1 /* 2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> 3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> 4 * 5 * This code is *strongly* based on EHCI-HCD code by David Brownell since 6 * the chip is a quasi-EHCI compatible. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/pci.h> 25 #include <linux/dmapool.h> 26 #include <linux/kernel.h> 27 #include <linux/delay.h> 28 #include <linux/ioport.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/errno.h> 32 #include <linux/timer.h> 33 #include <linux/list.h> 34 #include <linux/interrupt.h> 35 #include <linux/usb.h> 36 #include <linux/usb/hcd.h> 37 #include <linux/moduleparam.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/io.h> 40 41 #include <asm/irq.h> 42 #include <asm/unaligned.h> 43 44 #include <linux/irq.h> 45 #include <linux/platform_device.h> 46 47 #include "oxu210hp.h" 48 49 #define DRIVER_VERSION "0.0.50" 50 51 /* 52 * Main defines 53 */ 54 55 #define oxu_dbg(oxu, fmt, args...) \ 56 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 57 #define oxu_err(oxu, fmt, args...) \ 58 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 59 #define oxu_info(oxu, fmt, args...) \ 60 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) 61 62 #ifdef CONFIG_DYNAMIC_DEBUG 63 #define DEBUG 64 #endif 65 66 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) 67 { 68 return container_of((void *) oxu, struct usb_hcd, hcd_priv); 69 } 70 71 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) 72 { 73 return (struct oxu_hcd *) (hcd->hcd_priv); 74 } 75 76 /* 77 * Debug stuff 78 */ 79 80 #undef OXU_URB_TRACE 81 #undef OXU_VERBOSE_DEBUG 82 83 #ifdef OXU_VERBOSE_DEBUG 84 #define oxu_vdbg oxu_dbg 85 #else 86 #define oxu_vdbg(oxu, fmt, args...) /* Nop */ 87 #endif 88 89 #ifdef DEBUG 90 91 static int __attribute__((__unused__)) 92 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 93 { 94 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 95 label, label[0] ? " " : "", status, 96 (status & STS_ASS) ? " Async" : "", 97 (status & STS_PSS) ? " Periodic" : "", 98 (status & STS_RECL) ? " Recl" : "", 99 (status & STS_HALT) ? " Halt" : "", 100 (status & STS_IAA) ? " IAA" : "", 101 (status & STS_FATAL) ? " FATAL" : "", 102 (status & STS_FLR) ? " FLR" : "", 103 (status & STS_PCD) ? " PCD" : "", 104 (status & STS_ERR) ? " ERR" : "", 105 (status & STS_INT) ? " INT" : "" 106 ); 107 } 108 109 static int __attribute__((__unused__)) 110 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 111 { 112 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", 113 label, label[0] ? " " : "", enable, 114 (enable & STS_IAA) ? " IAA" : "", 115 (enable & STS_FATAL) ? " FATAL" : "", 116 (enable & STS_FLR) ? " FLR" : "", 117 (enable & STS_PCD) ? " PCD" : "", 118 (enable & STS_ERR) ? " ERR" : "", 119 (enable & STS_INT) ? " INT" : "" 120 ); 121 } 122 123 static const char *const fls_strings[] = 124 { "1024", "512", "256", "??" }; 125 126 static int dbg_command_buf(char *buf, unsigned len, 127 const char *label, u32 command) 128 { 129 return scnprintf(buf, len, 130 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", 131 label, label[0] ? " " : "", command, 132 (command & CMD_PARK) ? "park" : "(park)", 133 CMD_PARK_CNT(command), 134 (command >> 16) & 0x3f, 135 (command & CMD_LRESET) ? " LReset" : "", 136 (command & CMD_IAAD) ? " IAAD" : "", 137 (command & CMD_ASE) ? " Async" : "", 138 (command & CMD_PSE) ? " Periodic" : "", 139 fls_strings[(command >> 2) & 0x3], 140 (command & CMD_RESET) ? " Reset" : "", 141 (command & CMD_RUN) ? "RUN" : "HALT" 142 ); 143 } 144 145 static int dbg_port_buf(char *buf, unsigned len, const char *label, 146 int port, u32 status) 147 { 148 char *sig; 149 150 /* signaling state */ 151 switch (status & (3 << 10)) { 152 case 0 << 10: 153 sig = "se0"; 154 break; 155 case 1 << 10: 156 sig = "k"; /* low speed */ 157 break; 158 case 2 << 10: 159 sig = "j"; 160 break; 161 default: 162 sig = "?"; 163 break; 164 } 165 166 return scnprintf(buf, len, 167 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", 168 label, label[0] ? " " : "", port, status, 169 (status & PORT_POWER) ? " POWER" : "", 170 (status & PORT_OWNER) ? " OWNER" : "", 171 sig, 172 (status & PORT_RESET) ? " RESET" : "", 173 (status & PORT_SUSPEND) ? " SUSPEND" : "", 174 (status & PORT_RESUME) ? " RESUME" : "", 175 (status & PORT_OCC) ? " OCC" : "", 176 (status & PORT_OC) ? " OC" : "", 177 (status & PORT_PEC) ? " PEC" : "", 178 (status & PORT_PE) ? " PE" : "", 179 (status & PORT_CSC) ? " CSC" : "", 180 (status & PORT_CONNECT) ? " CONNECT" : "" 181 ); 182 } 183 184 #else 185 186 static inline int __attribute__((__unused__)) 187 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 188 { return 0; } 189 190 static inline int __attribute__((__unused__)) 191 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 192 { return 0; } 193 194 static inline int __attribute__((__unused__)) 195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 196 { return 0; } 197 198 static inline int __attribute__((__unused__)) 199 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 200 { return 0; } 201 202 #endif /* DEBUG */ 203 204 /* functions have the "wrong" filename when they're output... */ 205 #define dbg_status(oxu, label, status) { \ 206 char _buf[80]; \ 207 dbg_status_buf(_buf, sizeof _buf, label, status); \ 208 oxu_dbg(oxu, "%s\n", _buf); \ 209 } 210 211 #define dbg_cmd(oxu, label, command) { \ 212 char _buf[80]; \ 213 dbg_command_buf(_buf, sizeof _buf, label, command); \ 214 oxu_dbg(oxu, "%s\n", _buf); \ 215 } 216 217 #define dbg_port(oxu, label, port, status) { \ 218 char _buf[80]; \ 219 dbg_port_buf(_buf, sizeof _buf, label, port, status); \ 220 oxu_dbg(oxu, "%s\n", _buf); \ 221 } 222 223 /* 224 * Module parameters 225 */ 226 227 /* Initial IRQ latency: faster than hw default */ 228 static int log2_irq_thresh; /* 0 to 6 */ 229 module_param(log2_irq_thresh, int, S_IRUGO); 230 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 231 232 /* Initial park setting: slower than hw default */ 233 static unsigned park; 234 module_param(park, uint, S_IRUGO); 235 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 236 237 /* For flakey hardware, ignore overcurrent indicators */ 238 static bool ignore_oc; 239 module_param(ignore_oc, bool, S_IRUGO); 240 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); 241 242 243 static void ehci_work(struct oxu_hcd *oxu); 244 static int oxu_hub_control(struct usb_hcd *hcd, 245 u16 typeReq, u16 wValue, u16 wIndex, 246 char *buf, u16 wLength); 247 248 /* 249 * Local functions 250 */ 251 252 /* Low level read/write registers functions */ 253 static inline u32 oxu_readl(void *base, u32 reg) 254 { 255 return readl(base + reg); 256 } 257 258 static inline void oxu_writel(void *base, u32 reg, u32 val) 259 { 260 writel(val, base + reg); 261 } 262 263 static inline void timer_action_done(struct oxu_hcd *oxu, 264 enum ehci_timer_action action) 265 { 266 clear_bit(action, &oxu->actions); 267 } 268 269 static inline void timer_action(struct oxu_hcd *oxu, 270 enum ehci_timer_action action) 271 { 272 if (!test_and_set_bit(action, &oxu->actions)) { 273 unsigned long t; 274 275 switch (action) { 276 case TIMER_IAA_WATCHDOG: 277 t = EHCI_IAA_JIFFIES; 278 break; 279 case TIMER_IO_WATCHDOG: 280 t = EHCI_IO_JIFFIES; 281 break; 282 case TIMER_ASYNC_OFF: 283 t = EHCI_ASYNC_JIFFIES; 284 break; 285 case TIMER_ASYNC_SHRINK: 286 default: 287 t = EHCI_SHRINK_JIFFIES; 288 break; 289 } 290 t += jiffies; 291 /* all timings except IAA watchdog can be overridden. 292 * async queue SHRINK often precedes IAA. while it's ready 293 * to go OFF neither can matter, and afterwards the IO 294 * watchdog stops unless there's still periodic traffic. 295 */ 296 if (action != TIMER_IAA_WATCHDOG 297 && t > oxu->watchdog.expires 298 && timer_pending(&oxu->watchdog)) 299 return; 300 mod_timer(&oxu->watchdog, t); 301 } 302 } 303 304 /* 305 * handshake - spin reading hc until handshake completes or fails 306 * @ptr: address of hc register to be read 307 * @mask: bits to look at in result of read 308 * @done: value of those bits when handshake succeeds 309 * @usec: timeout in microseconds 310 * 311 * Returns negative errno, or zero on success 312 * 313 * Success happens when the "mask" bits have the specified value (hardware 314 * handshake done). There are two failure modes: "usec" have passed (major 315 * hardware flakeout), or the register reads as all-ones (hardware removed). 316 * 317 * That last failure should_only happen in cases like physical cardbus eject 318 * before driver shutdown. But it also seems to be caused by bugs in cardbus 319 * bridge shutdown: shutting down the bridge before the devices using it. 320 */ 321 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, 322 u32 mask, u32 done, int usec) 323 { 324 u32 result; 325 326 do { 327 result = readl(ptr); 328 if (result == ~(u32)0) /* card removed */ 329 return -ENODEV; 330 result &= mask; 331 if (result == done) 332 return 0; 333 udelay(1); 334 usec--; 335 } while (usec > 0); 336 return -ETIMEDOUT; 337 } 338 339 /* Force HC to halt state from unknown (EHCI spec section 2.3) */ 340 static int ehci_halt(struct oxu_hcd *oxu) 341 { 342 u32 temp = readl(&oxu->regs->status); 343 344 /* disable any irqs left enabled by previous code */ 345 writel(0, &oxu->regs->intr_enable); 346 347 if ((temp & STS_HALT) != 0) 348 return 0; 349 350 temp = readl(&oxu->regs->command); 351 temp &= ~CMD_RUN; 352 writel(temp, &oxu->regs->command); 353 return handshake(oxu, &oxu->regs->status, 354 STS_HALT, STS_HALT, 16 * 125); 355 } 356 357 /* Put TDI/ARC silicon into EHCI mode */ 358 static void tdi_reset(struct oxu_hcd *oxu) 359 { 360 u32 __iomem *reg_ptr; 361 u32 tmp; 362 363 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); 364 tmp = readl(reg_ptr); 365 tmp |= 0x3; 366 writel(tmp, reg_ptr); 367 } 368 369 /* Reset a non-running (STS_HALT == 1) controller */ 370 static int ehci_reset(struct oxu_hcd *oxu) 371 { 372 int retval; 373 u32 command = readl(&oxu->regs->command); 374 375 command |= CMD_RESET; 376 dbg_cmd(oxu, "reset", command); 377 writel(command, &oxu->regs->command); 378 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 379 oxu->next_statechange = jiffies; 380 retval = handshake(oxu, &oxu->regs->command, 381 CMD_RESET, 0, 250 * 1000); 382 383 if (retval) 384 return retval; 385 386 tdi_reset(oxu); 387 388 return retval; 389 } 390 391 /* Idle the controller (from running) */ 392 static void ehci_quiesce(struct oxu_hcd *oxu) 393 { 394 u32 temp; 395 396 #ifdef DEBUG 397 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)); 398 #endif 399 400 /* wait for any schedule enables/disables to take effect */ 401 temp = readl(&oxu->regs->command) << 10; 402 temp &= STS_ASS | STS_PSS; 403 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 404 temp, 16 * 125) != 0) { 405 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 406 return; 407 } 408 409 /* then disable anything that's still active */ 410 temp = readl(&oxu->regs->command); 411 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); 412 writel(temp, &oxu->regs->command); 413 414 /* hardware can take 16 microframes to turn off ... */ 415 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, 416 0, 16 * 125) != 0) { 417 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 418 return; 419 } 420 } 421 422 static int check_reset_complete(struct oxu_hcd *oxu, int index, 423 u32 __iomem *status_reg, int port_status) 424 { 425 if (!(port_status & PORT_CONNECT)) { 426 oxu->reset_done[index] = 0; 427 return port_status; 428 } 429 430 /* if reset finished and it's still not enabled -- handoff */ 431 if (!(port_status & PORT_PE)) { 432 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", 433 index+1); 434 return port_status; 435 } else 436 oxu_dbg(oxu, "port %d high speed\n", index + 1); 437 438 return port_status; 439 } 440 441 static void ehci_hub_descriptor(struct oxu_hcd *oxu, 442 struct usb_hub_descriptor *desc) 443 { 444 int ports = HCS_N_PORTS(oxu->hcs_params); 445 u16 temp; 446 447 desc->bDescriptorType = USB_DT_HUB; 448 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ 449 desc->bHubContrCurrent = 0; 450 451 desc->bNbrPorts = ports; 452 temp = 1 + (ports / 8); 453 desc->bDescLength = 7 + 2 * temp; 454 455 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 456 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 457 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 458 459 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 460 if (HCS_PPC(oxu->hcs_params)) 461 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */ 462 else 463 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 464 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); 465 } 466 467 468 /* Allocate an OXU210HP on-chip memory data buffer 469 * 470 * An on-chip memory data buffer is required for each OXU210HP USB transfer. 471 * Each transfer descriptor has one or more on-chip memory data buffers. 472 * 473 * Data buffers are allocated from a fix sized pool of data blocks. 474 * To minimise fragmentation and give reasonable memory utlisation, 475 * data buffers are allocated with sizes the power of 2 multiples of 476 * the block size, starting on an address a multiple of the allocated size. 477 * 478 * FIXME: callers of this function require a buffer to be allocated for 479 * len=0. This is a waste of on-chip memory and should be fix. Then this 480 * function should be changed to not allocate a buffer for len=0. 481 */ 482 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) 483 { 484 int n_blocks; /* minium blocks needed to hold len */ 485 int a_blocks; /* blocks allocated */ 486 int i, j; 487 488 /* Don't allocte bigger than supported */ 489 if (len > BUFFER_SIZE * BUFFER_NUM) { 490 oxu_err(oxu, "buffer too big (%d)\n", len); 491 return -ENOMEM; 492 } 493 494 spin_lock(&oxu->mem_lock); 495 496 /* Number of blocks needed to hold len */ 497 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; 498 499 /* Round the number of blocks up to the power of 2 */ 500 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) 501 ; 502 503 /* Find a suitable available data buffer */ 504 for (i = 0; i < BUFFER_NUM; 505 i += max(a_blocks, (int)oxu->db_used[i])) { 506 507 /* Check all the required blocks are available */ 508 for (j = 0; j < a_blocks; j++) 509 if (oxu->db_used[i + j]) 510 break; 511 512 if (j != a_blocks) 513 continue; 514 515 /* Allocate blocks found! */ 516 qtd->buffer = (void *) &oxu->mem->db_pool[i]; 517 qtd->buffer_dma = virt_to_phys(qtd->buffer); 518 519 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; 520 oxu->db_used[i] = a_blocks; 521 522 spin_unlock(&oxu->mem_lock); 523 524 return 0; 525 } 526 527 /* Failed */ 528 529 spin_unlock(&oxu->mem_lock); 530 531 return -ENOMEM; 532 } 533 534 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 535 { 536 int index; 537 538 spin_lock(&oxu->mem_lock); 539 540 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) 541 / BUFFER_SIZE; 542 oxu->db_used[index] = 0; 543 qtd->qtd_buffer_len = 0; 544 qtd->buffer_dma = 0; 545 qtd->buffer = NULL; 546 547 spin_unlock(&oxu->mem_lock); 548 } 549 550 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) 551 { 552 memset(qtd, 0, sizeof *qtd); 553 qtd->qtd_dma = dma; 554 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 555 qtd->hw_next = EHCI_LIST_END; 556 qtd->hw_alt_next = EHCI_LIST_END; 557 INIT_LIST_HEAD(&qtd->qtd_list); 558 } 559 560 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) 561 { 562 int index; 563 564 if (qtd->buffer) 565 oxu_buf_free(oxu, qtd); 566 567 spin_lock(&oxu->mem_lock); 568 569 index = qtd - &oxu->mem->qtd_pool[0]; 570 oxu->qtd_used[index] = 0; 571 572 spin_unlock(&oxu->mem_lock); 573 } 574 575 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) 576 { 577 int i; 578 struct ehci_qtd *qtd = NULL; 579 580 spin_lock(&oxu->mem_lock); 581 582 for (i = 0; i < QTD_NUM; i++) 583 if (!oxu->qtd_used[i]) 584 break; 585 586 if (i < QTD_NUM) { 587 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; 588 memset(qtd, 0, sizeof *qtd); 589 590 qtd->hw_token = cpu_to_le32(QTD_STS_HALT); 591 qtd->hw_next = EHCI_LIST_END; 592 qtd->hw_alt_next = EHCI_LIST_END; 593 INIT_LIST_HEAD(&qtd->qtd_list); 594 595 qtd->qtd_dma = virt_to_phys(qtd); 596 597 oxu->qtd_used[i] = 1; 598 } 599 600 spin_unlock(&oxu->mem_lock); 601 602 return qtd; 603 } 604 605 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) 606 { 607 int index; 608 609 spin_lock(&oxu->mem_lock); 610 611 index = qh - &oxu->mem->qh_pool[0]; 612 oxu->qh_used[index] = 0; 613 614 spin_unlock(&oxu->mem_lock); 615 } 616 617 static void qh_destroy(struct kref *kref) 618 { 619 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); 620 struct oxu_hcd *oxu = qh->oxu; 621 622 /* clean qtds first, and know this is not linked */ 623 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 624 oxu_dbg(oxu, "unused qh not empty!\n"); 625 BUG(); 626 } 627 if (qh->dummy) 628 oxu_qtd_free(oxu, qh->dummy); 629 oxu_qh_free(oxu, qh); 630 } 631 632 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) 633 { 634 int i; 635 struct ehci_qh *qh = NULL; 636 637 spin_lock(&oxu->mem_lock); 638 639 for (i = 0; i < QHEAD_NUM; i++) 640 if (!oxu->qh_used[i]) 641 break; 642 643 if (i < QHEAD_NUM) { 644 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; 645 memset(qh, 0, sizeof *qh); 646 647 kref_init(&qh->kref); 648 qh->oxu = oxu; 649 qh->qh_dma = virt_to_phys(qh); 650 INIT_LIST_HEAD(&qh->qtd_list); 651 652 /* dummy td enables safe urb queuing */ 653 qh->dummy = ehci_qtd_alloc(oxu); 654 if (qh->dummy == NULL) { 655 oxu_dbg(oxu, "no dummy td\n"); 656 oxu->qh_used[i] = 0; 657 qh = NULL; 658 goto unlock; 659 } 660 661 oxu->qh_used[i] = 1; 662 } 663 unlock: 664 spin_unlock(&oxu->mem_lock); 665 666 return qh; 667 } 668 669 /* to share a qh (cpu threads, or hc) */ 670 static inline struct ehci_qh *qh_get(struct ehci_qh *qh) 671 { 672 kref_get(&qh->kref); 673 return qh; 674 } 675 676 static inline void qh_put(struct ehci_qh *qh) 677 { 678 kref_put(&qh->kref, qh_destroy); 679 } 680 681 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) 682 { 683 int index; 684 685 spin_lock(&oxu->mem_lock); 686 687 index = murb - &oxu->murb_pool[0]; 688 oxu->murb_used[index] = 0; 689 690 spin_unlock(&oxu->mem_lock); 691 } 692 693 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) 694 695 { 696 int i; 697 struct oxu_murb *murb = NULL; 698 699 spin_lock(&oxu->mem_lock); 700 701 for (i = 0; i < MURB_NUM; i++) 702 if (!oxu->murb_used[i]) 703 break; 704 705 if (i < MURB_NUM) { 706 murb = &(oxu->murb_pool)[i]; 707 708 oxu->murb_used[i] = 1; 709 } 710 711 spin_unlock(&oxu->mem_lock); 712 713 return murb; 714 } 715 716 /* The queue heads and transfer descriptors are managed from pools tied 717 * to each of the "per device" structures. 718 * This is the initialisation and cleanup code. 719 */ 720 static void ehci_mem_cleanup(struct oxu_hcd *oxu) 721 { 722 kfree(oxu->murb_pool); 723 oxu->murb_pool = NULL; 724 725 if (oxu->async) 726 qh_put(oxu->async); 727 oxu->async = NULL; 728 729 del_timer(&oxu->urb_timer); 730 731 oxu->periodic = NULL; 732 733 /* shadow periodic table */ 734 kfree(oxu->pshadow); 735 oxu->pshadow = NULL; 736 } 737 738 /* Remember to add cleanup code (above) if you add anything here. 739 */ 740 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) 741 { 742 int i; 743 744 for (i = 0; i < oxu->periodic_size; i++) 745 oxu->mem->frame_list[i] = EHCI_LIST_END; 746 for (i = 0; i < QHEAD_NUM; i++) 747 oxu->qh_used[i] = 0; 748 for (i = 0; i < QTD_NUM; i++) 749 oxu->qtd_used[i] = 0; 750 751 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); 752 if (!oxu->murb_pool) 753 goto fail; 754 755 for (i = 0; i < MURB_NUM; i++) 756 oxu->murb_used[i] = 0; 757 758 oxu->async = oxu_qh_alloc(oxu); 759 if (!oxu->async) 760 goto fail; 761 762 oxu->periodic = (__le32 *) &oxu->mem->frame_list; 763 oxu->periodic_dma = virt_to_phys(oxu->periodic); 764 765 for (i = 0; i < oxu->periodic_size; i++) 766 oxu->periodic[i] = EHCI_LIST_END; 767 768 /* software shadow of hardware table */ 769 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); 770 if (oxu->pshadow != NULL) 771 return 0; 772 773 fail: 774 oxu_dbg(oxu, "couldn't init memory\n"); 775 ehci_mem_cleanup(oxu); 776 return -ENOMEM; 777 } 778 779 /* Fill a qtd, returning how much of the buffer we were able to queue up. 780 */ 781 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, 782 int token, int maxpacket) 783 { 784 int i, count; 785 u64 addr = buf; 786 787 /* one buffer entry per 4K ... first might be short or unaligned */ 788 qtd->hw_buf[0] = cpu_to_le32((u32)addr); 789 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); 790 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 791 if (likely(len < count)) /* ... iff needed */ 792 count = len; 793 else { 794 buf += 0x1000; 795 buf &= ~0x0fff; 796 797 /* per-qtd limit: from 16K to 20K (best alignment) */ 798 for (i = 1; count < len && i < 5; i++) { 799 addr = buf; 800 qtd->hw_buf[i] = cpu_to_le32((u32)addr); 801 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); 802 buf += 0x1000; 803 if ((count + 0x1000) < len) 804 count += 0x1000; 805 else 806 count = len; 807 } 808 809 /* short packets may only terminate transfers */ 810 if (count != len) 811 count -= (count % maxpacket); 812 } 813 qtd->hw_token = cpu_to_le32((count << 16) | token); 814 qtd->length = count; 815 816 return count; 817 } 818 819 static inline void qh_update(struct oxu_hcd *oxu, 820 struct ehci_qh *qh, struct ehci_qtd *qtd) 821 { 822 /* writes to an active overlay are unsafe */ 823 BUG_ON(qh->qh_state != QH_STATE_IDLE); 824 825 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); 826 qh->hw_alt_next = EHCI_LIST_END; 827 828 /* Except for control endpoints, we make hardware maintain data 829 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 830 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 831 * ever clear it. 832 */ 833 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { 834 unsigned is_out, epnum; 835 836 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); 837 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; 838 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 839 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); 840 usb_settoggle(qh->dev, epnum, is_out, 1); 841 } 842 } 843 844 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ 845 wmb(); 846 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); 847 } 848 849 /* If it weren't for a common silicon quirk (writing the dummy into the qh 850 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 851 * recovery (including urb dequeue) would need software changes to a QH... 852 */ 853 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) 854 { 855 struct ehci_qtd *qtd; 856 857 if (list_empty(&qh->qtd_list)) 858 qtd = qh->dummy; 859 else { 860 qtd = list_entry(qh->qtd_list.next, 861 struct ehci_qtd, qtd_list); 862 /* first qtd may already be partially processed */ 863 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) 864 qtd = NULL; 865 } 866 867 if (qtd) 868 qh_update(oxu, qh, qtd); 869 } 870 871 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, 872 size_t length, u32 token) 873 { 874 /* count IN/OUT bytes, not SETUP (even short packets) */ 875 if (likely(QTD_PID(token) != 2)) 876 urb->actual_length += length - QTD_LENGTH(token); 877 878 /* don't modify error codes */ 879 if (unlikely(urb->status != -EINPROGRESS)) 880 return; 881 882 /* force cleanup after short read; not always an error */ 883 if (unlikely(IS_SHORT_READ(token))) 884 urb->status = -EREMOTEIO; 885 886 /* serious "can't proceed" faults reported by the hardware */ 887 if (token & QTD_STS_HALT) { 888 if (token & QTD_STS_BABBLE) { 889 /* FIXME "must" disable babbling device's port too */ 890 urb->status = -EOVERFLOW; 891 } else if (token & QTD_STS_MMF) { 892 /* fs/ls interrupt xfer missed the complete-split */ 893 urb->status = -EPROTO; 894 } else if (token & QTD_STS_DBE) { 895 urb->status = (QTD_PID(token) == 1) /* IN ? */ 896 ? -ENOSR /* hc couldn't read data */ 897 : -ECOMM; /* hc couldn't write data */ 898 } else if (token & QTD_STS_XACT) { 899 /* timeout, bad crc, wrong PID, etc; retried */ 900 if (QTD_CERR(token)) 901 urb->status = -EPIPE; 902 else { 903 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", 904 urb->dev->devpath, 905 usb_pipeendpoint(urb->pipe), 906 usb_pipein(urb->pipe) ? "in" : "out"); 907 urb->status = -EPROTO; 908 } 909 /* CERR nonzero + no errors + halt --> stall */ 910 } else if (QTD_CERR(token)) 911 urb->status = -EPIPE; 912 else /* unknown */ 913 urb->status = -EPROTO; 914 915 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", 916 usb_pipedevice(urb->pipe), 917 usb_pipeendpoint(urb->pipe), 918 usb_pipein(urb->pipe) ? "in" : "out", 919 token, urb->status); 920 } 921 } 922 923 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) 924 __releases(oxu->lock) 925 __acquires(oxu->lock) 926 { 927 if (likely(urb->hcpriv != NULL)) { 928 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; 929 930 /* S-mask in a QH means it's an interrupt urb */ 931 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { 932 933 /* ... update hc-wide periodic stats (for usbfs) */ 934 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; 935 } 936 qh_put(qh); 937 } 938 939 urb->hcpriv = NULL; 940 switch (urb->status) { 941 case -EINPROGRESS: /* success */ 942 urb->status = 0; 943 default: /* fault */ 944 break; 945 case -EREMOTEIO: /* fault or normal */ 946 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 947 urb->status = 0; 948 break; 949 case -ECONNRESET: /* canceled */ 950 case -ENOENT: 951 break; 952 } 953 954 #ifdef OXU_URB_TRACE 955 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", 956 __func__, urb->dev->devpath, urb, 957 usb_pipeendpoint(urb->pipe), 958 usb_pipein(urb->pipe) ? "in" : "out", 959 urb->status, 960 urb->actual_length, urb->transfer_buffer_length); 961 #endif 962 963 /* complete() can reenter this HCD */ 964 spin_unlock(&oxu->lock); 965 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); 966 spin_lock(&oxu->lock); 967 } 968 969 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 970 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); 971 972 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 973 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); 974 975 #define HALT_BIT cpu_to_le32(QTD_STS_HALT) 976 977 /* Process and free completed qtds for a qh, returning URBs to drivers. 978 * Chases up to qh->hw_current. Returns number of completions called, 979 * indicating how much "real" work we did. 980 */ 981 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) 982 { 983 struct ehci_qtd *last = NULL, *end = qh->dummy; 984 struct ehci_qtd *qtd, *tmp; 985 int stopped; 986 unsigned count = 0; 987 int do_status = 0; 988 u8 state; 989 struct oxu_murb *murb = NULL; 990 991 if (unlikely(list_empty(&qh->qtd_list))) 992 return count; 993 994 /* completions (or tasks on other cpus) must never clobber HALT 995 * till we've gone through and cleaned everything up, even when 996 * they add urbs to this qh's queue or mark them for unlinking. 997 * 998 * NOTE: unlinking expects to be done in queue order. 999 */ 1000 state = qh->qh_state; 1001 qh->qh_state = QH_STATE_COMPLETING; 1002 stopped = (state == QH_STATE_IDLE); 1003 1004 /* remove de-activated QTDs from front of queue. 1005 * after faults (including short reads), cleanup this urb 1006 * then let the queue advance. 1007 * if queue is stopped, handles unlinks. 1008 */ 1009 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { 1010 struct urb *urb; 1011 u32 token = 0; 1012 1013 urb = qtd->urb; 1014 1015 /* Clean up any state from previous QTD ...*/ 1016 if (last) { 1017 if (likely(last->urb != urb)) { 1018 if (last->urb->complete == NULL) { 1019 murb = (struct oxu_murb *) last->urb; 1020 last->urb = murb->main; 1021 if (murb->last) { 1022 ehci_urb_done(oxu, last->urb); 1023 count++; 1024 } 1025 oxu_murb_free(oxu, murb); 1026 } else { 1027 ehci_urb_done(oxu, last->urb); 1028 count++; 1029 } 1030 } 1031 oxu_qtd_free(oxu, last); 1032 last = NULL; 1033 } 1034 1035 /* ignore urbs submitted during completions we reported */ 1036 if (qtd == end) 1037 break; 1038 1039 /* hardware copies qtd out of qh overlay */ 1040 rmb(); 1041 token = le32_to_cpu(qtd->hw_token); 1042 1043 /* always clean up qtds the hc de-activated */ 1044 if ((token & QTD_STS_ACTIVE) == 0) { 1045 1046 if ((token & QTD_STS_HALT) != 0) { 1047 stopped = 1; 1048 1049 /* magic dummy for some short reads; qh won't advance. 1050 * that silicon quirk can kick in with this dummy too. 1051 */ 1052 } else if (IS_SHORT_READ(token) && 1053 !(qtd->hw_alt_next & EHCI_LIST_END)) { 1054 stopped = 1; 1055 goto halt; 1056 } 1057 1058 /* stop scanning when we reach qtds the hc is using */ 1059 } else if (likely(!stopped && 1060 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { 1061 break; 1062 1063 } else { 1064 stopped = 1; 1065 1066 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) 1067 urb->status = -ESHUTDOWN; 1068 1069 /* ignore active urbs unless some previous qtd 1070 * for the urb faulted (including short read) or 1071 * its urb was canceled. we may patch qh or qtds. 1072 */ 1073 if (likely(urb->status == -EINPROGRESS)) 1074 continue; 1075 1076 /* issue status after short control reads */ 1077 if (unlikely(do_status != 0) 1078 && QTD_PID(token) == 0 /* OUT */) { 1079 do_status = 0; 1080 continue; 1081 } 1082 1083 /* token in overlay may be most current */ 1084 if (state == QH_STATE_IDLE 1085 && cpu_to_le32(qtd->qtd_dma) 1086 == qh->hw_current) 1087 token = le32_to_cpu(qh->hw_token); 1088 1089 /* force halt for unlinked or blocked qh, so we'll 1090 * patch the qh later and so that completions can't 1091 * activate it while we "know" it's stopped. 1092 */ 1093 if ((HALT_BIT & qh->hw_token) == 0) { 1094 halt: 1095 qh->hw_token |= HALT_BIT; 1096 wmb(); 1097 } 1098 } 1099 1100 /* Remove it from the queue */ 1101 qtd_copy_status(oxu, urb->complete ? 1102 urb : ((struct oxu_murb *) urb)->main, 1103 qtd->length, token); 1104 if ((usb_pipein(qtd->urb->pipe)) && 1105 (NULL != qtd->transfer_buffer)) 1106 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); 1107 do_status = (urb->status == -EREMOTEIO) 1108 && usb_pipecontrol(urb->pipe); 1109 1110 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 1111 last = list_entry(qtd->qtd_list.prev, 1112 struct ehci_qtd, qtd_list); 1113 last->hw_next = qtd->hw_next; 1114 } 1115 list_del(&qtd->qtd_list); 1116 last = qtd; 1117 } 1118 1119 /* last urb's completion might still need calling */ 1120 if (likely(last != NULL)) { 1121 if (last->urb->complete == NULL) { 1122 murb = (struct oxu_murb *) last->urb; 1123 last->urb = murb->main; 1124 if (murb->last) { 1125 ehci_urb_done(oxu, last->urb); 1126 count++; 1127 } 1128 oxu_murb_free(oxu, murb); 1129 } else { 1130 ehci_urb_done(oxu, last->urb); 1131 count++; 1132 } 1133 oxu_qtd_free(oxu, last); 1134 } 1135 1136 /* restore original state; caller must unlink or relink */ 1137 qh->qh_state = state; 1138 1139 /* be sure the hardware's done with the qh before refreshing 1140 * it after fault cleanup, or recovering from silicon wrongly 1141 * overlaying the dummy qtd (which reduces DMA chatter). 1142 */ 1143 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { 1144 switch (state) { 1145 case QH_STATE_IDLE: 1146 qh_refresh(oxu, qh); 1147 break; 1148 case QH_STATE_LINKED: 1149 /* should be rare for periodic transfers, 1150 * except maybe high bandwidth ... 1151 */ 1152 if ((cpu_to_le32(QH_SMASK) 1153 & qh->hw_info2) != 0) { 1154 intr_deschedule(oxu, qh); 1155 (void) qh_schedule(oxu, qh); 1156 } else 1157 unlink_async(oxu, qh); 1158 break; 1159 /* otherwise, unlink already started */ 1160 } 1161 } 1162 1163 return count; 1164 } 1165 1166 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 1167 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 1168 /* ... and packet size, for any kind of endpoint descriptor */ 1169 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 1170 1171 /* Reverse of qh_urb_transaction: free a list of TDs. 1172 * used for cleanup after errors, before HC sees an URB's TDs. 1173 */ 1174 static void qtd_list_free(struct oxu_hcd *oxu, 1175 struct urb *urb, struct list_head *head) 1176 { 1177 struct ehci_qtd *qtd, *temp; 1178 1179 list_for_each_entry_safe(qtd, temp, head, qtd_list) { 1180 list_del(&qtd->qtd_list); 1181 oxu_qtd_free(oxu, qtd); 1182 } 1183 } 1184 1185 /* Create a list of filled qtds for this URB; won't link into qh. 1186 */ 1187 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, 1188 struct urb *urb, 1189 struct list_head *head, 1190 gfp_t flags) 1191 { 1192 struct ehci_qtd *qtd, *qtd_prev; 1193 dma_addr_t buf; 1194 int len, maxpacket; 1195 int is_input; 1196 u32 token; 1197 void *transfer_buf = NULL; 1198 int ret; 1199 1200 /* 1201 * URBs map to sequences of QTDs: one logical transaction 1202 */ 1203 qtd = ehci_qtd_alloc(oxu); 1204 if (unlikely(!qtd)) 1205 return NULL; 1206 list_add_tail(&qtd->qtd_list, head); 1207 qtd->urb = urb; 1208 1209 token = QTD_STS_ACTIVE; 1210 token |= (EHCI_TUNE_CERR << 10); 1211 /* for split transactions, SplitXState initialized to zero */ 1212 1213 len = urb->transfer_buffer_length; 1214 is_input = usb_pipein(urb->pipe); 1215 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) 1216 urb->transfer_buffer = phys_to_virt(urb->transfer_dma); 1217 1218 if (usb_pipecontrol(urb->pipe)) { 1219 /* SETUP pid */ 1220 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); 1221 if (ret) 1222 goto cleanup; 1223 1224 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), 1225 token | (2 /* "setup" */ << 8), 8); 1226 memcpy(qtd->buffer, qtd->urb->setup_packet, 1227 sizeof(struct usb_ctrlrequest)); 1228 1229 /* ... and always at least one more pid */ 1230 token ^= QTD_TOGGLE; 1231 qtd_prev = qtd; 1232 qtd = ehci_qtd_alloc(oxu); 1233 if (unlikely(!qtd)) 1234 goto cleanup; 1235 qtd->urb = urb; 1236 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1237 list_add_tail(&qtd->qtd_list, head); 1238 1239 /* for zero length DATA stages, STATUS is always IN */ 1240 if (len == 0) 1241 token |= (1 /* "in" */ << 8); 1242 } 1243 1244 /* 1245 * Data transfer stage: buffer setup 1246 */ 1247 1248 ret = oxu_buf_alloc(oxu, qtd, len); 1249 if (ret) 1250 goto cleanup; 1251 1252 buf = qtd->buffer_dma; 1253 transfer_buf = urb->transfer_buffer; 1254 1255 if (!is_input) 1256 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); 1257 1258 if (is_input) 1259 token |= (1 /* "in" */ << 8); 1260 /* else it's already initted to "out" pid (0 << 8) */ 1261 1262 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 1263 1264 /* 1265 * buffer gets wrapped in one or more qtds; 1266 * last one may be "short" (including zero len) 1267 * and may serve as a control status ack 1268 */ 1269 for (;;) { 1270 int this_qtd_len; 1271 1272 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); 1273 qtd->transfer_buffer = transfer_buf; 1274 len -= this_qtd_len; 1275 buf += this_qtd_len; 1276 transfer_buf += this_qtd_len; 1277 if (is_input) 1278 qtd->hw_alt_next = oxu->async->hw_alt_next; 1279 1280 /* qh makes control packets use qtd toggle; maybe switch it */ 1281 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 1282 token ^= QTD_TOGGLE; 1283 1284 if (likely(len <= 0)) 1285 break; 1286 1287 qtd_prev = qtd; 1288 qtd = ehci_qtd_alloc(oxu); 1289 if (unlikely(!qtd)) 1290 goto cleanup; 1291 if (likely(len > 0)) { 1292 ret = oxu_buf_alloc(oxu, qtd, len); 1293 if (ret) 1294 goto cleanup; 1295 } 1296 qtd->urb = urb; 1297 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1298 list_add_tail(&qtd->qtd_list, head); 1299 } 1300 1301 /* unless the bulk/interrupt caller wants a chance to clean 1302 * up after short reads, hc should advance qh past this urb 1303 */ 1304 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 1305 || usb_pipecontrol(urb->pipe))) 1306 qtd->hw_alt_next = EHCI_LIST_END; 1307 1308 /* 1309 * control requests may need a terminating data "status" ack; 1310 * bulk ones may need a terminating short packet (zero length). 1311 */ 1312 if (likely(urb->transfer_buffer_length != 0)) { 1313 int one_more = 0; 1314 1315 if (usb_pipecontrol(urb->pipe)) { 1316 one_more = 1; 1317 token ^= 0x0100; /* "in" <--> "out" */ 1318 token |= QTD_TOGGLE; /* force DATA1 */ 1319 } else if (usb_pipebulk(urb->pipe) 1320 && (urb->transfer_flags & URB_ZERO_PACKET) 1321 && !(urb->transfer_buffer_length % maxpacket)) { 1322 one_more = 1; 1323 } 1324 if (one_more) { 1325 qtd_prev = qtd; 1326 qtd = ehci_qtd_alloc(oxu); 1327 if (unlikely(!qtd)) 1328 goto cleanup; 1329 qtd->urb = urb; 1330 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); 1331 list_add_tail(&qtd->qtd_list, head); 1332 1333 /* never any data in such packets */ 1334 qtd_fill(qtd, 0, 0, token, 0); 1335 } 1336 } 1337 1338 /* by default, enable interrupt on urb completion */ 1339 qtd->hw_token |= cpu_to_le32(QTD_IOC); 1340 return head; 1341 1342 cleanup: 1343 qtd_list_free(oxu, urb, head); 1344 return NULL; 1345 } 1346 1347 /* Each QH holds a qtd list; a QH is used for everything except iso. 1348 * 1349 * For interrupt urbs, the scheduler must set the microframe scheduling 1350 * mask(s) each time the QH gets scheduled. For highspeed, that's 1351 * just one microframe in the s-mask. For split interrupt transactions 1352 * there are additional complications: c-mask, maybe FSTNs. 1353 */ 1354 static struct ehci_qh *qh_make(struct oxu_hcd *oxu, 1355 struct urb *urb, gfp_t flags) 1356 { 1357 struct ehci_qh *qh = oxu_qh_alloc(oxu); 1358 u32 info1 = 0, info2 = 0; 1359 int is_input, type; 1360 int maxp = 0; 1361 1362 if (!qh) 1363 return qh; 1364 1365 /* 1366 * init endpoint/device data for this QH 1367 */ 1368 info1 |= usb_pipeendpoint(urb->pipe) << 8; 1369 info1 |= usb_pipedevice(urb->pipe) << 0; 1370 1371 is_input = usb_pipein(urb->pipe); 1372 type = usb_pipetype(urb->pipe); 1373 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); 1374 1375 /* Compute interrupt scheduling parameters just once, and save. 1376 * - allowing for high bandwidth, how many nsec/uframe are used? 1377 * - split transactions need a second CSPLIT uframe; same question 1378 * - splits also need a schedule gap (for full/low speed I/O) 1379 * - qh has a polling interval 1380 * 1381 * For control/bulk requests, the HC or TT handles these. 1382 */ 1383 if (type == PIPE_INTERRUPT) { 1384 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 1385 is_input, 0, 1386 hb_mult(maxp) * max_packet(maxp))); 1387 qh->start = NO_FRAME; 1388 1389 if (urb->dev->speed == USB_SPEED_HIGH) { 1390 qh->c_usecs = 0; 1391 qh->gap_uf = 0; 1392 1393 qh->period = urb->interval >> 3; 1394 if (qh->period == 0 && urb->interval != 1) { 1395 /* NOTE interval 2 or 4 uframes could work. 1396 * But interval 1 scheduling is simpler, and 1397 * includes high bandwidth. 1398 */ 1399 oxu_dbg(oxu, "intr period %d uframes, NYET!\n", 1400 urb->interval); 1401 goto done; 1402 } 1403 } else { 1404 struct usb_tt *tt = urb->dev->tt; 1405 int think_time; 1406 1407 /* gap is f(FS/LS transfer times) */ 1408 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 1409 is_input, 0, maxp) / (125 * 1000); 1410 1411 /* FIXME this just approximates SPLIT/CSPLIT times */ 1412 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 1413 qh->c_usecs = qh->usecs + HS_USECS(0); 1414 qh->usecs = HS_USECS(1); 1415 } else { /* SPLIT+DATA, gap, CSPLIT */ 1416 qh->usecs += HS_USECS(1); 1417 qh->c_usecs = HS_USECS(0); 1418 } 1419 1420 think_time = tt ? tt->think_time : 0; 1421 qh->tt_usecs = NS_TO_US(think_time + 1422 usb_calc_bus_time(urb->dev->speed, 1423 is_input, 0, max_packet(maxp))); 1424 qh->period = urb->interval; 1425 } 1426 } 1427 1428 /* support for tt scheduling, and access to toggles */ 1429 qh->dev = urb->dev; 1430 1431 /* using TT? */ 1432 switch (urb->dev->speed) { 1433 case USB_SPEED_LOW: 1434 info1 |= (1 << 12); /* EPS "low" */ 1435 /* FALL THROUGH */ 1436 1437 case USB_SPEED_FULL: 1438 /* EPS 0 means "full" */ 1439 if (type != PIPE_INTERRUPT) 1440 info1 |= (EHCI_TUNE_RL_TT << 28); 1441 if (type == PIPE_CONTROL) { 1442 info1 |= (1 << 27); /* for TT */ 1443 info1 |= 1 << 14; /* toggle from qtd */ 1444 } 1445 info1 |= maxp << 16; 1446 1447 info2 |= (EHCI_TUNE_MULT_TT << 30); 1448 info2 |= urb->dev->ttport << 23; 1449 1450 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 1451 1452 break; 1453 1454 case USB_SPEED_HIGH: /* no TT involved */ 1455 info1 |= (2 << 12); /* EPS "high" */ 1456 if (type == PIPE_CONTROL) { 1457 info1 |= (EHCI_TUNE_RL_HS << 28); 1458 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 1459 info1 |= 1 << 14; /* toggle from qtd */ 1460 info2 |= (EHCI_TUNE_MULT_HS << 30); 1461 } else if (type == PIPE_BULK) { 1462 info1 |= (EHCI_TUNE_RL_HS << 28); 1463 info1 |= 512 << 16; /* usb2 fixed maxpacket */ 1464 info2 |= (EHCI_TUNE_MULT_HS << 30); 1465 } else { /* PIPE_INTERRUPT */ 1466 info1 |= max_packet(maxp) << 16; 1467 info2 |= hb_mult(maxp) << 30; 1468 } 1469 break; 1470 default: 1471 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); 1472 done: 1473 qh_put(qh); 1474 return NULL; 1475 } 1476 1477 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 1478 1479 /* init as live, toggle clear, advance to dummy */ 1480 qh->qh_state = QH_STATE_IDLE; 1481 qh->hw_info1 = cpu_to_le32(info1); 1482 qh->hw_info2 = cpu_to_le32(info2); 1483 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 1484 qh_refresh(oxu, qh); 1485 return qh; 1486 } 1487 1488 /* Move qh (and its qtds) onto async queue; maybe enable queue. 1489 */ 1490 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1491 { 1492 __le32 dma = QH_NEXT(qh->qh_dma); 1493 struct ehci_qh *head; 1494 1495 /* (re)start the async schedule? */ 1496 head = oxu->async; 1497 timer_action_done(oxu, TIMER_ASYNC_OFF); 1498 if (!head->qh_next.qh) { 1499 u32 cmd = readl(&oxu->regs->command); 1500 1501 if (!(cmd & CMD_ASE)) { 1502 /* in case a clear of CMD_ASE didn't take yet */ 1503 (void)handshake(oxu, &oxu->regs->status, 1504 STS_ASS, 0, 150); 1505 cmd |= CMD_ASE | CMD_RUN; 1506 writel(cmd, &oxu->regs->command); 1507 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1508 /* posted write need not be known to HC yet ... */ 1509 } 1510 } 1511 1512 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 1513 if (qh->qh_state == QH_STATE_IDLE) 1514 qh_refresh(oxu, qh); 1515 1516 /* splice right after start */ 1517 qh->qh_next = head->qh_next; 1518 qh->hw_next = head->hw_next; 1519 wmb(); 1520 1521 head->qh_next.qh = qh; 1522 head->hw_next = dma; 1523 1524 qh->qh_state = QH_STATE_LINKED; 1525 /* qtd completions reported later by interrupt */ 1526 } 1527 1528 #define QH_ADDR_MASK cpu_to_le32(0x7f) 1529 1530 /* 1531 * For control/bulk/interrupt, return QH with these TDs appended. 1532 * Allocates and initializes the QH if necessary. 1533 * Returns null if it can't allocate a QH it needs to. 1534 * If the QH has TDs (urbs) already, that's great. 1535 */ 1536 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, 1537 struct urb *urb, struct list_head *qtd_list, 1538 int epnum, void **ptr) 1539 { 1540 struct ehci_qh *qh = NULL; 1541 1542 qh = (struct ehci_qh *) *ptr; 1543 if (unlikely(qh == NULL)) { 1544 /* can't sleep here, we have oxu->lock... */ 1545 qh = qh_make(oxu, urb, GFP_ATOMIC); 1546 *ptr = qh; 1547 } 1548 if (likely(qh != NULL)) { 1549 struct ehci_qtd *qtd; 1550 1551 if (unlikely(list_empty(qtd_list))) 1552 qtd = NULL; 1553 else 1554 qtd = list_entry(qtd_list->next, struct ehci_qtd, 1555 qtd_list); 1556 1557 /* control qh may need patching ... */ 1558 if (unlikely(epnum == 0)) { 1559 1560 /* usb_reset_device() briefly reverts to address 0 */ 1561 if (usb_pipedevice(urb->pipe) == 0) 1562 qh->hw_info1 &= ~QH_ADDR_MASK; 1563 } 1564 1565 /* just one way to queue requests: swap with the dummy qtd. 1566 * only hc or qh_refresh() ever modify the overlay. 1567 */ 1568 if (likely(qtd != NULL)) { 1569 struct ehci_qtd *dummy; 1570 dma_addr_t dma; 1571 __le32 token; 1572 1573 /* to avoid racing the HC, use the dummy td instead of 1574 * the first td of our list (becomes new dummy). both 1575 * tds stay deactivated until we're done, when the 1576 * HC is allowed to fetch the old dummy (4.10.2). 1577 */ 1578 token = qtd->hw_token; 1579 qtd->hw_token = HALT_BIT; 1580 wmb(); 1581 dummy = qh->dummy; 1582 1583 dma = dummy->qtd_dma; 1584 *dummy = *qtd; 1585 dummy->qtd_dma = dma; 1586 1587 list_del(&qtd->qtd_list); 1588 list_add(&dummy->qtd_list, qtd_list); 1589 list_splice(qtd_list, qh->qtd_list.prev); 1590 1591 ehci_qtd_init(qtd, qtd->qtd_dma); 1592 qh->dummy = qtd; 1593 1594 /* hc must see the new dummy at list end */ 1595 dma = qtd->qtd_dma; 1596 qtd = list_entry(qh->qtd_list.prev, 1597 struct ehci_qtd, qtd_list); 1598 qtd->hw_next = QTD_NEXT(dma); 1599 1600 /* let the hc process these next qtds */ 1601 dummy->hw_token = (token & ~(0x80)); 1602 wmb(); 1603 dummy->hw_token = token; 1604 1605 urb->hcpriv = qh_get(qh); 1606 } 1607 } 1608 return qh; 1609 } 1610 1611 static int submit_async(struct oxu_hcd *oxu, struct urb *urb, 1612 struct list_head *qtd_list, gfp_t mem_flags) 1613 { 1614 struct ehci_qtd *qtd; 1615 int epnum; 1616 unsigned long flags; 1617 struct ehci_qh *qh = NULL; 1618 int rc = 0; 1619 1620 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1621 epnum = urb->ep->desc.bEndpointAddress; 1622 1623 #ifdef OXU_URB_TRACE 1624 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1625 __func__, urb->dev->devpath, urb, 1626 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1627 urb->transfer_buffer_length, 1628 qtd, urb->ep->hcpriv); 1629 #endif 1630 1631 spin_lock_irqsave(&oxu->lock, flags); 1632 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 1633 rc = -ESHUTDOWN; 1634 goto done; 1635 } 1636 1637 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 1638 if (unlikely(qh == NULL)) { 1639 rc = -ENOMEM; 1640 goto done; 1641 } 1642 1643 /* Control/bulk operations through TTs don't need scheduling, 1644 * the HC and TT handle it when the TT has a buffer ready. 1645 */ 1646 if (likely(qh->qh_state == QH_STATE_IDLE)) 1647 qh_link_async(oxu, qh_get(qh)); 1648 done: 1649 spin_unlock_irqrestore(&oxu->lock, flags); 1650 if (unlikely(qh == NULL)) 1651 qtd_list_free(oxu, urb, qtd_list); 1652 return rc; 1653 } 1654 1655 /* The async qh for the qtds being reclaimed are now unlinked from the HC */ 1656 1657 static void end_unlink_async(struct oxu_hcd *oxu) 1658 { 1659 struct ehci_qh *qh = oxu->reclaim; 1660 struct ehci_qh *next; 1661 1662 timer_action_done(oxu, TIMER_IAA_WATCHDOG); 1663 1664 qh->qh_state = QH_STATE_IDLE; 1665 qh->qh_next.qh = NULL; 1666 qh_put(qh); /* refcount from reclaim */ 1667 1668 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ 1669 next = qh->reclaim; 1670 oxu->reclaim = next; 1671 oxu->reclaim_ready = 0; 1672 qh->reclaim = NULL; 1673 1674 qh_completions(oxu, qh); 1675 1676 if (!list_empty(&qh->qtd_list) 1677 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 1678 qh_link_async(oxu, qh); 1679 else { 1680 qh_put(qh); /* refcount from async list */ 1681 1682 /* it's not free to turn the async schedule on/off; leave it 1683 * active but idle for a while once it empties. 1684 */ 1685 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) 1686 && oxu->async->qh_next.qh == NULL) 1687 timer_action(oxu, TIMER_ASYNC_OFF); 1688 } 1689 1690 if (next) { 1691 oxu->reclaim = NULL; 1692 start_unlink_async(oxu, next); 1693 } 1694 } 1695 1696 /* makes sure the async qh will become idle */ 1697 /* caller must own oxu->lock */ 1698 1699 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 1700 { 1701 int cmd = readl(&oxu->regs->command); 1702 struct ehci_qh *prev; 1703 1704 #ifdef DEBUG 1705 assert_spin_locked(&oxu->lock); 1706 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED 1707 && qh->qh_state != QH_STATE_UNLINK_WAIT)); 1708 #endif 1709 1710 /* stop async schedule right now? */ 1711 if (unlikely(qh == oxu->async)) { 1712 /* can't get here without STS_ASS set */ 1713 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT 1714 && !oxu->reclaim) { 1715 /* ... and CMD_IAAD clear */ 1716 writel(cmd & ~CMD_ASE, &oxu->regs->command); 1717 wmb(); 1718 /* handshake later, if we need to */ 1719 timer_action_done(oxu, TIMER_ASYNC_OFF); 1720 } 1721 return; 1722 } 1723 1724 qh->qh_state = QH_STATE_UNLINK; 1725 oxu->reclaim = qh = qh_get(qh); 1726 1727 prev = oxu->async; 1728 while (prev->qh_next.qh != qh) 1729 prev = prev->qh_next.qh; 1730 1731 prev->hw_next = qh->hw_next; 1732 prev->qh_next = qh->qh_next; 1733 wmb(); 1734 1735 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { 1736 /* if (unlikely(qh->reclaim != 0)) 1737 * this will recurse, probably not much 1738 */ 1739 end_unlink_async(oxu); 1740 return; 1741 } 1742 1743 oxu->reclaim_ready = 0; 1744 cmd |= CMD_IAAD; 1745 writel(cmd, &oxu->regs->command); 1746 (void) readl(&oxu->regs->command); 1747 timer_action(oxu, TIMER_IAA_WATCHDOG); 1748 } 1749 1750 static void scan_async(struct oxu_hcd *oxu) 1751 { 1752 struct ehci_qh *qh; 1753 enum ehci_timer_action action = TIMER_IO_WATCHDOG; 1754 1755 if (!++(oxu->stamp)) 1756 oxu->stamp++; 1757 timer_action_done(oxu, TIMER_ASYNC_SHRINK); 1758 rescan: 1759 qh = oxu->async->qh_next.qh; 1760 if (likely(qh != NULL)) { 1761 do { 1762 /* clean any finished work for this qh */ 1763 if (!list_empty(&qh->qtd_list) 1764 && qh->stamp != oxu->stamp) { 1765 int temp; 1766 1767 /* unlinks could happen here; completion 1768 * reporting drops the lock. rescan using 1769 * the latest schedule, but don't rescan 1770 * qhs we already finished (no looping). 1771 */ 1772 qh = qh_get(qh); 1773 qh->stamp = oxu->stamp; 1774 temp = qh_completions(oxu, qh); 1775 qh_put(qh); 1776 if (temp != 0) 1777 goto rescan; 1778 } 1779 1780 /* unlink idle entries, reducing HC PCI usage as well 1781 * as HCD schedule-scanning costs. delay for any qh 1782 * we just scanned, there's a not-unusual case that it 1783 * doesn't stay idle for long. 1784 * (plus, avoids some kind of re-activation race.) 1785 */ 1786 if (list_empty(&qh->qtd_list)) { 1787 if (qh->stamp == oxu->stamp) 1788 action = TIMER_ASYNC_SHRINK; 1789 else if (!oxu->reclaim 1790 && qh->qh_state == QH_STATE_LINKED) 1791 start_unlink_async(oxu, qh); 1792 } 1793 1794 qh = qh->qh_next.qh; 1795 } while (qh); 1796 } 1797 if (action == TIMER_ASYNC_SHRINK) 1798 timer_action(oxu, TIMER_ASYNC_SHRINK); 1799 } 1800 1801 /* 1802 * periodic_next_shadow - return "next" pointer on shadow list 1803 * @periodic: host pointer to qh/itd/sitd 1804 * @tag: hardware tag for type of this record 1805 */ 1806 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, 1807 __le32 tag) 1808 { 1809 switch (tag) { 1810 default: 1811 case Q_TYPE_QH: 1812 return &periodic->qh->qh_next; 1813 } 1814 } 1815 1816 /* caller must hold oxu->lock */ 1817 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) 1818 { 1819 union ehci_shadow *prev_p = &oxu->pshadow[frame]; 1820 __le32 *hw_p = &oxu->periodic[frame]; 1821 union ehci_shadow here = *prev_p; 1822 1823 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 1824 while (here.ptr && here.ptr != ptr) { 1825 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); 1826 hw_p = here.hw_next; 1827 here = *prev_p; 1828 } 1829 /* an interrupt entry (at list end) could have been shared */ 1830 if (!here.ptr) 1831 return; 1832 1833 /* update shadow and hardware lists ... the old "next" pointers 1834 * from ptr may still be in use, the caller updates them. 1835 */ 1836 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); 1837 *hw_p = *here.hw_next; 1838 } 1839 1840 /* how many of the uframe's 125 usecs are allocated? */ 1841 static unsigned short periodic_usecs(struct oxu_hcd *oxu, 1842 unsigned frame, unsigned uframe) 1843 { 1844 __le32 *hw_p = &oxu->periodic[frame]; 1845 union ehci_shadow *q = &oxu->pshadow[frame]; 1846 unsigned usecs = 0; 1847 1848 while (q->ptr) { 1849 switch (Q_NEXT_TYPE(*hw_p)) { 1850 case Q_TYPE_QH: 1851 default: 1852 /* is it in the S-mask? */ 1853 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) 1854 usecs += q->qh->usecs; 1855 /* ... or C-mask? */ 1856 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) 1857 usecs += q->qh->c_usecs; 1858 hw_p = &q->qh->hw_next; 1859 q = &q->qh->qh_next; 1860 break; 1861 } 1862 } 1863 #ifdef DEBUG 1864 if (usecs > 100) 1865 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", 1866 frame * 8 + uframe, usecs); 1867 #endif 1868 return usecs; 1869 } 1870 1871 static int enable_periodic(struct oxu_hcd *oxu) 1872 { 1873 u32 cmd; 1874 int status; 1875 1876 /* did clearing PSE did take effect yet? 1877 * takes effect only at frame boundaries... 1878 */ 1879 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); 1880 if (status != 0) { 1881 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1882 usb_hc_died(oxu_to_hcd(oxu)); 1883 return status; 1884 } 1885 1886 cmd = readl(&oxu->regs->command) | CMD_PSE; 1887 writel(cmd, &oxu->regs->command); 1888 /* posted write ... PSS happens later */ 1889 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; 1890 1891 /* make sure ehci_work scans these */ 1892 oxu->next_uframe = readl(&oxu->regs->frame_index) 1893 % (oxu->periodic_size << 3); 1894 return 0; 1895 } 1896 1897 static int disable_periodic(struct oxu_hcd *oxu) 1898 { 1899 u32 cmd; 1900 int status; 1901 1902 /* did setting PSE not take effect yet? 1903 * takes effect only at frame boundaries... 1904 */ 1905 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); 1906 if (status != 0) { 1907 oxu_to_hcd(oxu)->state = HC_STATE_HALT; 1908 usb_hc_died(oxu_to_hcd(oxu)); 1909 return status; 1910 } 1911 1912 cmd = readl(&oxu->regs->command) & ~CMD_PSE; 1913 writel(cmd, &oxu->regs->command); 1914 /* posted write ... */ 1915 1916 oxu->next_uframe = -1; 1917 return 0; 1918 } 1919 1920 /* periodic schedule slots have iso tds (normal or split) first, then a 1921 * sparse tree for active interrupt transfers. 1922 * 1923 * this just links in a qh; caller guarantees uframe masks are set right. 1924 * no FSTN support (yet; oxu 0.96+) 1925 */ 1926 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1927 { 1928 unsigned i; 1929 unsigned period = qh->period; 1930 1931 dev_dbg(&qh->dev->dev, 1932 "link qh%d-%04x/%p start %d [%d/%d us]\n", 1933 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 1934 qh, qh->start, qh->usecs, qh->c_usecs); 1935 1936 /* high bandwidth, or otherwise every microframe */ 1937 if (period == 0) 1938 period = 1; 1939 1940 for (i = qh->start; i < oxu->periodic_size; i += period) { 1941 union ehci_shadow *prev = &oxu->pshadow[i]; 1942 __le32 *hw_p = &oxu->periodic[i]; 1943 union ehci_shadow here = *prev; 1944 __le32 type = 0; 1945 1946 /* skip the iso nodes at list head */ 1947 while (here.ptr) { 1948 type = Q_NEXT_TYPE(*hw_p); 1949 if (type == Q_TYPE_QH) 1950 break; 1951 prev = periodic_next_shadow(prev, type); 1952 hw_p = &here.qh->hw_next; 1953 here = *prev; 1954 } 1955 1956 /* sorting each branch by period (slow-->fast) 1957 * enables sharing interior tree nodes 1958 */ 1959 while (here.ptr && qh != here.qh) { 1960 if (qh->period > here.qh->period) 1961 break; 1962 prev = &here.qh->qh_next; 1963 hw_p = &here.qh->hw_next; 1964 here = *prev; 1965 } 1966 /* link in this qh, unless some earlier pass did that */ 1967 if (qh != here.qh) { 1968 qh->qh_next = here; 1969 if (here.qh) 1970 qh->hw_next = *hw_p; 1971 wmb(); 1972 prev->qh = qh; 1973 *hw_p = QH_NEXT(qh->qh_dma); 1974 } 1975 } 1976 qh->qh_state = QH_STATE_LINKED; 1977 qh_get(qh); 1978 1979 /* update per-qh bandwidth for usbfs */ 1980 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period 1981 ? ((qh->usecs + qh->c_usecs) / qh->period) 1982 : (qh->usecs * 8); 1983 1984 /* maybe enable periodic schedule processing */ 1985 if (!oxu->periodic_sched++) 1986 return enable_periodic(oxu); 1987 1988 return 0; 1989 } 1990 1991 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) 1992 { 1993 unsigned i; 1994 unsigned period; 1995 1996 /* FIXME: 1997 * IF this isn't high speed 1998 * and this qh is active in the current uframe 1999 * (and overlay token SplitXstate is false?) 2000 * THEN 2001 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); 2002 */ 2003 2004 /* high bandwidth, or otherwise part of every microframe */ 2005 period = qh->period; 2006 if (period == 0) 2007 period = 1; 2008 2009 for (i = qh->start; i < oxu->periodic_size; i += period) 2010 periodic_unlink(oxu, i, qh); 2011 2012 /* update per-qh bandwidth for usbfs */ 2013 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period 2014 ? ((qh->usecs + qh->c_usecs) / qh->period) 2015 : (qh->usecs * 8); 2016 2017 dev_dbg(&qh->dev->dev, 2018 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 2019 qh->period, 2020 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), 2021 qh, qh->start, qh->usecs, qh->c_usecs); 2022 2023 /* qh->qh_next still "live" to HC */ 2024 qh->qh_state = QH_STATE_UNLINK; 2025 qh->qh_next.ptr = NULL; 2026 qh_put(qh); 2027 2028 /* maybe turn off periodic schedule */ 2029 oxu->periodic_sched--; 2030 if (!oxu->periodic_sched) 2031 (void) disable_periodic(oxu); 2032 } 2033 2034 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2035 { 2036 unsigned wait; 2037 2038 qh_unlink_periodic(oxu, qh); 2039 2040 /* simple/paranoid: always delay, expecting the HC needs to read 2041 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 2042 * expect hub_wq to clean up after any CSPLITs we won't issue. 2043 * active high speed queues may need bigger delays... 2044 */ 2045 if (list_empty(&qh->qtd_list) 2046 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) 2047 wait = 2; 2048 else 2049 wait = 55; /* worst case: 3 * 1024 */ 2050 2051 udelay(wait); 2052 qh->qh_state = QH_STATE_IDLE; 2053 qh->hw_next = EHCI_LIST_END; 2054 wmb(); 2055 } 2056 2057 static int check_period(struct oxu_hcd *oxu, 2058 unsigned frame, unsigned uframe, 2059 unsigned period, unsigned usecs) 2060 { 2061 int claimed; 2062 2063 /* complete split running into next frame? 2064 * given FSTN support, we could sometimes check... 2065 */ 2066 if (uframe >= 8) 2067 return 0; 2068 2069 /* 2070 * 80% periodic == 100 usec/uframe available 2071 * convert "usecs we need" to "max already claimed" 2072 */ 2073 usecs = 100 - usecs; 2074 2075 /* we "know" 2 and 4 uframe intervals were rejected; so 2076 * for period 0, check _every_ microframe in the schedule. 2077 */ 2078 if (unlikely(period == 0)) { 2079 do { 2080 for (uframe = 0; uframe < 7; uframe++) { 2081 claimed = periodic_usecs(oxu, frame, uframe); 2082 if (claimed > usecs) 2083 return 0; 2084 } 2085 } while ((frame += 1) < oxu->periodic_size); 2086 2087 /* just check the specified uframe, at that period */ 2088 } else { 2089 do { 2090 claimed = periodic_usecs(oxu, frame, uframe); 2091 if (claimed > usecs) 2092 return 0; 2093 } while ((frame += period) < oxu->periodic_size); 2094 } 2095 2096 return 1; 2097 } 2098 2099 static int check_intr_schedule(struct oxu_hcd *oxu, 2100 unsigned frame, unsigned uframe, 2101 const struct ehci_qh *qh, __le32 *c_maskp) 2102 { 2103 int retval = -ENOSPC; 2104 2105 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 2106 goto done; 2107 2108 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) 2109 goto done; 2110 if (!qh->c_usecs) { 2111 retval = 0; 2112 *c_maskp = 0; 2113 goto done; 2114 } 2115 2116 done: 2117 return retval; 2118 } 2119 2120 /* "first fit" scheduling policy used the first time through, 2121 * or when the previous schedule slot can't be re-used. 2122 */ 2123 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) 2124 { 2125 int status; 2126 unsigned uframe; 2127 __le32 c_mask; 2128 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 2129 2130 qh_refresh(oxu, qh); 2131 qh->hw_next = EHCI_LIST_END; 2132 frame = qh->start; 2133 2134 /* reuse the previous schedule slots, if we can */ 2135 if (frame < qh->period) { 2136 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); 2137 status = check_intr_schedule(oxu, frame, --uframe, 2138 qh, &c_mask); 2139 } else { 2140 uframe = 0; 2141 c_mask = 0; 2142 status = -ENOSPC; 2143 } 2144 2145 /* else scan the schedule to find a group of slots such that all 2146 * uframes have enough periodic bandwidth available. 2147 */ 2148 if (status) { 2149 /* "normal" case, uframing flexible except with splits */ 2150 if (qh->period) { 2151 frame = qh->period - 1; 2152 do { 2153 for (uframe = 0; uframe < 8; uframe++) { 2154 status = check_intr_schedule(oxu, 2155 frame, uframe, qh, 2156 &c_mask); 2157 if (status == 0) 2158 break; 2159 } 2160 } while (status && frame--); 2161 2162 /* qh->period == 0 means every uframe */ 2163 } else { 2164 frame = 0; 2165 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); 2166 } 2167 if (status) 2168 goto done; 2169 qh->start = frame; 2170 2171 /* reset S-frame and (maybe) C-frame masks */ 2172 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); 2173 qh->hw_info2 |= qh->period 2174 ? cpu_to_le32(1 << uframe) 2175 : cpu_to_le32(QH_SMASK); 2176 qh->hw_info2 |= c_mask; 2177 } else 2178 oxu_dbg(oxu, "reused qh %p schedule\n", qh); 2179 2180 /* stuff into the periodic schedule */ 2181 status = qh_link_periodic(oxu, qh); 2182 done: 2183 return status; 2184 } 2185 2186 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, 2187 struct list_head *qtd_list, gfp_t mem_flags) 2188 { 2189 unsigned epnum; 2190 unsigned long flags; 2191 struct ehci_qh *qh; 2192 int status = 0; 2193 struct list_head empty; 2194 2195 /* get endpoint and transfer/schedule data */ 2196 epnum = urb->ep->desc.bEndpointAddress; 2197 2198 spin_lock_irqsave(&oxu->lock, flags); 2199 2200 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { 2201 status = -ESHUTDOWN; 2202 goto done; 2203 } 2204 2205 /* get qh and force any scheduling errors */ 2206 INIT_LIST_HEAD(&empty); 2207 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); 2208 if (qh == NULL) { 2209 status = -ENOMEM; 2210 goto done; 2211 } 2212 if (qh->qh_state == QH_STATE_IDLE) { 2213 status = qh_schedule(oxu, qh); 2214 if (status != 0) 2215 goto done; 2216 } 2217 2218 /* then queue the urb's tds to the qh */ 2219 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); 2220 BUG_ON(qh == NULL); 2221 2222 /* ... update usbfs periodic stats */ 2223 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; 2224 2225 done: 2226 spin_unlock_irqrestore(&oxu->lock, flags); 2227 if (status) 2228 qtd_list_free(oxu, urb, qtd_list); 2229 2230 return status; 2231 } 2232 2233 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, 2234 gfp_t mem_flags) 2235 { 2236 oxu_dbg(oxu, "iso support is missing!\n"); 2237 return -ENOSYS; 2238 } 2239 2240 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, 2241 gfp_t mem_flags) 2242 { 2243 oxu_dbg(oxu, "split iso support is missing!\n"); 2244 return -ENOSYS; 2245 } 2246 2247 static void scan_periodic(struct oxu_hcd *oxu) 2248 { 2249 unsigned frame, clock, now_uframe, mod; 2250 unsigned modified; 2251 2252 mod = oxu->periodic_size << 3; 2253 2254 /* 2255 * When running, scan from last scan point up to "now" 2256 * else clean up by scanning everything that's left. 2257 * Touches as few pages as possible: cache-friendly. 2258 */ 2259 now_uframe = oxu->next_uframe; 2260 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2261 clock = readl(&oxu->regs->frame_index); 2262 else 2263 clock = now_uframe + mod - 1; 2264 clock %= mod; 2265 2266 for (;;) { 2267 union ehci_shadow q, *q_p; 2268 __le32 type, *hw_p; 2269 unsigned uframes; 2270 2271 /* don't scan past the live uframe */ 2272 frame = now_uframe >> 3; 2273 if (frame == (clock >> 3)) 2274 uframes = now_uframe & 0x07; 2275 else { 2276 /* safe to scan the whole frame at once */ 2277 now_uframe |= 0x07; 2278 uframes = 8; 2279 } 2280 2281 restart: 2282 /* scan each element in frame's queue for completions */ 2283 q_p = &oxu->pshadow[frame]; 2284 hw_p = &oxu->periodic[frame]; 2285 q.ptr = q_p->ptr; 2286 type = Q_NEXT_TYPE(*hw_p); 2287 modified = 0; 2288 2289 while (q.ptr != NULL) { 2290 union ehci_shadow temp; 2291 2292 switch (type) { 2293 case Q_TYPE_QH: 2294 /* handle any completions */ 2295 temp.qh = qh_get(q.qh); 2296 type = Q_NEXT_TYPE(q.qh->hw_next); 2297 q = q.qh->qh_next; 2298 modified = qh_completions(oxu, temp.qh); 2299 if (unlikely(list_empty(&temp.qh->qtd_list))) 2300 intr_deschedule(oxu, temp.qh); 2301 qh_put(temp.qh); 2302 break; 2303 default: 2304 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n", 2305 type, frame, q.ptr); 2306 q.ptr = NULL; 2307 } 2308 2309 /* assume completion callbacks modify the queue */ 2310 if (unlikely(modified)) 2311 goto restart; 2312 } 2313 2314 /* Stop when we catch up to the HC */ 2315 2316 /* FIXME: this assumes we won't get lapped when 2317 * latencies climb; that should be rare, but... 2318 * detect it, and just go all the way around. 2319 * FLR might help detect this case, so long as latencies 2320 * don't exceed periodic_size msec (default 1.024 sec). 2321 */ 2322 2323 /* FIXME: likewise assumes HC doesn't halt mid-scan */ 2324 2325 if (now_uframe == clock) { 2326 unsigned now; 2327 2328 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) 2329 break; 2330 oxu->next_uframe = now_uframe; 2331 now = readl(&oxu->regs->frame_index) % mod; 2332 if (now_uframe == now) 2333 break; 2334 2335 /* rescan the rest of this frame, then ... */ 2336 clock = now; 2337 } else { 2338 now_uframe++; 2339 now_uframe %= mod; 2340 } 2341 } 2342 } 2343 2344 /* On some systems, leaving remote wakeup enabled prevents system shutdown. 2345 * The firmware seems to think that powering off is a wakeup event! 2346 * This routine turns off remote wakeup and everything else, on all ports. 2347 */ 2348 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) 2349 { 2350 int port = HCS_N_PORTS(oxu->hcs_params); 2351 2352 while (port--) 2353 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); 2354 } 2355 2356 static void ehci_port_power(struct oxu_hcd *oxu, int is_on) 2357 { 2358 unsigned port; 2359 2360 if (!HCS_PPC(oxu->hcs_params)) 2361 return; 2362 2363 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); 2364 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) 2365 (void) oxu_hub_control(oxu_to_hcd(oxu), 2366 is_on ? SetPortFeature : ClearPortFeature, 2367 USB_PORT_FEAT_POWER, 2368 port--, NULL, 0); 2369 msleep(20); 2370 } 2371 2372 /* Called from some interrupts, timers, and so on. 2373 * It calls driver completion functions, after dropping oxu->lock. 2374 */ 2375 static void ehci_work(struct oxu_hcd *oxu) 2376 { 2377 timer_action_done(oxu, TIMER_IO_WATCHDOG); 2378 if (oxu->reclaim_ready) 2379 end_unlink_async(oxu); 2380 2381 /* another CPU may drop oxu->lock during a schedule scan while 2382 * it reports urb completions. this flag guards against bogus 2383 * attempts at re-entrant schedule scanning. 2384 */ 2385 if (oxu->scanning) 2386 return; 2387 oxu->scanning = 1; 2388 scan_async(oxu); 2389 if (oxu->next_uframe != -1) 2390 scan_periodic(oxu); 2391 oxu->scanning = 0; 2392 2393 /* the IO watchdog guards against hardware or driver bugs that 2394 * misplace IRQs, and should let us run completely without IRQs. 2395 * such lossage has been observed on both VT6202 and VT8235. 2396 */ 2397 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && 2398 (oxu->async->qh_next.ptr != NULL || 2399 oxu->periodic_sched != 0)) 2400 timer_action(oxu, TIMER_IO_WATCHDOG); 2401 } 2402 2403 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) 2404 { 2405 /* if we need to use IAA and it's busy, defer */ 2406 if (qh->qh_state == QH_STATE_LINKED 2407 && oxu->reclaim 2408 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { 2409 struct ehci_qh *last; 2410 2411 for (last = oxu->reclaim; 2412 last->reclaim; 2413 last = last->reclaim) 2414 continue; 2415 qh->qh_state = QH_STATE_UNLINK_WAIT; 2416 last->reclaim = qh; 2417 2418 /* bypass IAA if the hc can't care */ 2419 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) 2420 end_unlink_async(oxu); 2421 2422 /* something else might have unlinked the qh by now */ 2423 if (qh->qh_state == QH_STATE_LINKED) 2424 start_unlink_async(oxu, qh); 2425 } 2426 2427 /* 2428 * USB host controller methods 2429 */ 2430 2431 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) 2432 { 2433 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2434 u32 status, pcd_status = 0; 2435 int bh; 2436 2437 spin_lock(&oxu->lock); 2438 2439 status = readl(&oxu->regs->status); 2440 2441 /* e.g. cardbus physical eject */ 2442 if (status == ~(u32) 0) { 2443 oxu_dbg(oxu, "device removed\n"); 2444 goto dead; 2445 } 2446 2447 /* Shared IRQ? */ 2448 status &= INTR_MASK; 2449 if (!status || unlikely(hcd->state == HC_STATE_HALT)) { 2450 spin_unlock(&oxu->lock); 2451 return IRQ_NONE; 2452 } 2453 2454 /* clear (just) interrupts */ 2455 writel(status, &oxu->regs->status); 2456 readl(&oxu->regs->command); /* unblock posted write */ 2457 bh = 0; 2458 2459 #ifdef OXU_VERBOSE_DEBUG 2460 /* unrequested/ignored: Frame List Rollover */ 2461 dbg_status(oxu, "irq", status); 2462 #endif 2463 2464 /* INT, ERR, and IAA interrupt rates can be throttled */ 2465 2466 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 2467 if (likely((status & (STS_INT|STS_ERR)) != 0)) 2468 bh = 1; 2469 2470 /* complete the unlinking of some qh [4.15.2.3] */ 2471 if (status & STS_IAA) { 2472 oxu->reclaim_ready = 1; 2473 bh = 1; 2474 } 2475 2476 /* remote wakeup [4.3.1] */ 2477 if (status & STS_PCD) { 2478 unsigned i = HCS_N_PORTS(oxu->hcs_params); 2479 pcd_status = status; 2480 2481 /* resume root hub? */ 2482 if (!(readl(&oxu->regs->command) & CMD_RUN)) 2483 usb_hcd_resume_root_hub(hcd); 2484 2485 while (i--) { 2486 int pstatus = readl(&oxu->regs->port_status[i]); 2487 2488 if (pstatus & PORT_OWNER) 2489 continue; 2490 if (!(pstatus & PORT_RESUME) 2491 || oxu->reset_done[i] != 0) 2492 continue; 2493 2494 /* start USB_RESUME_TIMEOUT resume signaling from this 2495 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to 2496 * stop that signaling. 2497 */ 2498 oxu->reset_done[i] = jiffies + 2499 msecs_to_jiffies(USB_RESUME_TIMEOUT); 2500 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); 2501 mod_timer(&hcd->rh_timer, oxu->reset_done[i]); 2502 } 2503 } 2504 2505 /* PCI errors [4.15.2.4] */ 2506 if (unlikely((status & STS_FATAL) != 0)) { 2507 /* bogus "fatal" IRQs appear on some chips... why? */ 2508 status = readl(&oxu->regs->status); 2509 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); 2510 dbg_status(oxu, "fatal", status); 2511 if (status & STS_HALT) { 2512 oxu_err(oxu, "fatal error\n"); 2513 dead: 2514 ehci_reset(oxu); 2515 writel(0, &oxu->regs->configured_flag); 2516 usb_hc_died(hcd); 2517 /* generic layer kills/unlinks all urbs, then 2518 * uses oxu_stop to clean up the rest 2519 */ 2520 bh = 1; 2521 } 2522 } 2523 2524 if (bh) 2525 ehci_work(oxu); 2526 spin_unlock(&oxu->lock); 2527 if (pcd_status & STS_PCD) 2528 usb_hcd_poll_rh_status(hcd); 2529 return IRQ_HANDLED; 2530 } 2531 2532 static irqreturn_t oxu_irq(struct usb_hcd *hcd) 2533 { 2534 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2535 int ret = IRQ_HANDLED; 2536 2537 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); 2538 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); 2539 2540 /* Disable all interrupt */ 2541 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); 2542 2543 if ((oxu->is_otg && (status & OXU_USBOTGI)) || 2544 (!oxu->is_otg && (status & OXU_USBSPHI))) 2545 oxu210_hcd_irq(hcd); 2546 else 2547 ret = IRQ_NONE; 2548 2549 /* Enable all interrupt back */ 2550 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); 2551 2552 return ret; 2553 } 2554 2555 static void oxu_watchdog(unsigned long param) 2556 { 2557 struct oxu_hcd *oxu = (struct oxu_hcd *) param; 2558 unsigned long flags; 2559 2560 spin_lock_irqsave(&oxu->lock, flags); 2561 2562 /* lost IAA irqs wedge things badly; seen with a vt8235 */ 2563 if (oxu->reclaim) { 2564 u32 status = readl(&oxu->regs->status); 2565 if (status & STS_IAA) { 2566 oxu_vdbg(oxu, "lost IAA\n"); 2567 writel(STS_IAA, &oxu->regs->status); 2568 oxu->reclaim_ready = 1; 2569 } 2570 } 2571 2572 /* stop async processing after it's idled a bit */ 2573 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) 2574 start_unlink_async(oxu, oxu->async); 2575 2576 /* oxu could run by timer, without IRQs ... */ 2577 ehci_work(oxu); 2578 2579 spin_unlock_irqrestore(&oxu->lock, flags); 2580 } 2581 2582 /* One-time init, only for memory state. 2583 */ 2584 static int oxu_hcd_init(struct usb_hcd *hcd) 2585 { 2586 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2587 u32 temp; 2588 int retval; 2589 u32 hcc_params; 2590 2591 spin_lock_init(&oxu->lock); 2592 2593 setup_timer(&oxu->watchdog, oxu_watchdog, (unsigned long)oxu); 2594 2595 /* 2596 * hw default: 1K periodic list heads, one per frame. 2597 * periodic_size can shrink by USBCMD update if hcc_params allows. 2598 */ 2599 oxu->periodic_size = DEFAULT_I_TDPS; 2600 retval = ehci_mem_init(oxu, GFP_KERNEL); 2601 if (retval < 0) 2602 return retval; 2603 2604 /* controllers may cache some of the periodic schedule ... */ 2605 hcc_params = readl(&oxu->caps->hcc_params); 2606 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ 2607 oxu->i_thresh = 8; 2608 else /* N microframes cached */ 2609 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); 2610 2611 oxu->reclaim = NULL; 2612 oxu->reclaim_ready = 0; 2613 oxu->next_uframe = -1; 2614 2615 /* 2616 * dedicate a qh for the async ring head, since we couldn't unlink 2617 * a 'real' qh without stopping the async schedule [4.8]. use it 2618 * as the 'reclamation list head' too. 2619 * its dummy is used in hw_alt_next of many tds, to prevent the qh 2620 * from automatically advancing to the next td after short reads. 2621 */ 2622 oxu->async->qh_next.qh = NULL; 2623 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); 2624 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); 2625 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); 2626 oxu->async->hw_qtd_next = EHCI_LIST_END; 2627 oxu->async->qh_state = QH_STATE_LINKED; 2628 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); 2629 2630 /* clear interrupt enables, set irq latency */ 2631 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 2632 log2_irq_thresh = 0; 2633 temp = 1 << (16 + log2_irq_thresh); 2634 if (HCC_CANPARK(hcc_params)) { 2635 /* HW default park == 3, on hardware that supports it (like 2636 * NVidia and ALI silicon), maximizes throughput on the async 2637 * schedule by avoiding QH fetches between transfers. 2638 * 2639 * With fast usb storage devices and NForce2, "park" seems to 2640 * make problems: throughput reduction (!), data errors... 2641 */ 2642 if (park) { 2643 park = min(park, (unsigned) 3); 2644 temp |= CMD_PARK; 2645 temp |= park << 8; 2646 } 2647 oxu_dbg(oxu, "park %d\n", park); 2648 } 2649 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 2650 /* periodic schedule size can be smaller than default */ 2651 temp &= ~(3 << 2); 2652 temp |= (EHCI_TUNE_FLS << 2); 2653 } 2654 oxu->command = temp; 2655 2656 return 0; 2657 } 2658 2659 /* Called during probe() after chip reset completes. 2660 */ 2661 static int oxu_reset(struct usb_hcd *hcd) 2662 { 2663 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2664 2665 spin_lock_init(&oxu->mem_lock); 2666 INIT_LIST_HEAD(&oxu->urb_list); 2667 oxu->urb_len = 0; 2668 2669 /* FIMXE */ 2670 hcd->self.controller->dma_mask = NULL; 2671 2672 if (oxu->is_otg) { 2673 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; 2674 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ 2675 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2676 2677 oxu->mem = hcd->regs + OXU_SPH_MEM; 2678 } else { 2679 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; 2680 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ 2681 HC_LENGTH(readl(&oxu->caps->hc_capbase)); 2682 2683 oxu->mem = hcd->regs + OXU_OTG_MEM; 2684 } 2685 2686 oxu->hcs_params = readl(&oxu->caps->hcs_params); 2687 oxu->sbrn = 0x20; 2688 2689 return oxu_hcd_init(hcd); 2690 } 2691 2692 static int oxu_run(struct usb_hcd *hcd) 2693 { 2694 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2695 int retval; 2696 u32 temp, hcc_params; 2697 2698 hcd->uses_new_polling = 1; 2699 2700 /* EHCI spec section 4.1 */ 2701 retval = ehci_reset(oxu); 2702 if (retval != 0) { 2703 ehci_mem_cleanup(oxu); 2704 return retval; 2705 } 2706 writel(oxu->periodic_dma, &oxu->regs->frame_list); 2707 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 2708 2709 /* hcc_params controls whether oxu->regs->segment must (!!!) 2710 * be used; it constrains QH/ITD/SITD and QTD locations. 2711 * pci_pool consistent memory always uses segment zero. 2712 * streaming mappings for I/O buffers, like pci_map_single(), 2713 * can return segments above 4GB, if the device allows. 2714 * 2715 * NOTE: the dma mask is visible through dev->dma_mask, so 2716 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 2717 * Scsi_Host.highmem_io, and so forth. It's readonly to all 2718 * host side drivers though. 2719 */ 2720 hcc_params = readl(&oxu->caps->hcc_params); 2721 if (HCC_64BIT_ADDR(hcc_params)) 2722 writel(0, &oxu->regs->segment); 2723 2724 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | 2725 CMD_ASE | CMD_RESET); 2726 oxu->command |= CMD_RUN; 2727 writel(oxu->command, &oxu->regs->command); 2728 dbg_cmd(oxu, "init", oxu->command); 2729 2730 /* 2731 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 2732 * are explicitly handed to companion controller(s), so no TT is 2733 * involved with the root hub. (Except where one is integrated, 2734 * and there's no companion controller unless maybe for USB OTG.) 2735 */ 2736 hcd->state = HC_STATE_RUNNING; 2737 writel(FLAG_CF, &oxu->regs->configured_flag); 2738 readl(&oxu->regs->command); /* unblock posted writes */ 2739 2740 temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); 2741 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", 2742 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), 2743 temp >> 8, temp & 0xff, DRIVER_VERSION, 2744 ignore_oc ? ", overcurrent ignored" : ""); 2745 2746 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ 2747 2748 return 0; 2749 } 2750 2751 static void oxu_stop(struct usb_hcd *hcd) 2752 { 2753 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2754 2755 /* Turn off port power on all root hub ports. */ 2756 ehci_port_power(oxu, 0); 2757 2758 /* no more interrupts ... */ 2759 del_timer_sync(&oxu->watchdog); 2760 2761 spin_lock_irq(&oxu->lock); 2762 if (HC_IS_RUNNING(hcd->state)) 2763 ehci_quiesce(oxu); 2764 2765 ehci_reset(oxu); 2766 writel(0, &oxu->regs->intr_enable); 2767 spin_unlock_irq(&oxu->lock); 2768 2769 /* let companion controllers work when we aren't */ 2770 writel(0, &oxu->regs->configured_flag); 2771 2772 /* root hub is shut down separately (first, when possible) */ 2773 spin_lock_irq(&oxu->lock); 2774 if (oxu->async) 2775 ehci_work(oxu); 2776 spin_unlock_irq(&oxu->lock); 2777 ehci_mem_cleanup(oxu); 2778 2779 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); 2780 } 2781 2782 /* Kick in for silicon on any bus (not just pci, etc). 2783 * This forcibly disables dma and IRQs, helping kexec and other cases 2784 * where the next system software may expect clean state. 2785 */ 2786 static void oxu_shutdown(struct usb_hcd *hcd) 2787 { 2788 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2789 2790 (void) ehci_halt(oxu); 2791 ehci_turn_off_all_ports(oxu); 2792 2793 /* make BIOS/etc use companion controller during reboot */ 2794 writel(0, &oxu->regs->configured_flag); 2795 2796 /* unblock posted writes */ 2797 readl(&oxu->regs->configured_flag); 2798 } 2799 2800 /* Non-error returns are a promise to giveback() the urb later 2801 * we drop ownership so next owner (or urb unlink) can get it 2802 * 2803 * urb + dev is in hcd.self.controller.urb_list 2804 * we're queueing TDs onto software and hardware lists 2805 * 2806 * hcd-specific init for hcpriv hasn't been done yet 2807 * 2808 * NOTE: control, bulk, and interrupt share the same code to append TDs 2809 * to a (possibly active) QH, and the same QH scanning code. 2810 */ 2811 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2812 gfp_t mem_flags) 2813 { 2814 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2815 struct list_head qtd_list; 2816 2817 INIT_LIST_HEAD(&qtd_list); 2818 2819 switch (usb_pipetype(urb->pipe)) { 2820 case PIPE_CONTROL: 2821 case PIPE_BULK: 2822 default: 2823 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2824 return -ENOMEM; 2825 return submit_async(oxu, urb, &qtd_list, mem_flags); 2826 2827 case PIPE_INTERRUPT: 2828 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) 2829 return -ENOMEM; 2830 return intr_submit(oxu, urb, &qtd_list, mem_flags); 2831 2832 case PIPE_ISOCHRONOUS: 2833 if (urb->dev->speed == USB_SPEED_HIGH) 2834 return itd_submit(oxu, urb, mem_flags); 2835 else 2836 return sitd_submit(oxu, urb, mem_flags); 2837 } 2838 } 2839 2840 /* This function is responsible for breaking URBs with big data size 2841 * into smaller size and processing small urbs in sequence. 2842 */ 2843 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, 2844 gfp_t mem_flags) 2845 { 2846 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2847 int num, rem; 2848 int transfer_buffer_length; 2849 void *transfer_buffer; 2850 struct urb *murb; 2851 int i, ret; 2852 2853 /* If not bulk pipe just enqueue the URB */ 2854 if (!usb_pipebulk(urb->pipe)) 2855 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2856 2857 /* Otherwise we should verify the USB transfer buffer size! */ 2858 transfer_buffer = urb->transfer_buffer; 2859 transfer_buffer_length = urb->transfer_buffer_length; 2860 2861 num = urb->transfer_buffer_length / 4096; 2862 rem = urb->transfer_buffer_length % 4096; 2863 if (rem != 0) 2864 num++; 2865 2866 /* If URB is smaller than 4096 bytes just enqueue it! */ 2867 if (num == 1) 2868 return __oxu_urb_enqueue(hcd, urb, mem_flags); 2869 2870 /* Ok, we have more job to do! :) */ 2871 2872 for (i = 0; i < num - 1; i++) { 2873 /* Get free micro URB poll till a free urb is received */ 2874 2875 do { 2876 murb = (struct urb *) oxu_murb_alloc(oxu); 2877 if (!murb) 2878 schedule(); 2879 } while (!murb); 2880 2881 /* Coping the urb */ 2882 memcpy(murb, urb, sizeof(struct urb)); 2883 2884 murb->transfer_buffer_length = 4096; 2885 murb->transfer_buffer = transfer_buffer + i * 4096; 2886 2887 /* Null pointer for the encodes that this is a micro urb */ 2888 murb->complete = NULL; 2889 2890 ((struct oxu_murb *) murb)->main = urb; 2891 ((struct oxu_murb *) murb)->last = 0; 2892 2893 /* This loop is to guarantee urb to be processed when there's 2894 * not enough resources at a particular time by retrying. 2895 */ 2896 do { 2897 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2898 if (ret) 2899 schedule(); 2900 } while (ret); 2901 } 2902 2903 /* Last urb requires special handling */ 2904 2905 /* Get free micro URB poll till a free urb is received */ 2906 do { 2907 murb = (struct urb *) oxu_murb_alloc(oxu); 2908 if (!murb) 2909 schedule(); 2910 } while (!murb); 2911 2912 /* Coping the urb */ 2913 memcpy(murb, urb, sizeof(struct urb)); 2914 2915 murb->transfer_buffer_length = rem > 0 ? rem : 4096; 2916 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; 2917 2918 /* Null pointer for the encodes that this is a micro urb */ 2919 murb->complete = NULL; 2920 2921 ((struct oxu_murb *) murb)->main = urb; 2922 ((struct oxu_murb *) murb)->last = 1; 2923 2924 do { 2925 ret = __oxu_urb_enqueue(hcd, murb, mem_flags); 2926 if (ret) 2927 schedule(); 2928 } while (ret); 2929 2930 return ret; 2931 } 2932 2933 /* Remove from hardware lists. 2934 * Completions normally happen asynchronously 2935 */ 2936 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 2937 { 2938 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 2939 struct ehci_qh *qh; 2940 unsigned long flags; 2941 2942 spin_lock_irqsave(&oxu->lock, flags); 2943 switch (usb_pipetype(urb->pipe)) { 2944 case PIPE_CONTROL: 2945 case PIPE_BULK: 2946 default: 2947 qh = (struct ehci_qh *) urb->hcpriv; 2948 if (!qh) 2949 break; 2950 unlink_async(oxu, qh); 2951 break; 2952 2953 case PIPE_INTERRUPT: 2954 qh = (struct ehci_qh *) urb->hcpriv; 2955 if (!qh) 2956 break; 2957 switch (qh->qh_state) { 2958 case QH_STATE_LINKED: 2959 intr_deschedule(oxu, qh); 2960 /* FALL THROUGH */ 2961 case QH_STATE_IDLE: 2962 qh_completions(oxu, qh); 2963 break; 2964 default: 2965 oxu_dbg(oxu, "bogus qh %p state %d\n", 2966 qh, qh->qh_state); 2967 goto done; 2968 } 2969 2970 /* reschedule QH iff another request is queued */ 2971 if (!list_empty(&qh->qtd_list) 2972 && HC_IS_RUNNING(hcd->state)) { 2973 int status; 2974 2975 status = qh_schedule(oxu, qh); 2976 spin_unlock_irqrestore(&oxu->lock, flags); 2977 2978 if (status != 0) { 2979 /* shouldn't happen often, but ... 2980 * FIXME kill those tds' urbs 2981 */ 2982 dev_err(hcd->self.controller, 2983 "can't reschedule qh %p, err %d\n", qh, 2984 status); 2985 } 2986 return status; 2987 } 2988 break; 2989 } 2990 done: 2991 spin_unlock_irqrestore(&oxu->lock, flags); 2992 return 0; 2993 } 2994 2995 /* Bulk qh holds the data toggle */ 2996 static void oxu_endpoint_disable(struct usb_hcd *hcd, 2997 struct usb_host_endpoint *ep) 2998 { 2999 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3000 unsigned long flags; 3001 struct ehci_qh *qh, *tmp; 3002 3003 /* ASSERT: any requests/urbs are being unlinked */ 3004 /* ASSERT: nobody can be submitting urbs for this any more */ 3005 3006 rescan: 3007 spin_lock_irqsave(&oxu->lock, flags); 3008 qh = ep->hcpriv; 3009 if (!qh) 3010 goto done; 3011 3012 /* endpoints can be iso streams. for now, we don't 3013 * accelerate iso completions ... so spin a while. 3014 */ 3015 if (qh->hw_info1 == 0) { 3016 oxu_vdbg(oxu, "iso delay\n"); 3017 goto idle_timeout; 3018 } 3019 3020 if (!HC_IS_RUNNING(hcd->state)) 3021 qh->qh_state = QH_STATE_IDLE; 3022 switch (qh->qh_state) { 3023 case QH_STATE_LINKED: 3024 for (tmp = oxu->async->qh_next.qh; 3025 tmp && tmp != qh; 3026 tmp = tmp->qh_next.qh) 3027 continue; 3028 /* periodic qh self-unlinks on empty */ 3029 if (!tmp) 3030 goto nogood; 3031 unlink_async(oxu, qh); 3032 /* FALL THROUGH */ 3033 case QH_STATE_UNLINK: /* wait for hw to finish? */ 3034 idle_timeout: 3035 spin_unlock_irqrestore(&oxu->lock, flags); 3036 schedule_timeout_uninterruptible(1); 3037 goto rescan; 3038 case QH_STATE_IDLE: /* fully unlinked */ 3039 if (list_empty(&qh->qtd_list)) { 3040 qh_put(qh); 3041 break; 3042 } 3043 /* else FALL THROUGH */ 3044 default: 3045 nogood: 3046 /* caller was supposed to have unlinked any requests; 3047 * that's not our job. just leak this memory. 3048 */ 3049 oxu_err(oxu, "qh %p (#%02x) state %d%s\n", 3050 qh, ep->desc.bEndpointAddress, qh->qh_state, 3051 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 3052 break; 3053 } 3054 ep->hcpriv = NULL; 3055 done: 3056 spin_unlock_irqrestore(&oxu->lock, flags); 3057 } 3058 3059 static int oxu_get_frame(struct usb_hcd *hcd) 3060 { 3061 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3062 3063 return (readl(&oxu->regs->frame_index) >> 3) % 3064 oxu->periodic_size; 3065 } 3066 3067 /* Build "status change" packet (one or two bytes) from HC registers */ 3068 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) 3069 { 3070 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3071 u32 temp, mask, status = 0; 3072 int ports, i, retval = 1; 3073 unsigned long flags; 3074 3075 /* if !PM, root hub timers won't get shut down ... */ 3076 if (!HC_IS_RUNNING(hcd->state)) 3077 return 0; 3078 3079 /* init status to no-changes */ 3080 buf[0] = 0; 3081 ports = HCS_N_PORTS(oxu->hcs_params); 3082 if (ports > 7) { 3083 buf[1] = 0; 3084 retval++; 3085 } 3086 3087 /* Some boards (mostly VIA?) report bogus overcurrent indications, 3088 * causing massive log spam unless we completely ignore them. It 3089 * may be relevant that VIA VT8235 controllers, where PORT_POWER is 3090 * always set, seem to clear PORT_OCC and PORT_CSC when writing to 3091 * PORT_POWER; that's surprising, but maybe within-spec. 3092 */ 3093 if (!ignore_oc) 3094 mask = PORT_CSC | PORT_PEC | PORT_OCC; 3095 else 3096 mask = PORT_CSC | PORT_PEC; 3097 3098 /* no hub change reports (bit 0) for now (power, ...) */ 3099 3100 /* port N changes (bit N)? */ 3101 spin_lock_irqsave(&oxu->lock, flags); 3102 for (i = 0; i < ports; i++) { 3103 temp = readl(&oxu->regs->port_status[i]); 3104 3105 /* 3106 * Return status information even for ports with OWNER set. 3107 * Otherwise hub_wq wouldn't see the disconnect event when a 3108 * high-speed device is switched over to the companion 3109 * controller by the user. 3110 */ 3111 3112 if (!(temp & PORT_CONNECT)) 3113 oxu->reset_done[i] = 0; 3114 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && 3115 time_after_eq(jiffies, oxu->reset_done[i]))) { 3116 if (i < 7) 3117 buf[0] |= 1 << (i + 1); 3118 else 3119 buf[1] |= 1 << (i - 7); 3120 status = STS_PCD; 3121 } 3122 } 3123 /* FIXME autosuspend idle root hubs */ 3124 spin_unlock_irqrestore(&oxu->lock, flags); 3125 return status ? retval : 0; 3126 } 3127 3128 /* Returns the speed of a device attached to a port on the root hub. */ 3129 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, 3130 unsigned int portsc) 3131 { 3132 switch ((portsc >> 26) & 3) { 3133 case 0: 3134 return 0; 3135 case 1: 3136 return USB_PORT_STAT_LOW_SPEED; 3137 case 2: 3138 default: 3139 return USB_PORT_STAT_HIGH_SPEED; 3140 } 3141 } 3142 3143 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) 3144 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, 3145 u16 wValue, u16 wIndex, char *buf, u16 wLength) 3146 { 3147 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3148 int ports = HCS_N_PORTS(oxu->hcs_params); 3149 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; 3150 u32 temp, status; 3151 unsigned long flags; 3152 int retval = 0; 3153 unsigned selector; 3154 3155 /* 3156 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 3157 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 3158 * (track current state ourselves) ... blink for diagnostics, 3159 * power, "this is the one", etc. EHCI spec supports this. 3160 */ 3161 3162 spin_lock_irqsave(&oxu->lock, flags); 3163 switch (typeReq) { 3164 case ClearHubFeature: 3165 switch (wValue) { 3166 case C_HUB_LOCAL_POWER: 3167 case C_HUB_OVER_CURRENT: 3168 /* no hub-wide feature/status flags */ 3169 break; 3170 default: 3171 goto error; 3172 } 3173 break; 3174 case ClearPortFeature: 3175 if (!wIndex || wIndex > ports) 3176 goto error; 3177 wIndex--; 3178 temp = readl(status_reg); 3179 3180 /* 3181 * Even if OWNER is set, so the port is owned by the 3182 * companion controller, hub_wq needs to be able to clear 3183 * the port-change status bits (especially 3184 * USB_PORT_STAT_C_CONNECTION). 3185 */ 3186 3187 switch (wValue) { 3188 case USB_PORT_FEAT_ENABLE: 3189 writel(temp & ~PORT_PE, status_reg); 3190 break; 3191 case USB_PORT_FEAT_C_ENABLE: 3192 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); 3193 break; 3194 case USB_PORT_FEAT_SUSPEND: 3195 if (temp & PORT_RESET) 3196 goto error; 3197 if (temp & PORT_SUSPEND) { 3198 if ((temp & PORT_PE) == 0) 3199 goto error; 3200 /* resume signaling for 20 msec */ 3201 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); 3202 writel(temp | PORT_RESUME, status_reg); 3203 oxu->reset_done[wIndex] = jiffies 3204 + msecs_to_jiffies(20); 3205 } 3206 break; 3207 case USB_PORT_FEAT_C_SUSPEND: 3208 /* we auto-clear this feature */ 3209 break; 3210 case USB_PORT_FEAT_POWER: 3211 if (HCS_PPC(oxu->hcs_params)) 3212 writel(temp & ~(PORT_RWC_BITS | PORT_POWER), 3213 status_reg); 3214 break; 3215 case USB_PORT_FEAT_C_CONNECTION: 3216 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); 3217 break; 3218 case USB_PORT_FEAT_C_OVER_CURRENT: 3219 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); 3220 break; 3221 case USB_PORT_FEAT_C_RESET: 3222 /* GetPortStatus clears reset */ 3223 break; 3224 default: 3225 goto error; 3226 } 3227 readl(&oxu->regs->command); /* unblock posted write */ 3228 break; 3229 case GetHubDescriptor: 3230 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) 3231 buf); 3232 break; 3233 case GetHubStatus: 3234 /* no hub-wide feature/status flags */ 3235 memset(buf, 0, 4); 3236 break; 3237 case GetPortStatus: 3238 if (!wIndex || wIndex > ports) 3239 goto error; 3240 wIndex--; 3241 status = 0; 3242 temp = readl(status_reg); 3243 3244 /* wPortChange bits */ 3245 if (temp & PORT_CSC) 3246 status |= USB_PORT_STAT_C_CONNECTION << 16; 3247 if (temp & PORT_PEC) 3248 status |= USB_PORT_STAT_C_ENABLE << 16; 3249 if ((temp & PORT_OCC) && !ignore_oc) 3250 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 3251 3252 /* whoever resumes must GetPortStatus to complete it!! */ 3253 if (temp & PORT_RESUME) { 3254 3255 /* Remote Wakeup received? */ 3256 if (!oxu->reset_done[wIndex]) { 3257 /* resume signaling for 20 msec */ 3258 oxu->reset_done[wIndex] = jiffies 3259 + msecs_to_jiffies(20); 3260 /* check the port again */ 3261 mod_timer(&oxu_to_hcd(oxu)->rh_timer, 3262 oxu->reset_done[wIndex]); 3263 } 3264 3265 /* resume completed? */ 3266 else if (time_after_eq(jiffies, 3267 oxu->reset_done[wIndex])) { 3268 status |= USB_PORT_STAT_C_SUSPEND << 16; 3269 oxu->reset_done[wIndex] = 0; 3270 3271 /* stop resume signaling */ 3272 temp = readl(status_reg); 3273 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), 3274 status_reg); 3275 retval = handshake(oxu, status_reg, 3276 PORT_RESUME, 0, 2000 /* 2msec */); 3277 if (retval != 0) { 3278 oxu_err(oxu, 3279 "port %d resume error %d\n", 3280 wIndex + 1, retval); 3281 goto error; 3282 } 3283 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 3284 } 3285 } 3286 3287 /* whoever resets must GetPortStatus to complete it!! */ 3288 if ((temp & PORT_RESET) 3289 && time_after_eq(jiffies, 3290 oxu->reset_done[wIndex])) { 3291 status |= USB_PORT_STAT_C_RESET << 16; 3292 oxu->reset_done[wIndex] = 0; 3293 3294 /* force reset to complete */ 3295 writel(temp & ~(PORT_RWC_BITS | PORT_RESET), 3296 status_reg); 3297 /* REVISIT: some hardware needs 550+ usec to clear 3298 * this bit; seems too long to spin routinely... 3299 */ 3300 retval = handshake(oxu, status_reg, 3301 PORT_RESET, 0, 750); 3302 if (retval != 0) { 3303 oxu_err(oxu, "port %d reset error %d\n", 3304 wIndex + 1, retval); 3305 goto error; 3306 } 3307 3308 /* see what we found out */ 3309 temp = check_reset_complete(oxu, wIndex, status_reg, 3310 readl(status_reg)); 3311 } 3312 3313 /* transfer dedicated ports to the companion hc */ 3314 if ((temp & PORT_CONNECT) && 3315 test_bit(wIndex, &oxu->companion_ports)) { 3316 temp &= ~PORT_RWC_BITS; 3317 temp |= PORT_OWNER; 3318 writel(temp, status_reg); 3319 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); 3320 temp = readl(status_reg); 3321 } 3322 3323 /* 3324 * Even if OWNER is set, there's no harm letting hub_wq 3325 * see the wPortStatus values (they should all be 0 except 3326 * for PORT_POWER anyway). 3327 */ 3328 3329 if (temp & PORT_CONNECT) { 3330 status |= USB_PORT_STAT_CONNECTION; 3331 /* status may be from integrated TT */ 3332 status |= oxu_port_speed(oxu, temp); 3333 } 3334 if (temp & PORT_PE) 3335 status |= USB_PORT_STAT_ENABLE; 3336 if (temp & (PORT_SUSPEND|PORT_RESUME)) 3337 status |= USB_PORT_STAT_SUSPEND; 3338 if (temp & PORT_OC) 3339 status |= USB_PORT_STAT_OVERCURRENT; 3340 if (temp & PORT_RESET) 3341 status |= USB_PORT_STAT_RESET; 3342 if (temp & PORT_POWER) 3343 status |= USB_PORT_STAT_POWER; 3344 3345 #ifndef OXU_VERBOSE_DEBUG 3346 if (status & ~0xffff) /* only if wPortChange is interesting */ 3347 #endif 3348 dbg_port(oxu, "GetStatus", wIndex + 1, temp); 3349 put_unaligned(cpu_to_le32(status), (__le32 *) buf); 3350 break; 3351 case SetHubFeature: 3352 switch (wValue) { 3353 case C_HUB_LOCAL_POWER: 3354 case C_HUB_OVER_CURRENT: 3355 /* no hub-wide feature/status flags */ 3356 break; 3357 default: 3358 goto error; 3359 } 3360 break; 3361 case SetPortFeature: 3362 selector = wIndex >> 8; 3363 wIndex &= 0xff; 3364 if (!wIndex || wIndex > ports) 3365 goto error; 3366 wIndex--; 3367 temp = readl(status_reg); 3368 if (temp & PORT_OWNER) 3369 break; 3370 3371 temp &= ~PORT_RWC_BITS; 3372 switch (wValue) { 3373 case USB_PORT_FEAT_SUSPEND: 3374 if ((temp & PORT_PE) == 0 3375 || (temp & PORT_RESET) != 0) 3376 goto error; 3377 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3378 temp |= PORT_WAKE_BITS; 3379 writel(temp | PORT_SUSPEND, status_reg); 3380 break; 3381 case USB_PORT_FEAT_POWER: 3382 if (HCS_PPC(oxu->hcs_params)) 3383 writel(temp | PORT_POWER, status_reg); 3384 break; 3385 case USB_PORT_FEAT_RESET: 3386 if (temp & PORT_RESUME) 3387 goto error; 3388 /* line status bits may report this as low speed, 3389 * which can be fine if this root hub has a 3390 * transaction translator built in. 3391 */ 3392 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); 3393 temp |= PORT_RESET; 3394 temp &= ~PORT_PE; 3395 3396 /* 3397 * caller must wait, then call GetPortStatus 3398 * usb 2.0 spec says 50 ms resets on root 3399 */ 3400 oxu->reset_done[wIndex] = jiffies 3401 + msecs_to_jiffies(50); 3402 writel(temp, status_reg); 3403 break; 3404 3405 /* For downstream facing ports (these): one hub port is put 3406 * into test mode according to USB2 11.24.2.13, then the hub 3407 * must be reset (which for root hub now means rmmod+modprobe, 3408 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 3409 * about the EHCI-specific stuff. 3410 */ 3411 case USB_PORT_FEAT_TEST: 3412 if (!selector || selector > 5) 3413 goto error; 3414 ehci_quiesce(oxu); 3415 ehci_halt(oxu); 3416 temp |= selector << 16; 3417 writel(temp, status_reg); 3418 break; 3419 3420 default: 3421 goto error; 3422 } 3423 readl(&oxu->regs->command); /* unblock posted writes */ 3424 break; 3425 3426 default: 3427 error: 3428 /* "stall" on error */ 3429 retval = -EPIPE; 3430 } 3431 spin_unlock_irqrestore(&oxu->lock, flags); 3432 return retval; 3433 } 3434 3435 #ifdef CONFIG_PM 3436 3437 static int oxu_bus_suspend(struct usb_hcd *hcd) 3438 { 3439 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3440 int port; 3441 int mask; 3442 3443 oxu_dbg(oxu, "suspend root hub\n"); 3444 3445 if (time_before(jiffies, oxu->next_statechange)) 3446 msleep(5); 3447 3448 port = HCS_N_PORTS(oxu->hcs_params); 3449 spin_lock_irq(&oxu->lock); 3450 3451 /* stop schedules, clean any completed work */ 3452 if (HC_IS_RUNNING(hcd->state)) { 3453 ehci_quiesce(oxu); 3454 hcd->state = HC_STATE_QUIESCING; 3455 } 3456 oxu->command = readl(&oxu->regs->command); 3457 if (oxu->reclaim) 3458 oxu->reclaim_ready = 1; 3459 ehci_work(oxu); 3460 3461 /* Unlike other USB host controller types, EHCI doesn't have 3462 * any notion of "global" or bus-wide suspend. The driver has 3463 * to manually suspend all the active unsuspended ports, and 3464 * then manually resume them in the bus_resume() routine. 3465 */ 3466 oxu->bus_suspended = 0; 3467 while (port--) { 3468 u32 __iomem *reg = &oxu->regs->port_status[port]; 3469 u32 t1 = readl(reg) & ~PORT_RWC_BITS; 3470 u32 t2 = t1; 3471 3472 /* keep track of which ports we suspend */ 3473 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && 3474 !(t1 & PORT_SUSPEND)) { 3475 t2 |= PORT_SUSPEND; 3476 set_bit(port, &oxu->bus_suspended); 3477 } 3478 3479 /* enable remote wakeup on all ports */ 3480 if (device_may_wakeup(&hcd->self.root_hub->dev)) 3481 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; 3482 else 3483 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); 3484 3485 if (t1 != t2) { 3486 oxu_vdbg(oxu, "port %d, %08x -> %08x\n", 3487 port + 1, t1, t2); 3488 writel(t2, reg); 3489 } 3490 } 3491 3492 /* turn off now-idle HC */ 3493 del_timer_sync(&oxu->watchdog); 3494 ehci_halt(oxu); 3495 hcd->state = HC_STATE_SUSPENDED; 3496 3497 /* allow remote wakeup */ 3498 mask = INTR_MASK; 3499 if (!device_may_wakeup(&hcd->self.root_hub->dev)) 3500 mask &= ~STS_PCD; 3501 writel(mask, &oxu->regs->intr_enable); 3502 readl(&oxu->regs->intr_enable); 3503 3504 oxu->next_statechange = jiffies + msecs_to_jiffies(10); 3505 spin_unlock_irq(&oxu->lock); 3506 return 0; 3507 } 3508 3509 /* Caller has locked the root hub, and should reset/reinit on error */ 3510 static int oxu_bus_resume(struct usb_hcd *hcd) 3511 { 3512 struct oxu_hcd *oxu = hcd_to_oxu(hcd); 3513 u32 temp; 3514 int i; 3515 3516 if (time_before(jiffies, oxu->next_statechange)) 3517 msleep(5); 3518 spin_lock_irq(&oxu->lock); 3519 3520 /* Ideally and we've got a real resume here, and no port's power 3521 * was lost. (For PCI, that means Vaux was maintained.) But we 3522 * could instead be restoring a swsusp snapshot -- so that BIOS was 3523 * the last user of the controller, not reset/pm hardware keeping 3524 * state we gave to it. 3525 */ 3526 temp = readl(&oxu->regs->intr_enable); 3527 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); 3528 3529 /* at least some APM implementations will try to deliver 3530 * IRQs right away, so delay them until we're ready. 3531 */ 3532 writel(0, &oxu->regs->intr_enable); 3533 3534 /* re-init operational registers */ 3535 writel(0, &oxu->regs->segment); 3536 writel(oxu->periodic_dma, &oxu->regs->frame_list); 3537 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); 3538 3539 /* restore CMD_RUN, framelist size, and irq threshold */ 3540 writel(oxu->command, &oxu->regs->command); 3541 3542 /* Some controller/firmware combinations need a delay during which 3543 * they set up the port statuses. See Bugzilla #8190. */ 3544 mdelay(8); 3545 3546 /* manually resume the ports we suspended during bus_suspend() */ 3547 i = HCS_N_PORTS(oxu->hcs_params); 3548 while (i--) { 3549 temp = readl(&oxu->regs->port_status[i]); 3550 temp &= ~(PORT_RWC_BITS 3551 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); 3552 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3553 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); 3554 temp |= PORT_RESUME; 3555 } 3556 writel(temp, &oxu->regs->port_status[i]); 3557 } 3558 i = HCS_N_PORTS(oxu->hcs_params); 3559 mdelay(20); 3560 while (i--) { 3561 temp = readl(&oxu->regs->port_status[i]); 3562 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { 3563 temp &= ~(PORT_RWC_BITS | PORT_RESUME); 3564 writel(temp, &oxu->regs->port_status[i]); 3565 oxu_vdbg(oxu, "resumed port %d\n", i + 1); 3566 } 3567 } 3568 (void) readl(&oxu->regs->command); 3569 3570 /* maybe re-activate the schedule(s) */ 3571 temp = 0; 3572 if (oxu->async->qh_next.qh) 3573 temp |= CMD_ASE; 3574 if (oxu->periodic_sched) 3575 temp |= CMD_PSE; 3576 if (temp) { 3577 oxu->command |= temp; 3578 writel(oxu->command, &oxu->regs->command); 3579 } 3580 3581 oxu->next_statechange = jiffies + msecs_to_jiffies(5); 3582 hcd->state = HC_STATE_RUNNING; 3583 3584 /* Now we can safely re-enable irqs */ 3585 writel(INTR_MASK, &oxu->regs->intr_enable); 3586 3587 spin_unlock_irq(&oxu->lock); 3588 return 0; 3589 } 3590 3591 #else 3592 3593 static int oxu_bus_suspend(struct usb_hcd *hcd) 3594 { 3595 return 0; 3596 } 3597 3598 static int oxu_bus_resume(struct usb_hcd *hcd) 3599 { 3600 return 0; 3601 } 3602 3603 #endif /* CONFIG_PM */ 3604 3605 static const struct hc_driver oxu_hc_driver = { 3606 .description = "oxu210hp_hcd", 3607 .product_desc = "oxu210hp HCD", 3608 .hcd_priv_size = sizeof(struct oxu_hcd), 3609 3610 /* 3611 * Generic hardware linkage 3612 */ 3613 .irq = oxu_irq, 3614 .flags = HCD_MEMORY | HCD_USB2, 3615 3616 /* 3617 * Basic lifecycle operations 3618 */ 3619 .reset = oxu_reset, 3620 .start = oxu_run, 3621 .stop = oxu_stop, 3622 .shutdown = oxu_shutdown, 3623 3624 /* 3625 * Managing i/o requests and associated device resources 3626 */ 3627 .urb_enqueue = oxu_urb_enqueue, 3628 .urb_dequeue = oxu_urb_dequeue, 3629 .endpoint_disable = oxu_endpoint_disable, 3630 3631 /* 3632 * Scheduling support 3633 */ 3634 .get_frame_number = oxu_get_frame, 3635 3636 /* 3637 * Root hub support 3638 */ 3639 .hub_status_data = oxu_hub_status_data, 3640 .hub_control = oxu_hub_control, 3641 .bus_suspend = oxu_bus_suspend, 3642 .bus_resume = oxu_bus_resume, 3643 }; 3644 3645 /* 3646 * Module stuff 3647 */ 3648 3649 static void oxu_configuration(struct platform_device *pdev, void *base) 3650 { 3651 u32 tmp; 3652 3653 /* Initialize top level registers. 3654 * First write ever 3655 */ 3656 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3657 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); 3658 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); 3659 3660 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); 3661 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); 3662 3663 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | 3664 OXU_COMPARATOR | OXU_ASO_OP); 3665 3666 tmp = oxu_readl(base, OXU_CLKCTRL_SET); 3667 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); 3668 3669 /* Clear all top interrupt enable */ 3670 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); 3671 3672 /* Clear all top interrupt status */ 3673 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); 3674 3675 /* Enable all needed top interrupt except OTG SPH core */ 3676 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); 3677 } 3678 3679 static int oxu_verify_id(struct platform_device *pdev, void *base) 3680 { 3681 u32 id; 3682 static const char * const bo[] = { 3683 "reserved", 3684 "128-pin LQFP", 3685 "84-pin TFBGA", 3686 "reserved", 3687 }; 3688 3689 /* Read controller signature register to find a match */ 3690 id = oxu_readl(base, OXU_DEVICEID); 3691 dev_info(&pdev->dev, "device ID %x\n", id); 3692 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) 3693 return -1; 3694 3695 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", 3696 id >> OXU_REV_SHIFT, 3697 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], 3698 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, 3699 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); 3700 3701 return 0; 3702 } 3703 3704 static const struct hc_driver oxu_hc_driver; 3705 static struct usb_hcd *oxu_create(struct platform_device *pdev, 3706 unsigned long memstart, unsigned long memlen, 3707 void *base, int irq, int otg) 3708 { 3709 struct device *dev = &pdev->dev; 3710 3711 struct usb_hcd *hcd; 3712 struct oxu_hcd *oxu; 3713 int ret; 3714 3715 /* Set endian mode and host mode */ 3716 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), 3717 OXU_USBMODE, 3718 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); 3719 3720 hcd = usb_create_hcd(&oxu_hc_driver, dev, 3721 otg ? "oxu210hp_otg" : "oxu210hp_sph"); 3722 if (!hcd) 3723 return ERR_PTR(-ENOMEM); 3724 3725 hcd->rsrc_start = memstart; 3726 hcd->rsrc_len = memlen; 3727 hcd->regs = base; 3728 hcd->irq = irq; 3729 hcd->state = HC_STATE_HALT; 3730 3731 oxu = hcd_to_oxu(hcd); 3732 oxu->is_otg = otg; 3733 3734 ret = usb_add_hcd(hcd, irq, IRQF_SHARED); 3735 if (ret < 0) 3736 return ERR_PTR(ret); 3737 3738 device_wakeup_enable(hcd->self.controller); 3739 return hcd; 3740 } 3741 3742 static int oxu_init(struct platform_device *pdev, 3743 unsigned long memstart, unsigned long memlen, 3744 void *base, int irq) 3745 { 3746 struct oxu_info *info = platform_get_drvdata(pdev); 3747 struct usb_hcd *hcd; 3748 int ret; 3749 3750 /* First time configuration at start up */ 3751 oxu_configuration(pdev, base); 3752 3753 ret = oxu_verify_id(pdev, base); 3754 if (ret) { 3755 dev_err(&pdev->dev, "no devices found!\n"); 3756 return -ENODEV; 3757 } 3758 3759 /* Create the OTG controller */ 3760 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); 3761 if (IS_ERR(hcd)) { 3762 dev_err(&pdev->dev, "cannot create OTG controller!\n"); 3763 ret = PTR_ERR(hcd); 3764 goto error_create_otg; 3765 } 3766 info->hcd[0] = hcd; 3767 3768 /* Create the SPH host controller */ 3769 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); 3770 if (IS_ERR(hcd)) { 3771 dev_err(&pdev->dev, "cannot create SPH controller!\n"); 3772 ret = PTR_ERR(hcd); 3773 goto error_create_sph; 3774 } 3775 info->hcd[1] = hcd; 3776 3777 oxu_writel(base, OXU_CHIPIRQEN_SET, 3778 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); 3779 3780 return 0; 3781 3782 error_create_sph: 3783 usb_remove_hcd(info->hcd[0]); 3784 usb_put_hcd(info->hcd[0]); 3785 3786 error_create_otg: 3787 return ret; 3788 } 3789 3790 static int oxu_drv_probe(struct platform_device *pdev) 3791 { 3792 struct resource *res; 3793 void *base; 3794 unsigned long memstart, memlen; 3795 int irq, ret; 3796 struct oxu_info *info; 3797 3798 if (usb_disabled()) 3799 return -ENODEV; 3800 3801 /* 3802 * Get the platform resources 3803 */ 3804 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 3805 if (!res) { 3806 dev_err(&pdev->dev, 3807 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev)); 3808 return -ENODEV; 3809 } 3810 irq = res->start; 3811 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); 3812 3813 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3814 base = devm_ioremap_resource(&pdev->dev, res); 3815 if (IS_ERR(base)) { 3816 ret = PTR_ERR(base); 3817 goto error; 3818 } 3819 memstart = res->start; 3820 memlen = resource_size(res); 3821 3822 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING); 3823 if (ret) { 3824 dev_err(&pdev->dev, "error setting irq type\n"); 3825 ret = -EFAULT; 3826 goto error; 3827 } 3828 3829 /* Allocate a driver data struct to hold useful info for both 3830 * SPH & OTG devices 3831 */ 3832 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL); 3833 if (!info) { 3834 ret = -EFAULT; 3835 goto error; 3836 } 3837 platform_set_drvdata(pdev, info); 3838 3839 ret = oxu_init(pdev, memstart, memlen, base, irq); 3840 if (ret < 0) { 3841 dev_dbg(&pdev->dev, "cannot init USB devices\n"); 3842 goto error; 3843 } 3844 3845 dev_info(&pdev->dev, "devices enabled and running\n"); 3846 platform_set_drvdata(pdev, info); 3847 3848 return 0; 3849 3850 error: 3851 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); 3852 return ret; 3853 } 3854 3855 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) 3856 { 3857 usb_remove_hcd(hcd); 3858 usb_put_hcd(hcd); 3859 } 3860 3861 static int oxu_drv_remove(struct platform_device *pdev) 3862 { 3863 struct oxu_info *info = platform_get_drvdata(pdev); 3864 3865 oxu_remove(pdev, info->hcd[0]); 3866 oxu_remove(pdev, info->hcd[1]); 3867 3868 return 0; 3869 } 3870 3871 static void oxu_drv_shutdown(struct platform_device *pdev) 3872 { 3873 oxu_drv_remove(pdev); 3874 } 3875 3876 #if 0 3877 /* FIXME: TODO */ 3878 static int oxu_drv_suspend(struct device *dev) 3879 { 3880 struct platform_device *pdev = to_platform_device(dev); 3881 struct usb_hcd *hcd = dev_get_drvdata(dev); 3882 3883 return 0; 3884 } 3885 3886 static int oxu_drv_resume(struct device *dev) 3887 { 3888 struct platform_device *pdev = to_platform_device(dev); 3889 struct usb_hcd *hcd = dev_get_drvdata(dev); 3890 3891 return 0; 3892 } 3893 #else 3894 #define oxu_drv_suspend NULL 3895 #define oxu_drv_resume NULL 3896 #endif 3897 3898 static struct platform_driver oxu_driver = { 3899 .probe = oxu_drv_probe, 3900 .remove = oxu_drv_remove, 3901 .shutdown = oxu_drv_shutdown, 3902 .suspend = oxu_drv_suspend, 3903 .resume = oxu_drv_resume, 3904 .driver = { 3905 .name = "oxu210hp-hcd", 3906 .bus = &platform_bus_type 3907 } 3908 }; 3909 3910 module_platform_driver(oxu_driver); 3911 3912 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); 3913 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); 3914 MODULE_LICENSE("GPL"); 3915