1 /* 2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> 3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> 4 * 5 * This code is *strongly* based on EHCI-HCD code by David Brownell since 6 * the chip is a quasi-EHCI compatible. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/pci.h> 25 #include <linux/dmapool.h> 26 #include <linux/kernel.h> 27 #include <linux/delay.h> 28 #include <linux/ioport.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/errno.h> 32 #include <linux/init.h> 33 #include <linux/timer.h> 34 #include <linux/list.h> 35 #include <linux/interrupt.h> 36 #include <linux/usb.h> 37 #include <linux/usb/hcd.h> 38 #include <linux/moduleparam.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/io.h> 41 42 #include <asm/irq.h> 43 #include <asm/system.h> 44 #include <asm/unaligned.h> 45 46 #include <linux/irq.h> 47 #include <linux/platform_device.h> 48 49 #include "oxu210hp.h" 50 51 #define DRIVER_VERSION "0.0.50" 52 53 /* 54 * Main defines 55 */ 56 57 #define oxu_dbg(oxu, fmt, args...) \ 58 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 59 #define oxu_err(oxu, fmt, args...) \ 60 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 61 #define oxu_info(oxu, fmt, args...) \ 62 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 63 64 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) 65 { 66 return container_of((void *) oxu, struct usb_hcd, hcd_priv); 67 } 68 69 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) 70 { 71 return (struct oxu_hcd *) (hcd->hcd_priv); 72 } 73 74 /* 75 * Debug stuff 76 */ 77 78 #undef OXU_URB_TRACE 79 #undef OXU_VERBOSE_DEBUG 80 81 #ifdef OXU_VERBOSE_DEBUG 82 #define oxu_vdbg oxu_dbg 83 #else 84 #define oxu_vdbg(oxu, fmt, args...) /* Nop */ 85 #endif 86 87 #ifdef DEBUG 88 89 static int __attribute__((__unused__)) 90 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 91 { 92 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 93 label, label[0] ? " " : "", status, 94 (status & STS_ASS) ? " Async" : "", 95 (status & STS_PSS) ? " Periodic" : "", 96 (status & STS_RECL) ? " Recl" : "", 97 (status & STS_HALT) ? " Halt" : "", 98 (status & STS_IAA) ? " IAA" : "", 99 (status & STS_FATAL) ? " FATAL" : "", 100 (status & STS_FLR) ? " FLR" : "", 101 (status & STS_PCD) ? " PCD" : "", 102 (status & STS_ERR) ? " ERR" : "", 103 (status & STS_INT) ? " INT" : "" 104 ); 105 } 106 107 static int __attribute__((__unused__)) 108 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 109 { 110 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 111 label, label[0] ? " " : "", enable, 112 (enable & STS_IAA) ? " IAA" : "", 113 (enable & STS_FATAL) ? " FATAL" : "", 114 (enable & STS_FLR) ? " FLR" : "", 115 (enable & STS_PCD) ? " PCD" : "", 116 (enable & STS_ERR) ? " ERR" : "", 117 (enable & STS_INT) ? " INT" : "" 118 ); 119 } 120 121 static const char *const fls_strings[] = 122 { "1024", "512", "256", "??" }; 123 124 static int dbg_command_buf(char *buf, unsigned len, 125 const char *label, u32 command) 126 { 127 return scnprintf(buf, len, 128 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", 129 label, label[0] ? " " : "", command, 130 (command & CMD_PARK) ? "park" : "(park)", 131 CMD_PARK_CNT(command), 132 (command >> 16) & 0x3f, 133 (command & CMD_LRESET) ? " LReset" : "", 134 (command & CMD_IAAD) ? " IAAD" : "", 135 (command & CMD_ASE) ? " Async" : "", 136 (command & CMD_PSE) ? " Periodic" : "", 137 fls_strings[(command >> 2) & 0x3], 138 (command & CMD_RESET) ? " Reset" : "", 139 (command & CMD_RUN) ? "RUN" : "HALT" 140 ); 141 } 142 143 static int dbg_port_buf(char *buf, unsigned len, const char *label, 144 int port, u32 status) 145 { 146 char *sig; 147 148 /* signaling state */ 149 switch (status & (3 << 10)) { 150 case 0 << 10: 151 sig = "se0"; 152 break; 153 case 1 << 10: 154 sig = "k"; /* low speed */ 155 break; 156 case 2 << 10: 157 sig = "j"; 158 break; 159 default: 160 sig = "?"; 161 break; 162 } 163 164 return scnprintf(buf, len, 165 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", 166 label, label[0] ? " " : "", port, status, 167 (status & PORT_POWER) ? " POWER" : "", 168 (status & PORT_OWNER) ? " OWNER" : "", 169 sig, 170 (status & PORT_RESET) ? " RESET" : "", 171 (status & PORT_SUSPEND) ? " SUSPEND" : "", 172 (status & PORT_RESUME) ? " RESUME" : "", 173 (status & PORT_OCC) ? " OCC" : "", 174 (status & PORT_OC) ? " OC" : "", 175 (status & PORT_PEC) ? " PEC" : "", 176 (status & PORT_PE) ? " PE" : "", 177 (status & PORT_CSC) ? " CSC" : "", 178 (status & PORT_CONNECT) ? " CONNECT" : "" 179 ); 180 } 181 182 #else 183 184 static inline int __attribute__((__unused__)) 185 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 186 { return 0; } 187 188 static inline int __attribute__((__unused__)) 189 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 190 { return 0; } 191 192 static inline int __attribute__((__unused__)) 193 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 194 { return 0; } 195 196 static inline int __attribute__((__unused__)) 197 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 198 { return 0; } 199 200 #endif /* DEBUG */ 201 202 /* functions have the "wrong" filename when they're output... */ 203 #define dbg_status(oxu, label, status) { \ 204 char _buf[80]; \ 205 dbg_status_buf(_buf, sizeof _buf, label, status); \ 206 oxu_dbg(oxu, "%s\n", _buf); \ 207 } 208 209 #define dbg_cmd(oxu, label, command) { \ 210 char _buf[80]; \ 211 dbg_command_buf(_buf, sizeof _buf, label, command); \ 212 oxu_dbg(oxu, "%s\n", _buf); \ 213 } 214 215 #define dbg_port(oxu, label, port, status) { \ 216 char _buf[80]; \ 217 dbg_port_buf(_buf, sizeof _buf, label, port, status); \ 218 oxu_dbg(oxu, "%s\n", _buf); \ 219 } 220 221 /* 222 * Module parameters 223 */ 224 225 /* Initial IRQ latency: faster than hw default */ 226 static int log2_irq_thresh; /* 0 to 6 */ 227 module_param(log2_irq_thresh, int, S_IRUGO); 228 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 229 230 /* Initial park setting: slower than hw default */ 231 static unsigned park; 232 module_param(park, uint, S_IRUGO); 233 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 234 235 /* For flakey hardware, ignore overcurrent indicators */ 236 static int ignore_oc; 237 module_param(ignore_oc, bool, S_IRUGO); 238 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); 239 240 241 static void ehci_work(struct oxu_hcd *oxu); 242 static int oxu_hub_control(struct usb_hcd *hcd, 243 u16 typeReq, u16 wValue, u16 wIndex, 244 char *buf, u16 wLength); 245 246 /* 247 * Local functions 248 */ 249 250 /* Low level read/write registers functions */ 251 static inline u32 oxu_readl(void *base, u32 reg) 252 { 253 return readl(base + reg); 254 } 255 256 static inline void oxu_writel(void *base, u32 reg, u32 val) 257 { 258 writel(val, base + reg); 259 } 260 261 static inline void timer_action_done(struct oxu_hcd *oxu, 262 enum ehci_timer_action action) 263 { 264 clear_bit(action, &oxu->actions); 265 } 266 267 static inline void timer_action(struct oxu_hcd *oxu, 268 enum ehci_timer_action action) 269 { 270 if (!test_and_set_bit(action, &oxu->actions)) { 271 unsigned long t; 272 273 switch (action) { 274 case TIMER_IAA_WATCHDOG: 275 t = EHCI_IAA_JIFFIES; 276 break; 277 case TIMER_IO_WATCHDOG: 278 t = EHCI_IO_JIFFIES; 279 break; 280 case TIMER_ASYNC_OFF: 281 t = EHCI_ASYNC_JIFFIES; 282 break; 283 case TIMER_ASYNC_SHRINK: 284 default: 285 t = EHCI_SHRINK_JIFFIES; 286 break; 287 } 288 t += jiffies; 289 /* all timings except IAA watchdog can be overridden. 290 * async queue SHRINK often precedes IAA. while it's ready 291 * to go OFF neither can matter, and afterwards the IO 292 * watchdog stops unless there's still periodic traffic. 293 */ 294 if (action != TIMER_IAA_WATCHDOG 295 && t > oxu->watchdog.expires 296 && timer_pending(&oxu->watchdog)) 297 return; 298 mod_timer(&oxu->watchdog, t); 299 } 300 } 301 302 /* 303 * handshake - spin reading hc until handshake completes or fails 304 * @ptr: address of hc register to be read 305 * @mask: bits to look at in result of read 306 * @done: value of those bits when handshake succeeds 307 * @usec: timeout in microseconds 308 * 309 * Returns negative errno, or zero on success 310 * 311 * Success happens when the "mask" bits have the specified value (hardware 312 * handshake done). There are two failure modes: "usec" have passed (major 313 * hardware flakeout), or the register reads as all-ones (hardware removed). 314 * 315 * That last failure should_only happen in cases like physical cardbus eject 316 * before driver shutdown. But it also seems to be caused by bugs in cardbus 317 * bridge shutdown: shutting down the bridge before the devices using it. 318 */ 319 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, 320 u32 mask, u32 done, int usec) 321 { 322 u32 result; 323 324 do { 325 result = readl(ptr); 326 if (result == ~(u32)0) /* card removed */ 327 return -ENODEV; 328 result &= mask; 329 if (result == done) 330 return 0; 331 udelay(1); 332 usec--; 333 } while (usec > 0); 334 return -ETIMEDOUT; 335 } 336 337 /* Force HC to halt state from unknown (EHCI spec section 2.3) */ 338 static int ehci_halt(struct oxu_hcd *oxu) 339 { 340 u32 temp = readl(&oxu->regs->status); 341 342 /* disable any irqs left enabled by previous code */ 343 writel(0, &oxu->regs->intr_enable); 344 345 if ((temp & STS_HALT) != 0) 346 return 0; 347 348 temp = readl(&oxu->regs->command); 349 temp &= ~CMD_RUN; 350 writel(temp, &oxu->regs->command); 351 return handshake(oxu, &oxu->regs->status, 352 STS_HALT, STS_HALT, 16 * 125); 353 } 354 355 /* Put TDI/ARC silicon into EHCI mode */ 356 static void tdi_reset(struct oxu_hcd *oxu) 357 { 358 u32 __iomem *reg_ptr; 359 u32 tmp; 360 361 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); 362 tmp = readl(reg_ptr); 363 tmp |= 0x3; 364 writel(tmp, reg_ptr); 365 } 366 367 /* Reset a non-running (STS_HALT == 1) controller */ 368 static int ehci_reset(struct oxu_hcd *oxu) 369 { 370 int retval; 371 u32 command = readl(&oxu->regs->command); 372 373 command |= CMD_RESET; 374 dbg_cmd(oxu, "reset", command); 375 writel(command, &oxu->regs->command); 376 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 377 oxu->next_statechange = jiffies; 378 retval = handshake(oxu, &oxu->regs->command, 379 CMD_RESET, 0, 250 * 1000); 380 381 if (retval) 382 return retval; 383 384 tdi_reset(oxu); 385 386 return retval; 387 } 388 389 /* Idle the controller (from running) */ 390 static void ehci_quiesce(struct oxu_hcd *oxu) 391 { 392 u32 temp; 393 394 #ifdef DEBUG 395 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 396 BUG(); 397 #endif 398 399 /* wait for any schedule enables/disables to take effect */ 400 temp = readl(&oxu->regs->command) << 10; 401 temp &= STS_ASS | STS_PSS; 402 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 403 temp, 16 * 125) != 0) { 404 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 405 return; 406 } 407 408 /* then disable anything that's still active */ 409 temp = readl(&oxu->regs->command); 410 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); 411 writel(temp, &oxu->regs->command); 412 413 /* hardware can take 16 microframes to turn off ... */ 414 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 415 0, 16 * 125) != 0) { 416 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 417 return; 418 } 419 } 420 421 static int check_reset_complete(struct oxu_hcd *oxu, int index, 422 u32 __iomem *status_reg, int port_status) 423 { 424 if (!(port_status & PORT_CONNECT)) { 425 oxu->reset_done[index] = 0; 426 return port_status; 427 } 428 429 /* if reset finished and it's still not enabled -- handoff */ 430 if (!(port_status & PORT_PE)) { 431 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", 432 index+1); 433 return port_status; 434 } else 435 oxu_dbg(oxu, "port %d high speed\n", index + 1); 436 437 return port_status; 438 } 439 440 static void ehci_hub_descriptor(struct oxu_hcd *oxu, 441 struct usb_hub_descriptor *desc) 442 { 443 int ports = HCS_N_PORTS(oxu->hcs_params); 444 u16 temp; 445 446 desc->bDescriptorType = 0x29; 447 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ 448 desc->bHubContrCurrent = 0; 449 450 desc->bNbrPorts = ports; 451 temp = 1 + (ports / 8); 452 desc->bDescLength = 7 + 2 * temp; 453 454 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 455 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 456 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 457 458 temp = 0x0008; /* per-port overcurrent reporting */ 459 if (HCS_PPC(oxu->hcs_params)) 460 temp |= 0x0001; /* per-port power control */ 461 else 462 temp |= 0x0002; /* no power switching */ 463 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); 464 } 465 466 467 /* Allocate an OXU210HP on-chip memory data buffer 468 * 469 * An on-chip memory data buffer is required for each OXU210HP USB transfer. 470 * Each transfer descriptor has one or more on-chip memory data buffers. 471 * 472 * Data buffers are allocated from a fix sized pool of data blocks. 473 * To minimise fragmentation and give reasonable memory utlisation, 474 * data buffers are allocated with sizes the power of 2 multiples of 475 * the block size, starting on an address a multiple of the allocated size. 476 * 477 * FIXME: callers of this function require a buffer to be allocated for 478 * len=0. This is a waste of on-chip memory and should be fix. Then this 479 * function should be changed to not allocate a buffer for len=0. 480 */ 481 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) 482 { 483 int n_blocks; /* minium blocks needed to hold len */ 484 int a_blocks; /* blocks allocated */ 485 int i, j; 486 487 /* Don't allocte bigger than supported */ 488 if (len > BUFFER_SIZE * BUFFER_NUM) { 489 oxu_err(oxu, "buffer too big (%d)\n", len); 490 return -ENOMEM; 491 } 492 493 spin_lock(&oxu->mem_lock); 494 495 /* Number of blocks needed to hold len */ 496 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; 497 498 /* Round the number of blocks up to the power of 2 */ 499 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) 500 ; 501 502 /* Find a suitable available data buffer */ 503 for (i = 0; i < BUFFER_NUM; 504 i += max(a_blocks, (int)oxu->db_used[i])) { 505 506 /* Check all the required blocks are available */ 507 for (j = 0; j < a_blocks; j++) 508 if (oxu->db_used[i + j]) 509 break; 510 511 if (j != a_blocks) 512 continue; 513 514 /* Allocate blocks found! */ 515 qtd->buffer = (void *) &oxu->mem->db_pool[i]; 516 qtd->buffer_dma = virt_to_phys(qtd->buffer); 517 518 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; 519 oxu->db_used[i] = a_blocks; 520 521 spin_unlock(&oxu->mem_lock); 522 523 return 0; 524 } 525 526 /* Failed */ 527 528 spin_unlock(&oxu->mem_lock); 529 530 return -ENOMEM; 531 } 532 533 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 534 { 535 int index; 536 537 spin_lock(&oxu->mem_lock); 538 539 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) 540 / BUFFER_SIZE; 541 oxu->db_used[index] = 0; 542 qtd->qtd_buffer_len = 0; 543 qtd->buffer_dma = 0; 544 qtd->buffer = NULL; 545 546 spin_unlock(&oxu->mem_lock); 547 } 548 549 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) 550 { 551 memset(qtd, 0, sizeof *qtd); 552 qtd->qtd_dma = dma; 553 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 554 qtd->hw_next = EHCI_LIST_END; 555 qtd->hw_alt_next = EHCI_LIST_END; 556 INIT_LIST_HEAD(&qtd->qtd_list); 557 } 558 559 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 560 { 561 int index; 562 563 if (qtd->buffer) 564 oxu_buf_free(oxu, qtd); 565 566 spin_lock(&oxu->mem_lock); 567 568 index = qtd - &oxu->mem->qtd_pool[0]; 569 oxu->qtd_used[index] = 0; 570 571 spin_unlock(&oxu->mem_lock); 572 } 573 574 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) 575 { 576 int i; 577 struct ehci_qtd *qtd = NULL; 578 579 spin_lock(&oxu->mem_lock); 580 581 for (i = 0; i < QTD_NUM; i++) 582 if (!oxu->qtd_used[i]) 583 break; 584 585 if (i < QTD_NUM) { 586 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; 587 memset(qtd, 0, sizeof *qtd); 588 589 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 590 qtd->hw_next = EHCI_LIST_END; 591 qtd->hw_alt_next = EHCI_LIST_END; 592 INIT_LIST_HEAD(&qtd->qtd_list); 593 594 qtd->qtd_dma = virt_to_phys(qtd); 595 596 oxu->qtd_used[i] = 1; 597 } 598 599 spin_unlock(&oxu->mem_lock); 600 601 return qtd; 602 } 603 604 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) 605 { 606 int index; 607 608 spin_lock(&oxu->mem_lock); 609 610 index = qh - &oxu->mem->qh_pool[0]; 611 oxu->qh_used[index] = 0; 612 613 spin_unlock(&oxu->mem_lock); 614 } 615 616 static void qh_destroy(struct kref *kref) 617 { 618 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); 619 struct oxu_hcd *oxu = qh->oxu; 620 621 /* clean qtds first, and know this is not linked */ 622 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 623 oxu_dbg(oxu, "unused qh not empty!\n"); 624 BUG(); 625 } 626 if (qh->dummy) 627 oxu_qtd_free(oxu, qh->dummy); 628 oxu_qh_free(oxu, qh); 629 } 630 631 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) 632 { 633 int i; 634 struct ehci_qh *qh = NULL; 635 636 spin_lock(&oxu->mem_lock); 637 638 for (i = 0; i < QHEAD_NUM; i++) 639 if (!oxu->qh_used[i]) 640 break; 641 642 if (i < QHEAD_NUM) { 643 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; 644 memset(qh, 0, sizeof *qh); 645 646 kref_init(&qh->kref); 647 qh->oxu = oxu; 648 qh->qh_dma = virt_to_phys(qh); 649 INIT_LIST_HEAD(&qh->qtd_list); 650 651 /* dummy td enables safe urb queuing */ 652 qh->dummy = ehci_qtd_alloc(oxu); 653 if (qh->dummy == NULL) { 654 oxu_dbg(oxu, "no dummy td\n"); 655 oxu->qh_used[i] = 0; 656 qh = NULL; 657 goto unlock; 658 } 659 660 oxu->qh_used[i] = 1; 661 } 662 unlock: 663 spin_unlock(&oxu->mem_lock); 664 665 return qh; 666 } 667 668 /* to share a qh (cpu threads, or hc) */ 669 static inline struct ehci_qh *qh_get(struct ehci_qh *qh) 670 { 671 kref_get(&qh->kref); 672 return qh; 673 } 674 675 static inline void qh_put(struct ehci_qh *qh) 676 { 677 kref_put(&qh->kref, qh_destroy); 678 } 679 680 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) 681 { 682 int index; 683 684 spin_lock(&oxu->mem_lock); 685 686 index = murb - &oxu->murb_pool[0]; 687 oxu->murb_used[index] = 0; 688 689 spin_unlock(&oxu->mem_lock); 690 } 691 692 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) 693 694 { 695 int i; 696 struct oxu_murb *murb = NULL; 697 698 spin_lock(&oxu->mem_lock); 699 700 for (i = 0; i < MURB_NUM; i++) 701 if (!oxu->murb_used[i]) 702 break; 703 704 if (i < MURB_NUM) { 705 murb = &(oxu->murb_pool)[i]; 706 707 oxu->murb_used[i] = 1; 708 } 709 710 spin_unlock(&oxu->mem_lock); 711 712 return murb; 713 } 714 715 /* The queue heads and transfer descriptors are managed from pools tied 716 * to each of the "per device" structures. 717 * This is the initialisation and cleanup code. 718 */ 719 static void ehci_mem_cleanup(struct oxu_hcd *oxu) 720 { 721 kfree(oxu->murb_pool); 722 oxu->murb_pool = NULL; 723 724 if (oxu->async) 725 qh_put(oxu->async); 726 oxu->async = NULL; 727 728 del_timer(&oxu->urb_timer); 729 730 oxu->periodic = NULL; 731 732 /* shadow periodic table */ 733 kfree(oxu->pshadow); 734 oxu->pshadow = NULL; 735 } 736 737 /* Remember to add cleanup code (above) if you add anything here. 738 */ 739 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) 740 { 741 int i; 742 743 for (i = 0; i < oxu->periodic_size; i++) 744 oxu->mem->frame_list[i] = EHCI_LIST_END; 745 for (i = 0; i < QHEAD_NUM; i++) 746 oxu->qh_used[i] = 0; 747 for (i = 0; i < QTD_NUM; i++) 748 oxu->qtd_used[i] = 0; 749 750 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); 751 if (!oxu->murb_pool) 752 goto fail; 753 754 for (i = 0; i < MURB_NUM; i++) 755 oxu->murb_used[i] = 0; 756 757 oxu->async = oxu_qh_alloc(oxu); 758 if (!oxu->async) 759 goto fail; 760 761 oxu->periodic = (__le32 *) &oxu->mem->frame_list; 762 oxu->periodic_dma = virt_to_phys(oxu->periodic); 763 764 for (i = 0; i < oxu->periodic_size; i++) 765 oxu->periodic[i] = EHCI_LIST_END; 766 767 /* software shadow of hardware table */ 768 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); 769 if (oxu->pshadow != NULL) 770 return 0; 771 772 fail: 773 oxu_dbg(oxu, "couldn't init memory\n"); 774 ehci_mem_cleanup(oxu); 775 return -ENOMEM; 776 } 777 778 /* Fill a qtd, returning how much of the buffer we were able to queue up. 779 */ 780 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, 781 int token, int maxpacket) 782 { 783 int i, count; 784 u64 addr = buf; 785 786 /* one buffer entry per 4K ... first might be short or unaligned */ 787 qtd->hw_buf[0] = cpu_to_le32((u32)addr); 788 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); 789 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 790 if (likely(len < count)) /* ... iff needed */ 791 count = len; 792 else { 793 buf += 0x1000; 794 buf &= ~0x0fff; 795 796 /* per-qtd limit: from 16K to 20K (best alignment) */ 797 for (i = 1; count < len && i < 5; i++) { 798 addr = buf; 799 qtd->hw_buf[i] = cpu_to_le32((u32)addr); 800 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); 801 buf += 0x1000; 802 if ((count + 0x1000) < len) 803 count += 0x1000; 804 else 805 count = len; 806 } 807 808 /* short packets may only terminate transfers */ 809 if (count != len) 810 count -= (count % maxpacket); 811 } 812 qtd->hw_token = cpu_to_le32((count << 16) | token); 813 qtd->length = count; 814 815 return count; 816 } 817 818 static inline void qh_update(struct oxu_hcd *oxu, 819 struct ehci_qh *qh, struct ehci_qtd *qtd) 820 { 821 /* writes to an active overlay are unsafe */ 822 BUG_ON(qh->qh_state != QH_STATE_IDLE); 823 824 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); 825 qh->hw_alt_next = EHCI_LIST_END; 826 827 /* Except for control endpoints, we make hardware maintain data 828 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 829 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 830 * ever clear it. 831 */ 832 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { 833 unsigned is_out, epnum; 834 835 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); 836 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; 837 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 838 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); 839 usb_settoggle(qh->dev, epnum, is_out, 1); 840 } 841 } 842 843 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 844 wmb(); 845 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); 846 } 847 848 /* If it weren't for a common silicon quirk (writing the dummy into the qh 849 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 850 * recovery (including urb dequeue) would need software changes to a QH... 851 */ 852 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) 853 { 854 struct ehci_qtd *qtd; 855 856 if (list_empty(&qh->qtd_list)) 857 qtd = qh->dummy; 858 else { 859 qtd = list_entry(qh->qtd_list.next, 860 struct ehci_qtd, qtd_list); 861 /* first qtd may already be partially processed */ 862 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) 863 qtd = NULL; 864 } 865 866 if (qtd) 867 qh_update(oxu, qh, qtd); 868 } 869 870 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, 871 size_t length, u32 token) 872 { 873 /* count IN/OUT bytes, not SETUP (even short packets) */ 874 if (likely(QTD_PID(token) != 2)) 875 urb->actual_length += length - QTD_LENGTH(token); 876 877 /* don't modify error codes */ 878 if (unlikely(urb->status != -EINPROGRESS)) 879 return; 880 881 /* force cleanup after short read; not always an error */ 882 if (unlikely(IS_SHORT_READ(token))) 883 urb->status = -EREMOTEIO; 884 885 /* serious "can't proceed" faults reported by the hardware */ 886 if (token & QTD_STS_HALT) { 887 if (token & QTD_STS_BABBLE) { 888 /* FIXME "must" disable babbling device's port too */ 889 urb->status = -EOVERFLOW; 890 } else if (token & QTD_STS_MMF) { 891 /* fs/ls interrupt xfer missed the complete-split */ 892 urb->status = -EPROTO; 893 } else if (token & QTD_STS_DBE) { 894 urb->status = (QTD_PID(token) == 1) /* IN ? */ 895 ? -ENOSR /* hc couldn't read data */ 896 : -ECOMM; /* hc couldn't write data */ 897 } else if (token & QTD_STS_XACT) { 898 /* timeout, bad crc, wrong PID, etc; retried */ 899 if (QTD_CERR(token)) 900 urb->status = -EPIPE; 901 else { 902 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", 903 urb->dev->devpath, 904 usb_pipeendpoint(urb->pipe), 905 usb_pipein(urb->pipe) ? "in" : "out"); 906 urb->status = -EPROTO; 907 } 908 /* CERR nonzero + no errors + halt --> stall */ 909 } else if (QTD_CERR(token)) 910 urb->status = -EPIPE; 911 else /* unknown */ 912 urb->status = -EPROTO; 913 914 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", 915 usb_pipedevice(urb->pipe), 916 usb_pipeendpoint(urb->pipe), 917 usb_pipein(urb->pipe) ? "in" : "out", 918 token, urb->status); 919 } 920 } 921 922 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) 923 __releases(oxu->lock) 924 __acquires(oxu->lock) 925 { 926 if (likely(urb->hcpriv != NULL)) { 927 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 928 929 /* S-mask in a QH means it's an interrupt urb */ 930 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { 931 932 /* ... update hc-wide periodic stats (for usbfs) */ 933 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; 934 } 935 qh_put(qh); 936 } 937 938 urb->hcpriv = NULL; 939 switch (urb->status) { 940 case -EINPROGRESS: /* success */ 941 urb->status = 0; 942 default: /* fault */ 943 break; 944 case -EREMOTEIO: /* fault or normal */ 945 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 946 urb->status = 0; 947 break; 948 case -ECONNRESET: /* canceled */ 949 case -ENOENT: 950 break; 951 } 952 953 #ifdef OXU_URB_TRACE 954 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", 955 __func__, urb->dev->devpath, urb, 956 usb_pipeendpoint(urb->pipe), 957 usb_pipein(urb->pipe) ? "in" : "out", 958 urb->status, 959 urb->actual_length, urb->transfer_buffer_length); 960 #endif 961 962 /* complete() can reenter this HCD */ 963 spin_unlock(&oxu->lock); 964 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); 965 spin_lock(&oxu->lock); 966 } 967 968 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 969 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 970 971 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 972 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 973 974 #define HALT_BIT cpu_to_le32(QTD_STS_HALT) 975 976 /* Process and free completed qtds for a qh, returning URBs to drivers. 977 * Chases up to qh->hw_current. Returns number of completions called, 978 * indicating how much "real" work we did. 979 */ 980 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) 981 { 982 struct ehci_qtd *last = NULL, *end = qh->dummy; 983 struct list_head *entry, *tmp; 984 int stopped; 985 unsigned count = 0; 986 int do_status = 0; 987 u8 state; 988 struct oxu_murb *murb = NULL; 989 990 if (unlikely(list_empty(&qh->qtd_list))) 991 return count; 992 993 /* completions (or tasks on other cpus) must never clobber HALT 994 * till we've gone through and cleaned everything up, even when 995 * they add urbs to this qh's queue or mark them for unlinking. 996 * 997 * NOTE: unlinking expects to be done in queue order. 998 */ 999 state = qh->qh_state; 1000 qh->qh_state = QH_STATE_COMPLETING; 1001 stopped = (state == QH_STATE_IDLE); 1002 1003 /* remove de-activated QTDs from front of queue. 1004 * after faults (including short reads), cleanup this urb 1005 * then let the queue advance. 1006 * if queue is stopped, handles unlinks. 1007 */ 1008 list_for_each_safe(entry, tmp, &qh->qtd_list) { 1009 struct ehci_qtd *qtd; 1010 struct urb *urb; 1011 u32 token = 0; 1012 1013 qtd = list_entry(entry, struct ehci_qtd, qtd_list); 1014 urb = qtd->urb; 1015 1016 /* Clean up any state from previous QTD ...*/ 1017 if (last) { 1018 if (likely(last->urb != urb)) { 1019 if (last->urb->complete == NULL) { 1020 murb = (struct oxu_murb *) last->urb; 1021 last->urb = murb->main; 1022 if (murb->last) { 1023 ehci_urb_done(oxu, last->urb); 1024 count++; 1025 } 1026 oxu_murb_free(oxu, murb); 1027 } else { 1028 ehci_urb_done(oxu, last->urb); 1029 count++; 1030 } 1031 } 1032 oxu_qtd_free(oxu, last); 1033 last = NULL; 1034 } 1035 1036 /* ignore urbs submitted during completions we reported */ 1037 if (qtd == end) 1038 break; 1039 1040 /* hardware copies qtd out of qh overlay */ 1041 rmb(); 1042 token = le32_to_cpu(qtd->hw_token); 1043 1044 /* always clean up qtds the hc de-activated */ 1045 if ((token & QTD_STS_ACTIVE) == 0) { 1046 1047 if ((token & QTD_STS_HALT) != 0) { 1048 stopped = 1; 1049 1050 /* magic dummy for some short reads; qh won't advance. 1051 * that silicon quirk can kick in with this dummy too. 1052 */ 1053 } else if (IS_SHORT_READ(token) && 1054 !(qtd->hw_alt_next & EHCI_LIST_END)) { 1055 stopped = 1; 1056 goto halt; 1057 } 1058 1059 /* stop scanning when we reach qtds the hc is using */ 1060 } else if (likely(!stopped && 1061 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { 1062 break; 1063 1064 } else { 1065 stopped = 1; 1066 1067 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) 1068 urb->status = -ESHUTDOWN; 1069 1070 /* ignore active urbs unless some previous qtd 1071 * for the urb faulted (including short read) or 1072 * its urb was canceled. we may patch qh or qtds. 1073 */ 1074 if (likely(urb->status == -EINPROGRESS)) 1075 continue; 1076 1077 /* issue status after short control reads */ 1078 if (unlikely(do_status != 0) 1079 && QTD_PID(token) == 0 /* OUT */) { 1080 do_status = 0; 1081 continue; 1082 } 1083 1084 /* token in overlay may be most current */ 1085 if (state == QH_STATE_IDLE 1086 && cpu_to_le32(qtd->qtd_dma) 1087 == qh->hw_current) 1088 token = le32_to_cpu(qh->hw_token); 1089 1090 /* force halt for unlinked or blocked qh, so we'll 1091 * patch the qh later and so that completions can't 1092 * activate it while we "know" it's stopped. 1093 */ 1094 if ((HALT_BIT & qh->hw_token) == 0) { 1095 halt: 1096 qh->hw_token |= HALT_BIT; 1097 wmb(); 1098 } 1099 } 1100 1101 /* Remove it from the queue */ 1102 qtd_copy_status(oxu, urb->complete ? 1103 urb : ((struct oxu_murb *) urb)->main, 1104 qtd->length, token); 1105 if ((usb_pipein(qtd->urb->pipe)) && 1106 (NULL != qtd->transfer_buffer)) 1107 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); 1108 do_status = (urb->status == -EREMOTEIO) 1109 && usb_pipecontrol(urb->pipe); 1110 1111 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 1112 last = list_entry(qtd->qtd_list.prev, 1113 struct ehci_qtd, qtd_list); 1114 last->hw_next = qtd->hw_next; 1115 } 1116 list_del(&qtd->qtd_list); 1117 last = qtd; 1118 } 1119 1120 /* last urb's completion might still need calling */ 1121 if (likely(last != NULL)) { 1122 if (last->urb->complete == NULL) { 1123 murb = (struct oxu_murb *) last->urb; 1124 last->urb = murb->main; 1125 if (murb->last) { 1126 ehci_urb_done(oxu, last->urb); 1127 count++; 1128 } 1129 oxu_murb_free(oxu, murb); 1130 } else { 1131 ehci_urb_done(oxu, last->urb); 1132 count++; 1133 } 1134 oxu_qtd_free(oxu, last); 1135 } 1136 1137 /* restore original state; caller must unlink or relink */ 1138 qh->qh_state = state; 1139 1140 /* be sure the hardware's done with the qh before refreshing 1141 * it after fault cleanup, or recovering from silicon wrongly 1142 * overlaying the dummy qtd (which reduces DMA chatter). 1143 */ 1144 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { 1145 switch (state) { 1146 case QH_STATE_IDLE: 1147 qh_refresh(oxu, qh); 1148 break; 1149 case QH_STATE_LINKED: 1150 /* should be rare for periodic transfers, 1151 * except maybe high bandwidth ... 1152 */ 1153 if ((cpu_to_le32(QH_SMASK) 1154 & qh->hw_info2) != 0) { 1155 intr_deschedule(oxu, qh); 1156 (void) qh_schedule(oxu, qh); 1157 } else 1158 unlink_async(oxu, qh); 1159 break; 1160 /* otherwise, unlink already started */ 1161 } 1162 } 1163 1164 return count; 1165 } 1166 1167 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 1168 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 1169 /* ... and packet size, for any kind of endpoint descriptor */ 1170 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 1171 1172 /* Reverse of qh_urb_transaction: free a list of TDs. 1173 * used for cleanup after errors, before HC sees an URB's TDs. 1174 */ 1175 static void qtd_list_free(struct oxu_hcd *oxu, 1176 struct urb *urb, struct list_head *qtd_list) 1177 { 1178 struct list_head *entry, *temp; 1179 1180 list_for_each_safe(entry, temp, qtd_list) { 1181 struct ehci_qtd *qtd; 1182 1183 qtd = list_entry(entry, struct ehci_qtd, qtd_list); 1184 list_del(&qtd->qtd_list); 1185 oxu_qtd_free(oxu, qtd); 1186 } 1187 } 1188 1189 /* Create a list of filled qtds for this URB; won't link into qh. 1190 */ 1191 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, 1192 struct urb *urb, 1193 struct list_head *head, 1194 gfp_t flags) 1195 { 1196 struct ehci_qtd *qtd, *qtd_prev; 1197 dma_addr_t buf; 1198 int len, maxpacket; 1199 int is_input; 1200 u32 token; 1201 void *transfer_buf = NULL; 1202 int ret; 1203 1204 /* 1205 * URBs map to sequences of QTDs: one logical transaction 1206 */ 1207 qtd = ehci_qtd_alloc(oxu); 1208 if (unlikely(!qtd)) 1209 return NULL; 1210 list_add_tail(&qtd->qtd_list, head); 1211 qtd->urb = urb; 1212 1213 token = QTD_STS_ACTIVE; 1214 token |= (EHCI_TUNE_CERR << 10); 1215 /* for split transactions, SplitXState initialized to zero */ 1216 1217 len = urb->transfer_buffer_length; 1218 is_input = usb_pipein(urb->pipe); 1219 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) 1220 urb->transfer_buffer = phys_to_virt(urb->transfer_dma); 1221 1222 if (usb_pipecontrol(urb->pipe)) { 1223 /* SETUP pid */ 1224 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); 1225 if (ret) 1226 goto cleanup; 1227 1228 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), 1229 token | (2 /* "setup" */ << 8), 8); 1230 memcpy(qtd->buffer, qtd->urb->setup_packet, 1231 sizeof(struct usb_ctrlrequest)); 1232 1233 /* ... and always at least one more pid */ 1234 token ^= QTD_TOGGLE; 1235 qtd_prev = qtd; 1236 qtd = ehci_qtd_alloc(oxu); 1237 if (unlikely(!qtd)) 1238 goto cleanup; 1239 qtd->urb = urb; 1240 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1241 list_add_tail(&qtd->qtd_list, head); 1242 1243 /* for zero length DATA stages, STATUS is always IN */ 1244 if (len == 0) 1245 token |= (1 /* "in" */ << 8); 1246 } 1247 1248 /* 1249 * Data transfer stage: buffer setup 1250 */ 1251 1252 ret = oxu_buf_alloc(oxu, qtd, len); 1253 if (ret) 1254 goto cleanup; 1255 1256 buf = qtd->buffer_dma; 1257 transfer_buf = urb->transfer_buffer; 1258 1259 if (!is_input) 1260 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); 1261 1262 if (is_input) 1263 token |= (1 /* "in" */ << 8); 1264 /* else it's already initted to "out" pid (0 << 8) */ 1265 1266 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 1267 1268 /* 1269 * buffer gets wrapped in one or more qtds; 1270 * last one may be "short" (including zero len) 1271 * and may serve as a control status ack 1272 */ 1273 for (;;) { 1274 int this_qtd_len; 1275 1276 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); 1277 qtd->transfer_buffer = transfer_buf; 1278 len -= this_qtd_len; 1279 buf += this_qtd_len; 1280 transfer_buf += this_qtd_len; 1281 if (is_input) 1282 qtd->hw_alt_next = oxu->async->hw_alt_next; 1283 1284 /* qh makes control packets use qtd toggle; maybe switch it */ 1285 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 1286 token ^= QTD_TOGGLE; 1287 1288 if (likely(len <= 0)) 1289 break; 1290 1291 qtd_prev = qtd; 1292 qtd = ehci_qtd_alloc(oxu); 1293 if (unlikely(!qtd)) 1294 goto cleanup; 1295 if (likely(len > 0)) { 1296 ret = oxu_buf_alloc(oxu, qtd, len); 1297 if (ret) 1298 goto cleanup; 1299 } 1300 qtd->urb = urb; 1301 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1302 list_add_tail(&qtd->qtd_list, head); 1303 } 1304 1305 /* unless the bulk/interrupt caller wants a chance to clean 1306 * up after short reads, hc should advance qh past this urb 1307 */ 1308 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 1309 || usb_pipecontrol(urb->pipe))) 1310 qtd->hw_alt_next = EHCI_LIST_END; 1311 1312 /* 1313 * control requests may need a terminating data "status" ack; 1314 * bulk ones may need a terminating short packet (zero length). 1315 */ 1316 if (likely(urb->transfer_buffer_length != 0)) { 1317 int one_more = 0; 1318 1319 if (usb_pipecontrol(urb->pipe)) { 1320 one_more = 1; 1321 token ^= 0x0100; /* "in" <--> "out" */ 1322 token |= QTD_TOGGLE; /* force DATA1 */ 1323 } else if (usb_pipebulk(urb->pipe) 1324 && (urb->transfer_flags & URB_ZERO_PACKET) 1325 && !(urb->transfer_buffer_length % maxpacket)) { 1326 one_more = 1; 1327 } 1328 if (one_more) { 1329 qtd_prev = qtd; 1330 qtd = ehci_qtd_alloc(oxu); 1331 if (unlikely(!qtd)) 1332 goto cleanup; 1333 qtd->urb = urb; 1334 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1335 list_add_tail(&qtd->qtd_list, head); 1336 1337 /* never any data in such packets */ 1338 qtd_fill(qtd, 0, 0, token, 0); 1339 } 1340 } 1341 1342 /* by default, enable interrupt on urb completion */ 1343 qtd->hw_token |= cpu_to_le32(QTD_IOC); 1344 return head; 1345 1346 cleanup: 1347 qtd_list_free(oxu, urb, head); 1348 return NULL; 1349 } 1350 1351 /* Each QH holds a qtd list; a QH is used for everything except iso. 1352 * 1353 * For interrupt urbs, the scheduler must set the microframe scheduling 1354 * mask(s) each time the QH gets scheduled. For highspeed, that's 1355 * just one microframe in the s-mask. For split interrupt transactions 1356 * there are additional complications: c-mask, maybe FSTNs. 1357 */ 1358 static struct ehci_qh *qh_make(struct oxu_hcd *oxu, 1359 struct urb *urb, gfp_t flags) 1360 { 1361 struct ehci_qh *qh = oxu_qh_alloc(oxu); 1362 u32 info1 = 0, info2 = 0; 1363 int is_input, type; 1364 int maxp = 0; 1365 1366 if (!qh) 1367 return qh; 1368 1369 /* 1370 * init endpoint/device data for this QH 1371 */ 1372 info1 |= usb_pipeendpoint(urb->pipe) << 8; 1373 info1 |= usb_pipedevice(urb->pipe) << 0; 1374 1375 is_input = usb_pipein(urb->pipe); 1376 type = usb_pipetype(urb->pipe); 1377 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); 1378 1379 /* Compute interrupt scheduling parameters just once, and save. 1380 * - allowing for high bandwidth, how many nsec/uframe are used? 1381 * - split transactions need a second CSPLIT uframe; same question 1382 * - splits also need a schedule gap (for full/low speed I/O) 1383 * - qh has a polling interval 1384 * 1385 * For control/bulk requests, the HC or TT handles these. 1386 */ 1387 if (type == PIPE_INTERRUPT) { 1388 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 1389 is_input, 0, 1390 hb_mult(maxp) * max_packet(maxp))); 1391 qh->start = NO_FRAME; 1392 1393 if (urb->dev->speed == USB_SPEED_HIGH) { 1394 qh->c_usecs = 0; 1395 qh->gap_uf = 0; 1396 1397 qh->period = urb->interval >> 3; 1398 if (qh->period == 0 && urb->interval != 1) { 1399 /* NOTE interval 2 or 4 uframes could work. 1400 * But interval 1 scheduling is simpler, and 1401 * includes high bandwidth. 1402 */ 1403 dbg("intr period %d uframes, NYET!", 1404 urb->interval); 1405 goto done; 1406 } 1407 } else { 1408 struct usb_tt *tt = urb->dev->tt; 1409 int think_time; 1410 1411 /* gap is f(FS/LS transfer times) */ 1412 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 1413 is_input, 0, maxp) / (125 * 1000); 1414 1415 /* FIXME this just approximates SPLIT/CSPLIT times */ 1416 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 1417 qh->c_usecs = qh->usecs + HS_USECS(0); 1418 qh->usecs = HS_USECS(1); 1419 } else { /* SPLIT+DATA, gap, CSPLIT */ 1420 qh->usecs += HS_USECS(1); 1421 qh->c_usecs = HS_USECS(0); 1422 } 1423 1424 think_time = tt ? tt->think_time : 0; 1425 qh->tt_usecs = NS_TO_US(think_time + 1426 usb_calc_bus_time(urb->dev->speed, 1427 is_input, 0, max_packet(maxp))); 1428 qh->period = urb->interval; 1429 } 1430 } 1431 1432 /* support for tt scheduling, and access to toggles */ 1433 qh->dev = urb->dev; 1434 1435 /* using TT? */ 1436 switch (urb->dev->speed) { 1437 case USB_SPEED_LOW: 1438 info1 |= (1 << 12); /* EPS "low" */ 1439 /* FALL THROUGH */ 1440 1441 case USB_SPEED_FULL: 1442 /* EPS 0 means "full" */ 1443 if (type != PIPE_INTERRUPT) 1444 info1 |= (EHCI_TUNE_RL_TT << 28); 1445 if (type == PIPE_CONTROL) { 1446 info1 |= (1 << 27); /* for TT */ 1447 info1 |= 1 << 14; /* toggle from qtd */ 1448 } 1449 info1 |= maxp << 16; 1450 1451 info2 |= (EHCI_TUNE_MULT_TT << 30); 1452 info2 |= urb->dev->ttport << 23; 1453 1454 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 1455 1456 break; 1457 1458 case USB_SPEED_HIGH: /* no TT involved */ 1459 info1 |= (2 << 12); /* EPS "high" */ 1460 if (type == PIPE_CONTROL) { 1461 info1 |= (EHCI_TUNE_RL_HS << 28); 1462 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 1463 info1 |= 1 << 14; /* toggle from qtd */ 1464 info2 |= (EHCI_TUNE_MULT_HS << 30); 1465 } else if (type == PIPE_BULK) { 1466 info1 |= (EHCI_TUNE_RL_HS << 28); 1467 info1 |= 512 << 16; /* usb2 fixed maxpacket */ 1468 info2 |= (EHCI_TUNE_MULT_HS << 30); 1469 } else { /* PIPE_INTERRUPT */ 1470 info1 |= max_packet(maxp) << 16; 1471 info2 |= hb_mult(maxp) << 30; 1472 } 1473 break; 1474 default: 1475 dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed); 1476 done: 1477 qh_put(qh); 1478 return NULL; 1479 } 1480 1481 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 1482 1483 /* init as live, toggle clear, advance to dummy */ 1484 qh->qh_state = QH_STATE_IDLE; 1485 qh->hw_info1 = cpu_to_le32(info1); 1486 qh->hw_info2 = cpu_to_le32(info2); 1487 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 1488 qh_refresh(oxu, qh); 1489 return qh; 1490 } 1491 1492 /* Move qh (and its qtds) onto async queue; maybe enable queue. 1493 */ 1494 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1495 { 1496 __le32 dma = QH_NEXT(qh->qh_dma); 1497 struct ehci_qh *head; 1498 1499 /* (re)start the async schedule? */ 1500 head = oxu->async; 1501 timer_action_done(oxu, TIMER_ASYNC_OFF); 1502 if (!head->qh_next.qh) { 1503 u32 cmd = readl(&oxu->regs->command); 1504 1505 if (!(cmd & CMD_ASE)) { 1506 /* in case a clear of CMD_ASE didn't take yet */ 1507 (void)handshake(oxu, &oxu->regs->status, 1508 STS_ASS, 0, 150); 1509 cmd |= CMD_ASE | CMD_RUN; 1510 writel(cmd, &oxu->regs->command); 1511 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1512 /* posted write need not be known to HC yet ... */ 1513 } 1514 } 1515 1516 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1517 if (qh->qh_state == QH_STATE_IDLE) 1518 qh_refresh(oxu, qh); 1519 1520 /* splice right after start */ 1521 qh->qh_next = head->qh_next; 1522 qh->hw_next = head->hw_next; 1523 wmb(); 1524 1525 head->qh_next.qh = qh; 1526 head->hw_next = dma; 1527 1528 qh->qh_state = QH_STATE_LINKED; 1529 /* qtd completions reported later by interrupt */ 1530 } 1531 1532 #define QH_ADDR_MASK cpu_to_le32(0x7f) 1533 1534 /* 1535 * For control/bulk/interrupt, return QH with these TDs appended. 1536 * Allocates and initializes the QH if necessary. 1537 * Returns null if it can't allocate a QH it needs to. 1538 * If the QH has TDs (urbs) already, that's great. 1539 */ 1540 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, 1541 struct urb *urb, struct list_head *qtd_list, 1542 int epnum, void **ptr) 1543 { 1544 struct ehci_qh *qh = NULL; 1545 1546 qh = (struct ehci_qh *) *ptr; 1547 if (unlikely(qh == NULL)) { 1548 /* can't sleep here, we have oxu->lock... */ 1549 qh = qh_make(oxu, urb, GFP_ATOMIC); 1550 *ptr = qh; 1551 } 1552 if (likely(qh != NULL)) { 1553 struct ehci_qtd *qtd; 1554 1555 if (unlikely(list_empty(qtd_list))) 1556 qtd = NULL; 1557 else 1558 qtd = list_entry(qtd_list->next, struct ehci_qtd, 1559 qtd_list); 1560 1561 /* control qh may need patching ... */ 1562 if (unlikely(epnum == 0)) { 1563 1564 /* usb_reset_device() briefly reverts to address 0 */ 1565 if (usb_pipedevice(urb->pipe) == 0) 1566 qh->hw_info1 &= ~QH_ADDR_MASK; 1567 } 1568 1569 /* just one way to queue requests: swap with the dummy qtd. 1570 * only hc or qh_refresh() ever modify the overlay. 1571 */ 1572 if (likely(qtd != NULL)) { 1573 struct ehci_qtd *dummy; 1574 dma_addr_t dma; 1575 __le32 token; 1576 1577 /* to avoid racing the HC, use the dummy td instead of 1578 * the first td of our list (becomes new dummy). both 1579 * tds stay deactivated until we're done, when the 1580 * HC is allowed to fetch the old dummy (4.10.2). 1581 */ 1582 token = qtd->hw_token; 1583 qtd->hw_token = HALT_BIT; 1584 wmb(); 1585 dummy = qh->dummy; 1586 1587 dma = dummy->qtd_dma; 1588 *dummy = *qtd; 1589 dummy->qtd_dma = dma; 1590 1591 list_del(&qtd->qtd_list); 1592 list_add(&dummy->qtd_list, qtd_list); 1593 list_splice(qtd_list, qh->qtd_list.prev); 1594 1595 ehci_qtd_init(qtd, qtd->qtd_dma); 1596 qh->dummy = qtd; 1597 1598 /* hc must see the new dummy at list end */ 1599 dma = qtd->qtd_dma; 1600 qtd = list_entry(qh->qtd_list.prev, 1601 struct ehci_qtd, qtd_list); 1602 qtd->hw_next = QTD_NEXT(dma); 1603 1604 /* let the hc process these next qtds */ 1605 dummy->hw_token = (token & ~(0x80)); 1606 wmb(); 1607 dummy->hw_token = token; 1608 1609 urb->hcpriv = qh_get(qh); 1610 } 1611 } 1612 return qh; 1613 } 1614 1615 static int submit_async(struct oxu_hcd *oxu, struct urb *urb, 1616 struct list_head *qtd_list, gfp_t mem_flags) 1617 { 1618 struct ehci_qtd *qtd; 1619 int epnum; 1620 unsigned long flags; 1621 struct ehci_qh *qh = NULL; 1622 int rc = 0; 1623 1624 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1625 epnum = urb->ep->desc.bEndpointAddress; 1626 1627 #ifdef OXU_URB_TRACE 1628 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1629 __func__, urb->dev->devpath, urb, 1630 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1631 urb->transfer_buffer_length, 1632 qtd, urb->ep->hcpriv); 1633 #endif 1634 1635 spin_lock_irqsave(&oxu->lock, flags); 1636 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 1637 rc = -ESHUTDOWN; 1638 goto done; 1639 } 1640 1641 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 1642 if (unlikely(qh == NULL)) { 1643 rc = -ENOMEM; 1644 goto done; 1645 } 1646 1647 /* Control/bulk operations through TTs don't need scheduling, 1648 * the HC and TT handle it when the TT has a buffer ready. 1649 */ 1650 if (likely(qh->qh_state == QH_STATE_IDLE)) 1651 qh_link_async(oxu, qh_get(qh)); 1652 done: 1653 spin_unlock_irqrestore(&oxu->lock, flags); 1654 if (unlikely(qh == NULL)) 1655 qtd_list_free(oxu, urb, qtd_list); 1656 return rc; 1657 } 1658 1659 /* The async qh for the qtds being reclaimed are now unlinked from the HC */ 1660 1661 static void end_unlink_async(struct oxu_hcd *oxu) 1662 { 1663 struct ehci_qh *qh = oxu->reclaim; 1664 struct ehci_qh *next; 1665 1666 timer_action_done(oxu, TIMER_IAA_WATCHDOG); 1667 1668 qh->qh_state = QH_STATE_IDLE; 1669 qh->qh_next.qh = NULL; 1670 qh_put(qh); /* refcount from reclaim */ 1671 1672 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 1673 next = qh->reclaim; 1674 oxu->reclaim = next; 1675 oxu->reclaim_ready = 0; 1676 qh->reclaim = NULL; 1677 1678 qh_completions(oxu, qh); 1679 1680 if (!list_empty(&qh->qtd_list) 1681 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 1682 qh_link_async(oxu, qh); 1683 else { 1684 qh_put(qh); /* refcount from async list */ 1685 1686 /* it's not free to turn the async schedule on/off; leave it 1687 * active but idle for a while once it empties. 1688 */ 1689 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) 1690 && oxu->async->qh_next.qh == NULL) 1691 timer_action(oxu, TIMER_ASYNC_OFF); 1692 } 1693 1694 if (next) { 1695 oxu->reclaim = NULL; 1696 start_unlink_async(oxu, next); 1697 } 1698 } 1699 1700 /* makes sure the async qh will become idle */ 1701 /* caller must own oxu->lock */ 1702 1703 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1704 { 1705 int cmd = readl(&oxu->regs->command); 1706 struct ehci_qh *prev; 1707 1708 #ifdef DEBUG 1709 assert_spin_locked(&oxu->lock); 1710 if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED 1711 && qh->qh_state != QH_STATE_UNLINK_WAIT)) 1712 BUG(); 1713 #endif 1714 1715 /* stop async schedule right now? */ 1716 if (unlikely(qh == oxu->async)) { 1717 /* can't get here without STS_ASS set */ 1718 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT 1719 && !oxu->reclaim) { 1720 /* ... and CMD_IAAD clear */ 1721 writel(cmd & ~CMD_ASE, &oxu->regs->command); 1722 wmb(); 1723 /* handshake later, if we need to */ 1724 timer_action_done(oxu, TIMER_ASYNC_OFF); 1725 } 1726 return; 1727 } 1728 1729 qh->qh_state = QH_STATE_UNLINK; 1730 oxu->reclaim = qh = qh_get(qh); 1731 1732 prev = oxu->async; 1733 while (prev->qh_next.qh != qh) 1734 prev = prev->qh_next.qh; 1735 1736 prev->hw_next = qh->hw_next; 1737 prev->qh_next = qh->qh_next; 1738 wmb(); 1739 1740 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { 1741 /* if (unlikely(qh->reclaim != 0)) 1742 * this will recurse, probably not much 1743 */ 1744 end_unlink_async(oxu); 1745 return; 1746 } 1747 1748 oxu->reclaim_ready = 0; 1749 cmd |= CMD_IAAD; 1750 writel(cmd, &oxu->regs->command); 1751 (void) readl(&oxu->regs->command); 1752 timer_action(oxu, TIMER_IAA_WATCHDOG); 1753 } 1754 1755 static void scan_async(struct oxu_hcd *oxu) 1756 { 1757 struct ehci_qh *qh; 1758 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 1759 1760 if (!++(oxu->stamp)) 1761 oxu->stamp++; 1762 timer_action_done(oxu, TIMER_ASYNC_SHRINK); 1763 rescan: 1764 qh = oxu->async->qh_next.qh; 1765 if (likely(qh != NULL)) { 1766 do { 1767 /* clean any finished work for this qh */ 1768 if (!list_empty(&qh->qtd_list) 1769 && qh->stamp != oxu->stamp) { 1770 int temp; 1771 1772 /* unlinks could happen here; completion 1773 * reporting drops the lock. rescan using 1774 * the latest schedule, but don't rescan 1775 * qhs we already finished (no looping). 1776 */ 1777 qh = qh_get(qh); 1778 qh->stamp = oxu->stamp; 1779 temp = qh_completions(oxu, qh); 1780 qh_put(qh); 1781 if (temp != 0) 1782 goto rescan; 1783 } 1784 1785 /* unlink idle entries, reducing HC PCI usage as well 1786 * as HCD schedule-scanning costs. delay for any qh 1787 * we just scanned, there's a not-unusual case that it 1788 * doesn't stay idle for long. 1789 * (plus, avoids some kind of re-activation race.) 1790 */ 1791 if (list_empty(&qh->qtd_list)) { 1792 if (qh->stamp == oxu->stamp) 1793 action = TIMER_ASYNC_SHRINK; 1794 else if (!oxu->reclaim 1795 && qh->qh_state == QH_STATE_LINKED) 1796 start_unlink_async(oxu, qh); 1797 } 1798 1799 qh = qh->qh_next.qh; 1800 } while (qh); 1801 } 1802 if (action == TIMER_ASYNC_SHRINK) 1803 timer_action(oxu, TIMER_ASYNC_SHRINK); 1804 } 1805 1806 /* 1807 * periodic_next_shadow - return "next" pointer on shadow list 1808 * @periodic: host pointer to qh/itd/sitd 1809 * @tag: hardware tag for type of this record 1810 */ 1811 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, 1812 __le32 tag) 1813 { 1814 switch (tag) { 1815 default: 1816 case Q_TYPE_QH: 1817 return &periodic->qh->qh_next; 1818 } 1819 } 1820 1821 /* caller must hold oxu->lock */ 1822 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) 1823 { 1824 union ehci_shadow *prev_p = &oxu->pshadow[frame]; 1825 __le32 *hw_p = &oxu->periodic[frame]; 1826 union ehci_shadow here = *prev_p; 1827 1828 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 1829 while (here.ptr && here.ptr != ptr) { 1830 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); 1831 hw_p = here.hw_next; 1832 here = *prev_p; 1833 } 1834 /* an interrupt entry (at list end) could have been shared */ 1835 if (!here.ptr) 1836 return; 1837 1838 /* update shadow and hardware lists ... the old "next" pointers 1839 * from ptr may still be in use, the caller updates them. 1840 */ 1841 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); 1842 *hw_p = *here.hw_next; 1843 } 1844 1845 /* how many of the uframe's 125 usecs are allocated? */ 1846 static unsigned short periodic_usecs(struct oxu_hcd *oxu, 1847 unsigned frame, unsigned uframe) 1848 { 1849 __le32 *hw_p = &oxu->periodic[frame]; 1850 union ehci_shadow *q = &oxu->pshadow[frame]; 1851 unsigned usecs = 0; 1852 1853 while (q->ptr) { 1854 switch (Q_NEXT_TYPE(*hw_p)) { 1855 case Q_TYPE_QH: 1856 default: 1857 /* is it in the S-mask? */ 1858 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) 1859 usecs += q->qh->usecs; 1860 /* ... or C-mask? */ 1861 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) 1862 usecs += q->qh->c_usecs; 1863 hw_p = &q->qh->hw_next; 1864 q = &q->qh->qh_next; 1865 break; 1866 } 1867 } 1868 #ifdef DEBUG 1869 if (usecs > 100) 1870 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", 1871 frame * 8 + uframe, usecs); 1872 #endif 1873 return usecs; 1874 } 1875 1876 static int enable_periodic(struct oxu_hcd *oxu) 1877 { 1878 u32 cmd; 1879 int status; 1880 1881 /* did clearing PSE did take effect yet? 1882 * takes effect only at frame boundaries... 1883 */ 1884 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); 1885 if (status != 0) { 1886 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1887 return status; 1888 } 1889 1890 cmd = readl(&oxu->regs->command) | CMD_PSE; 1891 writel(cmd, &oxu->regs->command); 1892 /* posted write ... PSS happens later */ 1893 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1894 1895 /* make sure ehci_work scans these */ 1896 oxu->next_uframe = readl(&oxu->regs->frame_index) 1897 % (oxu->periodic_size << 3); 1898 return 0; 1899 } 1900 1901 static int disable_periodic(struct oxu_hcd *oxu) 1902 { 1903 u32 cmd; 1904 int status; 1905 1906 /* did setting PSE not take effect yet? 1907 * takes effect only at frame boundaries... 1908 */ 1909 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); 1910 if (status != 0) { 1911 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1912 return status; 1913 } 1914 1915 cmd = readl(&oxu->regs->command) & ~CMD_PSE; 1916 writel(cmd, &oxu->regs->command); 1917 /* posted write ... */ 1918 1919 oxu->next_uframe = -1; 1920 return 0; 1921 } 1922 1923 /* periodic schedule slots have iso tds (normal or split) first, then a 1924 * sparse tree for active interrupt transfers. 1925 * 1926 * this just links in a qh; caller guarantees uframe masks are set right. 1927 * no FSTN support (yet; oxu 0.96+) 1928 */ 1929 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1930 { 1931 unsigned i; 1932 unsigned period = qh->period; 1933 1934 dev_dbg(&qh->dev->dev, 1935 "link qh%d-%04x/%p start %d [%d/%d us]\n", 1936 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 1937 qh, qh->start, qh->usecs, qh->c_usecs); 1938 1939 /* high bandwidth, or otherwise every microframe */ 1940 if (period == 0) 1941 period = 1; 1942 1943 for (i = qh->start; i < oxu->periodic_size; i += period) { 1944 union ehci_shadow *prev = &oxu->pshadow[i]; 1945 __le32 *hw_p = &oxu->periodic[i]; 1946 union ehci_shadow here = *prev; 1947 __le32 type = 0; 1948 1949 /* skip the iso nodes at list head */ 1950 while (here.ptr) { 1951 type = Q_NEXT_TYPE(*hw_p); 1952 if (type == Q_TYPE_QH) 1953 break; 1954 prev = periodic_next_shadow(prev, type); 1955 hw_p = &here.qh->hw_next; 1956 here = *prev; 1957 } 1958 1959 /* sorting each branch by period (slow-->fast) 1960 * enables sharing interior tree nodes 1961 */ 1962 while (here.ptr && qh != here.qh) { 1963 if (qh->period > here.qh->period) 1964 break; 1965 prev = &here.qh->qh_next; 1966 hw_p = &here.qh->hw_next; 1967 here = *prev; 1968 } 1969 /* link in this qh, unless some earlier pass did that */ 1970 if (qh != here.qh) { 1971 qh->qh_next = here; 1972 if (here.qh) 1973 qh->hw_next = *hw_p; 1974 wmb(); 1975 prev->qh = qh; 1976 *hw_p = QH_NEXT(qh->qh_dma); 1977 } 1978 } 1979 qh->qh_state = QH_STATE_LINKED; 1980 qh_get(qh); 1981 1982 /* update per-qh bandwidth for usbfs */ 1983 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period 1984 ? ((qh->usecs + qh->c_usecs) / qh->period) 1985 : (qh->usecs * 8); 1986 1987 /* maybe enable periodic schedule processing */ 1988 if (!oxu->periodic_sched++) 1989 return enable_periodic(oxu); 1990 1991 return 0; 1992 } 1993 1994 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1995 { 1996 unsigned i; 1997 unsigned period; 1998 1999 /* FIXME: 2000 * IF this isn't high speed 2001 * and this qh is active in the current uframe 2002 * (and overlay token SplitXstate is false?) 2003 * THEN 2004 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); 2005 */ 2006 2007 /* high bandwidth, or otherwise part of every microframe */ 2008 period = qh->period; 2009 if (period == 0) 2010 period = 1; 2011 2012 for (i = qh->start; i < oxu->periodic_size; i += period) 2013 periodic_unlink(oxu, i, qh); 2014 2015 /* update per-qh bandwidth for usbfs */ 2016 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period 2017 ? ((qh->usecs + qh->c_usecs) / qh->period) 2018 : (qh->usecs * 8); 2019 2020 dev_dbg(&qh->dev->dev, 2021 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 2022 qh->period, 2023 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2024 qh, qh->start, qh->usecs, qh->c_usecs); 2025 2026 /* qh->qh_next still "live" to HC */ 2027 qh->qh_state = QH_STATE_UNLINK; 2028 qh->qh_next.ptr = NULL; 2029 qh_put(qh); 2030 2031 /* maybe turn off periodic schedule */ 2032 oxu->periodic_sched--; 2033 if (!oxu->periodic_sched) 2034 (void) disable_periodic(oxu); 2035 } 2036 2037 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2038 { 2039 unsigned wait; 2040 2041 qh_unlink_periodic(oxu, qh); 2042 2043 /* simple/paranoid: always delay, expecting the HC needs to read 2044 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 2045 * expect khubd to clean up after any CSPLITs we won't issue. 2046 * active high speed queues may need bigger delays... 2047 */ 2048 if (list_empty(&qh->qtd_list) 2049 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) 2050 wait = 2; 2051 else 2052 wait = 55; /* worst case: 3 * 1024 */ 2053 2054 udelay(wait); 2055 qh->qh_state = QH_STATE_IDLE; 2056 qh->hw_next = EHCI_LIST_END; 2057 wmb(); 2058 } 2059 2060 static int check_period(struct oxu_hcd *oxu, 2061 unsigned frame, unsigned uframe, 2062 unsigned period, unsigned usecs) 2063 { 2064 int claimed; 2065 2066 /* complete split running into next frame? 2067 * given FSTN support, we could sometimes check... 2068 */ 2069 if (uframe >= 8) 2070 return 0; 2071 2072 /* 2073 * 80% periodic == 100 usec/uframe available 2074 * convert "usecs we need" to "max already claimed" 2075 */ 2076 usecs = 100 - usecs; 2077 2078 /* we "know" 2 and 4 uframe intervals were rejected; so 2079 * for period 0, check _every_ microframe in the schedule. 2080 */ 2081 if (unlikely(period == 0)) { 2082 do { 2083 for (uframe = 0; uframe < 7; uframe++) { 2084 claimed = periodic_usecs(oxu, frame, uframe); 2085 if (claimed > usecs) 2086 return 0; 2087 } 2088 } while ((frame += 1) < oxu->periodic_size); 2089 2090 /* just check the specified uframe, at that period */ 2091 } else { 2092 do { 2093 claimed = periodic_usecs(oxu, frame, uframe); 2094 if (claimed > usecs) 2095 return 0; 2096 } while ((frame += period) < oxu->periodic_size); 2097 } 2098 2099 return 1; 2100 } 2101 2102 static int check_intr_schedule(struct oxu_hcd *oxu, 2103 unsigned frame, unsigned uframe, 2104 const struct ehci_qh *qh, __le32 *c_maskp) 2105 { 2106 int retval = -ENOSPC; 2107 2108 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 2109 goto done; 2110 2111 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) 2112 goto done; 2113 if (!qh->c_usecs) { 2114 retval = 0; 2115 *c_maskp = 0; 2116 goto done; 2117 } 2118 2119 done: 2120 return retval; 2121 } 2122 2123 /* "first fit" scheduling policy used the first time through, 2124 * or when the previous schedule slot can't be re-used. 2125 */ 2126 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2127 { 2128 int status; 2129 unsigned uframe; 2130 __le32 c_mask; 2131 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 2132 2133 qh_refresh(oxu, qh); 2134 qh->hw_next = EHCI_LIST_END; 2135 frame = qh->start; 2136 2137 /* reuse the previous schedule slots, if we can */ 2138 if (frame < qh->period) { 2139 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); 2140 status = check_intr_schedule(oxu, frame, --uframe, 2141 qh, &c_mask); 2142 } else { 2143 uframe = 0; 2144 c_mask = 0; 2145 status = -ENOSPC; 2146 } 2147 2148 /* else scan the schedule to find a group of slots such that all 2149 * uframes have enough periodic bandwidth available. 2150 */ 2151 if (status) { 2152 /* "normal" case, uframing flexible except with splits */ 2153 if (qh->period) { 2154 frame = qh->period - 1; 2155 do { 2156 for (uframe = 0; uframe < 8; uframe++) { 2157 status = check_intr_schedule(oxu, 2158 frame, uframe, qh, 2159 &c_mask); 2160 if (status == 0) 2161 break; 2162 } 2163 } while (status && frame--); 2164 2165 /* qh->period == 0 means every uframe */ 2166 } else { 2167 frame = 0; 2168 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); 2169 } 2170 if (status) 2171 goto done; 2172 qh->start = frame; 2173 2174 /* reset S-frame and (maybe) C-frame masks */ 2175 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); 2176 qh->hw_info2 |= qh->period 2177 ? cpu_to_le32(1 << uframe) 2178 : cpu_to_le32(QH_SMASK); 2179 qh->hw_info2 |= c_mask; 2180 } else 2181 oxu_dbg(oxu, "reused qh %p schedule\n", qh); 2182 2183 /* stuff into the periodic schedule */ 2184 status = qh_link_periodic(oxu, qh); 2185 done: 2186 return status; 2187 } 2188 2189 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, 2190 struct list_head *qtd_list, gfp_t mem_flags) 2191 { 2192 unsigned epnum; 2193 unsigned long flags; 2194 struct ehci_qh *qh; 2195 int status = 0; 2196 struct list_head empty; 2197 2198 /* get endpoint and transfer/schedule data */ 2199 epnum = urb->ep->desc.bEndpointAddress; 2200 2201 spin_lock_irqsave(&oxu->lock, flags); 2202 2203 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2204 status = -ESHUTDOWN; 2205 goto done; 2206 } 2207 2208 /* get qh and force any scheduling errors */ 2209 INIT_LIST_HEAD(&empty); 2210 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); 2211 if (qh == NULL) { 2212 status = -ENOMEM; 2213 goto done; 2214 } 2215 if (qh->qh_state == QH_STATE_IDLE) { 2216 status = qh_schedule(oxu, qh); 2217 if (status != 0) 2218 goto done; 2219 } 2220 2221 /* then queue the urb's tds to the qh */ 2222 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2223 BUG_ON(qh == NULL); 2224 2225 /* ... update usbfs periodic stats */ 2226 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; 2227 2228 done: 2229 spin_unlock_irqrestore(&oxu->lock, flags); 2230 if (status) 2231 qtd_list_free(oxu, urb, qtd_list); 2232 2233 return status; 2234 } 2235 2236 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, 2237 gfp_t mem_flags) 2238 { 2239 oxu_dbg(oxu, "iso support is missing!\n"); 2240 return -ENOSYS; 2241 } 2242 2243 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, 2244 gfp_t mem_flags) 2245 { 2246 oxu_dbg(oxu, "split iso support is missing!\n"); 2247 return -ENOSYS; 2248 } 2249 2250 static void scan_periodic(struct oxu_hcd *oxu) 2251 { 2252 unsigned frame, clock, now_uframe, mod; 2253 unsigned modified; 2254 2255 mod = oxu->periodic_size << 3; 2256 2257 /* 2258 * When running, scan from last scan point up to "now" 2259 * else clean up by scanning everything that's left. 2260 * Touches as few pages as possible: cache-friendly. 2261 */ 2262 now_uframe = oxu->next_uframe; 2263 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2264 clock = readl(&oxu->regs->frame_index); 2265 else 2266 clock = now_uframe + mod - 1; 2267 clock %= mod; 2268 2269 for (;;) { 2270 union ehci_shadow q, *q_p; 2271 __le32 type, *hw_p; 2272 unsigned uframes; 2273 2274 /* don't scan past the live uframe */ 2275 frame = now_uframe >> 3; 2276 if (frame == (clock >> 3)) 2277 uframes = now_uframe & 0x07; 2278 else { 2279 /* safe to scan the whole frame at once */ 2280 now_uframe |= 0x07; 2281 uframes = 8; 2282 } 2283 2284 restart: 2285 /* scan each element in frame's queue for completions */ 2286 q_p = &oxu->pshadow[frame]; 2287 hw_p = &oxu->periodic[frame]; 2288 q.ptr = q_p->ptr; 2289 type = Q_NEXT_TYPE(*hw_p); 2290 modified = 0; 2291 2292 while (q.ptr != NULL) { 2293 union ehci_shadow temp; 2294 int live; 2295 2296 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state); 2297 switch (type) { 2298 case Q_TYPE_QH: 2299 /* handle any completions */ 2300 temp.qh = qh_get(q.qh); 2301 type = Q_NEXT_TYPE(q.qh->hw_next); 2302 q = q.qh->qh_next; 2303 modified = qh_completions(oxu, temp.qh); 2304 if (unlikely(list_empty(&temp.qh->qtd_list))) 2305 intr_deschedule(oxu, temp.qh); 2306 qh_put(temp.qh); 2307 break; 2308 default: 2309 dbg("corrupt type %d frame %d shadow %p", 2310 type, frame, q.ptr); 2311 q.ptr = NULL; 2312 } 2313 2314 /* assume completion callbacks modify the queue */ 2315 if (unlikely(modified)) 2316 goto restart; 2317 } 2318 2319 /* Stop when we catch up to the HC */ 2320 2321 /* FIXME: this assumes we won't get lapped when 2322 * latencies climb; that should be rare, but... 2323 * detect it, and just go all the way around. 2324 * FLR might help detect this case, so long as latencies 2325 * don't exceed periodic_size msec (default 1.024 sec). 2326 */ 2327 2328 /* FIXME: likewise assumes HC doesn't halt mid-scan */ 2329 2330 if (now_uframe == clock) { 2331 unsigned now; 2332 2333 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2334 break; 2335 oxu->next_uframe = now_uframe; 2336 now = readl(&oxu->regs->frame_index) % mod; 2337 if (now_uframe == now) 2338 break; 2339 2340 /* rescan the rest of this frame, then ... */ 2341 clock = now; 2342 } else { 2343 now_uframe++; 2344 now_uframe %= mod; 2345 } 2346 } 2347 } 2348 2349 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 2350 * The firmware seems to think that powering off is a wakeup event! 2351 * This routine turns off remote wakeup and everything else, on all ports. 2352 */ 2353 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) 2354 { 2355 int port = HCS_N_PORTS(oxu->hcs_params); 2356 2357 while (port--) 2358 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); 2359 } 2360 2361 static void ehci_port_power(struct oxu_hcd *oxu, int is_on) 2362 { 2363 unsigned port; 2364 2365 if (!HCS_PPC(oxu->hcs_params)) 2366 return; 2367 2368 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); 2369 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) 2370 (void) oxu_hub_control(oxu_to_hcd(oxu), 2371 is_on ? SetPortFeature : ClearPortFeature, 2372 USB_PORT_FEAT_POWER, 2373 port--, NULL, 0); 2374 msleep(20); 2375 } 2376 2377 /* Called from some interrupts, timers, and so on. 2378 * It calls driver completion functions, after dropping oxu->lock. 2379 */ 2380 static void ehci_work(struct oxu_hcd *oxu) 2381 { 2382 timer_action_done(oxu, TIMER_IO_WATCHDOG); 2383 if (oxu->reclaim_ready) 2384 end_unlink_async(oxu); 2385 2386 /* another CPU may drop oxu->lock during a schedule scan while 2387 * it reports urb completions. this flag guards against bogus 2388 * attempts at re-entrant schedule scanning. 2389 */ 2390 if (oxu->scanning) 2391 return; 2392 oxu->scanning = 1; 2393 scan_async(oxu); 2394 if (oxu->next_uframe != -1) 2395 scan_periodic(oxu); 2396 oxu->scanning = 0; 2397 2398 /* the IO watchdog guards against hardware or driver bugs that 2399 * misplace IRQs, and should let us run completely without IRQs. 2400 * such lossage has been observed on both VT6202 and VT8235. 2401 */ 2402 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && 2403 (oxu->async->qh_next.ptr != NULL || 2404 oxu->periodic_sched != 0)) 2405 timer_action(oxu, TIMER_IO_WATCHDOG); 2406 } 2407 2408 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2409 { 2410 /* if we need to use IAA and it's busy, defer */ 2411 if (qh->qh_state == QH_STATE_LINKED 2412 && oxu->reclaim 2413 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { 2414 struct ehci_qh *last; 2415 2416 for (last = oxu->reclaim; 2417 last->reclaim; 2418 last = last->reclaim) 2419 continue; 2420 qh->qh_state = QH_STATE_UNLINK_WAIT; 2421 last->reclaim = qh; 2422 2423 /* bypass IAA if the hc can't care */ 2424 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) 2425 end_unlink_async(oxu); 2426 2427 /* something else might have unlinked the qh by now */ 2428 if (qh->qh_state == QH_STATE_LINKED) 2429 start_unlink_async(oxu, qh); 2430 } 2431 2432 /* 2433 * USB host controller methods 2434 */ 2435 2436 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) 2437 { 2438 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2439 u32 status, pcd_status = 0; 2440 int bh; 2441 2442 spin_lock(&oxu->lock); 2443 2444 status = readl(&oxu->regs->status); 2445 2446 /* e.g. cardbus physical eject */ 2447 if (status == ~(u32) 0) { 2448 oxu_dbg(oxu, "device removed\n"); 2449 goto dead; 2450 } 2451 2452 status &= INTR_MASK; 2453 if (!status) { /* irq sharing? */ 2454 spin_unlock(&oxu->lock); 2455 return IRQ_NONE; 2456 } 2457 2458 /* clear (just) interrupts */ 2459 writel(status, &oxu->regs->status); 2460 readl(&oxu->regs->command); /* unblock posted write */ 2461 bh = 0; 2462 2463 #ifdef OXU_VERBOSE_DEBUG 2464 /* unrequested/ignored: Frame List Rollover */ 2465 dbg_status(oxu, "irq", status); 2466 #endif 2467 2468 /* INT, ERR, and IAA interrupt rates can be throttled */ 2469 2470 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 2471 if (likely((status & (STS_INT|STS_ERR)) != 0)) 2472 bh = 1; 2473 2474 /* complete the unlinking of some qh [4.15.2.3] */ 2475 if (status & STS_IAA) { 2476 oxu->reclaim_ready = 1; 2477 bh = 1; 2478 } 2479 2480 /* remote wakeup [4.3.1] */ 2481 if (status & STS_PCD) { 2482 unsigned i = HCS_N_PORTS(oxu->hcs_params); 2483 pcd_status = status; 2484 2485 /* resume root hub? */ 2486 if (!(readl(&oxu->regs->command) & CMD_RUN)) 2487 usb_hcd_resume_root_hub(hcd); 2488 2489 while (i--) { 2490 int pstatus = readl(&oxu->regs->port_status[i]); 2491 2492 if (pstatus & PORT_OWNER) 2493 continue; 2494 if (!(pstatus & PORT_RESUME) 2495 || oxu->reset_done[i] != 0) 2496 continue; 2497 2498 /* start 20 msec resume signaling from this port, 2499 * and make khubd collect PORT_STAT_C_SUSPEND to 2500 * stop that signaling. 2501 */ 2502 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 2503 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); 2504 mod_timer(&hcd->rh_timer, oxu->reset_done[i]); 2505 } 2506 } 2507 2508 /* PCI errors [4.15.2.4] */ 2509 if (unlikely((status & STS_FATAL) != 0)) { 2510 /* bogus "fatal" IRQs appear on some chips... why? */ 2511 status = readl(&oxu->regs->status); 2512 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); 2513 dbg_status(oxu, "fatal", status); 2514 if (status & STS_HALT) { 2515 oxu_err(oxu, "fatal error\n"); 2516 dead: 2517 ehci_reset(oxu); 2518 writel(0, &oxu->regs->configured_flag); 2519 /* generic layer kills/unlinks all urbs, then 2520 * uses oxu_stop to clean up the rest 2521 */ 2522 bh = 1; 2523 } 2524 } 2525 2526 if (bh) 2527 ehci_work(oxu); 2528 spin_unlock(&oxu->lock); 2529 if (pcd_status & STS_PCD) 2530 usb_hcd_poll_rh_status(hcd); 2531 return IRQ_HANDLED; 2532 } 2533 2534 static irqreturn_t oxu_irq(struct usb_hcd *hcd) 2535 { 2536 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2537 int ret = IRQ_HANDLED; 2538 2539 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); 2540 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); 2541 2542 /* Disable all interrupt */ 2543 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); 2544 2545 if ((oxu->is_otg && (status & OXU_USBOTGI)) || 2546 (!oxu->is_otg && (status & OXU_USBSPHI))) 2547 oxu210_hcd_irq(hcd); 2548 else 2549 ret = IRQ_NONE; 2550 2551 /* Enable all interrupt back */ 2552 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); 2553 2554 return ret; 2555 } 2556 2557 static void oxu_watchdog(unsigned long param) 2558 { 2559 struct oxu_hcd *oxu = (struct oxu_hcd *) param; 2560 unsigned long flags; 2561 2562 spin_lock_irqsave(&oxu->lock, flags); 2563 2564 /* lost IAA irqs wedge things badly; seen with a vt8235 */ 2565 if (oxu->reclaim) { 2566 u32 status = readl(&oxu->regs->status); 2567 if (status & STS_IAA) { 2568 oxu_vdbg(oxu, "lost IAA\n"); 2569 writel(STS_IAA, &oxu->regs->status); 2570 oxu->reclaim_ready = 1; 2571 } 2572 } 2573 2574 /* stop async processing after it's idled a bit */ 2575 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) 2576 start_unlink_async(oxu, oxu->async); 2577 2578 /* oxu could run by timer, without IRQs ... */ 2579 ehci_work(oxu); 2580 2581 spin_unlock_irqrestore(&oxu->lock, flags); 2582 } 2583 2584 /* One-time init, only for memory state. 2585 */ 2586 static int oxu_hcd_init(struct usb_hcd *hcd) 2587 { 2588 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2589 u32 temp; 2590 int retval; 2591 u32 hcc_params; 2592 2593 spin_lock_init(&oxu->lock); 2594 2595 init_timer(&oxu->watchdog); 2596 oxu->watchdog.function = oxu_watchdog; 2597 oxu->watchdog.data = (unsigned long) oxu; 2598 2599 /* 2600 * hw default: 1K periodic list heads, one per frame. 2601 * periodic_size can shrink by USBCMD update if hcc_params allows. 2602 */ 2603 oxu->periodic_size = DEFAULT_I_TDPS; 2604 retval = ehci_mem_init(oxu, GFP_KERNEL); 2605 if (retval < 0) 2606 return retval; 2607 2608 /* controllers may cache some of the periodic schedule ... */ 2609 hcc_params = readl(&oxu->caps->hcc_params); 2610 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ 2611 oxu->i_thresh = 8; 2612 else /* N microframes cached */ 2613 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); 2614 2615 oxu->reclaim = NULL; 2616 oxu->reclaim_ready = 0; 2617 oxu->next_uframe = -1; 2618 2619 /* 2620 * dedicate a qh for the async ring head, since we couldn't unlink 2621 * a 'real' qh without stopping the async schedule [4.8]. use it 2622 * as the 'reclamation list head' too. 2623 * its dummy is used in hw_alt_next of many tds, to prevent the qh 2624 * from automatically advancing to the next td after short reads. 2625 */ 2626 oxu->async->qh_next.qh = NULL; 2627 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); 2628 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); 2629 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); 2630 oxu->async->hw_qtd_next = EHCI_LIST_END; 2631 oxu->async->qh_state = QH_STATE_LINKED; 2632 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); 2633 2634 /* clear interrupt enables, set irq latency */ 2635 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 2636 log2_irq_thresh = 0; 2637 temp = 1 << (16 + log2_irq_thresh); 2638 if (HCC_CANPARK(hcc_params)) { 2639 /* HW default park == 3, on hardware that supports it (like 2640 * NVidia and ALI silicon), maximizes throughput on the async 2641 * schedule by avoiding QH fetches between transfers. 2642 * 2643 * With fast usb storage devices and NForce2, "park" seems to 2644 * make problems: throughput reduction (!), data errors... 2645 */ 2646 if (park) { 2647 park = min(park, (unsigned) 3); 2648 temp |= CMD_PARK; 2649 temp |= park << 8; 2650 } 2651 oxu_dbg(oxu, "park %d\n", park); 2652 } 2653 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 2654 /* periodic schedule size can be smaller than default */ 2655 temp &= ~(3 << 2); 2656 temp |= (EHCI_TUNE_FLS << 2); 2657 } 2658 oxu->command = temp; 2659 2660 return 0; 2661 } 2662 2663 /* Called during probe() after chip reset completes. 2664 */ 2665 static int oxu_reset(struct usb_hcd *hcd) 2666 { 2667 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2668 int ret; 2669 2670 spin_lock_init(&oxu->mem_lock); 2671 INIT_LIST_HEAD(&oxu->urb_list); 2672 oxu->urb_len = 0; 2673 2674 /* FIMXE */ 2675 hcd->self.controller->dma_mask = NULL; 2676 2677 if (oxu->is_otg) { 2678 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; 2679 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ 2680 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2681 2682 oxu->mem = hcd->regs + OXU_SPH_MEM; 2683 } else { 2684 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; 2685 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ 2686 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2687 2688 oxu->mem = hcd->regs + OXU_OTG_MEM; 2689 } 2690 2691 oxu->hcs_params = readl(&oxu->caps->hcs_params); 2692 oxu->sbrn = 0x20; 2693 2694 ret = oxu_hcd_init(hcd); 2695 if (ret) 2696 return ret; 2697 2698 return 0; 2699 } 2700 2701 static int oxu_run(struct usb_hcd *hcd) 2702 { 2703 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2704 int retval; 2705 u32 temp, hcc_params; 2706 2707 hcd->uses_new_polling = 1; 2708 2709 /* EHCI spec section 4.1 */ 2710 retval = ehci_reset(oxu); 2711 if (retval != 0) { 2712 ehci_mem_cleanup(oxu); 2713 return retval; 2714 } 2715 writel(oxu->periodic_dma, &oxu->regs->frame_list); 2716 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 2717 2718 /* hcc_params controls whether oxu->regs->segment must (!!!) 2719 * be used; it constrains QH/ITD/SITD and QTD locations. 2720 * pci_pool consistent memory always uses segment zero. 2721 * streaming mappings for I/O buffers, like pci_map_single(), 2722 * can return segments above 4GB, if the device allows. 2723 * 2724 * NOTE: the dma mask is visible through dma_supported(), so 2725 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 2726 * Scsi_Host.highmem_io, and so forth. It's readonly to all 2727 * host side drivers though. 2728 */ 2729 hcc_params = readl(&oxu->caps->hcc_params); 2730 if (HCC_64BIT_ADDR(hcc_params)) 2731 writel(0, &oxu->regs->segment); 2732 2733 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | 2734 CMD_ASE | CMD_RESET); 2735 oxu->command |= CMD_RUN; 2736 writel(oxu->command, &oxu->regs->command); 2737 dbg_cmd(oxu, "init", oxu->command); 2738 2739 /* 2740 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 2741 * are explicitly handed to companion controller(s), so no TT is 2742 * involved with the root hub. (Except where one is integrated, 2743 * and there's no companion controller unless maybe for USB OTG.) 2744 */ 2745 hcd->state = HC_STATE_RUNNING; 2746 writel(FLAG_CF, &oxu->regs->configured_flag); 2747 readl(&oxu->regs->command); /* unblock posted writes */ 2748 2749 temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); 2750 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", 2751 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), 2752 temp >> 8, temp & 0xff, DRIVER_VERSION, 2753 ignore_oc ? ", overcurrent ignored" : ""); 2754 2755 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ 2756 2757 return 0; 2758 } 2759 2760 static void oxu_stop(struct usb_hcd *hcd) 2761 { 2762 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2763 2764 /* Turn off port power on all root hub ports. */ 2765 ehci_port_power(oxu, 0); 2766 2767 /* no more interrupts ... */ 2768 del_timer_sync(&oxu->watchdog); 2769 2770 spin_lock_irq(&oxu->lock); 2771 if (HC_IS_RUNNING(hcd->state)) 2772 ehci_quiesce(oxu); 2773 2774 ehci_reset(oxu); 2775 writel(0, &oxu->regs->intr_enable); 2776 spin_unlock_irq(&oxu->lock); 2777 2778 /* let companion controllers work when we aren't */ 2779 writel(0, &oxu->regs->configured_flag); 2780 2781 /* root hub is shut down separately (first, when possible) */ 2782 spin_lock_irq(&oxu->lock); 2783 if (oxu->async) 2784 ehci_work(oxu); 2785 spin_unlock_irq(&oxu->lock); 2786 ehci_mem_cleanup(oxu); 2787 2788 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); 2789 } 2790 2791 /* Kick in for silicon on any bus (not just pci, etc). 2792 * This forcibly disables dma and IRQs, helping kexec and other cases 2793 * where the next system software may expect clean state. 2794 */ 2795 static void oxu_shutdown(struct usb_hcd *hcd) 2796 { 2797 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2798 2799 (void) ehci_halt(oxu); 2800 ehci_turn_off_all_ports(oxu); 2801 2802 /* make BIOS/etc use companion controller during reboot */ 2803 writel(0, &oxu->regs->configured_flag); 2804 2805 /* unblock posted writes */ 2806 readl(&oxu->regs->configured_flag); 2807 } 2808 2809 /* Non-error returns are a promise to giveback() the urb later 2810 * we drop ownership so next owner (or urb unlink) can get it 2811 * 2812 * urb + dev is in hcd.self.controller.urb_list 2813 * we're queueing TDs onto software and hardware lists 2814 * 2815 * hcd-specific init for hcpriv hasn't been done yet 2816 * 2817 * NOTE: control, bulk, and interrupt share the same code to append TDs 2818 * to a (possibly active) QH, and the same QH scanning code. 2819 */ 2820 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2821 gfp_t mem_flags) 2822 { 2823 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2824 struct list_head qtd_list; 2825 2826 INIT_LIST_HEAD(&qtd_list); 2827 2828 switch (usb_pipetype(urb->pipe)) { 2829 case PIPE_CONTROL: 2830 case PIPE_BULK: 2831 default: 2832 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2833 return -ENOMEM; 2834 return submit_async(oxu, urb, &qtd_list, mem_flags); 2835 2836 case PIPE_INTERRUPT: 2837 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2838 return -ENOMEM; 2839 return intr_submit(oxu, urb, &qtd_list, mem_flags); 2840 2841 case PIPE_ISOCHRONOUS: 2842 if (urb->dev->speed == USB_SPEED_HIGH) 2843 return itd_submit(oxu, urb, mem_flags); 2844 else 2845 return sitd_submit(oxu, urb, mem_flags); 2846 } 2847 } 2848 2849 /* This function is responsible for breaking URBs with big data size 2850 * into smaller size and processing small urbs in sequence. 2851 */ 2852 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2853 gfp_t mem_flags) 2854 { 2855 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2856 int num, rem; 2857 int transfer_buffer_length; 2858 void *transfer_buffer; 2859 struct urb *murb; 2860 int i, ret; 2861 2862 /* If not bulk pipe just enqueue the URB */ 2863 if (!usb_pipebulk(urb->pipe)) 2864 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2865 2866 /* Otherwise we should verify the USB transfer buffer size! */ 2867 transfer_buffer = urb->transfer_buffer; 2868 transfer_buffer_length = urb->transfer_buffer_length; 2869 2870 num = urb->transfer_buffer_length / 4096; 2871 rem = urb->transfer_buffer_length % 4096; 2872 if (rem != 0) 2873 num++; 2874 2875 /* If URB is smaller than 4096 bytes just enqueue it! */ 2876 if (num == 1) 2877 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2878 2879 /* Ok, we have more job to do! :) */ 2880 2881 for (i = 0; i < num - 1; i++) { 2882 /* Get free micro URB poll till a free urb is recieved */ 2883 2884 do { 2885 murb = (struct urb *) oxu_murb_alloc(oxu); 2886 if (!murb) 2887 schedule(); 2888 } while (!murb); 2889 2890 /* Coping the urb */ 2891 memcpy(murb, urb, sizeof(struct urb)); 2892 2893 murb->transfer_buffer_length = 4096; 2894 murb->transfer_buffer = transfer_buffer + i * 4096; 2895 2896 /* Null pointer for the encodes that this is a micro urb */ 2897 murb->complete = NULL; 2898 2899 ((struct oxu_murb *) murb)->main = urb; 2900 ((struct oxu_murb *) murb)->last = 0; 2901 2902 /* This loop is to guarantee urb to be processed when there's 2903 * not enough resources at a particular time by retrying. 2904 */ 2905 do { 2906 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2907 if (ret) 2908 schedule(); 2909 } while (ret); 2910 } 2911 2912 /* Last urb requires special handling */ 2913 2914 /* Get free micro URB poll till a free urb is recieved */ 2915 do { 2916 murb = (struct urb *) oxu_murb_alloc(oxu); 2917 if (!murb) 2918 schedule(); 2919 } while (!murb); 2920 2921 /* Coping the urb */ 2922 memcpy(murb, urb, sizeof(struct urb)); 2923 2924 murb->transfer_buffer_length = rem > 0 ? rem : 4096; 2925 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; 2926 2927 /* Null pointer for the encodes that this is a micro urb */ 2928 murb->complete = NULL; 2929 2930 ((struct oxu_murb *) murb)->main = urb; 2931 ((struct oxu_murb *) murb)->last = 1; 2932 2933 do { 2934 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2935 if (ret) 2936 schedule(); 2937 } while (ret); 2938 2939 return ret; 2940 } 2941 2942 /* Remove from hardware lists. 2943 * Completions normally happen asynchronously 2944 */ 2945 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 2946 { 2947 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2948 struct ehci_qh *qh; 2949 unsigned long flags; 2950 2951 spin_lock_irqsave(&oxu->lock, flags); 2952 switch (usb_pipetype(urb->pipe)) { 2953 case PIPE_CONTROL: 2954 case PIPE_BULK: 2955 default: 2956 qh = (struct ehci_qh *) urb->hcpriv; 2957 if (!qh) 2958 break; 2959 unlink_async(oxu, qh); 2960 break; 2961 2962 case PIPE_INTERRUPT: 2963 qh = (struct ehci_qh *) urb->hcpriv; 2964 if (!qh) 2965 break; 2966 switch (qh->qh_state) { 2967 case QH_STATE_LINKED: 2968 intr_deschedule(oxu, qh); 2969 /* FALL THROUGH */ 2970 case QH_STATE_IDLE: 2971 qh_completions(oxu, qh); 2972 break; 2973 default: 2974 oxu_dbg(oxu, "bogus qh %p state %d\n", 2975 qh, qh->qh_state); 2976 goto done; 2977 } 2978 2979 /* reschedule QH iff another request is queued */ 2980 if (!list_empty(&qh->qtd_list) 2981 && HC_IS_RUNNING(hcd->state)) { 2982 int status; 2983 2984 status = qh_schedule(oxu, qh); 2985 spin_unlock_irqrestore(&oxu->lock, flags); 2986 2987 if (status != 0) { 2988 /* shouldn't happen often, but ... 2989 * FIXME kill those tds' urbs 2990 */ 2991 err("can't reschedule qh %p, err %d", 2992 qh, status); 2993 } 2994 return status; 2995 } 2996 break; 2997 } 2998 done: 2999 spin_unlock_irqrestore(&oxu->lock, flags); 3000 return 0; 3001 } 3002 3003 /* Bulk qh holds the data toggle */ 3004 static void oxu_endpoint_disable(struct usb_hcd *hcd, 3005 struct usb_host_endpoint *ep) 3006 { 3007 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3008 unsigned long flags; 3009 struct ehci_qh *qh, *tmp; 3010 3011 /* ASSERT: any requests/urbs are being unlinked */ 3012 /* ASSERT: nobody can be submitting urbs for this any more */ 3013 3014 rescan: 3015 spin_lock_irqsave(&oxu->lock, flags); 3016 qh = ep->hcpriv; 3017 if (!qh) 3018 goto done; 3019 3020 /* endpoints can be iso streams. for now, we don't 3021 * accelerate iso completions ... so spin a while. 3022 */ 3023 if (qh->hw_info1 == 0) { 3024 oxu_vdbg(oxu, "iso delay\n"); 3025 goto idle_timeout; 3026 } 3027 3028 if (!HC_IS_RUNNING(hcd->state)) 3029 qh->qh_state = QH_STATE_IDLE; 3030 switch (qh->qh_state) { 3031 case QH_STATE_LINKED: 3032 for (tmp = oxu->async->qh_next.qh; 3033 tmp && tmp != qh; 3034 tmp = tmp->qh_next.qh) 3035 continue; 3036 /* periodic qh self-unlinks on empty */ 3037 if (!tmp) 3038 goto nogood; 3039 unlink_async(oxu, qh); 3040 /* FALL THROUGH */ 3041 case QH_STATE_UNLINK: /* wait for hw to finish? */ 3042 idle_timeout: 3043 spin_unlock_irqrestore(&oxu->lock, flags); 3044 schedule_timeout_uninterruptible(1); 3045 goto rescan; 3046 case QH_STATE_IDLE: /* fully unlinked */ 3047 if (list_empty(&qh->qtd_list)) { 3048 qh_put(qh); 3049 break; 3050 } 3051 /* else FALL THROUGH */ 3052 default: 3053 nogood: 3054 /* caller was supposed to have unlinked any requests; 3055 * that's not our job. just leak this memory. 3056 */ 3057 oxu_err(oxu, "qh %p (#%02x) state %d%s\n", 3058 qh, ep->desc.bEndpointAddress, qh->qh_state, 3059 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 3060 break; 3061 } 3062 ep->hcpriv = NULL; 3063 done: 3064 spin_unlock_irqrestore(&oxu->lock, flags); 3065 } 3066 3067 static int oxu_get_frame(struct usb_hcd *hcd) 3068 { 3069 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3070 3071 return (readl(&oxu->regs->frame_index) >> 3) % 3072 oxu->periodic_size; 3073 } 3074 3075 /* Build "status change" packet (one or two bytes) from HC registers */ 3076 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) 3077 { 3078 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3079 u32 temp, mask, status = 0; 3080 int ports, i, retval = 1; 3081 unsigned long flags; 3082 3083 /* if !USB_SUSPEND, root hub timers won't get shut down ... */ 3084 if (!HC_IS_RUNNING(hcd->state)) 3085 return 0; 3086 3087 /* init status to no-changes */ 3088 buf[0] = 0; 3089 ports = HCS_N_PORTS(oxu->hcs_params); 3090 if (ports > 7) { 3091 buf[1] = 0; 3092 retval++; 3093 } 3094 3095 /* Some boards (mostly VIA?) report bogus overcurrent indications, 3096 * causing massive log spam unless we completely ignore them. It 3097 * may be relevant that VIA VT8235 controllers, where PORT_POWER is 3098 * always set, seem to clear PORT_OCC and PORT_CSC when writing to 3099 * PORT_POWER; that's surprising, but maybe within-spec. 3100 */ 3101 if (!ignore_oc) 3102 mask = PORT_CSC | PORT_PEC | PORT_OCC; 3103 else 3104 mask = PORT_CSC | PORT_PEC; 3105 3106 /* no hub change reports (bit 0) for now (power, ...) */ 3107 3108 /* port N changes (bit N)? */ 3109 spin_lock_irqsave(&oxu->lock, flags); 3110 for (i = 0; i < ports; i++) { 3111 temp = readl(&oxu->regs->port_status[i]); 3112 3113 /* 3114 * Return status information even for ports with OWNER set. 3115 * Otherwise khubd wouldn't see the disconnect event when a 3116 * high-speed device is switched over to the companion 3117 * controller by the user. 3118 */ 3119 3120 if (!(temp & PORT_CONNECT)) 3121 oxu->reset_done[i] = 0; 3122 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && 3123 time_after_eq(jiffies, oxu->reset_done[i]))) { 3124 if (i < 7) 3125 buf[0] |= 1 << (i + 1); 3126 else 3127 buf[1] |= 1 << (i - 7); 3128 status = STS_PCD; 3129 } 3130 } 3131 /* FIXME autosuspend idle root hubs */ 3132 spin_unlock_irqrestore(&oxu->lock, flags); 3133 return status ? retval : 0; 3134 } 3135 3136 /* Returns the speed of a device attached to a port on the root hub. */ 3137 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, 3138 unsigned int portsc) 3139 { 3140 switch ((portsc >> 26) & 3) { 3141 case 0: 3142 return 0; 3143 case 1: 3144 return USB_PORT_STAT_LOW_SPEED; 3145 case 2: 3146 default: 3147 return USB_PORT_STAT_HIGH_SPEED; 3148 } 3149 } 3150 3151 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) 3152 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, 3153 u16 wValue, u16 wIndex, char *buf, u16 wLength) 3154 { 3155 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3156 int ports = HCS_N_PORTS(oxu->hcs_params); 3157 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; 3158 u32 temp, status; 3159 unsigned long flags; 3160 int retval = 0; 3161 unsigned selector; 3162 3163 /* 3164 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 3165 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 3166 * (track current state ourselves) ... blink for diagnostics, 3167 * power, "this is the one", etc. EHCI spec supports this. 3168 */ 3169 3170 spin_lock_irqsave(&oxu->lock, flags); 3171 switch (typeReq) { 3172 case ClearHubFeature: 3173 switch (wValue) { 3174 case C_HUB_LOCAL_POWER: 3175 case C_HUB_OVER_CURRENT: 3176 /* no hub-wide feature/status flags */ 3177 break; 3178 default: 3179 goto error; 3180 } 3181 break; 3182 case ClearPortFeature: 3183 if (!wIndex || wIndex > ports) 3184 goto error; 3185 wIndex--; 3186 temp = readl(status_reg); 3187 3188 /* 3189 * Even if OWNER is set, so the port is owned by the 3190 * companion controller, khubd needs to be able to clear 3191 * the port-change status bits (especially 3192 * USB_PORT_STAT_C_CONNECTION). 3193 */ 3194 3195 switch (wValue) { 3196 case USB_PORT_FEAT_ENABLE: 3197 writel(temp & ~PORT_PE, status_reg); 3198 break; 3199 case USB_PORT_FEAT_C_ENABLE: 3200 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); 3201 break; 3202 case USB_PORT_FEAT_SUSPEND: 3203 if (temp & PORT_RESET) 3204 goto error; 3205 if (temp & PORT_SUSPEND) { 3206 if ((temp & PORT_PE) == 0) 3207 goto error; 3208 /* resume signaling for 20 msec */ 3209 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); 3210 writel(temp | PORT_RESUME, status_reg); 3211 oxu->reset_done[wIndex] = jiffies 3212 + msecs_to_jiffies(20); 3213 } 3214 break; 3215 case USB_PORT_FEAT_C_SUSPEND: 3216 /* we auto-clear this feature */ 3217 break; 3218 case USB_PORT_FEAT_POWER: 3219 if (HCS_PPC(oxu->hcs_params)) 3220 writel(temp & ~(PORT_RWC_BITS | PORT_POWER), 3221 status_reg); 3222 break; 3223 case USB_PORT_FEAT_C_CONNECTION: 3224 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); 3225 break; 3226 case USB_PORT_FEAT_C_OVER_CURRENT: 3227 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); 3228 break; 3229 case USB_PORT_FEAT_C_RESET: 3230 /* GetPortStatus clears reset */ 3231 break; 3232 default: 3233 goto error; 3234 } 3235 readl(&oxu->regs->command); /* unblock posted write */ 3236 break; 3237 case GetHubDescriptor: 3238 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) 3239 buf); 3240 break; 3241 case GetHubStatus: 3242 /* no hub-wide feature/status flags */ 3243 memset(buf, 0, 4); 3244 break; 3245 case GetPortStatus: 3246 if (!wIndex || wIndex > ports) 3247 goto error; 3248 wIndex--; 3249 status = 0; 3250 temp = readl(status_reg); 3251 3252 /* wPortChange bits */ 3253 if (temp & PORT_CSC) 3254 status |= USB_PORT_STAT_C_CONNECTION << 16; 3255 if (temp & PORT_PEC) 3256 status |= USB_PORT_STAT_C_ENABLE << 16; 3257 if ((temp & PORT_OCC) && !ignore_oc) 3258 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3259 3260 /* whoever resumes must GetPortStatus to complete it!! */ 3261 if (temp & PORT_RESUME) { 3262 3263 /* Remote Wakeup received? */ 3264 if (!oxu->reset_done[wIndex]) { 3265 /* resume signaling for 20 msec */ 3266 oxu->reset_done[wIndex] = jiffies 3267 + msecs_to_jiffies(20); 3268 /* check the port again */ 3269 mod_timer(&oxu_to_hcd(oxu)->rh_timer, 3270 oxu->reset_done[wIndex]); 3271 } 3272 3273 /* resume completed? */ 3274 else if (time_after_eq(jiffies, 3275 oxu->reset_done[wIndex])) { 3276 status |= USB_PORT_STAT_C_SUSPEND << 16; 3277 oxu->reset_done[wIndex] = 0; 3278 3279 /* stop resume signaling */ 3280 temp = readl(status_reg); 3281 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), 3282 status_reg); 3283 retval = handshake(oxu, status_reg, 3284 PORT_RESUME, 0, 2000 /* 2msec */); 3285 if (retval != 0) { 3286 oxu_err(oxu, 3287 "port %d resume error %d\n", 3288 wIndex + 1, retval); 3289 goto error; 3290 } 3291 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 3292 } 3293 } 3294 3295 /* whoever resets must GetPortStatus to complete it!! */ 3296 if ((temp & PORT_RESET) 3297 && time_after_eq(jiffies, 3298 oxu->reset_done[wIndex])) { 3299 status |= USB_PORT_STAT_C_RESET << 16; 3300 oxu->reset_done[wIndex] = 0; 3301 3302 /* force reset to complete */ 3303 writel(temp & ~(PORT_RWC_BITS | PORT_RESET), 3304 status_reg); 3305 /* REVISIT: some hardware needs 550+ usec to clear 3306 * this bit; seems too long to spin routinely... 3307 */ 3308 retval = handshake(oxu, status_reg, 3309 PORT_RESET, 0, 750); 3310 if (retval != 0) { 3311 oxu_err(oxu, "port %d reset error %d\n", 3312 wIndex + 1, retval); 3313 goto error; 3314 } 3315 3316 /* see what we found out */ 3317 temp = check_reset_complete(oxu, wIndex, status_reg, 3318 readl(status_reg)); 3319 } 3320 3321 /* transfer dedicated ports to the companion hc */ 3322 if ((temp & PORT_CONNECT) && 3323 test_bit(wIndex, &oxu->companion_ports)) { 3324 temp &= ~PORT_RWC_BITS; 3325 temp |= PORT_OWNER; 3326 writel(temp, status_reg); 3327 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); 3328 temp = readl(status_reg); 3329 } 3330 3331 /* 3332 * Even if OWNER is set, there's no harm letting khubd 3333 * see the wPortStatus values (they should all be 0 except 3334 * for PORT_POWER anyway). 3335 */ 3336 3337 if (temp & PORT_CONNECT) { 3338 status |= USB_PORT_STAT_CONNECTION; 3339 /* status may be from integrated TT */ 3340 status |= oxu_port_speed(oxu, temp); 3341 } 3342 if (temp & PORT_PE) 3343 status |= USB_PORT_STAT_ENABLE; 3344 if (temp & (PORT_SUSPEND|PORT_RESUME)) 3345 status |= USB_PORT_STAT_SUSPEND; 3346 if (temp & PORT_OC) 3347 status |= USB_PORT_STAT_OVERCURRENT; 3348 if (temp & PORT_RESET) 3349 status |= USB_PORT_STAT_RESET; 3350 if (temp & PORT_POWER) 3351 status |= USB_PORT_STAT_POWER; 3352 3353 #ifndef OXU_VERBOSE_DEBUG 3354 if (status & ~0xffff) /* only if wPortChange is interesting */ 3355 #endif 3356 dbg_port(oxu, "GetStatus", wIndex + 1, temp); 3357 put_unaligned(cpu_to_le32(status), (__le32 *) buf); 3358 break; 3359 case SetHubFeature: 3360 switch (wValue) { 3361 case C_HUB_LOCAL_POWER: 3362 case C_HUB_OVER_CURRENT: 3363 /* no hub-wide feature/status flags */ 3364 break; 3365 default: 3366 goto error; 3367 } 3368 break; 3369 case SetPortFeature: 3370 selector = wIndex >> 8; 3371 wIndex &= 0xff; 3372 if (!wIndex || wIndex > ports) 3373 goto error; 3374 wIndex--; 3375 temp = readl(status_reg); 3376 if (temp & PORT_OWNER) 3377 break; 3378 3379 temp &= ~PORT_RWC_BITS; 3380 switch (wValue) { 3381 case USB_PORT_FEAT_SUSPEND: 3382 if ((temp & PORT_PE) == 0 3383 || (temp & PORT_RESET) != 0) 3384 goto error; 3385 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3386 temp |= PORT_WAKE_BITS; 3387 writel(temp | PORT_SUSPEND, status_reg); 3388 break; 3389 case USB_PORT_FEAT_POWER: 3390 if (HCS_PPC(oxu->hcs_params)) 3391 writel(temp | PORT_POWER, status_reg); 3392 break; 3393 case USB_PORT_FEAT_RESET: 3394 if (temp & PORT_RESUME) 3395 goto error; 3396 /* line status bits may report this as low speed, 3397 * which can be fine if this root hub has a 3398 * transaction translator built in. 3399 */ 3400 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); 3401 temp |= PORT_RESET; 3402 temp &= ~PORT_PE; 3403 3404 /* 3405 * caller must wait, then call GetPortStatus 3406 * usb 2.0 spec says 50 ms resets on root 3407 */ 3408 oxu->reset_done[wIndex] = jiffies 3409 + msecs_to_jiffies(50); 3410 writel(temp, status_reg); 3411 break; 3412 3413 /* For downstream facing ports (these): one hub port is put 3414 * into test mode according to USB2 11.24.2.13, then the hub 3415 * must be reset (which for root hub now means rmmod+modprobe, 3416 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 3417 * about the EHCI-specific stuff. 3418 */ 3419 case USB_PORT_FEAT_TEST: 3420 if (!selector || selector > 5) 3421 goto error; 3422 ehci_quiesce(oxu); 3423 ehci_halt(oxu); 3424 temp |= selector << 16; 3425 writel(temp, status_reg); 3426 break; 3427 3428 default: 3429 goto error; 3430 } 3431 readl(&oxu->regs->command); /* unblock posted writes */ 3432 break; 3433 3434 default: 3435 error: 3436 /* "stall" on error */ 3437 retval = -EPIPE; 3438 } 3439 spin_unlock_irqrestore(&oxu->lock, flags); 3440 return retval; 3441 } 3442 3443 #ifdef CONFIG_PM 3444 3445 static int oxu_bus_suspend(struct usb_hcd *hcd) 3446 { 3447 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3448 int port; 3449 int mask; 3450 3451 oxu_dbg(oxu, "suspend root hub\n"); 3452 3453 if (time_before(jiffies, oxu->next_statechange)) 3454 msleep(5); 3455 3456 port = HCS_N_PORTS(oxu->hcs_params); 3457 spin_lock_irq(&oxu->lock); 3458 3459 /* stop schedules, clean any completed work */ 3460 if (HC_IS_RUNNING(hcd->state)) { 3461 ehci_quiesce(oxu); 3462 hcd->state = HC_STATE_QUIESCING; 3463 } 3464 oxu->command = readl(&oxu->regs->command); 3465 if (oxu->reclaim) 3466 oxu->reclaim_ready = 1; 3467 ehci_work(oxu); 3468 3469 /* Unlike other USB host controller types, EHCI doesn't have 3470 * any notion of "global" or bus-wide suspend. The driver has 3471 * to manually suspend all the active unsuspended ports, and 3472 * then manually resume them in the bus_resume() routine. 3473 */ 3474 oxu->bus_suspended = 0; 3475 while (port--) { 3476 u32 __iomem *reg = &oxu->regs->port_status[port]; 3477 u32 t1 = readl(reg) & ~PORT_RWC_BITS; 3478 u32 t2 = t1; 3479 3480 /* keep track of which ports we suspend */ 3481 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && 3482 !(t1 & PORT_SUSPEND)) { 3483 t2 |= PORT_SUSPEND; 3484 set_bit(port, &oxu->bus_suspended); 3485 } 3486 3487 /* enable remote wakeup on all ports */ 3488 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3489 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; 3490 else 3491 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); 3492 3493 if (t1 != t2) { 3494 oxu_vdbg(oxu, "port %d, %08x -> %08x\n", 3495 port + 1, t1, t2); 3496 writel(t2, reg); 3497 } 3498 } 3499 3500 /* turn off now-idle HC */ 3501 del_timer_sync(&oxu->watchdog); 3502 ehci_halt(oxu); 3503 hcd->state = HC_STATE_SUSPENDED; 3504 3505 /* allow remote wakeup */ 3506 mask = INTR_MASK; 3507 if (!device_may_wakeup(&hcd->self.root_hub->dev)) 3508 mask &= ~STS_PCD; 3509 writel(mask, &oxu->regs->intr_enable); 3510 readl(&oxu->regs->intr_enable); 3511 3512 oxu->next_statechange = jiffies + msecs_to_jiffies(10); 3513 spin_unlock_irq(&oxu->lock); 3514 return 0; 3515 } 3516 3517 /* Caller has locked the root hub, and should reset/reinit on error */ 3518 static int oxu_bus_resume(struct usb_hcd *hcd) 3519 { 3520 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3521 u32 temp; 3522 int i; 3523 3524 if (time_before(jiffies, oxu->next_statechange)) 3525 msleep(5); 3526 spin_lock_irq(&oxu->lock); 3527 3528 /* Ideally and we've got a real resume here, and no port's power 3529 * was lost. (For PCI, that means Vaux was maintained.) But we 3530 * could instead be restoring a swsusp snapshot -- so that BIOS was 3531 * the last user of the controller, not reset/pm hardware keeping 3532 * state we gave to it. 3533 */ 3534 temp = readl(&oxu->regs->intr_enable); 3535 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); 3536 3537 /* at least some APM implementations will try to deliver 3538 * IRQs right away, so delay them until we're ready. 3539 */ 3540 writel(0, &oxu->regs->intr_enable); 3541 3542 /* re-init operational registers */ 3543 writel(0, &oxu->regs->segment); 3544 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3545 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3546 3547 /* restore CMD_RUN, framelist size, and irq threshold */ 3548 writel(oxu->command, &oxu->regs->command); 3549 3550 /* Some controller/firmware combinations need a delay during which 3551 * they set up the port statuses. See Bugzilla #8190. */ 3552 mdelay(8); 3553 3554 /* manually resume the ports we suspended during bus_suspend() */ 3555 i = HCS_N_PORTS(oxu->hcs_params); 3556 while (i--) { 3557 temp = readl(&oxu->regs->port_status[i]); 3558 temp &= ~(PORT_RWC_BITS 3559 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); 3560 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3561 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 3562 temp |= PORT_RESUME; 3563 } 3564 writel(temp, &oxu->regs->port_status[i]); 3565 } 3566 i = HCS_N_PORTS(oxu->hcs_params); 3567 mdelay(20); 3568 while (i--) { 3569 temp = readl(&oxu->regs->port_status[i]); 3570 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3571 temp &= ~(PORT_RWC_BITS | PORT_RESUME); 3572 writel(temp, &oxu->regs->port_status[i]); 3573 oxu_vdbg(oxu, "resumed port %d\n", i + 1); 3574 } 3575 } 3576 (void) readl(&oxu->regs->command); 3577 3578 /* maybe re-activate the schedule(s) */ 3579 temp = 0; 3580 if (oxu->async->qh_next.qh) 3581 temp |= CMD_ASE; 3582 if (oxu->periodic_sched) 3583 temp |= CMD_PSE; 3584 if (temp) { 3585 oxu->command |= temp; 3586 writel(oxu->command, &oxu->regs->command); 3587 } 3588 3589 oxu->next_statechange = jiffies + msecs_to_jiffies(5); 3590 hcd->state = HC_STATE_RUNNING; 3591 3592 /* Now we can safely re-enable irqs */ 3593 writel(INTR_MASK, &oxu->regs->intr_enable); 3594 3595 spin_unlock_irq(&oxu->lock); 3596 return 0; 3597 } 3598 3599 #else 3600 3601 static int oxu_bus_suspend(struct usb_hcd *hcd) 3602 { 3603 return 0; 3604 } 3605 3606 static int oxu_bus_resume(struct usb_hcd *hcd) 3607 { 3608 return 0; 3609 } 3610 3611 #endif /* CONFIG_PM */ 3612 3613 static const struct hc_driver oxu_hc_driver = { 3614 .description = "oxu210hp_hcd", 3615 .product_desc = "oxu210hp HCD", 3616 .hcd_priv_size = sizeof(struct oxu_hcd), 3617 3618 /* 3619 * Generic hardware linkage 3620 */ 3621 .irq = oxu_irq, 3622 .flags = HCD_MEMORY | HCD_USB2, 3623 3624 /* 3625 * Basic lifecycle operations 3626 */ 3627 .reset = oxu_reset, 3628 .start = oxu_run, 3629 .stop = oxu_stop, 3630 .shutdown = oxu_shutdown, 3631 3632 /* 3633 * Managing i/o requests and associated device resources 3634 */ 3635 .urb_enqueue = oxu_urb_enqueue, 3636 .urb_dequeue = oxu_urb_dequeue, 3637 .endpoint_disable = oxu_endpoint_disable, 3638 3639 /* 3640 * Scheduling support 3641 */ 3642 .get_frame_number = oxu_get_frame, 3643 3644 /* 3645 * Root hub support 3646 */ 3647 .hub_status_data = oxu_hub_status_data, 3648 .hub_control = oxu_hub_control, 3649 .bus_suspend = oxu_bus_suspend, 3650 .bus_resume = oxu_bus_resume, 3651 }; 3652 3653 /* 3654 * Module stuff 3655 */ 3656 3657 static void oxu_configuration(struct platform_device *pdev, void *base) 3658 { 3659 u32 tmp; 3660 3661 /* Initialize top level registers. 3662 * First write ever 3663 */ 3664 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3665 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); 3666 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3667 3668 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); 3669 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); 3670 3671 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | 3672 OXU_COMPARATOR | OXU_ASO_OP); 3673 3674 tmp = oxu_readl(base, OXU_CLKCTRL_SET); 3675 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); 3676 3677 /* Clear all top interrupt enable */ 3678 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); 3679 3680 /* Clear all top interrupt status */ 3681 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); 3682 3683 /* Enable all needed top interrupt except OTG SPH core */ 3684 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); 3685 } 3686 3687 static int oxu_verify_id(struct platform_device *pdev, void *base) 3688 { 3689 u32 id; 3690 static const char * const bo[] = { 3691 "reserved", 3692 "128-pin LQFP", 3693 "84-pin TFBGA", 3694 "reserved", 3695 }; 3696 3697 /* Read controller signature register to find a match */ 3698 id = oxu_readl(base, OXU_DEVICEID); 3699 dev_info(&pdev->dev, "device ID %x\n", id); 3700 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) 3701 return -1; 3702 3703 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", 3704 id >> OXU_REV_SHIFT, 3705 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], 3706 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, 3707 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); 3708 3709 return 0; 3710 } 3711 3712 static const struct hc_driver oxu_hc_driver; 3713 static struct usb_hcd *oxu_create(struct platform_device *pdev, 3714 unsigned long memstart, unsigned long memlen, 3715 void *base, int irq, int otg) 3716 { 3717 struct device *dev = &pdev->dev; 3718 3719 struct usb_hcd *hcd; 3720 struct oxu_hcd *oxu; 3721 int ret; 3722 3723 /* Set endian mode and host mode */ 3724 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), 3725 OXU_USBMODE, 3726 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); 3727 3728 hcd = usb_create_hcd(&oxu_hc_driver, dev, 3729 otg ? "oxu210hp_otg" : "oxu210hp_sph"); 3730 if (!hcd) 3731 return ERR_PTR(-ENOMEM); 3732 3733 hcd->rsrc_start = memstart; 3734 hcd->rsrc_len = memlen; 3735 hcd->regs = base; 3736 hcd->irq = irq; 3737 hcd->state = HC_STATE_HALT; 3738 3739 oxu = hcd_to_oxu(hcd); 3740 oxu->is_otg = otg; 3741 3742 ret = usb_add_hcd(hcd, irq, IRQF_SHARED); 3743 if (ret < 0) 3744 return ERR_PTR(ret); 3745 3746 return hcd; 3747 } 3748 3749 static int oxu_init(struct platform_device *pdev, 3750 unsigned long memstart, unsigned long memlen, 3751 void *base, int irq) 3752 { 3753 struct oxu_info *info = platform_get_drvdata(pdev); 3754 struct usb_hcd *hcd; 3755 int ret; 3756 3757 /* First time configuration at start up */ 3758 oxu_configuration(pdev, base); 3759 3760 ret = oxu_verify_id(pdev, base); 3761 if (ret) { 3762 dev_err(&pdev->dev, "no devices found!\n"); 3763 return -ENODEV; 3764 } 3765 3766 /* Create the OTG controller */ 3767 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); 3768 if (IS_ERR(hcd)) { 3769 dev_err(&pdev->dev, "cannot create OTG controller!\n"); 3770 ret = PTR_ERR(hcd); 3771 goto error_create_otg; 3772 } 3773 info->hcd[0] = hcd; 3774 3775 /* Create the SPH host controller */ 3776 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); 3777 if (IS_ERR(hcd)) { 3778 dev_err(&pdev->dev, "cannot create SPH controller!\n"); 3779 ret = PTR_ERR(hcd); 3780 goto error_create_sph; 3781 } 3782 info->hcd[1] = hcd; 3783 3784 oxu_writel(base, OXU_CHIPIRQEN_SET, 3785 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); 3786 3787 return 0; 3788 3789 error_create_sph: 3790 usb_remove_hcd(info->hcd[0]); 3791 usb_put_hcd(info->hcd[0]); 3792 3793 error_create_otg: 3794 return ret; 3795 } 3796 3797 static int oxu_drv_probe(struct platform_device *pdev) 3798 { 3799 struct resource *res; 3800 void *base; 3801 unsigned long memstart, memlen; 3802 int irq, ret; 3803 struct oxu_info *info; 3804 3805 if (usb_disabled()) 3806 return -ENODEV; 3807 3808 /* 3809 * Get the platform resources 3810 */ 3811 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 3812 if (!res) { 3813 dev_err(&pdev->dev, 3814 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev)); 3815 return -ENODEV; 3816 } 3817 irq = res->start; 3818 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); 3819 3820 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3821 if (!res) { 3822 dev_err(&pdev->dev, "no registers address! Check %s setup!\n", 3823 dev_name(&pdev->dev)); 3824 return -ENODEV; 3825 } 3826 memstart = res->start; 3827 memlen = res->end - res->start + 1; 3828 dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen); 3829 if (!request_mem_region(memstart, memlen, 3830 oxu_hc_driver.description)) { 3831 dev_dbg(&pdev->dev, "memory area already in use\n"); 3832 return -EBUSY; 3833 } 3834 3835 ret = set_irq_type(irq, IRQF_TRIGGER_FALLING); 3836 if (ret) { 3837 dev_err(&pdev->dev, "error setting irq type\n"); 3838 ret = -EFAULT; 3839 goto error_set_irq_type; 3840 } 3841 3842 base = ioremap(memstart, memlen); 3843 if (!base) { 3844 dev_dbg(&pdev->dev, "error mapping memory\n"); 3845 ret = -EFAULT; 3846 goto error_ioremap; 3847 } 3848 3849 /* Allocate a driver data struct to hold useful info for both 3850 * SPH & OTG devices 3851 */ 3852 info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL); 3853 if (!info) { 3854 dev_dbg(&pdev->dev, "error allocating memory\n"); 3855 ret = -EFAULT; 3856 goto error_alloc; 3857 } 3858 platform_set_drvdata(pdev, info); 3859 3860 ret = oxu_init(pdev, memstart, memlen, base, irq); 3861 if (ret < 0) { 3862 dev_dbg(&pdev->dev, "cannot init USB devices\n"); 3863 goto error_init; 3864 } 3865 3866 dev_info(&pdev->dev, "devices enabled and running\n"); 3867 platform_set_drvdata(pdev, info); 3868 3869 return 0; 3870 3871 error_init: 3872 kfree(info); 3873 platform_set_drvdata(pdev, NULL); 3874 3875 error_alloc: 3876 iounmap(base); 3877 3878 error_set_irq_type: 3879 error_ioremap: 3880 release_mem_region(memstart, memlen); 3881 3882 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); 3883 return ret; 3884 } 3885 3886 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) 3887 { 3888 usb_remove_hcd(hcd); 3889 usb_put_hcd(hcd); 3890 } 3891 3892 static int oxu_drv_remove(struct platform_device *pdev) 3893 { 3894 struct oxu_info *info = platform_get_drvdata(pdev); 3895 unsigned long memstart = info->hcd[0]->rsrc_start, 3896 memlen = info->hcd[0]->rsrc_len; 3897 void *base = info->hcd[0]->regs; 3898 3899 oxu_remove(pdev, info->hcd[0]); 3900 oxu_remove(pdev, info->hcd[1]); 3901 3902 iounmap(base); 3903 release_mem_region(memstart, memlen); 3904 3905 kfree(info); 3906 platform_set_drvdata(pdev, NULL); 3907 3908 return 0; 3909 } 3910 3911 static void oxu_drv_shutdown(struct platform_device *pdev) 3912 { 3913 oxu_drv_remove(pdev); 3914 } 3915 3916 #if 0 3917 /* FIXME: TODO */ 3918 static int oxu_drv_suspend(struct device *dev) 3919 { 3920 struct platform_device *pdev = to_platform_device(dev); 3921 struct usb_hcd *hcd = dev_get_drvdata(dev); 3922 3923 return 0; 3924 } 3925 3926 static int oxu_drv_resume(struct device *dev) 3927 { 3928 struct platform_device *pdev = to_platform_device(dev); 3929 struct usb_hcd *hcd = dev_get_drvdata(dev); 3930 3931 return 0; 3932 } 3933 #else 3934 #define oxu_drv_suspend NULL 3935 #define oxu_drv_resume NULL 3936 #endif 3937 3938 static struct platform_driver oxu_driver = { 3939 .probe = oxu_drv_probe, 3940 .remove = oxu_drv_remove, 3941 .shutdown = oxu_drv_shutdown, 3942 .suspend = oxu_drv_suspend, 3943 .resume = oxu_drv_resume, 3944 .driver = { 3945 .name = "oxu210hp-hcd", 3946 .bus = &platform_bus_type 3947 } 3948 }; 3949 3950 static int __init oxu_module_init(void) 3951 { 3952 int retval = 0; 3953 3954 retval = platform_driver_register(&oxu_driver); 3955 if (retval < 0) 3956 return retval; 3957 3958 return retval; 3959 } 3960 3961 static void __exit oxu_module_cleanup(void) 3962 { 3963 platform_driver_unregister(&oxu_driver); 3964 } 3965 3966 module_init(oxu_module_init); 3967 module_exit(oxu_module_cleanup); 3968 3969 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); 3970 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 3971 MODULE_LICENSE("GPL"); 3972