urb;
1334 			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1335 			list_add_tail(&qtd->qtd_list, head);
1336 
1337 			/* never any data in such packets */
1338 			qtd_fill(qtd, 0, 0, token, 0);
1339 		}
1340 	}
1341 
1342 	/* by default, enable interrupt on urb completion */
1343 		qtd->hw_token |= cpu_to_le32(QTD_IOC);
1344 	return head;
1345 
1346 cleanup:
1347 	qtd_list_free(oxu, urb, head);
1348 	return NULL;
1349 }
1350 
1351 /* Each QH holds a qtd list; a QH is used for everything except iso.
1352  *
1353  * For interrupt urbs, the scheduler must set the microframe scheduling
1354  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1355  * just one microframe in the s-mask.  For split interrupt transactions
1356  * there are additional complications: c-mask, maybe FSTNs.
1357  */
1358 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1359 				struct urb *urb, gfp_t flags)
1360 {
1361 	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1362 	u32 info1 = 0, info2 = 0;
1363 	int is_input, type;
1364 	int maxp = 0;
1365 
1366 	if (!qh)
1367 		return qh;
1368 
1369 	/*
1370 	 * init endpoint/device data for this QH
1371 	 */
1372 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1373 	info1 |= usb_pipedevice(urb->pipe) << 0;
1374 
1375 	is_input = usb_pipein(urb->pipe);
1376 	type = usb_pipetype(urb->pipe);
1377 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1378 
1379 	/* Compute interrupt scheduling parameters just once, and save.
1380 	 * - allowing for high bandwidth, how many nsec/uframe are used?
1381 	 * - split transactions need a second CSPLIT uframe; same question
1382 	 * - splits also need a schedule gap (for full/low speed I/O)
1383 	 * - qh has a polling interval
1384 	 *
1385 	 * For control/bulk requests, the HC or TT handles these.
1386 	 */
1387 	if (type == PIPE_INTERRUPT) {
1388 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1389 								is_input, 0,
1390 				hb_mult(maxp) * max_packet(maxp)));
1391 		qh->start = NO_FRAME;
1392 
1393 		if (urb->dev->speed == USB_SPEED_HIGH) {
1394 			qh->c_usecs = 0;
1395 			qh->gap_uf = 0;
1396 
1397 			qh->period = urb->interval >> 3;
1398 			if (qh->period == 0 && urb->interval != 1) {
1399 				/* NOTE interval 2 or 4 uframes could work.
1400 				 * But interval 1 scheduling is simpler, and
1401 				 * includes high bandwidth.
1402 				 */
1403 				dbg("intr period %d uframes, NYET!",
1404 						urb->interval);
1405 				goto done;
1406 			}
1407 		} else {
1408 			struct usb_tt	*tt = urb->dev->tt;
1409 			int		think_time;
1410 
1411 			/* gap is f(FS/LS transfer times) */
1412 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1413 					is_input, 0, maxp) / (125 * 1000);
1414 
1415 			/* FIXME this just approximates SPLIT/CSPLIT times */
1416 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1417 				qh->c_usecs = qh->usecs + HS_USECS(0);
1418 				qh->usecs = HS_USECS(1);
1419 			} else {		/* SPLIT+DATA, gap, CSPLIT */
1420 				qh->usecs += HS_USECS(1);
1421 				qh->c_usecs = HS_USECS(0);
1422 			}
1423 
1424 			think_time = tt ? tt->think_time : 0;
1425 			qh->tt_usecs = NS_TO_US(think_time +
1426 					usb_calc_bus_time(urb->dev->speed,
1427 					is_input, 0, max_packet(maxp)));
1428 			qh->period = urb->interval;
1429 		}
1430 	}
1431 
1432 	/* support for tt scheduling, and access to toggles */
1433 	qh->dev = urb->dev;
1434 
1435 	/* using TT? */
1436 	switch (urb->dev->speed) {
1437 	case USB_SPEED_LOW:
1438 		info1 |= (1 << 12);	/* EPS "low" */
1439 		/* FALL THROUGH */
1440 
1441 	case USB_SPEED_FULL:
1442 		/* EPS 0 means "full" */
1443 		if (type != PIPE_INTERRUPT)
1444 			info1 |= (EHCI_TUNE_RL_TT << 28);
1445 		if (type == PIPE_CONTROL) {
1446 			info1 |= (1 << 27);	/* for TT */
1447 			info1 |= 1 << 14;	/* toggle from qtd */
1448 		}
1449 		info1 |= maxp << 16;
1450 
1451 		info2 |= (EHCI_TUNE_MULT_TT << 30);
1452 		info2 |= urb->dev->ttport << 23;
1453 
1454 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1455 
1456 		break;
1457 
1458 	case USB_SPEED_HIGH:		/* no TT involved */
1459 		info1 |= (2 << 12);	/* EPS "high" */
1460 		if (type == PIPE_CONTROL) {
1461 			info1 |= (EHCI_TUNE_RL_HS << 28);
1462 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1463 			info1 |= 1 << 14;	/* toggle from qtd */
1464 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1465 		} else if (type == PIPE_BULK) {
1466 			info1 |= (EHCI_TUNE_RL_HS << 28);
1467 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1468 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1469 		} else {		/* PIPE_INTERRUPT */
1470 			info1 |= max_packet(maxp) << 16;
1471 			info2 |= hb_mult(maxp) << 30;
1472 		}
1473 		break;
1474 	default:
1475 		dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed);
1476 done:
1477 		qh_put(qh);
1478 		return NULL;
1479 	}
1480 
1481 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1482 
1483 	/* init as live, toggle clear, advance to dummy */
1484 	qh->qh_state = QH_STATE_IDLE;
1485 	qh->hw_info1 = cpu_to_le32(info1);
1486 	qh->hw_info2 = cpu_to_le32(info2);
1487 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1488 	qh_refresh(oxu, qh);
1489 	return qh;
1490 }
1491 
1492 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1493  */
1494 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1495 {
1496 	__le32 dma = QH_NEXT(qh->qh_dma);
1497 	struct ehci_qh *head;
1498 
1499 	/* (re)start the async schedule? */
1500 	head = oxu->async;
1501 	timer_action_done(oxu, TIMER_ASYNC_OFF);
1502 	if (!head->qh_next.qh) {
1503 		u32	cmd = readl(&oxu->regs->command);
1504 
1505 		if (!(cmd & CMD_ASE)) {
1506 			/* in case a clear of CMD_ASE didn't take yet */
1507 			(void)handshake(oxu, &oxu->regs->status,
1508 					STS_ASS, 0, 150);
1509 			cmd |= CMD_ASE | CMD_RUN;
1510 			writel(cmd, &oxu->regs->command);
1511 			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1512 			/* posted write need not be known to HC yet ... */
1513 		}
1514 	}
1515 
1516 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1517 	if (qh->qh_state == QH_STATE_IDLE)
1518 		qh_refresh(oxu, qh);
1519 
1520 	/* splice right after start */
1521 	qh->qh_next = head->qh_next;
1522 	qh->hw_next = head->hw_next;
1523 	wmb();
1524 
1525 	head->qh_next.qh = qh;
1526 	head->hw_next = dma;
1527 
1528 	qh->qh_state = QH_STATE_LINKED;
1529 	/* qtd completions reported later by interrupt */
1530 }
1531 
1532 #define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1533 
1534 /*
1535  * For control/bulk/interrupt, return QH with these TDs appended.
1536  * Allocates and initializes the QH if necessary.
1537  * Returns null if it can't allocate a QH it needs to.
1538  * If the QH has TDs (urbs) already, that's great.
1539  */
1540 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1541 				struct urb *urb, struct list_head *qtd_list,
1542 				int epnum, void	**ptr)
1543 {
1544 	struct ehci_qh *qh = NULL;
1545 
1546 	qh = (struct ehci_qh *) *ptr;
1547 	if (unlikely(qh == NULL)) {
1548 		/* can't sleep here, we have oxu->lock... */
1549 		qh = qh_make(oxu, urb, GFP_ATOMIC);
1550 		*ptr = qh;
1551 	}
1552 	if (likely(qh != NULL)) {
1553 		struct ehci_qtd	*qtd;
1554 
1555 		if (unlikely(list_empty(qtd_list)))
1556 			qtd = NULL;
1557 		else
1558 			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1559 					qtd_list);
1560 
1561 		/* control qh may need patching ... */
1562 		if (unlikely(epnum == 0)) {
1563 
1564 			/* usb_reset_device() briefly reverts to address 0 */
1565 			if (usb_pipedevice(urb->pipe) == 0)
1566 				qh->hw_info1 &= ~QH_ADDR_MASK;
1567 		}
1568 
1569 		/* just one way to queue requests: swap with the dummy qtd.
1570 		 * only hc or qh_refresh() ever modify the overlay.
1571 		 */
1572 		if (likely(qtd != NULL)) {
1573 			struct ehci_qtd	*dummy;
1574 			dma_addr_t dma;
1575 			__le32 token;
1576 
1577 			/* to avoid racing the HC, use the dummy td instead of
1578 			 * the first td of our list (becomes new dummy).  both
1579 			 * tds stay deactivated until we're done, when the
1580 			 * HC is allowed to fetch the old dummy (4.10.2).
1581 			 */
1582 			token = qtd->hw_token;
1583 			qtd->hw_token = HALT_BIT;
1584 			wmb();
1585 			dummy = qh->dummy;
1586 
1587 			dma = dummy->qtd_dma;
1588 			*dummy = *qtd;
1589 			dummy->qtd_dma = dma;
1590 
1591 			list_del(&qtd->qtd_list);
1592 			list_add(&dummy->qtd_list, qtd_list);
1593 			list_splice(qtd_list, qh->qtd_list.prev);
1594 
1595 			ehci_qtd_init(qtd, qtd->qtd_dma);
1596 			qh->dummy = qtd;
1597 
1598 			/* hc must see the new dummy at list end */
1599 			dma = qtd->qtd_dma;
1600 			qtd = list_entry(qh->qtd_list.prev,
1601 					struct ehci_qtd, qtd_list);
1602 			qtd->hw_next = QTD_NEXT(dma);
1603 
1604 			/* let the hc process these next qtds */
1605 			dummy->hw_token = (token & ~(0x80));
1606 			wmb();
1607 			dummy->hw_token = token;
1608 
1609 			urb->hcpriv = qh_get(qh);
1610 		}
1611 	}
1612 	return qh;
1613 }
1614 
1615 static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
1616 			struct list_head *qtd_list, gfp_t mem_flags)
1617 {
1618 	struct ehci_qtd	*qtd;
1619 	int epnum;
1620 	unsigned long flags;
1621 	struct ehci_qh *qh = NULL;
1622 	int rc = 0;
1623 
1624 	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1625 	epnum = urb->ep->desc.bEndpointAddress;
1626 
1627 #ifdef OXU_URB_TRACE
1628 	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1629 		__func__, urb->dev->devpath, urb,
1630 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1631 		urb->transfer_buffer_length,
1632 		qtd, urb->ep->hcpriv);
1633 #endif
1634 
1635 	spin_lock_irqsave(&oxu->lock, flags);
1636 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1637 		rc = -ESHUTDOWN;
1638 		goto done;
1639 	}
1640 
1641 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1642 	if (unlikely(qh == NULL)) {
1643 		rc = -ENOMEM;
1644 		goto done;
1645 	}
1646 
1647 	/* Control/bulk operations through TTs don't need scheduling,
1648 	 * the HC and TT handle it when the TT has a buffer ready.
1649 	 */
1650 	if (likely(qh->qh_state == QH_STATE_IDLE))
1651 		qh_link_async(oxu, qh_get(qh));
1652 done:
1653 	spin_unlock_irqrestore(&oxu->lock, flags);
1654 	if (unlikely(qh == NULL))
1655 		qtd_list_free(oxu, urb, qtd_list);
1656 	return rc;
1657 }
1658 
1659 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1660 
1661 static void end_unlink_async(struct oxu_hcd *oxu)
1662 {
1663 	struct ehci_qh *qh = oxu->reclaim;
1664 	struct ehci_qh *next;
1665 
1666 	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1667 
1668 	qh->qh_state = QH_STATE_IDLE;
1669 	qh->qh_next.qh = NULL;
1670 	qh_put(qh);			/* refcount from reclaim */
1671 
1672 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1673 	next = qh->reclaim;
1674 	oxu->reclaim = next;
1675 	oxu->reclaim_ready = 0;
1676 	qh->reclaim = NULL;
1677 
1678 	qh_completions(oxu, qh);
1679 
1680 	if (!list_empty(&qh->qtd_list)
1681 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1682 		qh_link_async(oxu, qh);
1683 	else {
1684 		qh_put(qh);		/* refcount from async list */
1685 
1686 		/* it's not free to turn the async schedule on/off; leave it
1687 		 * active but idle for a while once it empties.
1688 		 */
1689 		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1690 				&& oxu->async->qh_next.qh == NULL)
1691 			timer_action(oxu, TIMER_ASYNC_OFF);
1692 	}
1693 
1694 	if (next) {
1695 		oxu->reclaim = NULL;
1696 		start_unlink_async(oxu, next);
1697 	}
1698 }
1699 
1700 /* makes sure the async qh will become idle */
1701 /* caller must own oxu->lock */
1702 
1703 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1704 {
1705 	int cmd = readl(&oxu->regs->command);
1706 	struct ehci_qh *prev;
1707 
1708 #ifdef DEBUG
1709 	assert_spin_locked(&oxu->lock);
1710 	if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1711 				&& qh->qh_state != QH_STATE_UNLINK_WAIT))
1712 		BUG();
1713 #endif
1714 
1715 	/* stop async schedule right now? */
1716 	if (unlikely(qh == oxu->async)) {
1717 		/* can't get here without STS_ASS set */
1718 		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1719 				&& !oxu->reclaim) {
1720 			/* ... and CMD_IAAD clear */
1721 			writel(cmd & ~CMD_ASE, &oxu->regs->command);
1722 			wmb();
1723 			/* handshake later, if we need to */
1724 			timer_action_done(oxu, TIMER_ASYNC_OFF);
1725 		}
1726 		return;
1727 	}
1728 
1729 	qh->qh_state = QH_STATE_UNLINK;
1730 	oxu->reclaim = qh = qh_get(qh);
1731 
1732 	prev = oxu->async;
1733 	while (prev->qh_next.qh != qh)
1734 		prev = prev->qh_next.qh;
1735 
1736 	prev->hw_next = qh->hw_next;
1737 	prev->qh_next = qh->qh_next;
1738 	wmb();
1739 
1740 	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1741 		/* if (unlikely(qh->reclaim != 0))
1742 		 *	this will recurse, probably not much
1743 		 */
1744 		end_unlink_async(oxu);
1745 		return;
1746 	}
1747 
1748 	oxu->reclaim_ready = 0;
1749 	cmd |= CMD_IAAD;
1750 	writel(cmd, &oxu->regs->command);
1751 	(void) readl(&oxu->regs->command);
1752 	timer_action(oxu, TIMER_IAA_WATCHDOG);
1753 }
1754 
1755 static void scan_async(struct oxu_hcd *oxu)
1756 {
1757 	struct ehci_qh *qh;
1758 	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1759 
1760 	if (!++(oxu->stamp))
1761 		oxu->stamp++;
1762 	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1763 rescan:
1764 	qh = oxu->async->qh_next.qh;
1765 	if (likely(qh != NULL)) {
1766 		do {
1767 			/* clean any finished work for this qh */
1768 			if (!list_empty(&qh->qtd_list)
1769 					&& qh->stamp != oxu->stamp) {
1770 				int temp;
1771 
1772 				/* unlinks could happen here; completion
1773 				 * reporting drops the lock.  rescan using
1774 				 * the latest schedule, but don't rescan
1775 				 * qhs we already finished (no looping).
1776 				 */
1777 				qh = qh_get(qh);
1778 				qh->stamp = oxu->stamp;
1779 				temp = qh_completions(oxu, qh);
1780 				qh_put(qh);
1781 				if (temp != 0)
1782 					goto rescan;
1783 			}
1784 
1785 			/* unlink idle entries, reducing HC PCI usage as well
1786 			 * as HCD schedule-scanning costs.  delay for any qh
1787 			 * we just scanned, there's a not-unusual case that it
1788 			 * doesn't stay idle for long.
1789 			 * (plus, avoids some kind of re-activation race.)
1790 			 */
1791 			if (list_empty(&qh->qtd_list)) {
1792 				if (qh->stamp == oxu->stamp)
1793 					action = TIMER_ASYNC_SHRINK;
1794 				else if (!oxu->reclaim
1795 					    && qh->qh_state == QH_STATE_LINKED)
1796 					start_unlink_async(oxu, qh);
1797 			}
1798 
1799 			qh = qh->qh_next.qh;
1800 		} while (qh);
1801 	}
1802 	if (action == TIMER_ASYNC_SHRINK)
1803 		timer_action(oxu, TIMER_ASYNC_SHRINK);
1804 }
1805 
1806 /*
1807  * periodic_next_shadow - return "next" pointer on shadow list
1808  * @periodic: host pointer to qh/itd/sitd
1809  * @tag: hardware tag for type of this record
1810  */
1811 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1812 						__le32 tag)
1813 {
1814 	switch (tag) {
1815 	default:
1816 	case Q_TYPE_QH:
1817 		return &periodic->qh->qh_next;
1818 	}
1819 }
1820 
1821 /* caller must hold oxu->lock */
1822 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1823 {
1824 	union ehci_shadow *prev_p = &oxu->pshadow[frame];
1825 	__le32 *hw_p = &oxu->periodic[frame];
1826 	union ehci_shadow here = *prev_p;
1827 
1828 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
1829 	while (here.ptr && here.ptr != ptr) {
1830 		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1831 		hw_p = here.hw_next;
1832 		here = *prev_p;
1833 	}
1834 	/* an interrupt entry (at list end) could have been shared */
1835 	if (!here.ptr)
1836 		return;
1837 
1838 	/* update shadow and hardware lists ... the old "next" pointers
1839 	 * from ptr may still be in use, the caller updates them.
1840 	 */
1841 	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1842 	*hw_p = *here.hw_next;
1843 }
1844 
1845 /* how many of the uframe's 125 usecs are allocated? */
1846 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1847 					unsigned frame, unsigned uframe)
1848 {
1849 	__le32 *hw_p = &oxu->periodic[frame];
1850 	union ehci_shadow *q = &oxu->pshadow[frame];
1851 	unsigned usecs = 0;
1852 
1853 	while (q->ptr) {
1854 		switch (Q_NEXT_TYPE(*hw_p)) {
1855 		case Q_TYPE_QH:
1856 		default:
1857 			/* is it in the S-mask? */
1858 			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1859 				usecs += q->qh->usecs;
1860 			/* ... or C-mask? */
1861 			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1862 				usecs += q->qh->c_usecs;
1863 			hw_p = &q->qh->hw_next;
1864 			q = &q->qh->qh_next;
1865 			break;
1866 		}
1867 	}
1868 #ifdef DEBUG
1869 	if (usecs > 100)
1870 		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1871 						frame * 8 + uframe, usecs);
1872 #endif
1873 	return usecs;
1874 }
1875 
1876 static int enable_periodic(struct oxu_hcd *oxu)
1877 {
1878 	u32 cmd;
1879 	int status;
1880 
1881 	/* did clearing PSE did take effect yet?
1882 	 * takes effect only at frame boundaries...
1883 	 */
1884 	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1885 	if (status != 0) {
1886 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1887 		return status;
1888 	}
1889 
1890 	cmd = readl(&oxu->regs->command) | CMD_PSE;
1891 	writel(cmd, &oxu->regs->command);
1892 	/* posted write ... PSS happens later */
1893 	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1894 
1895 	/* make sure ehci_work scans these */
1896 	oxu->next_uframe = readl(&oxu->regs->frame_index)
1897 		% (oxu->periodic_size << 3);
1898 	return 0;
1899 }
1900 
1901 static int disable_periodic(struct oxu_hcd *oxu)
1902 {
1903 	u32 cmd;
1904 	int status;
1905 
1906 	/* did setting PSE not take effect yet?
1907 	 * takes effect only at frame boundaries...
1908 	 */
1909 	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1910 	if (status != 0) {
1911 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1912 		return status;
1913 	}
1914 
1915 	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1916 	writel(cmd, &oxu->regs->command);
1917 	/* posted write ... */
1918 
1919 	oxu->next_uframe = -1;
1920 	return 0;
1921 }
1922 
1923 /* periodic schedule slots have iso tds (normal or split) first, then a
1924  * sparse tree for active interrupt transfers.
1925  *
1926  * this just links in a qh; caller guarantees uframe masks are set right.
1927  * no FSTN support (yet; oxu 0.96+)
1928  */
1929 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1930 {
1931 	unsigned i;
1932 	unsigned period = qh->period;
1933 
1934 	dev_dbg(&qh->dev->dev,
1935 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
1936 		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1937 		qh, qh->start, qh->usecs, qh->c_usecs);
1938 
1939 	/* high bandwidth, or otherwise every microframe */
1940 	if (period == 0)
1941 		period = 1;
1942 
1943 	for (i = qh->start; i < oxu->periodic_size; i += period) {
1944 		union ehci_shadow	*prev = &oxu->pshadow[i];
1945 		__le32			*hw_p = &oxu->periodic[i];
1946 		union ehci_shadow	here = *prev;
1947 		__le32			type = 0;
1948 
1949 		/* skip the iso nodes at list head */
1950 		while (here.ptr) {
1951 			type = Q_NEXT_TYPE(*hw_p);
1952 			if (type == Q_TYPE_QH)
1953 				break;
1954 			prev = periodic_next_shadow(prev, type);
1955 			hw_p = &here.qh->hw_next;
1956 			here = *prev;
1957 		}
1958 
1959 		/* sorting each branch by period (slow-->fast)
1960 		 * enables sharing interior tree nodes
1961 		 */
1962 		while (here.ptr && qh != here.qh) {
1963 			if (qh->period > here.qh->period)
1964 				break;
1965 			prev = &here.qh->qh_next;
1966 			hw_p = &here.qh->hw_next;
1967 			here = *prev;
1968 		}
1969 		/* link in this qh, unless some earlier pass did that */
1970 		if (qh != here.qh) {
1971 			qh->qh_next = here;
1972 			if (here.qh)
1973 				qh->hw_next = *hw_p;
1974 			wmb();
1975 			prev->qh = qh;
1976 			*hw_p = QH_NEXT(qh->qh_dma);
1977 		}
1978 	}
1979 	qh->qh_state = QH_STATE_LINKED;
1980 	qh_get(qh);
1981 
1982 	/* update per-qh bandwidth for usbfs */
1983 	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1984 		? ((qh->usecs + qh->c_usecs) / qh->period)
1985 		: (qh->usecs * 8);
1986 
1987 	/* maybe enable periodic schedule processing */
1988 	if (!oxu->periodic_sched++)
1989 		return enable_periodic(oxu);
1990 
1991 	return 0;
1992 }
1993 
1994 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1995 {
1996 	unsigned i;
1997 	unsigned period;
1998 
1999 	/* FIXME:
2000 	 *   IF this isn't high speed
2001 	 *   and this qh is active in the current uframe
2002 	 *   (and overlay token SplitXstate is false?)
2003 	 * THEN
2004 	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2005 	 */
2006 
2007 	/* high bandwidth, or otherwise part of every microframe */
2008 	period = qh->period;
2009 	if (period == 0)
2010 		period = 1;
2011 
2012 	for (i = qh->start; i < oxu->periodic_size; i += period)
2013 		periodic_unlink(oxu, i, qh);
2014 
2015 	/* update per-qh bandwidth for usbfs */
2016 	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2017 		? ((qh->usecs + qh->c_usecs) / qh->period)
2018 		: (qh->usecs * 8);
2019 
2020 	dev_dbg(&qh->dev->dev,
2021 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2022 		qh->period,
2023 		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2024 		qh, qh->start, qh->usecs, qh->c_usecs);
2025 
2026 	/* qh->qh_next still "live" to HC */
2027 	qh->qh_state = QH_STATE_UNLINK;
2028 	qh->qh_next.ptr = NULL;
2029 	qh_put(qh);
2030 
2031 	/* maybe turn off periodic schedule */
2032 	oxu->periodic_sched--;
2033 	if (!oxu->periodic_sched)
2034 		(void) disable_periodic(oxu);
2035 }
2036 
2037 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2038 {
2039 	unsigned wait;
2040 
2041 	qh_unlink_periodic(oxu, qh);
2042 
2043 	/* simple/paranoid:  always delay, expecting the HC needs to read
2044 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2045 	 * expect khubd to clean up after any CSPLITs we won't issue.
2046 	 * active high speed queues may need bigger delays...
2047 	 */
2048 	if (list_empty(&qh->qtd_list)
2049 		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2050 		wait = 2;
2051 	else
2052 		wait = 55;	/* worst case: 3 * 1024 */
2053 
2054 	udelay(wait);
2055 	qh->qh_state = QH_STATE_IDLE;
2056 	qh->hw_next = EHCI_LIST_END;
2057 	wmb();
2058 }
2059 
2060 static int check_period(struct oxu_hcd *oxu,
2061 			unsigned frame, unsigned uframe,
2062 			unsigned period, unsigned usecs)
2063 {
2064 	int claimed;
2065 
2066 	/* complete split running into next frame?
2067 	 * given FSTN support, we could sometimes check...
2068 	 */
2069 	if (uframe >= 8)
2070 		return 0;
2071 
2072 	/*
2073 	 * 80% periodic == 100 usec/uframe available
2074 	 * convert "usecs we need" to "max already claimed"
2075 	 */
2076 	usecs = 100 - usecs;
2077 
2078 	/* we "know" 2 and 4 uframe intervals were rejected; so
2079 	 * for period 0, check _every_ microframe in the schedule.
2080 	 */
2081 	if (unlikely(period == 0)) {
2082 		do {
2083 			for (uframe = 0; uframe < 7; uframe++) {
2084 				claimed = periodic_usecs(oxu, frame, uframe);
2085 				if (claimed > usecs)
2086 					return 0;
2087 			}
2088 		} while ((frame += 1) < oxu->periodic_size);
2089 
2090 	/* just check the specified uframe, at that period */
2091 	} else {
2092 		do {
2093 			claimed = periodic_usecs(oxu, frame, uframe);
2094 			if (claimed > usecs)
2095 				return 0;
2096 		} while ((frame += period) < oxu->periodic_size);
2097 	}
2098 
2099 	return 1;
2100 }
2101 
2102 static int check_intr_schedule(struct oxu_hcd	*oxu,
2103 				unsigned frame, unsigned uframe,
2104 				const struct ehci_qh *qh, __le32 *c_maskp)
2105 {
2106 	int retval = -ENOSPC;
2107 
2108 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2109 		goto done;
2110 
2111 	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2112 		goto done;
2113 	if (!qh->c_usecs) {
2114 		retval = 0;
2115 		*c_maskp = 0;
2116 		goto done;
2117 	}
2118 
2119 done:
2120 	return retval;
2121 }
2122 
2123 /* "first fit" scheduling policy used the first time through,
2124  * or when the previous schedule slot can't be re-used.
2125  */
2126 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2127 {
2128 	int		status;
2129 	unsigned	uframe;
2130 	__le32		c_mask;
2131 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2132 
2133 	qh_refresh(oxu, qh);
2134 	qh->hw_next = EHCI_LIST_END;
2135 	frame = qh->start;
2136 
2137 	/* reuse the previous schedule slots, if we can */
2138 	if (frame < qh->period) {
2139 		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2140 		status = check_intr_schedule(oxu, frame, --uframe,
2141 				qh, &c_mask);
2142 	} else {
2143 		uframe = 0;
2144 		c_mask = 0;
2145 		status = -ENOSPC;
2146 	}
2147 
2148 	/* else scan the schedule to find a group of slots such that all
2149 	 * uframes have enough periodic bandwidth available.
2150 	 */
2151 	if (status) {
2152 		/* "normal" case, uframing flexible except with splits */
2153 		if (qh->period) {
2154 			frame = qh->period - 1;
2155 			do {
2156 				for (uframe = 0; uframe < 8; uframe++) {
2157 					status = check_intr_schedule(oxu,
2158 							frame, uframe, qh,
2159 							&c_mask);
2160 					if (status == 0)
2161 						break;
2162 				}
2163 			} while (status && frame--);
2164 
2165 		/* qh->period == 0 means every uframe */
2166 		} else {
2167 			frame = 0;
2168 			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2169 		}
2170 		if (status)
2171 			goto done;
2172 		qh->start = frame;
2173 
2174 		/* reset S-frame and (maybe) C-frame masks */
2175 		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2176 		qh->hw_info2 |= qh->period
2177 			? cpu_to_le32(1 << uframe)
2178 			: cpu_to_le32(QH_SMASK);
2179 		qh->hw_info2 |= c_mask;
2180 	} else
2181 		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2182 
2183 	/* stuff into the periodic schedule */
2184 	status = qh_link_periodic(oxu, qh);
2185 done:
2186 	return status;
2187 }
2188 
2189 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2190 			struct list_head *qtd_list, gfp_t mem_flags)
2191 {
2192 	unsigned epnum;
2193 	unsigned long flags;
2194 	struct ehci_qh *qh;
2195 	int status = 0;
2196 	struct list_head	empty;
2197 
2198 	/* get endpoint and transfer/schedule data */
2199 	epnum = urb->ep->desc.bEndpointAddress;
2200 
2201 	spin_lock_irqsave(&oxu->lock, flags);
2202 
2203 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2204 		status = -ESHUTDOWN;
2205 		goto done;
2206 	}
2207 
2208 	/* get qh and force any scheduling errors */
2209 	INIT_LIST_HEAD(&empty);
2210 	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2211 	if (qh == NULL) {
2212 		status = -ENOMEM;
2213 		goto done;
2214 	}
2215 	if (qh->qh_state == QH_STATE_IDLE) {
2216 		status = qh_schedule(oxu, qh);
2217 		if (status != 0)
2218 			goto done;
2219 	}
2220 
2221 	/* then queue the urb's tds to the qh */
2222 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2223 	BUG_ON(qh == NULL);
2224 
2225 	/* ... update usbfs periodic stats */
2226 	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2227 
2228 done:
2229 	spin_unlock_irqrestore(&oxu->lock, flags);
2230 	if (status)
2231 		qtd_list_free(oxu, urb, qtd_list);
2232 
2233 	return status;
2234 }
2235 
2236 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2237 						gfp_t mem_flags)
2238 {
2239 	oxu_dbg(oxu, "iso support is missing!\n");
2240 	return -ENOSYS;
2241 }
2242 
2243 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2244 						gfp_t mem_flags)
2245 {
2246 	oxu_dbg(oxu, "split iso support is missing!\n");
2247 	return -ENOSYS;
2248 }
2249 
2250 static void scan_periodic(struct oxu_hcd *oxu)
2251 {
2252 	unsigned frame, clock, now_uframe, mod;
2253 	unsigned modified;
2254 
2255 	mod = oxu->periodic_size << 3;
2256 
2257 	/*
2258 	 * When running, scan from last scan point up to "now"
2259 	 * else clean up by scanning everything that's left.
2260 	 * Touches as few pages as possible:  cache-friendly.
2261 	 */
2262 	now_uframe = oxu->next_uframe;
2263 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2264 		clock = readl(&oxu->regs->frame_index);
2265 	else
2266 		clock = now_uframe + mod - 1;
2267 	clock %= mod;
2268 
2269 	for (;;) {
2270 		union ehci_shadow	q, *q_p;
2271 		__le32			type, *hw_p;
2272 		unsigned		uframes;
2273 
2274 		/* don't scan past the live uframe */
2275 		frame = now_uframe >> 3;
2276 		if (frame == (clock >> 3))
2277 			uframes = now_uframe & 0x07;
2278 		else {
2279 			/* safe to scan the whole frame at once */
2280 			now_uframe |= 0x07;
2281 			uframes = 8;
2282 		}
2283 
2284 restart:
2285 		/* scan each element in frame's queue for completions */
2286 		q_p = &oxu->pshadow[frame];
2287 		hw_p = &oxu->periodic[frame];
2288 		q.ptr = q_p->ptr;
2289 		type = Q_NEXT_TYPE(*hw_p);
2290 		modified = 0;
2291 
2292 		while (q.ptr != NULL) {
2293 			union ehci_shadow temp;
2294 			int live;
2295 
2296 			live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2297 			switch (type) {
2298 			case Q_TYPE_QH:
2299 				/* handle any completions */
2300 				temp.qh = qh_get(q.qh);
2301 				type = Q_NEXT_TYPE(q.qh->hw_next);
2302 				q = q.qh->qh_next;
2303 				modified = qh_completions(oxu, temp.qh);
2304 				if (unlikely(list_empty(&temp.qh->qtd_list)))
2305 					intr_deschedule(oxu, temp.qh);
2306 				qh_put(temp.qh);
2307 				break;
2308 			default:
2309 				dbg("corrupt type %d frame %d shadow %p",
2310 					type, frame, q.ptr);
2311 				q.ptr = NULL;
2312 			}
2313 
2314 			/* assume completion callbacks modify the queue */
2315 			if (unlikely(modified))
2316 				goto restart;
2317 		}
2318 
2319 		/* Stop when we catch up to the HC */
2320 
2321 		/* FIXME:  this assumes we won't get lapped when
2322 		 * latencies climb; that should be rare, but...
2323 		 * detect it, and just go all the way around.
2324 		 * FLR might help detect this case, so long as latencies
2325 		 * don't exceed periodic_size msec (default 1.024 sec).
2326 		 */
2327 
2328 		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2329 
2330 		if (now_uframe == clock) {
2331 			unsigned	now;
2332 
2333 			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2334 				break;
2335 			oxu->next_uframe = now_uframe;
2336 			now = readl(&oxu->regs->frame_index) % mod;
2337 			if (now_uframe == now)
2338 				break;
2339 
2340 			/* rescan the rest of this frame, then ... */
2341 			clock = now;
2342 		} else {
2343 			now_uframe++;
2344 			now_uframe %= mod;
2345 		}
2346 	}
2347 }
2348 
2349 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2350  * The firmware seems to think that powering off is a wakeup event!
2351  * This routine turns off remote wakeup and everything else, on all ports.
2352  */
2353 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2354 {
2355 	int port = HCS_N_PORTS(oxu->hcs_params);
2356 
2357 	while (port--)
2358 		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2359 }
2360 
2361 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2362 {
2363 	unsigned port;
2364 
2365 	if (!HCS_PPC(oxu->hcs_params))
2366 		return;
2367 
2368 	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2369 	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2370 		(void) oxu_hub_control(oxu_to_hcd(oxu),
2371 				is_on ? SetPortFeature : ClearPortFeature,
2372 				USB_PORT_FEAT_POWER,
2373 				port--, NULL, 0);
2374 	msleep(20);
2375 }
2376 
2377 /* Called from some interrupts, timers, and so on.
2378  * It calls driver completion functions, after dropping oxu->lock.
2379  */
2380 static void ehci_work(struct oxu_hcd *oxu)
2381 {
2382 	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2383 	if (oxu->reclaim_ready)
2384 		end_unlink_async(oxu);
2385 
2386 	/* another CPU may drop oxu->lock during a schedule scan while
2387 	 * it reports urb completions.  this flag guards against bogus
2388 	 * attempts at re-entrant schedule scanning.
2389 	 */
2390 	if (oxu->scanning)
2391 		return;
2392 	oxu->scanning = 1;
2393 	scan_async(oxu);
2394 	if (oxu->next_uframe != -1)
2395 		scan_periodic(oxu);
2396 	oxu->scanning = 0;
2397 
2398 	/* the IO watchdog guards against hardware or driver bugs that
2399 	 * misplace IRQs, and should let us run completely without IRQs.
2400 	 * such lossage has been observed on both VT6202 and VT8235.
2401 	 */
2402 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2403 			(oxu->async->qh_next.ptr != NULL ||
2404 			 oxu->periodic_sched != 0))
2405 		timer_action(oxu, TIMER_IO_WATCHDOG);
2406 }
2407 
2408 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2409 {
2410 	/* if we need to use IAA and it's busy, defer */
2411 	if (qh->qh_state == QH_STATE_LINKED
2412 			&& oxu->reclaim
2413 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2414 		struct ehci_qh		*last;
2415 
2416 		for (last = oxu->reclaim;
2417 				last->reclaim;
2418 				last = last->reclaim)
2419 			continue;
2420 		qh->qh_state = QH_STATE_UNLINK_WAIT;
2421 		last->reclaim = qh;
2422 
2423 	/* bypass IAA if the hc can't care */
2424 	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2425 		end_unlink_async(oxu);
2426 
2427 	/* something else might have unlinked the qh by now */
2428 	if (qh->qh_state == QH_STATE_LINKED)
2429 		start_unlink_async(oxu, qh);
2430 }
2431 
2432 /*
2433  * USB host controller methods
2434  */
2435 
2436 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2437 {
2438 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2439 	u32 status, pcd_status = 0;
2440 	int bh;
2441 
2442 	spin_lock(&oxu->lock);
2443 
2444 	status = readl(&oxu->regs->status);
2445 
2446 	/* e.g. cardbus physical eject */
2447 	if (status == ~(u32) 0) {
2448 		oxu_dbg(oxu, "device removed\n");
2449 		goto dead;
2450 	}
2451 
2452 	status &= INTR_MASK;
2453 	if (!status) {			/* irq sharing? */
2454 		spin_unlock(&oxu->lock);
2455 		return IRQ_NONE;
2456 	}
2457 
2458 	/* clear (just) interrupts */
2459 	writel(status, &oxu->regs->status);
2460 	readl(&oxu->regs->command);	/* unblock posted write */
2461 	bh = 0;
2462 
2463 #ifdef OXU_VERBOSE_DEBUG
2464 	/* unrequested/ignored: Frame List Rollover */
2465 	dbg_status(oxu, "irq", status);
2466 #endif
2467 
2468 	/* INT, ERR, and IAA interrupt rates can be throttled */
2469 
2470 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2471 	if (likely((status & (STS_INT|STS_ERR)) != 0))
2472 		bh = 1;
2473 
2474 	/* complete the unlinking of some qh [4.15.2.3] */
2475 	if (status & STS_IAA) {
2476 		oxu->reclaim_ready = 1;
2477 		bh = 1;
2478 	}
2479 
2480 	/* remote wakeup [4.3.1] */
2481 	if (status & STS_PCD) {
2482 		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2483 		pcd_status = status;
2484 
2485 		/* resume root hub? */
2486 		if (!(readl(&oxu->regs->command) & CMD_RUN))
2487 			usb_hcd_resume_root_hub(hcd);
2488 
2489 		while (i--) {
2490 			int pstatus = readl(&oxu->regs->port_status[i]);
2491 
2492 			if (pstatus & PORT_OWNER)
2493 				continue;
2494 			if (!(pstatus & PORT_RESUME)
2495 					|| oxu->reset_done[i] != 0)
2496 				continue;
2497 
2498 			/* start 20 msec resume signaling from this port,
2499 			 * and make khubd collect PORT_STAT_C_SUSPEND to
2500 			 * stop that signaling.
2501 			 */
2502 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
2503 			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2504 			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2505 		}
2506 	}
2507 
2508 	/* PCI errors [4.15.2.4] */
2509 	if (unlikely((status & STS_FATAL) != 0)) {
2510 		/* bogus "fatal" IRQs appear on some chips... why?  */
2511 		status = readl(&oxu->regs->status);
2512 		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2513 		dbg_status(oxu, "fatal", status);
2514 		if (status & STS_HALT) {
2515 			oxu_err(oxu, "fatal error\n");
2516 dead:
2517 			ehci_reset(oxu);
2518 			writel(0, &oxu->regs->configured_flag);
2519 			/* generic layer kills/unlinks all urbs, then
2520 			 * uses oxu_stop to clean up the rest
2521 			 */
2522 			bh = 1;
2523 		}
2524 	}
2525 
2526 	if (bh)
2527 		ehci_work(oxu);
2528 	spin_unlock(&oxu->lock);
2529 	if (pcd_status & STS_PCD)
2530 		usb_hcd_poll_rh_status(hcd);
2531 	return IRQ_HANDLED;
2532 }
2533 
2534 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2535 {
2536 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2537 	int ret = IRQ_HANDLED;
2538 
2539 	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2540 	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2541 
2542 	/* Disable all interrupt */
2543 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2544 
2545 	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2546 		(!oxu->is_otg && (status & OXU_USBSPHI)))
2547 		oxu210_hcd_irq(hcd);
2548 	else
2549 		ret = IRQ_NONE;
2550 
2551 	/* Enable all interrupt back */
2552 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2553 
2554 	return ret;
2555 }
2556 
2557 static void oxu_watchdog(unsigned long param)
2558 {
2559 	struct oxu_hcd	*oxu = (struct oxu_hcd *) param;
2560 	unsigned long flags;
2561 
2562 	spin_lock_irqsave(&oxu->lock, flags);
2563 
2564 	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2565 	if (oxu->reclaim) {
2566 		u32 status = readl(&oxu->regs->status);
2567 		if (status & STS_IAA) {
2568 			oxu_vdbg(oxu, "lost IAA\n");
2569 			writel(STS_IAA, &oxu->regs->status);
2570 			oxu->reclaim_ready = 1;
2571 		}
2572 	}
2573 
2574 	/* stop async processing after it's idled a bit */
2575 	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2576 		start_unlink_async(oxu, oxu->async);
2577 
2578 	/* oxu could run by timer, without IRQs ... */
2579 	ehci_work(oxu);
2580 
2581 	spin_unlock_irqrestore(&oxu->lock, flags);
2582 }
2583 
2584 /* One-time init, only for memory state.
2585  */
2586 static int oxu_hcd_init(struct usb_hcd *hcd)
2587 {
2588 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2589 	u32 temp;
2590 	int retval;
2591 	u32 hcc_params;
2592 
2593 	spin_lock_init(&oxu->lock);
2594 
2595 	init_timer(&oxu->watchdog);
2596 	oxu->watchdog.function = oxu_watchdog;
2597 	oxu->watchdog.data = (unsigned long) oxu;
2598 
2599 	/*
2600 	 * hw default: 1K periodic list heads, one per frame.
2601 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
2602 	 */
2603 	oxu->periodic_size = DEFAULT_I_TDPS;
2604 	retval = ehci_mem_init(oxu, GFP_KERNEL);
2605 	if (retval < 0)
2606 		return retval;
2607 
2608 	/* controllers may cache some of the periodic schedule ... */
2609 	hcc_params = readl(&oxu->caps->hcc_params);
2610 	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
2611 		oxu->i_thresh = 8;
2612 	else					/* N microframes cached */
2613 		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2614 
2615 	oxu->reclaim = NULL;
2616 	oxu->reclaim_ready = 0;
2617 	oxu->next_uframe = -1;
2618 
2619 	/*
2620 	 * dedicate a qh for the async ring head, since we couldn't unlink
2621 	 * a 'real' qh without stopping the async schedule [4.8].  use it
2622 	 * as the 'reclamation list head' too.
2623 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2624 	 * from automatically advancing to the next td after short reads.
2625 	 */
2626 	oxu->async->qh_next.qh = NULL;
2627 	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2628 	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2629 	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2630 	oxu->async->hw_qtd_next = EHCI_LIST_END;
2631 	oxu->async->qh_state = QH_STATE_LINKED;
2632 	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2633 
2634 	/* clear interrupt enables, set irq latency */
2635 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2636 		log2_irq_thresh = 0;
2637 	temp = 1 << (16 + log2_irq_thresh);
2638 	if (HCC_CANPARK(hcc_params)) {
2639 		/* HW default park == 3, on hardware that supports it (like
2640 		 * NVidia and ALI silicon), maximizes throughput on the async
2641 		 * schedule by avoiding QH fetches between transfers.
2642 		 *
2643 		 * With fast usb storage devices and NForce2, "park" seems to
2644 		 * make problems:  throughput reduction (!), data errors...
2645 		 */
2646 		if (park) {
2647 			park = min(park, (unsigned) 3);
2648 			temp |= CMD_PARK;
2649 			temp |= park << 8;
2650 		}
2651 		oxu_dbg(oxu, "park %d\n", park);
2652 	}
2653 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2654 		/* periodic schedule size can be smaller than default */
2655 		temp &= ~(3 << 2);
2656 		temp |= (EHCI_TUNE_FLS << 2);
2657 	}
2658 	oxu->command = temp;
2659 
2660 	return 0;
2661 }
2662 
2663 /* Called during probe() after chip reset completes.
2664  */
2665 static int oxu_reset(struct usb_hcd *hcd)
2666 {
2667 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2668 	int ret;
2669 
2670 	spin_lock_init(&oxu->mem_lock);
2671 	INIT_LIST_HEAD(&oxu->urb_list);
2672 	oxu->urb_len = 0;
2673 
2674 	/* FIMXE */
2675 	hcd->self.controller->dma_mask = NULL;
2676 
2677 	if (oxu->is_otg) {
2678 		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2679 		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2680 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2681 
2682 		oxu->mem = hcd->regs + OXU_SPH_MEM;
2683 	} else {
2684 		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2685 		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2686 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2687 
2688 		oxu->mem = hcd->regs + OXU_OTG_MEM;
2689 	}
2690 
2691 	oxu->hcs_params = readl(&oxu->caps->hcs_params);
2692 	oxu->sbrn = 0x20;
2693 
2694 	ret = oxu_hcd_init(hcd);
2695 	if (ret)
2696 		return ret;
2697 
2698 	return 0;
2699 }
2700 
2701 static int oxu_run(struct usb_hcd *hcd)
2702 {
2703 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2704 	int retval;
2705 	u32 temp, hcc_params;
2706 
2707 	hcd->uses_new_polling = 1;
2708 
2709 	/* EHCI spec section 4.1 */
2710 	retval = ehci_reset(oxu);
2711 	if (retval != 0) {
2712 		ehci_mem_cleanup(oxu);
2713 		return retval;
2714 	}
2715 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
2716 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2717 
2718 	/* hcc_params controls whether oxu->regs->segment must (!!!)
2719 	 * be used; it constrains QH/ITD/SITD and QTD locations.
2720 	 * pci_pool consistent memory always uses segment zero.
2721 	 * streaming mappings for I/O buffers, like pci_map_single(),
2722 	 * can return segments above 4GB, if the device allows.
2723 	 *
2724 	 * NOTE:  the dma mask is visible through dma_supported(), so
2725 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2726 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
2727 	 * host side drivers though.
2728 	 */
2729 	hcc_params = readl(&oxu->caps->hcc_params);
2730 	if (HCC_64BIT_ADDR(hcc_params))
2731 		writel(0, &oxu->regs->segment);
2732 
2733 	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2734 				CMD_ASE | CMD_RESET);
2735 	oxu->command |= CMD_RUN;
2736 	writel(oxu->command, &oxu->regs->command);
2737 	dbg_cmd(oxu, "init", oxu->command);
2738 
2739 	/*
2740 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2741 	 * are explicitly handed to companion controller(s), so no TT is
2742 	 * involved with the root hub.  (Except where one is integrated,
2743 	 * and there's no companion controller unless maybe for USB OTG.)
2744 	 */
2745 	hcd->state = HC_STATE_RUNNING;
2746 	writel(FLAG_CF, &oxu->regs->configured_flag);
2747 	readl(&oxu->regs->command);	/* unblock posted writes */
2748 
2749 	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2750 	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2751 		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2752 		temp >> 8, temp & 0xff, DRIVER_VERSION,
2753 		ignore_oc ? ", overcurrent ignored" : "");
2754 
2755 	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2756 
2757 	return 0;
2758 }
2759 
2760 static void oxu_stop(struct usb_hcd *hcd)
2761 {
2762 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2763 
2764 	/* Turn off port power on all root hub ports. */
2765 	ehci_port_power(oxu, 0);
2766 
2767 	/* no more interrupts ... */
2768 	del_timer_sync(&oxu->watchdog);
2769 
2770 	spin_lock_irq(&oxu->lock);
2771 	if (HC_IS_RUNNING(hcd->state))
2772 		ehci_quiesce(oxu);
2773 
2774 	ehci_reset(oxu);
2775 	writel(0, &oxu->regs->intr_enable);
2776 	spin_unlock_irq(&oxu->lock);
2777 
2778 	/* let companion controllers work when we aren't */
2779 	writel(0, &oxu->regs->configured_flag);
2780 
2781 	/* root hub is shut down separately (first, when possible) */
2782 	spin_lock_irq(&oxu->lock);
2783 	if (oxu->async)
2784 		ehci_work(oxu);
2785 	spin_unlock_irq(&oxu->lock);
2786 	ehci_mem_cleanup(oxu);
2787 
2788 	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2789 }
2790 
2791 /* Kick in for silicon on any bus (not just pci, etc).
2792  * This forcibly disables dma and IRQs, helping kexec and other cases
2793  * where the next system software may expect clean state.
2794  */
2795 static void oxu_shutdown(struct usb_hcd *hcd)
2796 {
2797 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2798 
2799 	(void) ehci_halt(oxu);
2800 	ehci_turn_off_all_ports(oxu);
2801 
2802 	/* make BIOS/etc use companion controller during reboot */
2803 	writel(0, &oxu->regs->configured_flag);
2804 
2805 	/* unblock posted writes */
2806 	readl(&oxu->regs->configured_flag);
2807 }
2808 
2809 /* Non-error returns are a promise to giveback() the urb later
2810  * we drop ownership so next owner (or urb unlink) can get it
2811  *
2812  * urb + dev is in hcd.self.controller.urb_list
2813  * we're queueing TDs onto software and hardware lists
2814  *
2815  * hcd-specific init for hcpriv hasn't been done yet
2816  *
2817  * NOTE:  control, bulk, and interrupt share the same code to append TDs
2818  * to a (possibly active) QH, and the same QH scanning code.
2819  */
2820 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2821 				gfp_t mem_flags)
2822 {
2823 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2824 	struct list_head qtd_list;
2825 
2826 	INIT_LIST_HEAD(&qtd_list);
2827 
2828 	switch (usb_pipetype(urb->pipe)) {
2829 	case PIPE_CONTROL:
2830 	case PIPE_BULK:
2831 	default:
2832 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2833 			return -ENOMEM;
2834 		return submit_async(oxu, urb, &qtd_list, mem_flags);
2835 
2836 	case PIPE_INTERRUPT:
2837 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2838 			return -ENOMEM;
2839 		return intr_submit(oxu, urb, &qtd_list, mem_flags);
2840 
2841 	case PIPE_ISOCHRONOUS:
2842 		if (urb->dev->speed == USB_SPEED_HIGH)
2843 			return itd_submit(oxu, urb, mem_flags);
2844 		else
2845 			return sitd_submit(oxu, urb, mem_flags);
2846 	}
2847 }
2848 
2849 /* This function is responsible for breaking URBs with big data size
2850  * into smaller size and processing small urbs in sequence.
2851  */
2852 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2853 				gfp_t mem_flags)
2854 {
2855 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2856 	int num, rem;
2857 	int transfer_buffer_length;
2858 	void *transfer_buffer;
2859 	struct urb *murb;
2860 	int i, ret;
2861 
2862 	/* If not bulk pipe just enqueue the URB */
2863 	if (!usb_pipebulk(urb->pipe))
2864 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2865 
2866 	/* Otherwise we should verify the USB transfer buffer size! */
2867 	transfer_buffer = urb->transfer_buffer;
2868 	transfer_buffer_length = urb->transfer_buffer_length;
2869 
2870 	num = urb->transfer_buffer_length / 4096;
2871 	rem = urb->transfer_buffer_length % 4096;
2872 	if (rem != 0)
2873 		num++;
2874 
2875 	/* If URB is smaller than 4096 bytes just enqueue it! */
2876 	if (num == 1)
2877 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2878 
2879 	/* Ok, we have more job to do! :) */
2880 
2881 	for (i = 0; i < num - 1; i++) {
2882 		/* Get free micro URB poll till a free urb is recieved */
2883 
2884 		do {
2885 			murb = (struct urb *) oxu_murb_alloc(oxu);
2886 			if (!murb)
2887 				schedule();
2888 		} while (!murb);
2889 
2890 		/* Coping the urb */
2891 		memcpy(murb, urb, sizeof(struct urb));
2892 
2893 		murb->transfer_buffer_length = 4096;
2894 		murb->transfer_buffer = transfer_buffer + i * 4096;
2895 
2896 		/* Null pointer for the encodes that this is a micro urb */
2897 		murb->complete = NULL;
2898 
2899 		((struct oxu_murb *) murb)->main = urb;
2900 		((struct oxu_murb *) murb)->last = 0;
2901 
2902 		/* This loop is to guarantee urb to be processed when there's
2903 		 * not enough resources at a particular time by retrying.
2904 		 */
2905 		do {
2906 			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
2907 			if (ret)
2908 				schedule();
2909 		} while (ret);
2910 	}
2911 
2912 	/* Last urb requires special handling  */
2913 
2914 	/* Get free micro URB poll till a free urb is recieved */
2915 	do {
2916 		murb = (struct urb *) oxu_murb_alloc(oxu);
2917 		if (!murb)
2918 			schedule();
2919 	} while (!murb);
2920 
2921 	/* Coping the urb */
2922 	memcpy(murb, urb, sizeof(struct urb));
2923 
2924 	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2925 	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2926 
2927 	/* Null pointer for the encodes that this is a micro urb */
2928 	murb->complete = NULL;
2929 
2930 	((struct oxu_murb *) murb)->main = urb;
2931 	((struct oxu_murb *) murb)->last = 1;
2932 
2933 	do {
2934 		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2935 		if (ret)
2936 			schedule();
2937 	} while (ret);
2938 
2939 	return ret;
2940 }
2941 
2942 /* Remove from hardware lists.
2943  * Completions normally happen asynchronously
2944  */
2945 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2946 {
2947 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2948 	struct ehci_qh *qh;
2949 	unsigned long flags;
2950 
2951 	spin_lock_irqsave(&oxu->lock, flags);
2952 	switch (usb_pipetype(urb->pipe)) {
2953 	case PIPE_CONTROL:
2954 	case PIPE_BULK:
2955 	default:
2956 		qh = (struct ehci_qh *) urb->hcpriv;
2957 		if (!qh)
2958 			break;
2959 		unlink_async(oxu, qh);
2960 		break;
2961 
2962 	case PIPE_INTERRUPT:
2963 		qh = (struct ehci_qh *) urb->hcpriv;
2964 		if (!qh)
2965 			break;
2966 		switch (qh->qh_state) {
2967 		case QH_STATE_LINKED:
2968 			intr_deschedule(oxu, qh);
2969 			/* FALL THROUGH */
2970 		case QH_STATE_IDLE:
2971 			qh_completions(oxu, qh);
2972 			break;
2973 		default:
2974 			oxu_dbg(oxu, "bogus qh %p state %d\n",
2975 					qh, qh->qh_state);
2976 			goto done;
2977 		}
2978 
2979 		/* reschedule QH iff another request is queued */
2980 		if (!list_empty(&qh->qtd_list)
2981 				&& HC_IS_RUNNING(hcd->state)) {
2982 			int status;
2983 
2984 			status = qh_schedule(oxu, qh);
2985 			spin_unlock_irqrestore(&oxu->lock, flags);
2986 
2987 			if (status != 0) {
2988 				/* shouldn't happen often, but ...
2989 				 * FIXME kill those tds' urbs
2990 				 */
2991 				err("can't reschedule qh %p, err %d",
2992 					qh, status);
2993 			}
2994 			return status;
2995 		}
2996 		break;
2997 	}
2998 done:
2999 	spin_unlock_irqrestore(&oxu->lock, flags);
3000 	return 0;
3001 }
3002 
3003 /* Bulk qh holds the data toggle */
3004 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3005 					struct usb_host_endpoint *ep)
3006 {
3007 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3008 	unsigned long		flags;
3009 	struct ehci_qh		*qh, *tmp;
3010 
3011 	/* ASSERT:  any requests/urbs are being unlinked */
3012 	/* ASSERT:  nobody can be submitting urbs for this any more */
3013 
3014 rescan:
3015 	spin_lock_irqsave(&oxu->lock, flags);
3016 	qh = ep->hcpriv;
3017 	if (!qh)
3018 		goto done;
3019 
3020 	/* endpoints can be iso streams.  for now, we don't
3021 	 * accelerate iso completions ... so spin a while.
3022 	 */
3023 	if (qh->hw_info1 == 0) {
3024 		oxu_vdbg(oxu, "iso delay\n");
3025 		goto idle_timeout;
3026 	}
3027 
3028 	if (!HC_IS_RUNNING(hcd->state))
3029 		qh->qh_state = QH_STATE_IDLE;
3030 	switch (qh->qh_state) {
3031 	case QH_STATE_LINKED:
3032 		for (tmp = oxu->async->qh_next.qh;
3033 				tmp && tmp != qh;
3034 				tmp = tmp->qh_next.qh)
3035 			continue;
3036 		/* periodic qh self-unlinks on empty */
3037 		if (!tmp)
3038 			goto nogood;
3039 		unlink_async(oxu, qh);
3040 		/* FALL THROUGH */
3041 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3042 idle_timeout:
3043 		spin_unlock_irqrestore(&oxu->lock, flags);
3044 		schedule_timeout_uninterruptible(1);
3045 		goto rescan;
3046 	case QH_STATE_IDLE:		/* fully unlinked */
3047 		if (list_empty(&qh->qtd_list)) {
3048 			qh_put(qh);
3049 			break;
3050 		}
3051 		/* else FALL THROUGH */
3052 	default:
3053 nogood:
3054 		/* caller was supposed to have unlinked any requests;
3055 		 * that's not our job.  just leak this memory.
3056 		 */
3057 		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3058 			qh, ep->desc.bEndpointAddress, qh->qh_state,
3059 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3060 		break;
3061 	}
3062 	ep->hcpriv = NULL;
3063 done:
3064 	spin_unlock_irqrestore(&oxu->lock, flags);
3065 }
3066 
3067 static int oxu_get_frame(struct usb_hcd *hcd)
3068 {
3069 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3070 
3071 	return (readl(&oxu->regs->frame_index) >> 3) %
3072 		oxu->periodic_size;
3073 }
3074 
3075 /* Build "status change" packet (one or two bytes) from HC registers */
3076 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3077 {
3078 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3079 	u32 temp, mask, status = 0;
3080 	int ports, i, retval = 1;
3081 	unsigned long flags;
3082 
3083 	/* if !USB_SUSPEND, root hub timers won't get shut down ... */
3084 	if (!HC_IS_RUNNING(hcd->state))
3085 		return 0;
3086 
3087 	/* init status to no-changes */
3088 	buf[0] = 0;
3089 	ports = HCS_N_PORTS(oxu->hcs_params);
3090 	if (ports > 7) {
3091 		buf[1] = 0;
3092 		retval++;
3093 	}
3094 
3095 	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3096 	 * causing massive log spam unless we completely ignore them.  It
3097 	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3098 	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3099 	 * PORT_POWER; that's surprising, but maybe within-spec.
3100 	 */
3101 	if (!ignore_oc)
3102 		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3103 	else
3104 		mask = PORT_CSC | PORT_PEC;
3105 
3106 	/* no hub change reports (bit 0) for now (power, ...) */
3107 
3108 	/* port N changes (bit N)? */
3109 	spin_lock_irqsave(&oxu->lock, flags);
3110 	for (i = 0; i < ports; i++) {
3111 		temp = readl(&oxu->regs->port_status[i]);
3112 
3113 		/*
3114 		 * Return status information even for ports with OWNER set.
3115 		 * Otherwise khubd wouldn't see the disconnect event when a
3116 		 * high-speed device is switched over to the companion
3117 		 * controller by the user.
3118 		 */
3119 
3120 		if (!(temp & PORT_CONNECT))
3121 			oxu->reset_done[i] = 0;
3122 		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3123 				time_after_eq(jiffies, oxu->reset_done[i]))) {
3124 			if (i < 7)
3125 				buf[0] |= 1 << (i + 1);
3126 			else
3127 				buf[1] |= 1 << (i - 7);
3128 			status = STS_PCD;
3129 		}
3130 	}
3131 	/* FIXME autosuspend idle root hubs */
3132 	spin_unlock_irqrestore(&oxu->lock, flags);
3133 	return status ? retval : 0;
3134 }
3135 
3136 /* Returns the speed of a device attached to a port on the root hub. */
3137 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3138 						unsigned int portsc)
3139 {
3140 	switch ((portsc >> 26) & 3) {
3141 	case 0:
3142 		return 0;
3143 	case 1:
3144 		return USB_PORT_STAT_LOW_SPEED;
3145 	case 2:
3146 	default:
3147 		return USB_PORT_STAT_HIGH_SPEED;
3148 	}
3149 }
3150 
3151 #define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3152 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3153 				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3154 {
3155 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3156 	int ports = HCS_N_PORTS(oxu->hcs_params);
3157 	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3158 	u32 temp, status;
3159 	unsigned long	flags;
3160 	int retval = 0;
3161 	unsigned selector;
3162 
3163 	/*
3164 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3165 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3166 	 * (track current state ourselves) ... blink for diagnostics,
3167 	 * power, "this is the one", etc.  EHCI spec supports this.
3168 	 */
3169 
3170 	spin_lock_irqsave(&oxu->lock, flags);
3171 	switch (typeReq) {
3172 	case ClearHubFeature:
3173 		switch (wValue) {
3174 		case C_HUB_LOCAL_POWER:
3175 		case C_HUB_OVER_CURRENT:
3176 			/* no hub-wide feature/status flags */
3177 			break;
3178 		default:
3179 			goto error;
3180 		}
3181 		break;
3182 	case ClearPortFeature:
3183 		if (!wIndex || wIndex > ports)
3184 			goto error;
3185 		wIndex--;
3186 		temp = readl(status_reg);
3187 
3188 		/*
3189 		 * Even if OWNER is set, so the port is owned by the
3190 		 * companion controller, khubd needs to be able to clear
3191 		 * the port-change status bits (especially
3192 		 * USB_PORT_STAT_C_CONNECTION).
3193 		 */
3194 
3195 		switch (wValue) {
3196 		case USB_PORT_FEAT_ENABLE:
3197 			writel(temp & ~PORT_PE, status_reg);
3198 			break;
3199 		case USB_PORT_FEAT_C_ENABLE:
3200 			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3201 			break;
3202 		case USB_PORT_FEAT_SUSPEND:
3203 			if (temp & PORT_RESET)
3204 				goto error;
3205 			if (temp & PORT_SUSPEND) {
3206 				if ((temp & PORT_PE) == 0)
3207 					goto error;
3208 				/* resume signaling for 20 msec */
3209 				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3210 				writel(temp | PORT_RESUME, status_reg);
3211 				oxu->reset_done[wIndex] = jiffies
3212 						+ msecs_to_jiffies(20);
3213 			}
3214 			break;
3215 		case USB_PORT_FEAT_C_SUSPEND:
3216 			/* we auto-clear this feature */
3217 			break;
3218 		case USB_PORT_FEAT_POWER:
3219 			if (HCS_PPC(oxu->hcs_params))
3220 				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3221 					  status_reg);
3222 			break;
3223 		case USB_PORT_FEAT_C_CONNECTION:
3224 			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3225 			break;
3226 		case USB_PORT_FEAT_C_OVER_CURRENT:
3227 			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3228 			break;
3229 		case USB_PORT_FEAT_C_RESET:
3230 			/* GetPortStatus clears reset */
3231 			break;
3232 		default:
3233 			goto error;
3234 		}
3235 		readl(&oxu->regs->command);	/* unblock posted write */
3236 		break;
3237 	case GetHubDescriptor:
3238 		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3239 			buf);
3240 		break;
3241 	case GetHubStatus:
3242 		/* no hub-wide feature/status flags */
3243 		memset(buf, 0, 4);
3244 		break;
3245 	case GetPortStatus:
3246 		if (!wIndex || wIndex > ports)
3247 			goto error;
3248 		wIndex--;
3249 		status = 0;
3250 		temp = readl(status_reg);
3251 
3252 		/* wPortChange bits */
3253 		if (temp & PORT_CSC)
3254 			status |= USB_PORT_STAT_C_CONNECTION << 16;
3255 		if (temp & PORT_PEC)
3256 			status |= USB_PORT_STAT_C_ENABLE << 16;
3257 		if ((temp & PORT_OCC) && !ignore_oc)
3258 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3259 
3260 		/* whoever resumes must GetPortStatus to complete it!! */
3261 		if (temp & PORT_RESUME) {
3262 
3263 			/* Remote Wakeup received? */
3264 			if (!oxu->reset_done[wIndex]) {
3265 				/* resume signaling for 20 msec */
3266 				oxu->reset_done[wIndex] = jiffies
3267 						+ msecs_to_jiffies(20);
3268 				/* check the port again */
3269 				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3270 						oxu->reset_done[wIndex]);
3271 			}
3272 
3273 			/* resume completed? */
3274 			else if (time_after_eq(jiffies,
3275 					oxu->reset_done[wIndex])) {
3276 				status |= USB_PORT_STAT_C_SUSPEND << 16;
3277 				oxu->reset_done[wIndex] = 0;
3278 
3279 				/* stop resume signaling */
3280 				temp = readl(status_reg);
3281 				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3282 					status_reg);
3283 				retval = handshake(oxu, status_reg,
3284 					   PORT_RESUME, 0, 2000 /* 2msec */);
3285 				if (retval != 0) {
3286 					oxu_err(oxu,
3287 						"port %d resume error %d\n",
3288 						wIndex + 1, retval);
3289 					goto error;
3290 				}
3291 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3292 			}
3293 		}
3294 
3295 		/* whoever resets must GetPortStatus to complete it!! */
3296 		if ((temp & PORT_RESET)
3297 				&& time_after_eq(jiffies,
3298 					oxu->reset_done[wIndex])) {
3299 			status |= USB_PORT_STAT_C_RESET << 16;
3300 			oxu->reset_done[wIndex] = 0;
3301 
3302 			/* force reset to complete */
3303 			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3304 					status_reg);
3305 			/* REVISIT:  some hardware needs 550+ usec to clear
3306 			 * this bit; seems too long to spin routinely...
3307 			 */
3308 			retval = handshake(oxu, status_reg,
3309 					PORT_RESET, 0, 750);
3310 			if (retval != 0) {
3311 				oxu_err(oxu, "port %d reset error %d\n",
3312 					wIndex + 1, retval);
3313 				goto error;
3314 			}
3315 
3316 			/* see what we found out */
3317 			temp = check_reset_complete(oxu, wIndex, status_reg,
3318 					readl(status_reg));
3319 		}
3320 
3321 		/* transfer dedicated ports to the companion hc */
3322 		if ((temp & PORT_CONNECT) &&
3323 				test_bit(wIndex, &oxu->companion_ports)) {
3324 			temp &= ~PORT_RWC_BITS;
3325 			temp |= PORT_OWNER;
3326 			writel(temp, status_reg);
3327 			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3328 			temp = readl(status_reg);
3329 		}
3330 
3331 		/*
3332 		 * Even if OWNER is set, there's no harm letting khubd
3333 		 * see the wPortStatus values (they should all be 0 except
3334 		 * for PORT_POWER anyway).
3335 		 */
3336 
3337 		if (temp & PORT_CONNECT) {
3338 			status |= USB_PORT_STAT_CONNECTION;
3339 			/* status may be from integrated TT */
3340 			status |= oxu_port_speed(oxu, temp);
3341 		}
3342 		if (temp & PORT_PE)
3343 			status |= USB_PORT_STAT_ENABLE;
3344 		if (temp & (PORT_SUSPEND|PORT_RESUME))
3345 			status |= USB_PORT_STAT_SUSPEND;
3346 		if (temp & PORT_OC)
3347 			status |= USB_PORT_STAT_OVERCURRENT;
3348 		if (temp & PORT_RESET)
3349 			status |= USB_PORT_STAT_RESET;
3350 		if (temp & PORT_POWER)
3351 			status |= USB_PORT_STAT_POWER;
3352 
3353 #ifndef	OXU_VERBOSE_DEBUG
3354 	if (status & ~0xffff)	/* only if wPortChange is interesting */
3355 #endif
3356 		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3357 		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3358 		break;
3359 	case SetHubFeature:
3360 		switch (wValue) {
3361 		case C_HUB_LOCAL_POWER:
3362 		case C_HUB_OVER_CURRENT:
3363 			/* no hub-wide feature/status flags */
3364 			break;
3365 		default:
3366 			goto error;
3367 		}
3368 		break;
3369 	case SetPortFeature:
3370 		selector = wIndex >> 8;
3371 		wIndex &= 0xff;
3372 		if (!wIndex || wIndex > ports)
3373 			goto error;
3374 		wIndex--;
3375 		temp = readl(status_reg);
3376 		if (temp & PORT_OWNER)
3377 			break;
3378 
3379 		temp &= ~PORT_RWC_BITS;
3380 		switch (wValue) {
3381 		case USB_PORT_FEAT_SUSPEND:
3382 			if ((temp & PORT_PE) == 0
3383 					|| (temp & PORT_RESET) != 0)
3384 				goto error;
3385 			if (device_may_wakeup(&hcd->self.root_hub->dev))
3386 				temp |= PORT_WAKE_BITS;
3387 			writel(temp | PORT_SUSPEND, status_reg);
3388 			break;
3389 		case USB_PORT_FEAT_POWER:
3390 			if (HCS_PPC(oxu->hcs_params))
3391 				writel(temp | PORT_POWER, status_reg);
3392 			break;
3393 		case USB_PORT_FEAT_RESET:
3394 			if (temp & PORT_RESUME)
3395 				goto error;
3396 			/* line status bits may report this as low speed,
3397 			 * which can be fine if this root hub has a
3398 			 * transaction translator built in.
3399 			 */
3400 			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3401 			temp |= PORT_RESET;
3402 			temp &= ~PORT_PE;
3403 
3404 			/*
3405 			 * caller must wait, then call GetPortStatus
3406 			 * usb 2.0 spec says 50 ms resets on root
3407 			 */
3408 			oxu->reset_done[wIndex] = jiffies
3409 					+ msecs_to_jiffies(50);
3410 			writel(temp, status_reg);
3411 			break;
3412 
3413 		/* For downstream facing ports (these):  one hub port is put
3414 		 * into test mode according to USB2 11.24.2.13, then the hub
3415 		 * must be reset (which for root hub now means rmmod+modprobe,
3416 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3417 		 * about the EHCI-specific stuff.
3418 		 */
3419 		case USB_PORT_FEAT_TEST:
3420 			if (!selector || selector > 5)
3421 				goto error;
3422 			ehci_quiesce(oxu);
3423 			ehci_halt(oxu);
3424 			temp |= selector << 16;
3425 			writel(temp, status_reg);
3426 			break;
3427 
3428 		default:
3429 			goto error;
3430 		}
3431 		readl(&oxu->regs->command);	/* unblock posted writes */
3432 		break;
3433 
3434 	default:
3435 error:
3436 		/* "stall" on error */
3437 		retval = -EPIPE;
3438 	}
3439 	spin_unlock_irqrestore(&oxu->lock, flags);
3440 	return retval;
3441 }
3442 
3443 #ifdef CONFIG_PM
3444 
3445 static int oxu_bus_suspend(struct usb_hcd *hcd)
3446 {
3447 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3448 	int port;
3449 	int mask;
3450 
3451 	oxu_dbg(oxu, "suspend root hub\n");
3452 
3453 	if (time_before(jiffies, oxu->next_statechange))
3454 		msleep(5);
3455 
3456 	port = HCS_N_PORTS(oxu->hcs_params);
3457 	spin_lock_irq(&oxu->lock);
3458 
3459 	/* stop schedules, clean any completed work */
3460 	if (HC_IS_RUNNING(hcd->state)) {
3461 		ehci_quiesce(oxu);
3462 		hcd->state = HC_STATE_QUIESCING;
3463 	}
3464 	oxu->command = readl(&oxu->regs->command);
3465 	if (oxu->reclaim)
3466 		oxu->reclaim_ready = 1;
3467 	ehci_work(oxu);
3468 
3469 	/* Unlike other USB host controller types, EHCI doesn't have
3470 	 * any notion of "global" or bus-wide suspend.  The driver has
3471 	 * to manually suspend all the active unsuspended ports, and
3472 	 * then manually resume them in the bus_resume() routine.
3473 	 */
3474 	oxu->bus_suspended = 0;
3475 	while (port--) {
3476 		u32 __iomem *reg = &oxu->regs->port_status[port];
3477 		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3478 		u32 t2 = t1;
3479 
3480 		/* keep track of which ports we suspend */
3481 		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3482 				!(t1 & PORT_SUSPEND)) {
3483 			t2 |= PORT_SUSPEND;
3484 			set_bit(port, &oxu->bus_suspended);
3485 		}
3486 
3487 		/* enable remote wakeup on all ports */
3488 		if (device_may_wakeup(&hcd->self.root_hub->dev))
3489 			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3490 		else
3491 			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3492 
3493 		if (t1 != t2) {
3494 			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3495 				port + 1, t1, t2);
3496 			writel(t2, reg);
3497 		}
3498 	}
3499 
3500 	/* turn off now-idle HC */
3501 	del_timer_sync(&oxu->watchdog);
3502 	ehci_halt(oxu);
3503 	hcd->state = HC_STATE_SUSPENDED;
3504 
3505 	/* allow remote wakeup */
3506 	mask = INTR_MASK;
3507 	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3508 		mask &= ~STS_PCD;
3509 	writel(mask, &oxu->regs->intr_enable);
3510 	readl(&oxu->regs->intr_enable);
3511 
3512 	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3513 	spin_unlock_irq(&oxu->lock);
3514 	return 0;
3515 }
3516 
3517 /* Caller has locked the root hub, and should reset/reinit on error */
3518 static int oxu_bus_resume(struct usb_hcd *hcd)
3519 {
3520 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3521 	u32 temp;
3522 	int i;
3523 
3524 	if (time_before(jiffies, oxu->next_statechange))
3525 		msleep(5);
3526 	spin_lock_irq(&oxu->lock);
3527 
3528 	/* Ideally and we've got a real resume here, and no port's power
3529 	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3530 	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3531 	 * the last user of the controller, not reset/pm hardware keeping
3532 	 * state we gave to it.
3533 	 */
3534 	temp = readl(&oxu->regs->intr_enable);
3535 	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3536 
3537 	/* at least some APM implementations will try to deliver
3538 	 * IRQs right away, so delay them until we're ready.
3539 	 */
3540 	writel(0, &oxu->regs->intr_enable);
3541 
3542 	/* re-init operational registers */
3543 	writel(0, &oxu->regs->segment);
3544 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3545 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3546 
3547 	/* restore CMD_RUN, framelist size, and irq threshold */
3548 	writel(oxu->command, &oxu->regs->command);
3549 
3550 	/* Some controller/firmware combinations need a delay during which
3551 	 * they set up the port statuses.  See Bugzilla #8190. */
3552 	mdelay(8);
3553 
3554 	/* manually resume the ports we suspended during bus_suspend() */
3555 	i = HCS_N_PORTS(oxu->hcs_params);
3556 	while (i--) {
3557 		temp = readl(&oxu->regs->port_status[i]);
3558 		temp &= ~(PORT_RWC_BITS
3559 			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3560 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3561 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3562 			temp |= PORT_RESUME;
3563 		}
3564 		writel(temp, &oxu->regs->port_status[i]);
3565 	}
3566 	i = HCS_N_PORTS(oxu->hcs_params);
3567 	mdelay(20);
3568 	while (i--) {
3569 		temp = readl(&oxu->regs->port_status[i]);
3570 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3571 			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3572 			writel(temp, &oxu->regs->port_status[i]);
3573 			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3574 		}
3575 	}
3576 	(void) readl(&oxu->regs->command);
3577 
3578 	/* maybe re-activate the schedule(s) */
3579 	temp = 0;
3580 	if (oxu->async->qh_next.qh)
3581 		temp |= CMD_ASE;
3582 	if (oxu->periodic_sched)
3583 		temp |= CMD_PSE;
3584 	if (temp) {
3585 		oxu->command |= temp;
3586 		writel(oxu->command, &oxu->regs->command);
3587 	}
3588 
3589 	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3590 	hcd->state = HC_STATE_RUNNING;
3591 
3592 	/* Now we can safely re-enable irqs */
3593 	writel(INTR_MASK, &oxu->regs->intr_enable);
3594 
3595 	spin_unlock_irq(&oxu->lock);
3596 	return 0;
3597 }
3598 
3599 #else
3600 
3601 static int oxu_bus_suspend(struct usb_hcd *hcd)
3602 {
3603 	return 0;
3604 }
3605 
3606 static int oxu_bus_resume(struct usb_hcd *hcd)
3607 {
3608 	return 0;
3609 }
3610 
3611 #endif	/* CONFIG_PM */
3612 
3613 static const struct hc_driver oxu_hc_driver = {
3614 	.description =		"oxu210hp_hcd",
3615 	.product_desc =		"oxu210hp HCD",
3616 	.hcd_priv_size =	sizeof(struct oxu_hcd),
3617 
3618 	/*
3619 	 * Generic hardware linkage
3620 	 */
3621 	.irq =			oxu_irq,
3622 	.flags =		HCD_MEMORY | HCD_USB2,
3623 
3624 	/*
3625 	 * Basic lifecycle operations
3626 	 */
3627 	.reset =		oxu_reset,
3628 	.start =		oxu_run,
3629 	.stop =			oxu_stop,
3630 	.shutdown =		oxu_shutdown,
3631 
3632 	/*
3633 	 * Managing i/o requests and associated device resources
3634 	 */
3635 	.urb_enqueue =		oxu_urb_enqueue,
3636 	.urb_dequeue =		oxu_urb_dequeue,
3637 	.endpoint_disable =	oxu_endpoint_disable,
3638 
3639 	/*
3640 	 * Scheduling support
3641 	 */
3642 	.get_frame_number =	oxu_get_frame,
3643 
3644 	/*
3645 	 * Root hub support
3646 	 */
3647 	.hub_status_data =	oxu_hub_status_data,
3648 	.hub_control =		oxu_hub_control,
3649 	.bus_suspend =		oxu_bus_suspend,
3650 	.bus_resume =		oxu_bus_resume,
3651 };
3652 
3653 /*
3654  * Module stuff
3655  */
3656 
3657 static void oxu_configuration(struct platform_device *pdev, void *base)
3658 {
3659 	u32 tmp;
3660 
3661 	/* Initialize top level registers.
3662 	 * First write ever
3663 	 */
3664 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3665 	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3666 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3667 
3668 	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3669 	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3670 
3671 	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3672 					OXU_COMPARATOR | OXU_ASO_OP);
3673 
3674 	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3675 	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3676 
3677 	/* Clear all top interrupt enable */
3678 	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3679 
3680 	/* Clear all top interrupt status */
3681 	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3682 
3683 	/* Enable all needed top interrupt except OTG SPH core */
3684 	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3685 }
3686 
3687 static int oxu_verify_id(struct platform_device *pdev, void *base)
3688 {
3689 	u32 id;
3690 	static const char * const bo[] = {
3691 		"reserved",
3692 		"128-pin LQFP",
3693 		"84-pin TFBGA",
3694 		"reserved",
3695 	};
3696 
3697 	/* Read controller signature register to find a match */
3698 	id = oxu_readl(base, OXU_DEVICEID);
3699 	dev_info(&pdev->dev, "device ID %x\n", id);
3700 	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3701 		return -1;
3702 
3703 	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3704 		id >> OXU_REV_SHIFT,
3705 		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3706 		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3707 		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3708 
3709 	return 0;
3710 }
3711 
3712 static const struct hc_driver oxu_hc_driver;
3713 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3714 				unsigned long memstart, unsigned long memlen,
3715 				void *base, int irq, int otg)
3716 {
3717 	struct device *dev = &pdev->dev;
3718 
3719 	struct usb_hcd *hcd;
3720 	struct oxu_hcd *oxu;
3721 	int ret;
3722 
3723 	/* Set endian mode and host mode */
3724 	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3725 				OXU_USBMODE,
3726 				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3727 
3728 	hcd = usb_create_hcd(&oxu_hc_driver, dev,
3729 				otg ? "oxu210hp_otg" : "oxu210hp_sph");
3730 	if (!hcd)
3731 		return ERR_PTR(-ENOMEM);
3732 
3733 	hcd->rsrc_start = memstart;
3734 	hcd->rsrc_len = memlen;
3735 	hcd->regs = base;
3736 	hcd->irq = irq;
3737 	hcd->state = HC_STATE_HALT;
3738 
3739 	oxu = hcd_to_oxu(hcd);
3740 	oxu->is_otg = otg;
3741 
3742 	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3743 	if (ret < 0)
3744 		return ERR_PTR(ret);
3745 
3746 	return hcd;
3747 }
3748 
3749 static int oxu_init(struct platform_device *pdev,
3750 				unsigned long memstart, unsigned long memlen,
3751 				void *base, int irq)
3752 {
3753 	struct oxu_info *info = platform_get_drvdata(pdev);
3754 	struct usb_hcd *hcd;
3755 	int ret;
3756 
3757 	/* First time configuration at start up */
3758 	oxu_configuration(pdev, base);
3759 
3760 	ret = oxu_verify_id(pdev, base);
3761 	if (ret) {
3762 		dev_err(&pdev->dev, "no devices found!\n");
3763 		return -ENODEV;
3764 	}
3765 
3766 	/* Create the OTG controller */
3767 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3768 	if (IS_ERR(hcd)) {
3769 		dev_err(&pdev->dev, "cannot create OTG controller!\n");
3770 		ret = PTR_ERR(hcd);
3771 		goto error_create_otg;
3772 	}
3773 	info->hcd[0] = hcd;
3774 
3775 	/* Create the SPH host controller */
3776 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3777 	if (IS_ERR(hcd)) {
3778 		dev_err(&pdev->dev, "cannot create SPH controller!\n");
3779 		ret = PTR_ERR(hcd);
3780 		goto error_create_sph;
3781 	}
3782 	info->hcd[1] = hcd;
3783 
3784 	oxu_writel(base, OXU_CHIPIRQEN_SET,
3785 		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3786 
3787 	return 0;
3788 
3789 error_create_sph:
3790 	usb_remove_hcd(info->hcd[0]);
3791 	usb_put_hcd(info->hcd[0]);
3792 
3793 error_create_otg:
3794 	return ret;
3795 }
3796 
3797 static int oxu_drv_probe(struct platform_device *pdev)
3798 {
3799 	struct resource *res;
3800 	void *base;
3801 	unsigned long memstart, memlen;
3802 	int irq, ret;
3803 	struct oxu_info *info;
3804 
3805 	if (usb_disabled())
3806 		return -ENODEV;
3807 
3808 	/*
3809 	 * Get the platform resources
3810 	 */
3811 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3812 	if (!res) {
3813 		dev_err(&pdev->dev,
3814 			"no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3815 		return -ENODEV;
3816 	}
3817 	irq = res->start;
3818 	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3819 
3820 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3821 	if (!res) {
3822 		dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
3823 			dev_name(&pdev->dev));
3824 		return -ENODEV;
3825 	}
3826 	memstart = res->start;
3827 	memlen = res->end - res->start + 1;
3828 	dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
3829 	if (!request_mem_region(memstart, memlen,
3830 				oxu_hc_driver.description)) {
3831 		dev_dbg(&pdev->dev, "memory area already in use\n");
3832 		return -EBUSY;
3833 	}
3834 
3835 	ret = set_irq_type(irq, IRQF_TRIGGER_FALLING);
3836 	if (ret) {
3837 		dev_err(&pdev->dev, "error setting irq type\n");
3838 		ret = -EFAULT;
3839 		goto error_set_irq_type;
3840 	}
3841 
3842 	base = ioremap(memstart, memlen);
3843 	if (!base) {
3844 		dev_dbg(&pdev->dev, "error mapping memory\n");
3845 		ret = -EFAULT;
3846 		goto error_ioremap;
3847 	}
3848 
3849 	/* Allocate a driver data struct to hold useful info for both
3850 	 * SPH & OTG devices
3851 	 */
3852 	info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
3853 	if (!info) {
3854 		dev_dbg(&pdev->dev, "error allocating memory\n");
3855 		ret = -EFAULT;
3856 		goto error_alloc;
3857 	}
3858 	platform_set_drvdata(pdev, info);
3859 
3860 	ret = oxu_init(pdev, memstart, memlen, base, irq);
3861 	if (ret < 0) {
3862 		dev_dbg(&pdev->dev, "cannot init USB devices\n");
3863 		goto error_init;
3864 	}
3865 
3866 	dev_info(&pdev->dev, "devices enabled and running\n");
3867 	platform_set_drvdata(pdev, info);
3868 
3869 	return 0;
3870 
3871 error_init:
3872 	kfree(info);
3873 	platform_set_drvdata(pdev, NULL);
3874 
3875 error_alloc:
3876 	iounmap(base);
3877 
3878 error_set_irq_type:
3879 error_ioremap:
3880 	release_mem_region(memstart, memlen);
3881 
3882 	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3883 	return ret;
3884 }
3885 
3886 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3887 {
3888 	usb_remove_hcd(hcd);
3889 	usb_put_hcd(hcd);
3890 }
3891 
3892 static int oxu_drv_remove(struct platform_device *pdev)
3893 {
3894 	struct oxu_info *info = platform_get_drvdata(pdev);
3895 	unsigned long memstart = info->hcd[0]->rsrc_start,
3896 			memlen = info->hcd[0]->rsrc_len;
3897 	void *base = info->hcd[0]->regs;
3898 
3899 	oxu_remove(pdev, info->hcd[0]);
3900 	oxu_remove(pdev, info->hcd[1]);
3901 
3902 	iounmap(base);
3903 	release_mem_region(memstart, memlen);
3904 
3905 	kfree(info);
3906 	platform_set_drvdata(pdev, NULL);
3907 
3908 	return 0;
3909 }
3910 
3911 static void oxu_drv_shutdown(struct platform_device *pdev)
3912 {
3913 	oxu_drv_remove(pdev);
3914 }
3915 
3916 #if 0
3917 /* FIXME: TODO */
3918 static int oxu_drv_suspend(struct device *dev)
3919 {
3920 	struct platform_device *pdev = to_platform_device(dev);
3921 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3922 
3923 	return 0;
3924 }
3925 
3926 static int oxu_drv_resume(struct device *dev)
3927 {
3928 	struct platform_device *pdev = to_platform_device(dev);
3929 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3930 
3931 	return 0;
3932 }
3933 #else
3934 #define oxu_drv_suspend	NULL
3935 #define oxu_drv_resume	NULL
3936 #endif
3937 
3938 static struct platform_driver oxu_driver = {
3939 	.probe		= oxu_drv_probe,
3940 	.remove		= oxu_drv_remove,
3941 	.shutdown	= oxu_drv_shutdown,
3942 	.suspend	= oxu_drv_suspend,
3943 	.resume		= oxu_drv_resume,
3944 	.driver = {
3945 		.name = "oxu210hp-hcd",
3946 		.bus = &platform_bus_type
3947 	}
3948 };
3949 
3950 static int __init oxu_module_init(void)
3951 {
3952 	int retval = 0;
3953 
3954 	retval = platform_driver_register(&oxu_driver);
3955 	if (retval < 0)
3956 		return retval;
3957 
3958 	return retval;
3959 }
3960 
3961 static void __exit oxu_module_cleanup(void)
3962 {
3963 	platform_driver_unregister(&oxu_driver);
3964 }
3965 
3966 module_init(oxu_module_init);
3967 module_exit(oxu_module_cleanup);
3968 
3969 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3970 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3971 MODULE_LICENSE("GPL");
3972